
V E R S I O N 7 . 0

User’s Guide MATH LIBRARYFortran Numerical Library

®

CORPORATE HEADQUARTERS
Rogue Wave Software 5500 Flatiron
Parkway Suite 200 Boulder, CO 80301
USA
T: 303.545.3220 F: 303.473.9137

IMSL Libraries Contact Information
USA Toll Free: 800.222.4675
T: 713.784.3131 F: 713.781.9260
Email: info@vni.com Web site: www.vni.com

Worldwide Offices
USA • UK • France • Germany • Japan For
contact information, please visit
www.vni.com/contact/worldwideoffices.php

© 1970-2010 Rogue Wave Software, Visual Numerics, IMSL and PV-WAVE are registered
trademarks of Rogue Wave Software, Inc. in the U.S. and other countries. JMSL, JWAVE,
TS-WAVE, PyIMSL and Knowledge in Motion are trademarks of Rogue Wave Software, Inc. All
other company, product or brand names are the property of their respective owners.

IMPORTANT NOTICE: Information contained in this documentation is subject to change
without notice. Use of this document is subject to the terms and conditions of a Rogue Wave
Software License Agreement, including, without limitation, the Limited Warranty and Limitation
of Liability. If you do not accept the terms of the license agreement, you may not use this
documentation and should promptly return the product for a full refund. This documentation
may not be copied or distributed in any form without the express written consent of Rogue
Wave Software.

Embeddable mathematical and statistical algorithms available for C, C#/.NET, Java™,
Fortran and Python applications

IMSL MATH LIBRARY Table of Contents i

Table of Contents

Introduction i

The IMSL Fortran Numerical Library .. i
User Background .. i
Getting Started .. ii
Finding the Right Routine .. iii
Organization of the Documentation ... iii
Naming Conventions... iv
Using Library Subprograms ... v
Programming Conventions ... vi
Module Usage ... vi
Using MPI Routines .. vii
Programming Tips.. viii
Optional Subprogram Arguments ... ix
Optional Data .. ix
Overloaded =, /=, etc., for Derived Types .. x
Error Handling .. xi
Printing Results ... xii
Fortran 90 Constructs .. xii
Shared-Memory Multiprocessors and Thread Safety ... xii
Using Operators and Generic Functions .. xiii
Using ScaLAPACK, LAPACK, LINPACK, and EISPACK ... xv
Using ScaLAPACK Enhanced Routines ... xix

Chapter 1: Linear Systems 1

Routines ... 1
Usage Notes ... 5

Matrix Types ... 5
Solution of Linear Systems ... 6
Multiple Right Sides .. 7
Determinants ... 7
Iterative Refinement .. 7
Singularity ... 8
Special Linear Systems .. 8
Iterative Solution of Linear Systems ... 8
QR Decomposition .. 9

LIN_SOL_GEN ... 10
LIN_SOL_SELF .. 18
LIN_SOL_LSQ .. 27

ii Table of Contents IMSL MATH LIBRARY

LIN_SOL_SVD.. 36
LIN_SOL_TRI ... 45
LIN_SVD ... 57
Parallel Constrained Least-Squares Solvers ... 66

Solving Constrained Least-Squares Systems ... 66
PARALLEL_NONNEGATIVE_LSQ ... 67
PARALLEL_BOUNDED_LSQ .. 75
LSARG... 83
LSLRG ... 87
LFCRG ... 93
LFTRG ... 99
LFSRG ... 103
LFIRG .. 108
LFDRG... 113
LINRG ... 115
LSACG... 119
LSLCG ... 123
LFCCG ... 128
LFTCG ... 134
LFSCG ... 138
LFICG .. 143
LFDCG... 148
LINCG ... 150
LSLRT ... 154
LFCRT ... 158
LFDRT ... 162
LINRT .. 163
LSLCT ... 165
LFCCT ... 169
LFDCT ... 173
LINCT .. 175
LSADS ... 177
LSLDS ... 181
LFCDS ... 186
LFTDS ... 191
LFSDS .. 195
LFIDS .. 199
LFDDS ... 204
LINDS .. 206
LSASF .. 210
LSLSF .. 213
LFCSF .. 215
LFTSF .. 218
LFSSF .. 221
LFISF ... 223
LFDSF .. 226
LSADH .. 227
LSLDH ... 232
LFCDH... 237

IMSL MATH LIBRARY Table of Contents iii

LFTDH ... 243
LFSDH ... 248
LFIDH .. 252
LFDDH .. 258
LSAHF ... 259
LSLHF ... 262
LFCHF ... 265
LFTHF ... 268
LFSHF ... 271
LFIHF .. 273
LFDHF ... 276
LSLTR ... 278
LSLCR ... 279
LSARB ... 282
LSLRB ... 285
LFCRB ... 290
LFTRB ... 293
LFSRB ... 296
LFIRB .. 298
LFDRB ... 301
LSAQS ... 303
LSLQS ... 305
LSLPB ... 308
LFCQS ... 311
LFTQS ... 314
LFSQS ... 316
LFIQS .. 318
LFDQS ... 320
LSLTQ ... 322
LSLCQ ... 324
LSACB ... 327
LSLCB ... 330
LFCCB ... 333
LFTCB ... 336
LFSCB ... 339
LFICB .. 341
LFDCB ... 344
LSAQH .. 346
LSLQH ... 349
LSLQB ... 352
LFCQH .. 355
LFTQH ... 358
LFSQH ... 360
LFIQH .. 362
LFDQH .. 365
LSLXG ... 366
LFTXG ... 372
LFSXG ... 377
LSLZG ... 380

iv Table of Contents IMSL MATH LIBRARY

LFTZG ... 385
LFSZG ... 391
LSLXD ... 394
LSCXD... 399
LNFXD .. 403
LFSXD ... 408
LSLZD ... 412
LNFZD ... 416
LFSZD ... 421
LSLTO ... 424
LSLTC ... 426
LSLCC ... 428
PCGRC... 431
JCGRC ... 437
GMRES .. 440
ARPACK_SVD.. 451
LSQRR ... 451
LQRRV .. 457
LSBRR ... 463
LCLSQ ... 467
LQRRR .. 471
LQERR... 478
LQRSL ... 483
LUPQR... 489
LCHRG .. 494
LUPCH... 496
LDNCH .. 499
LSVRR ... 503
LSVCR ... 510
LSGRR ... 514

Chapter 2: Eigensystem Analysis 521

Routines ... 521
Usage Notes ... 522

Reformulating Generalized Eigenvalue Problems ... 525
Using ARPACK for Ordinary and Generalized Eigenvalue Problems 526

LIN_EIG_SELF ... 526
LIN_EIG_GEN .. 533
LIN_GEIG_GEN ... 542
EVLRG .. 549
EVCRG .. 552
EPIRG .. 555
EVLCG .. 557
EVCCG .. 559
EPICG .. 562
EVLSF ... 564
EVCSF ... 566
EVASF ... 568

IMSL MATH LIBRARY Table of Contents v

EVESF ... 570
EVBSF ... 573
EVFSF ... 575
EPISF ... 578
EVLSB ... 580
EVCSB ... 582
EVASB .. 585
EVESB ... 588
EVBSB ... 591
EVFSB ... 593
EPISB ... 596
EVLHF ... 598
EVCHF .. 601
EVAHF .. 604
EVEHF ... 606
EVBHF .. 609
EVFHF ... 612
EPIHF .. 615
EVLRH .. 617
EVCRH .. 619
EVLCH .. 621
EVCCH .. 623
GVLRG .. 626
GVCRG ... 629
GPIRG ... 632
GVLCG .. 634
GVCCG ... 637
GPICG ... 640
GVLSP ... 642
GVCSP ... 645
GPISP ... 648
Eigenvalues and Eigenvectors Computed with ARPACK ... 651

The Abstract Interfaces for User-Written Array Functions ... 652
The Base Class ARPACKBASE .. 653
ARPACK_SYMMETRIC .. 654
ARPACK_SVD ... 668
ARPACK_NONSYMMETRIC ... 676
ARPACK_COMPLEX .. 685

Chapter 3: Interpolation and Approximation 693

Routines ... 693
Usage Notes ... 695

Piecewise Polynomials .. 695
Splines and B-splines .. 695
Cubic Splines ... 697
Tensor Product Splines .. 698
Quadratic Interpolation .. 699
Multi-dimensional Interpolation .. 699

vi Table of Contents IMSL MATH LIBRARY

Least Squares ... 699
Smoothing by Cubic Splines ... 699
Rational Chebyshev Approximation .. 699
Using the Univariate Spline Routines .. 699
Choosing an Interpolation Routine .. 701

SPLINE_CONSTRAINTS ... 702
SPLINE_VALUES .. 703
SPLINE_FITTING ... 704
SURFACE_CONSTRAINTS .. 714
SURFACE_VALUES .. 715
SURFACE_FITTING .. 716
CSIEZ .. 727
CSINT .. 729
CSDEC ... 732
CSHER ... 737
CSAKM ... 740
CSCON .. 742
CSPER ... 746
CSVAL... 749
CSDER ... 750
CS1GD ... 753
CSITG .. 756
SPLEZ .. 758
BSINT .. 761
BSNAK .. 765
BSOPK ... 768
BS2IN .. 771
BS3IN .. 776
BSVAL... 782
BSDER ... 783
BS1GD ... 786
BSITG .. 789
BS2VL ... 792
BS2DR ... 794
BS2GD ... 797
BS2IG .. 801
BS3VL ... 805
BS3DR ... 807
BS3GD ... 811
BS3IG .. 817
BSCPP .. 821
PPVAL ... 823
PPDER ... 825
PP1GD ... 828
PPITG .. 831
QDVAL .. 833
QDDER .. 835
QD2VL... 838
QD2DR .. 840

IMSL MATH LIBRARY Table of Contents vii

QD3VL .. 843
QD3DR .. 847
SURF ... 851
SURFND .. 855
RLINE .. 858
RCURV .. 861
FNLSQ ... 865
BSLSQ ... 870
BSVLS ... 874
CONFT .. 879
BSLS2 .. 889
BSLS3 .. 894
CSSED ... 900
CSSMH .. 904
CSSCV ... 907
RATCH .. 910

Chapter 4: Integration and Differentiation 915

Routines ... 915
Usage Notes ... 916

Univariate Quadrature ... 916
Multivariate Quadrature .. 917
Gauss Rules and Three-term Recurrences ... 917
Numerical Differentiation ... 918

QDAGS .. 918
QDAG .. 922
QDAGP .. 925
QDAG1D ... 929
QDAGI ... 935
QDAWO .. 938
QDAWF ... 942
QDAWS ... 946
QDAWC .. 949
QDNG .. 953
TWODQ ... 955
QDAG2D ... 960
QDAG3D ... 966
QAND .. 973
QMC .. 976
GQRUL .. 979
GQRCF .. 983
RECCF ... 986
RECQR .. 988
FQRUL .. 991
DERIV ... 995

Chapter 5: Differential Equations 999

Routines ... 999

viii Table of Contents IMSL MATH LIBRARY

Usage Notes ... 1000
Ordinary Differential Equations .. 1000
Differential-algebraic Equations .. 1001
Partial Differential Equations .. 1001
Summary.. 1002

IVPRK .. 1003
IVMRK .. 1011
IVPAG ... 1021
BVPFD ... 1037
BVPMS .. 1050
DAESL ... 1057
DASPG... 1072
IVOAM .. 1072
Introduction to Subroutine PDE_1D_MG .. 1080
PDE_1D_MG ... 1081

Description .. 1089
Remarks on the Examples ... 1090
Example 1 - Electrodynamics Model... 1092
Example 2 - Inviscid Flow on a Plate .. 1095
Example 3 - Population Dynamics .. 1098
Example 4 - A Model in Cylindrical Coordinates ... 1101
Example 5 - A Flame Propagation Model ... 1102
Example 6 - A ‗Hot Spot‘ Model .. 1105
Example 7 - Traveling Waves ... 1107
Example 8 - Black-Scholes .. 1109
Example 9 - Electrodynamics, Parameters Studied with MPI 1111

MMOLCH .. 1115
MOLCH ... 1128
FEYNMAN_KAC.. 1128
HQSVAL ... 1185
FPS2H .. 1188
FPS3H .. 1194
SLEIG .. 1201
SLCNT ... 1213

Chapter 6: Transforms 1217

Routines ... 1217
Usage Notes ... 1218

Fast Fourier Transforms .. 1218
Continuous versus Discrete Fourier Transform ... 1219
Inverse Laplace Transform .. 1220

FAST_DFT .. 1220
FAST_2DFT .. 1227
FAST_3DFT .. 1233
FFTRF .. 1236
FFTRB ... 1240
FFTRI ... 1243
FFTCF .. 1245

IMSL MATH LIBRARY Table of Contents ix

FFTCB ... 1248
FFTCI ... 1251
FSINT .. 1253
FSINI ... 1255
FCOST ... 1257
FCOSI .. 1259
QSINF .. 1261
QSINB ... 1263
QSINI ... 1266
QCOSF ... 1268
QCOSB .. 1270
QCOSI ... 1272
FFT2D .. 1274
FFT2B .. 1277
FFT3F .. 1281
FFT3B .. 1285
RCONV ... 1289
CCONV ... 1294
RCORL .. 1299
CCORL .. 1304
INLAP .. 1309
SINLP .. 1311

Chapter 7: Nonlinear Equations 1319

Routines ... 1319
Usage Notes ... 1319

Zeros of a Polynomial ... 1319
Zero(s) of a Function ... 1320
Root of System of Equations ... 1320

ZPLRC ... 1320
ZPORC ... 1322
ZPOCC ... 1324
ZANLY .. 1325
ZUNI .. 1328
ZBREN .. 1331
ZREAL ... 1334
NEQNF .. 1337
NEQNJ ... 1340
NEQBF .. 1344
NEQBJ ... 1350

Chapter 8: Optimization 1357

Routines ... 1357
Usage Notes ... 1358

Unconstrained Minimization ... 1358
Minimization with Simple Bounds .. 1359
Linearly Constrained Minimization ... 1359
Nonlinearly Constrained Minimization ... 1359

x Table of Contents IMSL MATH LIBRARY

Selection of Routines ... 1360
UVMIF ... 1362
UVMID .. 1365
UVMGS ... 1369
UMINF ... 1372
UMING .. 1377
UMIDH .. 1384
UMIAH .. 1389
UMCGF ... 1395
UMCGG ... 1399
UMPOL .. 1403
UNLSF ... 1407
UNLSJ .. 1413
BCONF .. 1420
BCONG .. 1427
BCODH .. 1434
BCOAH .. 1441
BCPOL ... 1448
BCLSF ... 1452
BCLSJ .. 1459
BCNLS ... 1466
READ_MPS ... 1475

MPS File Format ... 1480
NAME Section .. 1481
ROWS Section ... 1481
COLUMNS Section ... 1481
RHS Section .. 1481
RANGES Section .. 1482
BOUNDS Section .. 1483
QUADRATIC Section ... 1484
ENDATA Section .. 1484

MPS_FREE .. 1485
DENSE_LP .. 1488
DLPRS ... 1494
SLPRS .. 1497
TRAN ... 1504
QPROG .. 1506
LCONF... 1510
LCONG .. 1516
NNLPF ... 1522
NNLPG .. 1528
CDGRD .. 1536
FDGRD .. 1538
FDHES ... 1541
GDHES .. 1543
DDJAC ... 1546
FDJAC ... 1555
CHGRD .. 1558
CHHES... 1561

IMSL MATH LIBRARY Table of Contents xi

CHJAC ... 1565
GGUES .. 1569

Chapter 9: Basic Matrix/Vector Operations 1573

Routines ... 1573
Basic Linear Algebra Subprograms ... 1576

Programming Notes for Level 1 BLAS ... 1576
Descriptions of the Level 1 BLAS Subprograms .. 1577
Programming Notes for Level 2 and Level 3 BLAS ... 1588
Descriptions of the Level 2 and Level 3 BLAS ... 1589

Programming Notes for BLAS Using NVIDIA ... 1601
CUBLAS_GET .. 1607
CUBLAS_SET ... 1609
CHECK_BUFFER_ALLOCATION ... 1611
CUDA_ERROR_PRINT ... 1612
Other Matrix/Vector Operations .. 1614
CRGRG .. 1615
CCGCG .. 1616
CRBRB .. 1617
CCBCB .. 1619
CRGRB .. 1621
CRBRG .. 1622
CCGCB .. 1624
CCBCG .. 1626
CRGCG .. 1627
CRRCR .. 1629
CRBCB .. 1631
CSFRG ... 1632
CHFCG .. 1634
CSBRB ... 1635
CHBCB .. 1637
TRNRR .. 1639
MXTXF ... 1641
MXTYF ... 1643
MXYTF ... 1645
MRRRR ... 1647
MCRCR ... 1649
HRRRR .. 1651
BLINF .. 1653
POLRG .. 1655
MURRV ... 1657
MURBV ... 1659
MUCRV ... 1661
MUCBV ... 1663
ARBRB .. 1665
ACBCB .. 1667
NRIRR ... 1670
NR1RR ... 1671

xii Table of Contents IMSL MATH LIBRARY

NR2RR ... 1673
NR1RB ... 1674
NR1CB ... 1676
DISL2 ... 1677
DISL1 ... 1679
DISLI ... 1681
VCONR .. 1683
VCONC .. 1685
Extended Precision Arithmetic ... 1687

Chapter 10: Linear Algebra Operators and Generic Functions 1691

Routines ... 1691
Usage Notes ... 1692
Matrix Optional Data Changes ... 1692
Dense Matrix Computations ... 1694
Dense Matrix Functions ... 1696
Dense Matrix Parallelism Using MPI .. 1697

General Remarks ... 1697
Getting Started with Modules MPI_setup_int and MPI_node_int 1697
Using Processors.. 1699

Sparse Matrix Computations .. 1700
Introduction ... 1700
Derived Type Definitions .. 1702
Overloaded Assignments ... 1704

.x. .. 1707

.tx. .. 1711

.xt. .. 1714

.hx. .. 1717

.xh. .. 1720

.t. .. 1723

.h. .. 1726

.i. .. 1728

.ix. .. 1730

.xi. .. 1740
CHOL ... 1743
COND .. 1746
DET .. 1750
DIAG .. 1753
DIAGONALS .. 1754
EIG ... 1755
EYE .. 1759
FFT ... 1761
FFT_BOX .. 1763
IFFT ... 1765
IFFT_BOX ... 1767
isNaN ... 1769
NaN .. 1770
NORM .. 1771

IMSL MATH LIBRARY Table of Contents xiii

ORTH ... 1774
RAND .. 1777
RANK .. 1779
SVD ... 1780
UNIT .. 1783

Chapter 11: Utilities 1787

Routines ... 1787
Usage Notes for ScaLAPACK Utilities ... 1789

ScaLAPACK Supporting Modules .. 1792
ScaLAPACK_SETUP .. 1792
ScaLAPACK_GETDIM .. 1794
ScaLAPACK_READ ... 1795
ScaLAPACK_WRITE ... 1797
ScaLAPACK_MAP ... 1805
ScaLAPACK_UNMAP ... 1807
ScaLAPACK_EXIT ... 1809
ERROR_POST .. 1810
SHOW .. 1813
WRRRN ... 1817
WRRRL ... 1819
WRIRN .. 1822
WRIRL ... 1825
WRCRN ... 1827
WRCRL ... 1830
WROPT ... 1833
PGOPT ... 1840
PERMU .. 1842
PERMA .. 1844
SORT_REAL ... 1846
SVRGN .. 1849
SVRGP ... 1850
SVIGN ... 1852
SVIGP .. 1853
SVRBN .. 1855
SVRBP ... 1856
SVIBN ... 1857
SVIBP .. 1859
SRCH ... 1860
ISRCH .. 1862
SSRCH ... 1864
ACHAR ... 1867
IACHAR .. 1868
ICASE .. 1869
IICSR ... 1870
IIDEX ... 1872
CVTSI .. 1873
CPSEC ... 1874

xiv Table of Contents IMSL MATH LIBRARY

TIMDY... 1875
TDATE... 1876
NDAYS .. 1877
NDYIN ... 1878
IDYWK .. 1880
VERML .. 1881
RAND_GEN .. 1882
RNGET .. 1891
RNSET ... 1892
RNOPT... 1893
RNIN32 .. 1894
RNGE32 ... 1895
RNSE32 ... 1897
RNIN64 .. 1897
RNGE64 ... 1898
RNSE64 ... 1900
RNUNF .. 1900
RNUN .. 1902
FAURE_INIT ... 1904
FAURE_FREE ... 1905
FAURE_NEXT .. 1905
IUMAG .. 1908
UMAG ... 1911
DUMAG... 1914
PLOTP ... 1914
PRIME ... 1917
CONST... 1919
CUNIT ... 1921
HYPOT .. 1925
MP_SETUP .. 1926

Reference Material 1931

Contents ... 1931
User Errors ... 1931

What Determines Error Severity ... 1931
Kinds of Errors and Default Actions ... 1932
Errors in Lower-Level Routines .. 1933
Routines for Error Handling .. 1933

ERSET ... 1933
IERCD and N1RTY ... 1934

Examples ... 1934
Machine-Dependent Constants... 1937
IMACH .. 1937
AMACH ... 1939
DMACH ... 1940
IFNAN(X) .. 1940
UMACH ... 1942
Matrix Storage Modes .. 1943

IMSL MATH LIBRARY Table of Contents xv

Reserved Names ... 1954
Deprecated Features and Renamed Routines ... 1955

Automatic Workspace Allocation ... 1955
Changing the Amount of Space Allocated .. 1955
Character Workspace... 1956

Appendix A: GAMS Index i

Description .. i
IMSL MATH LIBRARY .. ii

Appendix B: Alphabetical Summary of Routines i

Routines .. i

Appendix C: References i

Appendix D: Benchmarking or Timing Programs i

Scalar Program Descriptions ... i
Parallel Program Descriptions .. v

Product Support 11

Contacting IMSL Support .. 11

Index i

IMSL MATH LIBRARY Introduction i

Introduction

The IMSL Fortran Numerical Library
The IMSL Fortran Numerical Library consists of two separate but coordinated Libraries that allow

easy user access. These Libraries are organized as follows:

 MATH/LIBRARY general applied mathematics and special functions

The User‘s Guide for IMSL MATH/LIBRARY has two parts:

1. MATH/LIBRARY

2. MATH/LIBRARY Special Functions

 STAT/LIBRARY statistics

Most of the routines are available in both single and double precision versions. Many routines for

linear solvers and eigensystems are also available for complex and double -complex precision

arithmetic. The same user interface is found on the many hardware versions that span the range

from personal computer to supercomputer.

This library is the result of a merging of the products: IMSL Fortran Numerical Libraries and

IMSL Fortran 90 Library.

User Background
To use this product you should be familiar with the Fortran 90 language as well as the withdrawn

Fortran 77 language, which is, in practice, a subset of Fortran 90. A summary of the ISO and

ANSI standard language is found in Metcalf and Reid (1990). A more comprehensive illustration

is given in Adams et al. (1992).

Those routines implemented in the IMSL Fortran Numerical Library provide a simpler, more

reliable user interface than was possible with Fortran 77. Features of the IMSL Fortran Numerical

Library include the use of descriptive names, short required argument lists, packaged user-

interface blocks, a suite of testing and benchmark software, and a collection of examples. Source

code is provided for the benchmark software and examples.

Some of the routines in the IMSL Fortran Numerical Library can take advantage of a standard

(MPI) Message Passing Interface environment but do not require an MPI environment if the user

chooses to not take advantage of MPI.

ii Introduction IMSL MATH LIBRARY

The MPI logo shown below cues the reader when this is the case:

Routines documented with the MPI Capable logo can be called in a scalar or one computer

environment.

Other routines in the IMSL Library take advantage of MPI and require that an MPI environment

be present in order to use them. The MPI Required logo shown below clues the reader when this is

the case:

NOTE: It is recommended that users considering using the MPI capabilities of the product read

the following sections of the MATH Library documentation:

Introduction: Using MPI Routines,

Introduction: Using ScaLAPACK Enhanced Routines,

Chapter 10, Linear Algebra Operators and Generic Functions – see Dense Matrix Parallelism

Using MPI.

Vendor Supplied Libraries Usage

The IMSL Fortran Numerical Library contains functions which may take advantage of functions

in vendor supplied libraries such as Intel‘s
®
 Math Kernel Library (MKL) or Sun‘s

 High

Performance Library. Functions in the vendor supplied libraries are finely tuned for performance

to take full advantage of the environment for which they are supplied. For these functions, the user

of the IMSL Fortran Numerical Library has the option of linking to code which is based on either

the IMSL legacy functions or the functions in the vendor supplied library. The following icon in

the function documentation alerts the reader when this is the case:

Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are

explained in the online README file of the product distribution.

Getting Started
The IMSL MATH/LIBRARY is a collection of Fortran routines and functions useful in

mathematical analysis research and application development. Each routine is designed and

documented for use in research activities as well as by technical specialists.

IMSL MATH LIBRARY Introduction iii

To use any of these routines, you must write a program in Fortran 90 (or possibly some other

language) to call the MATH/LIBRARY routine. Each routine conforms to established conventions

in programming and documentation. We give first priority in development to efficient algorithms,

clear documentation, and accurate results. The uniform design of the routines makes it easy to use

more than one routine in a given application. Also, you will find that the design consistency

enables you to apply your experience with one MATH/LIBRARY routine to other IMSL routines

that you use.

Finding the Right Routine
The MATH/LIBRARY is organized into chapters; each chapter contains routines with similar

computational or analytical capabilities. To locate the right routine for a given problem, you may

use either the table of contents located in each chapter introduction, or the alphabetical list of

routines. The GAMS index uses GAMS classification (Boisvert, R.F., S.E. Howe, D.K. Kahaner,

and J. L. Springmann 1990, Guide to Available Mathematical Software, National Institute of

Standards and Technology NISTIR 90-4237). Use the GAMS index to locate which

MATH/LIBRARY routines pertain to a particular topic or problem.

Often the quickest way to use the MATH/LIBRARY is to find an example similar to your problem

and then to mimic the example. Each routine document has at least one example demonstrating its

application. The example for a routine may be created simply for illustration, it may be from a

textbook (with reference to the source), or it may be from the mathematical literature.

Organization of the Documentation
This manual contains a concise description of each routine, with at least one demonstrated exam-

ple of each routine, including sample input and results. You will find all information pertaining to

the MATH/LIBRARY in this manual. Moreover, all information pertaining to a particular routine

is in one place within a chapter.

Each chapter begins with an introduction followed by a table of contents that lists the routines

included in the chapter. Documentation of the routines consists of the following information:

 IMSL Routine‘s Generic Name

 Purpose: a statement of the purpose of the routine. If the routine is a function rather than a

subroutine the purpose statement will reflect this fact.

 Function Return Value: a description of the return value (for functions only).

 Required Arguments: a description of the required arguments in the order of their occurrence.

Input arguments usually occur first, followed by input/output arguments, with output

arguments described last. Futhermore, the following terms apply to arguments:

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through this

argument; cannot be a constant or an expression.

Input[/Output] Argument must be initialized; the routine may return output through this

argument based on other optional data the user may choose to pass to this routine; cannot

be a constant or an expression.

iv Introduction IMSL MATH LIBRARY

Input or Output Select appropriate option to define the argument as either input or output.

See individual routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The routine

returns output through this argument.

 Optional Arguments: a description of the optional arguments in the order of their occurrence.

 Fortran 90 Interface: a section that describes the generic and specific interfaces to the routine.

 Fortran 77 Style Interface: an optional section, which describes Fortran 77 style interfaces, is

supplied for backwards compatibility with previous versions of the Library.

 ScaLAPACK Interface: an optional section, which describes an interface to a ScaLAPACK

based version of this routine.

 Description: a description of the algorithm and references to detailed information. In many

cases, other IMSL routines with similar or complementary functions are noted.

 Comments: details pertaining to code usage.

 Programming notes: an optional section that contains programming details not covered

elsewhere.

 Example: at least one application of this routine showing input and required dimension and

type statements.

 Output: results from the example(s). Note that unique solutions may differ from platform to

platform.

 Additional Examples: an optional section with additional applications of this routine showing

input and required dimension and type statements.

Naming Conventions
The names of the routines are mnemonic and unique. Most routines are available in both a single

precision and a double precision version, with names of the two versions sharing a common root.

The root name is also the generic interface name. The name of the double precision specific

version begins with a ―D_‖ and the single precision specific version begins with an ―S_‖. For

example, the following pairs are precision specific names of routines in the two different

precisions: S_GQRUL/D_GQRUL (the root is ―GQRUL ,‖ for ―Gauss quadrature rule‖) and

S_RECCF/D_RECCF (the root is ―RECCF,‖ for ―recurrence coefficient‖). The precision specific

names of the IMSL routines that return or accept the type complex data begin with the letter ―C_‖

or ―Z_‖ for complex or double complex, respectively. Of course, the generic name can be used as

an entry point for all precisions supported.

When this convention is not followed the generic and specific interfaces are noted in the

documentation. For example, in the case of the BLAS and trigonometric intrinsic functions where

standard names are already established, the standard names are used as the precision specific

names. There may also be other interfaces supplied to the routine to provide for backwards

compatibility with previous versions of the IMSL Fortran Numerical Library. These alternate

interfaces are noted in the documentation when they are available.

IMSL MATH LIBRARY Introduction v

Except when expressly stated otherwise, the names of the variables in the argument lists follow

the Fortran default type for integer and floating point. In other words, a variable whose name

begins with one of the letters ―I‖ through ―N‖ is of type INTEGER, and otherwise is of type REAL

or DOUBLE PRECISION, depending on the precision of the routine.

An assumed-size array with more than one dimension that is used as a Fortran argument can have

an assumed-size declarator for the last dimension only. In the MATH/LIBRARY routines, the

information about the first dimension is passed by a variable with the prefix ―LD‖ and with the

array name as the root. For example, the argument LDA contains the leading dimension of array A.

In most cases, information about the dimensions of arrays is obtained from the array through the

use of Fortran 90‘s size function. Therefore, arguments carrying this type of information are

usually defined as optional arguments.

Where appropriate, the same variable name is used consistently throughout a chapter in the

MATH/LIBRARY. For example, in the routines for random number generation, NR denotes the

number of random numbers to be generated, and R or IR denotes the array that stores the numbers.

When writing programs accessing the MATH/LIBRARY, the user should choose Fortran names

that do not conflict with names of IMSL subroutines, functions, or named common blocks. The

careful user can avoid any conflicts with IMSL names if, in choosing names, the following rules

are observed:

 Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of the

User’s Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_.

 Do not choose a name consisting of more than three characters with a numeral in the second

or third position.

For further details, see the section on ―Reserved Names‖ in the Reference Material.

Using Library Subprograms
The documentation for the routines uses the generic name and omits the prefix, and hence the

entire suite of routines for that subject is documented under the generic name.

Examples that appear in the documentation also use the generic name. To further illustrate this

principle, note the LIN_SOL_GEN documentation (see Chapter 1, Linear Systems), for solving

general systems of linear algebraic equations. A description is provided for just one data type.

There are four documented routines in this subject area: s_lin_sol_gen, d_lin_sol_gen,

c_lin_sol_gen, and z_lin_sol_gen.

These routines constitute single-precision, double-precision, complex, and double-complex

precision versions of the code.

The Fortran 90 compiler identifies the appropriate routine. Use of a module is required with the

routines. The naming convention for modules joins the suffix ―_int‖ to the generic routine

name. Thus, the line ―use lin_sol_gen_int‖ is inserted near the top of any routine that calls

the subprogram ―lin_sol_gen‖. More inclusive modules are also available, such as

imsl_libraries and numerical libraries. To avoid name conflicts, Fortran 90 permits re-

labeling names defined in modules so they do not conflict with names of routines or variables in

the user‘s program. The user can also restrict access to names defined in IMSL Library modules

by use of the ―: ONLY, <list of names>‖ qualifier.

vi Introduction IMSL MATH LIBRARY

When dealing with a complex matrix, all references to the transpose of a matrix,
TA , are replaced

by the adjoint matrix

*T HA A A

where the overstrike denotes complex conjugation. IMSL Fortran Numerical Library linear

algebra software uses this convention to conserve the utility of generic documentation for that

code subject. All references to orthogonal matrices are to be replaced by their complex

counterparts, unitary matrices. Thus, an n n orthogonal matrix Q satisfies the

condition
T

nQ Q I . An n n unitary matrix V satisfies the analogous condition for complex

matrices, nV V I .

Programming Conventions
In general, the IMSL MATH/LIBRARY codes are written so that computations are not affected by

underflow, provided the system (hardware or software) places a zero value in the register. In this

case, system error messages indicating underflow should be ignored.

IMSL codes are also written to avoid overflow. A program that produces system error messages

indicating overflow should be examined for programming errors such as incorrect input data,

mismatch of argument types, or improper dimensioning.

In many cases, the documentation for a routine points out common pitfalls that can lead to failure

of the algorithm.

Library routines detect error conditions, classify them as to severity, and treat them accordingly.

This error-handling capability provides automatic protection for the user without requiring the user

to make any specific provisions for the treatment of error conditions. See the section on ―User

Errors‖ in the Reference Material for further details.

Module Usage
Users are required to incorporate a ―use‖ statement near the top of their program for the IMSL

routine being called when writing new code that uses this library. However, legacy code which

calls routines in the previous version of the library without the use of a ―use‖ statement will

continue to work as before. Also, code that employed the ―use numerical_libraries‖

statement from the previous version of the library will continue to work properly with this version

of the library.

Users wishing to update existing programs so as to call other routines from this library should

incorporate a use statement for the specific new routine being called. (Here, the term ―new

routine‖ implies any routine in the library, only ―new‖ to the user‘s program.) Use of the more

encompassing ―imsl_libraries‖ module in this case could result in argument mismatches for

the ―old‖ routine(s) being called. (The compiler would catch this.)

Users wishing to update existing programs to call the new generic versions of the routines must

change their calls to the existing routines to match the new calling sequences and use either the

routine specific interface modules or the all-encompassing ―imsl_libraries‖ module.

IMSL MATH LIBRARY Introduction vii

Using MPI Routines

Users of the IMSL Fortran Numerical Library benefit by having a standard (MPI) Message

Passing Interface environment. This is needed to accomplish parallel computing within parts of

the Library. Either of the icons above clues the reader when this is the case. If parallel computing

is not required, then the IMSL Library suite of dummy MPI routines can be substituted for

standard MPI routines. All requested MPI routines called by the IMSL Library are in this dummy

suite. Warning messages will appear if a code or example requires more than one process to

execute. Typically users need not be aware of the parallel codes.

NOTE: that a standard MPI environment is not part of the IMSL Fortran Numerical Library. The

standard includes a library of MPI Fortran and C routines, MPI ―include‖ files, usage

documentation, and other run-time utilities.

NOTE: Details on linking to the appropriate libraries are explained in the online README file of

the product distribution.

There are three situations of MPI usage in the IMSL Fortran Numerical Library:

1. There are some computations that are performed with the ‗box‘ data type that benefit from the

use of parallel processing. For computations involving a single array or a single problem,

there is no IMSL use of parallel processing or MPI codes. The box type data type implies that

several problems of the same size and type are to be computed and solved. Each rack of the

box is an independent problem. This means that each problem could potentially be solved in

parallel. The default for computing a box data type calculation is that a single processor will

do all of the problems, one after the other. If this is acceptable there should be no further

concern about which version of the libraries is used for linking. If the problems are to be

solved in parallel, then the user must link with a working version of an MPI Library and the

appropriate IMSL Library. Examples demonstrating the use of box type data may be found in

Chapter 10, ―Linear Algebra Operators and Generic Functions‖.

NOTE: Box data type routines are marked with the MPI Capable icon.

2. Various routines in Chapter 1, ―Linear Systems‖ allow the user to interface with the

ScaLAPACK Library routines. If the user chooses to run on only one processor then these

routines will utilize either IMSL Library code or LAPACK Library code based on the

libraries the user chooses to use during linking. If the user chooses to run on multiple

processors then working versions of MPI, ScaLAPACK, PBLAS, and Blacs will need to be

present. These routines are marked with the MPI Capable icon.

3. There are some routines or operators in the Library that require that a working MPI Library be

present in order for them to run. Examples are the large-scale parallel solvers and the

ScaLAPACK utilities. Routines of this type are marked with the MPI Required icon. For

these routines, the user must link with a working version of an MPI Library and the

appropriate IMSL Library.

In all cases described above it is the user‘s responsibility to supply working versions of the

aforementioned third party libraries when those libraries are required.

viii Introduction IMSL MATH LIBRARY

Table A below lists the chapters and IMSL routines calling MPI routines or the replacement non-

parallel package.

Chapter Name and Number Routine with MPI Utilized

Linear Systems, 1 PARALLEL_NONNEGATIVE_LSQ

Linear Systems, 1 PARALLEL_BOUNDED_LSQ

Linear Systems, 1 Those routines which utilize ScaLAPACK

listed in Table D below.

Linear Algebra and Generic Functions, 10 See entire following

Table B.1 – Defined Operators and Generic Functions

Utilities, 11 ScaLAPACK_SETUP

Utilities, 11 ScaLAPACK_GETDIM

Utilities, 11 ScaLAPACK_READ

Utilities, 11 ScaLAPACK_WRITE

Utilities, 11 ScaLAPACK_MAP

Utilities, 11 ScaLAPACK_UNMAP

Utilities, 11 ScaLAPACK_EXIT

Reference Material Entire Error Processor Package for IMSL

Library, if MPI is utilized

Table A - IMSL Routines Calling MPI Routines or Replacement Non-Parallel Package

Programming Tips
Each subject routine called or otherwise referenced requires the ―use‖ statement for an interface

block designed for that subject routine. The contents of this interface block are the interfaces to the

separate routines available for that subject. Packaged descriptive names for option numbers that

modify documented optional data or internal parameters might also be provided in the interface

block. Although this seems like an additional complication, many errors are avoided at an early

stage in development through the use of these interface blocks. The ―use‖ statement is required

for each routine called in the user‘s program. As illustrated in Examples 3 and 4 in routine

lin_geig_gen, the ―use‖ statement is required for defining the secondary option flags.

The function subprogram for s_NaN() or d_NaN() does not require an interface block because it

has only a single ―required‖ dummy argument. Also, if one is only using the Fortran 77 interfaces

supplied for backwards compatibility then the ―use‖ statements are not required.

IMSL MATH LIBRARY Introduction ix

Optional Subprogram Arguments
IMSL Fortran Numerical Library routines have required arguments and may have optional

arguments. All arguments are documented for each routine. For example, consider the routine

lin_sol_gen that solves the linear algebraic matrix equation Ax = b. The required arguments are

three rank-2 Fortran 90 arrays: A, b, and x. The input data for the problem are the A and b arrays;

the solution output is the x array. Often there are other arguments for this linear solver that are

closely connected with the computation but are not as compelling as the primary problem. The

inverse matrix
1A

may be needed as part of a larger application. To output this parameter, use

the optional argument given by the ―ainv=‖ keyword. The rank-2 output array argument used on

the right-hand side of the equal sign contains the inverse matrix. See Example 2 in Chapter 1,

―Linear Systems‖ of LIN_SOL_GEN for an example of computing the inverse matrix.

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL_LIBRARIES

interface module includes backwards-compatible positional argument interfaces to all routines that

existed in the Fortran 77 version of the Library. Note that it is not necessary to include ―use‖

statements when calling these routines by themselves. Existing programs that called these

routines will continue to work in the same manner as before.

Some of the primary routines have arguments ―epack=‖ and ―iopt=‖. As noted the ―epack=‖

argument is of derived type s_error or d_error. The prefix ―s_‖ or ―d_‖ is chosen

depending on the precision of the data type for that routine. These optional arguments are part of

the interface to certain routines, and are used to modify internal algorithm choices or other

parameters.

Optional Data
This additional optional argument (available for some routines) is further distinguished—a derived

type array that contains a number of parameters to modify the internal algorithm of a routine. This

derived type has the name ?_options, where ―?_‖ is either ―s_‖ or ―d_‖. The choice depends

on the precision of the data type. The declaration of this derived type is packaged within the

modules for these codes.

The definition of the derived types is:

 type ?_options

 integer idummy; real(kind(?)) rdummy

 end type

where the ―?_‖ is either ―s_‖ or ―d_‖, and the kind value matches the desired data type

indicated by the choice of ―s‖ or ―d‖.

Example 3 in Chapter 1, ―Linear Systems‖ of LIN_SOL_GEN illustrates the use of iterative

refinement to compute a double-precision solution based on a single-precision factorization of the

matrix. This is communicated to the routine using an optional argument with optional data. For

efficiency of iterative refinement, perform the factorization step once, and then save the factored

matrix in the array A and the pivoting information in the rank-1 integer array, ipivots. By

default, the factorization is normally discarded. To enable the routine to be re-entered with a

previously computed factorization of the matrix, optional data are used as array entries in the

―iopt=‖ optional argument. The packaging of LIN_SOL_GEN includes the definitions of the self-

documenting integer parameters lin_sol_gen_save_LU and lin_sol_gen_solve_A. These

x Introduction IMSL MATH LIBRARY

parameters have the values 2 and 3, but the programmer usually does not need to be aware of it.

The following rules apply to the ―iopt=iopt‖ optional argument:

1. Define a relative index, for example IO, for placing option numbers and data into the

array argument iopt. Initially, set IO = 1. Before a call to the IMSL Library routine,

follow Steps 2 through 4.

2. The data structure for the optional data array has the following form:

iopt (IO) = ?_options (Option_number, Optional_data)

[iopt (IO + 1) =?_options (Option_number, Optional_data)]

The length of the data set is specified by the documentation for an individual routine.

(The Optional_data is output in some cases and may not be used in other cases.) The

square braces [. . .] denote optional items.

Illustration: Example 3 in Chapter 2, ―Singular Value and Eigenvalue Decomposition‖ of

LIN_EIG_SELF, a new definition for a small diagonal term is passed to

LIN_SOL_SELF. There is one line of code required for the change and the new

tolerance:

iopt (1) = d_options(d_lin_sol_self_set_small,

epsilon(one) *abs (d(i)))

3. The internal processing of option numbers stops when Option_number == 0 or when

IO > SIZE(iopt). This signals each routine having this optional argument that all

desired changes to default values of internal parameters have been made. This implies

that the last option number is the value zero or the value of SIZE (iopt) matches the last

optional value changed.

4. To add more options, replace IO with IO + n, where n is the number of items required for

the previous option. Go to Step 2.

Option numbers can be written in any order, and any selected set of options can be changed from

the defaults. They may be repeated. Example 3 in Chapter 1, ―Linear Solvers‖ of LIN_SOL_SELF

uses three and then four option numbers for purposes of computing an eigenvector associated with

a known eigenvalue.

Overloaded =, /=, etc., for Derived Types
To assist users in writing compact and readable code, the IMSL Fortran Numerical Library

provides overloaded assignment and logical operations for the derived types s_options,

d_options, s_error, and d_error. Each of these derived types has an individual record

consisting of an integer and a floating-point number. The components of the derived types, in all

cases, are named idummy followed by rdummy. In many cases, the item referenced is the

component idummy. This integer value can be used exactly as any integer by use of the

component selector character (%). Thus, a program could assign a value and test after calling

a routine:

IMSL MATH LIBRARY Introduction xi

s_epack(1)%idummy = 0

call lin_sol_gen(A,b,x,epack=s_epack)

if (s_epack(1)%idummy > 0) call error_post(s_epack)

Using the overloaded assignment and logical operations, this code fragment can be written in the

equivalent and more readable form:

s_epack(1) = 0

call lin_sol_gen(A,b,x,epack=s_epack)

if (s_epack(1) > 0) call error_post(s_epack)

Generally the assignments and logical operations refer only to component idummy. The

assignment ―s_epack(1)=0‖ is equivalent to ―s_epack(1)=s_error(0,0E0)‖. Thus, the

floating-point component rdummy is assigned the value 0E0. The assignment statement

―I=s_epack(1)‖, for I an integer type, is equivalent to ―I=s_epack(1)%idummy‖. The value

of component rdummy is ignored in this assignment. For the logical operators, a single element of

any of the IMSL Fortran Numerical Library derived types can be in either the first or second

operand.

Derived Type Overloaded Assignments and Tests

s_options I=s_options(1);s_options(1)=I = = /= < <= > >=

s_options I=d_options(1);d_options(1)=I = = /= < <= > >=

d_epack I=s_epack(1);s_epack(1)=I = = /= < <= > >=

d_epack I=d_epack(1);d_epack(1)=I = = /= < <= > >=

In the examples, operator_ex01, , _ex37, the overloaded assignments and tests have been

used whenever they improve the readability of the code.

Error Handling

The routines in the IMSL MATH/LIBRARY attempt to detect and report errors and invalid input.

Errors are classified and are assigned a code number. By default, errors of moderate or worse

severity result in messages being automatically printed by the routine. Moreover, errors of worse

severity cause program execution to stop. The severity level and the general nature of the error are

designated by an ―error type‖ ranging from 0 to 5. An error type 0 is no error; types 1 through 5

are progressively more severe. In most cases, you need not be concerned with our method of

handling errors. For those interested, a complete description of the error-handling system is given

in the Reference Material, which also describes how you can change the default actions and access

the error code numbers.

A separate error handler is provided to allow users to handle errors of differing types being

reported from several nodes without danger of ―jumbling‖ or mixing error messages. The design

of this error handler is described more fully in Hanson (1992). The primary feature of the design is

the use of a separate array for each parallel call to a routine. This allows the user to summarize

errors using the routine error_post in a non-parallel part of an application. For a more detailed

discussion of the use of this error handler in applications which use MPI for distributed

computing, see the Reference Material.

xii Introduction IMSL MATH LIBRARY

Printing Results
Most of the routines in the IMSL MATH/LIBRARY (except the line printer routines and special

utility routines) do not print any of the results. The output is returned in Fortran variables, and you

can print these yourself. See Chapter 11, ―Utilities,‖ for detailed descriptions of these routines.

A commonly used routine in the examples is the IMSL routine UMACH (see the Reference Material),

which retrieves the Fortran device unit number for printing the results. Because this routine obtains

device unit numbers, it can be used to redirect the input or output. The section on ―Machine-

Dependent Constants‖ in the Reference Material contains a description of the routine UMACH.

Fortran 90 Constructs

The IMSL Fortran Numerical Library contains routines which take advantage of Fortran 90

language constructs, including Fortran 90 array data types. One feature of the design is that the

default use may be as simple as the problem statement. Complicated, professional-quality

mathematical software is hidden from the casual or beginning user.

 In addition, high-level operators and functions are provided in the Library. They are described in

Chapter 10, ―Linear Algebra Operators and Generic Functions‖.

Shared-Memory Multiprocessors and
Thread Safety

The IMSL Fortran Numerical Library allows users to leverage the high-performance technology of

shared memory parallelism (SMP) when their environment supports it. Support for SMP systems

within the IMSL Library is delivered through various means, depending upon the availability of

technologies such as OpenMP, high performance LAPACK and BLAS, and hardware-specific

IMSL algorithms. Use of the IMSL Fortran Numerical Library on SMP systems can be achieved

by using the appropriate link environment variable when building your application. Details on

the available link environment variables for your installation of the IMSL Fortran Numerical

Library can be found in the online README file of the product distribution.

The IMSL Fortran Numerical Library is thread-safe in those environments that support OpenMP

2.0. This was achieved by using OpenMP directives that define global variables located in the

code so they are private to the individual threads. Thread safety allows users to create instances of

routines running on multiple threads and to include any routine in the IMSL Fortran Numerical

Library in these threads.

IMSL MATH LIBRARY Introduction xiii

Using Operators and Generic Functions
For users who are primarily interested in easy-to-use software for numerical linear algebra, see

Chapter 10, ―Linear Algebra Operators and Generic Functions‖. This compact notation for

writing Fortran 90 programs, when it applies, results in code that is easier to read and maintain

than traditional subprogram usage.

Users may begin their code development using operators and generic functions. If a more efficient

executable code is required, a user may need to switch to equivalent subroutine calls using IMSL

Fortran Numerical Library routines.

Table B contain lists of the defined operators and some of their generic functions.

Defined Array Operation Matrix Operation

A .x. B AB

.i. A A1

.t. A, .h. A A AT , *

A .ix. B A B1

B .xi. A BA1

A .tx. B, or (.t. A) .x. B

A .hx. B, or (.h. A) .x. B

A B A BT , *

B .xt. A, or B .x. (.t. A)

B .xh. A, or B .x. (.h. A)

BA BAT , *

S=SVD(A [,U=U, V=V]) A USV T

E=EIG(A [[,B=B, D=D], V=V, W=W]) (AV = VE), AVD = BVE, (AW = WE), AWD = BWE

R=CHOL(A) A R RT

Q=ORTH(A [,R=R])
 , TA QR Q Q I

U=UNIT(A) u a a1 1 1, / ,

F=DET(A) det(A) = determinant

K=RANK(A) rank(A) = rank

xiv Introduction IMSL MATH LIBRARY

Defined Array Operation Matrix Operation

P=NORM(A[,[type=]i])

1
1

12

1
1

max

largest singular value

max

m

j ij

i

n

i ijhuge
i

p A a

p A s

p A a

C=COND(A) 1A A

Z=EYE(N) Z IN

A=DIAG(X) 1,A diag x

X=DIAGONALS(A) 11,x x

W=FFT(Z); Z=IFFT(W) Discrete Fourier Transform, Inverse

A=RAND(A) random numbers, 0 < A < 1

L=isNaN(A) test for NaN, if (l) then

Table B.1 – Defined Operators and Generic Functions for Dense Arrays

Defined Operation Matrix Operation

Data Management Define entries of sparse matrices

A .x. B AB

.t. A, .h. A A AT , *

A .ix. B A B1

B .xi. A BA1

A .tx. B, or (.t. A) .x. B

A .hx. B, or (.h. A) .x. B

A B A BT , *

B .xt. A, or B .x. (.t. A)

B .xh. A, or B .x. (.h. A)

BA BAT , *

A+B Sum of two sparse matrices

IMSL MATH LIBRARY Introduction xv

Defined Operation Matrix Operation

C=COND(A) 1A A

Table B.2 – Defined Operators and Generic Functions for Harwell-Boeing Sparse Matrices

Using ScaLAPACK, LAPACK, LINPACK, and
EISPACK

Many of the codes in the IMSL Library are based on LINPACK, Dongarra et al. (1979), and

EISPACK, Smith et al. (1976), collections of subroutines designed in the 1970s and early 1980s.

LAPACK, Anderson et al. (1999), was designed to make the linear solvers and eigensystem

routines run more efficiently on high performance computers. For a number of IMSL routines, the

user of the IMSL Fortran Numerical Library has the option of linking to code which is based on

either the legacy routines or the more efficient LAPACK routines.

Table C below lists the IMSL routines that make use of LAPACK codes. The intent is to obtain

improved performance for IMSL codes by using LAPACK codes that have good performance by

virtue of using BLAS with good performance. To obtain improved performance we recommend

linking with High Performance versions of LAPACK and BLAS, if available. The LAPACK,

codes are listed where they are used. Details on linking to the appropriate IMSL Library and

alternate libraries for LAPACK and BLAS are explained in the online README file of the

product distribution.

Generic Name
of

IMSL Routine

LAPACK Routines
used when Linking with High

Performance Libraries

LSARG ?GERFS,?GETRF,?GECON, ?=S/D

LSLRG ?GETRF, ?GETRS, ?=S/D

LFCRG ?GETRF,?GECON, ?=S/D

LFTRG ?GETRF, ?=S/D

LFSRG ?GETRS, ?=S/D

LFIRG ?GETRS, ?=S/D

LINRG ?GETRF, ?GETRI ?=S/D

LSACG ?GETRF, GETRS, ?GECON, ?=C/Z

LSLCG ?GETRF, ?GETRS, ?=C/Z

LFCCG ?GETRF, ?GECON, ?=C/Z

LFTCG ?GETRF, ?C/Z

LFSCG ?GETRS, ?C/Z

LFICG ?GERFS,?GETRS, ?=C/Z

xvi Introduction IMSL MATH LIBRARY

Generic Name
of

IMSL Routine

LAPACK Routines
used when Linking with High

Performance Libraries

LINCG ?GETRF, ?GETRI, ?=C/Z

LSLRT ?TRTRS, ?=S/D

LFCRT ?TRCON, ?=S/D

LSLCT ?TRTRS, ?=C/Z

LFCCT ?TRCON, ?=C/Z

LSADS ?PORFS, ?POTRS, ?=S/D

LSLDS ?POTRF, ?POTRS, ?=S/D

LFCDS ?POTRF, ?POCON, ?=S/D

LFTDS ?POTRF, ?-S/D

LFSDS ?POTRS, ?-S/D

LFIDS ?PORFS, ?POTRS, ?=S/D

LINDS ?POTRF, ?=S/D

LSASF ?SYRFS, ?SYTRF, ?SYTRS, ?=S/D

LSLSF ?SYTRF, ?SYTRS, ?=S/D

LFCSF ?SYTRF, ?SYCON, ?=S/D

LFTSF ?SYTRF, ?=S/D

LFSSF ?SYTRF, ?=S/D

LFISF ?SYRFS, ?=S/D

LSADH ?POCON, ?POTRF, ?POTRS, ?=C/Z

LSLDH ?TRTRS, ?POTRF, ?=C/Z

LFCDH ?POTRF, ?POCON, ?=C/Z

LFTDH ?POTRF, ?=C/Z

LFSDH ?TRTRS, ?=C/Z

LFIDH ?PORFS, ?POTRS, ?=C/Z

LSAHF ?HECON, ?HERFS, ?HETRF, ?HETRS, ?=C/Z

LSLHF ?HECON, ?HETRF, ?HETRS, ?=C/Z

LFCHF ?HETRF, ?HECON, ?=C/Z

LFTHF ?HETRF, ?=C/Z

LFSHF ?HETRS, ?=C/Z

LFIHF ?HERFS, ?HETRS, ?=C/Z

LSARB ?GBTRF, ?GBTRS, ?GBRFS ?=S/D

LSLRB ?GBTRF, ?GBTRS, ?=S/D

LFCRB ?GBTRF, ?GBCON, ?=S/D

IMSL MATH LIBRARY Introduction xvii

Generic Name
of

IMSL Routine

LAPACK Routines
used when Linking with High

Performance Libraries

LFTRB ?GBTRF, ?=S/D

LFSRB ?GBTRS, ?=S/D

LFIRB ?GBTRS, ?GBRFS, ?=S/D

LSQRR ?GEQP3, ?GEQRF, ?ORMQR, ?TRTRS. ?=S/D

LQRRV ?GEQP3, ?GEQRF, ?ORMQR, ?=S/D

LSBRR ?GEQRF, ?=S/D

LQRRR ?GEQRF, ?=S/D

LSVRR ?GESVD, ?-S/D

LSVCR ?GESVD, ?=C/Z

LSGRR ?GESVD, ?=S/D

LQRSL ?TRTRS, ?ORMQR, ?=S/D

LQERR ?ORGQR, ?=S/D

EVLRG ?GEBAL, ?GEHRD, ?HSEQR ?=S/D

EVCRG ?GEEVX, ?=S/D

EVLCG ?HSEQR, ?GEBAL, ?GEHRD, ?=C/Z

EVCCG ?GEEV, ?=C/Z

EVLSF ?SYEV, ?=S/D

EVCSF ?SYEV, ?=S/D

EVLHF ?HEEV, ?=C/Z

EVCHF ?HEEV, ?=C/Z

GVLRG ?GEQRF, ?ORMQR, ?GGHRD, ?HGEQZ, ?=S/D

GVCRG ?GEQRF, ?ORMQR, ?GGHRD, ?HGEQZ,

?TGEVC, ?=S/D

GVLCG ?GEQRF, ?UMMQR, ?GGHRD, ?HGEQZ,?=C/Z

GVCCG ?GEQRF, ?UMMQR, ?GGHRD,

?HGEQZ,?TGEVC,?=C/Z

GVLSP ?SYGV, ?=S/D

GVCSP ?SYGV, ?=S/D

Table C – IMSL Routines and LAPACK Routines Utilized Within

ScaLAPACK, Blackford et al. (1997), includes a subset of LAPACK codes redesigned for use on

distributed memory MIMD parallel computers. A number of IMSL Library routines make use of a

subset of the ScaLAPACK library.

Table D below lists the IMSL routines that make use of ScaLAPACK codes. The intent is to

provide access to the ScaLAPACK codes through the familiar IMSL routine interface. The IMSL

routines that utilize ScaLAPACK codes have a ScaLAPACK Interface documented in addition to

the FORTRAN 90 Interface. Like the LAPACK codes, access to the ScaLAPACK codes is made

xviii Introduction IMSL MATH LIBRARY

by linking to the appropriate library. Details on linking to the appropriate IMSL Library and

alternate libraries for ScaLAPACK and BLAS are explained in the online README file of the

product distribution.

Generic Name
of

IMSL Routine

ScaLAPACK Routines
used when Linking with High Performance

Libraries

LSARG P?GERFS,P?GETRF,P?GETRS, ?=S/D

LSLRG P?GETRF, P?GETRS, ?=S/D

LFCRG P?GETRF,P?GECON, ?=S/D

LFTRG P?GETRF, ?=S/D

LFSRG P?GETRS, ?=S/D

LFIRG P?GETRS, P?GERFS, ?=S/D

LINRG P?GETRF, P?GETRI ?=S/D

LSACG P?GETRF, P?GETRS, P?GERFS, ?=C/Z

LSLCG P?GETRF, P?GETRS, ?=C/Z

LFCCG P?GETRF, P?GECON, ?=C/Z

LFTCG P?GETRF, ?C/Z

LFSCG P?GETRS, ?C/Z

LFICG P?GERFS,P?GETRS, ?=C/Z

LINCG P?GETRF, P?GETRI, ?=C/Z

LSLRT P?TRTRS, ?=S/D

LFCRT P?TRCON, ?=S/D

LSLCT P?TRTRS, ?=C/Z

LFCCT P?TRCON, ?=C/Z

LSADS P?PORFS, P?POTRF, P?POTRS, ?=S/D

LSLDS P?POTRF, P?POTRS, ?=S/D

LFCDS P?POTRF, P?POCON, ?=S/D

LFTDS P?POTRF, ?-S/D

LFSDS P?POTRS, ?-S/D

LFIDS P?PORFS, P?POTRS, ?=S/D

LINDS P?GETRF, P?GETRI, ?=S/D

LSADH P?POTRF, P?PORFS, P?POTRS, ?=C/Z

LSLDH P?POTRS, P?POTRF, ?=C/Z

LFCDH P?POTRF, P?POCON, ?=C/Z

LFTDH P?POTRF, ?=C/Z

LFSDH P?POTRS, ?=C/Z

IMSL MATH LIBRARY Introduction xix

Generic Name
of

IMSL Routine

ScaLAPACK Routines
used when Linking with High Performance

Libraries

LFIDH P?PORFS, P?POTRS, ?=C/Z

LSLRB P?GBTRF, P?GBTRS, ?=S/D

LSQRR P?GEQPF, P?GEQRF, P?ORMQR, P?TRTRS, ?=S/D

LQRRV P?TRTRS, P?GEQRF, P?ORMQR, ?=S/D

LQRRR P?GEQRF, P?GEQPF, P?ORMQR, ?=S/D

LSVRR P?GESVD, ?-S/D

LSGRR P?GESVD, ?=S/D

LQRSL P?TRTRS, P?ORMQR, ?=S/D

LQERR P?ORGQR, ?=S/D

Table D – IMSL Routines and ScaLAPACK Routines Utilized Within

Using ScaLAPACK Enhanced Routines

General Remarks

Use of the ScaLAPACK enhanced routines allows a user to solve large linear systems of algebraic

equations at a performance level that might not be achievable on one computer by performing the

work in parallel across multiple computers. One might also use these routines on linear systems

that prove to be too large for the address space of the target computer. Visual Numerics has tried

to facilitate the use of parallel computing in these situations by providing interfaces to

ScaLAPACK routines which accomplish the task. The IMSL Library solver interface has the same

look and feel whether one is using the routine on a single computer or across multiple computers.

The basic steps required to utilize the IMSL routines which interface with ScaLAPACK routines

are:

1. Initialize MPI

2. Initialize the processor grid

3. Define any necessary array descriptors

4. Allocate space for the local arrays

5. Set up local matrices across the processor grid

6. Call the IMSL routine which interfaces with ScaLAPACK

7. Gather the results from across the processor grid

8. Release the processor grid

9. Exit MPI

xx Introduction IMSL MATH LIBRARY

Utilities are provided in the IMSL Library that facilitate these steps for the user. Each of these

utilities is documented in Chapter 11, ―Utilities‖. We visit the steps briefly here:

1. Initialize MPI

The user should call MP_SETUP() at this step. This function is described in detail in

―Getting Started with Modules MPI_setup_int and MPI_node_int ‖ in Chapter 10, Linear

Algebra Operators and Generic Functions of this manual. For ScaLAPACK usage, suffice it to say

that following a call to the function MP_SETUP(), the module MPI_node_int will contain

information about the number of processors, the rank of a processor, and the communicator for the

application. A call to this function will return the number of processors available to the program.

Since the module MPI_node_int is used by MPI_setup_int, it is not necessary to explicitly

use the module MPI_node_int. If MP_SETUP() is not called, then the program will compute

entirely on one node. No routine from MPI will be called.

2. Initialize the processor grid

SCALAPACK_SETUP (see Chapter 11, ―Utilities‖) is called at this step. This call will set up the

processor grid for the user, define the context ID variable, MP_ICTXT, for the processor grid, and

place MP_ICTXT into the module GRIDINFO_INT. Use of SCALAPACK_SUPPORT will make the

information in MPI_NODE_INT and GRIDINFO_INT available to the user‘s program.

3. Define any necessary array descriptors

Consider the generic matrix A which is to be carved up and distributed across the processors in the

processor grid. In ScaLAPACK parlance, we refer to A as being the ―global‖ array A which is to

be distributed across the processor grid in 2D block cyclic fashion (Chapter 11, ―Utilities‖). Each

processor in the grid will then have access to a subset of the global array A. We refer to the subset

array to which the individual processor has access as the ―local‖ array A0. Just as it is sometimes

necessary for a program to be aware of the leading dimension of the global array A, it is also

necessary for the program to be aware of other critical information about the local array A0. This

information can be obtained by calling the IMSL utility SCALAPACK_GETDIM

(Chapter 11, ―Utilities‖). ScaLAPACK Library utility DESCINIT (see the Usage Notes section of

Chapter 11, ―Utilities‖) is then used to store this information in a vector.

4. Allocate space for the local arrays

The array dimensions, obtained in the previous step, are used at this point to allocate space for any

local arrays that will be used in the call to the IMSL routine.

5. Set up local matrices across the processor grid

If the matrices to be used by the solvers have not been distributed across the processor grid, IMSL

provides utility routines SCALAPACK_READ and SCALAPACK_MAP to help in the distribution of

global arrays across processors. SCALAPACK_READ will read data from a file while

SCALAPACK_MAP will map a global array to the processor grid. Users may choose to distribute the

arrays themselves as long as they distribute the arrays in 2D block cyclic fashion consistent with

the array descriptors that have been defined.

6. Call the IMSL routine which interfaces with ScaLAPACK

The IMSL routines which interface with ScaLAPACK are listed in Table D.

7. Gather the results from across the processor grid

IMSL MATH LIBRARY Introduction xxi

IMSL provides utility routines SCALAPACK_WRITE and SCALAPACK_UNMAP to help in the

gathering of results from across processors to a global array or file. SCALAPACK_WRITE will write

data to a file while SCALAPACK_UNMAP will map local arrays from the processor grid to a global

array.

8. Release the processor grid

This is accomplished by a call to SCALAPACK_EXIT.

9. Exit MPI

A call to MP_SETUP with the argument ‗FINAL‘ will shut down MPI and set the value of

MP_NPROCS = 0. This flags that MPI has been initialized and terminated. It cannot be initialized

again in the same program unit execution. No MPI routine is defined when MP_NPROCS has this

value.

IMSL MATH LIBRARY Chapter 1: Linear Systems 1

Chapter 1: Linear Systems

Routines

1.1 Linear Solvers

1.1.1 Solves a general system of linear equations
Ax = b .. LIN_SOL_GEN 10

1.1.2 Solves a system of linear equations Ax = b, where A is a self-adjoint
matrix ... LIN_SOL_SELF 18

1.1.3 Solves a rectangular system of linear equations Ax b,
in a least-squares sense .. LIN_SOL_LSQ 27

1.1.4 Solves a rectangular least-squares system of linear equations

Ax ≅ b using singular value decomposition............. LIN_SOL_SVD 36

1.1.5 Solves multiple systems of linear equations LIN_SOL_TRI 45

1.1.6 Computes the singular value decomposition (SVD)
of a rectangular matrix, A .. LIN_SVD 57

1.2. Large-Scale Parallel Solvers

1.2.1 Parallel Constrained Least-Squares Solvers 66

1.2.2 Solves a linear, non-negative constrained least-squares
system PARALLEL_NONNEGATIVE_LSQ 67

1.2.3 Solves a linear least-squares system with bounds on
the unknowns PARALLEL_BOUNDED_LSQ 75

1.3. Solution of Linear Systems, Matrix Inversion, and Q Determinant
Evaluation

1.3.1 Real General Matrices
High accuracy linear system solution LSARG 83
Solves a linear system ... LSLRG 87
Factors and computes condition number LFCRG 93
Factors ... LFTRG 99
Solves after factoring ... LFSRG 103
High accuracy linear system solution after factoring LFIRG 108
Computes determinant after factoring LFDRG 113

2 Chapter 1: Linear Systems IMSL MATH LIBRARY

Inverts ... LINRG 115

1.3.2 Complex General Matrices
High accuracy linear system solution LSACG 119
Solves a linear system ... LSLCG 123
Factors and computes condition number LFCCG 128
Factors.. LFTCG 134
Solves a linear system after factoring LFSCG 138
High accuracy linear system solution after factoring LFICG 143
Computes determinant after factoring LFDCG 148
Inverts ... LINCG 150

1.3.3 Real Triangular Matrices
Solves a linear system ... LSLRT 154
Computes condition number .. LFCRT 158
Computes determinant after factoring LFDRT 162
Inverts .. LINRT 163

1.3.4 Complex Triangular Matrices
Solves a linear system ... LSLCT 165
Computes condition number .. LFCCT 169
Computes determinant after factoring LFDCT 173
Inverts .. LINCT 175

1.3.5 Real Positive Definite Matrices
High accuracy linear system solution LSADS 177
Solves a linear system ... LSLDS 181
Factors and computes condition number LFCDS 186
Factors.. LFTDS 191
Solve a linear system after factoring LFSDS 195
High accuracy linear system solution after factoring LFIDS 199
Computes determinant after factoring LFDDS 204
Inverts .. LINDS 206

1.3.6 Real Symmetric Matrices
High accuracy linear system solution LSASF 210
Solves a linear system ... LSLSF 213
Factors and computes condition number LFCSF 215
Factors.. LFTSF 218
Solves a linear system after factoring LFSSF 221
High accuracy linear system solution after factoring LFISF 223
Computes determinant after factoring LFDSF 226

1.3.7 Complex Hermitian Positive Definite Matrices
High accuracy linear system solution LSADH 227
Solves a linear system ... LSLDH 232
Factors and computes condition number LFCDH 237
Factors.. LFTDH 243
Solves a linear system after factoring LFSDH 248
High accuracy linear system solution after factoring LFIDH 252
Computes determinant after factoring LFDDH 258

1.3.8 Complex Hermitian Matrices
High accuracy linear system solution LSAHF 259

IMSL MATH LIBRARY Chapter 1: Linear Systems 3

Solves a linear system .. LSLHF 262
Factors and computes condition number LFCHF 265
Factors .. LFTHF 268
Solves a linear system after factoringLFSHF 271
High accuracy linear system solution after factoring LFIHF 273
Computes determinant after factoring LFDHF 276

1.3.9 Real Band Matrices in Band Storage
Solves a tridiagonal system .. LSLTR 278
Solves a tridiagonal system: Cyclic Reduction LSLCR 279
High accuracy linear system solution LSARB 282
Solves a linear system ..LSLRB 285
Factors and compute condition number LFCRB 290
Factors ..LFTRB 293
Solves a linear system after factoring LFSRB 296
High accuracy linear system solution after factoring LFIRB 298
Computes determinant after factoring LFDRB 301

1.3.10 Real Band Symmetric Positive Definite Matrices in Band Storage
High accuracy linear system solution LSAQS 303
Solves a linear system ... LSLQS 305
Solves a linear system .. LSLPB 308
Factors and computes condition number LFCQS 311
Factors ... LFTQS 314
Solves a linear system after factoring LFSQS 316
High accuracy linear system solution after factoringLFIQS 318
Computes determinant after factoring LFDQS 320

1.3.11 Complex Band Matrices in Band Storage
Solves a tridiagonal system ..LSLTQ 322
Solves a tridiagonal system: Cyclic Reduction LSLCQ 324
High accuracy linear system solution LSACB 327
Solves a linear system ..LSLCB 330
Factors and computes condition number LFCCB 333
Factors ..LFTCB 336
Solves a linear system after factoring LFSCB 339
High accuracy linear system solution after factoring LFICB 341
Computes determinant after factoring LFDCB 344

1.3.12 Complex Band Positive Definite Matrices in Band Storage
High accuracy linear system solution LSAQH 346
Solves a linear system ... LSLQH 349
Solves a linear system ... LSLQB 352
Factors and compute condition number LFCQH 355
Factors ... LFTQH 358
Solves a linear system after factoring LFSQH 360
High accuracy linear system solution after factoring LFIQH 362
Computes determinant after factoring LFDQH 365

1.3.13 Real Sparse Linear Equation Solvers
Solves a sparse linear system ... LSLXG 366
Factors ... LFTXG 372
Solves a linear system after factoring LFSXG 377

1.3.14 Complex Sparse Linear Equation Solvers

4 Chapter 1: Linear Systems IMSL MATH LIBRARY

Solves a sparse linear system ... LSLZG 380
Factors.. LFTZG 385
Solves a linear system after factoring LFSZG 391

1.3.15 Real Sparse Symmetric Positive Definite Linear Equation Solvers
Solves a sparse linear system ... LSLXD 394
Symbolic Factor ... LSCXD 399
Computes Factor .. LNFXD 403
Solves a linear system after factoring LFSXD 408

1.3.16 Complex Sparse Hermitian Positive Definite Linear Equation Solvers
Solves a sparse linear system ... LSLZD 412
Computes Factor .. LNFZD 416
Solves a linear system after factoring LFSZD 421

1.3.17 Real Toeplitz Matrices in Toeplitz Storage
Solves a linear system ... LSLTO 424

1.3.18 Complex Toeplitz Matrices in Toeplitz Storage
Solves a linear system ... LSLTC 426

1.3.19 Complex Circulant Matrices in Circulant Storage
Solves a linear system ... LSLCC 428

1.3.20 Iterative Methods
Preconditioned conjugate gradient PCGRC 431
Jacobi conjugate gradient ... JCGRC 437
Generalized minimum residual ... GMRES 440
Partial Singular Value Decomposition ARPACK_SVD 451

1.4. Linear Least Squares and Matrix Factorization

1.4.1 Least Squares, QR Decomposition and Generalized Inverse
Solves a Least-squares system .. LSQRR 451
Solves a Least-squares system .. LQRRV 457
High accuracy Least squares .. LSBRR 463
Linearly constrained Least squares LCLSQ 467
QR decomposition ... LQRRR 471
Accumulation of QR decomposition LQERR 478
QR decomposition Utilities ... LQRSL 483
QR factor update ... LUPQR 489

1.4.2 Cholesky Factorization
Cholesky factoring for rank deficient matrices LCHRG 494
Cholesky factor update .. LUPCH 496
Cholesky factor down-date .. LDNCH 499

1.4.3 Singular Value Decomposition (SVD)
Real singular value decomposition LSVRR 503
Complex singular value decomposition LSVCR 510
Generalized inverse .. LSGRR 514

IMSL MATH LIBRARY Chapter 1: Linear Systems 5

Usage Notes
Section 1.1 describes routines for solving systems of linear algebraic equations by direct matrix

factorization methods, for computing only the matrix factorizations, and for computing linear

least-squares solutions.

Section 1.2 describes routines for solving systems of parallel constrained least-squares.

Many of the routines described in sections 1.3 and 1.4 are for matrices with special properties or

structure. Computer time and storage requirements for solving systems with coefficient matrices

of these types can often be drastically reduced, using the appropriate routine, compared with using

a routine for solving a general complex system.

The appropriate matrix property and corresponding routine can be located in the ―Routines‖

section. Many of the linear equation solver routines in this chapter are derived from subroutines

from LINPACK, Dongarra et al. (1979). Other routines have been developed by Visual Numerics,

derived from draft versions of LAPACK subprograms, Bischof et al. (1988), or were obtained

from alternate sources.

A system of linear equations is represented by Ax = b where A is the n × n coefficient data matrix,

b is the known right-hand-side n-vector, and x is the unknown or solution n-vector. Figure 1-1

summarizes the relationships among the subroutines. Routine names are in boxes and input/output

data are in ovals. The suffix ** in the subroutine names depend on the matrix type. For example,

to compute the determinant of A use LFC** or LFT** followed by LFD**.

The paths using LSA** or LFI** use iterative refinement for a more accurate solution. The path

using LSA** is the same as using LFC** followed by LFI**. The path using LSL** is the same as

the path using LFC** followed by LFS**. The matrix inversion routines LIN** are available only

for certain matrix types.

Matrix Types

The two letter codes for the form of coefficient matrix, indicated by ** in Figure 1-1, are as

follows:

RG Real general (square) matrix.

CG Complex general (square) matrix.

TR or CR Real tridiagonal matrix.

RB Real band matrix.

TQ or CQ Complex tridiagonal matrix.

CB Complex band matrix.

SF Real symmetric matrix stored in the upper half of a square matrix.

DS Real symmetric positive definite matrix stored in the upper half of a square matrix.

DH Complex Hermitian positive definite matrix stored in the upper half of a complex

square matrix.

HF Complex Hermitian matrix stored in the upper half of a complex square matrix.

6 Chapter 1: Linear Systems IMSL MATH LIBRARY

QS or PB Real symmetric positive definite band matrix.

QH or QB Complex Hermitian positive definite band matrix.

XG Real general sparse matrix.

ZG Complex general sparse matrix.

XD Real symmetric positive definite sparse matrix.

ZD Complex Hermitian positive definite sparse matrix.

A

b
LFT** LFC**

LFD**LFI**

LFS**

LIN** LSA**

LSL**

Condition
number

Factorization

DeterminantA

x = A b
or

x = A b

T

Figure 1- 1 Solution and Factorization of Linear Systems

Solution of Linear Systems

The simplest routines to use for solving linear equations are LSL** and LSA**. For example, the

mnemonic for matrices of real general form is RG. So, the routines LSARG and LSLRG are

appropriate to use for solving linear systems when the coefficient matrix is of real general form.

The routine LSARG uses iterative refinement, and more time than LSLRG, to determine a high

accuracy solution.

The high accuracy solvers provide maximum protection against extraneous computational errors.

They do not protect the results from instability in the mathematical approximation. For a more

complete discussion of this and other important topics about solving linear equations, see Rice

(1983), Stewart (1973), or Golub and van Loan (1989).

IMSL MATH LIBRARY Chapter 1: Linear Systems 7

Multiple Right Sides

There are situations where the LSL** and LSA** routines are not appropriate. For example, if the

linear system has more than one right-hand-side vector, it is most economical to solve the system

by first calling a factoring routine and then calling a solver routine that uses the factors. After the

coefficient matrix has been factored, the routine LFS** or LFI** can be used to solve for one

right-hand side at a time. Routines LFI** uses iterative refinement to determine a high accuracy

solution but requires more computer time and storage than routines LFS**.

Determinants

The routines for evaluating determinants are named LFD**. As indicated in Figure 1-1, these

routines require the factors of the matrix as input. The values of determinants are often badly

scaled. Additional complications in structures for evaluating them result from this fact. See Rice

(1983) for comments on determinant evaluation.

Iterative Refinement

Iterative refinement can often improve the accuracy of a well-posed numerical solution. The

iterative refinement algorithm used is as follows:

x0 = A-1 b

For i = 1, 50

ri = Axi-1− b computed in higher precision

pi = A-1 ri

xi = xi-1- pi

if (|| pi ||∞ ≤ ε|| xi ||∞) Exit

End for

Error — Matrix is too ill-conditioned

If the matrix A is in single precision, then the residual ri = Axi-1− b is computed in double

precision. If A is in double precision, then quadruple-precision arithmetic routines are used.

The use of the value 50 is arbitrary. In fact a single correction is usually sufficient. It is also

helpful even when ri is computed in the same precision as the data.

Matrix Inversion

An inverse of the coefficient matrix can be computed directly by one of the routines named

LIN**. These routines are provided for general matrix forms and some special matrix forms.

When they do not exist, or when it is desirable to compute a high accuracy inverse, the two-step

technique of calling the factoring routine followed by the solver routine can be used. The inverse

8 Chapter 1: Linear Systems IMSL MATH LIBRARY

is the solution of the matrix system AX = I where I denotes the n × n identity matrix, and the

solution is X = A-1

Singularity

The numerical and mathematical notions of singularity are not the same. A matrix is considered

numerically singular if it is sufficiently close to a mathematically singular matrix. If error

messages are issued regarding an exact singularity then specific error message level reset actions

must be taken to handle the error condition. By default, the routines in this chapter stop. The

solvers require that the coefficient matrix be numerically nonsingular. There are some tests to

determine if this condition is met. When the matrix is factored, using routines LFC**, the

condition number is computed. If the condition number is large compared to the working

precision, a warning message is issued and the computations are continued. In this case, the user

needs to verify the usability of the output. If the matrix is determined to be mathematically

singular, or ill-conditioned, a least-squares routine or the singular value decomposition routine

may be used for further analysis.

Special Linear Systems

Toeplitz matrices have entries which are constant along each diagonal, for example:

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

p p p p

p p p p
A

p p p p

p p p p

Real Toeplitz systems can be solved using LSLTO. Complex Toeplitz systems can be solved using

LSLTC.

Circulant matrices have the property that each row is obtained by shifting the row above it one

place to the right. Entries that are shifted off at the right reenter at the left. For example:

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

p p p p

p p p p
A

p p p p

p p p p

Complex circulant systems can be solved using LSLCC.

Iterative Solution of Linear Systems

The preconditioned conjugate gradient routines PCGRC and JCGRC can be used to solve symmetric

positive definite systems. The routines are particularly useful if the system is large and sparse.

These routines use reverse communication, so A can be in any storage scheme. For general linear

systems, use GMRES.

IMSL MATH LIBRARY Chapter 1: Linear Systems 9

QR Decomposition

The QR decomposition of a matrix A consists of finding an orthogonal matrix Q, a permutation

matrix P, and an upper trapezoidal matrix R with diagonal elements of nonincreasing magnitude,

such that AP = QR. This decomposition is determined by the routines LQRRR or LQRRV. It returns

R and the information needed to compute Q. To actually compute Q use LQERR. Figure 1-2

summarizes the relationships among the subroutines.

The QR decomposition can be used to solve the linear system Ax = b. This is equivalent to

Rx = Q
T
Pb. The routine LQRSL, can be used to find Q

T
Pb from the information computed by

LQRRR. Then x can be computed by solving a triangular system using LSLRT. If the system Ax = b

is overdetermined, then this procedure solves the least-squares problem, i.e., it finds an x for which

2

2
Ax b

is a minimum.

If the matrix A is changed by a rank-1 update, A → A + αxy
T
, the QR decomposition of A can be

updated/down-dated using the routine LUPQR. In some applications a series of linear systems

which differ by rank-1 updates must be solved. Computing the QR decomposition once and then

updating or down-dating it usually faster than newly solving each system.

A

LUPQR

LQRSL

Least-squares
solution

QR decomposition

Qb, Q b,T

Q

b
AA + xyT

LQERR

LQRRR or LQRRV

Figure 1- 2 Least-Squares Routine

10 Chapter 1: Linear Systems IMSL MATH LIBRARY

LIN_SOL_GEN

Solves a general system of linear equations Ax = b. Using optional arguments, any of several

related computations can be performed. These extra tasks include computing the LU factorization

of A using partial pivoting, representing the determinant of A, computing the inverse matrix A
-1

,

and solving
TA x b or Ax = b given the LU factorization of A.

Required Arguments

A — Array of size n × n containing the matrix. (Input [/Output])

If the packaged option lin_sol_gen_save_LU is used then the LU factorization of A

is saved in A. For solving efficiency, the diagonal reciprocals of the matrix U are saved

in the diagonal entries of A.

B — Array of size n × nb containing the right-hand side matrix. (Input [/Output])

If the packaged option lin_sol_gen_save_LU is used then input B is used as work

storage and is not saved.

X — Array of size n × nb containing the solution matrix.(Output)

Optional Arguments

NROWS = n (Input)

Uses array A(1:n, 1:n) for the input matrix.

Default: n = size (A, 1)

NRHS = nb (Input)

Uses array b(1:n, 1:nb) for the input right-hand side matrix.

Default: nb = size(b, 2)

Note that b must be a rank-2 array.

pivots = pivots(:) (Output [/Input])

Integer array of size n that contains the individual row interchanges. To construct the

permuted order so that no pivoting is required, define an integer array ip(n). Initialize

ip(i) = i, i = 1, n and then execute the loop, after calling lin_sol_gen,

k=pivots(i)

interchange ip(i) and ip(k), i=1,n

The matrix defined by the array assignment that permutes the rows,

A(1:n, 1:n) = A(ip(1:n), 1:n), requires no pivoting for maintaining numerical

IMSL MATH LIBRARY Chapter 1: Linear Systems 11

stability. Now, the optional argument ―iopt=‖ and the packaged option number

?_lin_sol_gen_no_pivoting can be safely used for increased efficiency during

the LU factorization of A.

det = det(1:2) (Output)

Array of size 2 of the same type and kind as A for representing the determinant of the

input matrix. The determinant is represented by two numbers. The first is the base with

the sign or complex angle of the result. The second is the exponent. When det(2) is

within exponent range, the value of this expression is given by

abs(det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular,

abs(det(1)) = radix(det); otherwise, det(1) = 0., and det(2) = huge(abs(det(1))).

ainv = ainv(:,:) (Output)

Array of the same type and kind as A(1:n, 1:n). It contains the inverse matrix, A
-1

,

when the input matrix is nonsingular.

iopt = iopt(:) (Input)

Derived type array with the same precision as the input matrix; used for passing

optional data to the routine. The options are as follows:

Packaged Options for lin_sol_gen

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_gen_set_small 1

s_, d_, c_, z_ lin_sol_gen_save_LU 2

s_, d_, c_, z_ lin_sol_gen_solve_A 3

s_, d_, c_, z_ lin_sol_gen_solve_ADJ 4

s_, d_, c_, z_ lin_sol_gen_no_pivoting 5

s_, d_, c_, z_ lin_sol_gen_scan_for_NaN 6

s_, d_, c_, z_ lin_sol_gen_no_sing_mess 7

s_, d_, c_, z_ lin_sol_gen_A_is_sparse 8

iopt(IO) = ?_options(?_lin_sol_gen_set_small, Small)

Replaces a diagonal term of the matrix U if it is smaller in magnitude than the value

Small using the same sign or complex direction as the diagonal. The system is declared

singular. A solution is approximated based on this replacement if no overflow results.

Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_sol_gen_save_LU, ?_dummy)

Saves the LU factorization of A. Requires the optional argument ―pivots=‖ if the

routine will be used later for solving systems with the same matrix. This is the only

case where the input arrays A and b are not saved. For solving efficiency, the diagonal

reciprocals of the matrix U are saved in the diagonal entries of A.

12 Chapter 1: Linear Systems IMSL MATH LIBRARY

iopt(IO) = ?_options(?_lin_sol_gen_solve_A, ?_dummy)

Uses the LU factorization of A computed and saved to solve Ax = b.

iopt(IO) = ?_options(?_lin_sol_gen_solve_ADJ,?_dummy)

Uses the LU factorization of A computed and saved to solve A
T
x = b.

iopt(IO) = ?_options(?_lin_sol_gen_no_pivoting, ?_dummy)

Does no row pivoting. The array pivots (:), if present, are output as pivots (i) = i,

for i = 1, …, n.

iopt(IO) = ?_options(?_lin_sol_gen_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 10.

Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_lin_sol_gen_no_sing_mess,?_dummy)

Do not point an error message when the matrix A is singular.

iopt(IO) = ?_options(?_lin_sol_gen_A_is_sparse,?_dummy)

Uses an indirect updating loop for the LU factorization that is efficient for sparse

matrices where all matrix entries are stored.

FORTRAN 90 Interface

Generic: CALL LIN_SOL_GEN (A, B, X [,…])

Specific: The specific interface names are S_LIN_SOL_GEN, D_LIN_SOL_GEN,

C_LIN_SOL_GEN, and Z_LIN_SOL_GEN.

Description

Routine LIN_SOL_GEN solves a system of linear algebraic equations with a nonsingular

coefficient matrix A. It first computes the LU factorization of A with partial pivoting such that

LU A . The matrix U is upper triangular, while the following is true:

1
1 1 1 1n n n nL A L P L P L P A U

The factors Pi and Li are defined by the partial pivoting. Each Pi is an interchange of row i with

row j ≥ i. Thus, Pi is defined by that value of j. Every

T
i i iL I m e

is an elementary elimination matrix. The vector im is zero in entries 1, ..., i. This vector is stored

as column i in the strictly lower-triangular part of the working array containing the decomposition

information. The reciprocals of the diagonals of the matrix U are saved in the diagonal of the

working array. The solution of the linear system Ax = b is found by solving two simpler systems,

IMSL MATH LIBRARY Chapter 1: Linear Systems 13

1y L b
and

1x U y

More mathematical details are found in Golub and Van Loan (1989, Chapter 3).

Fatal and Terminal Error Messages

See the messages.gls file for error messages for LIN_SOL_GEN. The messages are numbered

161175; 181195; 201215; 221235.

Example 1: Solving a Linear System of Equations

This example solves a linear system of equations. This is the simplest use of lin_sol_gen. The

equations are generated using a matrix of random numbers, and a solution is obtained

corresponding to a random right-hand side matrix. Also, see operator_ex01, supplied with the

product examples, for this example using the operator notation.

 use lin_sol_gen_int

 use rand_gen_int

 use error_option_packet

 implicit none

! This is Example 1 for LIN_SOL_GEN.

 integer, parameter :: n=32

 real(kind(1e0)), parameter :: one=1e0

 real(kind(1e0)) err

 real(kind(1e0)) A(n,n), b(n,n), x(n,n), res(n,n), y(n**2)

! Generate a random matrix.

 call rand_gen(y)

 A = reshape(y,(/n,n/))

! Generate random right-hand sides.

 call rand_gen(y)

 b = reshape(y,(/n,n/))

! Compute the solution matrix of Ax=b.

 call lin_sol_gen(A, b, x)

! Check the results for small residuals.

 res = b - matmul(A,x)

 err = maxval(abs(res))/sum(abs(A)+abs(b))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for LIN_SOL_GEN is correct.'

 end if

 end

Output

Example 1 for LIN_SOL_GEN is correct.

14 Chapter 1: Linear Systems IMSL MATH LIBRARY

Additional Examples

Example 2: Matrix Inversion and Determinant

This example computes the inverse and determinant of A, a random matrix. Tests are made on the

conditions

1AA I

and

11det detA A

Also, see operator_ex02.

 use lin_sol_gen_int

 use rand_gen_int

 implicit none

! This is Example 2 for LIN_SOL_GEN.

 integer i

 integer, parameter :: n=32

 real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0

 real(kind(1e0)) err

 real(kind(1e0)) A(n,n), b(n,0), inv(n,n), x(n,0), res(n,n), &

 y(n**2), determinant(2), inv_determinant(2)

! Generate a random matrix.

 call rand_gen(y)

 A = reshape(y,(/n,n/))

! Compute the matrix inverse and its determinant.

 call lin_sol_gen(A, b, x, nrhs=0, &

 ainv=inv, det=determinant)

! Compute the determinant for the inverse matrix.

 call lin_sol_gen(inv, b, x, nrhs=0, &

 det=inv_determinant)

! Check residuals, A times inverse = Identity.

 res = matmul(A,inv)

 do i=1, n

 res(i,i) = res(i,i) - one

 end do

 err = sum(abs(res)) / sum(abs(a))

 if (err <= sqrt(epsilon(one))) then

IMSL MATH LIBRARY Chapter 1: Linear Systems 15

 if (determinant(1) == inv_determinant(1) .and. &

 (abs(determinant(2)+inv_determinant(2)) &

 <= abs(determinant(2))*sqrt(epsilon(one)))) then

 write (*,*) 'Example 2 for LIN_SOL_GEN is correct.'

 end if

 end if

 end

Output

Example 2 for LIN_SOL_GEN is correct.

Example 3: Solving a System with Iterative Refinement

This example computes a factorization of a random matrix using single-precision arithmetic. The

double-precision solution is corrected using iterative refinement. The corrections are added to the

developing solution until they are no longer decreasing in size. The initialization of the derived

type array iopti(1:2) = s_option(0,0.0e0) leaves the integer part of the second element

of iopti(:) at the value zero. This stops the internal processing of options inside lin_sol_gen.

It results in the LU factorization being saved after exit. The next time the routine is entered the

integer entry of the second element of iopt(:) results in a solve step only. Since the LU

factorization is saved in arrays A(:,:) and ipivots(:), at the final step, solve only steps can

occur in subsequent entries to lin_sol_gen. Also, see operator_ex03, Chapter 10.

 use lin_sol_gen_int

 use rand_gen_int

 implicit none

! This is Example 3 for LIN_SOL_GEN.

 integer, parameter :: n=32

 real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0

 real(kind(1d0)), parameter :: d_zero=0.0d0

 integer ipivots(n)

 real(kind(1e0)) a(n,n), b(n,1), x(n,1), w(n**2)

 real(kind(1e0)) change_new, change_old

 real(kind(1d0)) c(n,1), d(n,n), y(n,1)

 type(s_options) :: iopti(2)=s_options(0,zero)

! Generate a random matrix.

 call rand_gen(w)

 a = reshape(w, (/n,n/))

! Generate a random right hand side.

 call rand_gen(b(1:n,1))

! Save double precision copies of the matrix and right hand side.

 d = a

 c = b

16 Chapter 1: Linear Systems IMSL MATH LIBRARY

! Start solution at zero.

 y = d_zero

 change_old = huge(one)

! Use packaged option to save the factorization.

 iopti(1) = s_options(s_lin_sol_gen_save_LU,zero)

 iterative_refinement: do

 b = c - matmul(d,y)

 call lin_sol_gen(a, b, x, &

 pivots=ipivots, iopt=iopti)

 y = x + y

 change_new = sum(abs(x))

! Exit when changes are no longer decreasing.

 if (change_new >= change_old) &

 exit iterative_refinement

 change_old = change_new

! Use option to re-enter code with factorization saved; solve only.

 iopti(2) = s_options(s_lin_sol_gen_solve_A,zero)

 end do iterative_refinement

 write (*,*) 'Example 3 for LIN_SOL_GEN is correct.'

 end

Output

Example 3 for LIN_SOL_GEN is correct.

Example 4: Evaluating the Matrix Exponential

This example computes the solution of the ordinary differential equation problem

dy
Ay

dt

with initial values y(0) = y0. For this example, the matrix A is real and constant with respect to t .

The unique solution is given by the matrix exponential:

 0
Aty t e y

This method of solution uses an eigenvalue-eigenvector decomposition of the matrix

1A XDX

to evaluate the solution with the equivalent formula

 0
Dty t Xe z

where

IMSL MATH LIBRARY Chapter 1: Linear Systems 17

1
0 0z X y

is computed using the complex arithmetic version of lin_sol_gen. The results for y(t) are real

quantities, but the evaluation uses intermediate complex-valued calculations. Note that the

computation of the complex matrix X and the diagonal matrix D is performed using the IMSL

MATH/LIBRARY FORTRAN 77 interface to routine EVCRG. This is an illustration of intermixing

interfaces of FORTRAN 77 and Fortran 90 code. The information is made available to the Fortran

90 compiler by using the FORTRAN 77 interface for EVCRG. Also, see operator_ex04, supplied

with the product examples, where the Fortran 90 function EIG() has replaced the call to EVCRG.

 use lin_sol_gen_int

 use rand_gen_int

 use Numerical_Libraries

 implicit none

! This is Example 4 for LIN_SOL_GEN.

 integer, parameter :: n=32, k=128

 real(kind(1e0)), parameter :: one=1.0e0, t_max=1, delta_t=t_max/(k-1)

 real(kind(1e0)) err, A(n,n), atemp(n,n), ytemp(n**2)

 real(kind(1e0)) t(k), y(n,k), y_prime(n,k)

 complex(kind(1e0)) EVAL(n), EVEC(n,n)

 complex(kind(1e0)) x(n,n), z_0(n,1), y_0(n,1), d(n)

 integer i

! Generate a random matrix in an F90 array.

 call rand_gen(ytemp)

 atemp = reshape(ytemp,(/n,n/))

! Assign data to an F77 array.

 A = atemp

! Use IMSL Numerical Libraries F77 subroutine for the

! eigenvalue-eigenvector calculation.

 CALL EVCRG(N, A, N, EVAL, EVEC, N)

! Generate a random initial value for the ODE system.

 call rand_gen(ytemp(1:n))

 y_0(1:n,1) = ytemp(1:n)

! Assign the eigenvalue-eigenvector data to F90 arrays.

 d = EVAL; x = EVEC

! Solve complex data system that transforms the initial values, Xz_0=y_0.

 call lin_sol_gen(x, y_0, z_0)

 t = (/(i*delta_t,i=0,k-1)/)

! Compute y and y' at the values t(1:k).

 y = matmul(x, exp(spread(d,2,k)*spread(t,1,n))* &

 spread(z_0(1:n,1),2,k))

 y_prime = matmul(x, spread(d,2,k)* &

 exp(spread(d,2,k)*spread(t,1,n))* &

 spread(z_0(1:n,1),2,k))

18 Chapter 1: Linear Systems IMSL MATH LIBRARY

! Check results. Is y' - Ay = 0?

 err = sum(abs(y_prime-matmul(atemp,y))) / &

 (sum(abs(atemp))*sum(abs(y)))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 4 for LIN_SOL_GEN is correct.'

 end if

 end

Output

Example 4 for LIN_SOL_GEN is correct.

LIN_SOL_SELF

Solves a system of linear equations Ax = b, where A is a self-adjoint matrix. Using optional

arguments, any of several related computations can be performed. These extra tasks include

computing and saving the factorization of A using symmetric pivoting, representing the

determinant of A, computing the inverse matrix A
-1

, or computing the solution of Ax = b given the

factorization of A. An optional argument is provided indicating that A is positive definite so that

the Cholesky decomposition can be used.

Required Arguments

A — Array of size n × n containing the self-adjoint matrix. (Input [/Output]

If the packaged option lin_sol_self_save_factors is used then the factorization

of A is saved in A. For solving efficiency, the diagonal reciprocals of the matrix R are

saved in the diagonal entries of A when the Cholesky method is used.

B — Array of size n × nb containing the right-hand side matrix. (Input [/Output]

If the packaged option lin_sol_self_save_factors is used then input B is used as

work storage and is not saved.

X — Array of size n × nb containing the solution matrix. (Output)

Optional Arguments

NROWS = n (Input)

Uses array A(1:n, 1:n) for the input matrix.

Default: n = size(A, 1)

IMSL MATH LIBRARY Chapter 1: Linear Systems 19

NRHS = nb (Input)

Uses the array b(1:n, 1:nb) for the input right-hand side matrix.

Default: nb = size(b, 2)

Note that b must be a rank-2 array.

pivots = pivots(:) (Output [/Input])

Integer array of size n + 1 that contains the individual row interchanges in the first n

locations. Applied in order, these yield the permutation matrix P. Location n + 1

contains the number of the first diagonal term no larger than Small, which is defined on

the next page of this chapter.

det = det(1:2) (Output)

Array of size 2 of the same type and kind as A for representing the determinant of the

input matrix. The determinant is represented by two numbers. The first is the base with

the sign or complex angle of the result. The second is the exponent. When det(2) is

within exponent range, the value of the determinant is given by the expression

abs(det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular,

abs(det(1)) = radix(det); otherwise, det(1) = 0., and det(2) = huge(abs(det(1))).

ainv = ainv(:,:) (Output)

Array of the same type and kind as A(1:n, 1:n). It contains the inverse matrix, A
-1

when the input matrix is nonsingular.

iopt = iopt(:) (Input)

Derived type array with the same precision as the input matrix; used for passing

optional data to the routine. The options are as follows:

Packaged Options for lin_sol_self

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_self_set_small 1

s_, d_, c_, z_ lin_sol_self_save_factors 2

s_, d_, c_, z_ lin_sol_self_no_pivoting 3

s_, d_, c_, z_ lin_sol_self_use_Cholesky 4

s_, d_, c_, z_ lin_sol_self_solve_A 5

s_, d_, c_, z_ lin_sol_self_scan_for_NaN 6

s_, d_, c_, z_ lin_sol_self_no_sing_mess 7

iopt(IO) = ?_options(?_lin_sol_self_set_small, Small)

When Aasen‘s method is used, the tridiagonal system Tu = v is solved using LU

factorization with partial pivoting. If a diagonal term of the matrix U is smaller in

magnitude than the value Small, it is replaced by Small. The system is declared

singular. When the Cholesky method is used, the upper-triangular matrix R, (see

―Description‖), is obtained. If a diagonal term of the matrix R is smaller in magnitude

than the value Small, it is replaced by Small. A solution is approximated based on this

20 Chapter 1: Linear Systems IMSL MATH LIBRARY

replacement in either case.

Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_sol_self_save_factors, ?_dummy)

Saves the factorization of A. Requires the optional argument ―pivots=‖ if the routine

will be used for solving further systems with the same matrix. This is the only case

where the input arrays A and b are not saved. For solving efficiency, the diagonal

reciprocals of the matrix R are saved in the diagonal entries of A when the Cholesky

method is used.

iopt(IO) = ?_options(?_lin_sol_self_no_pivoting, ?_dummy)

Does no row pivoting. The array pivots(:), if present, satisfies pivots(i) = i + 1 for

i = 1, …, n 1 when using Aasen‘s method. When using the Cholesky method,

pivots(i) = i for i = 1, …, n.

iopt(IO) = ?_options(?_lin_sol_self_use_Cholesky, ?_dummy)

The Cholesky decomposition PAP
T
 = R

T
R is used instead of the Aasen method.

iopt(IO) = ?_options(?_lin_sol_self_solve_A, ?_dummy)

Uses the factorization of A computed and saved to solve Ax = b.

iopt(IO) = ?_options(?_lin_sol_self_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 10.

Default: Does not scan for NaNs

iopt(IO) = ?_options(?_lin_sol_self_no_sing_mess,?_dummy)

Do not print an error message when the matrix A is singular.

FORTRAN 90 Interface

Generic: CALL LIN_SOL_SELF (A, B, X [,…])

Specific: The specific interface names are S_LIN_SOL_SELF, D_LIN_SOL_SELF,

C_LIN_SOL_SELF, and Z_LIN_SOL_SELF.

Description

Routine LIN_SOL_SELF routine solves a system of linear algebraic equations with a nonsingular

coefficient matrix A. By default, the routine computes the factorization of A using Aasen‘s

method. This decomposition has the form

T TPAP LTL

where P is a permutation matrix, L is a unit lower-triangular matrix, and T is a tridiagonal

self-adjoint matrix. The solution of the linear system Ax = b is found by solving simpler systems,

IMSL MATH LIBRARY Chapter 1: Linear Systems 21

1u L Pb

 Tv = u

and

T Tx P L v

More mathematical details for real matrices are found in Golub and Van Loan (1989, Chapter 4).

When the optional Cholesky algorithm is used with a positive definite, self-adjoint matrix, the

factorization has the alternate form

T TPAP R R

 where P is a permutation matrix and R is an upper-triangular matrix. The solution of the linear

system Ax = b is computed by solving the systems

Tu R Pb

and

1Tx P R u

The permutation is chosen so that the diagonal term is maximized at each step of the

decomposition. The individual interchanges are optionally available in the argument ―pivots‖.

Fatal and Terminal Error Messages

See the messages.gls file for error messages for LIN_SOL_SELF. These error messages are

numbered 321336; 341356; 361376; 381396.

Example 1: Solving a Linear Least-squares System

This example solves a linear least-squares system Cx ≅ d, where Cmxn is a real matrix with m ≥ n.

The least-squares solution is computed using the self-adjoint matrix

TA C C

and the right-hand side

Tb A d

The n × n self-adjoint system Ax = b is solved for x. This solution method is not as satisfactory, in

terms of numerical accuracy, as solving the system Cx ≅ d directly by using the routine

lin_sol_lsq. Also, see operator_ex05, Chapter 10.

 use lin_sol_self_int

use rand_gen_int

 implicit none

! This is Example 1 for LIN_SOL_SELF.

 integer, parameter :: m=64, n=32

22 Chapter 1: Linear Systems IMSL MATH LIBRARY

 real(kind(1e0)), parameter :: one=1e0

 real(kind(1e0)) err

 real(kind(1e0)), dimension(n,n) :: A, b, x, res, y(m*n),&

 C(m,n), d(m,n)

! Generate two rectangular random matrices.

 call rand_gen(y)

 C = reshape(y,(/m,n/))

 call rand_gen(y)

 d = reshape(y,(/m,n/))

! Form the normal equations for the rectangular system.

 A = matmul(transpose(C),C)

 b = matmul(transpose(C),d)

! Compute the solution for Ax = b.

 call lin_sol_self(A, b, x)

! Check the results for small residuals.

 res = b - matmul(A,x)

 err = maxval(abs(res))/sum(abs(A)+abs(b))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for LIN_SOL_SELF is correct.'

 end if

 end

Output

Example 1 for LIN_SOL_SELF is correct.

Additional Examples

Example 2: System Solving with Cholesky Method

This example solves the same form of the system as Example 1. The optional argument ―iopt=‖

is used to note that the Cholesky algorithm is used since the matrix A is positive definite and self-

adjoint. In addition, the sample covariance matrix

2 1A

is computed, where

2

2 d Cx

m n

the inverse matrix is returned as the ―ainv=‖ optional argument. The scale factor
2 and Γ are

computed after returning from the routine. Also, see operator_ex06, Chapter 10.

 use lin_sol_self_int

 use rand_gen_int

 use error_option_packet

IMSL MATH LIBRARY Chapter 1: Linear Systems 23

 implicit none

! This is Example 2 for LIN_SOL_SELF.

 integer, parameter :: m=64, n=32

 real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0

 real(kind(1e0)) err

 real(kind(1e0)) a(n,n), b(n,1), c(m,n), d(m,1), cov(n,n), x(n,1), &

 res(n,1), y(m*n)

 type(s_options) :: iopti(1)=s_options(0,zero)

! Generate a random rectangular matrix and a random right hand side.

 call rand_gen(y)

 c = reshape(y,(/m,n/))

 call rand_gen(d(1:n,1))

! Form the normal equations for the rectangular system.

 a = matmul(transpose(c),c)

 b = matmul(transpose(c),d)

! Use packaged option to use Cholesky decomposition.

 iopti(1) = s_options(s_lin_sol_self_Use_Cholesky,zero)

! Compute the solution of Ax=b with optional inverse obtained.

 call lin_sol_self(a, b, x, ainv=cov, &

 iopt=iopti)

! Compute residuals, x - (inverse)*b, for consistency check.

 res = x - matmul(cov,b)

! Scale the inverse to obtain the covariance matrix.

 cov = (sum((d-matmul(c,x))**2)/(m-n)) * cov

! Check the results.

 err = sum(abs(res))/sum(abs(cov))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 2 for LIN_SOL_SELF is correct.'

 end if

 end

Output

Example 2 for LIN_SOL_SELF is correct.

24 Chapter 1: Linear Systems IMSL MATH LIBRARY

Example 3: Using Inverse Iteration for an Eigenvector

This example illustrates the use of the optional argument ―iopt=‖ to reset the value of a Small

diagonal term encountered during the factorization. Eigenvalues of the self-adjoint matrix

TA C C

are computed using the routine lin_eig_self. An eigenvector, corresponding to one of these

eigenvalues, , is computed using inverse iteration. This solves the near singular system

(A I)x = b for an eigenvector, x. Following the computation of a normalized eigenvector

x
y

x

the consistency condition

Ty Ay

is checked. Since a singular system is expected, suppress the fatal error message that normally

prints when the error post-processor routine error_post is called within the routine

lin_sol_self. Also, see operator_ex07, Chapter 10.

 use lin_sol_self_int

 use lin_eig_self_int

 use rand_gen_int

 use error_option_packet

 implicit none

! This is Example 3 for LIN_SOL_SELF.

 integer i, tries

 integer, parameter :: m=8, n=4, k=2

 integer ipivots(n+1)

 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0

 real(kind(1d0)) err

 real(kind(1d0)) a(n,n), b(n,1), c(m,n), x(n,1), y(m*n), &

 e(n), atemp(n,n)

 type(d_options) :: iopti(4)

! Generate a random rectangular matrix.

 call rand_gen(y)

 c = reshape(y,(/m,n/))

! Generate a random right hand side for use in the inverse

! iteration.

 call rand_gen(y(1:n))

 b = reshape(y,(/n,1/))

! Compute the positive definite matrix.

IMSL MATH LIBRARY Chapter 1: Linear Systems 25

 a = matmul(transpose(c),c)

! Obtain just the eigenvalues.

 call lin_eig_self(a, e)

! Use packaged option to reset the value of a small diagonal.

 iopti = d_options(0,zero)

 iopti(1) = d_options(d_lin_sol_self_set_small,&

 epsilon(one) * abs(e(1)))

! Use packaged option to save the factorization.

 iopti(2) = d_options(d_lin_sol_self_save_factors,zero)

! Suppress error messages and stopping due to singularity

! of the matrix, which is expected.

 iopti(3) = d_options(d_lin_sol_self_no_sing_mess,zero)

 atemp = a

 do i=1, n

 a(i,i) = a(i,i) - e(k)

 end do

! Compute A-eigenvalue*I as the coefficient matrix.

 do tries=1, 2

 call lin_sol_self(a, b, x, &

 pivots=ipivots, iopt=iopti)

! When code is re-entered, the already computed factorization

! is used.

 iopti(4) = d_options(d_lin_sol_self_solve_A,zero)

! Reset right-hand side nearly in the direction of the eigenvector.

 b = x/sqrt(sum(x**2))

 end do

! Normalize the eigenvector.

 x = x/sqrt(sum(x**2))

! Check the results.

 err = dot_product(x(1:n,1),matmul(atemp(1:n,1:n),x(1:n,1))) - &

 e(k)

! If any result is not accurate, quit with no summary printing.

 if (abs(err) <= sqrt(epsilon(one))*e(1)) then

 write (*,*) 'Example 3 for LIN_SOL_SELF is correct.'

 end if

 end

Output

Example 3 for LIN_SOL_SELF is correct.

Example 4: Accurate Least-squares Solution with Iterative Refinement

This example illustrates the accurate solution of the self-adjoint linear system

00T

I A r b

xA

26 Chapter 1: Linear Systems IMSL MATH LIBRARY

computed using iterative refinement. This solution method is appropriate for least-squares

problems when an accurate solution is required. The solution and residuals are accumulated in

double precision, while the decomposition is computed in single precision. Also, see

operator_ex08, supplied with the product examples.

 use lin_sol_self_int

 use rand_gen_int

 implicit none

! This is Example 4 for LIN_SOL_SELF.

 integer i

 integer, parameter :: m=8, n=4

 real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0

 real(kind(1d0)), parameter :: d_zero=0.0d0

 integer ipivots((n+m)+1)

 real(kind(1e0)) a(m,n), b(m,1), w(m*n), f(n+m,n+m), &

 g(n+m,1), h(n+m,1)

 real(kind(1e0)) change_new, change_old

 real(kind(1d0)) c(m,1), d(m,n), y(n+m,1)

 type(s_options) :: iopti(2)=s_options(0,zero)

! Generate a random matrix.

 call rand_gen(w)

 a = reshape(w, (/m,n/))

! Generate a random right hand side.

 call rand_gen(b(1:m,1))

! Save double precision copies of the matrix and right hand side.

 d = a

 c = b

! Fill in augmented system for accurately solving the least-squares

! problem.

 f = zero

 do i=1, m

 f(i,i) = one

 end do

 f(1:m,m+1:) = a

 f(m+1:,1:m) = transpose(a)

! Start solution at zero.

 y = d_zero

 change_old = huge(one)

! Use packaged option to save the factorization.

IMSL MATH LIBRARY Chapter 1: Linear Systems 27

 iopti(1) = s_options(s_lin_sol_self_save_factors,zero)

 iterative_refinement: do

 g(1:m,1) = c(1:m,1) - y(1:m,1) - matmul(d,y(m+1:m+n,1))

 g(m+1:m+n,1) = - matmul(transpose(d),y(1:m,1))

 call lin_sol_self(f, g, h, &

 pivots=ipivots, iopt=iopti)

 y = h + y

 change_new = sum(abs(h))

! Exit when changes are no longer decreasing.

 if (change_new >= change_old) &

 exit iterative_refinement

 change_old = change_new

! Use option to re-enter code with factorization saved; solve only.

 iopti(2) = s_options(s_lin_sol_self_solve_A,zero)

 end do iterative_refinement

 write (*,*) 'Example 4 for LIN_SOL_SELF is correct.'

 end

Output

Example 4 for LIN_SOL_SELF is correct.

LIN_SOL_LSQ

Solves a rectangular system of linear equations Ax ≅ b, in a least-squares sense. Using optional

arguments, any of several related computations can be performed. These extra tasks include

computing and saving the factorization of A using column and row pivoting, representing the

determinant of A, computing the generalized inverse matrix A†, or computing the least-squares

solution of

Ax ≅ b

or

A
T
y ≅ b,

given the factorization of A. An optional argument is provided for computing the following

unscaled covariance matrix

1

TC A A

Least-squares solutions, where the unknowns are non-negative or have simple bounds, can be

computed with PARALLEL_NONNEGATIVE_LSQ and PARALLEL_BOUNDED_LSQ. These codes can

be restricted to execute without MPI.

Required Arguments

A — Array of size m × n containing the matrix. (Input [/Output])

If the packaged option lin_sol_lsq_save_QR is used then the factorization of A is

28 Chapter 1: Linear Systems IMSL MATH LIBRARY

saved in A. For efficiency, the diagonal reciprocals of the matrix R are saved in the

diagonal entries of A.

B — Array of size m × nb containing the right-hand side matrix. When using the option to

solve adjoint systems A
T
x ≅ b, the size of b is n × nb. (Input [/Output])

If the packaged option lin_sol_lsq_save_QR is used then input B is used as work

storage and is not saved.

X — Array of size m × nb containing the right-hand side matrix. When using the option to

solve adjoint systems A
T
x ≅ b, the size of x is m × nb. (Output)

Optional Arguments

MROWS = m (Input)

Uses array A(1:m, 1:n) for the input matrix.

Default: m = size(A, 1)

NCOLS = n (Input)

Uses array A(1:m, 1:n) for the input matrix.

Default: n = size(A, 2)

NRHS = nb (Input)

Uses the array b(1:, 1:nb) for the input right-hand side matrix.

Default: nb = size(b, 2)

Note that b must be a rank-2 array.

pivots = pivots(:) (Output [/Input])

Integer array of size 2 * min(m, n) + 1 that contains the individual row followed by the

column interchanges. The last array entry contains the approximate rank of A.

trans = trans(:) (Output [/Input])

Array of size 2 * min(m, n) that contains data for the construction of the orthogonal

decomposition.

det = det(1:2) (Output)

Array of size 2 of the same type and kind as A for representing the products of the

determinants of the matrices Q, P, and R. The determinant is represented by two

numbers. The first is the base with the sign or complex angle of the result. The second

is the exponent. When det(2) is within exponent range, the value of this expression is

given by abs (det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular,

abs(det(1)) = radix(det); otherwise, det(1) = 0., and det(2) = huge(abs(det(1))).

ainv = ainv(:,:) (Output)

Array with size n × m of the same type and kind as A(1:m, 1:n). It contains the

generalized inverse matrix, A†.

IMSL MATH LIBRARY Chapter 1: Linear Systems 29

cov = cov(:,:) (Output)

Array with size n × n of the same type and kind as A(1:m, 1:n). It contains the

unscaled covariance matrix, C = (A
T
A)

-1
.

iopt = iopt(:) (Input)

Derived type array with the same precision as the input matrix; used for passing

optional data to the routine. The options are as follows:

Packaged Options for lin_sol_lsq

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_lsq_set_small 1

s_, d_, c_, z_ lin_sol_lsq_save_QR 2

s_, d_, c_, z_ lin_sol_lsq_solve_A 3

s_, d_, c_, z_ lin_sol_lsq_solve_ADJ 4

s_, d_, c_, z_ lin_sol_lsq_no_row_pivoting 5

s_, d_, c_, z_ lin_sol_lsq_no_col_pivoting 6

s_, d_, c_, z_ lin_sol_lsq_scan_for_NaN 7

s_, d_, c_, z_ lin_sol_lsq_no_sing_mess 8

iopt(IO) = ?_options(?_lin_sol_lsq_set_small, Small)

Replaces with Small if a diagonal term of the matrix R is smaller in magnitude than the

value Small. A solution is approximated based on this replacement in either case.

Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_sol_lsq_save_QR, ?_dummy)

Saves the factorization of A. Requires the optional arguments ―pivots=‖ and

―trans=‖ if the routine is used for solving further systems with the same matrix. This

is the only case where the input arrays A and b are not saved. For efficiency, the

diagonal reciprocals of the matrix R are saved in the diagonal entries of A.

iopt(IO) = ?_options(?_lin_sol_lsq_solve_A, ?_dummy)

Uses the factorization of A computed and saved to solve Ax = b.

iopt(IO) = ?_options(?_lin_sol_lsq_solve_ADJ, ?_dummy)

Uses the factorization of A computed and saved to solve A
T
x = b.

iopt(IO) = ?_options(?_lin_sol_lsq_no_row_pivoting, ?_dummy)

Does no row pivoting. The array pivots(:), if present, satisfies pivots(i) = i for i = 1,

…, min (m, n).

iopt(IO) = ?_options(?_lin_sol_lsq_no_col_pivoting, ?_dummy)

Does no column pivoting. The array pivots(:), if present, satisfies pivots(i + min (m,

n)) = i for i = 1, …, min (m, n).

iopt(IO) = ?_options(?_lin_sol_lsq_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

30 Chapter 1: Linear Systems IMSL MATH LIBRARY

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 10.

Default: Does not scan for NaNs

iopt(IO) = ?_options(?_lin_sol_lsq_no_sing_mess,?_dummy)

Do not print an error message when A is singular or k < min(m, n).

FORTRAN 90 Interface

Generic: CALL LIN_SOL_LSQ (A, B, X [,…])

Specific: The specific interface names are S_LIN_SOL_LSQ, D_LIN_SOL_LSQ,

C_LIN_SOL_LSQ, and Z_LIN_SOL_LSQ.

Description

Routine LIN_SOL_LSQ solves a rectangular system of linear algebraic equations in a least-squares

sense. It computes the decomposition of A using an orthogonal factorization. This decomposition

has the form

0

0 0

k kR
QAP

where the matrices Q and P are products of elementary orthogonal and permutation matrices. The

matrix R is k × k, where k is the approximate rank of A. This value is determined by the value of

the parameter Small. See Golub and Van Loan (1989, Chapter 5.4) for further details. Note that the

use of both row and column pivoting is nonstandard, but the routine defaults to this choice for en-

hanced reliability.

Fatal and Terminal Error Messages

See the messages.gls file for error messages for LIN_SOL_LSQ. These error messages are

numbered 241256; 261276; 281296; 301316.

Example 1: Solving a Linear Least-squares System

This example solves a linear least-squares system Cx ≅ d, where

m nC

is a real matrix with m > n. The least-squares problem is derived from polynomial data fitting to

the function

 cos()
2

x x
y x e

using a discrete set of values in the interval 1 ≤ x ≤ 1. The polynomial is represented as the

series

IMSL MATH LIBRARY Chapter 1: Linear Systems 31

0

N

i i

i

u x c T x

where the iT x are Chebyshev polynomials. It is natural for the problem matrix and solution to

have a column or entry corresponding to the subscript zero, which is used in this code. Also, see

operator_ex09, supplied with the product examples.

 use lin_sol_lsq_int

 use rand_gen_int

 use error_option_packet

 implicit none

! This is Example 1 for LIN_SOL_LSQ.

 integer i

 integer, parameter :: m=128, n=8

 real(kind(1d0)), parameter :: one=1d0, zero=0d0

 real(kind(1d0)) A(m,0:n), c(0:n,1), pi_over_2, x(m), y(m,1), &

 u(m), v(m), w(m), delta_x

! Generate a random grid of points.

 call rand_gen(x)

! Transform points to the interval -1,1.

 x = x*2 - one

! Compute the constant 'PI/2'.

 pi_over_2 = atan(one)*2

! Generate known function data on the grid.

 y(1:m,1) = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.

 A(:,0) = one; A(:,1) = x

 do i=2, n

 A(:,i) = 2*x*A(:,i-1) - A(:,i-2)

 end do

! Solve for the series coefficients.

 call lin_sol_lsq(A, y, c)

! Generate an equally spaced grid on the interval.

 delta_x = 2/real(m-1,kind(one))

 do i=1, m

 x(i) = -one + (i-1)*delta_x

 end do

! Evaluate residuals using backward recurrence formulas.

 u = zero

 v = zero

 do i=n, 0, -1

 w = 2*x*u - v + c(i,1)

 v = u

32 Chapter 1: Linear Systems IMSL MATH LIBRARY

 u = w

 end do

 y(1:m,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+1 sign changes in the residual curve occur.

 x = one

 x = sign(x,y(1:m,1))

 if (count(x(1:m-1) /= x(2:m)) >= n+1) then

 write (*,*) 'Example 1 for LIN_SOL_LSQ is correct.'

 end if

 end

Output

Example 1 for LIN_SOL_LSQ is correct.

Additional Examples

Example 2: System Solving with the Generalized Inverse

This example solves the same form of the system as Example 1. In this case, the grid of evaluation

points is equally spaced. The coefficients are computed using the ―smoothing formulas‖ by rows

of the generalized inverse matrix, A†, computed using the optional argument ―ainv=‖. Thus, the

coefficients are given by the matrix-vector product c = (A†) y, where y is the vector of values of

the function y(x) evaluated at the grid of points. Also, see operator_ex10, supplied with the

product examples.

 use lin_sol_lsq_int

 implicit none

! This is Example 2 for LIN_SOL_LSQ.

 integer i

 integer, parameter :: m=128, n=8

 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0

 real(kind(1d0)) a(m,0:n), c(0:n,1), pi_over_2, x(m), y(m,1), &

 u(m), v(m), w(m), delta_x, inv(0:n, m)

! Generate an array of equally spaced points on the interval -1,1.

 delta_x = 2/real(m-1,kind(one))

 do i=1, m

 x(i) = -one + (i-1)*delta_x

 end do

! Compute the constant 'PI/2'.

 pi_over_2 = atan(one)*2

! Compute data values on the grid.

IMSL MATH LIBRARY Chapter 1: Linear Systems 33

 y(1:m,1) = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.

 a(:,0) = one

 a(:,1) = x

 do i=2, n

 a(:,i) = 2*x*a(:,i-1) - a(:,i-2)

 end do

! Compute the generalized inverse of the least-squares matrix.

 call lin_sol_lsq(a, y, c, nrhs=0, ainv=inv)

! Compute the series coefficients using the generalized inverse

! as 'smoothing formulas.'

 c(0:n,1) = matmul(inv(0:n,1:m),y(1:m,1))

! Evaluate residuals using backward recurrence formulas.

 u = zero

 v = zero

 do i=n, 0, -1

 w = 2*x*u - v + c(i,1)

 v = u

 u = w

 end do

 y(1:m,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+2 sign changes in the residual curve occur.

! (This test will fail when n is larger.)

 x = one

 x = sign(x,y(1:m,1))

 if (count(x(1:m-1) /= x(2:m)) == n+2) then

 write (*,*) 'Example 2 for LIN_SOL_LSQ is correct.'

 end if

 end

Output

Example 2 for LIN_SOL_LSQ is correct.

Example 3: Two-Dimensional Data Fitting

This example illustrates the use of radial-basis functions to least-squares fit arbitrarily spaced data

points. Let m data values {yi} be given at points in the unit square, {pi}. Each pi is a pair of real

values. Then, n points {qj} are chosen on the unit square. A series of radial-basis functions is used

to represent the data,

34 Chapter 1: Linear Systems IMSL MATH LIBRARY

2 2 1/ 2

1

()
n

j j

j

f p c p q

where
2
 is a parameter. This example uses

2
 = 1, but either larger or smaller values can give a

better approximation for user problems. The coefficients {cj} are obtained by solving the

following m × n linear least-squares problem:

 j jf p y

This example illustrates an effective use of Fortran 90 array operations to eliminate many details

required to build the matrix and right-hand side for the {cj} . For this example, the two sets of

points {pi} and {qj} are chosen randomly. The values {yj} are computed from the following

formula:

2|| ||jp

jy e

The residual function

2|| ||p

r p e f p

is computed at an N × N square grid of equally spaced points on the unit square. The magnitude of

r(p) may be larger at certain points on this grid than the residuals at the given points, ip . Also,

see operator_ex11, supplied with the product examples.

 use lin_sol_lsq_int

 use rand_gen_int

 implicit none

! This is Example 3 for LIN_SOL_LSQ.

 integer i, j

 integer, parameter :: m=128, n=32, k=2, n_eval=16

 real(kind(1d0)), parameter :: one=1.0d0, delta_sqr=1.0d0

 real(kind(1d0)) a(m,n), b(m,1), c(n,1), p(k,m), q(k,n), &

 x(k*m), y(k*n), t(k,m,n), res(n_eval,n_eval), &

 w(n_eval), delta

! Generate a random set of data points in k=2 space.

 call rand_gen(x)

 p = reshape(x,(/k,m/))

! Generate a random set of center points in k-space.

 call rand_gen(y)

 q = reshape(y,(/k,n/))

! Compute the coefficient matrix for the least-squares system.

IMSL MATH LIBRARY Chapter 1: Linear Systems 35

 t = spread(p,3,n)

 do j=1, n

 t(1:,:,j) = t(1:,:,j) - spread(q(1:,j),2,m)

 end do

 a = sqrt(sum(t**2,dim=1) + delta_sqr)

! Compute the right hand side of data values.

 b(1:,1) = exp(-sum(p**2,dim=1))

! Compute the solution.

 call lin_sol_lsq(a, b, c)

! Check the results.

 if (sum(abs(matmul(transpose(a),b-matmul(a,c))))/sum(abs(a)) &

 <= sqrt(epsilon(one))) then

 write (*,*) 'Example 3 for LIN_SOL_LSQ is correct.'

 end if

! Evaluate residuals, known function - approximation at a square

! grid of points. (This evaluation is only for k=2.)

 delta = one/real(n_eval-1,kind(one))

 do i=1, n_eval

 w(i) = (i-1)*delta

 end do

 res = exp(-(spread(w,1,n_eval)**2 + spread(w,2,n_eval)**2))

 do j=1, n

 res = res - c(j,1)*sqrt((spread(w,1,n_eval) - q(1,j))**2 + &

 (spread(w,2,n_eval) - q(2,j))**2 + delta_sqr)

 end do

 end

Output

Example 3 for LIN_SOL_LSQ is correct.

Example 4: Least-squares with an Equality Constraint

This example solves a least-squares system Ax ≅ b with the constraint that the solution values

have a sum equal to the value 1. To solve this system, one heavily weighted row vector and right-

hand side component is added to the system corresponding to this constraint. Note that the weight

used is

1/ 2

where ε is the machine precision, but any larger value can be used. The fact that lin_sol_lsq

performs row pivoting in this case is critical for obtaining an accurate solution to the constrained

problem solved using weighting. See Golub and Van Loan (1989, Chapter 12) for more

information about this method. Also, see operator_ex12, supplied with the product examples.

36 Chapter 1: Linear Systems IMSL MATH LIBRARY

 use lin_sol_lsq_int

 use rand_gen_int

 implicit none

! This is Example 4 for LIN_SOL_LSQ.

 integer, parameter :: m=64, n=32

 real(kind(1e0)), parameter :: one=1.0e0

 real(kind(1e0)) :: a(m+1,n), b(m+1,1), x(n,1), y(m*n)

! Generate a random matrix.

 call rand_gen(y)

 a(1:m,1:n) = reshape(y,(/m,n/))

! Generate a random right hand side.

 call rand_gen(b(1:m,1))

! Heavily weight desired constraint. All variables sum to one.

 a(m+1,1:n) = one/sqrt(epsilon(one))

 b(m+1,1) = one/sqrt(epsilon(one))

 call lin_sol_lsq(a, b, x)

 if (abs(sum(x) - one)/sum(abs(x)) <= &

 sqrt(epsilon(one))) then

 write (*,*) 'Example 4 for LIN_SOL_LSQ is correct.'

 end if

 end

Output

Example 4 for LIN_SOL_LSQ is correct.

LIN_SOL_SVD

Solves a rectangular least-squares system of linear equations Ax ≅ b using singular value

decomposition

TA USV

With optional arguments, any of several related computations can be performed. These extra tasks

include computing the rank of A, the orthogonal m × m and n × n matrices U and V, and the m × n

diagonal matrix of singular values, S.

IMSL MATH LIBRARY Chapter 1: Linear Systems 37

Required Arguments

A — Array of size m × n containing the matrix. (Input [/Output])

If the packaged option lin_sol_svd_overwrite_input is used, this array is not

saved on output.

B — Array of size m × nb containing the right-hand side matrix. (Input [/Output]

If the packaged option lin_sol_svd_overwrite_input is used, this array is not

saved on output.

X— Array of size n × nb containing the solution matrix. (Output)

Optional Arguments

MROWS = m (Input)

Uses array A(1:m, 1:n) for the input matrix.

Default: m = size (A, 1)

NCOLS = n (Input)

Uses array A(1:m, 1:n) for the input matrix.

Default: n = size(A, 2)

NRHS = nb (Input)

Uses the array b(1:, 1:nb) for the input right-hand side matrix.

Default: nb = size(b, 2)

Note that b must be a rank-2 array.

RANK = k (Output)

Number of singular values that are at least as large as the value Small. It will satisfy k

<= min(m, n).

u = u(:,:) (Output)

Array of the same type and kind as A(1:m, 1:n). It contains the m × m orthogonal

matrix U of the singular value decomposition.

s = s(:) (Output)

Array of the same precision as A(1:m, 1:n). This array is real even when the matrix

data is complex. It contains the m × n diagonal matrix S in a rank-1 array. The singular

values are nonnegative and ordered non-increasing.

v = v(:,:) (Output)

Array of the same type and kind as A(1:m, 1:n). It contains the n × n orthogonal

matrix V.

iopt = iopt(:) (Input)

Derived type array with the same precision as the input matrix. Used for passing

optional data to the routine. The options are as follows:

38 Chapter 1: Linear Systems IMSL MATH LIBRARY

Packaged Options for lin_sol_svd

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_svd_set_small 1

s_, d_, c_, z_ lin_sol_svd_overwrite_input 2

s_, d_, c_, z_ lin_sol_svd_safe_reciprocal 3

s_, d_, c_, z_ lin_sol_svd_scan_for_NaN 4

iopt(IO) = ?_options(?_lin_sol_svd_set_small, Small)

Replaces with zero a diagonal term of the matrix S if it is smaller in magnitude than the

value Small. This determines the approximate rank of the matrix, which is returned as

the ―rank=‖ optional argument. A solution is approximated based on this

replacement.

Default: the smallest number that can be safely reciprocated

iopt(IO) = ?_options(?_lin_sol_svd_overwrite_input,?_dummy)

Does not save the input arrays A(:,:) and b(:,:).

iopt(IO) = ?_options(?_lin_sol_svd_safe_reciprocal, safe)

Replaces a denominator term with safe if it is smaller in magnitude than the value safe.

Default: the smallest number that can be safely reciprocated

iopt(IO) = ?_options(?_lin_sol_svd_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 10.

Default: Does not scan for NaNs

FORTRAN 90 Interface

Generic: CALL LIN_SOL_SVD (A, B, X [,…])

Specific: The specific interface names are S_LIN_SOL_SVD, D_LIN_SOL_SVD,

C_LIN_SOL_SVD, and Z_LIN_SOL_SVD.

Description

Routine LIN_SOL_SVD solves a rectangular system of linear algebraic equations in a least-squares

sense. It computes the factorization of A known as the singular value decomposition. This

decomposition has the following form:

A = USV
T

The matrices U and V are orthogonal. The matrix S is diagonal with the diagonal terms non-in-

creasing. See Golub and Van Loan (1989, Chapters 5.4 and 5.5) for further details.

IMSL MATH LIBRARY Chapter 1: Linear Systems 39

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for LIN_SOL_SVD. These error messages are

numbered 401412; 421432; 441452; 461472.

Example 1: Least-squares solution of a Rectangular System

The least-squares solution of a rectangular m × n system Ax ≅ b is obtained. The use of

lin_sol_lsq is more efficient in this case since the matrix is of full rank. This example

anticipates a problem where the matrix A is poorly conditioned or not of full rank; thus,

lin_sol_svd is the appropriate routine. Also, see operator_ex13, Chapter 10.

 use lin_sol_svd_int

 use rand_gen_int

 implicit none

! This is Example 1 for LIN_SOL_SVD.

 integer, parameter :: m=128, n=32

 real(kind(1d0)), parameter :: one=1d0

 real(kind(1d0)) A(m,n), b(m,1), x(n,1), y(m*n), err

! Generate a random matrix and right-hand side.

 call rand_gen(y)

 A = reshape(y,(/m,n/))

 call rand_gen(b(1:m,1))

! Compute the least-squares solution matrix of Ax=b.

 call lin_sol_svd(A, b, x)

! Check that the residuals are orthogonal to the

! column vectors of A.

 err = sum(abs(matmul(transpose(A),b-matmul(A,x))))/sum(abs(A))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for LIN_SOL_SVD is correct.'

 end if

 end

Output

Example 1 for LIN_SOL_SVD is correct.

Additional Examples

Example 2: Polar Decomposition of a Square Matrix

A polar decomposition of an n × n random matrix is obtained. This decomposition satisfies

A = PQ, where P is orthogonal and Q is self-adjoint and positive definite.

Given the singular value decomposition

40 Chapter 1: Linear Systems IMSL MATH LIBRARY

TA USV

the polar decomposition follows from the matrix products

 and T TP UV Q VSV

This example uses the optional arguments ―u=‖, ―s=‖, and ―v=‖, then array intrinsic functions to

calculate P and Q. Also, see operator_ex14, Chapter 10.

 use lin_sol_svd_int

 use rand_gen_int

 implicit none

! This is Example 2 for LIN_SOL_SVD.

 integer i

 integer, parameter :: n=32

 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0

 real(kind(1d0)) a(n,n), b(n,0), ident(n,n), p(n,n), q(n,n), &

 s_d(n), u_d(n,n), v_d(n,n), x(n,0), y(n*n)

! Generate a random matrix.

 call rand_gen(y)

 a = reshape(y,(/n,n/))

! Compute the singular value decomposition.

 call lin_sol_svd(a, b, x, nrhs=0, s=s_d, &

 u=u_d, v=v_d)

! Compute the (left) orthogonal factor.

 p = matmul(u_d,transpose(v_d))

! Compute the (right) self-adjoint factor.

 q = matmul(v_d*spread(s_d,1,n),transpose(v_d))

 ident=zero

 do i=1, n

 ident(i,i) = one

 end do

! Check the results.

 if (sum(abs(matmul(p,transpose(p)) - ident))/sum(abs(p)) &

 <= sqrt(epsilon(one))) then

 if (sum(abs(a - matmul(p,q)))/sum(abs(a)) &

 <= sqrt(epsilon(one))) then

 write (*,*) 'Example 2 for LIN_SOL_SVD is correct.'

 end if

 end if

IMSL MATH LIBRARY Chapter 1: Linear Systems 41

 end

Output

Example 2 for LIN_SOL_SVD is correct.

Example 3: Reduction of an Array of Black and White

An n × n array A contains entries that are either 0 or 1. The entry is chosen so that as a two-

dimensional object with origin at the point (1, 1), the array appears as a black circle of radius n/4

centered at the point (n/2, n/2).

A singular value decomposition

TA USV

is computed, where S is of low rank. Approximations using fewer of these nonzero singular values

and vectors suffice to reconstruct A. Also, see operator_ex15, supplied with the product

examples.

 use lin_sol_svd_int

 use rand_gen_int

 use error_option_packet

 implicit none

! This is Example 3 for LIN_SOL_SVD.

 integer i, j, k

 integer, parameter :: n=32

 real(kind(1e0)), parameter :: half=0.5e0, one=1e0, zero=0e0

 real(kind(1e0)) a(n,n), b(n,0), x(n,0), s(n), u(n,n), &

 v(n,n), c(n,n)

! Fill in value one for points inside the circle.

 a = zero

 do i=1, n

 do j=1, n

 if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) a(i,j) = one

 end do

 end do

! Compute the singular value decomposition.

 call lin_sol_svd(a, b, x, nrhs=0,&

 s=s, u=u, v=v)

! How many terms, to the nearest integer, exactly

! match the circle?

 c = zero; k = count(s > half)

 do i=1, k

 c = c + spread(u(1:n,i),2,n)*spread(v(1:n,i),1,n)*s(i)

 if (count(int(c-a) /= 0) == 0) exit

 end do

 if (i < k) then

 write (*,*) 'Example 3 for LIN_SOL_SVD is correct.'

42 Chapter 1: Linear Systems IMSL MATH LIBRARY

 end if

 end

Output

Example 3 for LIN_SOL_SVD is correct.

Example 4: Laplace Transform Solution

This example illustrates the solution of a linear least-squares system where the matrix is poorly

conditioned. The problem comes from solving the integral equation:

1

1

0

1st se f t dt s e g s

The unknown function f(t) = 1 is computed. This problem is equivalent to the numerical inversion

of the Laplace Transform of the function g(s) using real values of t and s, solving for a function

that is nonzero only on the unit interval. The evaluation of the integral uses the following

approximate integration rule:

11

10

j

j

t
n

st st
j

j t

f t e dt f t e dt

The points jt are chosen equally spaced by using the following:

1
j

j
t

n

The points js are computed so that the range of g(s) is uniformly sampled. This requires the

solution of m equations

1

i i

i
g s g

m

for j = 1, …, n and i = 1, …, m. Fortran 90 array operations are used to solve for the collocation

points is as a single series of steps. Newton's method,

h
s s

h

is applied to the array function

 1sh s e sg

where the following is true:

IMSL MATH LIBRARY Chapter 1: Linear Systems 43

 1, ,
T

mg g g

Note the coefficient matrix for the solution values

 1 , ,
T

nf f t f t

whose entry at the intersection of row i and column j is equal to the value

1j

i

j

t

s t

t

e dt

is explicitly integrated and evaluated as an array operation. The solution analysis of the resulting

linear least-squares system

Af g

 is obtained by computing the singular value decomposition

TA USV

An approximate solution is computed with the transformed right-hand side

Tb U g

followed by using as few of the largest singular values as possible to minimize the following

squared error residual:

2

1

1
n

j

j

f

This determines an optimal value k to use in the approximate solution

1

k
j

j
jj

v
f b

s

Also, see operator_ex16, supplied with the product examples.

 use lin_sol_svd_int

 use rand_gen_int

 use error_option_packet

 implicit none

! This is Example 4 for LIN_SOL_SVD.

 integer i, j, k

 integer, parameter :: m=64, n=16

 real(kind(1e0)), parameter :: one=1e0, zero=0.0e0

 real(kind(1e0)) :: g(m), s(m), t(n+1), a(m,n), b(m,1), &

 f(n,1), U_S(m,m), V_S(n,n), S_S(n), &

 rms, oldrms

44 Chapter 1: Linear Systems IMSL MATH LIBRARY

 real(kind(1e0)) :: delta_g, delta_t

 delta_g = one/real(m+1,kind(one))

! Compute which collocation equations to solve.

 do i=1,m

 g(i)=i*delta_g

 end do

! Compute equally spaced quadrature points.

 delta_t =one/real(n,kind(one))

 do j=1,n+1

 t(j)=(j-1)*delta_t

 end do

! Compute collocation points.

 s=m

 solve_equations: do

 s=s-(exp(-s)-(one-s*g))/(g-exp(-s))

 if (sum(abs((one-exp(-s))/s - g)) <= &

 epsilon(one)*sum(g)) &

 exit solve_equations

 end do solve_equations

! Evaluate the integrals over the quadrature points.

 a = (exp(-spread(t(1:n),1,m)*spread(s,2,n)) &

 - exp(-spread(t(2:n+1),1,m)*spread(s,2,n))) / &

 spread(s,2,n)

 b(1:,1)=g

! Compute the singular value decomposition.

 call lin_sol_svd(a, b, f, nrhs=0, &

 rank=k, u=U_S, v=V_S, s=S_S)

! Singular values that are larger than epsilon determine

! the rank=k.

 k = count(S_S > epsilon(one))

 oldrms = huge(one)

 g = matmul(transpose(U_S), b(1:m,1))

! Find the minimum number of singular values that gives a good

! approximation to f(t) = 1.

 do i=1,k

 f(1:n,1) = matmul(V_S(1:,1:i), g(1:i)/S_S(1:i))

 f = f - one

 rms = sum(f**2)/n

 if (rms > oldrms) exit

 oldrms = rms

 end do

 write (*,"(' Using this number of singular values, ', &

 &i4 / ' the approximate R.M.S. error is ', 1pe12.4)") &

 i-1, oldrms

IMSL MATH LIBRARY Chapter 1: Linear Systems 45

 if (sqrt(oldrms) <= delta_t**2) then

 write (*,*) 'Example 4 for LIN_SOL_SVD is correct.'

 end if

 end

Output

Example 4 for LIN_SOL_SVD is correct.

LIN_SOL_TRI
Solves multiple systems of linear equations

, 1, ,j j jA x y j k

Each matrix Aj is tridiagonal with the same dimension, n. The default solution method is based on

LU factorization computed using cyclic reduction or, optionally, Gaussian elimination with partial

pivoting.

Required Arguments

C — Array of size 2n × k containing the upper diagonals of the matrices Aj. Each upper

diagonal is entered in array locations c(1:n 1, j). The data C(n, 1:k) are not used.

(Input [/Output])

The input data is overwritten. See note below.

D — Array of size 2n × k containing the diagonals of the matrices Aj. Each diagonal is

entered in array locations D(1:n, j). (Input [/Output])

The input data is overwritten. See note below.

B — Array of size 2n × k containing the lower diagonals of the matrices Aj. Each lower

diagonal is entered in array locations B(2:n, j). The data

B(1, 1:k) are not used. (Input [/Output])

The input data is overwritten. See note below.

Y — Array of size 2n × k containing the right-hand sides, yj. Each right-hand side is entered

in array locations Y(1:n, j). The computed solution xj is returned in locations Y(1:n, j).

(Input [/Output])

NOTE: The required arguments have the Input data overwritten. If these quantities are

used later, they must be saved in user-defined arrays. The routine uses each array's

locations (n + 1:2 * n, 1:k) for scratch storage and intermediate data in the LU

factorization. The default values for problem dimensions are n = (size (D, 1))/2 and

k = size (D, 2).

46 Chapter 1: Linear Systems IMSL MATH LIBRARY

Optional Arguments

NCOLS = n (Input)

Uses arrays C(1:n 1, 1:k), D(1:n, 1:k), and B(2:n, 1:k) as the upper, main and

lower diagonals for the input tridiagonal matrices. The right-hand sides and solutions

are in array Y(1:n, 1:k). Note that each of these arrays are rank-2.

Default: n = (size(D, 1))/2

NPROB = k (Input)

The number of systems solved.

Default: k = size(D, 2)

iopt = iopt(:) (Input)

Derived type array with the same precision as the input matrix. Used for passing

optional data to the routine. The options are as follows:

Packaged Options for LIN_SOL_TRI

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_tri_set_small 1

s_, d_, c_, z_ lin_sol_tri_set_jolt 2

s_, d_, c_, z_ lin_sol_tri_scan_for_NaN 3

s_, d_, c_, z_ lin_sol_tri_factor_only 4

s_, d_, c_, z_ lin_sol_tri_solve_only 5

s_, d_, c_, z_ lin_sol_tri_use_Gauss_elim 6

iopt(IO) = ?_options(?_lin_sol_tri_set_small, Small)

Whenever a reciprocation is performed on a quantity smaller than Small, it is replaced

by that value plus 2 × jolt.

Default: 0.25 × epsilon()

iopt(IO) = ?_options(?_lin_sol_tri_set_jolt, jolt)

Default: epsilon(), machine precision

iopt(IO) = ?_options(?_lin_sol_tri_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(C(i,j)) .or.

isNaN(D(i,j)) .or.

isNaN(B(i,j)) .or.

isNaN(Y(i,j)) == .true.

See the isNaN() function, Chapter 10.

Default: Does not scan for NaNs.

IMSL MATH LIBRARY Chapter 1: Linear Systems 47

iopt(IO) = ?_options(?_lin_sol_tri_factor_only, ?_dummy)

Obtain the LU factorization of the matrices Aj. Does not solve for a solution.

Default: Factor the matrices and solve the systems.

iopt(IO) = ?_options(?_lin_sol_tri_solve_only, ?_dummy)

Solve the systems Ajxj = yj using the previously computed LU factorization.

Default: Factor the matrices and solve the systems.

iopt(IO) = ?_options(?_lin_sol_tri_use_Gauss_elim, ?_dummy)

The accuracy, numerical stability or efficiency of the cyclic reduction algorithm may

be inferior to the use of LU factorization with partial pivoting.

Default: Use cyclic reduction to compute the factorization.

FORTRAN 90 Interface

Generic: CALL LIN_SOL_TRI (C, D, B, Y [,…])

Specific: The specific interface names are S_LIN_SOL_TRI, D_LIN_SOL_TRI,

C_LIN_SOL_TRI, and Z_LIN_SOL_TRI.

Description

Routine lin_sol_tri solves k systems of tridiagonal linear algebraic equations, each problem of

dimension n × n. No relation between k and n is required. See Kershaw, pages 8688 in Rodrigue

(1982) for further details. To deal with poorly conditioned or singular systems, a specific

regularizing term is added to each reciprocated value. This technique keeps the factorization

process efficient and avoids exceptions from overflow or division by zero. Each occurrence of an

array reciprocal
1a

 is replaced by the expression
1

a t

 , where the array temporary t has the

value 0 whenever the corresponding entry satisfies |a| > Small. Alternately, t has the value 2 × jolt.

(Every small denominator gives rise to a finite ―jolt‖.) Since this tridiagonal solver is used in the

routines lin_svd and lin_eig_self for inverse iteration, regularization is required. Users can

reset the values of Small and jolt for their own needs. Using the default values for these

parameters, it is generally necessary to scale the tridiagonal matrix so that the maximum

magnitude has value approximately one. This is normally not an issue when the systems are

nonsingular.

The routine is designed to use cyclic reduction as the default method for computing the LU

factorization. Using an optional parameter, standard elimination and partial pivoting will be used

to compute the factorization. Partial pivoting is numerically stable but is likely to be less efficient

than cyclic reduction.

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for LIN_SOL_TRI. These error messages are

numbered 10811086; 11011106; 11211126; 11411146.

Example 1: Solution of Multiple Tridiagonal Systems

The upper, main and lower diagonals of n systems of size n × n are generated randomly. A scalar

is added to the main diagonal so that the systems are positive definite. A random vector xj is

48 Chapter 1: Linear Systems IMSL MATH LIBRARY

generated and right-hand sides yj = Aj yj are computed. The routine is used to compute the

solution, using the Aj and yj. The results should compare closely with the xj used to generate the

right-hand sides. Also, see operator_ex17, supplied with the product examples.

 use lin_sol_tri_int

 use rand_gen_int

 use error_option_packet

 implicit none

! This is Example 1 for LIN_SOL_TRI.

 integer i

 integer, parameter :: n=128

 real(kind(1d0)), parameter :: one=1d0, zero=0d0

 real(kind(1d0)) err

 real(kind(1d0)), dimension(2*n,n) :: d, b, c, res(n,n), &

 t(n), x, y

! Generate the upper, main, and lower diagonals of the

! n matrices A_i. For each system a random vector x is used

! to construct the right-hand side, Ax = y. The lower part

! of each array remains zero as a result.

 c = zero; d=zero; b=zero; x=zero

 do i = 1, n

 call rand_gen (c(1:n,i))

 call rand_gen (d(1:n,i))

 call rand_gen (b(1:n,i))

 call rand_gen (x(1:n,i))

 end do

! Add scalars to the main diagonal of each system so that

! all systems are positive definite.

 t = sum(c+d+b,DIM=1)

 d(1:n,1:n) = d(1:n,1:n) + spread(t,DIM=1,NCOPIES=n)

! Set Ax = y. The vector x generates y. Note the use

! of EOSHIFT and array operations to compute the matrix

! product, n distinct ones as one array operation.

 y(1:n,1:n)=d(1:n,1:n)*x(1:n,1:n) + &

 c(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=+1,DIM=1) + &

 b(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=-1,DIM=1)

! Compute the solution returned in y. (The input values of c,

! d, b, and y are overwritten by lin_sol_tri.) Check for any

! error messages.

 call lin_sol_tri (c, d, b, y)

! Check the size of the residuals, y-x. They should be small,

! relative to the size of values in x.

 res = x(1:n,1:n) - y(1:n,1:n)

 err = sum(abs(res)) / sum(abs(x(1:n,1:n)))

IMSL MATH LIBRARY Chapter 1: Linear Systems 49

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for LIN_SOL_TRI is correct.'

 end if

 end

Output

Example 1 for LIN_SOL_TRI is correct.

Additional Examples

Example 2: Iterative Refinement and Use of Partial Pivoting

This program unit shows usage that typically gives acceptable accuracy for a large class of prob-

lems. Our goal is to use the efficient cyclic reduction algorithm when possible, and keep on using

it unless it will fail. In exceptional cases our program switches to the LU factorization with partial

pivoting. This use of both factorization and solution methods enhances reliability and maintains

efficiency on the average. Also, see operator_ex18, supplied with the product examples.

 use lin_sol_tri_int

 use rand_gen_int

 implicit none

! This is Example 2 for LIN_SOL_TRI.

 integer i, nopt

 integer, parameter :: n=128

 real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0

 real(kind(1d0)), parameter :: d_one=1d0, d_zero=0d0

 real(kind(1e0)), dimension(2*n,n) :: d, b, c, res(n,n), &

 x, y

 real(kind(1e0)) change_new, change_old, err

 type(s_options) :: iopt(2) = s_options(0,s_zero)

 real(kind(1d0)), dimension(n,n) :: d_save, b_save, c_save, &

 x_save, y_save, x_sol

 logical solve_only

 c = s_zero; d=s_zero; b=s_zero; x=s_zero

! Generate the upper, main, and lower diagonals of the

! matrices A. A random vector x is used to construct the

! right-hand sides: y=A*x.

 do i = 1, n

 call rand_gen (c(1:n,i))

 call rand_gen (d(1:n,i))

 call rand_gen (b(1:n,i))

 call rand_gen (x(1:n,i))

 end do

! Save double precision copies of the diagonals and the

! right-hand side.

 c_save = c(1:n,1:n); d_save = d(1:n,1:n)

 b_save = b(1:n,1:n); x_save = x(1:n,1:n)

50 Chapter 1: Linear Systems IMSL MATH LIBRARY

 y_save(1:n,1:n) = d(1:n,1:n)*x_save + &

 c(1:n,1:n)*EOSHIFT(x_save,SHIFT=+1,DIM=1) + &

 b(1:n,1:n)*EOSHIFT(x_save,SHIFT=-1,DIM=1)

! Iterative refinement loop.

 factorization_choice: do nopt=0, 1

! Set the logical to flag the first time through.

 solve_only = .false.

 x_sol = d_zero

 change_old = huge(s_one)

 iterative_refinement: do

! This flag causes a copy of data to be moved to work arrays

! and a factorization and solve step to be performed.

 if (.not. solve_only) then

 c(1:n,1:n)=c_save; d(1:n,1:n)=d_save

 b(1:n,1:n)=b_save

 end if

! Compute current residuals, y - A*x, using current x.

 y(1:n,1:n) = -y_save + &

 d_save*x_sol + &

 c_save*EOSHIFT(x_sol,SHIFT=+1,DIM=1) + &

 b_save*EOSHIFT(x_sol,SHIFT=-1,DIM=1)

 call lin_sol_tri (c, d, b, y, iopt=iopt)

 x_sol = x_sol + y(1:n,1:n)

 change_new = sum(abs(y(1:n,1:n)))

! If size of change is not decreasing, stop the iteration.

 if (change_new >= change_old) exit iterative_refinement

 change_old = change_new

 iopt(nopt+1) = s_options(s_lin_sol_tri_solve_only,s_zero)

 solve_only = .true.

 end do iterative_refinement

! Use Gaussian Elimination if Cyclic Reduction did not get an

! accurate solution.

! It is an exceptional event when Gaussian Elimination is required.

 if (sum(abs(x_sol - x_save)) / sum(abs(x_save)) &

 <= sqrt(epsilon(d_one))) exit factorization_choice

 iopt = s_options(0,s_zero)

 iopt(nopt+1) = s_options(s_lin_sol_tri_use_Gauss_elim,s_zero)

 end do factorization_choice

! Check on accuracy of solution.

IMSL MATH LIBRARY Chapter 1: Linear Systems 51

 res = x(1:n,1:n)- x_save

 err = sum(abs(res)) / sum(abs(x_save))

 if (err <= sqrt(epsilon(d_one))) then

 write (*,*) 'Example 2 for LIN_SOL_TRI is correct.'

 end if

 end

Output

Example 2 for LIN_SOL_TRI is correct.

Example 3: Selected Eigenvectors of Tridiagonal Matrices

The eigenvalues 1, , n of a tridiagonal real, self-adjoint matrix are computed. Note that the

computation is performed using the IMSL MATH/LIBRARY FORTRAN 77 interface to routine

EVASB. The user may write this interface based on documentation of the arguments (IMSL 2003,

p. 480), or use the module Numerical_Libraries as we have done here. The eigenvectors

corresponding to k < n of the eigenvalues are required. These vectors are computed using inverse

iteration for all the eigenvalues at one step. See Golub and Van Loan (1989, Chapter 7). The

eigenvectors are then orthogonalized. Also, see operator_ex19, supplied with the product

examples.

 use lin_sol_tri_int

 use rand_gen_int

 use Numerical_Libraries

 implicit none

! This is Example 3 for LIN_SOL_TRI.

 integer i, j, nopt

 integer, parameter :: n=128, k=n/4, ncoda=1, lda=2

 real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0

 real(kind(1e0)) A(lda,n), EVAL(k)

 type(s_options) :: iopt(2)=s_options(0,s_zero)

 real(kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &

 b_t(2*n,k), y_t(2*n,k), eval_t(k), res(n,k), temp

 logical small

! This flag is used to get the k largest eigenvalues.

 small = .false.

! Generate the main diagonal and the co-diagonal of the

! tridiagonal matrix.

 call rand_gen (b)

 call rand_gen (d)

 A(1,1:)=b; A(2,1:)=d

! Use Numerical Libraries routine for the calculation of k

! largest eigenvalues.

52 Chapter 1: Linear Systems IMSL MATH LIBRARY

 CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)

 EVAL_T = EVAL

! Use DNFL tridiagonal solver for inverse iteration

! calculation of eigenvectors.

 factorization_choice: do nopt=0,1

! Create k tridiagonal problems, one for each inverse

! iteration system.

 b_t(1:n,1:k) = spread(b,DIM=2,NCOPIES=k)

 c_t(1:n,1:k) = EOSHIFT(b_t(1:n,1:k),SHIFT=1,DIM=1)

 d_t(1:n,1:k) = spread(d,DIM=2,NCOPIES=k) - &

 spread(EVAL_T,DIM=1,NCOPIES=n)

! Start the right-hand side at random values, scaled downward

! to account for the expected 'blowup' in the solution.

 do i=1, k

 call rand_gen (y_t(1:n,i))

 end do

! Do two iterations for the eigenvectors.

 do i=1, 2

 y_t(1:n,1:k) = y_t(1:n,1:k)*epsilon(s_one)

 call lin_sol_tri(c_t, d_t, b_t, y_t, &

 iopt=iopt)

 iopt(nopt+1) = s_options(s_lin_sol_tri_solve_only,s_zero)

 end do

! Orthogonalize the eigenvectors. (This is the most

! intensive part of the computing.)

 do j=1,k-1 ! Forward sweep of HMGS orthogonalization.

 temp=s_one/sqrt(sum(y_t(1:n,j)**2))

 y_t(1:n,j)=y_t(1:n,j)*temp

 y_t(1:n,j+1:k)=y_t(1:n,j+1:k)+ &

 spread(-matmul(y_t(1:n,j),y_t(1:n,j+1:k)), &

 DIM=1,NCOPIES=n)* spread(y_t(1:n,j),DIM=2,NCOPIES=k-j)

 end do

 temp=s_one/sqrt(sum(y_t(1:n,k)**2))

 y_t(1:n,k)=y_t(1:n,k)*temp

 do j=k-1,1,-1 ! Backward sweep of HMGS.

 y_t(1:n,j+1:k)=y_t(1:n,j+1:k)+ &

 spread(-matmul(y_t(1:n,j),y_t(1:n,j+1:k)), &

 DIM=1,NCOPIES=n)* spread(y_t(1:n,j),DIM=2,NCOPIES=k-j)

 end do

! See if the performance ratio is smaller than the value one.

! If it is not the code will re-solve the systems using Gaussian

! Elimination. This is an exceptional event. It is a necessary

! complication for achieving reliable results.

 res(1:n,1:k) = spread(d,DIM=2,NCOPIES=k)*y_t(1:n,1:k) + &

 spread(b,DIM=2,NCOPIES=k)* &

 EOSHIFT(y_t(1:n,1:k),SHIFT=-1,DIM=1) + &

IMSL MATH LIBRARY Chapter 1: Linear Systems 53

 EOSHIFT(spread(b,DIM=2,NCOPIES=k)*y_t(1:n,1:k),SHIFT=1) &

 -y_t(1:n,1:k)*spread(EVAL_T(1:k),DIM=1,NCOPIES=n)

! If the factorization method is Cyclic Reduction and perf_ratio is

! larger than one, re-solve using Gaussian Elimination. If the

! method is already Gaussian Elimination, the loop exits

! and perf_ratio is checked at the end.

 perf_ratio = sum(abs(res(1:n,1:k))) / &

 sum(abs(EVAL_T(1:k))) / &

 epsilon(s_one) / (5*n)

 if (perf_ratio <= s_one) exit factorization_choice

 iopt(nopt+1) = s_options(s_lin_sol_tri_use_Gauss_elim,s_zero)

 end do factorization_choice

 if (perf_ratio <= s_one) then

 write (*,*) 'Example 3 for LIN_SOL_TRI is correct.'

 end if

 end

Output

Example 3 for LIN_SOL_TRI is correct.

Example 4: Tridiagonal Matrix Solving within Diffusion Equations

The normalized partial differential equation

2

2t xx

u u
u u

t x

is solved for values of 0 ≤ x ≤ π and t > 0. A boundary value problem consists of choosing the

value

 00,u t u

such that the equation

 1 1 1,u x t u

 is satisfied. Arbitrary values

1 1

1
,

2 2
x u

and

1 1t

are used for illustration of the solution process. The one-parameter equation

 1 1 1, 0u x t u

54 Chapter 1: Linear Systems IMSL MATH LIBRARY

The variables are changed to

 0, ,v x t u x t u

 that v(0, t) = 0. The function v(x, t) satisfies the differential equation. The one-parameter equation

solved is therefore

 1 1 1 0, 0v x t u u

To solve this equation for 0u , use the standard technique of the variational equation,

0

v
w

u

Thus

2

2

w w

t x

Since the initial data for

 0,0v x u

the variational equation initial condition is

w(x, 0) = 1

This model problem illustrates the method of lines and Galerkin principle implemented with the

differential-algebraic solver, D2SPG (IMSL 2003, pp. 889911). We use the integrator in ―reverse

communication‖ mode for evaluating the required functions, derivatives, and solving linear

algebraic equations. See Example 4 of routine DASPG for a problem that uses reverse

communication. Next see Example 4 of routine IVPAG for the development of the piecewise-

linear Galerkin discretization method to solve the differential equation. This present example

extends parts of both previous examples and illustrates Fortran 90 constructs. It further illustrates

how a user can deal with a defect of an integrator that normally functions using only dense linear

algebra factorization methods for solving the corrector equations. See the comments in Brenan et

al. (1989, esp. p. 137). Also, see operator_ex20, supplied with the product examples.

 use lin_sol_tri_int

 use rand_gen_int

 use Numerical_Libraries

 implicit none

! This is Example 4 for LIN_SOL_TRI.

 integer, parameter :: n=1000, ichap=5, iget=1, iput=2, &

 inum=6, irnum=7

 real(kind(1e0)), parameter :: zero=0e0, one = 1e0

 integer i, ido, in(50), inr(20), iopt(6), ival(7), &

 iwk(35+n)

 real(kind(1e0)) hx, pi_value, t, u_0, u_1, atol, rtol, sval(2), &

IMSL MATH LIBRARY Chapter 1: Linear Systems 55

 tend, wk(41+11*n), y(n), ypr(n), a_diag(n), &

 a_off(n), r_diag(n), r_off(n), t_y(n), t_ypr(n), &

 t_g(n), t_diag(2*n,1), t_upper(2*n,1), &

 t_lower(2*n,1), t_sol(2*n,1)

 type(s_options) :: iopti(2)=s_options(0,zero)

 character(2) :: pi(1) = 'pi'

! Define initial data.

 t = 0.0e0

 u_0 = 1

 u_1 = 0.5

 tend = one

! Initial values for the variational equation.

 y = -one; ypr= zero

 pi_value = const(pi)

 hx = pi_value/(n+1)

 a_diag = 2*hx/3

 a_off = hx/6

 r_diag = -2/hx

 r_off = 1/hx

! Get integer option numbers.

 iopt(1) = inum

 call iumag ('math', ichap, iget, 1, iopt, in)

! Get floating point option numbers.

 iopt(1) = irnum

 call iumag ('math', ichap, iget, 1, iopt, inr)

! Set for reverse communication evaluation of the DAE.

 iopt(1) = in(26)

 ival(1) = 0

! Set for use of explicit partial derivatives.

 iopt(2) = in(5)

 ival(2) = 1

! Set for reverse communication evaluation of partials.

 iopt(3) = in(29)

 ival(3) = 0

! Set for reverse communication solution of linear equations.

 iopt(4) = in(31)

 ival(4) = 0

! Storage for the partial derivative array are not allocated or

! required in the integrator.

 iopt(5) = in(34)

 ival(5) = 1

! Set the sizes of iwk, wk for internal checking.

 iopt(6) = in(35)

 ival(6) = 35 + n

 ival(7) = 41 + 11*n

! Set integer options:

 call iumag ('math', ichap, iput, 6, iopt, ival)

! Reset tolerances for integrator:

 atol = 1e-3; rtol= 1e-3

 sval(1) = atol; sval(2) = rtol

 iopt(1) = inr(5)

56 Chapter 1: Linear Systems IMSL MATH LIBRARY

! Set floating point options:

 call sumag ('math', ichap, iput, 1, iopt, sval)

! Integrate ODE/DAE. Use dummy external names for g(y,y')

! and partials.

 ido = 1

 Integration_Loop: do

 call d2spg (n, t, tend, ido, y, ypr, dgspg, djspg, iwk, wk)

! Find where g(y,y') goes. (It only goes in one place here, but can

! vary where divided differences are used for partial derivatives.)

 iopt(1) = in(27)

 call iumag ('math', ichap, iget, 1, iopt, ival)

! Direct user response:

 select case(ido)

 case(1,4)

! This should not occur.

 write (*,*) ' Unexpected return with ido = ', ido

 stop

 case(3)

! Reset options to defaults. (This is good housekeeping but not

! required for this problem.)

 in = -in

 call iumag ('math', ichap, iput, 50, in, ival)

 inr = -inr

 call sumag ('math', ichap, iput, 20, inr, sval)

 exit Integration_Loop

 case(5)

! Evaluate partials of g(y,y').

 t_y = y; t_ypr = ypr

 t_g = r_diag*t_y + r_off*EOSHIFT(t_y,SHIFT=+1) &

 + EOSHIFT(r_off*t_y,SHIFT=-1) &

 - (a_diag*t_ypr + a_off*EOSHIFT(t_ypr,SHIFT=+1) &

 + EOSHIFT(a_off*t_ypr,SHIFT=-1))

! Move data from the assumed size to assumed shape arrays.

 do i=1, n

 wk(ival(1)+i-1) = t_g(i)

 end do

 cycle Integration_Loop

 case(6)

! Evaluate partials of g(y,y').

! Get value of c_j for partials.

 iopt(1) = inr(9)

 call sumag ('math', ichap, iget, 1, iopt, sval)

! Subtract c_j from diagonals to compute (partials for y')*c_j.

! The linear system is tridiagonal.

 t_diag(1:n,1) = r_diag - sval(1)*a_diag

 t_upper(1:n,1) = r_off - sval(1)*a_off

 t_lower = EOSHIFT(t_upper,SHIFT=+1,DIM=1)

 cycle Integration_Loop

IMSL MATH LIBRARY Chapter 1: Linear Systems 57

 case(7)

! Compute the factorization.

 iopti(1) = s_options(s_lin_sol_tri_factor_only,zero)

 call lin_sol_tri (t_upper, t_diag, t_lower, &

 t_sol, iopt=iopti)

 cycle Integration_Loop

 case(8)

! Solve the system.

 iopti(1) = s_options(s_lin_sol_tri_solve_only,zero)

! Move data from the assumed size to assumed shape arrays.

 t_sol(1:n,1)=wk(ival(1):ival(1)+n-1)

 call lin_sol_tri (t_upper, t_diag, t_lower, &

 t_sol, iopt=iopti)

! Move data from the assumed shape to assumed size arrays.

 wk(ival(1):ival(1)+n-1)=t_sol(1:n,1)

 cycle Integration_Loop

 case(2)

! Correct initial value to reach u_1 at t=tend.

 u_0 = u_0 - (u_0*y(n/2) - (u_1-u_0)) / (y(n/2) + 1)

! Finish up internally in the integrator.

 ido = 3

 cycle Integration_Loop

 end select

 end do Integration_Loop

 write (*,*) 'The equation u_t = u_xx, with u(0,t) = ', u_0

 write (*,*) 'reaches the value ',u_1, ' at time = ', tend, '.'

 write (*,*) 'Example 4 for LIN_SOL_TRI is correct.'

 end

Output

Example 4 for LIN_SOL_TRI is correct.

LIN_SVD
Computes the singular value decomposition (SVD) of a rectangular matrix, A. This gives the

decomposition

TA USV

where V is an n × n orthogonal matrix, U is an m × m orthogonal matrix, and S is a real,

rectangular diagonal matrix.

58 Chapter 1: Linear Systems IMSL MATH LIBRARY

Required Arguments

A — Array of size m × n containing the matrix. (Input [/Output])

If the packaged option lin_svd_overwrite_input is used, this array is not saved

on output.

S — Array of size min(m, n) containing the real singular values. These nonnegative values

are in non-increasing order. (Output)

U — Array of size m × m containing the singular vectors, U. (Output)

V — Array of size n × n containing the singular vectors, V. (Output)

Optional Arguments

MROWS = m (Input)

Uses array A(1:m, 1:n) for the input matrix.

Default: m = size(A, 1)

NCOLS = n (Input)

Uses array A(1:m, 1:n) for the input matrix.

Default: n = size(A, 2)

RANK = k (Output)

Number of singular values that exceed the value Small. RANK will satisfy

k <= min(m, n).

iopt = iopt(:) (Input)

Derived type array with the same precision as the input matrix. Used for passing

optional data to the routine. The options are as follows:

Packaged Options for LIN_SVD

Option Prefix = ? Option Name Option Value

S_, d_, c_, z_ lin_svd_set_small 1

S_, d_, c_, z_ lin_svd_overwrite_input 2

S_, d_, c_, z_ lin_svd_scan_for_NaN 3

S_, d_, c_, z_ lin_svd_use_qr 4

S_, d_, c_, z_ lin_svd_skip_orth 5

S_, d_, c_, z_ lin_svd_use_gauss_elim 6

S_, d_, c_, z_ lin_svd_set_perf_ratio 7

IMSL MATH LIBRARY Chapter 1: Linear Systems 59

iopt(IO) = ?_options(?_lin_svd_set_small, Small)

If a singular value is smaller than Small, it is defined as zero for the purpose of

computing the rank of A.

Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_svd_overwrite_input, ?_dummy)

Does not save the input array A(:, :).

iopt(IO) = ?_options(?_lin_svd_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) == .true.

 See the isNaN() function, Chapter 10.

Default: The array is not scanned for NaNs.

iopt(IO) = ?_options(?_lin_svd_use_qr, ?_dummy)

Uses a rational QR algorithm to compute eigenvalues. Accumulate the singular vectors

using this algorithm.

Default: singular vectors computed using inverse iteration

iopt(IO) = ?_options(?_lin_svd_skip_Orth, ?_dummy)

If the eigenvalues are computed using inverse iteration, skips the final

orthogonalization of the vectors. This method results in a more efficient computation.

However, the singular vectors, while a complete set, may not be orthogonal.

Default: singular vectors are orthogonalized if obtained using inverse iteration

iopt(IO) = ?_options(?_lin_svd_use_gauss_elim, ?_dummy)

If the eigenvalues are computed using inverse iteration, uses standard elimination with

partial pivoting to solve the inverse iteration problems.

Default: singular vectors computed using cyclic reduction

iopt(IO) = ?_options(?_lin_svd_set_perf_ratio, perf_ratio)

Uses residuals for approximate normalized singular vectors if they have a performance

index no larger than perf_ratio. Otherwise an alternate approach is taken and the

singular vectors are computed again: Standard elimination is used instead of cyclic

reduction, or the standard QR algorithm is used as a backup procedure to inverse

iteration. Larger values of perf_ratio are less likely to cause these exceptions.

Default: perf_ratio = 4

FORTRAN 90 Interface

Generic: CALL LIN_SVD (A, S, U, V [,…])

Specific: The specific interface names are S_LIN_SVD, D_LIN_SVD, C_LIN_SVD, and

Z_LIN_SVD.

60 Chapter 1: Linear Systems IMSL MATH LIBRARY

Description

Routine lin_svd is an implementation of the QR algorithm for computing the SVD of

rectangular matrices. An orthogonal reduction of the input matrix to upper bidiagonal form is

performed. Then, the SVD of a real bidiagonal matrix is calculated. The orthogonal decomposition

AV = US results from products of intermediate matrix factors. See Golub and Van Loan (1989,

Chapter 8) for details.

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for LIN_SVD. These error messages are numbered

10011010; 10211030; 10411050; 10611070.

Example 1: Computing the SVD

The SVD of a square, random matrix A is computed. The residuals R = AV US are small with

respect to working precision. Also, see operator_ex21, supplied with the product examples.

 use lin_svd_int

 use rand_gen_int

 implicit none

! This is Example 1 for LIN_SVD.

 integer, parameter :: n=32

 real(kind(1d0)), parameter :: one=1d0

 real(kind(1d0)) err

 real(kind(1d0)), dimension(n,n) :: A, U, V, S(n), y(n*n)

! Generate a random n by n matrix.

 call rand_gen(y)

 A = reshape(y,(/n,n/))

! Compute the singular value decomposition.

 call lin_svd(A, S, U, V)

! Check for small residuals of the expression A*V - U*S.

 err = sum(abs(matmul(A,V) - U*spread(S,dim=1,ncopies=n))) &

 / sum(abs(S))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for LIN_SVD is correct.'

 end if

 end

Output

Example 1 for LIN_SVD is correct.

IMSL MATH LIBRARY Chapter 1: Linear Systems 61

Additional Examples

Example 2: Linear Least Squares with a Quadratic Constraint

An m × n matrix equation Ax ≅ b, m > n, is approximated in a least-squares sense. The matrix b is

size m × k. Each of the k solution vectors of the matrix x is constrained to have Euclidean length of

value αj > 0. The value of αi is chosen so that the constrained solution is 0.25 the length of the

nonregularized or standard least-squares equation. See Golub and Van Loan (1989, Chapter 12)

for more details. In the Example 2 code, Newton‘s method is used to solve for each regularizing

parameter of the k systems. The solution is then computed and its length is checked. Also, see

operator_ex22, supplied with the product examples.

 use lin_svd_int

 use rand_gen_int

 implicit none

! This is Example 2 for LIN_SVD.

 integer, parameter :: m=64, n=32, k=4

 real(kind(1d0)), parameter :: one=1d0, zero=0d0

 real(kind(1d0)) a(m,n), s(n), u(m,m), v(n,n), y(m*max(n,k)), &

 b(m,k), x(n,k), g(m,k), alpha(k), lamda(k), &

 delta_lamda(k), t_g(n,k), s_sq(n), phi(n,k), &

 phi_dot(n,k), rand(k), err

! Generate a random matrix for both A and B.

 call rand_gen(y)

 a = reshape(y,(/m,n/))

 call rand_gen(y)

 b = reshape(y,(/m,k/))

! Compute the singular value decomposition.

 call lin_svd(a, s, u, v)

! Choose alpha so that the lengths of the regularized solutions

! are 0.25 times lengths of the non-regularized solutions.

 g = matmul(transpose(u),b)

 x = matmul(v,spread(one/s,dim=2,ncopies=k)*g(1:n,1:k))

 alpha = 0.25*sqrt(sum(x**2,dim=1))

 t_g = g(1:n,1:k)*spread(s,dim=2,ncopies=k)

 s_sq = s**2; lamda = zero

 solve_for_lamda: do

 x=one/(spread(s_sq,dim=2,ncopies=k)+ &

 spread(lamda,dim=1,ncopies=n))

 phi = (t_g*x)**2; phi_dot = -2*phi*x

 delta_lamda = (sum(phi,dim=1)-alpha**2)/sum(phi_dot,dim=1)

! Make Newton method correction to solve the secular equations for

! lamda.

 lamda = lamda - delta_lamda

62 Chapter 1: Linear Systems IMSL MATH LIBRARY

 if (sum(abs(delta_lamda)) <= &

 sqrt(epsilon(one))*sum(lamda)) &

 exit solve_for_lamda

! This is intended to fix up negative solution approximations.

 call rand_gen(rand)

 where (lamda < 0) lamda = s(1) * rand

 end do solve_for_lamda

! Compute solutions and check lengths.

 x = matmul(v,t_g/(spread(s_sq,dim=2,ncopies=k)+ &

 spread(lamda,dim=1,ncopies=n)))

 err = sum(abs(sum(x**2,dim=1) - alpha**2))/sum(abs(alpha**2))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 2 for LIN_SVD is correct.'

 end if

 end

Output

Example 2 for LIN_SVD is correct.

Example 3: Generalized Singular Value Decomposition

The n × n matrices A and B are expanded in a Generalized Singular Value Decomposition

(GSVD). Two n × n orthogonal matrices, U and V, and a nonsingular matrix X are computed such

that

 1, , nAX U diag c c

and

 1, , nBX V diag s s

The values is and ic are normalized so that

2 2 1i is c

The ic are nonincreasing, and the is are nondecreasing. See Golub and Van Loan (1989, Chapter

8) for more details. Our method is based on computing three SVDs as opposed to the QR

decomposition and two SVDs outlined in Golub and Van Loan. As a bonus, an SVD of the matrix

X is obtained, and you can use this information to answer further questions about its conditioning.

This form of the decomposition assumes that the matrix

A
D

B

IMSL MATH LIBRARY Chapter 1: Linear Systems 63

has all its singular values strictly positive. For alternate problems, where some singular values of

D are zero, the GSVD becomes

 1, ,T
nU A diag c c W

 and

 1, ,T
nV B diag s s W

The matrix W has the same singular values as the matrix D. Also, see operator_ex23, supplied

with the product examples.

 use lin_svd_int

 use rand_gen_int

 implicit none

! This is Example 3 for LIN_SVD.

 integer, parameter :: n=32

 integer i

 real(kind(1d0)), parameter :: one=1.0d0

 real(kind(1d0)) a(n,n), b(n,n), d(2*n,n), x(n,n), u_d(2*n,2*n), &

 v_d(n,n), v_c(n,n), u_c(n,n), v_s(n,n), u_s(n,n), &

 y(n*n), s_d(n), c(n), s(n), sc_c(n), sc_s(n), &

 err1, err2

! Generate random square matrices for both A and B.

 call rand_gen(y)

 a = reshape(y,(/n,n/))

 call rand_gen(y)

 b = reshape(y,(/n,n/))

! Construct D; A is on the top; B is on the bottom.

 d(1:n,1:n) = a

 d(n+1:2*n,1:n) = b

! Compute the singular value decompositions used for the GSVD.

 call lin_svd(d, s_d, u_d, v_d)

 call lin_svd(u_d(1:n,1:n), c, u_c, v_c)

 call lin_svd(u_d(n+1:,1:n), s, u_s, v_s)

! Rearrange c(:) so it is non-increasing. Move singular

! vectors accordingly. (The use of temporary objects sc_c and

! x is required.)

 sc_c = c(n:1:-1); c = sc_c

 x = u_c(1:n,n:1:-1); u_c = x

 x = v_c(1:n,n:1:-1); v_c = x

! The columns of v_c and v_s have the same span. They are

! equivalent by taking the signs of the largest magnitude values

64 Chapter 1: Linear Systems IMSL MATH LIBRARY

! positive.

 do i=1, n

 sc_c(i) = sign(one,v_c(sum(maxloc(abs(v_c(1:n,i)))),i))

 sc_s(i) = sign(one,v_s(sum(maxloc(abs(v_s(1:n,i)))),i))

 end do

 v_c = v_c*spread(sc_c,dim=1,ncopies=n)

 u_c = u_c*spread(sc_c,dim=1,ncopies=n)

 v_s = v_s*spread(sc_s,dim=1,ncopies=n)

 u_s = u_s*spread(sc_s,dim=1,ncopies=n)

! In this form of the GSVD, the matrix X can be unstable if D

! is ill-conditioned.

 x = matmul(v_d*spread(one/s_d,dim=1,ncopies=n),v_c)

! Check residuals for GSVD, A*X = u_c*diag(c_1, ..., c_n), and

! B*X = u_s*diag(s_1, ..., s_n).

 err1 = sum(abs(matmul(a,x) - u_c*spread(c,dim=1,ncopies=n))) &

 / sum(s_d)

 err2 = sum(abs(matmul(b,x) - u_s*spread(s,dim=1,ncopies=n))) &

 / sum(s_d)

 if (err1 <= sqrt(epsilon(one)) .and. &

 err2 <= sqrt(epsilon(one))) then

 write (*,*) 'Example 3 for LIN_SVD is correct.'

 end if

 end

Example 4: Ridge Regression as Cross-Validation with Weighting

This example illustrates a particular choice for the ridge regression problem: The least-squares

problem Ax ≅ b is modified by the addition of a regularizing term to become

 2 22

2 2
minx Ax b x

The solution to this problem, with row k deleted, is denoted by xk(). Using nonnegative weights

(w1, …, wm), the cross-validation squared error C() is given by:

2

1

m
T

k k k k

k

mC w a x b

With the SVD A = USV
T
 and product g = U

T
b, this quantity can be written as

IMSL MATH LIBRARY Chapter 1: Linear Systems 65

2
2

2 2
1

2
1

2

2 2
1

1

n
j

k kj j
m j j

k
nk

j
kj

j j

s
b u g

s
mC w

s
u

s

This expression is minimized. See Golub and Van Loan (1989, Chapter 12) for more details. In the

Example 4 code, mC(), at p = 10 grid points are evaluated using a log-scale with respect to ,

1 10.1 10s s . Array operations and intrinsics are used to evaluate the function and then to

choose an approximate minimum. Following the computation of the optimum , the regularized

solutions are computed. Also, see operator_ex24, supplied with the product examples.

 use lin_svd_int

 use rand_gen_int

 implicit none

! This is Example 4 for LIN_SVD.

 integer i

 integer, parameter :: m=32, n=16, p=10, k=4

 real(kind(1d0)), parameter :: one=1d0

 real(kind(1d0)) log_lamda, log_lamda_t, delta_log_lamda

 real(kind(1d0)) a(m,n), b(m,k), w(m,k), g(m,k), t(n), s(n), &

 s_sq(n), u(m,m), v(n,n), y(m*max(n,k)), &

 c_lamda(p,k), lamda(k), x(n,k), res(n,k)

! Generate random rectangular matrices for A and right-hand

! sides, b.

 call rand_gen(y)

 a = reshape(y,(/m,n/))

 call rand_gen(y)

 b = reshape(y,(/m,k/))

! Generate random weights for each of the right-hand sides.

 call rand_gen(y)

 w = reshape(y,(/m,k/))

! Compute the singular value decomposition.

 call lin_svd(a, s, u, v)

 g = matmul(transpose(u),b)

 s_sq = s**2

 log_lamda = log(10.*s(1)); log_lamda_t=log_lamda

 delta_log_lamda = (log_lamda - log(0.1*s(n))) / (p-1)

! Choose lamda to minimize the "cross-validation" weighted

! square error. First evaluate the error at a grid of points,

! uniform in log_scale.

66 Chapter 1: Linear Systems IMSL MATH LIBRARY

 cross_validation_error: do i=1, p

 t = s_sq/(s_sq+exp(log_lamda))

 c_lamda(i,:) = sum(w*((b-matmul(u(1:m,1:n),g(1:n,1:k)* &

 spread(t,DIM=2,NCOPIES=k)))/ &

 (one-matmul(u(1:m,1:n)**2, &

 spread(t,DIM=2,NCOPIES=k))))**2,DIM=1)

 log_lamda = log_lamda - delta_log_lamda

 end do cross_validation_error

! Compute the grid value and lamda corresponding to the minimum.

 do i=1, k

 lamda(i) = exp(log_lamda_t - delta_log_lamda* &

 (sum(minloc(c_lamda(1:p,i)))-1))

 end do

! Compute the solution using the optimum "cross-validation"

! parameter.

 x = matmul(v,g(1:n,1:k)*spread(s,DIM=2,NCOPIES=k)/ &

 (spread(s_sq,DIM=2,NCOPIES=k)+ &

 spread(lamda,DIM=1,NCOPIES=n)))

! Check the residuals, using normal equations.

 res = matmul(transpose(a),b-matmul(a,x)) - &

 spread(lamda,DIM=1,NCOPIES=n)*x

 if (sum(abs(res))/sum(s_sq) <= &

 sqrt(epsilon(one))) then

 write (*,*) 'Example 4 for LIN_SVD is correct.'

 end if

 end

Output

Example 4 for LIN_SVD is correct.

Parallel Constrained Least-Squares Solvers

Solving Constrained Least-Squares Systems

The routine PARALLEL_NONNEGATIVE_LSQ is used to solve dense least-squares systems. These

are represented by Ax b where A is an m n coefficient data matrix, b is a given right-hand

side m -vector, and x is the solution n -vector being computed. Further, there is a constraint

requirement, 0x . The routine PARALLEL_BOUNDED_LSQ is used when the problem has lower

and upper bounds for the solution, x . By making the bounds large, individual

constraints can be eliminated. There are no restrictions on the relative sizes of m and n . When

n is large, these codes can substantially reduce computer time and storage requirements,

compared with using a routine for solving a constrained system and a single processor.

The user provides the matrix partitioned by blocks of columns:

IMSL MATH LIBRARY Chapter 1: Linear Systems 67

 1 2| | ... | kA A A A
.

An individual block of the partitioned matrix, say pA , is located entirely on the processor with

rank MP_RANK= 1p , where MP_RANK is packaged in the module MPI_SETUP_INT. This

module, and the function MP_SETUP(),define the Fortran Library MPI communicator,

MP_LIBRARY_WORLD. See Chapter 10, Dense Matrix Parallelism Using MPI.

PARALLEL_NONNEGATIVE_LSQ

For a detailed description of MPI Requirements see ―Dense Matrix Parallelism Using MPI‖ in

Chapter 10 of this manual.

Solves a linear, non-negative constrained least-squares system.

Usage Notes

CALL PARALLEL_NONNEGATIVE_LSQ (A, B, X, RNORM, W, INDEX, IPART, IOPT

= IOPT)

Required Arguments

A(1:M,:)— (Input/Output) Columns of the matrix with limits given by entries in the array

IPART(1:2,1:max(1,MP_NPROCS)). On output kA is replaced by the product

kQA , where Q is an orthogonal matrix. The value SIZE(A,1) defines the value of M.

Each processor starts and exits with its piece of the partitioned matrix.

B(1:M) — (Input/Output) Assumed-size array of length M containing the right-hand side

vector, b . On output b is replaced by the product Qb , where Q is the orthogonal

matrix applied to A . All processors in the communicator start and exit with the same

vector.

X(1:N) — (Output) Assumed-size array of length N containing the solution, 0x . The

value SIZE(X) defines the value of N. All processors exit with the same vector.

RNORM — (Output) Scalar that contains the Euclidean or least-squares length of the residual

vector, Ax b . All processors exit with the same value.

W(1:N) — (Output) Assumed-size array of length N containing the dual vector,

 0Tw A b Ax . All processors exit with the same vector.

68 Chapter 1: Linear Systems IMSL MATH LIBRARY

INDEX(1:N) — (Output) Assumed-size array of length N containing the NSETP indices of

columns in the positive solution, and the remainder that are at their constraint. The

number of positive components in the solution x is given by the Fortran intrinsic

function value,

NSETP=COUNT(X > 0). All processors exit with the same array.

IPART(1:2,1:max(1,MP_NPROCS)) — (Input) Assumed-size array containing the

partitioning describing the matrix A . The value MP_NPROCS is the number of

processors in the communicator,

except when MPI has been finalized with a call to the routine MP_SETUP(‗Final‘).

This causes MP_NPROCS to be assigned 0. Normally users will give the partitioning to

processor of rank = MP_RANK by setting IPART(1,MP_RANK+1)= first column index,

and IPART(2,MP_RANK+1)= last column index. The number of columns per node is

typically based on their relative computing power. To avoid a node with rank

MP_RANK doing any work except communication, set IPART(1,MP_RANK+1) = 0 and

IPART(2,MP_RANK+1)= -1. In this exceptional case there is no reference to the

array A(:,:) at that node.

Optional Argument

IOPT(:)— (Input) Assumed-size array of derived type S_OPTIONS or D_OPTIONS. This

argument is used to change internal parameters of the algorithm. Normally users will

not be concerned about this argument, so they would not include it in the argument list

for the routine.

Packaged Options for PARALLEL_NONNEGATIVE_LSQ

Option Name Option Value

PNLSQ_SET_TOLERANCE 1

PNLSQ_SET_MAX_ITERATIONS 2

PNLSQ_SET_MIN_RESIDUAL 3

IOPT(IO)=?_OPTIONS(PNLSQ_SET_TOLERANCE, TOLERANCE) Replaces the

default rank tolerance for using a column, from EPSILON(TOLERANCE) to

TOLERANCE. Increasing the value of TOLERANCE will cause fewer columns to

be moved from their constraints, and may cause the minimum residual RNORM

to increase.

IOPT(IO)=?_OPTIONS(PNLSQ_SET_MIN_RESIDUAL, RESID) Replaces the

default target for the minimum residual vector length from 0 to RESID.

Increasing the value of RESID can result in fewer iterations and thus increased

efficiency. The descent in the optimization will stop at the first point where the

minimum residual RNORM is smaller than RESID. Using this option may result in

the dual vector not satisfying its optimality conditions, as noted above.

IOPT(IO)= PNLSQ_SET_MAX_ITERATIONS

IMSL MATH LIBRARY Chapter 1: Linear Systems 69

IOPT(IO+1)= NEW_MAX_ITERATIONS Replaces the default maximum number of

iterations from 3*N to NEW_MAX_ITERATIONS. Note that this option requires

two entries in the derived type array.

FORTRAN 90 Interface

Generic: CALL PARALLEL_NONNEGATIVE_LSQ (A, B, X, RNORM, W, INDEX,

IPART [,…])

Specific: The specific interface names are S_PARALLEL_NONNEGATIVE_LSQ and

D_PARALLEL_NONNEGATIVE_LSQ.

Description

Subroutine PARALLEL_NONNEGATIVE_LSQ solves the linear least-squares system

, 0Ax b x , using the algorithm NNLS found in Lawson and Hanson, (1995), pages 160-161.

The code now updates the dual vector w of Step 2, page 161. The remaining new steps involve

exchange of required data, using MPI.

Example 1: Distributed Linear Inequality Constraint Solver

The program PNLSQ_EX1 illustrates the computation of the minimum Euclidean length solution of

an ' 'm n system of linear inequality constraints , Gy h . The solution algorithm is based on

Algorithm LDP, page 165-166, loc. cit. The rows of :E G h are partitioned and assigned

random values. When the minimum Euclidean length solution to the inequalities has been

calculated, the residuals 0r Gy h are computed, with the dual variables to the NNLS

problem indicating the entries of r that are precisely zero.

The fact that matrix products involving both E and
TE are needed to compute the constrained

solution y and the residuals r , implies that message passing is required. This occurs after the

NNLS solution is computed.

 PROGRAM PNLSQ_EX1

! Use Parallel_nonnegative_LSQ to solve an inequality

! constraint problem, Gy >= h. This algorithm uses

! Algorithm LDP of Solving Least Squares Problems,

! page 165. The constraints are allocated to the

! processors, by rows, in columns of the array A(:,:).

 USE PNLSQ_INT

 USE MPI_SETUP_INT

 USE RAND_INT

 USE SHOW_INT

 IMPLICIT NONE

 INCLUDE "mpif.h"

 INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1, N=MP

 REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0

 REAL(KIND(1D0)), ALLOCATABLE :: &

70 Chapter 1: Linear Systems IMSL MATH LIBRARY

 A(:,:), B(:), X(:), Y(:), W(:), ASAVE(:,:)

 REAL(KIND(1D0)) RNORM

 INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

 INTEGER K, L, DN, J, JSHIFT, IERROR

 LOGICAL :: PRINT=.false.

! Setup for MPI:

 MP_NPROCS=MP_SETUP()

 DN=N/max(1,max(1,MP_NPROCS))-1

 ALLOCATE(IPART(2,max(1,MP_NPROCS)))

! Spread constraint rows evenly to the processors.

 IPART(1,1)=1

 DO L=2,MP_NPROCS

 IPART(2,L-1)=IPART(1,L-1)+DN

 IPART(1,L)=IPART(2,L-1)+1

 END DO

 IPART(2,MP_NPROCS)=N

! Define the constraint data using random values.

 K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)

 ALLOCATE(A(M,K), ASAVE(M,K), X(N), W(N), &

 B(M), Y(M), INDEX(N))

! The use of ASAVE can be removed by regenerating

! the data for A(:,:) after the return from

! Parallel_nonnegative_LSQ.

 A=rand(A); ASAVE=A

 IF(MP_RANK == 0 .and. PRINT) &

 CALL SHOW(IPART, &

 "Partition of the constraints to be solved")

! Set the right-hand side to be one in the last component, zero elsewhere.

 B=ZERO;B(M)=ONE

! Solve the dual problem.

 CALL Parallel_nonnegative_LSQ &

 (A, B, X, RNORM, W, INDEX, IPART)

! Each processor multiplies its block times the part of

! the dual corresponding to that part of the partition.

 Y=ZERO

 DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)

 JSHIFT=J-IPART(1,MP_RANK+1)+1

 Y=Y+ASAVE(:,JSHIFT)*X(J)

 END DO

! Accumulate the pieces from all the processors. Put sum into B(:)

! on rank 0 processor.

 B=Y

 IF(MP_NPROCS > 1) &

 CALL MPI_REDUCE(Y, B, M, MPI_DOUBLE_PRECISION,&

 MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR)

 IF(MP_RANK == 0) THEN

IMSL MATH LIBRARY Chapter 1: Linear Systems 71

! Compute constrained solution at the root.

! The constraints will have no solution if B(M) = ONE.

! All of these example problems have solutions.

 B(M)=B(M)-ONE;B=-B/B(M)

 END IF

! Send the inequality constraint solution to all nodes.

 IF(MP_NPROCS > 1) &

 CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION, &

 0, MP_LIBRARY_WORLD, IERROR)

! For large problems this printing needs to be removed.

 IF(MP_RANK == 0 .and. PRINT) &

 CALL SHOW(B(1:NP), &

 "Minimal length solution of the constraints")

! Compute residuals of the individual constraints.

! If only the solution is desired, the program ends here.

 X=ZERO

 DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)

 JSHIFT=J-IPART(1,MP_RANK+1)+1

 X(J)=dot_product(B,ASAVE(:,JSHIFT))

 END DO

! This cleans up residuals that are about rounding

! error unit (times) the size of the constraint

! equation and right-hand side. They are replaced

! by exact zero.

 WHERE(W == ZERO) X=ZERO; W=X

! Each group of residuals is disjoint, per processor.

! We add all the pieces together for the total set of

! constraints.

 IF(MP_NPROCS > 1) &

 CALL MPI_REDUCE(X, W, N, MPI_DOUBLE_PRECISION,&

 MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR)

 IF(MP_RANK == 0 .and. PRINT) &

 CALL SHOW(W, "Residuals for the constraints")

! See to any errors and shut down MPI.

 MP_NPROCS=MP_SETUP('Final')

 IF(MP_RANK == 0) THEN

 IF(COUNT(W < ZERO) == 0) WRITE(*,*)&

 " Example 1 for PARALLEL_NONNEGATIVE_LSQ is correct."

 END IF

 END

Output

Example 1 for PARALLEL_NONNEGATIVE_LSQ is correct.

72 Chapter 1: Linear Systems IMSL MATH LIBRARY

Additional Examples

Example 2: Distributed Non-negative Least-Squares

The program PNLSQ_EX2 illustrates the computation of the solution to a system of linear least-

squares equations with simple constraints: , 1,..., ,T
i ia x b i m subject to 0x . In this

example we write the row vectors :T
i ia b

 on a file. This illustrates reading the data by rows

and arranging the data by columns, as required by PARALLEL_NONNEGATIVE_LSQ. After reading

the data, the right-hand side vector is broadcast to the group before computing a solution, x . The

block-size is chosen so that each participating processor receives the same number of columns,

except any remaining columns sent to the processor with largest rank. This processor contains the

right-hand side before the broadcast.

This example illustrates connecting a BLACS ‗context‘ handle and the Fortran Library MPI

communicator, MP_LIBRARY_WORLD, described in Chapter 10.

 PROGRAM PNLSQ_EX2

! Use Parallel_Nonnegative_LSQ to solve a least-squares

! problem, A x = b, with x >= 0. This algorithm uses a

! distributed version of NNLS, found in the book

! Solving Least Squares Problems, page 165. The data is

! read from a file, by rows, and sent to the processors,

! as array columns.

 USE PNLSQ_INT

 USE SCALAPACK_IO_INT

 USE BLACS_INT

 USE MPI_SETUP_INT

 USE RAND_INT

 USE ERROR_OPTION_PACKET

 IMPLICIT NONE

 INCLUDE "mpif.h"

 INTEGER, PARAMETER :: M=128, N=32, NP=N+1, NIN=10

 real(kind(1d0)), ALLOCATABLE, DIMENSION(:) :: &

 d_A(:,:), A(:,:), B, C, W, X, Y

 real(kind(1d0)) RNORM, ERROR

 INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

 INTEGER I, J, K, L, DN, JSHIFT, IERROR, &

 CONTXT, NPROW, MYROW, MYCOL, DESC_A(9)

 TYPE(d_OPTIONS) IOPT(1)

! Routines with the "BLACS_" prefix are from the

! BLACS library.

 CALL BLACS_PINFO(MP_RANK, MP_NPROCS)

! Make initialization for BLACS.

 CALL BLACS_GET(0,0, CONTXT)

IMSL MATH LIBRARY Chapter 1: Linear Systems 73

! Define processor grid to be 1 by MP_NPROCS.

 NPROW=1

 CALL BLACS_GRIDINIT(CONTXT, 'N/A', NPROW, MP_NPROCS)

! Get this processor's role in the process grid.

 CALL BLACS_GRIDINFO(CONTXT, NPROW, MP_NPROCS, &

 MYROW, MYCOL)

! Connect BLACS context with communicator MP_LIBRARY_WORLD.

 CALL BLACS_GET(CONTXT, 10, MP_LIBRARY_WORLD)

! Setup for MPI:

 MP_NPROCS=MP_SETUP()

 DN=max(1,NP/MP_NPROCS)

 ALLOCATE(IPART(2,MP_NPROCS))

! Spread columns evenly to the processors. Any odd

! number of columns are in the processor with highest

! rank.

 IPART(1,:)=1; IPART(2,:)=0

 DO L=2,MP_NPROCS

 IPART(2,L-1)=IPART(1,L-1)+DN

 IPART(1,L)=IPART(2,L-1)+1

 END DO

 IPART(2,MP_NPROCS)=NP

 IPART(2,:)=min(NP,IPART(2,:))

! Note which processor (L-1) receives the right-hand side.

 DO L=1,MP_NPROCS

 IF(IPART(1,L) <= NP .and. NP <= IPART(2,L)) EXIT

 END DO

 K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)

 ALLOCATE(d_A(M,K), W(N), X(N), Y(N),&

 B(M), C(M), INDEX(N))

 IF(MP_RANK == 0) THEN

 ALLOCATE(A(M,N))

! Define the matrix data using random values.

 A=rand(A); B=rand(B)

! Write the rows of data to an external file.

 OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN')

 DO I=1,M

 WRITE(NIN,*) (A(I,J),J=1,N), B(I)

 END DO

 CLOSE(NIN)

 ELSE

! No resources are used where this array is not saved.

 ALLOCATE(A(M,0))

 END IF

! Define the matrix descriptor. This includes the

! right-hand side as an additional column. The row

74 Chapter 1: Linear Systems IMSL MATH LIBRARY

! block size, on each processor, is arbitrary, but is

! chosen here to match the column block size.

 DESC_A=(/1, CONTXT, M, NP, DN+1, DN+1, 0, 0, M/)

! Read the data by rows.

 IOPT(1)=ScaLAPACK_READ_BY_ROWS

 CALL ScaLAPACK_READ ("Atest.dat", DESC_A, &

 d_A, IOPT=IOPT)

! Broadcast the right-hand side to all processors.

 JSHIFT=NP-IPART(1,L)+1

 IF(K > 0) B=d_A(:,JSHIFT)

 IF(MP_NPROCS > 1) &

 CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION , L-1, &

 MP_LIBRARY_WORLD, IERROR)

! Adjust the partition of columns to ignore the

! last column, which is the right-hand side. It is

! now moved to B(:).

 IPART(2,:)=min(N,IPART(2,:))

! Solve the constrained distributed problem.

 C=B

 CALL Parallel_Nonnegative_LSQ &

 (d_A, B, X, RNORM, W, INDEX, IPART)

! Solve the problem on one processor, with data saved

! for a cross-check.

 IPART(2,:)=0; IPART(2,1)=N; MP_NPROCS=1

! Since all processors execute this code, all arrays

! must be allocated in the main program.

 CALL Parallel_Nonnegative_LSQ &

 (A, C, Y, RNORM, W, INDEX, IPART)

! See to any errors.

 CALL e1pop("Mp_Setup")

! Check the differences in the two solutions. Unique solutions

! may differ in the last bits, due to rounding.

 IF(MP_RANK == 0) THEN

 ERROR=SUM(ABS(X-Y))/SUM(Y)

 IF(ERROR <= sqrt(EPSILON(ERROR))) write(*,*) &

 ' Example 2 for PARALLEL_NONNEGATIVE_LSQ is correct.'

 OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='OLD')

 CLOSE(NIN, STATUS='Delete')

 END IF

! Exit from using this process grid.

 CALL BLACS_GRIDEXIT(CONTXT)

 CALL BLACS_EXIT(0)

 END

Output

IMSL MATH LIBRARY Chapter 1: Linear Systems 75

Example 2 for PARALLEL_NONNEGATIVE_LSQ is correct.'

PARALLEL_BOUNDED_LSQ

For a detailed description of MPI Requirements see ―Dense Matrix Parallelism Using MPI‖ in

Chapter 10 of this manual.

Solves a linear least-squares system with bounds on the unknowns.

Usage Notes

CALL PARALLEL_BOUNDED_LSQ (A, B, BND, X, RNORM, W, INDEX, IPART,

NSETP, NSETZ, IOPT=IOPT)

Required Arguments

A(1:M,:)— (Input/Output) Columns of the matrix with limits given by entries in the array

IPART(1:2,1:max(1,MP_NPROCS)). On output kA is replaced by the product

kQA , where Q is an orthogonal matrix. The value SIZE(A,1) defines the value of M.

Each processor starts and exits with its piece of the partitioned matrix.

B(1:M) — (Input/Output) Assumed-size array of length M containing the right-hand side

vector, b . On output b is replaced by the product Q b Ag , where Q is the

orthogonal matrix applied to A and g is a set of active bounds for the solution. All

processors in the communicator start and exit with the same vector.

BND(1:2,1:N) — (Input) Assumed-size array containing the bounds for x . The lower

bound j is in BND(1,J), and the upper bound j is in BND(2,J).

X(1:N) — (Output) Assumed-size array of length N containing the solution, x .

The value SIZE(X) defines the value of N. All processors exit with the same vector.

RNORM — (Output) Scalar that contains the Euclidean or least-squares length of the residual

vector, Ax b . All processors exit with the same value.

W(1:N) — (Output) Assumed-size array of length N containing the dual vector,

 Tw A b Ax . At a solution exactly one of the following is true for each

,1 ,j j n

76 Chapter 1: Linear Systems IMSL MATH LIBRARY

, and arbitrary

, and 0

, and 0

, and =0

j j j j

j j j

j j j

j j j j

x w

x w

x w

x w

 All processors exit with the same vector.

INDEX(1:N) — (Output) Assumed-size array of length N containing the NSETP indices of

columns in the solution interior to bounds, and the remainder that are at a constraint.

All processors exit with the same array.

IPART(1:2,1:max(1,MP_NPROCS)) — (Input) Assumed-size array containing the

partitioning describing the matrix A . The value MP_NPROCS is the number of

processors in the communicator, except when MPI has been finalized with a call to the

routine MP_SETUP(‗Final‘). This causes MP_NPROCS to be assigned 0. Normally

users will give the partitioning to processor of rank = MP_RANK by setting

IPART(1,MP_RANK+1)= first column index, and IPART(2,MP_RANK+1)= last

column index. The number of columns per node is typically based on their relative

computing power. To avoid a node with rank MP_RANK doing any work except

communication, set IPART(1,MP_RANK+1) = 0 and IPART(2,MP_RANK+1)= -1.

In this exceptional case there is no reference to the array A(:,:) at that node.

NSETP— (Output) An INTEGER indicating the number of solution components not at

constraints. The column indices are output in the array INDEX(:).

NSETZ— (Output) An INTEGER indicating the solution components held at fixed values.

The column indices are output in the array INDEX(:).

Optional Argument

IOPT(:)— (Input) Assumed-size array of derived type S_OPTIONS or D_OPTIONS. This

argument is used to change internal parameters of the algorithm. Normally users will

not be concerned about this argument, so they would not include it in the argument list

for the routine.

Packaged Options for PARALLEL_BOUNDED_LSQ

Option Name Option Value

PBLSQ_SET_TOLERANCE 1

PBLSQ_SET_MAX_ITERATIONS 2

PBLSQ_SET_MIN_RESIDUAL 3

IMSL MATH LIBRARY Chapter 1: Linear Systems 77

IOPT(IO)=?_OPTIONS(PBLSQ_SET_TOLERANCE, TOLERANCE) Replaces the

default rank tolerance for using a column, from EPSILON(TOLERANCE) to

TOLERANCE. Increasing the value of TOLERANCE will cause fewer columns to

be increased from their constraints, and may cause the minimum residual

RNORM to increase.

IOPT(IO)=?_OPTIONS(PBLSQ_SET_MIN_RESIDUAL, RESID) Replaces the

default target for the minimum residual vector length from 0 to RESID.

Increasing the value of RESID can result in fewer iterations and thus increased

efficiency. The descent in the optimization will stop at the first point where the

minimum residual RNORM is smaller than RESID. Using this option may result in

the dual vector not satisfying its optimality conditions, as noted above.

IOPT(IO)= PBLSQ_SET_MAX_ITERATIONS

IOPT(IO+1)= NEW_MAX_ITERATIONS Replaces the default maximum number of

iterations from 3*N to NEW_MAX_ITERATIONS. Note that this option requires

two entries in the derived type array.

FORTRAN 90 Interface

Generic: CALL PARALLEL_BOUNDED_LSQ (A, B, X [,…])

Specific: The specific interface names are S_PARALLEL_BOUNDED_LSQ and

D_PARALLEL_BOUNDED_LSQ.

Description

Subroutine PARALLEL_BOUNDED_LSQ solves the least-squares linear system

,Ax b x , using the algorithm BVLS found in Lawson and Hanson, (1995), pages

279-283. The new steps involve updating the dual vector and exchange of required data, using

MPI. The optional changes to default tolerances, minimum residual, and the number of iterations

are new features.

Example 1: Distributed Equality and Inequality Constraint Solver

The program PBLSQ_EX1 illustrates the computation of the minimum Euclidean length solution of

an ' 'm n system of linear inequality constraints , Gy h . Additionally the first 0f of the

constraints are equalities. The solution algorithm is based on Algorithm LDP, page 165-166, loc.

cit. By allowing the dual variables to be free, the constraints become equalities. The rows of

 :E G h are partitioned and assigned random values. When the minimum Euclidean length

solution to the inequalities has been calculated, the residuals 0r Gy h are computed, with

the dual variables to the BVLS problem indicating the entries of r that are exactly zero.

 PROGRAM PBLSQ_EX1

! Use Parallel_bounded_LSQ to solve an inequality

! constraint problem, Gy >= h. Force F of the constraints

! to be equalities. This algorithm uses LDP of

! Solving Least Squares Problems, page 165.

78 Chapter 1: Linear Systems IMSL MATH LIBRARY

! Forcing equality constraints by freeing the dual is

! new here. The constraints are allocated to the

! processors, by rows, in columns of the array A(:,:).

 USE PBLSQ_INT

 USE MPI_SETUP_INT

 USE RAND_INT

 USE SHOW_INT

 IMPLICIT NONE

 INCLUDE "mpif.h"

 INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1, &

 N=MP, F=NP/10

 REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0

 REAL(KIND(1D0)), ALLOCATABLE :: &

 A(:,:), B(:), BND(:,:), X(:), Y(:), &

 W(:), ASAVE(:,:)

 REAL(KIND(1D0)) RNORM

 INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

 INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, NSETZ

 LOGICAL :: PRINT=.false.

! Setup for MPI:

 MP_NPROCS=MP_SETUP()

 DN=N/max(1,max(1,MP_NPROCS))-1

 ALLOCATE(IPART(2,max(1,MP_NPROCS)))

! Spread constraint rows evenly to the processors.

 IPART(1,1)=1

 DO L=2,MP_NPROCS

 IPART(2,L-1)=IPART(1,L-1)+DN

 IPART(1,L)=IPART(2,L-1)+1

 END DO

 IPART(2,MP_NPROCS)=N

! Define the constraints using random data.

 K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)

 ALLOCATE(A(M,K), ASAVE(M,K), BND(2,N), &

 X(N), W(N), B(M), Y(M), INDEX(N))

! The use of ASAVE can be replaced by regenerating the

! data for A(:,:) after the return from

! Parallel_bounded_LSQ

 A=rand(A); ASAVE=A

 IF(MP_RANK == 0 .and. PRINT) &

 call show(IPART,&

 "Partition of the constraints to be solved")

! Set the right-hand side to be one in the last

! component, zero elsewhere.

 B=ZERO;B(M)=ONE

! Solve the dual problem. Letting the dual variable

IMSL MATH LIBRARY Chapter 1: Linear Systems 79

! have no constraint forces an equality constraint

! for the primal problem.

 BND(1,1:F)=-HUGE(ONE); BND(1,F+1:)=ZERO

 BND(2,:)=HUGE(ONE)

 CALL Parallel_bounded_LSQ &

 (A, B, BND, X, RNORM, W, INDEX, IPART, &

 NSETP, NSETZ)

! Each processor multiplies its block times the part

! of the dual corresponding to that partition.

 Y=ZERO

 DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)

 JSHIFT=J-IPART(1,MP_RANK+1)+1

 Y=Y+ASAVE(:,JSHIFT)*X(J)

 END DO

! Accumulate the pieces from all the processors.

! Put sum into B(:) on rank 0 processor.

 B=Y

 IF(MP_NPROCS > 1) &

 CALL MPI_REDUCE(Y, B, M, MPI_DOUBLE_PRECISION,&

 MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR)

 IF(MP_RANK == 0) THEN

! Compute constraint solution at the root.

! The constraints will have no solution if B(M) = ONE.

! All of these example problems have solutions.

 B(M)=B(M)-ONE;B=-B/B(M)

 END IF

! Send the inequality constraint or primal solution to all nodes.

 IF(MP_NPROCS > 1) &

 CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION, 0, &

 MP_LIBRARY_WORLD, IERROR)

! For large problems this printing may need to be removed.

 IF(MP_RANK == 0 .and. PRINT) &

 call show(B(1:NP), &

 "Minimal length solution of the constraints")

! Compute residuals of the individual constraints.

 X=ZERO

 DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)

 JSHIFT=J-IPART(1,MP_RANK+1)+1

 X(J)=dot_product(B,ASAVE(:,JSHIFT))

 END DO

! This cleans up residuals that are about rounding error

! unit (times) the size of the constraint equation and

! right-hand side. They are replaced by exact zero.

 WHERE(W == ZERO) X=ZERO

 W=X

! Each group of residuals is disjoint, per processor.

! We add all the pieces together for the total set of

! constraints.

 IF(MP_NPROCS > 1) &

80 Chapter 1: Linear Systems IMSL MATH LIBRARY

 CALL MPI_REDUCE(X, W, N, MPI_DOUBLE_PRECISION, &

 MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR)

 IF(MP_RANK == 0 .and. PRINT) &

 call show(W, "Residuals for the constraints")

! See to any errors and shut down MPI.

 MP_NPROCS=MP_SETUP('Final')

 IF(MP_RANK == 0) THEN

 IF(COUNT(W < ZERO) == 0 .and.&

 COUNT(W == ZERO) >= F) WRITE(*,*)&

 " Example 1 for PARALLEL_BOUNDED_LSQ is correct."

 END IF

 END

Output

Example 1 for PARALLEL_BOUNDED_LSQ is correct.

Additional Examples

Example 2: Distributed Newton-Raphson Method with Step Control

The program PBLSQ_EX2 illustrates the computation of the solution of a non-linear system of

equations. We use a constrained Newton-Raphson method.

This algorithm works with the problem chosen for illustration. The step-size control used here,

employing only simple bounds, may not work on other non-linear systems of equations. Therefore

we do not recommend the simple non-linear solving technique illustrated here for an arbitrary

problem. The test case is Brown’s Almost Linear Problem, Moré, et al. (1982). The components

are given by:

1

1

1 , 1,..., 1

... 1

n

i i j

j

n n

f x x x n i n

f x x x

The functions are zero at the point 1,..., ,
T

nx , where 1 is a particular root of the

polynomial equation 11 1 0n nn n . To avoid convergence to the local minimum

 0,..., 0, 1
T

x n , we start at the standard point 1/ 2,...,1/ 2,1/ 2
T

x and develop the

Newton method using the linear terms 0f x y f x J x y , where J x is the

Jacobian matrix. The update is constrained so that the first 1n components satisfy

1/ 2j jx y , or 1/ 2j jy x . The last component is bounded from both sides,

0 1/ 2n nx y , or 1/ 2n n nx y x . These bounds avoid the local minimum and

allow us to replace the last equation by
1

ln 0
n

j

j

x

 , which is better scaled than the original.

IMSL MATH LIBRARY Chapter 1: Linear Systems 81

The positive lower bound for n nx y is replaced by the strict bound, EPSILON(1D0), the

arithmetic precision, which restricts the relative accuracy of nx . The input for routine

PARALLEL_BOUNDED_LSQ expects each processor to obtain that part of J x it owns. Those

columns of the Jacobian matrix correspond to the partition given in the array IPART(:,:). Here

the columns of the matrix are evaluated, in parallel, on the nodes where they are required.

 PROGRAM PBLSQ_EX2

! Use Parallel_bounded_LSQ to solve a non-linear system

! of equations. The example is an ACM-TOMS test problem,

! except for the larger size. It is "Brown's Almost Linear

! Function."

 USE ERROR_OPTION_PACKET

 USE PBLSQ_INT

 USE MPI_SETUP_INT

 USE SHOW_INT

 USE Numerical_Libraries, ONLY : N1RTY

 IMPLICIT NONE

 INTEGER, PARAMETER :: N=200, MAXIT=5

 REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0,&

 HALF=5D-1, TWO=2D0

 REAL(KIND(1D0)), ALLOCATABLE :: &

 A(:,:), B(:), BND(:,:), X(:), Y(:), W(:)

 REAL(KIND(1D0)) RNORM

 INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

 INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, &

 NSETZ, ITER

 LOGICAL :: PRINT=.false.

 TYPE(D_OPTIONS) IOPT(3)

! Setup for MPI:

 MP_NPROCS=MP_SETUP()

 DN=N/max(1,max(1,MP_NPROCS))-1

 ALLOCATE(IPART(2,max(1,MP_NPROCS)))

! Spread Jacobian matrix columns evenly to the processors.

 IPART(1,1)=1

 DO L=2,MP_NPROCS

 IPART(2,L-1)=IPART(1,L-1)+DN

 IPART(1,L)=IPART(2,L-1)+1

 END DO

 IPART(2,MP_NPROCS)=N

 K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)

 ALLOCATE(A(N,K), BND(2,N), &

 X(N), W(N), B(N), Y(N), INDEX(N))

! This is Newton's method on "Brown's almost

! linear function."

 X=HALF

82 Chapter 1: Linear Systems IMSL MATH LIBRARY

 ITER=0

! Turn off messages and stopping for FATAL class errors.

 CALL ERSET (4, 0, 0)

NEWTON_METHOD: DO

! Set bounds for the values after the step is taken.

! All variables are positive and bounded below by HALF,

! except for variable N, which has an upper bound of HALF.

 BND(1,1:N-1)=-HUGE(ONE)

 BND(2,1:N-1)=X(1:N-1)-HALF

 BND(1,N)=X(N)-HALF

 BND(2,N)=X(N)-EPSILON(ONE)

! Compute the residual function.

 B(1:N-1)=SUM(X)+X(1:N-1)-(N+1)

 B(N)=LOG(PRODUCT(X))

 if(mp_rank == 0 .and. PRINT) THEN

 CALL SHOW(B, &

 "Developing non-linear function residual")

 END IF

 IF (MAXVAL(ABS(B(1:N-1))) <= SQRT(EPSILON(ONE)))&

 EXIT NEWTON_METHOD

! Compute the derivatives local to each processor.

 A(1:N-1,:)=ONE

 DO J=1,N-1

 IF(J < IPART(1,MP_RANK+1)) CYCLE

 IF(J > IPART(2,MP_RANK+1)) CYCLE

 JSHIFT=J-IPART(1,MP_RANK+1)+1

 A(J,JSHIFT)=TWO

 END DO

 A(N,:)=ONE/X(IPART(1,MP_RANK+1):IPART(2,MP_RANK+1))

! Reset the linear independence tolerance.

 IOPT(1)=D_OPTIONS(PBLSQ_SET_TOLERANCE,&

 sqrt(EPSILON(ONE)))

 IOPT(2)=PBLSQ_SET_MAX_ITERATIONS

! If N iterations was not enough on a previous iteration, reset to 2*N.

 IF(N1RTY(1) == 0) THEN

 IOPT(3)=N

 ELSE

 IOPT(3)=2*N

 CALL E1POP('MP_SETUP')

 CALL E1PSH('MP_SETUP')

 END IF

 CALL parallel_bounded_LSQ &

 (A, B, BND, Y, RNORM, W, INDEX, IPART, NSETP, &

 NSETZ,IOPT=IOPT)

! The array Y(:) contains the constrained Newton step.

! Update the variables.

 X=X-Y

IMSL MATH LIBRARY Chapter 1: Linear Systems 83

 IF(mp_rank == 0 .and. PRINT) THEN

 CALL show(BND, "Bounds for the moves")

 CALL SHOW(X, "Developing Solution")

 CALL SHOW((/RNORM/), &

 "Linear problem residual norm")

 END IF

! This is a safety measure for not taking too many steps.

 ITER=ITER+1

 IF(ITER > MAXIT) EXIT NEWTON_METHOD

 END DO NEWTON_METHOD

 IF(MP_RANK == 0) THEN

 IF(ITER <= MAXIT) WRITE(*,*)&

 " Example 2 for PARALLEL_BOUNDED_LSQ is correct."

 END IF

! See to any errors and shut down MPI.

 MP_NPROCS=MP_SETUP('Final')

 END

LSARG

Solves a real general system of linear equations with iterative refinement.

Required Arguments

A — N by N matrix containing the coefficients of the linear system. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

84 Chapter 1: Linear Systems IMSL MATH LIBRARY

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
T
X = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSARG (A, B, X [,…])

Specific: The specific interface names are S_LSARG and D_LSARG.

FORTRAN 77 Interface

Single: CALL LSARG (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSARG

ScaLAPACK Interface

Generic: CALL LSARG (A0, B0, X0 [,…])

Specific: The specific interface names are S_LSARG and D_LSARG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LSARG solves a system of linear algebraic equations having a real general coefficient

matrix. It first uses routine LFCRG to compute an LU factorization of the coefficient matrix and to

estimate the condition number of the matrix. The solution of the linear system is then found using

the iterative refinement routine LFIRG. The underlying code is based on either LINPACK ,

LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during

linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and

EISPACK‖ in the Introduction section of this manual.

LSARG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the

iterative refinement algorithm fails to converge. These errors occur only if A is singular or very

close to a singular matrix.

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system. LSARG solves the

problem that is represented in the computer; however, this problem may differ from the problem

whose solution is desired.

IMSL MATH LIBRARY Chapter 1: Linear Systems 85

Comments

1. Workspace may be explicitly provided, if desired, by use of L2ARG/DL2ARG. The

reference is:

CALL L2ARG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — Work vector of length N
2
 containing the LU factorization of A on

output.

IPVT — Integer work vector of length N containing the pivoting information

for the LU factorization of A on output.

WK — Work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the coefficients of the linear system. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B. B

contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X.

X contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call to

SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has real general form and the

right-hand-side vector b has three elements.

 USE LSARG_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

86 Chapter 1: Linear Systems IMSL MATH LIBRARY

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

 REAL A(LDA,N), B(N), X(N)

! Set values for A and B

 A(1,:) = (/ 33.0, 16.0, 72.0/)

 A(2,:) = (/-24.0, -10.0, -57.0/)

 A(3,:) = (/ 18.0, -11.0, 7.0/)

!

 B = (/129.0, -96.0, 8.5/)

! Solve the system of equations

 CALL LSARG (A, B, X)

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

 END

Output

 X

 1 2 3

1.000 1.500 1.000

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The

coefficient matrix has real general form and the right-hand-side vector b has three elements.

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map

and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a

ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LSARG_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER N, DESCA(9), DESCX(9)

 INTEGER INFO, MXLDA, MXCOL

 REAL, ALLOCATABLE :: A(:,:), B(:), X(:)

 REAL, ALLOCATABLE :: A0(:,:), B0(:), X0(:)

 PARAMETER (N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF (MP_RANK .EQ. 0) THEN

 ALLOCATE (A(N,N), B(N), X(N))

! Set values for A and B

 A(1,:) = (/ 33.0, 16.0, 72.0/)

 A(2,:) = (/-24.0, -10.0, -57.0/)

 A(3,:) = (/ 18.0, -11.0, 7.0/)

!

 B = (/129.0, -96.0, 8.5/)

 ENDIF

IMSL MATH LIBRARY Chapter 1: Linear Systems 87

! Set up a 1D processor grid and define

! its context id, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! AND MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 CALL SCALAPACK_MAP(B, DESCX, B0)

! Solve the system of equations

 CALL LSARG (A0, B0, X0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

! Print results.

! Only Rank=0 has the solution, X.

 IF (MP_RANK .EQ. 0) CALL WRRRN (‘X‘, X, 1, N, 1)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 X

 1 2 3

1.000 1.500 1.000

LSLRG

Solves a real general system of linear equations without iterative refinement.

Required Arguments

A — N by N matrix containing the coefficients of the linear system. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

88 Chapter 1: Linear Systems IMSL MATH LIBRARY

X — Vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
T
X = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSLRG (A, B, X [,…])

Specific: The specific interface names are S_LSLRG and D_LSLRG.

FORTRAN 77 Interface

Single: CALL LSLRG (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSLRG.

ScaLAPACK Interface

Generic: CALL LSLRG (A0, B0, X0 [,…])

Specific: The specific interface names are S_LSLRG and D_LSLRG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LSLRG solves a system of linear algebraic equations having a real general coefficient

matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code

depending upon which supporting libraries are used during linking. For a detailed explanation see

“Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this

manual. LSLRG first uses the routine LFCRG to compute an LU factorization of the coefficient

matrix based on Gauss elimination with partial pivoting. Experiments were analyzed to determine

efficient implementations on several different computers. For some supercomputers, particularly

IMSL MATH LIBRARY Chapter 1: Linear Systems 89

those with efficient vendor-supplied BLAS, versions that call Level 1, 2 and 3 BLAS are used.

The remaining computers use a factorization method provided to us by Dr. Leonard J. Harding of

the University of Michigan. Harding‘s work involves ―loop unrolling and jamming‖ techniques

that achieve excellent performance on many computers. Using an option, LSLRG will estimate the

condition number of the matrix. The solution of the linear system is then found using LFSRG.

The routine LSLRG fails if U, the upper triangular part of the factorization, has a zero diagonal

element. This occurs only if A is close to a singular matrix.

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that small changes in A can cause large changes in the solution x. If

the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that either

LIN_SOL_SVD or LSARG be used.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LRG/DL2LRG. The

reference is:

CALL L2LRG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — N × N work array containing the LU factorization of A on output. If

A is not needed, A and FACT can share the same storage locations. See

Item 3 below to avoid memory bank conflicts.

IPVT — Integer work vector of length N containing the pivoting information

for the LU factorization of A on output.

WK — Work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2LRG the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2); respectively, in LSLRG.

Additional memory allocation for FACT and option value restoration are done

automatically in LSLRG. Users directly calling L2LRG can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

90 Chapter 1: Linear Systems IMSL MATH LIBRARY

applications that use LSLRG or L2LRG. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSLRG temporarily replaces IVAL(2) by IVAL(1). The

routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG

skips this computation. LSLRG restores the option. Default values for the option

are

IVAL(*) = 1, 2.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the coefficients of the linear system. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B.

B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X.

X contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example 1

A system of three linear equations is solved. The coefficient matrix has real general form and the

right-hand-side vector b has three elements.

 USE LSLRG_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

 REAL A(LDA,N), B(N), X(N)

! Set values for A and B

 A(1,:) = (/ 33.0, 16.0, 72.0/)

 A(2,:) = (/-24.0, -10.0, -57.0/)

 A(3,:) = (/ 18.0, -11.0, 7.0/)

!

 B = (/129.0 -96.0 8.5/)

! Solve the system of equations

 CALL LSLRG (A, B, X)

! Print results

IMSL MATH LIBRARY Chapter 1: Linear Systems 91

 CALL WRRRN (‘X‘, X, 1, N, 1)

 END

Output

 X

 1 2 3

1.000 1.500 1.000

Additional Example

Example 2

A system of N = 16 linear equations is solved using the routine L2LRG. The option manager is used

to eliminate memory bank conflict inefficiencies that may occur when the matrix dimension is a

multiple of 16. The leading dimension of FACT=A is increased from N to N+IVAL(3)=17, since

N=16=IVAL(4). The data used for the test is a nonsymmetric Hadamard matrix and a right-hand

side generated by a known solution, xj = j, j = 1, ..., N.

 USE L2LRG_INT

 USE IUMAG_INT

 USE WRRRN_INT

 USE SGEMV_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=17, N=16)

! SPECIFICATIONS FOR PARAMETERS

 INTEGER ICHP, IPATH, IPUT, KBANK

 REAL ONE, ZERO

 PARAMETER (ICHP=1, IPATH=1, IPUT=2, KBANK=16, ONE=1.0E0, &

 ZERO=0.0E0)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I, IPVT(N), J, K, NN

 REAL A(LDA,N), B(N), WK(N), X(N)

! SPECIFICATIONS FOR SAVE VARIABLES

 INTEGER IOPT(1), IVAL(4)

 SAVE IVAL

! Data for option values.

 DATA IVAL/1, 16, 1, 16/

! Set values for A and B:

 A(1,1) = ONE

 NN = 1

! Generate Hadamard matrix.

 DO 20 K=1, 4

 DO 10 J=1, NN

 DO 10 I=1, NN

 A(NN+I,J) = -A(I,J)

 A(I,NN+J) = A(I,J)

 A(NN+I,NN+J) = A(I,J)

 10 CONTINUE

 NN = NN + NN

 20 CONTINUE

! Generate right-hand-side.

 DO 30 J=1, N

92 Chapter 1: Linear Systems IMSL MATH LIBRARY

 X(J) = J

 30 CONTINUE

! Set B = A*X.

 CALL SGEMV (‘N‘, N, N, ONE, A, LDA, X, 1, ZERO, B, 1)

! Clear solution array.

 X = ZERO

! Set option to avoid memory

! bank conflicts.

 IOPT(1) = KBANK

 CALL IUMAG (‘MATH‘, ICHP, IPUT, 1, IOPT, IVAL)

! Solve A*X = B.

 CALL L2LRG (N, A, LDA, B, IPATH, X, A, IPVT, WK)

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

 END

Output

 X

 1 2 3 4 5 6 7 8 9 10

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

 11 12 13 14 15 16

11.00 12.00 13.00 14.00 15.00 16.00

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The

coefficient matrix has real general form and the right-hand-side vector b has three elements.

SCALAPACK_MAP and SCALAPACK_UNMAP (see Chapter 11, ―Utilities‖) are IMSL utility routines

(see Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They

are used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the

descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LSLRG_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER N, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL, ALLOCATABLE :: A(:,:), B(:), X(:)

 REAL, ALLOCATABLE :: A0(:,:), B0(:), X0(:)

 PARAMETER (N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(N,N), B(N), X(N))

! Set values for A and B

 A(1,:) = (/ 33.0, 16.0, 72.0/)

 A(2,:) = (/-24.0, -10.0, -57.0/)

IMSL MATH LIBRARY Chapter 1: Linear Systems 93

 A(3,:) = (/ 18.0, -11.0, 7.0/)

!

 B = (/129.0, -96.0, 8.5/)

 ENDIF

! Set up a 1D processor grid and define

! its context id, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 CALL SCALAPACK_MAP(B, DESCX, B0)

! Solve the system of equations

 CALL LSLRG (A0, B0, X0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

! Print results

! Only Rank=0 has the solution, X.

 IF(MP_RANK .EQ. 0)CALL WRRRN (‘X‘, X, 1, N, 1)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 X

 1 2 3

1.000 1.500 1.000

LFCRG

Computes the LU factorization of a real general matrix and estimates its L1 condition number.

Required Arguments

A — N by N matrix to be factored. (Input)

94 Chapter 1: Linear Systems IMSL MATH LIBRARY

FACT — N by N matrix containing the LU factorization of the matrix A. (Output)

If A is not needed, A and FACT can share the same storage locations.

IPVT — Vector of length N containing the pivoting information for the LU factorization.

(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCRG (A, FACT, IPVT, RCOND, [,…])

Specific: The specific interface names are S_LFCRG and D_LFCRG.

FORTRAN 77 Interface

Single: CALL LFCRG (N, A, LDA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCRG.

ScaLAPACK Interface

Generic: CALL LFCRG (A0, FACT0, IPVT0, RCOND [,…])

Specific: The specific interface names are S_LFCRG and D_LFCRG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFCRG performs an LU factorization of a real general coefficient matrix. It also estimates

the condition number of the matrix. The underlying code is based on either LINPACK , LAPACK,

IMSL MATH LIBRARY Chapter 1: Linear Systems 95

or ScaLAPACK code depending upon which supporting libraries are used during linking. For a

detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the

Introduction section of this manual. The LU factorization is done using scaled partial pivoting.

Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the same as if

each row were scaled to have the same ∞-norm. Otherwise, partial pivoting is used.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to

compute ||A
-1

||1, the condition number is only estimated. The estimation algorithm is the same as

used by LINPACK and is described in a paper by Cline et al. (1979).

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system.

LFCRG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This

can occur only if A either is singular or is very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFIRG, LFSRG and LFDRG.

To solve systems of equations with multiple right-hand-side vectors, use LFCRG followed by either

LFIRG or LFSRG called once for each right-hand side. The routine LFDRG can be called to compute

the determinant of the coefficient matrix after LFCRG has performed the factorization.

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the

upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct L

using

L-1
= LN-1PN-1 … L1P1

where Pk is the identity matrix with rows k and pk interchanged and Lk is the identity with Fik for

 i = k + 1, …, N inserted below the diagonal. The strict lower half of F can also be thought of as

containing the negative of the multipliers. LFCRG is based on the LINPACK routine SGECO; see

Dongarra et al. (1979). SGECO uses unscaled partial pivoting.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CRG/DL2CRG. The

reference is:

CALL L2CRG (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK)

The additional argument is

WK — Work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is algorithmically singular.

4 2 The input matrix is singular.

96 Chapter 1: Linear Systems IMSL MATH LIBRARY

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the matrix to be factored. (Input)

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix FACT. FACT contains the LU factorization of the matrix A. (Output)

IPVT0 — Local vector of length MXLDA containing the local portions of the distributed

vector IPVT. IPVT contains the pivoting information for the LU factorization.

(Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

The inverse of a 3 × 3 matrix is computed. LFCRG is called to factor the matrix and to check for

singularity or ill-conditioning. LFIRG is called to determine the columns of the inverse.

 USE LFCRG_INT

 USE UMACH_INT

 USE LFIRG_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3, LDFACT=3, N=3)

 INTEGER IPVT(N), J, NOUT

 REAL A(LDA,N), AINV(LDA,N), FACT(LDFACT,N), RCOND, &

 RES(N), RJ(N)

! Set values for A

 A(1,:) = (/ 1.0, 3.0, 3.0/)

 A(2,:) = (/ 1.0, 3.0, 4.0/)

 A(3,:) = (/ 1.0, 4.0, 3.0/)!

 CALL LFCRG (A, FACT, IPVT, RCOND)

! Print the reciprocal condition number

! and the L1 condition number

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0

! RJ is the J-th column of the identity

! matrix so the following LFIRG

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFIRG (A, FACT, IPVT, RJ, AINV(:,J), RES)

IMSL MATH LIBRARY Chapter 1: Linear Systems 97

 RJ(J) = 0.0

 10 CONTINUE

! Print results

 CALL WRRRN (‘AINV‘, AINV)

!

99998 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < .02

L1 Condition number < 100.0

 AINV

 1 2 3

1 7.000 -3.000 -3.000

2 -1.000 0.000 1.000

3 -1.000 1.000 0.000

ScaLAPACK Example

The inverse of the same 3 × 3 matrix is computed as a distributed example. LFCRG is called to

factor the matrix and to check for singularity or ill-conditioning. LFIRG is called to determine the

columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are

used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors

for the local arrays.

 USE MPI_SETUP_INT

 USE LFCRG_INT

 USE UMACH_INT

 USE LFIRG_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, DESCA(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA, NOUT

 INTEGER, ALLOCATABLE :: IPVT0(:)

 REAL, ALLOCATABLE :: A(:,:), AINV(:,:), X0(:), RJ(:)

 REAL, ALLOCATABLE :: A0(:,:), FACT0(:,:), RES0(:), RJ0(:)

 REAL RCOND

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), AINV(LDA,N))

! Set values for A

 A(1,:) = (/ 1.0, 3.0, 3.0/)

 A(2,:) = (/ 1.0, 3.0, 4.0/)

 A(3,:) = (/ 1.0, 4.0, 3.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context id, MP_ICTXT

98 Chapter 1: Linear Systems IMSL MATH LIBRARY

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), &

 RJ0(MXLDA), RES0(MXLDA), IPVT0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Call the factorization routine

 CALL LFCRG (A0, FACT0, IPVT0, RCOND)

! Print the reciprocal condition number

! and the L1 condition number

 IF(MP_RANK .EQ. 0) THEN

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND

 ENDIF

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0

 CALL SCALAPACK_MAP(RJ, DESCL, RJ0)

! RJ is the J-th column of the identity

! matrix so the following LFIRG

! reference computes the J-th column of

! the inverse of A

 CALL LFIRG (A0, FACT0, IPVT0, RJ0, X0, RES0)

 RJ(J) = 0.0

 CALL SCALAPACK_UNMAP(X0, DESCL, AINV(:,J))

 10 CONTINUE

! Print results

! Only Rank=0 has the solution, X.

 IF(MP_RANK.EQ.0) CALL WRRRN (‘AINV‘, AINV)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV)

 DEALLOCATE(A0, IPVT0, FACT0, RES0, RJ, RJ0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

99998 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < .02

L1 Condition number < 100.0

 AINV

 1 2 3

1 7.000 -3.000 -3.000

2 -1.000 0.000 1.000

IMSL MATH LIBRARY Chapter 1: Linear Systems 99

3 -1.000 1.000 0.000

LFTRG

Computes the LU factorization of a real general matrix.

Required Arguments

A — N by N matrix to be factored. (Input)

FACT — N by N matrix containing the LU factorization of the matrix A. (Output)

If A is not needed, A and FACT can share the same storage locations.

IPVT — Vector of length N containing the pivoting information for the LU factorization.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTRG (A, FACT, IPVT [,…])

Specific: The specific interface names are S_LFTRG and D_LFTRG.

FORTRAN 77 Interface

Single: CALL LFTRG (N, A, LDA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTRG.

100 Chapter 1: Linear Systems IMSL MATH LIBRARY

ScaLAPACK Interface

Generic: CALL LFTRG (A0, FACT0, IPVT0 [,…])

Specific: The specific interface names are S_LFTRG and D_LFTRG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFTRG performs an LU factorization of a real general coefficient matrix. The underlying

code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. The LU

factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial

pivoting in that the pivoting strategy is the same as if each row were scaled to have the same norm.

Otherwise, partial pivoting is used.

The routine LFTRG fails if U, the upper triangular part of the factorization, has a zero diagonal

element. This can occur only if A is singular or very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFIRG, LFSRG and LFDRG.

To solve systems of equations with multiple right-hand-side vectors, use LFTRG followed by either

LFIRG or LFSRG called once for each right-hand side. The routine LFDRG can be called to compute

the determinant of the coefficient matrix after LFTRG has performed the factorization. Let F be the

matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the upper triangle of

F. The strict lower triangle of F contains the information needed to reconstruct L
-1

 using

L-1
 = LN-1PN-1 . . . L1 P1

where Pk is the identity matrix with rows k and pk interchanged and Lk is the identity with Fik for

i = k + 1, ..., N inserted below the diagonal. The strict lower half of F can also be thought of as

containing the negative of the multipliers.

Routine LFTRG is based on the LINPACK routine SGEFA. See Dongarra et al. (1979). The routine

SGEFA uses partial pivoting.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2TRG/ DL2TRG. The

reference is:

CALL L2TRG (N, A, LDA, FACT, LDFACT, IPVT, WK)

The additional argument is:

WK — Work vector of length N used for scaling.

2. Informational error

IMSL MATH LIBRARY Chapter 1: Linear Systems 101

Type Code

4 2 The input matrix is singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the matrix to be factored. (Input)

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix FACT. FACT contains the LU factorization of the matrix A. (Output)

IPVT0 — Local vector of length MXLDA containing the local portions of the distributed

vector IPVT. IPVT contains the pivoting information for the LU factorization.

(Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A linear system with multiple right-hand sides is solved. Routine LFTRG is called to factor the

coefficient matrix. The routine LFSRG is called to compute the two solutions for the two right-

hand sides. In this case, the coefficient matrix is assumed to be well-conditioned and correctly

scaled. Otherwise, it would be better to call LFCRG to perform the factorization, and LFIRG to

compute the solutions.

 USE LFTRG_INT

 USE LFSRG_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3, LDFACT=3, N=3)

 INTEGER IPVT(N), J

 REAL A(LDA,LDA), B(N,2), FACT(LDFACT,LDFACT), X(N,2)

!

! Set values for A and B

!

! A = (1.0 3.0 3.0)

! (1.0 3.0 4.0)

! (1.0 4.0 3.0)

!

! B = (1.0 10.0)

! (4.0 14.0)

! (-1.0 9.0)

!

 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/

 DATA B/1.0, 4.0, -1.0, 10.0, 14.0, 9.0/

!

 CALL LFTRG (A, FACT, IPVT)

! Solve for the two right-hand sides

102 Chapter 1: Linear Systems IMSL MATH LIBRARY

 DO 10 J=1, 2

 CALL LFSRG (FACT, IPVT, B(:,J), X(:,J))

 10 CONTINUE

! Print results

 CALL WRRRN (‘X‘, X)

 END

Output

 X

 1 2

1 -2.000 1.000

2 -2.000 -1.000

3 3.000 4.000

ScaLAPACK Example

A linear system with multiple right-hand sides is solved. Routine LFTRG is called to factor the

coefficient matrix. The routine LFSRG is called to compute the two solutions for the two right-

hand sides. In this case, the coefficient matrix is assumed to be well-conditioned and correctly

scaled. Otherwise, it would be better to call LFCRG to perform the factorization, and LFIRG to

compute the solutions. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are

used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors

for the local arrays.

 USE MPI_SETUP_INT

 USE LFTRG_INT

 USE LFSRG_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, DESCA(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA

 INTEGER, ALLOCATABLE :: IPVT0(:)

 REAL, ALLOCATABLE :: A(:,:), B(:,:), X(:,:), X0(:)

 REAL, ALLOCATABLE :: A0(:,:), FACT0(:,:), B0(:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N,2), X(N,2))

! Set values for A and B

 A(1,:) = (/ 1.0, 3.0, 3.0/)

 A(2,:) = (/ 1.0, 3.0, 4.0/)

 A(3,:) = (/ 1.0, 4.0, 3.0/)

!

 B(1,:) = (/ 1.0, 10.0/)

 B(2,:) = (/ 4.0, 14.0/)

 B(3,:) = (/-1.0, 9.0/)

 ENDIF

! Set up a 1D processor grid and define

IMSL MATH LIBRARY Chapter 1: Linear Systems 103

! its context id, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), B0(MXLDA), &

 IPVT0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Call the factorization routine

 CALL LFTRG (A0, FACT0, IPVT0)

! Set up the columns of the B

! matrix one at a time in X0

 DO 10 J=1, 2

 CALL SCALAPACK_MAP(B(:,j), DESCL, B0)

! Solve for the J-th column of X

 CALL LFSRG (FACT0, IPVT0, B0, X0)

 CALL SCALAPACK_UNMAP(X0, DESCL, X(:,J))

 10 CONTINUE

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK.EQ.0) CALL WRRRN (‘X‘, X)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, IPVT0, FACT0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 X

 1 2

1 -2.000 1.000

2 -2.000 -1.000

3 3.000 4.000

LFSRG

Solves a real general system of linear equations given the LU factorization of the coefficient

matrix.

104 Chapter 1: Linear Systems IMSL MATH LIBRARY

Required Arguments

FACT — N by N matrix containing the LU factorization of the coefficient matrix A as output

from routine LFCRG or LFTRG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A

as output from subroutine LFCRG or LFTRG. (Input).

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT, 2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT, 1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
T
X = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LFSRG (FACT, IPVT, B, X [,…])

Specific: The specific interface names are S_LFSRG and D_LFSRG.

FORTRAN 77 Interface

Single: CALL LFSRG (N, FACT, LDFACT, IPVT, B, IPATH, X)

Double: The double precision name is DLFSRG.

ScaLAPACK Interface

Generic: CALL LFSRG (FACT0, IPVT0, B0, X0 [,…])

Specific: The specific interface names are S_LFSRG and D_LFSRG.

IMSL MATH LIBRARY Chapter 1: Linear Systems 105

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFSRG computes the solution of a system of linear algebraic equations having a real

general coefficient matrix. To compute the solution, the coefficient matrix must first undergo an

LU factorization. This may be done by calling either LFCRG or LFTRG. The solution to Ax = b is

found by solving the triangular systems Ly = b and Ux = y. The forward elimination step consists

of solving the system Ly = b by applying the same permutations and elimination operations to b

that were applied to the columns of A in the factorization routine. The backward substitution step

consists of solving the triangular system Ux = y for x.

LFSRG and LFIRG both solve a linear system given its LU factorization. LFIRG generally takes

more time and produces a more accurate answer than LFSRG. Each iteration of the iterative

refinement algorithm used by LFIRG calls LFSRG. The underlying code is based on either

LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries are used

during linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and

EISPACK‖ in the Introduction section of this manual.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix FACT as output from routine LFCRG. FACT contains the LU factorization of the

matrix A. (Input)

IPVT0 — Local vector of length MXLDA containing the local portions of the distributed

vector IPVT. IPVT contains the pivoting information for the LU factorization as output

from subroutine LFCRG or LFTRG/DLFTRG. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B.

B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X.

X contains the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

The inverse is computed for a real general 3 × 3 matrix. The input matrix is assumed to be well-

conditioned, hence, LFTRG is used rather than LFCRG.

 USE LFSRG_INT

 USE LFTRG_INT

106 Chapter 1: Linear Systems IMSL MATH LIBRARY

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3, LDFACT=3, N=3)

 INTEGER I, IPVT(N), J

 REAL A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N)

!

! Set values for A

 A(1,:) = (/ 1.0, 3.0, 3.0/)

 A(2,:) = (/ 1.0, 3.0, 4.0/)

 A(3,:) = (/ 1.0, 4.0, 3.0/)

!

 CALL LFTRG (A, FACT, IPVT)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0

! RJ is the J-th column of the identity

! matrix so the following LFSRG

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFSRG (FACT, IPVT, RJ, AINV(:,J))

 RJ(J) = 0.0

 10 CONTINUE

! Print results

 CALL WRRRN (‘AINV‘, AINV)

 END

Output

 AINV

 1 2 3

1 7.000 -3.000 -3.000

2 -1.000 0.000 1.000

3 -1.000 1.000 0.000

ScaLAPACK Example

The inverse of the same 3 × 3 matrix is computed as a distributed example. The input matrix is

assumed to be well-conditioned, hence, LFTRG is used rather than LFCRG. LFSRG is called to

determine the columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility

routines (see Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor

grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes

the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LFTRG_INT

 USE UMACH_INT

 USE LFSRG_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

IMSL MATH LIBRARY Chapter 1: Linear Systems 107

! Declare variables

 INTEGER J, LDA, N, DESCA(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA

 INTEGER, ALLOCATABLE :: IPVT0(:)

 REAL, ALLOCATABLE :: A(:,:), AINV(:,:), X0(:), RJ(:)

 REAL, ALLOCATABLE :: A0(:,:), FACT0(:,:), RJ0(:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), AINV(LDA,N))

! Set values for A

 A(1,:) = (/ 1.0, 3.0, 3.0/)

 A(2,:) = (/ 1.0, 3.0, 4.0/)

 A(3,:) = (/ 1.0, 4.0, 3.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context id, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), &

 RJ0(MXLDA), IPVT0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Call the factorization routine

 CALL LFTRG (A0, FACT0, IPVT0)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0

 CALL SCALAPACK_MAP(RJ, DESCL, RJ0)

! RJ is the J-th column of the identity

! matrix so the following LFIRG

! reference computes the J-th column of

! the inverse of A

 CALL LFSRG (FACT0, IPVT0, RJ0, X0)

 RJ(J) = 0.0

 CALL SCALAPACK_UNMAP(X0, DESCL, AINV(:,J))

 10 CONTINUE

! Print results

! Only Rank=0 has the solution, AINV.

 IF(MP_RANK.EQ.0) CALL WRRRN (‘AINV‘, AINV)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV)

 DEALLOCATE(A0, IPVT0, FACT0, RJ, RJ0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

108 Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

 AINV

 1 2 3

1 7.000 -3.000 -3.000

2 -1.000 0.000 1.000

3 -1.000 1.000 0.000

LFIRG

Uses iterative refinement to improve the solution of a real general system of linear equations.

Required Arguments

A — N by N matrix containing the coefficient matrix of the linear system. (Input)

FACT — N by N matrix containing the LU factorization of the coefficient matrix A as output

from routine LFCRG/DLFCRG or LFTRG/DLFTRG. (Input).

IPVT — Vector of length N containing the pivoting information for the LU factorization of A

as output from routine LFCRG/DLFCRG or LFTRG/DLFTRG. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input).

X — Vector of length N containing the solution to the linear system. (Output)

RES — Vector of length N containing the final correction at the improved solution. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 109

IPATH = 1 means the system A * X = B is solved.

IPATH = 2 means the system A
T
X = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LFIRG (A, FACT, IPVT, B, X, RES [,…])

Specific: The specific interface names are S_LFIRG and D_LFIRG.

FORTRAN 77 Interface

Single: CALL LFIRG (N, A, LDA, FACT, LDFACT, IPVT, B, IPATH, X, RES)

Double: The double precision name is DLFIRG.

ScaLAPACK Interface

Generic: CALL LFIRG (A0, FACT0, IPVT0, B0, X0, RES0 [,…])

Specific: The specific interface names are S_LFIRG and D_LFIRG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFIRG computes the solution of a system of linear algebraic equations having a real

general coefficient matrix. Iterative refinement is performed on the solution vector to improve the

accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is

somewhat ill-conditioned. The underlying code is based on either LINPACK , LAPACK, or

ScaLAPACK code depending upon which supporting libraries are used during linking. For a

detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the

Introduction section of this manual.

To compute the solution, the coefficient matrix must first undergo an LU factorization. This may

be done by calling either LFCRG or LFTRG.

Iterative refinement fails only if the matrix is very ill-conditioned.

Routines LFIRG and LFSRG both solve a linear system given its LU factorization. LFIRG generally

takes more time and produces a more accurate answer than LFSRG. Each iteration of the iterative

refinement algorithm used by LFIRG calls LFSRG.

Comments

Informational error

Type Code

110 Chapter 1: Linear Systems IMSL MATH LIBRARY

3 2 The input matrix is too ill-conditioned for iterative refinement to be

effective.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the coefficient matrix of the linear system. (Input)

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix FACT as output from routine LFCRG or LFTRG. FACT contains the LU

factorization of the matrix A. (Input)

IPVT0 — Local vector of length MXLDA containing the local portions of the distributed

vector IPVT. IPVT contains the pivoting information for the LU factorization as output

from subroutine LFCRG or LFTRG. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B.

B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X.

X contains the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

RES0 — Local vector of length MXLDA containing the local portions of the distributed

vector RES. RES contains the final correction at the improved solution to the linear

system. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving

the system each of the first two times by adding 0.5 to the second element.

 USE LFIRG_INT

 USE LFCRG_INT

 USE UMACH_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3, LDFACT=3, N=3)

 INTEGER IPVT(N), NOUT

 REAL A(LDA,LDA), B(N), FACT(LDFACT,LDFACT), RCOND, RES(N), X(N)

!

! Set values for A and B

!

! A = (1.0 3.0 3.0)

IMSL MATH LIBRARY Chapter 1: Linear Systems 111

! (1.0 3.0 4.0)

! (1.0 4.0 3.0)

!

! B = (-0.5 -1.0 1.5)

!

 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/

 DATA B/-0.5, -1.0, 1.5/

!

 CALL LFCRG (A, FACT, IPVT, RCOND)

! Print the reciprocal condition number

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Solve the three systems

 DO 10 J=1, 3

 CALL LFIRG (A, FACT, IPVT, B, X, RES)

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

! Perturb B by adding 0.5 to B(2)

 B(2) = B(2) + 0.5

 10 CONTINUE

!

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.02

L1 Condition number < 100.0

 X

 1 2 3

-5.000 2.000 -0.500

 X

 1 2 3

-6.500 2.000 0.000

 X

 1 2 3

-8.000 2.000 0.500

ScaLAPACK Example

The same set of linear systems is solved successively as a distributed example. The right-hand side

vector is perturbed after solving the system each of the first two times by adding 0.5 to the second

element. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11,

―Utilities‖) used to map and unmap arrays to and from the processor grid. They are used here for

brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local

arrays.

 USE MPI_SETUP_INT

 USE LFIRG_INT

 USE UMACH_INT

 USE LFCRG_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

112 Chapter 1: Linear Systems IMSL MATH LIBRARY

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, DESCA(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA, NOUT

 INTEGER, ALLOCATABLE :: IPVT0(:)

 REAL, ALLOCATABLE :: A(:,:), B(:), X(:), X0(:), AINV(:,:)

 REAL, ALLOCATABLE :: A0(:,:), FACT0(:,:), RES0(:), B0(:)

 REAL RCOND

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), AINV(LDA,N), B(N), X(N))

! Set values for A and B

 A(1,:) = (/ 1.0, 3.0, 3.0/)

 A(2,:) = (/ 1.0, 3.0, 4.0/)

 A(3,:) = (/ 1.0, 4.0, 3.0/)

!

 B(:) = (/-0.5, -1.0, 1.5/)

 ENDIF

! Set up a 1D processor grid and define

! its context id, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), &

 B0(MXLDA), RES0(MXLDA), IPVT0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Call the factorization routine

 CALL LFCRG (A0, FACT0, IPVT0, RCOND)

! Print the reciprocal condition number

! and the L1 condition number

 IF(MP_RANK .EQ. 0) THEN

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND

 ENDIF

! Solve the three systems

! one at a time in X

 DO 10 J=1, 3

 CALL SCALAPACK_MAP(B, DESCL, B0)

 CALL LFIRG (A0, FACT0, IPVT0, B0, X0, RES0)

 CALL SCALAPACK_UNMAP(X0, DESCL, X)

! Print results

! Only Rank=0 has the solution, X.

 IF(MP_RANK.EQ.0) CALL WRRRN (‘X‘, X, 1, N, 1)

 IF(MP_RANK.EQ.0) B(2) = B(2) + 0.5

 10 CONTINUE

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV, B)

 DEALLOCATE(A0, B0, IPVT0, FACT0, RES0, X0)

IMSL MATH LIBRARY Chapter 1: Linear Systems 113

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

99998 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.02

L1 Condition number < 100.0

 X

 1 2 3

-5.000 2.000 -0.500

 X

 1 2 3

-6.500 2.000 0.000

 X

 1 2 3

-8.000 2.000 0.500

LFDRG
Computes the determinant of a real general matrix given the LU factorization of the matrix.

Required Arguments

FACT — N by N matrix containing the LU factorization of the matrix A as output from routine

LFTRG/DLFTRG or LFCRG/DLFCRG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization as

output from routine LFTRG/DLFTRG or LFCRG/DLFCRG. (Input).

DET1 — Scalar containing the mantissa of the determinant. (Output)

The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)

The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

114 Chapter 1: Linear Systems IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL LFDRG (FACT, IPVT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDRG and D_LFDRG.

FORTRAN 77 Interface

Single: CALL LFDRG (N, FACT, LDFACT, IPVT, DET1, DET2)

Double: The double precision name is DLFDRG.

Description

Routine LFDRG computes the determinant of a real general coefficient matrix. To compute the

determinant, the coefficient matrix must first undergo an LU factorization. This may be done by

calling either LFCRG or LFTRG. The formula det A = det L det U is used to compute the

determinant. Since the determinant of a triangular matrix is the product of the diagonal elements

1
det

N

iii
U U

(The matrix U is stored in the upper triangle of FACT.) Since L is the product of triangular matrices

with unit diagonals and of permutation matrices, det L = (−1)
k
 where k is the number of pivoting

interchanges.

Routine LFDRG is based on the LINPACK routine SGEDI; see Dongarra et al. (1979)

Example

The determinant is computed for a real general 3 × 3 matrix.

 USE LFDRG_INT

 USE LFTRG_INT

 USE UMACH_INT

! Declare variables

 PARAMETER (LDA=3, LDFACT=3, N=3)

 INTEGER IPVT(N), NOUT

 REAL A(LDA,LDA), DET1, DET2, FACT(LDFACT,LDFACT)

!

! Set values for A

! A = (33.0 16.0 72.0)

! (-24.0 -10.0 -57.0)

! (18.0 -11.0 7.0)

!

 DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/

!

 CALL LFTRG (A, FACT, IPVT)

! Compute the determinant

 CALL LFDRG (FACT, IPVT, DET1, DET2)

! Print the results

 CALL UMACH (2, NOUT)

IMSL MATH LIBRARY Chapter 1: Linear Systems 115

 WRITE (NOUT,99999) DET1, DET2

!

99999 FORMAT (‘ The determinant of A is ‘, F6.3, ‘ * 10**‘, F2.0)

 END

Output

The determinant of A is -4.761 * 10**3.

LINRG

Computes the inverse of a real general matrix.

Required Arguments

A — N by N matrix containing the matrix to be inverted. (Input)

AINV — N by N matrix containing the inverse of A. (Output)

If A is not needed, A and AINV can share the same storage locations.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINRG (A, AINV [,…])

Specific: The specific interface names are S_LINRG and D_LINRG.

FORTRAN 77 Interface

Single: CALL LINRG (N, A, LDA, AINV, LDAINV)

Double: The double precision name is DLINRG.

116 Chapter 1: Linear Systems IMSL MATH LIBRARY

ScaLAPACK Interface

Generic: CALL LINRG (A0, AINV0 [,…])

Specific: The specific interface names are S_LINRG and D_LINRG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LINRG computes the inverse of a real general matrix. The underlying code is based on

either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries

are used during linking. For a detailed explanation see ―Using ScaLAPACK, LAPACK,

LINPACK, and EISPACK‖ in the Introduction section of this manual. LINRG first uses the routine

LFCRG to compute an LU factorization of the coefficient matrix and to estimate the condition

number of the matrix. Routine LFCRG computes U and the information needed to compute L
-1

.

LINRT is then used to compute U
-1

. Finally, A
-1

 is computed using A
-1

 = U
-1

L
-1

.

The routine LINRG fails if U, the upper triangular part of the factorization, has a zero diagonal

element or if the iterative refinement algorithm fails to converge. This error occurs only if A is

singular or very close to a singular matrix.

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in A
-1

.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2NRG/DL2NRG. The

reference is:

CALL L2NRG (N, A, LDA, AINV, LDAINV, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length N+ N(N − 1)/2.

IWK — Integer work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The inverse might not be

accurate.

4 2 The input matrix is singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

IMSL MATH LIBRARY Chapter 1: Linear Systems 117

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the matrix to be inverted. (Input)

AINV0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix AINV. AINV contains the inverse of the matrix A. (Output)

If A is not needed, A and AINV can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

The inverse is computed for a real general 3 × 3 matrix.

 USE LINRG_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3, LDAINV=3)

 INTEGER I, J, NOUT

 REAL A(LDA,LDA), AINV(LDAINV,LDAINV)

!

! Set values for A

! A = (1.0 3.0 3.0)

! (1.0 3.0 4.0)

! (1.0 4.0 3.0)

!

 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/

!

 CALL LINRG (A, AINV)

! Print results

 CALL WRRRN (‘AINV‘, AINV)

 END

Output

 AINV

 1 2 3

1 7.000 -3.000 -3.000

2 -1.000 0.000 1.000

3 -1.000 1.000 0.000

ScaLAPACK Example

The inverse of the same 3 × 3 matrix is computed as a distributed example. SCALAPACK_MAP and

SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖) used to map and unmap

arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK

tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LINRG_INT

 USE WRRRN_INT

118 Chapter 1: Linear Systems IMSL MATH LIBRARY

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, LDAINV, N, DESCA(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL, ALLOCATABLE :: A(:,:), AINV(:,:)

 REAL, ALLOCATABLE :: A0(:,:), AINV0(:,:)

 PARAMETER (LDA=3, LDAINV=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), AINV(LDAINV,N))

! Set values for A

 A(1,:) = (/ 1.0, 3.0, 3.0/)

 A(2,:) = (/ 1.0, 3.0, 4.0/)

 A(3,:) = (/ 1.0, 4.0, 3.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), AINV0(MXLDA,MXCOL))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Get the inverse

 CALL LINRG (A0, AINV0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(AINV0, DESCA, AINV)

! Print results

! Only Rank=0 has the solution, AINV.

 IF(MP_RANK.EQ.0) CALL WRRRN (‘AINV‘, AINV)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV)

 DEALLOCATE(A0, AINV0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 AINV

 1 2 3

1 7.000 -3.000 -3.000

2 -1.000 0.000 1.000

3 -1.000 1.000 0.000

IMSL MATH LIBRARY Chapter 1: Linear Systems 119

LSACG

Solves a complex general system of linear equations with iterative refinement.

Required Arguments

A — Complex N by N matrix containing the coefficients of the linear system. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
H
X = B is solved

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSACG (A, B, X [,…])

Specific: The specific interface names are S_LSACG and D_LSACG.

FORTRAN 77 Interface

Single: CALL LSACG (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSACG.

ScaLAPACK Interface

Generic: CALL LSACG (A0, B0, X0 [,…])

Specific: The specific interface names are S_LSACG and D_LSACG.

120 Chapter 1: Linear Systems IMSL MATH LIBRARY

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LSACG solves a system of linear algebraic equations with a complex general coefficient

matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code

depending upon which supporting libraries are used during linking. For a detailed explanation see

―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this

manual. LSACG first uses the routine LFCCG to compute an LU factorization of the coefficient

matrix and to estimate the condition number of the matrix. The solution of the linear system is

then found using the iterative refinement routine LFICG.

LSACG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the

iterative refinement algorithm fails to converge. These errors occur only if A is singular or very

close to a singular matrix.

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system. LSACG solves the

problem that is represented in the computer; however, this problem may differ from the problem

whose solution is desired.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2ACG/DL2ACG. The

reference is:

CALL L2ACG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — Complex work vector of length N
2
containing the LU factorization

of A on output.

IPVT — Integer work vector of length N containing the pivoting information

for the LU factorization of A on output.

WK — Complex work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

IMSL MATH LIBRARY Chapter 1: Linear Systems 121

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2ACG the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2); respectively, in LSACG.

Additional memory allocation for FACT and option value restoration are done

automatically in LSACG. Users directly calling L2ACG can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSACG or L2ACG. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1condition number is to be

computed. Routine LSACG temporarily replaces IVAL(2) by IVAL(1). The

routine L2CCG computes the condition number if IVAL(2) = 2. Otherwise L2CCG

skips this computation. LSACG restores the option. Default values for the option

are

IVAL(*) = 1, 2.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix A. A contains the coefficients of the linear system. (Input)

B0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector X. X contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has complex general form and

the right-hand-side vector b has three elements.

 USE LSACG_INT

 USE WRCRN_INT

! Declare variables

 PARAMETER (LDA=3, N=3)

 COMPLEX A(LDA,LDA), B(N), X(N)

! Set values for A and B

!

! A = (3.0-2.0i 2.0+4.0i 0.0-3.0i)

! (1.0+1.0i 2.0-6.0i 1.0+2.0i)

! (4.0+0.0i -5.0+1.0i 3.0-2.0i)

!

122 Chapter 1: Linear Systems IMSL MATH LIBRARY

! B = (10.0+5.0i 6.0-7.0i -1.0+2.0i)

!

 DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0), &

 (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/

 DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/

! Solve AX = B (IPATH = 1)

 CALL LSACG (A, B, X)

! Print results

 CALL WRCRN (‘X‘, X, 1, N, 1)

 END

Output

 X

 1 2 3

(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The

coefficient matrix has complex general form and the right-hand-side vector b has three elements.

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖)

used to map and unmap arrays to and from the processor grid. They are used here for brevity.

DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LSACG_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, N, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 COMPLEX, ALLOCATABLE :: A(:,:), B(:), X(:)

 COMPLEX, ALLOCATABLE :: A0(:,:), B0(:), X0(:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N), X(N))

! Set values for A and B

 A(1,:) = (/ (3.0, -2.0), (2.0, 4.0), (0.0, -3.0)/)

 A(2,:) = (/ (1.0, 1.0), (2.0, -6.0), (1.0, 2.0)/)

 A(3,:) = (/ (4.0, 0.0), (-5.0, 1.0), (3.0, -2.0)/)

!

 B = (/(10.0, 5.0), (6.0, -7.0), (-1.0, 2.0)/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

IMSL MATH LIBRARY Chapter 1: Linear Systems 123

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 CALL SCALAPACK_MAP(B, DESCX, B0)

! Solve the system of equations

 CALL LSACG (A0, B0, X0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

! Print results

! Only Rank=0 has the solution, X.

 IF(MP_RANK .EQ. 0)CALL WRCRN (‘X‘, X, 1, N, 1)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 X

 1 2 3

(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

LSLCG

Solves a complex general system of linear equations without iterative refinement.

Required Arguments

A — Complex N by N matrix containing the coefficients of the linear system. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations)

124 Chapter 1: Linear Systems IMSL MATH LIBRARY

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
H
X = B is solved

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSLCG (A, B, X [,…])

Specific: The specific interface names are S_LSLCG and D_LSLCG.

FORTRAN 77 Interface

Single: CALL LSLCG (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSLCG.

ScaLAPACK Interface

Generic: CALL LSLCG (A0, B0, X0 [,…])

Specific: The specific interface names are S_LSLCG and D_LSLCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LSLCG solves a system of linear algebraic equations with a complex general coefficient

matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code

depending upon which supporting libraries are used during linking. For a detailed explanation see

―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this

manual. LSLCG first uses the routine LFCCG to compute an LU factorization of the coefficient

matrix and to estimate the condition number of the matrix. The solution of the linear system is

then found using LFSCG.

LSLCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This

occurs only if A either is a singular matrix or is very close to a singular matrix.

IMSL MATH LIBRARY Chapter 1: Linear Systems 125

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that

LSACG be used.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LCG/DL2LCG. The

reference is:

CALL L2LCG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — N × N work array containing the LU factorization of A on output. If

A is not needed, A and FACT can share the same storage locations.

IPVT — Integer work vector of length N containing the pivoting information

for the LU factorization of A on output.

WK — Complex work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2LCG the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2); respectively, in LSLCG.

Additional memory allocation for FACT and option value restoration are done

automatically in LSLCG. Users directly calling L2LCG can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSLCG or L2LCG. Default values for the option are IVAL(*)

= 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSLCG temporarily replaces IVAL(2) by IVAL(1). The

routine L2CCG computes the condition number if IVAL(2) = 2. Otherwise L2CCG

skips this computation. LSLCG restores the option. Default values for the option

are IVAL(*) = 1, 2.

126 Chapter 1: Linear Systems IMSL MATH LIBRARY

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix A. A contains the coefficients of the linear system. (Input)

B0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector X. X contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has complex general form and

the right-hand-side vector b has three elements.

 USE LSLCG_INT

 USE WRCRN_INT

! Declare variables

 PARAMETER (LDA=3, N=3)

 COMPLEX A(LDA,LDA), B(N), X(N)

! Set values for A and B

!

! A = (3.0-2.0i 2.0+4.0i 0.0-3.0i)

! (1.0+1.0i 2.0-6.0i 1.0+2.0i)

! (4.0+0.0i -5.0+1.0i 3.0-2.0i)

!

! B = (10.0+5.0i 6.0-7.0i -1.0+2.0i)

!

 DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),&

 (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/

 DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/

! Solve AX = B (IPATH = 1)

 CALL LSLCG (A, B, X)

! Print results

 CALL WRCRN (‘X‘, X, 1, N, 1)

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 127

Output

 X

 1 2 3

(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The

coefficient matrix has complex general form and the right-hand-side vector b has three elements.

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖)

used to map and unmap arrays to and from the processor grid. They are used here for brevity.

DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LSLCG_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, N, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 COMPLEX, ALLOCATABLE :: A(:,:), B(:), X(:)

 COMPLEX, ALLOCATABLE :: A0(:,:), B0(:), X0(:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N), X(N))

! Set values for A and B

 A(1,:) = (/ (3.0, -2.0), (2.0, 4.0), (0.0, -3.0)/)

 A(2,:) = (/ (1.0, 1.0), (2.0, -6.0), (1.0, 2.0)/)

 A(3,:) = (/ (4.0, 0.0), (-5.0, 1.0), (3.0, -2.0)/)

!

 B = (/(10.0, 5.0), (6.0, -7.0), (-1.0, 2.0)/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 CALL SCALAPACK_MAP(B, DESCX, B0)

! Solve the system of equations

 CALL LSLCG (A0, B0, X0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

128 Chapter 1: Linear Systems IMSL MATH LIBRARY

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK .EQ. 0)CALL WRCRN (‘X‘, X, 1, N, 1)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 X

 1 2 3

(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

LFCCG

Computes the LU factorization of a complex general matrix and estimate its L1 condition number.

Required Arguments

A — Complex N by N matrix to be factored. (Input)

FACT — Complex N × N matrix containing the LU factorization of the matrix A (Output)

If A is not needed, A and FACT can share the same storage locations

IPVT — Vector of length N containing the pivoting information for the LU factorization.

(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IMSL MATH LIBRARY Chapter 1: Linear Systems 129

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCCG (A, FACT, IPVT, RCOND [,…])

Specific: The specific interface names are S_LFCCG and D_LFCCG.

FORTRAN 77 Interface

Single: CALL LFCCG (N, A, LDA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCCG.

ScaLAPACK Interface

Generic: CALL LFCCG (A0, FACT0, IPVT0, RCOND [,…])

Specific: The specific interface names are S_LFCCG and D_LFCCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFCCG performs an LU factorization of a complex general coefficient matrix. It also

estimates the condition number of the matrix. The underlying code is based on either LINPACK,

LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during

linking. For a detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and

EISPACK‖ in the Introduction section of this manual. The LU factorization is done using scaled

partial pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is

the same as if each row were scaled to have the same ∞-norm.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to

compute ||A
-1

||1, the condition number is only estimated. The estimation algorithm is the same as

used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system.

LFCCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This

can occur only if A either is singular or is very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFICG, LFSCG and LFDCG.

To solve systems of equations with multiple right-hand-side vectors, use LFCCG followed by either

LFICG or LFSCG called once for each right-hand side. The routine LFDCG can be called to compute

the determinant of the coefficient matrix after LFCCG has performed the factorization.

130 Chapter 1: Linear Systems IMSL MATH LIBRARY

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the

upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct L

using

L11= LN-1PN-1 … L1 P1

where Pk is the identity matrix with rows k and pk interchanged and Lk is the identity with Fik for i

= k + 1, ..., N inserted below the diagonal. The strict lower half of F can also be thought of as

containing the negative of the multipliers.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CCG/DL2CCG. The

reference is:

CALL L2CCG (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK)

The additional argument is:

WK — Complex work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is algorithmically singular.

4 2 The input matrix is singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix A. A contains the matrix to be factored. (Input)

FACT0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix FACT. FACT contains the LU factorization of the matrix A. (Output)

IPVT0 — Local vector of length MXLDA containing the local portions of the distributed

vector IPVT. IPVT contains the pivoting information for the LU factorization.

(Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

IMSL MATH LIBRARY Chapter 1: Linear Systems 131

Example

The inverse of a 3 × 3 matrix is computed. LFCCG is called to factor the matrix and to check for

singularity or ill-conditioning. LFICG is called to determine the columns of the inverse.

 USE IMSL_LIBRARIES

! Declare variables

 PARAMETER (LDA=3, LDFACT=3, N=3)

 INTEGER IPVT(N), NOUT

 REAL RCOND, THIRD

 COMPLEX A(LDA,N), AINV(LDA,N), RJ(N), FACT(LDFACT,N), RES(N)

! Declare functions

 COMPLEX CMPLX

! Set values for A

!

! A = (1.0+1.0i 2.0+3.0i 3.0+3.0i)

! (2.0+1.0i 5.0+3.0i 7.0+4.0i)

! (-2.0+1.0i -4.0+4.0i -5.0+3.0i)

!

 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),&

 (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/

!

! Scale A by dividing by three

 THIRD = 1.0/3.0

 DO 10 I=1, N

 CALL CSSCAL (N, THIRD, A(:,I), 1)

 10 CONTINUE

! Factor A

 CALL LFCCG (A, FACT, IPVT, RCOND)

! Print the L1 condition number

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Set up the columns of the identity

! matrix one at a time in RJ

 CALL CSET (N, (0.0,0.0), RJ, 1)

 DO 20 J=1, N

 RJ(J) = CMPLX(1.0,0.0)

! RJ is the J-th column of the identity

! matrix so the following LFIRG

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFICG (A, FACT, IPVT, RJ, AINV(:,J), RES)

 RJ(J) = CMPLX(0.0,0.0)

 20 CONTINUE

! Print results

 CALL WRCRN (‘AINV‘, AINV)

!

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < .02

L1 Condition number < 100.0

132 Chapter 1: Linear Systems IMSL MATH LIBRARY

 AINV

 1 2 3

1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)

2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)

3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

ScaLAPACK Example

The inverse of the same 3 × 3 matrix is computed as a distributed example. LFCCG is called to

factor the matrix and to check for singularity or ill-conditioning. LFICG is called to determine the

columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are

used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors

for the local arrays.

 USE MPI_SETUP_INT

 USE LFCCG_INT

 USE UMACH_INT

 USE LFICG_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, DESCA(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA, NOUT

 INTEGER, ALLOCATABLE :: IPVT0(:)

 COMPLEX, ALLOCATABLE :: A(:,:), AINV(:,:), X0(:), RJ(:)

 COMPLEX, ALLOCATABLE :: A0(:,:), FACT0(:,:), RES0(:), RJ0(:)

 REAL RCOND, THIRD

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), AINV(LDA,N))

! Set values for A

 A(1,:) = (/ (1.0, 1.0), (2.0, 3.0), (3.0, 3.0)/)

 A(2,:) = (/ (2.0, 1.0), (5.0, 3.0), (7.0, 4.0)/)

 A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5.0, 3.0)/)

! Scale A by dividing by three

 THIRD = 1.0/3.0

 A = A * THIRD

 ENDIF

! Set up a 1D processor grid and define

! its context id, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

IMSL MATH LIBRARY Chapter 1: Linear Systems 133

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), &

 RJ0(MXLDA), RES0(MXLDA), IPVT0(MXLDA))

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Factor A

 CALL LFCCG (A0, FACT0, IPVT0, RCOND)

! Print the reciprocal condition number

! and the L1 condition number

 IF(MP_RANK .EQ. 0) THEN

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND

 ENDIF

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = (0.0, 0.0)

 DO 10 J=1, N

 RJ(J) = (1.0, 0.0)

 CALL SCALAPACK_MAP(RJ, DESCL, RJ0)

! RJ is the J-th column of the identity

! matrix so the following LFICG

! reference computes the J-th column of

! the inverse of A

 CALL LFICG (A0, FACT0, IPVT0, RJ0, X0, RES0)

 RJ(J) = (0.0, 0.0)

 CALL SCALAPACK_UNMAP(X0, DESCL, AINV(:,J))

 10 CONTINUE

! Print results

! Only Rank=0 has the solution, AINV.

 IF(MP_RANK.EQ.0) CALL WRCRN (‘AINV‘, AINV)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV)

 DEALLOCATE(A0, FACT0, IPVT0, RJ, RJ0, RES0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

99998 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < .02

L1 Condition number < 100.0

 AINV

 1 2 3

1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)

2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)

3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

134 Chapter 1: Linear Systems IMSL MATH LIBRARY

LFTCG

Computes the LU factorization of a complex general matrix.

Required Arguments

A — Complex N by N matrix to be factored. (Input)

FACT — Complex N × N matrix containing the LU factorization of the matrix A. (Output)

If A is not needed, A and FACT can share the same storage locations.

IPVT — Vector of length N containing the pivoting information for the LU factorization.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTCG (A, FACT, IPVT [,…])

Specific: The specific interface names are S_LFTCG and D_LFTCG.

FORTRAN 77 Interface

Single: CALL LFTCG (N, A, LDA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTCG.

IMSL MATH LIBRARY Chapter 1: Linear Systems 135

ScaLAPACK Interface

Generic: CALL LFTCG (A0, FACT0, IPVT0 [,…])

Specific: The specific interface names are S_LFTCG and D_LFTCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFTCG performs an LU factorization of a complex general coefficient matrix. The LU

factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial

pivoting in that the pivoting strategy is the same as if each row were scaled to have the same

norm .

LFTCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This

can occur only if A either is singular or is very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFICG, LFSCG and LFDCG.

To solve systems of equations with multiple right-hand-side vectors, use LFTCG followed by either

LFICG or LFSCG called once for each right-hand side. The routine LFDCG can be called to compute

the determinant of the coefficient matrix after LFCCG has performed the factorization.

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the

upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct L

using

L = LN-1PN-1 … L1 P1

where Pk is the identity matrix with rows k and Pk interchanged and Lk is the identity with Fik for i

= k + 1, ..., N inserted below the diagonal. The strict lower half of F can also be thought of as

containing the negative of the multipliers.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending

upon which supporting libraries are used during linking. For a detailed explanation see ―Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2TCG/DL2TCG. The

reference is:

CALL L2TCG (N, A, LDA, FACT, LDFACT, IPVT, WK)

The additional argument is:

WK — Complex work vector of length N.

2. Informational error

Type Code

136 Chapter 1: Linear Systems IMSL MATH LIBRARY

4 2 The input matrix is singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix A. A contains the matrix to be factored. (Input)

FACT0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix FACT. FACT contains the LU factorization of the matrix A. (Output)

If A is not needed, A and FACT can share the same storage locations.

IPVT0 — Local vector of length MXLDA containing the local portions of the distributed

vector IPVT. IPVT contains the pivoting information for the LU factorization.

(Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A linear system with multiple right-hand sides is solved. LFTCG is called to factor the coefficient

matrix. LFSCG is called to compute the two solutions for the two right-hand sides. In this case the

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be

better to call LFCCG to perform the factorization, and LFICG to compute the solutions.

 USE LFTCG_INT

 USE LFSCG_INT

 USE WRCRN_INT

! Declare variables

 PARAMETER (LDA=3, LDFACT=3, N=3)

 INTEGER IPVT(N)

 COMPLEX A(LDA,LDA), B(N,2), X(N,2), FACT(LDFACT,LDFACT)

! Set values for A

! A = (1.0+1.0i 2.0+3.0i 3.0-3.0i)

! (2.0+1.0i 5.0+3.0i 7.0-5.0i)

! (-2.0+1.0i -4.0+4.0i 5.0+3.0i)

!

 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),&

 (-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/

!

! Set the right-hand sides, B

! B = (3.0+ 5.0i 9.0+ 0.0i)

! (22.0+10.0i 13.0+ 9.0i)

! (-10.0+ 4.0i 6.0+10.0i)

!

 DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0), (9.0,0.0),&

 (13.0,9.0), (6.0,10.0)/

!

IMSL MATH LIBRARY Chapter 1: Linear Systems 137

! Factor A

 CALL LFTCG (A, FACT, IPVT)

! Solve for the two right-hand sides

 DO 10 J=1, 2

 CALL LFSCG (FACT, IPVT, B(:,J), X(:,J))

 10 CONTINUE

! Print results

 CALL WRCRN (‘X‘, X)

 END

Output

 X

 1 2

1 (1.000,-1.000) (0.000, 2.000)

2 (2.000, 4.000) (-2.000,-1.000)

3 (3.000, 0.000) (1.000, 3.000)

ScaLAPACK Example

The same linear system with multiple right-hand sides is solved as a distributed example. LFTCG is

called to factor the matrix. LFSCG is called to compute the two solutions for the two right-hand

sides. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11,

―Utilities‖) used to map and unmap arrays to and from the processor grid. They are used here for

brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local

arrays.

 USE MPI_SETUP_INT

 USE LFTCG_INT

 USE LFSCG_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, DESCA(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA

 INTEGER, ALLOCATABLE :: IPVT0(:)

 COMPLEX, ALLOCATABLE :: A(:,:), B(:,:), X(:,:), X0(:)

 COMPLEX, ALLOCATABLE :: A0(:,:), FACT0(:,:), B0(:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N,2), X(N,2))

! Set values for A and B

 A(1,:) = (/ (1.0, 1.0), (2.0, 3.0), (3.0,-3.0)/)

 A(2,:) = (/ (2.0, 1.0), (5.0, 3.0), (7.0,-5.0)/)

 A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (5.0, 3.0)/)

!

 B(1,:) = (/ (3.0, 5.0), (9.0, 0.0)/)

 B(2,:) = (/ (22.0, 10.0), (13.0, 9.0)/)

 B(3,:) = (/ (-10.0, 4.0), (6.0, 10.0)/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

138 Chapter 1: Linear Systems IMSL MATH LIBRARY

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), &

 B0(MXLDA), IPVT0(MXLDA))

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Factor A

 CALL LFTCG (A0, FACT0, IPVT0)

! Solve for the two right-hand sides

 DO 10 J=1, 2

 CALL SCALAPACK_MAP(B(:,J), DESCL, B0)

 CALL LFSCG (FACT0, IPVT0, B0, X0)

 CALL SCALAPACK_UNMAP(X0, DESCL, X(:,J))

 10 CONTINUE

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK.EQ.0) CALL WRCRN (‘X‘, X)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, FACT0, IPVT0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 X

 1 2

1 (1.000,-1.000) (0.000, 2.000)

2 (2.000, 4.000) (-2.000,-1.000)

3 (3.000, 0.000) (1.000, 3.000)

LFSCG

Solves a complex general system of linear equations given the LU factorization of the coefficient

matrix.

IMSL MATH LIBRARY Chapter 1: Linear Systems 139

Required Arguments

FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
H
X = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LFSCG (FACT, IPVT, B, X [,…])

Specific: The specific interface names are S_LFSCG and D_LFSCG.

FORTRAN 77 Interface

Single: CALL LFSCG (N, FACT, LDFACT, IPVT, B, IPATH, X)

Double: The double precision name is DLFSCG.

ScaLAPACK Interface

Generic: CALL LFSCG (FACT0, IPVT0, B0, X0 [,…])

Specific: The specific interface names are S_LFSCG and D_LFSCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

140 Chapter 1: Linear Systems IMSL MATH LIBRARY

Description

Routine LFSCG computes the solution of a system of linear algebraic equations having a complex

general coefficient matrix. To compute the solution, the coefficient matrix must first undergo an

LU factorization. This may be done by calling either LFCCG or LFTCG. The solution to Ax = b is

found by solving the triangular systems Ly = b and Ux = y. The forward elimination step consists

of solving the system Ly = b by applying the same permutations and elimination operations to b

that were applied to the columns of A in the factorization routine. The backward substitution step

consists of solving the triangular system Ux = y for x.

Routines LFSCG and LFICG both solve a linear system given its LU factorization. LFICG generally

takes more time and produces a more accurate answer than LFSCG. Each iteration of the iterative

refinement algorithm used by LFICG calls LFSCG.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending

upon which supporting libraries are used during linking. For a detailed explanation see ―Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

FACT0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix FACT as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.

FACT contains the LU factorization of the matrix A. (Input)

IPVT0 — Local vector of length MXLDA containing the local portions of the distributed

vector IPVT. IPVT contains the pivoting information for the LU factorization as output

from subroutine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

B0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector X. X contains the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

The inverse is computed for a complex general 3 × 3 matrix. The input matrix is assumed to be

well-conditioned, hence LFTCG is used rather than LFCCG.

 USE IMSL_LIBRARIES

! Declare variables

 PARAMETER (LDA=3, LDFACT=3, N=3)

 INTEGER IPVT(N)

IMSL MATH LIBRARY Chapter 1: Linear Systems 141

 REAL THIRD

 COMPLEX A(LDA,LDA), AINV(LDA,LDA), RJ(N), FACT(LDFACT,LDFACT)

! Declare functions

 COMPLEX CMPLX

! Set values for A

!

! A = (1.0+1.0i 2.0+3.0i 3.0+3.0i)

! (2.0+1.0i 5.0+3.0i 7.0+4.0i)

! (-2.0+1.0i -4.0+4.0i -5.0+3.0i)

!

 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),&

 (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/

!

! Scale A by dividing by three

 THIRD = 1.0/3.0

 DO 10 I=1, N

 CALL CSSCAL (N, THIRD, A(:,I), 1)

 10 CONTINUE

! Factor A

 CALL LFTCG (A, FACT, IPVT)

! Set up the columns of the identity

! matrix one at a time in RJ

 CALL CSET (N, (0.0,0.0), RJ, 1)

 DO 20 J=1, N

 RJ(J) = CMPLX(1.0,0.0)

! RJ is the J-th column of the identity

! matrix so the following LFSCG

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFSCG (FACT, IPVT, RJ, AINV(:,J))

 RJ(J) = CMPLX(0.0,0.0)

 20 CONTINUE

! Print results

 CALL WRCRN (‘AINV‘, AINV)

 END

Output

 AINV

 1 2 3

1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)

2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)

3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

ScaLAPACK Example

The inverse of the same 3 × 3 matrix is computed as a distributed example. The input matrix is

assumed to be well-conditioned, hence LFTCG is used rather than LFCCG. LFSCG is called to

determine the columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility

routines (see Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor

grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes

the descriptors for the local arrays.

142 Chapter 1: Linear Systems IMSL MATH LIBRARY

 USE MPI_SETUP_INT

 USE LFTCG_INT

 USE LFSCG_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, DESCA(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA

 INTEGER, ALLOCATABLE :: IPVT0(:)

 COMPLEX, ALLOCATABLE :: A(:,:), AINV(:,:), X0(:)

 COMPLEX, ALLOCATABLE :: A0(:,:), FACT0(:,:), RJ(:), RJ0(:)

 REAL THIRD

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), AINV(LDA,N))

! Set values for A

 A(1,:) = (/ (1.0, 1.0), (2.0, 3.0), (3.0, 3.0)/)

 A(2,:) = (/ (2.0, 1.0), (5.0, 3.0), (7.0, 4.0)/)

 A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5.0, 3.0)/)

! Scale A by dividing by three

 THIRD = 1.0/3.0

 A = A * THIRD

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), &

 RJ0(MXLDA), IPVT0(MXLDA))

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Factor A

 CALL LFTCG (A0, FACT0, IPVT0)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = (0.0, 0.0)

 DO 10 J=1, N

 RJ(J) = (1.0, 0.0)

 CALL SCALAPACK_MAP(RJ, DESCL, RJ0)

! RJ is the J-th column of the identity

! matrix so the following LFICG

! reference computes the J-th column of

! the inverse of A

 CALL LFSCG (FACT0, IPVT0, RJ0, X0)

 RJ(J) = (0.0, 0.0)

 CALL SCALAPACK_UNMAP(X0, DESCL, AINV(:,J))

IMSL MATH LIBRARY Chapter 1: Linear Systems 143

 10 CONTINUE

! Print results.

! Only Rank=0 has the solution, AINV.

 IF(MP_RANK.EQ.0) CALL WRCRN (‘AINV‘, AINV)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV)

 DEALLOCATE(A0, FACT0, IPVT0, RJ, RJ0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 AINV

 1 2 3

1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)

2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)

3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

LFICG

Uses iterative refinement to improve the solution of a complex general system of linear equations.

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the linear system. (Input)

FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

RES — Complex vector of length N containing the residual vector at the improved solution.

(Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

144 Chapter 1: Linear Systems IMSL MATH LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
H
X = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LFICG (A, FACT, IPVT, B, X, RES [,…])

Specific: The specific interface names are S_LFICG and D_LFICG.

FORTRAN 77 Interface

Single: CALL LFICG (N, A, LDA, FACT, LDFACT, IPVT, B, IPATH, X, RES)

Double: The double precision name is DLFICG.

ScaLAPACK Interface

Generic: CALL LFICG (A0, FACT0, IPVT0, B0, X0, RES0 [,…])

Specific: The specific interface names are S_LFICG and D_LFICG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFICG computes the solution of a system of linear algebraic equations having a complex

general coefficient matrix. Iterative refinement is performed on the solution vector to improve the

accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is

somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU factorization. This may

be done by calling either LFCCG, or LFTCG.

Iterative refinement fails only if the matrix is very ill-conditioned. Routines LFICG and LFSCG

both solve a linear system given its LU factorization. LFICG generally takes more time and

produces a more accurate answer than LFSCG. Each iteration of the iterative refinement algorithm

used by LFICG calls LFSCG.

IMSL MATH LIBRARY Chapter 1: Linear Systems 145

Comments

Informational error

Type Code

3 2 The input matrix is too ill-conditioned for iterative refinement to be

effective

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix A. A contains the coefficient matrix of the linear system. (Input)

FACT0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix FACT as output from routine LFCCG or LFTCG. FACT contains the

LU factorization of the matrix A. (Input)

IPVT0 — Local vector of length MXLDA containing the local portions of the distributed

vector IPVT. IPVT contains the pivoting information for the LU factorization as output

from subroutine LFCCG or LFTCG. (Input)

B0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector X. X contains the solution to the linear system. (Output)

RES0 — Complex local vector of length MXLDA containing the local portions of the

distributed vector RES. RES contains the final correction at the improved solution to

the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving

the system each of the first two times by adding 0.5 + 0.5i to the second element.

 USE LFICG_INT

 USE LFCCG_INT

 USE WRCRN_INT

 USE UMACH_INT

! Declare variables

 PARAMETER (LDA=3, LDFACT=3, N=3)

 INTEGER IPVT(N), NOUT

 REAL RCOND

 COMPLEX A(LDA,LDA), B(N), X(N), FACT(LDFACT,LDFACT), RES(N)

146 Chapter 1: Linear Systems IMSL MATH LIBRARY

! Declare functions

 COMPLEX CMPLX

! Set values for A

!

! A = (1.0+1.0i 2.0+3.0i 3.0-3.0i)

! (2.0+1.0i 5.0+3.0i 7.0-5.0i)

! (-2.0+1.0i -4.0+4.0i 5.0+3.0i)

!

 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0), &

 (-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/

!

! Set values for B

! B = (3.0+5.0i 22.0+10.0i -10.0+4.0i)

!

 DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0)/

! Factor A

 CALL LFCCG (A, FACT, IPVT, RCOND)

! Print the L1 condition number

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Solve the three systems

 DO 10 J=1, 3

 CALL LFICG (A, FACT, IPVT, B, X, RES)

! Print results

 CALL WRCRN (‘X‘, X, 1, N, 1)

! Perturb B by adding 0.5+0.5i to B(2)

 B(2) = B(2) + CMPLX(0.5,0.5)

 10 CONTINUE

!

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.025

L1 Condition number < 75.0

 X

 1 2 3

(1.000,-1.000) (2.000, 4.000) (3.000, 0.000)

 X

 1 2 3

(0.910,-1.061) (1.986, 4.175) (3.123, 0.071)

 X

 1 2 3

(0.821,-1.123) (1.972, 4.349) (3.245, 0.142)

ScaLAPACK Example

The same set of linear systems is solved successively as a distributed example. The right-hand-

side vector is perturbed after solving the system each of the first two times by adding 0.5 + 0.5i to

the second element. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are

IMSL MATH LIBRARY Chapter 1: Linear Systems 147

used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors

for the local arrays.

 USE MPI_SETUP_INT

 USE LFICG_INT

 USE LFCCG_INT

 USE WRCRN_INT

 USE UMACH_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, DESCA(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA, NOUT

 INTEGER, ALLOCATABLE :: IPVT0(:)

 COMPLEX, ALLOCATABLE :: A(:,:), B(:), X(:), X0(:), RES(:)

 COMPLEX, ALLOCATABLE :: A0(:,:), FACT0(:,:), B0(:), RES0(:)

 REAL RCOND

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N), X(N), RES(N))

! Set values for A and B

 A(1,:) = (/ (1.0, 1.0), (2.0, 3.0), (3.0, 3.0)/)

 A(2,:) = (/ (2.0, 1.0), (5.0, 3.0), (7.0, 4.0)/)

 A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5.0, 3.0)/)

!

 B = (/ (3.0, 5.0), (22.0, 10.0), (-10.0, 4.0)/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), &

 B0(MXLDA), IPVT0(MXLDA), RES0(MXLDA))

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Factor A

 CALL LFCCG (A0, FACT0, IPVT0, RCOND)

! Print the L1 condition number

 IF (MP_RANK .EQ. 0) THEN

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

 ENDIF

! Solve the three systems

 DO 10 J=1, 3

 CALL SCALAPACK_MAP(B, DESCL, B0)

 CALL LFICG (A0, FACT0, IPVT0, B0, X0, RES0)

 CALL SCALAPACK_UNMAP(X0, DESCL, X)

! Print results

148 Chapter 1: Linear Systems IMSL MATH LIBRARY

! Only Rank=0 has the solution, X.

 IF (MP_RANK .EQ. 0) CALL WRCRN (‘X‘, X, 1, N, 1)

! Perturb B by adding 0.5+0.5i to B(2)

 IF(MP_RANK .EQ. 0) B(2) = B(2) + (0.5,0.5)

 10 CONTINUE

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X, RES)

 DEALLOCATE(A0, B0, FACT0, IPVT0, X0, RES0)

! Exit Scalapack usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.025

L1 Condition number < 75.0

 X

 1 2 3

(1.000,-1.000) (2.000, 4.000) (3.000, 0.000)

 X

 1 2 3

(0.910,-1.061) (1.986, 4.175) (3.123, 0.071)

 X

 1 2 3

(0.821,-1.123) (1.972, 4.349) (3.245, 0.142)

LFDCG
Computes the determinant of a complex general matrix given the LU factorization of the matrix.

Required Arguments

FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)

The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)

The determinant is returned in the form det(A) = DET1 * 10DET.

IMSL MATH LIBRARY Chapter 1: Linear Systems 149

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDCG (FACT, IPVT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDCG and D_LFDCG.

FORTRAN 77 Interface

Single: CALL LFDCG (N, FACT, LDFACT, IPVT, DET1, DET2)

Double: The double precision name is DLFDCG.

Description

Routine LFDCG computes the determinant of a complex general coefficient matrix. To compute the

determinant the coefficient matrix must first undergo an LU factorization. This may be done by

calling either LFCCG or LFTCG. The formula det A = det L det U is used to compute the

determinant. Since the determinant of a triangular matrix is the product of the diagonal elements,

1
det

N

iii
U U

(The matrix U is stored in the upper triangle of FACT.) Since L is the product of triangular matrices

with unit diagonals and of permutation matrices, det L = (−1)
k
 where k is the number of pivoting

interchanges.

LFDCG is based on the LINPACK routine CGEDI; see Dongarra et al. (1979).

Example

The determinant is computed for a complex general 3 × 3 matrix.

 USE LFDCG_INT

 USE LFTCG_INT

 USE UMACH_INT

! Declare variables

 PARAMETER (LDA=3, LDFACT=3, N=3)

 INTEGER IPVT(N), NOUT

 REAL DET2

 COMPLEX A(LDA,LDA), FACT(LDFACT,LDFACT), DET1

! Set values for A

!

! A = (3.0-2.0i 2.0+4.0i 0.0-3.0i)

150 Chapter 1: Linear Systems IMSL MATH LIBRARY

! (1.0+1.0i 2.0-6.0i 1.0+2.0i)

! (4.0+0.0i -5.0+1.0i 3.0-2.0i)

!

 DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),&

 (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/

!

! Factor A

 CALL LFTCG (A, FACT, IPVT)

! Compute the determinant for the

! factored matrix

 CALL LFDCG (FACT, IPVT, DET1, DET2)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) DET1, DET2

!

99999 FORMAT (‘ The determinant of A is‘,3X,‘(‘,F6.3,‘,‘,F6.3,&

 ‘) * 10**‘,F2.0)

 END

Output

The determinant of A is (0.700, 1.100) * 10**1.

LINCG

Computes the inverse of a complex general matrix.

Required Arguments

A — Complex N by N matrix containing the matrix to be inverted. (Input)

AINV — Complex N by N matrix containing the inverse of A. (Output)

If A is not needed, A and AINV can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IMSL MATH LIBRARY Chapter 1: Linear Systems 151

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINCG (A, AINV [,…])

Specific: The specific interface names are S_LINCG and D_LINCG.

FORTRAN 77 Interface

Single: CALL LINCG (N, A, LDA, AINV, LDAINV)

Double: The double precision name is DLINCG.

ScaLAPACK Interface

Generic: CALL LINCG (A0, AINV0 [,…])

Specific: The specific interface names are S_LINCG and D_LINCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LINCG computes the inverse of a complex general matrix. The underlying code is based

on either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries

are used during linking. For a detailed explanation see ―Using ScaLAPACK, LAPACK,

LINPACK, and EISPACK‖ in the Introduction section of this manual.

LINCG first uses the routine LFCCG to compute an LU factorization of the coefficient matrix and to

estimate the condition number of the matrix. LFCCG computes U and the information needed to

compute L. LINCT is then used to compute U-1, i.e. use the inverse of U. Finally A-1 is computed

using A-1=U-1L-1.

LINCG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the

iterative refinement algorithm fails to converge. This errors occurs only if A is singular or very

close to a singular matrix.

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in A-1.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2NCG/DL2NCG. The

reference is:

CALL L2NCG (N, A, LDA, AINV, LDAINV, WK, IWK)

152 Chapter 1: Linear Systems IMSL MATH LIBRARY

The additional arguments are as follows:

WK — Complex work vector of length N + N(N − 1)/2.

IWK — Integer work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The inverse might not be

accurate.

4 2 The input matrix is singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix A. A contains the matrix to be inverted. (Input)

AINV0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix AINV. AINV contains the inverse of the matrix A. (Output)

If A is not needed, A and AINV can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

The inverse is computed for a complex general 3 × 3 matrix.

 USE LINCG_INT

 USE WRCRN_INT

 USE CSSCAL_INT

! Declare variables

 PARAMETER (LDA=3, LDAINV=3, N=3)

 REAL THIRD

 COMPLEX A(LDA,LDA), AINV(LDAINV,LDAINV)

! Set values for A

!

! A = (1.0+1.0i 2.0+3.0i 3.0+3.0i)

! (2.0+1.0i 5.0+3.0i 7.0+4.0i)

! (-2.0+1.0i -4.0+4.0i -5.0+3.0i)

!

 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),&

 (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/

!

! Scale A by dividing by three

IMSL MATH LIBRARY Chapter 1: Linear Systems 153

 THIRD = 1.0/3.0

 DO 10 I=1, N

 CALL CSSCAL (N, THIRD, A(:,I), 1)

 10 CONTINUE

! Calculate the inverse of A

 CALL LINCG (A, AINV)

! Print results

 CALL WRCRN (‘AINV‘, AINV)

 END

Output

 AINV

 1 2 3

1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)

2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)

3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

ScaLAPACK Example

The inverse of the same 3 × 3 matrix is computed as a distributed example. SCALAPACK_MAP and

SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖) used to map and unmap

arrays to and from the processor grid. They are used here for brevity. DESCINIT is a

ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LINCG_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, DESCA(9)

 INTEGER INFO, MXCOL, MXLDA, NPROW, NPCOL

 COMPLEX, ALLOCATABLE :: A(:,:), AINV(:,:)

 COMPLEX, ALLOCATABLE :: A0(:,:), AINV0(:,:)

 REAL THIRD

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), AINV(LDA,N))

! Set values for A

 A(1,:) = (/ (1.0, 1.0), (2.0, 3.0), (3.0, 3.0)/)

 A(2,:) = (/ (2.0, 1.0), (5.0, 3.0), (7.0, 4.0)/)

 A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5.0, 3.0)/)

! Scale A by dividing by three

 THIRD = 1.0/3.0

 A = A * THIRD

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

154 Chapter 1: Linear Systems IMSL MATH LIBRARY

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), AINV0(MXLDA,MXCOL))

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Factor A

 CALL LINCG (A0, AINV0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(AINV0, DESCA, AINV)

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK.EQ.0) CALL WRCRN (‘AINV‘, AINV)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV)

 DEALLOCATE(A0, AINV0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 AINV

 1 2 3

1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)

2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)

3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

LSLRT

Solves a real triangular system of linear equations.

Required Arguments

A — N by N matrix containing the coefficient matrix for the triangular linear system. (Input)

For a lower triangular system, only the lower triangular part and diagonal of A are

referenced. For an upper triangular system, only the upper triangular part and diagonal

of A are referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 155

X — Vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means solve AX = B, A lower triangular.

IPATH = 2 means solve AX = B, A upper triangular.

IPATH = 3 means solve A
T
X = B, A lower triangular.

IPATH = 4 means solve A
T
X = B, A upper triangular.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSLRT (A, B, X [,…])

Specific: The specific interface names are S_LSLRT and D_LSLRT.

FORTRAN 77 Interface

Single: CALL LSLRT (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSLRT.

ScaLAPACK Interface

Generic: CALL LSLRT (A0, B0, X0 [,…])

Specific: The specific interface names are S_LSLRT and D_LSLRT.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LSLRT solves a system of linear algebraic equations with a real triangular coefficient

matrix. LSLRT fails if the matrix A has a zero diagonal element, in which case A is singular. The

underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon

which supporting libraries are used during linking. For a detailed explanation see ―Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

156 Chapter 1: Linear Systems IMSL MATH LIBRARY

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the coefficients of the linear system. (Input)

For a lower triangular system, only the lower triangular part and diagonal of A are

referenced. For an upper triangular system, only the upper triangular part and diagonal

of A are referenced.

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B.

B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X.

X contains the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has lower triangular form and

the right-hand-side vector, b, has three elements.

 USE LSLRT_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3)

 REAL A(LDA,LDA), B(LDA), X(LDA)

! Set values for A and B

!

! A = (2.0)

! (2.0 -1.0)

! (-4.0 2.0 5.0)

!

! B = (2.0 5.0 0.0)

!

 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/

 DATA B/2.0, 5.0, 0.0/

!

! Solve AX = B (IPATH = 1)

 CALL LSLRT (A, B, X)

! Print results

 CALL WRRRN (‘X‘, X, 1, 3, 1)

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 157

Output

 X

 1 2 3

1.000 -3.000 2.000

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The

coefficient matrix has lower triangular form and the right-hand-side vector b has three elements.

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖)

used to map and unmap arrays to and from the processor grid. They are used here for brevity.

DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LSLRT_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, N, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL, ALLOCATABLE :: A(:,:), B(:), X(:)

 REAL, ALLOCATABLE :: A0(:,:), B0(:), X0(:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N), X(N))

! Set values for A and B

 A(1,:) = (/ 2.0, 0.0, 0.0/)

 A(2,:) = (/ 2.0, -1.0, 0.0/)

 A(3,:) = (/-4.0, 2.0, 5.0/)

!

 B = (/ 2.0, 5.0, 0.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 CALL SCALAPACK_MAP(B, DESCX, B0)

! Solve AX = B (IPATH = 1)

 CALL LSLRT (A0, B0, X0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

158 Chapter 1: Linear Systems IMSL MATH LIBRARY

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK .EQ. 0)CALL WRRRN (‘X‘, X, 1, N, 1)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, X0)

! Exit Scalapack usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 X

 1 2 3

1.000 -3.000 2.000

LFCRT

Estimates the condition number of a real triangular matrix.

Required Arguments

A — N by N matrix containing the coefficient matrix for the triangular linear system. (Input)

For a lower triangular system, only the lower triangular part and diagonal of A are

referenced. For an upper triangular system, only the upper triangular part and diagonal

of A are referenced.

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.

(Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means A is lower triangular.

IMSL MATH LIBRARY Chapter 1: Linear Systems 159

IPATH = 2 means A is upper triangular.

Default: IPATH =1.

FORTRAN 90 Interface

Generic: CALL LFCRT (A, RCOND [,…])

Specific: The specific interface names are S_LFCRT and D_LFCRT.

FORTRAN 77 Interface

Single: CALL LFCRT (N, A, LDA, IPATH, RCOND)

Double: The double precision name is DLFCRT.

ScaLAPACK Interface

Generic: CALL LFCRT (A0, RCOND [,…])

Specific: The specific interface names are S_LFCRT and D_LFCRT.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFCRT estimates the condition number of a real triangular matrix. The L1 condition

number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to compute ||A
-1

||1,

the condition number is only estimated. The estimation algorithm is the same as used by

LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending

upon which supporting libraries are used during linking. For a detailed explanation see ―Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CRT/ DL2CRT. The

reference is:

CALL L2CRT (N, A, LDA, IPATH, RCOND, WK)

The additional argument is:

WK — Work vector of length N.

160 Chapter 1: Linear Systems IMSL MATH LIBRARY

2. Informational error

Type Code

3 1 The input triangular matrix is algorithmically singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the coefficient matrix for the triangular linear system. (Input)

For a lower triangular system, only the lower triangular part and diagonal of A are

referenced. For an upper triangular system, only the upper triangular part and diagonal

of A are referenced.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

An estimate of the reciprocal condition number is computed for a 3 × 3 lower triangular

coefficient matrix.

 USE LFCRT_INT

 USE UMACH_INT

! Declare variables

 PARAMETER (LDA=3)

 REAL A(LDA,LDA), RCOND

 INTEGER NOUT

! Set values for A and B

! A = (2.0)

! (2.0 -1.0)

! (-4.0 2.0 5.0)

!

 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/

!

! Compute the reciprocal condition

! number (IPATH=1)

 CALL LFCRT (A, RCOND)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 161

Output

RCOND < 0.1

L1 Condition number < 15.0

ScaLAPACK Example

The same lower triangular matrix as in the example above is used in this distributed computing

example. An estimate of the reciprocal condition number is computed for the 3 × 3 lower

triangular coefficient matrix. SCALAPACK_MAP is an IMSL utility routine (see Chapter 11,

―Utilities‖) used to map an array to the processor grid. It is used here for brevity. DESCINIT is a

ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LFCRT_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, N, NOUT, DESCA(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL RCOND

 REAL, ALLOCATABLE :: A(:,:)

 REAL, ALLOCATABLE :: A0(:,:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N))

! Set values for A

 A(1,:) = (/ 2.0, 0.0, 0.0/)

 A(2,:) = (/ 2.0, -1.0, 0.0/)

 A(3,:) = (/-4.0, 2.0, 5.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptor

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL))

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Compute the reciprocal condition

! number (IPATH=1)

 CALL LFCRT (A0, RCOND)

! Print results.

! Only Rank=0 has the solution, RCOND.

 IF(MP_RANK .EQ. 0) THEN

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

 ENDIF

 IF (MP_RANK .EQ. 0) DEALLOCATE(A)

162 Chapter 1: Linear Systems IMSL MATH LIBRARY

 DEALLOCATE(A0)

! Exit Scalapack usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.1

L1 Condition number < 15.0

LFDRT
Computes the determinant of a real triangular matrix.

Required Arguments

A — N by N matrix containing the triangular matrix. (Input)

The matrix can be either upper or lower triangular.

DET1 — Scalar containing the mantissa of the determinant. (Output)

The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)

The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LFDRT (A, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDRT and D_LFDRT.

FORTRAN 77 Interface

Single: CALL LFDRT (N, A, LDA, DET1, DET2)

Double: The double precision name is DLFDRT.

IMSL MATH LIBRARY Chapter 1: Linear Systems 163

Description

Routine LFDRT computes the determinant of a real triangular coefficient matrix. The determinant

of a triangular matrix is the product of the diagonal elements

1
det

N

iii
A A

LFDRT is based on the LINPACK routine STRDI; see Dongarra et al. (1979).

Comments

Informational error

Type Code

3 1 The input triangular matrix is singular.

Example

The determinant is computed for a 3 × 3 lower triangular matrix.

 USE LFDRT_INT

 USE UMACH_INT

! Declare variables

 PARAMETER (LDA=3)

 REAL A(LDA,LDA), DET1, DET2

 INTEGER NOUT

! Set values for A

! A = (2.0)

! (2.0 -1.0)

! (-4.0 2.0 5.0)

!

 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/

!

! Compute the determinant of A

 CALL LFDRT (A, DET1, DET2)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) DET1, DET2

99999 FORMAT (‘ The determinant of A is ‘, F6.3, ‘ * 10**‘, F2.0)

 END

Output

The determinant of A is -1.000 * 10**1.

LINRT
Computes the inverse of a real triangular matrix.

Required Arguments

A — N by N matrix containing the triangular matrix to be inverted. (Input)

For a lower triangular matrix, only the lower triangular part and diagonal of A are

164 Chapter 1: Linear Systems IMSL MATH LIBRARY

referenced. For an upper triangular matrix, only the upper triangular part and diagonal

of A are referenced.

AINV — N by N matrix containing the inverse of A. (Output)

If A is lower triangular, AINV is also lower triangular. If A is upper triangular, AINV is

also upper triangular. If A is not needed, A and AINV can share the same storage

locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means A is lower triangular.

IPATH = 2 means A is upper triangular.

Default: IPATH = 1.

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINRT (A, AINV [,…])

Specific: The specific interface names are S_LINRT and D_LINRT.

FORTRAN 77 Interface

Single: CALL LINRT (N, A, LDA, IPATH, AINV, LDAINV)

Double: The double precision name is DLINRT.

Description

Routine LINRT computes the inverse of a real triangular matrix. It fails if A has a zero diagonal

element.

Example

The inverse is computed for a 3 × 3 lower triangular matrix.

IMSL MATH LIBRARY Chapter 1: Linear Systems 165

 USE LINRT_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3)

 REAL A(LDA,LDA), AINV(LDA,LDA)

! Set values for A

! A = (2.0)

! (2.0 -1.0)

! (-4.0 2.0 5.0)

!

 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/

!

! Compute the inverse of A

 CALL LINRT (A, AINV)

! Print results

 CALL WRRRN (‘AINV‘, AINV)

 END

Output

 AINV

 1 2 3

1 0.500 0.000 0.000

2 1.000 -1.000 0.000

3 0.000 0.400 0.200

LSLCT

Solves a complex triangular system of linear equations.

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the triangular linear system.

(Input)

For a lower triangular system, only the lower triangle of A is referenced. For an upper

triangular system, only the upper triangle of A is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

166 Chapter 1: Linear Systems IMSL MATH LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means solve AX = B, A lower triangular

IPATH = 2 means solve AX = B, A upper triangular

IPATH = 3 means solve A
H
X = B, A lower triangular

IPATH = 4 means solve A
H
X = B, A upper triangular

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSLCT (A, B, X [,…])

Specific: The specific interface names are S_LSLCT and D_LSLCT.

FORTRAN 77 Interface

Single: CALL LSLCT (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSLCT.

ScaLAPACK Interface

Generic: CALL LSLCT (A0, B0, X0 [,…])

Specific: The specific interface names are S_LSLCT and D_LSLCT.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LSLCT solves a system of linear algebraic equations with a complex triangular coefficient

matrix. LSLCT fails if the matrix A has a zero diagonal element, in which case A is singular. The

underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon

which supporting libraries are used during linking. For a detailed explanation see ―Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

Informational error

Type Code

4 1 The input triangular matrix is singular. Some of its diagonal

elements are near zero.

IMSL MATH LIBRARY Chapter 1: Linear Systems 167

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed

matrix A. A contains the coefficient matrix of the triangular linear system. (Input)

For a lower triangular system, only the lower triangular part and diagonal of A are

referenced. For an upper triangular system, only the upper triangular part and diagonal

of A are referenced.

B0 — Local complex vector of length MXLDA containing the local portions of the distributed

vector B. B contains the right-hand side of the linear system. (Input)

X0 — Local complex vector of length MXLDA containing the local portions of the distributed

vector X. X contains the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call to

SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has lower triangular form and

the right-hand-side vector, b, has three elements.

 USE LSLCT_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA

 PARAMETER (LDA=3)

 COMPLEX A(LDA,LDA), B(LDA), X(LDA)

! Set values for A and B

!

! A = (-3.0+2.0i)

! (-2.0-1.0i 0.0+6.0i)

! (-1.0+3.0i 1.0-5.0i -4.0+0.0i)

!

! B = (-13.0+0.0i -10.0-1.0i -11.0+3.0i)

!

 DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),&

 (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/

 DATA B/(-13.0,0.0), (-10.0,-1.0), (-11.0,3.0)/

!

! Solve AX = B

 CALL LSLCT (A, B, X)

! Print results

 CALL WRCRN (‘X‘, X, 1, 3, 1)

 END

168 Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

 X

 1 2 3

(3.000, 2.000) (1.000, 1.000) (2.000, 0.000)

ScaLAPACK Example

The same lower triangular matrix as in the example above is used in this distributed computing

example. The system of three linear equations is solved. SCALAPACK_MAP and

SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖) used to map and unmap

arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK

tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LSLCT_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, N, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 COMPLEX, ALLOCATABLE :: A(:,:), B(:), X(:)

 COMPLEX, ALLOCATABLE :: A0(:,:), B0(:), X0(:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N), X(N))

! Set values for A

 A(1,:) = (/ (-3.0, 2.0), (0.0, 0.0), (0.0, 0.0)/)

 A(2,:) = (/ (-2.0, -1.0), (0.0, 6.0), (0.0, 0.0)/)

 A(3,:) = (/ (-1.0, 3.0), (1.0, -5.0), (-4.0, 0.0)/)

!

 B = (/ (-13.0, 0.0), (-10.0, -1.0), (-11.0, 3.0)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptor

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 CALL SCALAPACK_MAP(B, DESCX, B0)

! Solve AX = B

 CALL LSLCT (A0, B0, X0)

! Unmap the results from the distributed

IMSL MATH LIBRARY Chapter 1: Linear Systems 169

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK .EQ. 0) CALL WRCRN (‗X‘, X, 1, 3, 1)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 X

 1 2 3

(3.000, 2.000) (1.000, 1.000) (2.000, 0.000)

LFCCT

Estimates the condition number of a complex triangular matrix.

Required Arguments

A — Complex N by N matrix containing the triangular matrix. (Input)

For a lower triangular system, only the lower triangle of A is referenced. For an upper

triangular system, only the upper triangle of A is referenced.

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.

(Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means A is lower triangular.

170 Chapter 1: Linear Systems IMSL MATH LIBRARY

IPATH = 2 means A is upper triangular.

Default: IPATH =1.

FORTRAN 90 Interface

Generic: CALL LFCCT (A, RCOND [,…])

Specific: The specific interface names are S_LFCCT and D_LFCCT.

FORTRAN 77 Interface

Single: CALL LFCCT (N, A, LDA, IPATH, RCOND)

Double: The double precision name is DLFCCT.

ScaLAPACK Interface

Generic: CALL LFCCT (A0, RCOND [,…])

Specific: The specific interface names are S_LFCCT and D_LFCCT.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFCCT estimates the condition number of a complex triangular matrix. The L1condition

number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to compute ||A
-1

|1,

the condition number is only estimated. The estimation algorithm is the same as used by

LINPACK and is described by Cline et al. (1979). If the estimated condition number is greater

than 1/ɛ (where ɛ is machine precision), a warning error is issued. This indicates that very small

changes in A can cause very large changes in the solution x. The underlying code is based on

either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries

are used during linking. For a detailed explanation see ―Using ScaLAPACK, LAPACK,

LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CCT/DL2CCT. The

reference is:

CALL L2CCT (N, A, LDA, IPATH, RCOND, CWK)

The additional argument is:

CWK — Complex work vector of length N.

2. Informational error

IMSL MATH LIBRARY Chapter 1: Linear Systems 171

Type Code

3 1 The input triangular matrix is algorithmically singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix A. A contains the coefficient matrix of the triangular linear system.

(Input)

For a lower triangular system, only the lower triangular part and diagonal of A are

referenced. For an upper triangular system, only the upper triangular part and diagonal

of A are referenced.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

An estimate of the reciprocal condition number is computed for a 3 × 3 lower triangular

coefficient matrix.

 USE LFCCT_INT

 USE UMACH_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3)

 INTEGER NOUT

 REAL RCOND

 COMPLEX A(LDA,LDA)

! Set values for A

!

! A = (-3.0+2.0i)

! (-2.0-1.0i 0.0+6.0i)

! (-1.0+3.0i 1.0-5.0i -4.0+0.0i)

!

 DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),&

 (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/

!

! Compute the reciprocal condition

! number

 CALL LFCCT (A, RCOND)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

172 Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

RCOND < 0.2

L1 Condition number < 10.0

ScaLAPACK Example

The same lower triangular matrix as in the example above is used in this distributed computing

example. An estimate of the reciprocal condition number is computed for a 3 × 3 lower triangular

coefficient matrix. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are

used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors

for the local arrays.

 USE MPI_SETUP_INT

 USE LFCCT_INT

 USE UMACH_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, N, NOUT, DESCA(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL RCOND

 COMPLEX, ALLOCATABLE :: A(:,:)

 COMPLEX, ALLOCATABLE :: A0(:,:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N))

! Set values for A

 A(1,:) = (/ (-3.0, 2.0), (0.0, 0.0), (0.0, 0.0)/)

 A(2,:) = (/ (-2.0, -1.0), (0.0, 6.0), (0.0, 0.0)/)

 A(3,:) = (/ (-1.0, 3.0), (1.0, -5.0), (-4.0, 0.0)/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptor

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Compute the reciprocal condition

! number

 CALL LFCCT (A0, RCOND)

! Print results.

! Only Rank=0 has the solution, RCOND.

 IF (MP_RANK .EQ. 0) THEN

IMSL MATH LIBRARY Chapter 1: Linear Systems 173

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

 ENDIF

 IF (MP_RANK .EQ. 0) DEALLOCATE(A)

 DEALLOCATE(A0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.2

L1 Condition number < 10.0

LFDCT
Computes the determinant of a complex triangular matrix.

Required Arguments

A — Complex N by N matrix containing the triangular matrix.(Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)

The value DET1 is normalized so that 1.0 ≤ DET1 <10.0 or DET1= 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)

The determinant is returned in the form det(A) = DET1 *10
DET2

.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LFDCT (A, DET1, DET2[,…])

Specific: The specific interface names are S_LFDCT and D_LFDCT.

FORTRAN 77 Interface

Single: CALL LFDCT (N, A, LDA, DET1, DET2)

174 Chapter 1: Linear Systems IMSL MATH LIBRARY

Double: The double precision name is DLFDCT.

Description

Routine LFDCT computes the determinant of a complex triangular coefficient matrix. The

determinant of a triangular matrix is the product of the diagonal elements

1
det

N

iii
A A

LFDCT is based on the LINPACK routine CTRDI; see Dongarra et al. (1979).

Comments

Informational error

Type Code

3 1 The input triangular matrix is singular.

Example

The determinant is computed for a 3 × 3 complex lower triangular matrix.

 USE LFDCT_INT

 USE UMACH_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

 INTEGER NOUT

 REAL DET2

 COMPLEX A(LDA,LDA), DET1

! Set values for A

!

! A = (-3.0+2.0i)

! (-2.0-1.0i 0.0+6.0i)

! (-1.0+3.0i 1.0-5.0i -4.0+0.0i)

!

 DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),&

 (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/

!

! Compute the determinant of A

 CALL LFDCT (A, DET1, DET2)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) DET1, DET2

99999 FORMAT (‘ The determinant of A is (‘,F4.1,‘,‘,F4.1,‘) * 10**‘,&

 F2.0)

 END

Output

The determinant of A is (0.5, 0.7) * 10**2.

IMSL MATH LIBRARY Chapter 1: Linear Systems 175

LINCT
Computes the inverse of a complex triangular matrixs.

Required Arguments

A — Complex N by N matrix containing the triangular matrix to be inverted. (Input)

For a lower triangular matrix, only the lower triangle of A is referenced. For an upper

triangular matrix, only the upper triangle of A is referenced.

AINV — Complex N by N matrix containing the inverse of A. (Output)

If A is lower triangular, AINV is also lower triangular. If A is upper triangular, AINV is

also upper triangular. If A is not needed, A and AINV can share the same storage

locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means A is lower triangular.

IPATH = 2 means A is upper triangular.

Default: IPATH = 1.

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINCT (A, AINV [,…])

Specific: The specific interface names are S_LINCT and D_LINCT.

FORTRAN 77 Interface

Single: CALL LINCT (N, A, LDA, IPATH, AINV, LDAINV)

Double: The double precision name is DLINCT.

176 Chapter 1: Linear Systems IMSL MATH LIBRARY

Description

Routine LINCT computes the inverse of a complex triangular matrix. It fails if A has a zero

diagonal element.

Comments

Informational error

Type Code

4 1 The input triangular matrix is singular. Some of its diagonal

elements are close to zero.

Example

The inverse is computed for a 3 × 3 lower triangular matrix.

 USE LINCT_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA

 PARAMETER (LDA=3)

 COMPLEX A(LDA,LDA), AINV(LDA,LDA)

! Set values for A

!

! A = (-3.0+2.0i)

! (-2.0-1.0i 0.0+6.0i)

! (-1.0+3.0i 1.0-5.0i -4.0+0.0i)

!

 DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),&

 (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/

!

! Compute the inverse of A

 CALL LINCT (A, AINV)

! Print results

 CALL WRCRN (‘AINV‘, AINV)

 END

Output

 AINV

 1 2 3

1 (-0.2308,-0.1538) (0.0000, 0.0000) (0.0000, 0.0000)

2 (-0.0897, 0.0513) (0.0000,-0.1667) (0.0000, 0.0000)

3 (0.2147,-0.0096) (-0.2083,-0.0417) (-0.2500, 0.0000)

IMSL MATH LIBRARY Chapter 1: Linear Systems 177

LSADS

Solves a real symmetric positive definite system of linear equations with iterative refinement.

Required Arguments

A — N by N matrix containing the coefficient matrix of the symmetric positive definite linear

system. (Input)

Only the upper triangle of A is referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LSADS (A, B, X [,…])

Specific: The specific interface names are S_LSADS and D_LSADS.

FORTRAN 77 Interface

Single: CALL LSADS (N, A, LDA, B, X)

Double: The double precision name is DLSADS.

ScaLAPACK Interface

Generic: CALL LSADS (A0, B0, X0 [,…])

Specific: The specific interface names are S_LSADS and D_LSADS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

178 Chapter 1: Linear Systems IMSL MATH LIBRARY

Description

Routine LSADS solves a system of linear algebraic equations having a real symmetric positive

definite coefficient matrix. The underlying code is based on either LINPACK , LAPACK, or

ScaLAPACK code depending upon which supporting libraries are used during linking. For a

detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the

Introduction section of this manual. LSADS first uses the routine LFCDS to compute an R
T
R

Cholesky factorization of the coefficient matrix and to estimate the condition number of the

matrix. The matrix R is upper triangular. The solution of the linear system is then found using the

iterative refinement routine LFIDS. LSADS fails if any submatrix of R is not positive definite, if R

has a zero diagonal element or if the iterative refinement algorithm fails to converge. These errors

occur only if A is either very close to a singular matrix or a matrix which is not positive definite. If

the estimated condition number is greater than 1/ε (where ε is machine precision), a warning error

is issued. This indicates that very small changes in A can cause very large changes in the solution

x. Iterative refinement can sometimes find the solution to such a system. LSADS solves the

problem that is represented in the computer; however, this problem may differ from the problem

whose solution is desired.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2ADS/DL2ADS. The

reference is:

CALL L2ADS (N, A, LDA, B, X, FACT, WK)

The additional arguments are as follows:

FACT— Work vector of length N2 containing the R
T
R factorization of A on

output.

WK — Work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2ADS the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSADS.

Additional memory allocation for FACT and option value restoration are done

automatically in LSADS. Users directly calling L2ADS can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

IMSL MATH LIBRARY Chapter 1: Linear Systems 179

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSADS or L2ADS. Default values for the option are IVAL(*)

= 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSADS temporarily replaces IVAL(2) by IVAL(1). The

routine L2CDS computes the condition number if IVAL(2) = 2. Otherwise L2CDS

skips this computation. LSADS restores the option. Default values for the option

are IVAL(*) = 1, 2.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A.

A contains the coefficient matrix of the symmetric positive definite linear system.

(Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B.

B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X.

X contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has real positive definite form

and the right-hand-side vector b has three elements.

 USE LSADS_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

 REAL A(LDA,LDA), B(N), X(N)

!

! Set values for A and B

!

! A = (1.0 -3.0 2.0)

! (-3.0 10.0 -5.0)

! (2.0 -5.0 6.0)

!

! B = (27.0 -78.0 64.0)

!

 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

 DATA B/27.0, -78.0, 64.0/

!

 CALL LSADS (A, B, X)

180 Chapter 1: Linear Systems IMSL MATH LIBRARY

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

!

 END

Output

 X

 1 2 3

1.000 -4.000 7.000

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The

coefficient matrix has real positive definite form and the right-hand-side vector b has three

elements. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11,

―Utilities‖) used to map and unmap arrays to and from the processor grid. They are used here for

brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local

arrays.

 USE MPI_SETUP_INT

 USE LSADS_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, N, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL, ALLOCATABLE :: A(:,:), B(:), X(:)

 REAL, ALLOCATABLE :: A0(:,:), B0(:), X0(:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N), X(N))

! Set values for A and B

 A(1,:) = (/ 1.0, -3.0, 2.0/)

 A(2,:) = (/ -3.0, 10.0, -5.0/)

 A(3,:) = (/ 2.0, -5.0, 6.0/)

!

 B = (/27.0, -78.0, 64.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA))

IMSL MATH LIBRARY Chapter 1: Linear Systems 181

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 CALL SCALAPACK_MAP(B, DESCX, B0)

! Solve the system of equations

 CALL LSADS (A0, B0, X0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK .EQ. 0)CALL WRRRN (‘X‘, X, 1, N, 1)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 X

 1 2 3

1.000 -4.000 7.000

LSLDS

Solves a real symmetric positive definite system of linear equations without iterative refinement .

Required Arguments

A — N by N matrix containing the coefficient matrix of the symmetric positive definite linear

system. (Input)

Only the upper triangle of A is referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

182 Chapter 1: Linear Systems IMSL MATH LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LSLDS (A, B, X [,…])

Specific: The specific interface names are S_LSLDS and D_LSLDS.

FORTRAN 77 Interface

Single: CALL LSLDS (N, A, LDA, B, X)

Double: The double precision name is DLSLDS.

ScaLAPACK Interface

Generic: CALL LSLDS (A0, B0, X0 [,…])

Specific: The specific interface names are S_LSLDS and D_LSLDS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LSLDS solves a system of linear algebraic equations having a real symmetric positive

definite coefficient matrix. The underlying code is based on either LINPACK , LAPACK, or

ScaLAPACK code depending upon which supporting libraries are used during linking. For a

detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the

Introduction section of this manual. LSLDS first uses the routine LFCDS to compute an R
T
R

Cholesky factorization of the coefficient matrix and to estimate the condition number of the

matrix. The matrix R is upper triangular. The solution of the linear system is then found using the

routine LFSDS. LSLDS fails if any submatrix of R is not positive definite or if R has a zero

diagonal element. These errors occur only if A either is very close to a singular matrix or to a

matrix which is not positive definite. If the estimated condition number is greater than 1/ε (where ε

is machine precision), a warning error is issued. This indicates that very small changes in A can

cause very large changes in the solution x. If the coefficient matrix is ill-conditioned, it is

recommended that LSADS be used.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LDS/DL2LDS. The

reference is:

CALL L2LDS (N, A, LDA, B, X, FACT, WK)

IMSL MATH LIBRARY Chapter 1: Linear Systems 183

The additional arguments are as follows:

FACT — N × N work array containing the R
T
R factorization of A on output. If

A is not needed, A can share the same storage locations as FACT.

WK — Work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2LDS the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLDS.

Additional memory allocation for FACT and option value restoration are done

automatically in LSLDS. Users directly calling L2LDS can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSLDS or L2LDS. Default values for the option are IVAL(*)

= 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSLDS temporarily replaces IVAL(2) by IVAL(1). The

routine L2CDS computes the condition number if IVAL(2) = 2. Otherwise L2CDS

skips this computation. LSLDS restores the option. Default values for the option

are IVAL(*) = 1, 2.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A.

A contains the coefficient matrix of the symmetric positive definite linear system.

(Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B.

B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X.

X contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

184 Chapter 1: Linear Systems IMSL MATH LIBRARY

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has real positive definite form

and the right-hand-side vector b has three elements.

 USE LSLDS_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

 REAL A(LDA,LDA), B(N), X(N)

!

! Set values for A and B

!

! A = (1.0 -3.0 2.0)

! (-3.0 10.0 -5.0)

! (2.0 -5.0 6.0)

!

! B = (27.0 -78.0 64.0)

!

 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

 DATA B/27.0, -78.0, 64.0/

!

 CALL LSLDS (A, B, X)

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

!

 END

Output

 X

 1 2 3

1.000 -4.000 7.000

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The

coefficient matrix has real positive definite form and the right-hand-side vector b has three

elements. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11,

―Utilities‖) used to map and unmap arrays to and from the processor grid. They are used here for

brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local

arrays.

 USE MPI_SETUP_INT

 USE LSLDS_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

IMSL MATH LIBRARY Chapter 1: Linear Systems 185

! Declare variables

 INTEGER LDA, N, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL, ALLOCATABLE :: A(:,:), B(:), X(:)

 REAL, ALLOCATABLE :: A0(:,:), B0(:), X0(:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N), X(N))

! Set values for A and B

 A(1,:) = (/ 1.0, -3.0, 2.0/)

 A(2,:) = (/ -3.0, 10.0, -5.0/)

 A(3,:) = (/ 2.0, -5.0, 6.0/)

!

 B = (/27.0, -78.0, 64.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 CALL SCALAPACK_MAP(B, DESCX, B0)

! Solve the system of equations

 CALL LSLDS (A0, B0, X0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK .EQ. 0)CALL WRRRN (‘X‘, X, 1, N, 1)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

186 Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

 X

 1 2 3

1.000 -4.000 7.000

LFCDS

Computes the R
T
R Cholesky factorization of a real symmetric positive definite matrix and estimate

its L1condition number.

Required Arguments

A — N by N symmetric positive definite matrix to be factored. (Input)

Only the upper triangle of A is referenced.

FACT — N by N matrix containing the upper triangular matrix R of the factorization of A in

the upper triangular part. (Output)

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share

the same storage locations.

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCDS (A, FACT, RCOND [,…])

Specific: The specific interface names are S_LFCDS and D_LFCDS.

IMSL MATH LIBRARY Chapter 1: Linear Systems 187

FORTRAN 77 Interface

Single: CALL LFCDS (N, A, LDA, FACT, LDFACT, RCOND)

Double: The double precision name is DLFCDS.

ScaLAPACK Interface

Generic: CALL LFCDS (A0, FACT0, RCOND [,…])

Specific: The specific interface names are S_LFCDS and D_LFCDS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFCDS computes an R
T
R Cholesky factorization and estimates the condition number of a

real symmetric positive definite coefficient matrix. The matrix R is upper triangular.

The L1condition number of the matrix A is defined to be κ(A) = ||A||1 ||A
-1

||1. Since it is expensive

to compute ||A
-1

||1 ,the condition number is only estimated. The estimation algorithm is the same

as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system.

LFCDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element.

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive

definite.

The R
T
R factors are returned in a form that is compatible with routines LFIDS, LFSDS and LFDDS.

To solve systems of equations with multiple right-hand-side vectors, use LFCDS followed by either

LFIDS or LFSDS called once for each right-hand side. The routine LFDDS can be called to compute

the determinant of the coefficient matrix after LFCDS has performed the factorization.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CDS/DL2CDS. The

reference is:

CALL L2CDS (N, A, LDA, FACT, LDFACT, RCOND, WK)

The additional argument is:

WK — Work vector of length N.

2. Informational errors

Type Code

188 Chapter 1: Linear Systems IMSL MATH LIBRARY

3 1 The input matrix is algorithmically singular.

4 2 The input matrix is not positive definite.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the symmetric positive definite matrix to be factored. (Input)

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix FACT. FACT contains the upper triangular matrix R of the factorization of A in

the upper triangular part. (Output)

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share

the same storage locations.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

The inverse of a 3 × 3 matrix is computed. LFCDS is called to factor the matrix and to check for

nonpositive definiteness or ill-conditioning. LFIDS is called to determine the columns of the

inverse.

 USE LFCDS_INT

 USE UMACH_INT

 USE WRRRN_INT

 USE LFIDS_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NOUT

 PARAMETER (LDA=3, LDFACT=3, N=3)

 REAL A(LDA,LDA), AINV(LDA,LDA), RCOND, FACT(LDFACT,LDFACT),&

 RES(N), RJ(N)

!

! Set values for A

! A = (1.0 -3.0 2.0)

! (-3.0 10.0 -5.0)

! (2.0 -5.0 6.0)

!

 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

! Factor the matrix A

 CALL LFCDS (A, FACT, RCOND)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0E0

! RJ is the J-th column of the identity

! matrix so the following LFIDS

IMSL MATH LIBRARY Chapter 1: Linear Systems 189

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFIDS (A, FACT, RJ, AINV(:,J), RES)

 RJ(J) = 0.0E0

 10 CONTINUE

! Print the results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

 CALL WRRRN (‘AINV‘, AINV)

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F9.3)

 END

Output

RCOND < 0.005

L1 Condition number < 875.0

 AINV

 1 2 3

1 35.00 8.00 -5.00

2 8.00 2.00 -1.00

3 -5.00 -1.00 1.00

ScaLAPACK Example

The inverse of the same 3 × 3 matrix is computed as a distributed example. LFCDS is called to

factor the matrix and to check for singularity or ill-conditioning. LFIDS is called to determine the

columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are

used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors

for the local arrays.

 USE MPI_SETUP_INT

 USE LFCDS_INT

 USE UMACH_INT

 USE LFIDS_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, NOUT, DESCA(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL, ALLOCATABLE :: A(:,:), AINV(:,:), X0(:), RJ(:)

 REAL, ALLOCATABLE :: A0(:,:), FACT0(:,:), RES0(:), RJ0(:)

 REAL RCOND

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), AINV(LDA,N))

! Set values for A

 A(1,:) = (/ 1.0, -3.0, 2.0/)

 A(2,:) = (/ -3.0, 10.0, -5.0/)

190 Chapter 1: Linear Systems IMSL MATH LIBRARY

 A(3,:) = (/ 2.0, -5.0, 6.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), &

 RJ0(MXLDA), RES0(MXLDA))

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Call the factorization routine

 CALL LFCDS (A0, FACT0, RCOND)

! Print the reciprocal condition number

! and the L1 condition number

 IF(MP_RANK .EQ. 0) THEN

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND

 ENDIF

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0

! Map input array to the processor grid

 CALL SCALAPACK_MAP(RJ, DESCL, RJ0)

! RJ is the J-th column of the identity

! matrix so the following LFIDS

! reference computes the J-th column of

! the inverse of A

 CALL LFIDS (A0, FACT0, RJ0, X0, RES0)

 RJ(J) = 0.0

 CALL SCALAPACK_UNMAP(X0, DESCL, AINV(:,J))

 10 CONTINUE

! Print results.

! Only Rank=0 has the solution, AINV.

 IF(MP_RANK.EQ.0) CALL WRRRN (‘AINV‘, AINV)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV)

 DEALLOCATE(A0, FACT0, RJ, RJ0, RES0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

99998 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F9.3)

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 191

Output

RCOND < 0.005

L1 Condition number < 875.0

 AINV

 1 2 3

1 35.00 8.00 -5.00

2 8.00 2.00 -1.00

3 -5.00 -1.00 1.00

LFTDS

Computes the R
T
R Cholesky factorization of a real symmetric positive definite matrix.

Required Arguments

A — N by N symmetric positive definite matrix to be factored. (Input)

Only the upper triangle of A is referenced.

FACT — N by N matrix containing the upper triangular matrix R of the factorization of A in

the upper triangle, and the lower triangular matrix R
T
 in the lower triangle. (Output)

If A is not needed, A and FACT can share the same storage location.

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

 Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTDS (A, FACT [,…])

Specific: The specific interface names are S_LFTDS and D_LFTDS.

192 Chapter 1: Linear Systems IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL LFTDS (N, A, LDA, FACT, LDFACT)

Double: The double precision name is DLFTDS.

ScaLAPACK Interface

Generic: CALL LFTDS (A0, FACT0 [,…])

Specific: The specific interface names are S_LFTDS and D_LFTDS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFTDS computes an R
T
R Cholesky factorization of a real symmetric positive definite

coefficient matrix. The matrix R is upper triangular.

LFTDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element.

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive

definite.

The R
T
R factors are returned in a form that is compatible with routines LFIDS, LFSDS and LFDDS.

To solve systems of equations with multiple right-hand-side vectors, use LFTDS followed by either

LFIDS or LFSDS called once for each right-hand side. The routine LFDDS can be called to compute

the determinant of the coefficient matrix after LFTDS has performed the factorization.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending

upon which supporting libraries are used during linking. For a detailed explanation see ―Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

Informational error

Type Code

4 2 The input matrix is not positive definite.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the symmetric positive definite matrix to be factored. (Input)

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix FACT. FACT contains the upper triangular matrix R of the factorization of A in

the upper triangular part. (Output)

IMSL MATH LIBRARY Chapter 1: Linear Systems 193

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share

the same storage locations.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

The inverse of a 3 × 3 matrix is computed. LFTDS is called to factor the matrix and to check for

nonpositive definiteness. LFSDS is called to determine the columns of the inverse.

 USE LFTDS_INT

 USE LFSDS_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N

 PARAMETER (LDA=3, LDFACT=3, N=3)

 REAL A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N)

!

! Set values for A

! A = (1.0 -3.0 2.0)

! (-3.0 10.0 -5.0)

! (2.0 -5.0 6.0)

!

 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

! Factor the matrix A

 CALL LFTDS (A, FACT)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0E0

! RJ is the J-th column of the identity

! matrix so the following LFSDS

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFSDS (FACT, RJ, AINV(:,J))

 RJ(J) = 0.0E0

 10 CONTINUE

! Print the results

 CALL WRRRN (‘AINV‘, AINV)

!

 END

Output

 AINV

 1 2 3

1 35.00 8.00 -5.00

2 8.00 2.00 -1.00

3 -5.00 -1.00 1.00

194 Chapter 1: Linear Systems IMSL MATH LIBRARY

ScaLAPACK Example

The inverse of the same 3 × 3 matrix is computed as a distributed example. LFTDS is called to

factor the matrix and to check for nonpositive definiteness. LFSDS is called to determine the

columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are

used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors

for the local arrays.

 USE MPI_SETUP_INT

 USE LFTDS_INT

 USE UMACH_INT

 USE LFSDS_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, DESCA(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL, ALLOCATABLE :: A(:,:), AINV(:,:), X0(:)

 REAL, ALLOCATABLE :: A0(:,:), FACT0(:,:), RES0(:), RJ0(:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), AINV(LDA,N))

! Set values for A

 A(1,:) = (/ 1.0, -3.0, 2.0/)

 A(2,:) = (/ -3.0, 10.0, -5.0/)

 A(3,:) = (/ 2.0, -5.0, 6.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), &

 RJ0(MXLDA), RES0(MXLDA), IPVT0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Call the factorization routine

 CALL LFTDS (A0, FACT0)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0

IMSL MATH LIBRARY Chapter 1: Linear Systems 195

 CALL SCALAPACK_MAP(RJ, DESCL, RJ0)

! RJ is the J-th column of the identity

! matrix so the following LFSDS

! reference computes the J-th column of

! the inverse of A

 CALL LFSDS (FACT0, RJ0, X0)

 RJ(J) = 0.0

 CALL SCALAPACK_UNMAP(X0, DESCL, AINV(:,J))

 10 CONTINUE

! Print results.

! Only Rank=0 has the solution, AINV.

 IF(MP_RANK.EQ.0) CALL WRRRN (‘AINV‘, AINV)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV)

 DEALLOCATE(A0, FACT0, IPVT0, RJ, RJ0, RES0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

RCOND < 0.005

L1 Condition number < 875.0

 AINV

 1 2 3

1 35.00 8.00 -5.00

2 8.00 2.00 -1.00

3 -5.00 -1.00 1.00

LFSDS

Solves a real symmetric positive definite system of linear equations given the R
T
 R Cholesky

factorization of the coefficient matrix.

Required Arguments

FACT — N by N matrix containing the R
T
 R factorization of the coefficient matrix A as output

from routine LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

196 Chapter 1: Linear Systems IMSL MATH LIBRARY

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFSDS (FACT, B, X [,…])

Specific: The specific interface names are S_LFSDS and D_LFSDS.

FORTRAN 77 Interface

Single: CALL LFSDS (N, FACT, LDFACT, B, X)

Double: The double precision name is DLFSDS.

ScaLAPACK Interface

Generic: CALL LFSDS (FACT0, B0, X0 [,…])

Specific: The specific interface names are S_LFSDS and D_LFSDS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFSDS computes the solution for a system of linear algebraic equations having a real

symmetric positive definite coefficient matrix. To compute the solution, the coefficient matrix

must first undergo an R
T
R factorization. This may be done by calling either LFCDS or LFTDS. R is

an upper triangular matrix.

The solution to Ax = b is found by solving the triangular systems R
T
y = b and Rx = y.

LFSDS and LFIDS both solve a linear system given its R
T
R factorization. LFIDS generally takes

more time and produces a more accurate answer than LFSDS. Each iteration of the iterative

refinement algorithm used by LFIDS calls LFSDS.

The underlying code is based on either LINPACK, LAPACK, or ScaLAPACK code depending

upon which supporting libraries are used during linking. For a detailed explanation see “Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

Informational error

IMSL MATH LIBRARY Chapter 1: Linear Systems 197

Type Code

4 1 The input matrix is singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix FACT. FACT contains the R
T
 R factorization of the coefficient matrix A as output

from routine LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B.

B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X.

X contains the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A set of linear systems is solved successively. LFTDS is called to factor the coefficient matrix.

LFSDS is called to compute the four solutions for the four right-hand sides. In this case the

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be

better to call LFCDS to perform the factorization, and LFIDS to compute the solutions.

 USE LFSDS_INT

 USE LFTDS_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N

 PARAMETER (LDA=3, LDFACT=3, N=3)

 REAL A(LDA,LDA), B(N,4), FACT(LDFACT,LDFACT), X(N,4)

!

! Set values for A and B

!

! A = (1.0 -3.0 2.0)

! (-3.0 10.0 -5.0)

! (2.0 -5.0 6.0)

!

! B = (-1.0 3.6 -8.0 -9.4)

! (-3.0 -4.2 11.0 17.6)

! (-3.0 -5.2 -6.0 -23.4)

!

 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

 DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,&

 -9.4, 17.6, -23.4/

! Factor the matrix A

 CALL LFTDS (A, FACT)

198 Chapter 1: Linear Systems IMSL MATH LIBRARY

! Compute the solutions

 DO 10 I=1, 4

 CALL LFSDS (FACT, B(:,I), X(:,I))

 10 CONTINUE

! Print solutions

 CALL WRRRN (‘The solution vectors are‘, X)

!

 END

Output

 The solution vectors are

 1 2 3 4

1 -44.0 118.4 -162.0 -71.2

2 -11.0 25.6 -36.0 -16.6

3 5.0 -19.0 23.0 6.0

ScaLAPACK Example

The same set of linear systems is solved successively as a distributed example. Routine LFTDS is

called to factor the coefficient matrix. The routine LFSDS is called to compute the four solutions

for the four right-hand sides. In this case, the coefficient matrix is assumed to be well-conditioned

and correctly scaled. Otherwise, it would be better to call LFCDS to perform the factorization, and

LFIDS to compute the solutions. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility

routines (see Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor

grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes

the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LFSDS_INT

 USE LFTDS_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, DESCA(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL, ALLOCATABLE :: A(:,:), B(:,:), X(:,:), X0(:)

 REAL, ALLOCATABLE :: A0(:,:), FACT0(:,:), B0(:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N,4), X(N,4))

! Set values for A and B

 A(1,:) = (/ 1.0, -3.0, 2.0/)

 A(2,:) = (/ -3.0, 10.0, -5.0/)

 A(3,:) = (/ 2.0, -5.0, 6.0/)

!

 B(1,:) = (/ -1.0, 3.6, -8.0, -9.4/)

 B(2,:) = (/ -3.0, -4.2, 11.0, 17.6/)

 B(3,:) = (/ -3.0, -5.2, -6.0, -23.4/)

 ENDIF

IMSL MATH LIBRARY Chapter 1: Linear Systems 199

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), B0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Call the factorization routine

 CALL LFTDS (A0, FACT0)

! Set up the columns of the B

! matrix one at a time in X0

 DO 10 J=1, 4

 CALL SCALAPACK_MAP(B(:,j), DESCL, B0)

! Solve for the J-th column of X

 CALL LFSDS (FACT0, B0, X0)

 CALL SCALAPACK_UNMAP(X0, DESCL, X(:,J))

 10 CONTINUE

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK.EQ.0) CALL WRRRN (‘The solution vectors are‘, X)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, FACT0, B0, X0)

! Exit Scalapack usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 The solution vectors are

 1 2 3 4

1 -44.0 118.4 -162.0 -71.2

2 -11.0 25.6 -36.0 -16.6

3 5.0 -19.0 23.0 6.0

LFIDS

Uses iterative refinement to improve the solution of a real symmetric positive definite system of

linear equations.

200 Chapter 1: Linear Systems IMSL MATH LIBRARY

Required Arguments

A — N by N matrix containing the symmetric positive definite coefficient matrix of the linear

system. (Input)

Only the upper triangle of A is referenced.

FACT — N by N matrix containing the R
T
 R factorization of the coefficient matrix A as output

from routine LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

RES — Vector of length N containing the residual vector at the improved solution. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimesion statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

 Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFIDS (A, FACT, B, X, RES [,…])

Specific: The specific interface names are S_LFIDS and D_LFIDS.

FORTRAN 77 Interface

Single: CALL LFIDS (N, A, LDA, FACT, LDFACT, B, X, RES)

Double: The double precision name is DLFIDS.

ScaLAPACK Interface

Generic: CALL LFIDS (A0, FACT0, B0, X0, RES0 [,…])

Specific: The specific interface names are S_LFIDS and D_LFIDS.

IMSL MATH LIBRARY Chapter 1: Linear Systems 201

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFIDS computes the solution of a system of linear algebraic equations having a real

symmetric positive definite coefficient matrix. Iterative refinement is performed on the solution

vector to improve the accuracy. Usually almost all of the digits in the solution are accurate, even if

the matrix is somewhat ill-conditioned. The underlying code is based on either LINPACK ,

LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during

linking. For a detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and

EISPACK‖ in the Introduction section of this manual.

To compute the solution, the coefficient matrix must first undergo an R
T
R factorization. This may

be done by calling either LFCDS or LFTDS.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIDS and LFSDS both solve a linear system given its R
T
R factorization. LFIDS generally takes

more time and produces a more accurate answer than LFSDS. Each iteration of the iterative

refinement algorithm used by LFIDS calls LFSDS.

Comments

Informational error

Type Code

3 2 The input matrix is too ill-conditioned for iterative refinement to be

effective.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the symmetric positive definite coefficient matrix of the linear system.

(Input)

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix FACT. FACT contains the R
T
 R factorization of the coefficient matrix A as output

from routine LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B.

B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X.

X contains the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

RES0 — Local vector of length MXLDA containing the local portions of the distributed

vector RES. RES contains the residual vector at the improved solution to the linear

system. (Output)

202 Chapter 1: Linear Systems IMSL MATH LIBRARY

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving

the system each of the first two times by adding 0.2 to the second element.

 USE LFIDS_INT

 USE LFCDS_INT

 USE UMACH_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N

 PARAMETER (LDA=3, LDFACT=3, N=3)

 REAL A(LDA,LDA), B(N), RCOND, FACT(LDFACT,LDFACT), RES(N,3),&

 X(N,3)

!

! Set values for A and B

!

! A = (1.0 -3.0 2.0)

! (-3.0 10.0 -5.0)

! (2.0 -5.0 6.0)

!

! B = (1.0 -3.0 2.0)

!

 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

 DATA B/1.0, -3.0, 2.0/

! Factor the matrix A

 CALL LFCDS (A, FACT, RCOND)

! Print the estimated condition number

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Compute the solutions

 DO 10 I=1, 3

 CALL LFIDS (A, FACT, B, X(:,I), RES(:,I))

 B(2) = B(2) + .2E0

 10 CONTINUE

! Print solutions and residuals

 CALL WRRRN (‘The solution vectors are‘, X)

 CALL WRRRN (‘The residual vectors are‘, RES)

!

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F9.3)

 END

Output

RCOND = 0.001

L1 Condition number = 674.727

The solution vectors are

 1 2 3

IMSL MATH LIBRARY Chapter 1: Linear Systems 203

1 1.000 2.600 4.200

2 0.000 0.400 0.800

3 0.000 -0.200 -0.400

The residual vectors are

 1 2 3

1 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

ScaLAPACK Example

The same set of linear systems is solved successively as a distributed example. The right-hand-

side vector is perturbed after solving the system each of the first two times by adding 0.2 to the

second element. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter

11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are used here

for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the

local arrays.

 USE MPI_SETUP_INT

 USE LFIDS_INT

 USE LFCDS_INT

 USE UMACH_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, NOUT, DESCA(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL RCOND

 REAL, ALLOCATABLE :: A(:,:), B(:), X(:,:), RES(:,:), X0(:)

 REAL, ALLOCATABLE :: A0(:,:), FACT0(:,:), B0(:), RES0(:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N), X(N,3), RES(N,3))

! Set values for A and B

 A(1,:) = (/ 1.0, -3.0, 2.0/)

 A(2,:) = (/-3.0, 10.0, -5.0/)

 A(3,:) = (/ 2.0, -5.0, 6.0/)

!

 B = (/ 1.0, -3.0, 2.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA), FACT0(MXLDA,MXCOL), B0(MXLDA), &

204 Chapter 1: Linear Systems IMSL MATH LIBRARY

 RES0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Call the factorization routine

 CALL LFCDS (A0, FACT0, RCOND)

! Print the estimated condition number

 CALL UMACH (2, NOUT)

 IF(MP_RANK .EQ. 0) WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Set up the columns of the B

! matrix one at a time in X0

 DO 10 J=1, 3

 CALL SCALAPACK_MAP(B, DESCL, B0)

! Solve for the J-th column of X

 CALL LFIDS (A0, FACT0, B0, X0, RES0)

 CALL SCALAPACK_UNMAP(X0, DESCL, X(:,J))

 CALL SCALAPACK_UNMAP(RES0, DESCL, RES(:,J))

 IF(MP_RANK .EQ. 0) B(2) = B(2) + .2E0

 10 CONTINUE

! Print results.

! Only Rank=0 has the full arrays

 IF(MP_RANK.EQ.0) CALL WRRRN (‘The solution vectors are‘, X)

 IF(MP_RANK.EQ.0) CALL WRRRN (‘The residual vectors are‘, RES)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X, RES)

 DEALLOCATE(A0, B0, FACT0, RES0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F9.3)

 END

Output

RCOND = 0.001

L1 Condition number = 674.727

The solution vectors are

 1 2 3

1 1.000 2.600 4.200

2 0.000 0.400 0.800

3 0.000 -0.200 -0.400

The residual vectors are

 1 2 3

1 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

LFDDS

Computes the determinant of a real symmetric positive definite matrix given the R
T
R Cholesky

factorization of the matrix .

IMSL MATH LIBRARY Chapter 1: Linear Systems 205

Required Arguments

FACT — N by N matrix containing the R
T
 R factorization of the coefficient matrix A as output

from routine LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)

The value DET1 is normalized so that, 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)

The determinant is returned in the form, det(A) = DET1 * 10DET2.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDDS (FACT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDDS and D_LFDDS.

FORTRAN 77 Interface

Single: CALL LFDDS (N, FACT, LDFACT, DET1, DET2)

Double: The double precision name is DLFDDS.

Description

Routine LFDDS computes the determinant of a real symmetric positive definite coefficient matrix.

To compute the determinant, the coefficient matrix must first undergo an R
T
R factorization. This

may be done by calling either LFCDS or LFTDS. The formula det A = det R
T
 det R = (det R)

2
 is

used to compute the determinant. Since the determinant of a triangular matrix is the product of the

diagonal elements,

1
det

N

iii
R R

(The matrix R is stored in the upper triangle of FACT.)

LFDDS is based on the LINPACK routine SPODI; see Dongarra et al. (1979).

Example

The determinant is computed for a real positive definite 3 × 3 matrix.

206 Chapter 1: Linear Systems IMSL MATH LIBRARY

 USE LFDDS_INT

 USE LFTDS_INT

 USE UMACH_INT

! Declare variables

 INTEGER LDA, LDFACT, NOUT

 PARAMETER (LDA=3, LDFACT=3)

 REAL A(LDA,LDA), DET1, DET2, FACT(LDFACT,LDFACT)

!

! Set values for A

! A = (1.0 -3.0 2.0)

! (-3.0 20.0 -5.0)

! (2.0 -5.0 6.0)

!

 DATA A/1.0, -3.0, 2.0, -3.0, 20.0, -5.0, 2.0, -5.0, 6.0/

! Factor the matrix

 CALL LFTDS (A, FACT)

! Compute the determinant

 CALL LFDDS (FACT, DET1, DET2)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) DET1, DET2

!

99999 FORMAT (‘ The determinant of A is ‘,F6.3,‘ * 10**‘,F2.0)

 END

Output

The determinant of A is 2.100 * 10**1.

LINDS

Computes the inverse of a real symmetric positive definite matrix.

Required Arguments

A — N by N matrix containing the symmetric positive definite matrix to be inverted. (Input)

Only the upper triangle of A is referenced.

AINV — N by N matrix containing the inverse of A. (Output)

If A is not needed, A and AINV can share the same storage locations.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = size (A,2).

IMSL MATH LIBRARY Chapter 1: Linear Systems 207

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINDS (A, AINV [,…])

Specific: The specific interface names are S_LINDS and D_LINDS.

FORTRAN 77 Interface

Single: CALL LINDS (N, A, LDA, AINV, LDAINV)

Double: The double precision name is DLINDS.

ScaLAPACK Interface

Generic: CALL LINDS (A0, AINV0 [,…])

Specific: The specific interface names are S_LINDS and D_LINDS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LINDS computes the inverse of a real symmetric positive definite matrix. The underlying

code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation see

―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this

manual. LINDS first uses the routine LFCDS to compute an R
T
R factorization of the coefficient

matrix and to estimate the condition number of the matrix. LINRT is then used to compute R
-1

.

Finally A
-1

is computed using A
-1

 = R
-1

 R
-T

.

LINDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element.

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive

definite.

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in A.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2NDS/DL2NDS. The

reference is:

208 Chapter 1: Linear Systems IMSL MATH LIBRARY

CALL L2NDS (N, A, LDA, AINV, LDAINV, WK)

The additional argument is:

WK — Work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is not positive definite.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the symmetric positive definite matrix to be inverted. (Input)

AINV0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix AINV. AINV contains the inverse of the matrix A. (Output)

If A is not needed, A and AINV can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

The inverse is computed for a real positive definite 3 × 3 matrix.

 USE LINDS_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, LDAINV

 PARAMETER (LDA=3, LDAINV=3)

 REAL A(LDA,LDA), AINV(LDAINV,LDAINV)

!

! Set values for A

! A = (1.0 -3.0 2.0)

! (-3.0 10.0 -5.0)

! (2.0 -5.0 6.0)

!

 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

!

 CALL LINDS (A, AINV)

! Print results

 CALL WRRRN (‘AINV‘, AINV)

!

IMSL MATH LIBRARY Chapter 1: Linear Systems 209

 END

Output

 AINV

 1 2 3

1 35.00 8.00 -5.00

2 8.00 2.00 -1.00

3 -5.00 -1.00 1.00

ScaLAPACK Example

The inverse of the same 3 × 3 matrix is computed as a distributed example. SCALAPACK_MAP and

SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖) used to map and unmap

arrays to and from the processor grid. They are used here for brevity. DESCINIT is a

ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LINDS_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, LDFACT, N, DESCA(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL, ALLOCATABLE :: A(:,:), AINV(:,:)

 REAL, ALLOCATABLE :: A0(:,:), AINV0(:,:)

 PARAMETER (LDA=3, N=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), AINV(LDA,N))

! Set values for A

 A(1,:) = (/ 1.0, -3.0, 2.0/)

 A(2,:) = (/ -3.0, 10.0, -5.0/)

 A(3,:) = (/ 2.0, -5.0, 6.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), AINV0(MXLDA,MXCOL))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Call the routine to get the inverse

 CALL LINDS (A0, AINV0)

! Unmap the results from the distributed

! arrays back to a nondistributed array.

210 Chapter 1: Linear Systems IMSL MATH LIBRARY

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(AINV0, DESCA, AINV)

! Print results.

! Only Rank=0 has the solution, AINV.

 IF(MP_RANK.EQ.0) CALL WRRRN (‘AINV‘, AINV)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV)

 DEALLOCATE(A0, AINV0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 AINV

 1 2 3

1 35.00 8.00 -5.00

2 8.00 2.00 -1.00

3 -5.00 -1.00 1.00

LSASF

Solves a real symmetric system of linear equations with iterative refinement.

Required Arguments

A — N by N matrix containing the coefficient matrix of the symmetric linear system. (Input)

Only the upper triangle of A is referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IMSL MATH LIBRARY Chapter 1: Linear Systems 211

FORTRAN 90 Interface

Generic: CALL LSASF (A, B, X [,…])

Specific: The specific interface names are S_LSASF and D_LSASF.

FORTRAN 77 Interface

Single: CALL LSASF (N, A, LDA, B, X)

Double: The double precision name is DLSASF.

Description

Routine LSASF solves systems of linear algebraic equations having a real symmetric indefinite

coefficient matrix. It first uses the routine LFCSF to compute a U DU
T
 factorization of the

coefficient matrix and to estimate the condition number of the matrix. D is a block diagonal matrix

with blocks of order 1 or 2, and U is a matrix composed of the product of a permutation matrix

and a unit upper triangular matrix. The solution of the linear system is then found using the

iterative refinement routine LFISF.

LSASF fails if a block in D is singular or if the iterative refinement algorithm fails to converge.

These errors occur only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system. LSASF solves the

problem that is represented in the computer; however, this problem may differ from the problem

whose solution is desired.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2ASF/DL2ASF. The

reference is

CALL L2ASF (N, A, LDA, B, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — N × N work array containing information about the U DU
T

factorization of A on output. If A is not needed, A and FACT can share

the same storage location.

IPVT — Integer work vector of length N containing the pivoting information

for the factorization of A on output.

WK — Work vector of length N.

2. Informational errors

Type Code

212 Chapter 1: Linear Systems IMSL MATH LIBRARY

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2ASF the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSASF.

Additional memory allocation for FACT and option value restoration are done

automatically in LSASF. Users directly calling L2ASF can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSASF or L2ASF. Default values for the option are IVAL(*)

= 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSASF temporarily replaces IVAL(2) by IVAL(1). The

routine L2CSF computes the condition number if IVAL(2) = 2. Otherwise L2CSF

skips this computation. LSASF restores the option. Default values for the option

are IVAL(*) = 1, 2.

Example

A system of three linear equations is solved. The coefficient matrix has real symmetric form and

the right-hand-side vector b has three elements.

 USE LSASF_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3, N=3)

 REAL A(LDA,LDA), B(N), X(N)

!

! Set values for A and B

!

! A = (1.0 -2.0 1.0)

! (-2.0 3.0 -2.0)

! (1.0 -2.0 3.0)

!

! B = (4.1 -4.7 6.5)

!

 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/

 DATA B/4.1, -4.7, 6.5/

!

 CALL LSASF (A, B, X)

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 213

Output

 X

 1 2 3

-4.100 -3.500 1.200

LSLSF

Solves a real symmetric system of linear equations without iterative refinement .

Required Arguments

A — N by N matrix containing the coefficient matrix of the symmetric linear system. (Input)

Only the upper triangle of A is referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

 Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LSLSF (A, B, X [,…])

Specific: The specific interface names are S_LSLSF and D_LSLSF.

FORTRAN 77 Interface

Single: CALL LSLSF (N, A, LDA, B, X)

Double: The double precision name is DLSLSF.

214 Chapter 1: Linear Systems IMSL MATH LIBRARY

Description

Routine LSLSF solves systems of linear algebraic equations having a real symmetric indefinite

coefficient matrix. It first uses the routine LFCSF to compute a U DU
T
 factorization of the

coefficient matrix. D is a block diagonal matrix with blocks of order 1 or 2, and U is a matrix

composed of the product of a permutation matrix and a unit upper triangular matrix.

The solution of the linear system is then found using the routine LFSSF.

LSLSF fails if a block in D is singular. This occurs only if A either is singular or is very close to a

singular matrix.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LSF/DL2LSF. The

reference is:

CALL L2LSF (N, A, LDA, B, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — N × N work array containing information about the U DU
T

factorization of A on output. If A is not needed, A and FACT can share

the same storage locations.

IPVT — Integer work vector of length N containing the pivoting information

for the factorization of A on output.

WK — Work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine LSLSF the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLSF.

Additional memory allocation for FACT and option value restoration are done

automatically in LSLSF. Users directly calling LSLSF can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSLSF or LSLSF. Default values for the option are IVAL(*)

= 1, 16, 0, 1.

IMSL MATH LIBRARY Chapter 1: Linear Systems 215

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSLSF temporarily replaces IVAL(2) by IVAL(1). The

routine L2CSF computes the condition number if IVAL(2) = 2. Otherwise L2CSF

skips this computation. LSLSF restores the option. Default values for the option

are IVAL(*) = 1, 2.

Example

A system of three linear equations is solved. The coefficient matrix has real symmetric form and

the right-hand-side vector b has three elements.

 USE LSLSF_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3, N=3)

 REAL A(LDA,LDA), B(N), X(N)

!

! Set values for A and B

!

! A = (1.0 -2.0 1.0)

! (-2.0 3.0 -2.0)

! (1.0 -2.0 3.0)

!

! B = (4.1 -4.7 6.5)

!

 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/

 DATA B/4.1, -4.7, 6.5/

!

 CALL LSLSF (A, B, X)

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

 END

Output

 X

 1 2 3

-4.100 -3.500 1.200

LFCSF

Computes the U DU
T
 factorization of a real symmetric matrix and estimate its L1 condition

number.

216 Chapter 1: Linear Systems IMSL MATH LIBRARY

Required Arguments

A — N by N symmetric matrix to be factored. (Input)

Only the upper triangle of A is referenced.

FACT — N by N matrix containing information about the factorization of the symmetric

matrix A. (Output)

Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the

same storage locations.

IPVT — Vector of length N containing the pivoting information for the factorization.

(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCSF (A, FACT, IPVT, RCOND [,…])

Specific: The specific interface names are S_LFCSF and D_LFCSF.

FORTRAN 77 Interface

Single: CALL LFCSF (N, A, LDA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCSF.

Description

Routine LFCSF performs a U DU
T
 factorization of a real symmetric indefinite coefficient matrix.

It also estimates the condition number of the matrix. The U DU
T
 factorization is called the

diagonal pivoting factorization.

IMSL MATH LIBRARY Chapter 1: Linear Systems 217

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to

compute ||A
-1

||1, the condition number is only estimated. The estimation algorithm is the same as

used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system.

LFCSF fails if A is singular or very close to a singular matrix.

The U DU
T
 factors are returned in a form that is compatible with routines LFISF, LFSSF and

LFDSF. To solve systems of equations with multiple right-hand-side vectors, use LFCSF followed

by either LFISF or LFSSF called once for each right-hand side. The routine LFDSF can be called

to compute the determinant of the coefficient matrix after LFCSF has performed the factorization.

The underlying code is based on either LINPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CSF/DL2CSF. The

reference is:

CALL L2CSF (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK)

The additional argument is:

WK — Work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is algorithmically singular.

4 2 The input matrix is singular.

Example

The inverse of a 3 × 3 matrix is computed. LFCSF is called to factor the matrix and to check for

singularity or ill-conditioning. LFISF is called to determine the columns of the inverse.

 USE LFCSF_INT

 USE UMACH_INT

 USE LFISF_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3, N=3)

 INTEGER IPVT(N), NOUT

 REAL A(LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N), RES(N),&

 RCOND

!

! Set values for A

218 Chapter 1: Linear Systems IMSL MATH LIBRARY

!

! A = (1.0 -2.0 1.0)

! (-2.0 3.0 -2.0)

! (1.0 -2.0 3.0)

!

 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/

! Factor A and return the reciprocal

! condition number estimate

 CALL LFCSF (A, FACT, IPVT, RCOND)

! Print the estimate of the condition

! number

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

!

! matrix one at a time in RJ

 RJ = 0.E0

 DO 10 J=1, N

 RJ(J) = 1.0E0

! RJ is the J-th column of the identity

! matrix so the following LFISF

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFISF (A, FACT, IPVT, RJ, AINV(:,J), RES)

 RJ(J) = 0.0E0

 10 CONTINUE

! Print the inverse

 CALL WRRRN (‘AINV‘, AINV)

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.05

L1 Condition number < 40.0

 AINV

 1 2 3

1 -2.500 -2.000 -0.500

2 -2.000 -1.000 0.000

3 -0.500 0.000 0.500

LFTSF

Computes the U DU
T
 factorization of a real symmetric matrix.

IMSL MATH LIBRARY Chapter 1: Linear Systems 219

Required Arguments

A — N by N symmetric matrix to be factored. (Input)

Only the upper triangle of A is referenced.

FACT — N by N matrix containing information about the factorization of the symmetric

matrix A. (Output)

Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the

same storage locations.

IPVT — Vector of length N containing the pivoting information for the factorization.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTSF (A, FACT, IPVT [,…])

Specific: The specific interface names are S_LFTSF and D_LFTSF.

FORTRAN 77 Interface

Single: CALL LFTSF (N, A, LDA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTSF.

Description

Routine LFTSF performs a U DU
T
 factorization of a real symmetric indefinite coefficient matrix.

The U DU
T
 factorization is called the diagonal pivoting factorization.

LFTSF fails if A is singular or very close to a singular matrix.

The U DU
T
 factors are returned in a form that is compatible with routines LFISF, LFSSF and

LFDSF. To solve systems of equations with multiple right-hand-side vectors, use LFTSF followed

by either LFISF or LFSSF called once for each right-hand side. The routine LFDSF can be called

to compute the determinant of the coefficient matrix after LFTSF has performed the factorization.

220 Chapter 1: Linear Systems IMSL MATH LIBRARY

The underlying code is based on either LINPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

Informational error

Type Code

4 2 The input matrix is singular.

Example

The inverse of a 3 × 3 matrix is computed. LFTSF is called to factor the matrix and to check for

singularity. LFSSF is called to determine the columns of the inverse.

 USE LFTSF_INT

 USE LFSSF_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3, N=3)

 INTEGER IPVT(N)

 REAL A(LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N)

!

! Set values for A

! A = (1.0 -2.0 1.0)

! (-2.0 3.0 -2.0)

! (1.0 -2.0 3.0)

!

 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/

! Factor A

 CALL LFTSF (A, FACT, IPVT)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0E0

! RJ is the J-th column of the identity

! matrix so the following LFSSF

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFSSF (FACT, IPVT, RJ, AINV(:,J))

 RJ(J) = 0.0E0

 10 CONTINUE

! Print the inverse

 CALL WRRRN (‘AINV‘, AINV)

 END

Output

 AINV

 1 2 3

IMSL MATH LIBRARY Chapter 1: Linear Systems 221

1 -2.500 -2.000 -0.500

2 -2.000 -1.000 0.000

3 -0.500 0.000 0.500

LFSSF

Solves a real symmetric system of linear equations given the U DU
T
 factorization of the

coefficient matrix.

Required Arguments

FACT — N by N matrix containing the factorization of the coefficient matrix A as output from

routine LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)

Only the upper triangle of FACT is used.

IPVT — Vector of length N containing the pivoting information for the factorization of A as

output from routine LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of A exactly as specified in the dimension statement of the

calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFSSF (FACT, IPVT, B, X [,…])

Specific: The specific interface names are S_LFSSF and D_LFSSF.

FORTRAN 77 Interface

Single: CALL LFSSF (N, FACT, LDFACT, IPVT, B, X)

Double: The double precision name is DLFSSF.

222 Chapter 1: Linear Systems IMSL MATH LIBRARY

Description

Routine LFSSF computes the solution of a system of linear algebraic equations having a real

symmetric indefinite coefficient matrix.

To compute the solution, the coefficient matrix must first undergo a U DU
T
 factorization. This

may be done by calling either LFCSF or LFTSF.

LFSSF and LFISF both solve a linear system given its U DU
T
 factorization. LFISF generally takes

more time and produces a more accurate answer than LFSSF. Each iteration of the iterative

refinement algorithm used by LFISF calls LFSSF.

The underlying code is based on either LINPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Example

A set of linear systems is solved successively. LFTSF is called to factor the coefficient matrix.

LFSSF is called to compute the four solutions for the four right-hand sides. In this case the

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be

better to call LFCSF to perform the factorization, and LFISF to compute the solutions.

 USE LFSSF_INT

 USE LFTSF_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3, N=3)

 INTEGER IPVT(N)

 REAL A(LDA,LDA), B(N,4), X(N,4), FACT(LDA,LDA)

!

! Set values for A and B

!

! A = (1.0 -2.0 1.0)

! (-2.0 3.0 -2.0)

! (1.0 -2.0 3.0)

!

! B = (-1.0 3.6 -8.0 -9.4)

! (-3.0 -4.2 11.0 17.6)

! (-3.0 -5.2 -6.0 -23.4)

!

 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/

 DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,&

 -9.4, 17.6, -23.4/

! Factor A

 CALL LFTSF (A, FACT, IPVT)

! Solve for the four right-hand sides

 DO 10 I=1, 4

 CALL LFSSF (FACT, IPVT, B(:,I), X(:,I))

 10 CONTINUE

! Print results

 CALL WRRRN (‘X‘, X)

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 223

Output

 X

 1 2 3 4

1 10.00 2.00 1.00 0.00

2 5.00 -3.00 5.00 1.20

3 -1.00 -4.40 1.00 -7.00

LFISF

Uses iterative refinement to improve the solution of a real symmetric system of linear equations.

Required Arguments

A — N by N matrix containing the coefficient matrix of the symmetric linear system. (Input)

Only the upper triangle of A is referenced

FACT — N by N matrix containing the factorization of the coefficient matrix A as output from

routine LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)

Only the upper triangle of FACT is used.

IPVT — Vector of length N containing the pivoting information for the factorization of A as

output from routine LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

RES — Vector of length N containing the residual vector at the improved solution. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

224 Chapter 1: Linear Systems IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL LFISF (A, FACT, IPVT, B, X, RES [,…])

Specific: The specific interface names are S_LFISF and D_LFISF.

FORTRAN 77 Interface

Single: CALL LFISF (N, A, LDA, FACT, LDFACT, IPVT, B, X, RES)

Double: The double precision name is DLFISF.

Description

Routine LFISF computes the solution of a system of linear algebraic equations having a real

symmetric indefinite coefficient matrix. Iterative refinement is performed on the solution vector to

improve the accuracy. Usually almost all of the digits in the solution are accurate, even if the

matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo a U DU
T
 factorization. This

may be done by calling either LFCSF or LFTSF.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFISF and LFSSF both solve a linear system given its U DU
T
 factorization. LFISF generally takes

more time and produces a more accurate answer than LFSSF. Each iteration of the iterative

refinement algorithm used by LFISF calls LFSSF.

Comments

Informational error

Type Code

3 2 The input matrix is too ill-conditioned for iterative refinement to be

effective.

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving

the system each of the first two times by adding 0.2 to the second element.

 USE LFISF_INT

 USE UMACH_INT

 USE LFCSF_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (LDA=3, N=3)

 INTEGER IPVT(N), NOUT

 REAL A(LDA,LDA), B(N), X(N), FACT(LDA,LDA), RES(N), RCOND

!

! Set values for A and B

! A = (1.0 -2.0 1.0)

IMSL MATH LIBRARY Chapter 1: Linear Systems 225

! (-2.0 3.0 -2.0)

! (1.0 -2.0 3.0)

!

! B = (4.1 -4.7 6.5)

!

 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/

 DATA B/4.1, -4.7, 6.5/

! Factor A and compute the estimate

! of the reciprocal condition number

 CALL LFCSF (A, FACT, IPVT, RCOND)

! Print condition number

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Solve, then perturb right-hand side

 DO 10 I=1, 3

 CALL LFISF (A, FACT, IPVT, B, X, RES)

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

 CALL WRRRN (‘RES‘, RES, 1, N, 1)

 B(2) = B(2) + .20E0

 10 CONTINUE

!

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.035

L1 Condition number < 40.0

 X

 1 2 3

-4.100 -3.500 1.200

 RES

 1 2 3

-2.384E-07 -2.384E-07 0.000E+00

 X

 1 2 3

-4.500 -3.700 1.200

 RES

 1 2 3

-2.384E-07 -2.384E-07 0.000E+00

 X

 1 2 3

-4.900 -3.900 1.200

 RES

 1 2 3

-2.384E-07 -2.384E-07 0.000E+00

226 Chapter 1: Linear Systems IMSL MATH LIBRARY

LFDSF

Computes the determinant of a real symmetric matrix given the U DU
T
 factorization of the matrix.

Required Arguments

FACT — N by N matrix containing the factored matrix A as output from subroutine

LFTSF/DLFTSF or LFCSF/DLFCSF. (Input)

IPVT — Vector of length N containing the pivoting information for the U DU
T
 factorization

as output from routine LFTSF/DLFTSF or LFCSF/DLFCSF. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)

The value DET1 is normalized so that, 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)

The determinant is returned in the form, det(A) = DET1 * 10DET2.

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDSF (FACT, IPVT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDSF and D_LFDSF.

FORTRAN 77 Interface

Single: CALL LFDSF (N, FACT, LDFACT, IPVT, DET1, DET2)

Double: The double precision name is DLFDSF.

Description

Routine LFDSF computes the determinant of a real symmetric indefinite coefficient matrix. To

compute the determinant, the coefficient matrix must first undergo a U DU
T
 factorization. This

may be done by calling either LFCSF or LFTSF. Since det U = ±1, the formula

det A = det U det D det U
T
 = det D is used to compute the determinant. Next det D is computed as

the product of the determinants of its blocks.

IMSL MATH LIBRARY Chapter 1: Linear Systems 227

LFDSF is based on the LINPACK routine SSIDI; see Dongarra et al. (1979).

Example

The determinant is computed for a real symmetric 3 × 3 matrix.

 USE LFDSF_INT

 USE LFTSF_INT

 USE UMACH_INT

! Declare variables

 PARAMETER (LDA=3, N=3)

 INTEGER IPVT(N), NOUT

 REAL A(LDA,LDA), FACT(LDA,LDA), DET1, DET2

!

! Set values for A

! A = (1.0 -2.0 1.0)

! (-2.0 3.0 -2.0)

! (1.0 -2.0 3.0)

!

 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/

! Factor A

 CALL LFTSF (A, FACT, IPVT)

! Compute the determinant

 CALL LFDSF (FACT, IPVT, DET1, DET2)

! Print the results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) DET1, DET2

99999 FORMAT (‘ The determinant of A is ‘, F6.3, ‘ * 10**‘, F2.0)

 END

Output

The determinant of A is -2.000 * 10**0.

LSADH

Solves a Hermitian positive definite system of linear equations with iterative refinement.

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the Hermitian positive

definite linear system. (Input)

Only the upper triangle of A is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution of the linear system. (Output)

228 Chapter 1: Linear Systems IMSL MATH LIBRARY

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LSADH (A, B, X [,…])

Specific: The specific interface names are S_LSADH and D_LSADH.

FORTRAN 77 Interface

Single: CALL LSADH (N, A, LDA, B, X)

Double: The double precision name is DLSADH.

ScaLAPACK Interface

Generic: CALL LSADH (A0, B0, X0 [,…])

Specific: The specific interface names are S_LSADH and D_LSADH.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LSADH solves a system of linear algebraic equations having a complex Hermitian positive

definite coefficient matrix. It first uses the routine LFCDH to compute an R
H

 R Cholesky

factorization of the coefficient matrix and to estimate the condition number of the matrix. The

matrix R is upper triangular. The solution of the linear system is then found using the iterative

refinement routine LFIDH.

LSADH fails if any submatrix of R is not positive definite, if R has a zero diagonal element or if the

iterative refinement algorithm fails to converge. These errors occur only if A either is very close to

a singular matrix or is a matrix that is not positive definite.

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system. LSADH solves the

problem that is represented in the computer; however, this problem may differ from the problem

whose solution is desired.

IMSL MATH LIBRARY Chapter 1: Linear Systems 229

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending

upon which supporting libraries are used during linking. For a detailed explanation see ―Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2ADH/DL2ADH. The

reference is:

CALL L2ADH (N, A, LDA, B, X, FACT, WK)

The additional arguments are as follows:

FACT — N × N work array

containing the R

H
 R factorization of A on output.

WK — Complex work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.

4 2 The input matrix is not positive definite.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2ADH the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSADH.

Additional memory allocation for FACT and option value restoration are done

automatically in LSADH. Users directly calling L2ADH can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSADH or L2ADH. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1condition number is to be

computed. Routine LSADH temporarily replaces IVAL(2) by IVAL(1). The

routine L2CDH computes the condition number if IVAL(2) = 2. Otherwise L2CDH

skips this computation. LSADH restores the option. Default values for the option

are IVAL(*) = 1, 2.

230 Chapter 1: Linear Systems IMSL MATH LIBRARY

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — Complex MXLDA by MXCOL local matrix containing the local portions of the

distributed matrix A. A contains the coefficient matrix of the Hermitian positive

definite linear system. (Input)

Only the upper triangle of A is referenced.

B0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector X. X contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A system of five linear equations is solved. The coefficient matrix has complex positive definite

form and the right-hand-side vector b has five elements.

 USE LSADH_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=5, N=5)

 COMPLEX A(LDA,LDA), B(N), X(N)

!

! Set values for A and B

!

! A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)

! (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)

! (10.0+0.0i 0.0+4.0i 0.0+0.0i)

! (6.0+0.0i 1.0+1.0i)

! (9.0+0.0i)

!

! B = (1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i)

!

 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&

 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&

 (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/

 DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),&

 (25.0,16.0)/

!

 CALL LSADH (A, B, X)

! Print results

 CALL WRCRN (‘X‘, X, 1, N, 1)

!

IMSL MATH LIBRARY Chapter 1: Linear Systems 231

 END

Output

 X

 1 2 3 4

(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)

 5

(3.000, 2.000)

ScaLAPACK Example

The same system of five linear equations is solved as a distributed computing example. The

coefficient matrix has complex positive definite form and the right-hand-side vector b has five

elements. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used

to map and unmap arrays to and from the processor grid. They are used here for brevity.

DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LSADH_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, N, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 COMPLEX, ALLOCATABLE :: A(:,:), B(:), X(:)

 COMPLEX, ALLOCATABLE :: A0(:,:), B0(:), X0(:)

 PARAMETER (LDA=5, N=5)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N), X(N))

! Set values for A and B

 A(1,:) = (/(2.0, 0.0),(-1.0, 1.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/)

 A(2,:) = (/(0.0, 0.0),(4.0, 0.0),(1.0, 2.0),(0.0, 0.0),(0.0, 0.0)/)

 A(3,:) = (/(0.0, 0.0),(0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/)

 A(4,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/)

 A(5,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/)

!

 B = (/(1.0, 5.0),(12.0, -6.0),(1.0, -16.0),(-3.0, -3.0),(25.0, 16.0)/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA))

! Map input arrays to the processor grid

232 Chapter 1: Linear Systems IMSL MATH LIBRARY

 CALL SCALAPACK_MAP(A, DESCA, A0)

 CALL SCALAPACK_MAP(B, DESCX, B0)

! Solve the system of equations

 CALL LSADH (A0, B0, X0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK .EQ. 0)CALL WRCRN (‘X‘, X, 1, N, 1)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 X

 1 2 3 4

(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)

 5

(3.000, 2.000)

LSLDH

Solves a complex Hermitian positive definite system of linear equations without iterative

refinement.

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the Hermitian positive

definite linear system. (Input)

Only the upper triangle of A is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

IMSL MATH LIBRARY Chapter 1: Linear Systems 233

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LSLDH (A, B, X [,…])

Specific: The specific interface names are S_LSLDH and D_LSLDH.

FORTRAN 77 Interface

Single: CALL LSLDH (N, A, LDA, B, X)

Double: The double precision name is DLSLDH.

ScaLAPACK Interface

Generic: CALL LSLDH (A0, B0, X0 [,…])

Specific: The specific interface names are S_LSLDH and D_LSLDH.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LSLDH solves a system of linear algebraic equations having a complex Hermitian positive

definite coefficient matrix. The underlying code is based on either LINPACK , LAPACK, or

ScaLAPACK code depending upon which supporting libraries are used during linking. For a

detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the

Introduction section of this manual. LSLDH first uses the routine LFCDH to compute an R
H

 R

Cholesky factorization of the coefficient matrix and to estimate the condition number of the

matrix. The matrix R is upper triangular. The solution of the linear system is then found using the

routine LFSDH.

LSLDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive

definite.

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that

LSADH be used.

234 Chapter 1: Linear Systems IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LDH/ DL2LDH. The

reference is:

CALL L2LDH (N, A, LDA, B, X, FACT, WK)

The additional arguments are as follows:

FACT — N × N work array containing the R
H

 R factorization of A on output.

If A is not needed, A can share the same storage locations as FACT.

WK — Complex work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.

4 2 The input matrix is not positive definite.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2LDH the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLDH.

Additional memory allocation for FACT and option value restoration are done

automatically in LSLDH. Users directly calling L2LDH can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSLDH or L2LDH. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSLDH temporarily replaces IVAL(2) by IVAL(1). The

routine L2CDH computes the condition number if IVAL(2) = 2. Otherwise L2CDH

skips this computation. LSLDH restores the option. Default values for the option

are IVAL(*) = 1, 2.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

IMSL MATH LIBRARY Chapter 1: Linear Systems 235

A0 — Complex MXLDA by MXCOL local matrix containing the local portions of the

distributed matrix A. A contains the coefficient matrix of the Hermitian positive

definite linear system. (Input)

Only the upper triangle of A is referenced.

B0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector X. X contains the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

A system of five linear equations is solved. The coefficient matrix has complex Hermitian positive

definite form and the right-hand-side vector b has five elements.

 USE LSLDH_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=5, N=5)

 COMPLEX A(LDA,LDA), B(N), X(N)

!

! Set values for A and B

!

! A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)

! (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)

! (10.0+0.0i 0.0+4.0i 0.0+0.0i)

! (6.0+0.0i 1.0+1.0i)

! (9.0+0.0i)

!

! B = (1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i)

!

 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&

 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&

 (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/

 DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),&

 (25.0,16.0)/

!

 CALL LSLDH (A, B, X)

! Print results

 CALL WRCRN (‘X‘, X, 1, N, 1)

!

 END

236 Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

 X

 1 2 3 4

(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)

 5

(3.000, 2.000)

ScaLAPACK Example

The same system of five linear equations is solved as a distributed computing example. The

coefficient matrix has complex positive definite form and the right-hand-side vector b has five

elements. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used

to map and unmap arrays to and from the processor grid. They are used here for brevity.

DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LSLDH_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, N, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 COMPLEX, ALLOCATABLE :: A(:,:), B(:), X(:)

 COMPLEX, ALLOCATABLE :: A0(:,:), B0(:), X0(:)

 PARAMETER (LDA=5, N=5)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N), X(N))

! Set values for A and B

 A(1,:) = (/(2.0, 0.0),(-1.0, 1.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/)

 A(2,:) = (/(0.0, 0.0),(4.0, 0.0),(1.0, 2.0),(0.0, 0.0),(0.0, 0.0)/)

 A(3,:) = (/(0.0, 0.0),(0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/)

 A(4,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/)

 A(5,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/)

!

 B = (/(1.0, 5.0),(12.0, -6.0),(1.0, -16.0),(-3.0, -3.0),(25.0, 16.0)/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 CALL SCALAPACK_MAP(B, DESCX, B0)

IMSL MATH LIBRARY Chapter 1: Linear Systems 237

! Solve the system of equations

 CALL LSLDH (A0, B0, X0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK .EQ. 0)CALL WRCRN (‘X‘, X, 1, N, 1)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 X

 1 2 3 4

(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)

 5

(3.000, 2.000)

LFCDH

Computes the R
H

 R factorization of a complex Hermitian positive definite matrix and estimate its

L1 condition number.

Required Arguments

A — Complex N by N Hermitian positive definite matrix to be factored. (Input) Only the

upper triangle of A is referenced.

FACT — Complex N by N matrix containing the upper triangular matrix R of the factorization

of A in the upper triangle. (Output)

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share

the same storage locations.

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.

(Output)

238 Chapter 1: Linear Systems IMSL MATH LIBRARY

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT --- Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCDH (A, FACT, RCOND [,…])

Specific: The specific interface names are S_LFCDH and D_LFCDH.

FORTRAN 77 Interface

Single: CALL LFCDH (N, A, LDA, FACT, LDFACT, RCOND)

Double: The double precision name is DLFCDH.

ScaLAPACK Interface

Generic: CALL LFCDH (A0, FACT0, RCOND [,…])

Specific: The specific interface names are S_LFCDH and D_LFCDH.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFCDH computes an R
H

 R Cholesky factorization and estimates the condition number of a

complex Hermitian positive definite coefficient matrix. The matrix R is upper triangular.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to

compute ||A
-1

||1, the condition number is only estimated. The estimation algorithm is the same as

used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system.

IMSL MATH LIBRARY Chapter 1: Linear Systems 239

LFCDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive

definite.

The R
H

 R factors are returned in a form that is compatible with routines LFIDH, LFSDH and

LFDDH. To solve systems of equations with multiple right-hand-side vectors, use LFCDH followed

by either LFIDH or LFSDH called once for each right-hand side. The routine LFDDH can be called

to compute the determinant of the coefficient matrix after LFCDH has performed the factorization.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending

upon which supporting libraries are used during linking. For a detailed explanation see ―Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CDH/DL2CDH. The

reference is:

CALL L2CDH (N, A, LDA, FACT, LDFACT, RCOND, WK)

The additional argument is

WK — Complex work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is algorithmically singular.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a small

imaginary part.

4 4 The input matrix is not Hermitian.

4 2 The input matrix is not positive definite. It has a diagonal entry with an

imaginary part

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — Complex MXLDA by MXCOL local matrix containing the local portions of the

distributed matrix A. A contains the Hermitian positive definite matrix to be factored.

(Input)

Only the upper triangle of A is referenced.

FACT0 — Complex MXLDA by MXCOL local matrix containing the local portions of the

distributed matrix FACT. FACT contains the upper triangular matrix R of the

factorization of A in the upper triangle. (Output)

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share

the same storage locations.

240 Chapter 1: Linear Systems IMSL MATH LIBRARY

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

The inverse of a 5 × 5 Hermitian positive definite matrix is computed. LFCDH is called to factor

the matrix and to check for nonpositive definiteness or ill-conditioning. LFIDH is called to

determine the columns of the inverse.

 USE LFCDH_INT

 USE LFIDH_INT

 USE UMACH_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NOUT

 PARAMETER (LDA=5, LDFACT=5, N=5)

 REAL RCOND

 COMPLEX A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT),&

 RES(N), RJ(N)

!

! Set values for A

!

! A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)

! (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)

! (10.0+0.0i 0.0+4.0i 0.0+0.0i)

! (6.0+0.0i 1.0+1.0i)

! (9.0+0.0i)

!

 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&

 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&

 (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/

! Factor the matrix A

 CALL LFCDH (A, FACT, RCOND)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = (0.0E0, 0.0E0)

 DO 10 J=1, N

 RJ(J) = (1.0E0,0.0E0)

! RJ is the J-th column of the identity

! matrix so the following LFIDH

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFIDH (A, FACT, RJ, AINV(:,J), RES)

 RJ(J) = (0.0E0,0.0E0)

 10 CONTINUE

! Print the results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

 CALL WRCRN (‘AINV‘, AINV)

!

IMSL MATH LIBRARY Chapter 1: Linear Systems 241

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.075

L1 Condition number < 25.0

 AINV

 1 2 3 4

1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)

2 (0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)

3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)

4 (-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)

5 (0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)

 5

1 (0.0092,-0.0046)

2 (0.0138, 0.0046)

3 (-0.0138, 0.0138)

4 (-0.0288,-0.0288)

5 (0.1175, 0.0000)

ScaLAPACK Example

The inverse of the same 5 × 5 Hermitian positive definite matrix in the preceding example is

computed as a distributed computing example. LFCDH is called to factor the matrix and to check

for nonpositive definiteness or ill-conditioning. LFIDH (page 187) is called to determine the

columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see

Utilities) used to map and unmap arrays to and from the processor grid. They are used here for

brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local

arrays.

 USE MPI_SETUP_INT

 USE LFCDH_INT

 USE LFIDH_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, NOUT, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL RCOND

 COMPLEX, ALLOCATABLE :: A(:,:), AINV(:,:), RJ(:), RJ0(:)

 COMPLEX, ALLOCATABLE :: A0(:,:), FACT0(:,:), RES0(:), X0(:)

 PARAMETER (LDA=5, N=5)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), AINV(LDA,N))

! Set values for A and B

 A(1,:) = (/(2.0, 0.0),(-1.0, 1.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/)

 A(2,:) = (/(0.0, 0.0),(4.0, 0.0),(1.0, 2.0),(0.0, 0.0),(0.0, 0.0)/)

 A(3,:) = (/(0.0, 0.0),(0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/)

 A(4,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/)

242 Chapter 1: Linear Systems IMSL MATH LIBRARY

 A(5,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), &

 RJ0(MXLDA), RES0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Factor the matrix A

 CALL LFCDH (A0, FACT0, RCOND)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = (0.0E0, 0.0E0)

 DO 10 J=1, N

 RJ(J) = (1.0E0,0.0E0)

 CALL SCALAPACK_MAP(RJ, DESCX, RJ0)

! RJ is the J-th column of the identity

! matrix so the following LFIDH

! reference solves for the J-th column of

! the inverse of A

 CALL LFIDH (A0, FACT0, RJ0, X0, RES0)

! Unmap the results from the distributed

! array back to a non-distributed array

 CALL SCALAPACK_UNMAP(X0, DESCX, AINV(:,J))

 RJ(J) = (0.0E0,0.0E0)

 10 CONTINUE

! Print the results.

! After the unmap, only Rank=0 has the full

! array.

 IF(MP_RANK .EQ. 0) THEN

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

 CALL WRCRN (‘AINV‘, AINV)

 ENDIF

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV)

 DEALLOCATE(A0, FACT0, RJ, RJ0, RES0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.075

L1 Condition number < 25.0

IMSL MATH LIBRARY Chapter 1: Linear Systems 243

 AINV

 1 2 3 4

1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)

2 (0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)

3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)

4 (-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)

5 (0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)

 5

1 (0.0092,-0.0046)

2 (0.0138, 0.0046)

3 (-0.0138, 0.0138)

4 (-0.0288,-0.0288)

5 (0.1175, 0.0000)

LFTDH

Computes the R
H

R factorization of a complex Hermitian positive definite matrix.

Required Arguments

A — Complex N by N Hermitian positive definite matrix to be factored. (Input) Only the

upper triangle of A is referenced.

FACT — Complex N by N matrix containing the upper triangular matrix R of the factorization

of A in the upper triangle. (Output)

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share

the same storage locations.

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTDH (A, FACT [,…])

244 Chapter 1: Linear Systems IMSL MATH LIBRARY

Specific: The specific interface names are S_LFTDH and D_LFTDH.

FORTRAN 77 Interface

Single: CALL LFTDH (N, A, LDA, FACT, LDFACT)

Double: The double precision name is DLFTDH.

ScaLAPACK Interface

Generic: CALL LFTDH (A0, FACT0 [,…])

Specific: The specific interface names are S_LFTDH and D_LFTDH.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFTDH computes an R
H

 R Cholesky factorization of a complex Hermitian positive definite

coefficient matrix. The matrix R is upper triangular.

LFTDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive

definite.

The R
H

 R factors are returned in a form that is compatible with routines LFIDH, LFSDH and

LFDDH. To solve systems of equations with multiple right-hand-side vectors, use LFCDH followed

by either LFIDH or LFSDH called once for each right-hand side. The IMSL routine LFDDH can be

called to compute the determinant of the coefficient matrix after LFCDH has performed the

factorization.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending

upon which supporting libraries are used during linking. For a detailed explanation see ―Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

Informational errors

Type Code

3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.

4 2 The input matrix is not positive definite.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

IMSL MATH LIBRARY Chapter 1: Linear Systems 245

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — Complex MXLDA by MXCOL local matrix containing the local portions of the

distributed matrix A. A contains the Hermitian positive definite matrix to be factored.

(Input)

Only the upper triangle of A is referenced.

FACT0 — Complex MXLDA by MXCOL local matrix containing the local portions of the

distributed matrix FACT. FACT contains the upper triangular matrix R of the

factorization of A in the upper triangle. (Output)

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share

the same storage locations.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

The inverse of a 5 × 5 matrix is computed. LFTDH is called to factor the matrix and to check for

nonpositive definiteness. LFSDH is called to determine the columns of the inverse.

 USE LFTDH_INT

 USE LFSDH_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N

 PARAMETER (LDA=5, LDFACT=5, N=5)

 COMPLEX A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N)

!

! Set values for A

!

! A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)

! (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)

! (10.0+0.0i 0.0+4.0i 0.0+0.0i)

! (6.0+0.0i 1.0+1.0i)

! (9.0+0.0i)

!

 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&

 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&

 (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/

! Factor the matrix A

 CALL LFTDH (A, FACT)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = (0.0E0,0.0E0)

 DO 10 J=1, N

 RJ(J) = (1.0E0,0.0E0)

! RJ is the J-th column of the identity

! matrix so the following LFSDH

! reference places the J-th column of

246 Chapter 1: Linear Systems IMSL MATH LIBRARY

! the inverse of A in the J-th column

! of AINV

 CALL LFSDH (FACT, RJ, AINV(:,J))

 RJ(J) = (0.0E0,0.0E0)

 10 CONTINUE

! Print the results

 CALL WRCRN (‘AINV‘, AINV, ITRING=1)

!

 END

Output

 AINV

 1 2 3 4

1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)

2 (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)

3 (0.1797, 0.0000) (0.0000,-0.1244)

4 (0.2592, 0.0000)

 5

1 (0.0092,-0.0046)

2 (0.0138, 0.0046)

3 (-0.0138, 0.0138)

4 (-0.0288,-0.0288)

5 (0.1175, 0.0000)

ScaLAPACK Example

The inverse of the same 5 × 5 Hermitian positive definite matrix in the preceding example is

computed as a distributed computing example. LFTDH is called to factor the matrix and to check

for nonpositive definiteness. LFSDH (page 192) is called to determine the columns of the inverse.

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map

and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a

ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LFTDH_INT

 USE LFSDH_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 COMPLEX, ALLOCATABLE :: A(:,:), AINV(:,:), RJ(:), RJ0(:)

 COMPLEX, ALLOCATABLE :: A0(:,:), FACT0(:,:), X0(:)

 PARAMETER (LDA=5, N=5)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), AINV(LDA,N))

! Set values for A and B

IMSL MATH LIBRARY Chapter 1: Linear Systems 247

 A(1,:) = (/(2.0, 0.0),(-1.0, 1.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/)

 A(2,:) = (/(0.0, 0.0),(4.0, 0.0),(1.0, 2.0),(0.0, 0.0),(0.0, 0.0)/)

 A(3,:) = (/(0.0, 0.0),(0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/)

 A(4,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/)

 A(5,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), &

 RJ0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Factor the matrix A

 CALL LFTDH (A0, FACT0)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = (0.0E0, 0.0E0)

 DO 10 J=1, N

 RJ(J) = (1.0E0,0.0E0)

 CALL SCALAPACK_MAP(RJ, DESCX, RJ0)

! RJ is the J-th column of the identity

! matrix so the following LFIDH

! reference solves for the J-th column of

! the inverse of A

 CALL LFSDH (FACT0, RJ0, X0)

! Unmap the results from the distributed

! array back to a non-distributed array

 CALL SCALAPACK_UNMAP(X0, DESCX, AINV(:,J))

 RJ(J) = (0.0E0,0.0E0)

 10 CONTINUE

! Print the results.

! After the unmap, only Rank=0 has the full

! array.

 IF(MP_RANK .EQ. 0) CALL WRCRN (‘AINV‘, AINV)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV)

 DEALLOCATE(A0, FACT0, RJ, RJ0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 AINV

 1 2 3 4

1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)

2 (0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)

3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)

248 Chapter 1: Linear Systems IMSL MATH LIBRARY

4 (-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)

5 (0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)

 5

1 (0.0092,-0.0046)

2 (0.0138, 0.0046)

3 (-0.0138, 0.0138)

6 (-0.0288,-0.0288)

7 (0.1175, 0.0000)

LFSDH

Solves a complex Hermitian positive definite system of linear equations given the R
H

 R

factorization of the coefficient matrix.

Required Arguments

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as

output from routine LFCDH/DLFCDH or LFTDH/DLFTDH. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFSDH (FACT, B, X [,…])

Specific: The specific interface names are S_LFSDH and D_LFSDH.

FORTRAN 77 Interface

Single: CALL LFSDH (N, FACT, LDFACT, B, X)

IMSL MATH LIBRARY Chapter 1: Linear Systems 249

Double: The double precision name is DLFSDH.

ScaLAPACK Interface

Generic: CALL LFSDH (FACT0, B0, X0 [,…])

Specific: The specific interface names are S_LFSDH and D_LFSDH.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFSDH computes the solution for a system of linear algebraic equations having a complex

Hermitian positive definite coefficient matrix. To compute the solution, the coefficient matrix

must first undergo an R
H

 R factorization. This may be done by calling either LFCDH or LFTDH. R is

an upper triangular matrix.

The solution to Ax = b is found by solving the triangular systems R
H

 y = b and Rx = y.

LFSDH and LFIDH both solve a linear system given its R
H

 R factorization. LFIDH generally takes

more time and produces a more accurate answer than LFSDH. Each iteration of the iterative

refinement algorithm used by LFIDH calls LFSDH.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending

upon which supporting libraries are used during linking. For a detailed explanation see

―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this

manual.

Comments

Informational error

Type Code

4 1 The input matrix is singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

FACT0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix FACT as output from routine LFCDH/DLFCDH or LFTDH/DLFTDH.

FACT contains the factorization of the matrix A. (Input)

B0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector X. X contains the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

250 Chapter 1: Linear Systems IMSL MATH LIBRARY

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (Utilities) has been

made. See the ScaLAPACK Example below.

Example

A set of linear systems is solved successively. LFTDH is called to factor the coefficient matrix.

LFSDH is called to compute the four solutions for the four right-hand sides. In this case, the

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be

better to call LFCDH to perform the factorization, and LFIDH to compute the solutions.

 USE LFSDH_INT

 USE LFTDH_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N

 PARAMETER (LDA=5, LDFACT=5, N=5)

 COMPLEX A(LDA,LDA), B(N,3), FACT(LDFACT,LDFACT), X(N,3)

! Set values for A and B

!

! A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)

! (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)

! (10.0+0.0i 0.0+4.0i 0.0+0.0i)

! (6.0+0.0i 1.0+1.0i)

! (9.0+0.0i)

!

! B = (3.0+3.0i 4.0+0.0i 29.0-9.0i)

! (5.0-5.0i 15.0-10.0i -36.0-17.0i)

! (5.0+4.0i -12.0-56.0i -15.0-24.0i)

! (9.0+7.0i -12.0+10.0i -23.0-15.0i)

! (-22.0+1.0i 3.0-1.0i -23.0-28.0i)

 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&

 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&

 (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/

 DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0),&

 (4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.0,10.0),&

 (3.0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),&

 (-23.0,-15.0), (-23.0,-28.0)/

! Factor the matrix A

 CALL LFTDH (A, FACT)

! Compute the solutions

 DO 10 I=1, 3

 CALL LFSDH (FACT, B(:,I), X(:,I))

 10 CONTINUE

! Print solutions

 CALL WRCRN (‘X‘, X)

!

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 251

Output

 X

 1 2 3

1 (1.00, 0.00) (3.00, -1.00) (11.00, -1.00)

2 (1.00, -2.00) (2.00, 0.00) (-7.00, 0.00)

3 (2.00, 0.00) (-1.00, -6.00) (-2.00, -3.00)

4 (2.00, 3.00) (2.00, 1.00) (-2.00, -3.00)

5 (-3.00, 0.00) (0.00, 0.00) (-2.00, -3.00)

ScaLAPACK Example

The same set of linear systems as in in the preceding example is solved successively as a

distributed computing example. LFTDH is called to factor the matrix. LFSDH is called to compute

the four solutions for the four right-hand sides. In this case, the coefficient matrix is assumed to be

well-conditioned and correctly scaled. Otherwise, it would be better to call LFCDH to perform the

factorization, and LFIDH to compute the solutions.

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map

and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a

ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LFTDH_INT

 USE LFSDH_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 COMPLEX, ALLOCATABLE :: A(:,:), B(:,:), B0(:), X(:,:)

 COMPLEX, ALLOCATABLE :: A0(:,:), FACT0(:,:), X0(:)

 PARAMETER (LDA=5, N=5)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(LDA,3), X(LDA,3))

! Set values for A and B

 A(1,:) = (/(2.0, 0.0),(-1.0, 1.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/)

 A(2,:) = (/(0.0, 0.0),(4.0, 0.0),(1.0, 2.0),(0.0, 0.0),(0.0, 0.0)/)

 A(3,:) = (/(0.0, 0.0),(0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/)

 A(4,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/)

 A(5,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/)

!

 B(1,:) = (/(3.0, 3.0), (4.0, 0.0), (29.0, -9.0)/)

 B(2,:) = (/(5.0, -5.0), (15.0,-10.0), (-36.0,-17.0)/)

 B(3,:) = (/(5.0, 4.0), (-12.0,-56.0), (-15.0,-24.0)/)

 B(4,:) = (/(9.0, 7.0), (-12.0, 10.0), (-23.0,-15.0)/)

 B(5,:) = (/(-22.0,1.0), (3.0, -1.0), (-23.0,-28.0)/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

252 Chapter 1: Linear Systems IMSL MATH LIBRARY

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), &

 B0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Factor the matrix A

 CALL LFTDH (A0, FACT0)

! Compute the solutions

 DO 10 J=1, 3

 CALL SCALAPACK_MAP(B(:,J), DESCX, B0)

 CALL LFSDH (FACT0, B0, X0)

! Unmap the results from the distributed

! array back to a non-distributed array

 CALL SCALAPACK_UNMAP(X0, DESCX, X(:,J))

 10 CONTINUE

! Print the results.

! After the unmap, only Rank=0 has the full

! array.

 IF(MP_RANK .EQ. 0) CALL WRCRN (‘X‘, X)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, FACT0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 X

 1 2 3

1 (1.00, 0.00) (3.00, -1.00) (11.00, -1.00)

2 (1.00, -2.00) (2.00, 0.00) (-7.00, 0.00)

3 (2.00, 0.00) (-1.00, -6.00) (-2.00, -3.00)

4 (2.00, 3.00) (2.00, 1.00) (-2.00, -3.00)

5 (-3.00, 0.00) (0.00, 0.00) (-2.00, -3.00)

LFIDH

Uses iterative refinement to improve the solution of a complex Hermitian positive definite system

of linear equations.

IMSL MATH LIBRARY Chapter 1: Linear Systems 253

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the linear system. (Input)

Only the upper triangle of A is referenced.

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as

output from routine LFCDH/DLFCDH or LFTDH/DLFTDH. (Input)

Only the upper triangle of FACT is used.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution. (Output)

RES — Complex vector of length N containing the residual vector at the improved solution.

(Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFIDH (A, FACT, B, X, RES [,…])

Specific: The specific interface names are S_LFIDH and D_LFIDH.

FORTRAN 77 Interface

Single: CALL LFIDH (N, A, LDA, FACT, LDFACT, B, X, RES)

Double: The double precision name is DLFIDH.

ScaLAPACK Interface

Generic: CALL LFIDH (A0, FACT0, B0, X0, RES0 [,…])

Specific: The specific interface names are S_LFIDH and D_LFIDH.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

254 Chapter 1: Linear Systems IMSL MATH LIBRARY

Description

Routine LFIDH computes the solution of a system of linear algebraic equations having a complex

Hermitian positive definite coefficient matrix. Iterative refinement is performed on the solution

vector to improve the accuracy. Usually almost all of the digits in the solution are accurate, even if

the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an R
H

 R factorization. This may

be done by calling either LFCDH or LFTDH.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIDH and LFSDH both solve a linear system given its R
H

 R factorization. LFIDH generally takes

more time and produces a more accurate answer than LFSDH. Each iteration of the iterative

refinement algorithm used by LFIDH calls LFSDH.

Comments

Informational error

Type Code

3 3 The input matrix is too ill-conditioned for iterative refinement to be

effective.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix A. A contains the coefficient matrix of the linear system. (Input)

Only the upper triangle of A is referenced.

FACT0 — MXLDA by MXCOL complex local matrix containing the local portions of the

distributed matrix FACT as output from routine LFCDH or LFTDH. FACT contains the

factorization of the matrix A. (Input)

Only the upper triangle of FACT is referenced.

B0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MXLDA containing the local portions of the distributed

vector X. X contains the solution to the linear system. (Output)

RES0 — Complex local vector of length MXLDA containing the local portions of the

distributed vector RES. RES contains the residual vector at the improved solution to the

linear system. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call to

SCALAPACK_GETDIM (Utilities) after a call to SCALAPACK_SETUP

(Chapter 11, Utilities) has been made. See the ScaLAPACK Example below.

IMSL MATH LIBRARY Chapter 1: Linear Systems 255

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed by adding

(1 + i)/2 to the second element after each call to LFIDH.

 USE LFIDH_INT

 USE LFCDH_INT

 USE UMACH_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N

 PARAMETER (LDA=5, LDFACT=5, N=5)

 REAL RCOND

 COMPLEX A(LDA,LDA), B(N), FACT(LDFACT,LDFACT), RES(N,3), X(N,3)

!

! Set values for A and B

!

! A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)

! (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)

! (10.0+0.0i 0.0+4.0i 0.0+0.0i)

! (6.0+0.0i 1.0+1.0i)

! (9.0+0.0i)

!

! B = (3.0+3.0i 5.0-5.0i 5.0+4.0i 9.0+7.0i -22.0+1.0i)

!

 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&

 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&

 (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/

 DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/

! Factor the matrix A

 CALL LFCDH (A, FACT, RCOND)

! Print the estimated condition number

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Compute the solutions, then perturb B

 DO 10 I=1, 3

 CALL LFIDH (A, FACT, B, X(:,I), RES(:,I))

 B(2) = B(2) + (0.5E0,0.5E0)

 10 CONTINUE

! Print solutions and residuals

 CALL WRCRN (‘X‘, X)

 CALL WRCRN (‘RES‘, RES)

!

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.07

L1 Condition number < 25.0

 X

 1 2 3

1 (1.000, 0.000) (1.217, 0.000) (1.433, 0.000)

2 (1.000,-2.000) (1.217,-1.783) (1.433,-1.567)

3 (2.000, 0.000) (1.910, 0.030) (1.820, 0.060)

256 Chapter 1: Linear Systems IMSL MATH LIBRARY

4 (2.000, 3.000) (1.979, 2.938) (1.959, 2.876)

5 (-3.000, 0.000) (-2.991, 0.005) (-2.982, 0.009)

 RES

 1 2 3

1 (1.192E-07, 0.000E+00) (6.592E-08, 1.686E-07) (1.318E-07, 2.010E-14)

2 (1.192E-07,-2.384E-07) (-5.329E-08,-5.329E-08) (1.318E-07,-2.258E-07)

3 (2.384E-07, 8.259E-08) (2.390E-07,-3.309E-08) (2.395E-07, 1.015E-07)

4 (-2.384E-07, 2.814E-14) (-8.240E-08,-8.790E-09) (-1.648E-07,-1.758E-08)

5 (-2.384E-07,-1.401E-08) (-2.813E-07, 6.981E-09) (-3.241E-07,-2.795E-08)

ScaLAPACK Example

As in the preceding example, a set of linear systems is solved successively as a distributed

computing example. The right-hand-side vector is perturbed by adding (1 + i)/2 to the second

element after each call to LFIDH. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility

routines (see Utilities) used to map and unmap arrays to and from the processor grid. They are

used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors

for the local arrays.

 USE MPI_SETUP_INT

 USE LFCDH_INT

 USE LFIDH_INT

 USE UMACH_INT

 USE WRCRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER J, LDA, N, NOUT, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

 REAL RCOND

 COMPLEX, ALLOCATABLE :: A(:,:), B(:), B0(:), RES(:,:), X(:,:)

 COMPLEX, ALLOCATABLE :: A0(:,:), FACT0(:,:), X0(:), RES0(:)

 PARAMETER (LDA=5, N=5)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N), RES(N,3), X(N,3))

! Set values for A and B

 A(1,:) = (/(2.0, 0.0),(-1.0, 1.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/)

 A(2,:) = (/(0.0, 0.0),(4.0, 0.0),(1.0, 2.0),(0.0, 0.0),(0.0, 0.0)/)

 A(3,:) = (/(0.0, 0.0),(0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/)

 A(4,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/)

 A(5,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/)

!

 B = (/(3.0, 3.0),(5.0,-5.0),(5.0, 4.0),(9.0, 7.0),(-22.0,1.0)/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

IMSL MATH LIBRARY Chapter 1: Linear Systems 257

 CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), &

 B0(MXLDA), RES0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Factor the matrix A

 CALL LFCDH (A0, FACT0, RCOND)

! Print the estimated condition number

 IF(MP_RANK .EQ. 0) THEN

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

 ENDIF

! Compute the solutions

 DO 10 J=1, 3

 CALL SCALAPACK_MAP(B, DESCX, B0)

 CALL LFIDH (A0, FACT0, B0, X0, RES0)

! Unmap the results from the distributed

! array back to a non-distributed array

 CALL SCALAPACK_UNMAP(X0, DESCX, X(:,J))

 CALL SCALAPACK_UNMAP(RES0, DESCX, RES(:,J))

 IF(MP_RANK .EQ. 0) B(2) = B(2) + (0.5E0, 0.5E0)

 10 CONTINUE

! Print the results.

! After the unmap, only Rank=0 has the full

! array.

 IF(MP_RANK .EQ. 0) THEN

 CALL WRCRN (‘X‘, X)

 CALL WRCRN (‘RES‘, RES)

 ENDIF

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, RES, X)

 DEALLOCATE(A0, B0, FACT0, RES0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.07

L1 Condition number < 25.0

 X

 1 2 3

1 (1.000, 0.000) (1.217, 0.000) (1.433, 0.000)

2 (1.000,-2.000) (1.217,-1.783) (1.433,-1.567)

3 (2.000, 0.000) (1.910, 0.030) (1.820, 0.060)

4 (2.000, 3.000) (1.979, 2.938) (1.959, 2.876)

5 (-3.000, 0.000) (-2.991, 0.005) (-2.982, 0.009)

 RES

 1 2 3

1 (1.192E-07, 0.000E+00) (6.592E-08, 1.686E-07) (1.318E-07, 2.010E-14)

258 Chapter 1: Linear Systems IMSL MATH LIBRARY

2 (1.192E-07,-2.384E-07) (-5.329E-08,-5.329E-08) (1.318E-07,-2.258E-07)

3 (2.384E-07, 8.259E-08) (2.390E-07,-3.309E-08) (2.395E-07, 1.015E-07)

4 (-2.384E-07, 2.814E-14) (-8.240E-08,-8.790E-09) (-1.648E-07,-1.758E-08)

5 (-2.384E-07,-1.401E-08) (-2.813E-07, 6.981E-09) (-3.241E-07,-2.795E-08)

LFDDH

Computes the determinant of a complex Hermitian positive definite matrix given the R
H

R

Cholesky factorization of the matrix.

Required Arguments

FACT — Complex N by N matrix containing the R
H

R factorization of the coefficient matrix A

as output from routine LFCDH/DLFCDH or LFTDH/DLFTDH. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)

The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)

The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDDH (FACT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDDH and D_LFDDH.

FORTRAN 77 Interface

Single: CALL LFDDH (N, FACT, LDFACT, DET1, DET2)

Double: The double precision name is DLFDDH.

Description

Routine LFDDH computes the determinant of a complex Hermitian positive definite coefficient

matrix. To compute the determinant, the coefficient matrix must first undergo an R
H

 R

factorization. This may be done by calling either LFCDH or LFTDH. The formula det A = det R
H

 det

IMSL MATH LIBRARY Chapter 1: Linear Systems 259

R = (det R)
2
 is used to compute the determinant. Since the determinant of a triangular matrix is the

product of the diagonal elements,

1
det

N

iii
R R

(The matrix R is stored in the upper triangle of FACT.)

LFDDH is based on the LINPACK routine CPODI; see Dongarra et al. (1979).

Example

The determinant is computed for a complex Hermitian positive definite 3 × 3 matrix.

 USE LFDDH_INT

 USE LFTDH_INT

 USE UMACH_INT

! Declare variables

 INTEGER LDA, LDFACT, NOUT

 PARAMETER (LDA=3, LDFACT=3)

 REAL DET1, DET2

 COMPLEX A(LDA,LDA), FACT(LDFACT,LDFACT)

!

! Set values for A

!

! A = (6.0+0.0i 1.0-1.0i 4.0+0.0i)

! (1.0+1.0i 7.0+0.0i -5.0+1.0i)

! (4.0+0.0i -5.0-1.0i 11.0+0.0i)

!

 DATA A /(6.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (7.0,0.0),&

 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (11.0,0.0)/

! Factor the matrix

 CALL LFTDH (A, FACT)

! Compute the determinant

 CALL LFDDH (FACT, DET1, DET2)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) DET1, DET2

!

99999 FORMAT (‘ The determinant of A is ‘,F6.3,‘ * 10**‘,F2.0)

 END

Output

The determinant of A is 1.400 * 10**2.

LSAHF

Solves a complex Hermitian system of linear equations with iterative refinement.

260 Chapter 1: Linear Systems IMSL MATH LIBRARY

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.

(Input)

Only the upper triangle of A is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LSAHF (A, B, X [,…])

Specific: The specific interface names are S_LSAHF and D_LSAHF.

FORTRAN 77 Interface

Single: CALL LSAHF (N, A, LDA, B, X)

Double: The double precision name is DLSAHF.

Description

Routine LSAHF solves systems of linear algebraic equations having a complex Hermitian

indefinite coefficient matrix. It first uses the routine LFCHF to compute a U DU
H

factorization of

the coefficient matrix and to estimate the condition number of the matrix. D is a block diagonal

matrix with blocks of order 1 or 2 and U is a matrix composed of the product of a permutation

matrix and a unit upper triangular matrix. The solution of the linear system is then found using the

iterative refinement routine LFIHF.

LSAHF fails if a block in D is singular or if the iterative refinement algorithm fails to converge.

These errors occur only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system. LSAHF solves the

problem that is represented in the computer; however, this problem may differ from the problem

whose solution is desired.

IMSL MATH LIBRARY Chapter 1: Linear Systems 261

Comments

1. Workspace may be explicitly provided, if desired, by use of L2AHF/DL2AHF. The

reference is:

CALL L2AHF (N, A, LDA, B, X, FACT, IPVT, CWK)

The additional arguments are as follows:

FACT — Complex work vector of length N
2
 containing information about the

U DU
H

 factorization of A on output.

IPVT — Integer work vector of length N containing the pivoting information

for the factorization of A on output.

CWK — Complex work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is algorithmically singular.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.

4 2 The input matrix singular.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2AHF the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSAHF.

Additional memory allocation for FACT and option value restoration are done

automatically in LSAHF. Users directly calling L2AHF can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSAHF or L2AHF. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSAHF temporarily replaces IVAL(2) by IVAL(1). The

routine L2CHF computes the condition number if IVAL(2) = 2. Otherwise L2CHF

skips this computation. LSAHF restores the option. Default values for the option

are

IVAL(*) = 1, 2.

262 Chapter 1: Linear Systems IMSL MATH LIBRARY

Example

A system of three linear equations is solved. The coefficient matrix has complex Hermitian form

and the right-hand-side vector b has three elements.

 USE LSAHF_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

 COMPLEX A(LDA,LDA), B(N), X(N)

!

! Set values for A and B

!

! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)

! (1.0+1.0i 2.0+0.0i -5.0+1.0i)

! (4.0+0.0i -5.0-1.0i -2.0+0.0i)

!

! B = (7.0+32.0i -39.0-21.0i 51.0+9.0i)

!

 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&

 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/

 DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/

!

 CALL LSAHF (A, B, X)

! Print results

 CALL WRCRN (‘X‘, X, 1, N, 1)

 END

Output

 X

 1 2 3

(2.00, 1.00) (-10.00, -1.00) (3.00, 5.00)

LSLHF

Solves a complex Hermitian system of linear equations without iterative refinement.

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.

(Input)

Only the upper triangle of A is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 263

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LSLHF (A, B, X [,…])

Specific: The specific interface names are S_LSLHF and D_LSLHF.

FORTRAN 77 Interface

Single: CALL LSLHF (N, A, LDA, B, X)

Double: The double precision name is DLSLHF.

Description

Routine LSLHF solves systems of linear algebraic equations having a complex Hermitian

indefinite coefficient matrix. It first uses the routine LFCHF to compute a UDU
H

 factorization of

the coefficient matrix. D is a block diagonal matrix with blocks of order 1 or 2 and U is a matrix

composed of the product of a permutation matrix and a unit upper triangular matrix.

The solution of the linear system is then found using the routine LFSHF. LSLHF fails if a block in

D is singular. This occurs only if A is singular or very close to a singular matrix. If the coefficient

matrix is ill-conditioned or poorly scaled, it is recommended that LSAHF be used.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LHF/DL2LHF. The

reference is:

CALL L2LHF (N, A, LDA, B, X, FACT, IPVT, CWK)

The additional arguments are as follows:

FACT — Complex work vector of length N
2
 containing information about the

UDU
H

 factorization of A on output.

IPVT — Integer work vector of length N containing the pivoting information

for the factorization of A on output.

264 Chapter 1: Linear Systems IMSL MATH LIBRARY

CWK — Complex work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is algorithmically singular.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.

4 2 The input matrix singular.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2LHF the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLHF.

Additional memory allocation for FACT and option value restoration are done

automatically in LSLHF. Users directly calling L2LHF can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSLHF or L2LHF. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSLHF temporarily replaces IVAL(2) by IVAL(1). The

routine L2CHF computes the condition number if IVAL(2) = 2. Otherwise L2CHF

skips this computation. LSLHF restores the option. Default values for the option

are IVAL(*) = 1, 2.

Example

A system of three linear equations is solved. The coefficient matrix has complex Hermitian form

and the right-hand-side vector b has three elements.

 USE LSLHF_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

 COMPLEX A(LDA,LDA), B(N), X(N)

!

! Set values for A and B

!

! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)

! (1.0+1.0i 2.0+0.0i -5.0+1.0i)

! (4.0+0.0i -5.0-1.0i -2.0+0.0i)

IMSL MATH LIBRARY Chapter 1: Linear Systems 265

!

! B = (7.0+32.0i -39.0-21.0i 51.0+9.0i)

!

 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&

 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/

 DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/

!

 CALL LSLHF (A, B, X)

! Print results

 CALL WRCRN (‘X‘, X, 1, N, 1)

 END

Output

 X

 1 2 3

(2.00, 1.00) (-10.00, -1.00) (3.00, 5.00)

LFCHF

Computes the UDU
H

 factorization of a complex Hermitian matrix and estimate its L1 condition

number.

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.

(Input)

Only the upper triangle of A is referenced.

FACT — Complex N by N matrix containing the information about the factorization of the

Hermitian matrix A. (Output)

Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the

same storage locations.

IPVT — Vector of length N containing the pivoting information for the factorization.

(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

266 Chapter 1: Linear Systems IMSL MATH LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCHF (A, FACT, IPVT, RCOND [,…])

Specific: The specific interface names are S_LFCHF and D_LFCHF.

FORTRAN 77 Interface

Single: CALL LFCHF (N, A, LDA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCHF.

Description

Routine LFCHF performs a U DU
H

 factorization of a complex Hermitian indefinite coefficient

matrix. It also estimates the condition number of the matrix. The U DU
H

 factorization is called the

diagonal pivoting factorization.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to

compute ||A
-1

||1, the condition number is only estimated. The estimation algorithm is the same as

used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system.

LFCHF fails if A is singular or very close to a singular matrix.

The U DU
H

 factors are returned in a form that is compatible with routines LFIHF, LFSHF and

LFDHF. To solve systems of equations with multiple right-hand-side vectors, use LFCHF followed

by either LFIHF or LFSHF called once for each right-hand side. The routine LFDHF can be called

to compute the determinant of the coefficient matrix after LFCHF has performed the factorization.

The underlying code is based on either LINPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CHF/DL2CHF. The

reference is:

IMSL MATH LIBRARY Chapter 1: Linear Systems 267

CALL L2CHF (N, A, LDA, FACT, LDFACT, IPVT, RCOND, CWK)

The additional argument is:

CWK — Complex work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is algorithmically singular.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.

4 2 The input matrix is singular.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

Example

The inverse of a 3 × 3 complex Hermitian matrix is computed. LFCHF is called to factor the

matrix and to check for singularity or ill-conditioning. LFIHF is called to determine the columns

of the inverse.

 USE LFCHF_INT

 USE UMACH_INT

 USE LFIHF_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

 INTEGER IPVT(N), NOUT

 REAL RCOND

 COMPLEX A(LDA,LDA), AINV(LDA,N), FACT(LDA,LDA), RJ(N), RES(N)

! Set values for A

!

! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)

! (1.0+1.0i 2.0+0.0i -5.0+1.0i)

! (4.0+0.0i -5.0-1.0i -2.0+0.0i)

!

 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&

 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/

! Set output unit number

 CALL UMACH (2, NOUT)

! Factor A and return the reciprocal

! condition number estimate

 CALL LFCHF (A, FACT, IPVT, RCOND)

! Print the estimate of the condition

! number

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = (0.0E0,0.0E0)

 DO 10 J=1, N

268 Chapter 1: Linear Systems IMSL MATH LIBRARY

 RJ(J) = (1.0E0, 0.0E0)

! RJ is the J-th column of the identity

! matrix so the following LFIHF

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFIHF (A, FACT, IPVT, RJ, AINV(:,J), RES)

 RJ(J) = (0.0E0, 0.0E0)

 10 CONTINUE

! Print the inverse

 CALL WRCRN (‘AINV‘, AINV)

!

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < 0.25

L1 Condition number < 6.0

 AINV

 1 2 3

1 (0.2000, 0.0000) (0.1200, 0.0400) (0.0800,-0.0400)

2 (0.1200,-0.0400) (0.1467, 0.0000) (-0.1267,-0.0067)

3 (0.0800, 0.0400) (-0.1267, 0.0067) (-0.0267, 0.0000)

LFTHF

Computes the U DU
H

 factorization of a complex Hermitian matrix.

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.

(Input)

Only the upper triangle of A is referenced.

FACT — Complex N by N matrix containing the information about the factorization of the

Hermitian matrix A. (Output)

Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the

same storage locations.

IPVT — Vector of length N containing the pivoting information for the factorization.

(Output)

IMSL MATH LIBRARY Chapter 1: Linear Systems 269

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTHF (A, FACT, IPVT [,…])

Specific: The specific interface names are S_LFTHF and D_LFTHF.

FORTRAN 77 Interface

Single: CALL LFTHF (N, A, LDA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTHF.

Description

Routine LFTHF performs a U DU
H

 factorization of a complex Hermitian indefinite coefficient

matrix. The U DU
H

 factorization is called the diagonal pivoting factorization.

LFTHF fails if A is singular or very close to a singular matrix.

The U DU
H

 factors are returned in a form that is compatible with routines LFIHF, LFSHF and

LFDHF. To solve systems of equations with multiple right-hand-side vectors, use LFTHF followed

by either LFIHF or LFSHF called once for each right-hand side. The routine LFDHF can be called

to compute the determinant of the coefficient matrix after LFTHF has performed the factorization.

The underlying code is based on either LINPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

Informational errors

Type Code

3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.

4 2 The input matrix is singular.

270 Chapter 1: Linear Systems IMSL MATH LIBRARY

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

Example

The inverse of a 3 × 3 matrix is computed. LFTHF is called to factor the matrix and check for

singularity. LFSHF is called to determine the columns of the inverse.

 USE LFTHF_INT

 USE LFSHF_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

 INTEGER IPVT(N)

 COMPLEX A(LDA,LDA), AINV(LDA,N), FACT(LDA,LDA), RJ(N)

!

! Set values for A

!

! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)

! (1.0+1.0i 2.0+0.0i -5.0+1.0i)

! (4.0+0.0i -5.0-1.0i -2.0+0.0i)

!

 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&

 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/

! Factor A

 CALL LFTHF (A, FACT, IPVT)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = (0.0E0,0.0E0)

 DO 10 J=1, N

 RJ(J) = (1.0E0, 0.0E0)

! RJ is the J-th column of the identity

! matrix so the following LFSHF

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFSHF (FACT, IPVT, RJ, AINV(:,J))

 RJ(J) = (0.0E0, 0.0E0)

 10 CONTINUE

! Print the inverse

 CALL WRCRN (‘AINV‘, AINV)

 END

Output

 AINV

 1 2 3

1 (0.2000, 0.0000) (0.1200, 0.0400) (0.0800,-0.0400)

2 (0.1200,-0.0400) (0.1467, 0.0000) (-0.1267,-0.0067)

3 (0.0800, 0.0400) (-0.1267, 0.0067) (-0.0267, 0.0000)

IMSL MATH LIBRARY Chapter 1: Linear Systems 271

LFSHF

Solves a complex Hermitian system of linear equations given the U DU
H

 factorization of the

coefficient matrix.

Required Arguments

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)

Only the upper triangle of FACT is used.

IPVT — Vector of length N containing the pivoting information for the factorization of A as

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFSHF (FACT, IPVT, B, X [,…])

Specific: The specific interface names are S_LFSHF and D_LFSHF.

FORTRAN 77 Interface

Single: CALL LFSHF (N, FACT, LDFACT, IPVT, B, X)

Double: The double precision name is DLFSHF.

272 Chapter 1: Linear Systems IMSL MATH LIBRARY

Description

Routine LFSHF computes the solution of a system of linear algebraic equations having a complex

Hermitian indefinite coefficient matrix.

To compute the solution, the coefficient matrix must first undergo a U DU
H

 factorization. This

may be done by calling either LFCHF or LFTHF.

LFSHF and LFIHF both solve a linear system given its U DU
H

 factorization. LFIHF generally takes

more time and produces a more accurate answer than LFSHF. Each iteration of the iterative

refinement algorithm used by LFIHF calls LFSHF.

The underlying code is based on either LINPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Example

A set of linear systems is solved successively. LFTHF is called to factor the coefficient matrix.

LFSHF is called to compute the three solutions for the three right-hand sides. In this case the

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be

better to call LFCHF to perform the factorization, and LFIHF to compute the solutions.

 USE LFSHF_INT

 USE WRCRN_INT

 USE LFTHF_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

 INTEGER IPVT(N), I

 COMPLEX A(LDA,LDA), B(N,3), X(N,3), FACT(LDA,LDA)

!

! Set values for A and B

!

! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)

! (1.0+1.0i 2.0+0.0i -5.0+1.0i)

! (4.0+0.0i -5.0-1.0i -2.0+0.0i)

!

! B = (7.0+32.0i -6.0+11.0i -2.0-17.0i)

! (-39.0-21.0i -5.5-22.5i 4.0+10.0i)

! (51.0+ 9.0i 16.0+17.0i -2.0+12.0i)

!

 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&

 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/

 DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0), (-6.0,11.0),&

 (-5.5,-22.5), (16.0,17.0), (-2.0,-17.0), (4.0,10.0),&

 (-2.0,12.0)/

! Factor A

 CALL LFTHF (A, FACT, IPVT)

! Solve for the three right-hand sides

 DO 10 I=1, 3

 CALL LFSHF (FACT, IPVT, B(:,I), X(:,I))

 10 CONTINUE

! Print results

 CALL WRCRN (‘X‘, X)

IMSL MATH LIBRARY Chapter 1: Linear Systems 273

 END

Output

 X

 1 2 3

1 (2.00, 1.00) (1.00, 0.00) (0.00, -1.00)

2 (-10.00, -1.00) (-3.00, -4.00) (0.00, -2.00)

3 (3.00, 5.00) (-0.50, 3.00) (0.00, -3.00)

LFIHF

Uses iterative refinement to improve the solution of a complex Hermitian system of linear

equations.

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.

(Input)

Only the upper triangle of A is referenced.

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)

Only the upper triangle of FACT is used.

IPVT — Vector of length N containing the pivoting information for the factorization of A as

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution. (Output)

RES — Complex vector of length N containing the residual vector at the improved solution.

(Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

274 Chapter 1: Linear Systems IMSL MATH LIBRARY

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFIHF (A, FACT, IPVT, B, X, RES [,…])

Specific: The specific interface names are S_LFIHF and D_LFIHF.

FORTRAN 77 Interface

Single: CALL LFIHF (N, A, LDA, FACT, LDFACT, IPVT, B, X, RES)

Double: The double precision name is DLFIHF.

Description

Routine LFIHF computes the solution of a system of linear algebraic equations having a complex

Hermitian indefinite coefficient matrix.

Iterative refinement is performed on the solution vector to improve the accuracy. Usually almost

all of the digits in the solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo a U DU
H

 factorization. This

may be done by calling either LFCHF or LFTHF.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIHF and LFSHF both solve a linear system given its U DU
H

 factorization. LFIHF generally takes

more time and produces a more accurate answer than LFSHF. Each iteration of the iterative

refinement algorithm used by LFIHF calls LFSHF.

Comments

Informational error

Type Code

3 3 The input matrix is too ill-conditioned for iterative refinement to be

effective.

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving

the system each of the first two times by adding 0.2 + 0.2i to the second element.

 USE LFIHF_INT

 USE UMACH_INT

 USE LFCHF_INT

 USE WRCRN_INT

! Declare variables

IMSL MATH LIBRARY Chapter 1: Linear Systems 275

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

 INTEGER IPVT(N), NOUT

 REAL RCOND

 COMPLEX A(LDA,LDA), B(N), X(N), FACT(LDA,LDA), RES(N)

!

!

! Set values for A and B

!

! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)

! (1.0+1.0i 2.0+0.0i -5.0+1.0i)

! (4.0+0.0i -5.0-1.0i -2.0+0.0i)

!

! B = (7.0+32.0i -39.0-21.0i 51.0+9.0i)

!

 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&

 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/

 DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/

! Set output unit number

 CALL UMACH (2, NOUT)

! Factor A and compute the estimate

! of the reciprocal condition number

 CALL LFCHF (A, FACT, IPVT, RCOND)

 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND

! Solve, then perturb right-hand side

 DO 10 I=1, 3

 CALL LFIHF (A, FACT, IPVT, B, X, RES)

! Print results

 WRITE (NOUT,99999) I

 CALL WRCRN (‘X‘, X, 1, N, 1)

 CALL WRCRN (‘RES‘, RES, 1, N, 1)

 B(2) = B(2) + (0.2E0, 0.2E0)

 10 CONTINUE

!

99998 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

99999 FORMAT (//,‘ For problem ‘, I1)

 END

Output

RCOND < 0.25

L1 Condition number < 5.0

For problem 1

 X

 1 2 3

(2.00, 1.00) (-10.00, -1.00) (3.00, 5.00)

 RES

 1 2 3

(2.384E-07,-4.768E-07) (0.000E+00,-3.576E-07) (-1.421E-14, 1.421E-14)

For problem 2

 X

 1 2 3

(2.016, 1.032) (-9.971,-0.971) (2.973, 4.976)

 RES

276 Chapter 1: Linear Systems IMSL MATH LIBRARY

 1 2 3

(2.098E-07,-1.764E-07) (6.231E-07,-1.518E-07) (1.272E-07, 4.005E-07)

For problem 3

 X

 1 2 3

(2.032, 1.064) (-9.941,-0.941) (2.947, 4.952)

 RES

 1 2 3

(4.196E-07,-3.529E-07) (2.925E-07,-3.632E-07) (2.543E-07, 3.242E-07)

LFDHF

Computes the determinant of a complex Hermitian matrix given the U DU
H

 factorization of the

matrix.

Required Arguments

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)

Only the upper triangle of FACT is used.

IPVT — Vector of length N containing the pivoting information for the factorization of A as

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)

The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)

The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDHF (FACT, IPVT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDHF and D_LFDHF.

IMSL MATH LIBRARY Chapter 1: Linear Systems 277

FORTRAN 77 Interface

Single: CALL LFDHF (N, FACT, LDFACT, IPVT, DET1, DET2)

Double: The double precision name is DLFDHF.

Description

Routine LFDHF computes the determinant of a complex Hermitian indefinite coefficient matrix. To

compute the determinant, the coefficient matrix must first undergo a U DU
H

 factorization. This

may be done by calling either LFCHF or LFTHF since det U = ±1, the formula

det A = det U det D det U
H

 = det D is used to compute the determinant. det D is computed as the

product of the determinants of its blocks.

LFDHF is based on the LINPACK routine CSIDI; see Dongarra et al. (1979).

Example

The determinant is computed for a complex Hermitian 3 × 3 matrix.

 USE LFDHF_INT

 USE LFTHF_INT

 USE UMACH_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

 INTEGER IPVT(N), NOUT

 REAL DET1, DET2

 COMPLEX A(LDA,LDA), FACT(LDA,LDA)

!

! Set values for A

!

! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)

! (1.0+1.0i 2.0+0.0i -5.0+1.0i)

! (4.0+0.0i -5.0-1.0i -2.0+0.0i)

!

 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&

 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/

! Factor A

 CALL LFTHF (A, FACT, IPVT)

! Compute the determinant

 CALL LFDHF (FACT, IPVT, DET1, DET2)

! Print the results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) DET1, DET2

!

99999 FORMAT (‘ The determinant is‘, F5.1, ‘ * 10**‘, F2.0)

 END

Output

The determinant is -1.5 * 10**2.

278 Chapter 1: Linear Systems IMSL MATH LIBRARY

LSLTR
Solves a real tridiagonal system of linear equations.

Required Arguments

C — Vector of length N containing the subdiagonal of the tridiagonal matrix in C(2) through

C(N). (Input/Output)

On output C is destroyed.

D — Vector of length N containing the diagonal of the tridiagonal matrix. (Input/Output)

On output D is destroyed.

E — Vector of length N containing the superdiagonal of the tridiagonal matrix in E(1) through

E(N − 1). (Input/Output)

On output E is destroyed.

B — Vector of length N containing the right-hand side of the linear system on entry and the

solution vector on return. (Input/Output)

Optional Arguments

N — Order of the tridiagonal matrix. (Input)

Default: N = size (C,1).

FORTRAN 90 Interface

Generic: CALL LSLTR (C, D, E, B [,…])

Specific: The specific interface names are S_LSLTR and D_LSLTR.

FORTRAN 77 Interface

Single: CALL LSLTR (N, C, D, E, B)

Double: The double precision name is DLSLTR.

Description

Routine LSLTR factors and solves the real tridiagonal linear system Ax = b. LSLTR is intended

just for tridiagonal systems. The coefficient matrix does not have to be symmetric. The algorithm

is Gaussian elimination with partial pivoting for numerical stability. See Dongarra (1979),

LINPACK subprograms SGTSL/DGTSL, for details. When computing on vector or parallel

computers the cyclic reduction algorithm, LSLCR, should be considered as an alternative method

to solve the system.

IMSL MATH LIBRARY Chapter 1: Linear Systems 279

Comments

Informational error

Type Code

4 2 An element along the diagonal became exactly zero during

execution.

Example

A system of n = 4 linear equations is solved.

 USE LSLTR_INT

 USE WRRRL_INT

! Declaration of variables

 INTEGER N

 PARAMETER (N=4)

!

 REAL B(N), C(N), D(N), E(N)

 CHARACTER CLABEL(1)*6, FMT*8, RLABEL(1)*4

!

 DATA FMT/‘(E13.6)‘/

 DATA CLABEL/‘NUMBER‘/

 DATA RLABEL/‘NONE‘/

! C(*), D(*), E(*), and B(*)

! contain the subdiagonal, diagonal,

! superdiagonal and right hand side.

 DATA C/0.0, 0.0, -4.0, 9.0/, D/6.0, 4.0, -4.0, -9.0/

 DATA E/-3.0, 7.0, -8.0, 0.0/, B/48.0, -81.0, -12.0, -144.0/

!

!

 CALL LSLTR (C, D, E, B)

! Output the solution.

 CALL WRRRL (‘Solution:‘, B, RLABEL, CLABEL, 1, N, 1, FMT=FMT)

 END

Output

Solution:

 1 2 3 4

0.400000E+01 -0.800000E+01 -0.700000E+01 0.900000E+01

LSLCR
Computes the L DU factorization of a real tridiagonal matrix A using a cyclic reduction algorithm.

Required Arguments

C — Array of size 2N containing the upper codiagonal of the N by N tridiagonal matrix in the

entries C(1), …, C(N − 1). (Input/Output)

A — Array of size 2N containing the diagonal of the N by N tridiagonal matrix in the entries

A(1), …, A(N). (Input/Output)

280 Chapter 1: Linear Systems IMSL MATH LIBRARY

B — Array of size 2N containing the lower codiagonal of the N by N tridiagonal matrix in the

entries B(1), …, B(N − 1). (Input/Output)

Y — Array of size 2N containing the right hand side for the system Ax = y in the order Y(1),

…, Y(N). (Input/Output) The vector x overwrites Y in storage.

U — Array of size 2N of flags that indicate any singularities of A. (Output)

A value U(I) = 1. means that a divide by zero would have occurred during the factoring.

Otherwise U(I) = 0.

IR — Array of integers that determine the sizes of loops performed in the cyclic reduction

algorithm. (Output)

IS — Array of integers that determine the sizes of loops performed in the cyclic reduction

algorithm. (Output)

The sizes of IR and IS must be at least log2 (N) + 3.

Optional Arguments

N — Order of the matrix. (Input)

N must be greater than zero

Default: N = size (C,1).

IJOB — Flag to direct the desired factoring or solving step. (Input)

Default: IJOB = 1.

IJOB Action

1 Factor the matrix A and solve the system Ax = y, where y

is stored in array Y.

2 Do the solve step only. Use y from array Y. (The

factoring step has already been done.)

3 Factor the matrix A but do not solve a system.

4, 5, 6 Same meaning as with the value IJOB = 3. For

efficiency, no error checking is done on the validity of

any input value.

FORTRAN 90 Interface

Generic: CALL LSLCR (C, A, B, Y, U, IR, IS [,…])

Specific: The specific interface names are S_LSLCR and D_LSLCR.

IMSL MATH LIBRARY Chapter 1: Linear Systems 281

FORTRAN 77 Interface

Single: CALL LSLCR (N, C, A, B, IJOB, Y, U, IR, IS)

Double: The double precision name is DLSLCR.

Description

Routine LSLCR factors and solves the real tridiagonal linear system Ax = y. The matrix is

decomposed in the form A = L DU, where L is unit lower triangular, U is unit upper triangular,

and D is diagonal. The algorithm used for the factorization is effectively that described in Kershaw

(1982). More details, tests and experiments are reported in Hanson (1990).

LSLCR is intended just for tridiagonal systems. The coefficient matrix does not have to be

symmetric. The algorithm amounts to Gaussian elimination, with no pivoting for numerical

stability, on the matrix whose rows and columns are permuted to a new order. See Hanson (1990)

for details. The expectation is that LSLCR will outperform either LSLTR or LSLPB on vector or

parallel computers. Its performance may be inferior for small values of n, on scalar computers, or

high-performance computers with non-optimizing compilers.

Example

A system of n = 1000 linear equations is solved. The coefficient matrix is the symmetric matrix of

the second difference operation, and the right-hand-side vector y is the first column of the identity

matrix. Note that an, n= 1. The solution vector will be the first column of the inverse matrix of A.

Then a new system is solved where y is now the last column of the identity matrix. The solution

vector for this system will be the last column of the inverse matrix.

 USE LSLCR_INT

 USE UMACH_INT

! Declare variables

 INTEGER LP, N, N2

 PARAMETER (LP=12, N=1000, N2=2*N)

!

 INTEGER I, IJOB, IR(LP), IS(LP), NOUT

 REAL A(N2), B(N2), C(N2), U(N2), Y1(N2), Y2(N2)

!

! Define matrix entries:

 DO 10 I=1, N - 1

 C(I) = -1.E0

 A(I) = 2.E0

 B(I) = -1.E0

 Y1(I+1) = 0.E0

 Y2(I) = 0.E0

 10 CONTINUE

 A(N) = 1.E0

 Y1(1) = 1.E0

 Y2(N) = 1.E0

!

! Obtain decomposition of matrix and

! solve the first system:

 IJOB = 1

 CALL LSLCR (C, A, B, Y1, U, IR, IS, IJOB=IJOB)

!

282 Chapter 1: Linear Systems IMSL MATH LIBRARY

! Solve the second system with the

! decomposition ready:

 IJOB = 2

 CALL LSLCR (C, A, B, Y2, U, IR, IS, IJOB=IJOB)

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ‘ The value of n is: ‘, N

 WRITE (NOUT,*) ‘ Elements 1, n of inverse matrix columns 1 ‘//&

 ‘and n:‘, Y1(1), Y2(N)

 END

Output

The value of n is: 1000

Elements 1, n of inverse matrix columns 1 and n: 1.00000 1000.000

LSARB

Solves a real system of linear equations in band storage mode with iterative refinement.

Required Arguments

A — (NLCA + NUCA + 1) by N array containing the N by N banded coefficient matrix in band

storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IMSL MATH LIBRARY Chapter 1: Linear Systems 283

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX= B is solved.

IPATH = 2 means the system A
T
X = B is solved.

Default: IPATH =1.

FORTRAN 90 Interface

Generic: CALL LSARB (A, NLCA, NUCA, B, X [,…])

Specific: The specific interface names are S_LSARB and D_LSARB.

FORTRAN 77 Interface

Single: CALL LSARB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Double: The double precision name is DLSARB.

Description

Routine LSARB solves a system of linear algebraic equations having a real banded coefficient

matrix. It first uses the routine LFCRB to compute an LU factorization of the coefficient matrix and

to estimate the condition number of the matrix. The solution of the linear system is then found

using the iterative refinement routine LFIRB.

LSARB fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the

iterative refinement algorithm fails to converge. These errors occur only if A is singular or very

close to a singular matrix.

If the estimated condition number is greater than 1∕ ɛ (where ε is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system. LSARB solves the

problem that is represented in the computer; however, this problem may differ from the problem

whose solution is desired.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2ARB/DL2ARB. The

reference is:

CALL L2ARB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — Work vector of length (2 * NLCA + NUCA + 1) × N containing the LU

factorization of A on output.

IPVT — Work vector of length N containing the pivoting information for the

LU factorization of A on output.

WK — Work vector of length N.

284 Chapter 1: Linear Systems IMSL MATH LIBRARY

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2ARB the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSARB.

Additional memory allocation for FACT and option value restoration are done

automatically in LSARB. Users directly calling L2ARB can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSARB or L2ARB. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSARB temporarily replaces IVAL(2) by IVAL(1). The

routine L2CRB computes the condition number if IVAL(2) = 2. Otherwise L2CRB

skips this computation. LSARB restores the option. Default values for the option

are IVAL(*) = 1, 2.

Example

A system of four linear equations is solved. The coefficient matrix has real banded form with 1

upper and 1 lower codiagonal. The right-hand-side vector b has four elements.

 USE LSARB_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, N, NLCA, NUCA

 PARAMETER (LDA=3, N=4, NLCA=1, NUCA=1)

 REAL A(LDA,N), B(N), X(N)

! Set values for A in band form, and B

!

! A = (0.0 -1.0 -2.0 2.0)

! (2.0 1.0 -1.0 1.0)

! (-3.0 0.0 2.0 0.0)

!

! B = (3.0 1.0 11.0 -2.0)

!

 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&

 2.0, 1.0, 0.0/

 DATA B/3.0, 1.0, 11.0, -2.0/

!

 CALL LSARB (A, NLCA, NUCA, B, X)

IMSL MATH LIBRARY Chapter 1: Linear Systems 285

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

!

 END

Output

 X

 1 2 3 4

2.000 1.000 -3.000 4.000

LSLRB

Solves a real system of linear equations in band storage mode without iterative refinement.

Required Arguments

A — (NLCA + NUCA + 1) by N array containing the N by N banded coefficient matrix in band

storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX= B is solved.

IPATH = 2 means the system A
T
X = B is solved.

Default: IPATH = 1.

286 Chapter 1: Linear Systems IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL LSLRB (A, NLCA, NUCA, B, X [,…])

Specific: The specific interface names are S_LSLRB and D_LSLRB.

FORTRAN 77 Interface

Single: CALL LSLRB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Double: The double precision name is DLSLRB.

ScaLAPACK Interface

Generic: CALL LSLRB (A0, NLCA, NUCA, B0, X0 [,…])

Specific: The specific interface names are S_LSLRB and D_LSLRB.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LSLRB solves a system of linear algebraic equations having a real banded coefficient

matrix. It first uses the routine LFCRB to compute an LU factorization of the coefficient matrix and

to estimate the condition number of the matrix. The solution of the linear system is then found

using LFSRB. LSLRB fails if U, the upper triangular part of the factorization, has a zero diagonal

element. This occurs only if A is singular or very close to a singular matrix. If the estimated

condition number is greater than 1/ε (where ε is machine precision), a warning error is issued. This

indicates that very small changes in A can cause very large changes in the solution x. If the

coefficient matrix is ill-conditioned or poorly scaled, it is recommended that LSARB be used.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending

upon which supporting libraries are used during linking. For a detailed explanation see “Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LRB/DL2LRB. The

reference is:

CALL L2LRB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — (2 × NLCA + NUCA + 1) × N containing the LU factorization of A on

output. If A is not needed, A can share the first (NLCA + NUCA + 1) * N

storage locations with FACT.

IMSL MATH LIBRARY Chapter 1: Linear Systems 287

IPVT — Work vector of length N containing the pivoting information for the

LU factorization of A on output.

WK — Work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2LRB the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLRB.

Additional memory allocation for FACT and option value restoration are done

automatically in LSLRB. Users directly calling L2LRB can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSLRB or L2LRB. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSLRB temporarily replaces IVAL(2) by IVAL(1). The

routine L2CRB computes the condition number if IVAL(2) = 2. Otherwise L2CRB

skips this computation. LSLRB restores the option. Default values for the option

are IVAL(*) = 1, 2.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — (2*NLCA + 2*NUCA+1) by MXCOL local matrix containing the local portions of the

distributed matrix A. A contains the N by N banded coefficient matrix in band storage

mode. (Input)

B0 — Local vector of length MXCOL containing the local portions of the distributed vector B.

B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MXCOL containing the local portions of the distributed vector X.

X contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXCOL can be obtained through a call to

SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

288 Chapter 1: Linear Systems IMSL MATH LIBRARY

Example

A system of four linear equations is solved. The coefficient matrix has real banded form with 1

upper and 1 lower codiagonal. The right-hand-side vector b has four elements.

 USE LSLRB_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, N, NLCA, NUCA

 PARAMETER (LDA=3, N=4, NLCA=1, NUCA=1)

 REAL A(LDA,N), B(N), X(N)

! Set values for A in band form, and B

!

! A = (0.0 -1.0 -2.0 2.0)

! (2.0 1.0 -1.0 1.0)

! (-3.0 0.0 2.0 0.0)

!

! B = (3.0 1.0 11.0 -2.0)

!

 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&

 2.0, 1.0, 0.0/

 DATA B/3.0, 1.0, 11.0, -2.0/

!

 CALL LSLRB (A, NLCA, NUCA, B, X)

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

!

 END

Output

 X

 1 2 3 4

2.000 1.000 -3.000 4.000

ScaLAPACK Example

The same system of four linear equations is solved as a distributed computing example. The

coefficient matrix has real banded form with 1 upper and 1 lower codiagonal. The right-hand-side

vector b has four elements. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines

(see Utilities) used to map and unmap arrays to and from the processor grid. They are used here

for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the

local arrays.

 USE MPI_SETUP_INT

 USE LSLRB_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, M, N, NLCA, NUCA, NRA, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA

IMSL MATH LIBRARY Chapter 1: Linear Systems 289

 REAL, ALLOCATABLE :: A(:,:), B(:), X(:)

 REAL, ALLOCATABLE :: A0(:,:), B0(:), X0(:)

 PARAMETER (LDA=3, N=6, NLCA=1, NUCA=1)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,N), B(N), X(N))

! Set values for A and B

 A(1,:) = (/ 0.0, 0.0, -3.0, 0.0, -1.0, -3.0/)

 A(2,:) = (/ 10.0, 10.0, 15.0, 10.0, 1.0, 6.0/)

 A(3,:) = (/ 0.0, 0.0, 0.0, -5.0, 0.0, 0.0/)

!

 B = (/ 10.0, 7.0, 45.0, 33.0, -34.0, 31.0/)

 ENDIF

 NRA = NLCA + NUCA + 1

 M = 2*NLCA + 2*NUCA + 1

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

CALL SCALAPACK_SETUP(M, N, .FALSE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

CALL SCALAPACK_GETDIM(M, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Reset MXLDA to M

MXLDA = M

! Set up the array descriptors

 CALL DESCINIT(DESCA,NRA,N,MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

 CALL DESCINIT(DESCX, 1, N, 1, MP_NB, 0, 0, MP_ICTXT, 1, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), B0(MXCOL), X0(MXCOL))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 CALL SCALAPACK_MAP(B, DESCX, B0, 1, .FALSE.)

! Solve the system of equations

 CALL LSLRB (A0, NLCA, NUCA, B0, X0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X, 1, .FALSE.)

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK .EQ. 0)CALL WRRRN (‘X‘, X, 1, N, 1)

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

 DEALLOCATE(A0, B0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

290 Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

 X

 1 2 3 4 5 6

1.000 1.600 3.000 2.900 -4.000 5.167

LFCRB

Computes the LU factorization of a real matrix in band storage mode and estimate its L1 condition

number.

Required Arguments

A — (NLCA + NUCA + 1) by N array containing the N by N matrix in band storage mode to be

factored. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the matrix A.

(Output)

If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT.

IPVT — Vector of length N containing the pivoting information for the LU factorization.

(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

IMSL MATH LIBRARY Chapter 1: Linear Systems 291

FORTRAN 90 Interface

Generic: CALL LFCRB (A, NLCA, NUCA, FACT, IPVT, RCOND [,…])

Specific: The specific interface names are S_LFCRB and D_LFCRB.

FORTRAN 77 Interface

Single: CALL LFCRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCRB.

Description

Routine LFCRB performs an LU factorization of a real banded coefficient matrix. It also estimates

the condition number of the matrix. The LU factorization is done using scaled partial pivoting.

Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the same as if

each row were scaled to have the same ∞-norm.

The L1 condition number of the matrix A is defined to be

κ(A) = ǀǀAǀǀ1ǀǀA
-1ǀǀ1

Since it is expensive to compute

ǀǀA-1ǀǀ1

 the condition number is only estimated. The estimation algorithm is the same as used by

LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system.

LSCRB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This

can occur only if A is singular or very close to a singular matrix. The LU factors are returned in a

form that is compatible with routines LFIRB, LFSRB and LFDRB. To solve systems of equations

with multiple right-hand-side vectors, use LFCRB followed by either LFIRB or LFSRB called once

for each right-hand side. The routine LFDRB can be called to compute the determinant of the

coefficient matrix after LFCRB has performed the factorization.

Let F be the matrix FACT, let ml= NLCA and let mu = NUCA. The first ml+ mu + 1 rows of F contain

the triangular matrix U in band storage form. The lower ml rows of F contain the multipliers

needed to reconstruct L-1
 .

The underlying code is based on either LINPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CRB/DL2CRB. The

reference is:

292 Chapter 1: Linear Systems IMSL MATH LIBRARY

CALL L2CRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND, WK)

The additional argument is:

WK — Work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is algorithmically singular.

4 2 The input matrix is singular.

Example

The inverse of a 4 × 4 band matrix with one upper and one lower codiagonal is computed. LFCRB

is called to factor the matrix and to check for singularity or ill-conditioning. LFIRB is called to

determine the columns of the inverse.

 USE LFCRB_INT

 USE UMACH_INT

 USE LFIRB_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NLCA, NUCA, NOUT

 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)

 INTEGER IPVT(N)

 REAL A(LDA,N), AINV(N,N), FACT(LDFACT,N), RCOND, RJ(N), RES(N)

! Set values for A in band form

! A = (0.0 -1.0 -2.0 2.0)

! (2.0 1.0 -1.0 1.0)

! (-3.0 0.0 2.0 0.0)

!

 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&

 2.0, 1.0, 0.0/

!

 CALL LFCRB (A, NLCA, NUCA, FACT, IPVT, RCOND)

! Print the reciprocal condition number

! and the L1 condition number

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0E0

! RJ is the J-th column of the identity

! matrix so the following LFIRB

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFIRB (A, NLCA, NUCA, FACT, IPVT, RJ, AINV(:,J), RES)

IMSL MATH LIBRARY Chapter 1: Linear Systems 293

 RJ(J) = 0.0E0

 10 CONTINUE

! Print results

 CALL WRRRN (‘AINV‘, AINV)

!

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND < .07

L1 Condition number = 25.0

 AINV

 1 2 3 4

1 -1.000 -1.000 0.400 -0.800

2 -3.000 -2.000 0.800 -1.600

3 0.000 0.000 -0.200 0.400

4 0.000 0.000 0.400 0.200

LFTRB

Computes the LU factorization of a real matrix in band storage mode.

Required Arguments

A — (NLCA + NUCA + 1) by N array containing the N by N matrix in band storage mode to be

factored. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the matrix A.

(Output)

If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT.

IPVT — Vector of length N containing the pivoting information for the LU factorization.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

294 Chapter 1: Linear Systems IMSL MATH LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTRB (A, NLCA, NUCA, FACT [,…])

Specific: The specific interface names are S_LFTRB and D_LFTRB.

FORTRAN 77 Interface

Single: CALL LFTRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTRB.

Description

Routine LFTRB performs an LU factorization of a real banded coefficient matrix using Gaussian

elimination with partial pivoting. A failure occurs if U, the upper triangular factor, has a zero

diagonal element. This can happen if A is close to a singular matrix. The LU factors are returned in

a form that is compatible with routines LFIRB, LFSRB and LFDRB. To solve systems of equations

with multiple right-hand-side vectors, use LFTRB followed by either LFIRB or LFSRB called once

for each right-hand side. The routine LFDRB can be called to compute the determinant of the

coefficient matrix after LFTRB has performed the factorization

Let ml = NLCA, and let mu = NUCA. The first ml + mu + 1 rows of FACT contain the triangular

matrix U in band storage form. The next ml rows of FACT contain the multipliers needed to

produce L.

The routine LFTRB is based on the the blocked LU factorization algorithm for banded linear

systems given in Du Croz, et al. (1990). Level-3 BLAS invocations were replaced by in-line loops.

The blocking factor nb has the default value 1 in LFTRB. It can be reset to any positive value not

exceeding 32.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2TRB/DL2TRB. The

reference is:

CALL L2TRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, WK)

The additional argument is:

WK — Work vector of length N used for scaling.

IMSL MATH LIBRARY Chapter 1: Linear Systems 295

2 Informational error

Type Code

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

21 The performance of the LU factorization may improve on high-performance

computers if the blocking factor, NB, is increased. The current version of the

routine allows NB to be reset to a value no larger than 32. Default value is

NB = 1.

Example

A linear system with multiple right-hand sides is solved. LFTRB is called to factor the coefficient

matrix. LFSRB is called to compute the two solutions for the two right-hand sides. In this case the

coefficient matrix is assumed to be appropriately scaled. Otherwise, it may be better to call routine

LFCRB to perform the factorization, and LFIRB to compute the solutions.

 USE LFTRB_INT

 USE LFSRB_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NLCA, NUCA

 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)

 INTEGER IPVT(N)

 REAL A(LDA,N), B(N,2), FACT(LDFACT,N), X(N,2)

! Set values for A in band form, and B

!

! A = (0.0 -1.0 -2.0 2.0)

! (2.0 1.0 -1.0 1.0)

! (-3.0 0.0 2.0 0.0)

!

! B = (12.0 -17.0)

! (-19.0 23.0)

! (6.0 5.0)

! (8.0 5.0)

!

 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&

 2.0, 1.0, 0.0/

 DATA B/12.0, -19.0, 6.0, 8.0, -17.0, 23.0, 5.0, 5.0/

! Compute factorization

 CALL LFTRB (A, NLCA, NUCA, FACT, IPVT)

! Solve for the two right-hand sides

 DO 10 J=1, 2

 CALL LFSRB (FACT, NLCA, NUCA, IPVT, B(:,J), X(:,J))

 10 CONTINUE

! Print results

 CALL WRRRN (‘X‘, X)

!

 END

Output

296 Chapter 1: Linear Systems IMSL MATH LIBRARY

 X

 1 2

1 3.000 -8.000

2 -6.000 1.000

3 2.000 1.000

4 4.000 3.000

LFSRB

Solves a real system of linear equations given the LU factorization of the coefficient matrix in

band storage mode.

Required Arguments

FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the coefficient

matrix A as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A

as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
T
X = B is solved.

Default: IPATH = 1.

IMSL MATH LIBRARY Chapter 1: Linear Systems 297

FORTRAN 90 Interface

Generic: CALL LFSRB (FACT, NLCA, NUCA, IPVT, B, X [,…])

Specific: The specific interface names are S_LFSRB and D_LFSRB.

FORTRAN 77 Interface

Single: CALL LFSRB (N, FACT, LDFACT, NLCA, NUCA, IPVT, B, IPATH, X)

Double: The double precision name is DLFSRB.

Description

Routine LFSRB computes the solution of a system of linear algebraic equations having a real

banded coefficient matrix. To compute the solution, the coefficient matrix must first undergo an

LU factorization. This may be done by calling either LFCRB or LFTRB. The solution to Ax = b is

found by solving the banded triangular systems Ly = b and Ux = y. The forward elimination step

consists of solving the system Ly = b by applying the same permutations and elimination

operations to b that were applied to the columns of A in the factorization routine. The backward

substitution step consists of solving the banded triangular system Ux = y for x.

LFSRB and LFIRB both solve a linear system given its LU factorization. LFIRB generally takes

more time and produces a more accurate answer than LFSRB. Each iteration of the iterative

refinement algorithm used by LFIRB calls LFSRB.

The underlying code is based on either LINPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Example

The inverse is computed for a real banded 4 × 4 matrix with one upper and one lower codiagonal.

The input matrix is assumed to be well-conditioned, hence LFTRB is used rather than LFCRB.

 USE LFSRB_INT

 USE LFTRB_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NLCA, NUCA

 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)

 INTEGER IPVT(N)

 REAL A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N)

! Set values for A in band form

! A = (0.0 -1.0 -2.0 2.0)

! (2.0 1.0 -1.0 1.0)

! (-3.0 0.0 2.0 0.0)

!

 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&

 2.0, 1.0, 0.0/

!

 CALL LFTRB (A, NLCA, NUCA, FACT, IPVT)

! Set up the columns of the identity

298 Chapter 1: Linear Systems IMSL MATH LIBRARY

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0E0

! RJ is the J-th column of the identity

! matrix so the following LFSRB

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFSRB (FACT, NLCA, NUCA, IPVT, RJ, AINV(:,J))

 RJ(J) = 0.0E0

 10 CONTINUE

! Print results

 CALL WRRRN (‘AINV‘, AINV)

!

 END

Output

 AINV

 1 2 3 4

1 -1.000 -1.000 0.400 -0.800

2 -3.000 -2.000 0.800 -1.600

3 0.000 0.000 -0.200 0.400

4 0.000 0.000 0.400 0.200

LFIRB

Uses iterative refinement to improve the solution of a real system of linear equations in band

storage mode.

Required Arguments

A — (NUCA +NLCA +1) by N array containing the N by N banded coefficient matrix in band

storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FACT — (2 * NLCA +NUCA +1) by N array containing the LU factorization of the matrix A as

output from routines LFCRB/DLFCRB or LFTRB/DLFTRB. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A

as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 299

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

RES — Vector of length N containing the residual vector at the improved

solution . (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
T
X = B is solved.

Default: IPATH =1.

FORTRAN 90 Interface

Generic: CALL LFIRB (A, NLCA, NUCA, FACT, IPVT, B, X, RES [,…])

Specific: The specific interface names are S_LFIRB and D_LFIRB.

FORTRAN 77 Interface

Single: CALL LFIRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, B, IPATH, X,
RES)

Double: The double precision name is DLFIRB.

Description

Routine LFIRB computes the solution of a system of linear algebraic equations having a real

banded coefficient matrix. Iterative refinement is performed on the solution vector to improve the

accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is

somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU factorization. This may

be done by calling either LFCRB or LFTRB.

Iterative refinement fails only if the matrix is very ill-conditioned.

300 Chapter 1: Linear Systems IMSL MATH LIBRARY

LFIRB and LFSRB both solve a linear system given its LU factorization. LFIRB generally takes

more time and produces a more accurate answer than LFSRB. Each iteration of the iterative

refinement algorithm used by LFIRB calls LFSRB.

Comments

Informational error

Type Code

3 2 The input matrix is too ill-conditioned for iterative refinement to be

effective

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving

the system each of the first two times by adding 0.5 to the second element.

 USE LFIRB_INT

 USE LFCRB_INT

 USE UMACH_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NLCA, NUCA, NOUT

 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)

 INTEGER IPVT(N)

 REAL A(LDA,N), B(N), FACT(LDFACT,N), RCOND, RES(N), X(N)

! Set values for A in band form, and B

!

! A = (0.0 -1.0 -2.0 2.0)

! (2.0 1.0 -1.0 1.0)

! (-3.0 0.0 2.0 0.0)

!

! B = (3.0 5.0 7.0 -9.0)

!

 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&

 2.0, 1.0, 0.0/

 DATA B/3.0, 5.0, 7.0, -9.0/

!

 CALL LFCRB (A, NLCA, NUCA, FACT, IPVT, RCOND)

! Print the reciprocal condition number

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Solve the three systems

 DO 10 J=1, 3

 CALL LFIRB (A, NLCA, NUCA, FACT, IPVT, B, X, RES)

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

! Perturb B by adding 0.5 to B(2)

 B(2) = B(2) + 0.5E0

 10 CONTINUE

!

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 301

Output

RCOND < .07

L1 Condition number = 25.0

 X

 1 2 3 4

2.000 1.000 -5.000 1.000

 X

 1 2 3 4

1.500 0.000 -5.000 1.000

 X

 1 2 3 4

1.000 -1.000 -5.000 1.000

LFDRB
Computes the determinant of a real matrix in band storage mode given the LU factorization of the

matrix.

Required Arguments

FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the matrix A as

output from routine LFTRB/DLFTRB or LFCRB/DLFCRB. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization as

output from routine LFTRB/DLFTRB or LFCRB/DLFCRB. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)

The value DET1 is normalized so that 1.0 ≤ ǀDET1ǀ < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)

The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

302 Chapter 1: Linear Systems IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL LFDRB (FACT, NLCA, NUCA, IPVT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDRB and D_LFDRB.

FORTRAN 77 Interface

Single: CALL LFDRB (N, FACT, LDFACT, NLCA, NUCA, IPVT, DET1, DET2)

Double: The double precision name is DLFDRB.

Description

Routine LFDRB computes the determinant of a real banded coefficient matrix. To compute the

determinant, the coefficient matrix must first undergo an LU factorization. This may be done by

calling either LFCRB or LFTRB. The formula det A = det L det U is used to compute the

determinant. Since the determinant of a triangular matrix is the product of the diagonal elements,

1
det

N

i iiU U

(The matrix U is stored in the upper NUCA + NLCA + 1 rows of FACT as a banded matrix.) Since L

is the product of triangular matrices with unit diagonals and of permutation matrices, det L = (−1)
k
,

where k is the number of pivoting interchanges.

LFDRB is based on the LINPACK routine CGBDI; see Dongarra et al. (1979).

Example

The determinant is computed for a real banded 4 × 4 matrix with one upper and one lower

codiagonal.

 USE LFDRB_INT

 USE LFTRB_INT

 USE UMACH_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NLCA, NUCA, NOUT

 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)

 INTEGER IPVT(N)

 REAL A(LDA,N), DET1, DET2, FACT(LDFACT,N)

! Set values for A in band form

! A = (0.0 -1.0 -2.0 2.0)

! (2.0 1.0 -1.0 1.0)

! (-3.0 0.0 2.0 0.0)

!

 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&

 2.0, 1.0, 0.0/

!

 CALL LFTRB (A, NLCA, NUCA, FACT, IPVT)

! Compute the determinant

 CALL LFDRB (FACT, NLCA, NUCA, IPVT, DET1, DET2)

IMSL MATH LIBRARY Chapter 1: Linear Systems 303

! Print the results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) DET1, DET2

99999 FORMAT (‘ The determinant of A is ‘, F6.3, ‘ * 10**‘, F2.0)

 END

Output

The determinant of A is 5.000 * 10**0.

LSAQS
Solves a real symmetric positive definite system of linear equations in band symmetric storage

mode with iterative refinement.

Required Arguments

A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in

band symmetric storage mode. (Input)

NCODA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LSAQS (A, NCODA, B, X [,…])

Specific: The specific interface names are S_LSAQS and D_LSAQS.

FORTRAN 77 Interface

Single: CALL LSAQS (N, A, LDA, NCODA, B, X)

Double: The double precision name is DLSAQS.

304 Chapter 1: Linear Systems IMSL MATH LIBRARY

Description

Routine LSAQS solves a system of linear algebraic equations having a real symmetric positive

definite band coefficient matrix. It first uses the routine LFCQS to compute an R
T
R Cholesky

factorization of the coefficient matrix and to estimate the condition number of the matrix. R is an

upper triangular band matrix. The solution of the linear system is then found using the iterative

refinement routine LFIQS.

LSAQS fails if any submatrix of R is not positive definite, if R has a zero diagonal element or if the

iterative refinement algorithm fails to converge. These errors occur only if A is very close to a

singular matrix or to a matrix which is not positive definite.

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system. LSAQS solves the

problem that is represented in the computer; however, this problem may differ from the problem

whose solution is desired.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2AQS/DL2AQS. The

reference is:

CALL L2AQS (N, A, LDA, NCODA, B, X, FACT, WK)

The additional arguments are as follows:

FACT — Work vector of length NCODA + 1 by N containing the R
T
 R

factorization of A in band symmetric storage form on output.

WK — Work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2AQS the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSAQS.

Additional memory allocation for FACT and option value restoration are done

automatically in LSAQS.

IMSL MATH LIBRARY Chapter 1: Linear Systems 305

 Users directly calling L2AQS can allocate additional space for FACT and set

IVAL(3) and IVAL(4) so that memory bank conflicts no longer cause

inefficiencies. There is no requirement that users change existing applications

that use LSAQS or L2AQS. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSAQS temporarily replaces IVAL(2) by IVAL(1). The

routine L2CQS computes the condition number if IVAL(2) = 2. Otherwise L2CQS

skips this computation. LSAQS restores the option. Default values for the option

are IVAL(*) = 1,2.

Example

A system of four linear equations is solved. The coefficient matrix has real positive definite

band form, and the right-hand-side vector b has four elements.

 USE LSAQS_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, N, NCODA

 PARAMETER (LDA=3, N=4, NCODA=2)

 REAL A(LDA,N), B(N), X(N)

!

! Set values for A in band symmetric form, and B

!

! A = (0.0 0.0 -1.0 1.0)

! (0.0 0.0 2.0 -1.0)

! (2.0 4.0 7.0 3.0)

!

! B = (6.0 -11.0 -11.0 19.0)

!

 DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/

 DATA B/6.0, -11.0, -11.0, 19.0/

! Solve A*X = B

 CALL LSAQS (A, NCODA, B, X)

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

!

 END

Output

 X

 1 2 3 4

 4.000 -6.000 2.000 9.000

LSLQS
Solves a real symmetric positive definite system of linear equations in band symmetric storage

mode without iterative refinement.

306 Chapter 1: Linear Systems IMSL MATH LIBRARY

Required Arguments

A — NCODA + 1 by N array containing the N by N positive definite band symmetric coefficient

matrix in band symmetric storage mode. (Input)

NCODA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LSLQS (A, NCODA, B, X [,…])

Specific: The specific interface names are S_LSLQS and D_LSLQS.

FORTRAN 77 Interface

Single: CALL LSLQS (N, A, LDA, NCODA, B, X)

Double: The double precision name is DLSLQS.

Description

Routine LSLQS solves a system of linear algebraic equations having a real symmetric positive

definite band coefficient matrix. It first uses the routine LFCQS to compute an R
T
R Cholesky

factorization of the coefficient matrix and to estimate the condition number of the matrix. R is an

upper triangular band matrix. The solution of the linear system is then found using the routine

LFSQS.

LSLQS fails if any submatrix of R is not positive definite or if R has a zero diagonal element.

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive

definite.

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that

LSAQS be used.

IMSL MATH LIBRARY Chapter 1: Linear Systems 307

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LQS/DL2LQS. The

reference is:

CALL L2LQS (N, A, LDA, NCODA, B, X, FACT, WK)

The additional arguments are as follows:

FACT — NCODA + 1 by N work array containing the R
T
R factorization of A in

band symmetric form on output. If A is not needed, A and FACT can

share the same storage locations.

WK — Work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2LQS the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLQS.

Additional memory allocation for FACT and option value restoration are done

automatically in LSLQS. Users directly calling L2LQS can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSLQS or L2LQS. Default values for the option are

IVAL(*) = 1,16,0,1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSLQS temporarily replaces IVAL(2) by IVAL(1). The

routine L2CQS computes the condition number if IVAL(2) = 2. Otherwise L2CQS

skips this computation. LSLQS restores the option. Default values for the option

are IVAL(*) = 1,2.

Example

A system of four linear equations is solved. The coefficient matrix has real positive definite band

form and the right-hand-side vector b has four elements.

 USE LSLQS_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, N, NCODA

308 Chapter 1: Linear Systems IMSL MATH LIBRARY

 PARAMETER (LDA=3, N=4, NCODA=2)

 REAL A(LDA,N), B(N), X(N)

!

! Set values for A in band symmetric form, and B

!

! A = (0.0 0.0 -1.0 1.0)

! (0.0 0.0 2.0 -1.0)

! (2.0 4.0 7.0 3.0)

!

! B = (6.0 -11.0 -11.0 19.0)

!

 DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/

 DATA B/6.0, -11.0, -11.0, 19.0/

! Solve A*X = B

 CALL LSLQS (A, NCODA, B, X)

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

 END

Output

 X

 1 2 3 4

 4.000 -6.000 2.000 9.000

LSLPB

Computes the R
T
DR Cholesky factorization of a real symmetric positive definite matrix A in

codiagonal band symmetric storage mode. Solve a system Ax = b.

Required Arguments

A — Array containing the N by N positive definite band coefficient matrix and right hand

side in codiagonal band symmetric storage mode. (Input/Output)

The number of array columns must be at least NCODA + 2. The number of column is

not an input to this subprogram.

On output, A contains the solution and factors. See Comments section for details.

NCODA — Number of upper codiagonals of matrix A. (Input)

Must satisfy NCODA ≥ 0 and NCODA < N.

U — Array of flags that indicate any singularities of A, namely loss of positive-definiteness of

a leading minor. (Output)

A value U(I) = 0. means that the leading minor of dimension I is not positive-definite.

Otherwise, U(I) = 1.

IMSL MATH LIBRARY Chapter 1: Linear Systems 309

Optional Arguments

N — Order of the matrix. (Input)

Must satisfy N > 0.

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Must satisfy LDA ≥ N + NCODA.

Default: LDA = size (A,1).

IJOB — Flag to direct the desired factorization or solving step. (Input)

Default: IJOB = 1.

IJOB Meaning

1 factor the matrix A and solve the system Ax = b, where b is stored in column

NCODA + 2 of array A. The vector x overwrites b in storage.

2 solve step only. Use b as column NCODA + 2 of A. (The factorization step has

already been done.) The vector x overwrites b in storage.

3 factor the matrix A but do not solve a system.

4,5,6 same meaning as with the value IJOB - 3. For efficiency, no error checking is

done on values LDA, N, NCODA, and U(*).

FORTRAN 90 Interface

Generic: CALL LSLPB (A, NCODA, U [,…])

Specific: The specific interface names are S_LSLPB and D_LSLPB.

FORTRAN 77 Interface

Single: CALL LSLPB (N, A, LDA, NCODA, IJOB, U)

Double: The double precision name is DLSLPB.

Description

Routine LSLPB factors and solves the symmetric positive definite banded linear system Ax = b.

The matrix is factored so that A = R
T
DR, where R is unit upper triangular and D is diagonal. The

reciprocals of the diagonal entries of D are computed and saved to make the solving step more

efficient. Errors will occur if D has a non-positive diagonal element. Such events occur only if A is

very close to a singular matrix or is not positive definite.

LSLPB is efficient for problems with a small band width. The particular cases NCODA = 0, 1, 2 are

done with special loops within the code. These cases will give good performance. See Hanson

310 Chapter 1: Linear Systems IMSL MATH LIBRARY

(1989) for details. When solving tridiagonal systems, NCODA = 1 , the cyclic reduction code LSLCR

should be considered as an alternative. The expectation is that LSLCR will outperform LSLPB on

vector or parallel computers. It may be inferior on scalar computers or even parallel computers

with non-optimizing compilers.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LPB/DL2LPB. The

reference is:

CALL L2LPB (N, A, LDA, NCODA, IJOB, U, WK)

The additional argument is:

WK — Work vector of length NCODA.

2. If IJOB=1, 3, 4, or 6, A contains the factors R and D on output. These are stored in

codiagonal band symmetric storage mode. Column 1 of A contains the reciprocal of

diagonal matrix D. Columns 2 through NCODA+1 contain the upper diagonal values for

upper unit diagonal matrix R. If IJOB=1,2, 4, or 5, the last column of A contains the

solution on output, replacing b.

3. Informational error

Type Code

4 2 The input matrix is not positive definite.

Example

A system of four linear equations is solved. The coefficient matrix has real positive definite

codiagonal band form and the right-hand-side vector b has four elements.

 USE LSLPB_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, N, NCODA

 PARAMETER (N=4, NCODA=2, LDA=N+NCODA)

!

 INTEGER IJOB

 REAL A(LDA,NCODA+2), U(N)

 REAL R(N,N), RT(N,N), D(N,N), WK(N,N), AA(N,N)

!

!

! Set values for A and right side in

! codiagonal band symmetric form:

!

! A = (* * * *)

! (* * * *)

! (2.0 * * 6.0)

! (4.0 0.0 * -11.0)

IMSL MATH LIBRARY Chapter 1: Linear Systems 311

! (7.0 2.0 -1.0 -11.0)

! (3.0 -1.0 1.0 19.0)

!

 DATA ((A(I+NCODA,J),I=1,N),J=1,NCODA+2)/2.0, 4.0, 7.0, 3.0, 0.0,&

 0.0, 2.0, -1.0, 0.0, 0.0, -1.0, 1.0, 6.0, -11.0, -11.0,&

 19.0/

 DATA R/16*0.0/, D/16*0.0/, RT/16*0.0/

! Factor and solve A*x = b.

 CALL LSLPB(A, NCODA, U)

! Print results

 CALL WRRRN ('X', A((NCODA+1):,(NCODA+2):), NRA=1, NCA=N, LDA=1)

 END

Output

 X

 1 2 3 4

 4.000 -6.000 2.000 9.000

LFCQS

Computes the R
T
 R Cholesky factorization of a real symmetric positive definite matrix in band

symmetric storage mode and estimate its L1condition number.

Required Arguments

A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in

band symmetric storage mode to be factored. (Input)

NCODA — Number of upper codiagonals of A. (Input)

FACT — NCODA + 1 by N array containing the R
T
R factorization of the matrix A in band

symmetric form. (Output)

If A is not needed, A and FACT can share the same storage locations.

RCOND — Scalar containing an estimate of the reciprocal of the L1condition number of A.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

312 Chapter 1: Linear Systems IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL LFCQS (A, NCODA, FACT, RCOND [,…])

Specific: The specific interface names are S_LFCQS and D_LFCQS.

FORTRAN 77 Interface

Single: CALL LFCQS (N, A, LDA, NCODA, FACT, LDFACT, RCOND)

Double: The double precision name is DLFCQS.

Description

Routine LFCQS computes an R
T
R Cholesky factorization and estimates the condition number of a

real symmetric positive definite band coefficient matrix. R is an upper triangular band matrix.

The L1condition number of the matrix A is defined to be κ(A) = ǀǀAǀǀ1ǀǀA
-1ǀǀ1. Since it is expensive

to compute ǀǀA-1ǀǀ1, the condition number is only estimated. The estimation algorithm is the same

as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system.

LFCQS fails if any submatrix of R is not positive definite or if R has a zero diagonal element.

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive

definite.

The R
T
R factors are returned in a form that is compatible with routines LFIQS, LFSQS and LFDQS.

To solve systems of equations with multiple right-hand-side vectors, use LFCQS followed by either

LFIQS or LFSQS called once for each right-hand side. The routine LFDQS can be called to compute

the determinant of the coefficient matrix after LFCQS has performed the factorization.

LFCQS is based on the LINPACK routine SPBCO; see Dongarra et al. (1979).

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CQS/DL2CQS. The

reference is:

CALL L2CQS (N, A, LDA, NCODA, FACT, LDFACT, RCOND, WK)

The additional argument is:

WK — Work vector of length N.

2. Informational errors

Type Code

IMSL MATH LIBRARY Chapter 1: Linear Systems 313

3 3 The input matrix is algorithmically singular.

4 2 The input matrix is not positive definite.

Example

The inverse of a 4 × 4 symmetric positive definite band matrix with one codiagonal is computed.

LFCQS is called to factor the matrix and to check for nonpositive definiteness or ill-conditioning.

LFIQS is called to determine the columns of the inverse.

 USE LFCQS_INT

 USE LFIQS_INT

 USE UMACH_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NCODA, NOUT

 PARAMETER (LDA=2, LDFACT=2, N=4, NCODA=1)

 REAL A(LDA,N), AINV(N,N), RCOND, FACT(LDFACT,N),&

 RES(N), RJ(N)

!

! Set values for A in band symmetric form

!

! A = (0.0 1.0 1.0 1.0)

! (2.0 2.5 2.5 2.0)

!

 DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/

! Factor the matrix A

 CALL LFCQS (A, NCODA, FACT, RCOND)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0E0

! RJ is the J-th column of the identity

! matrix so the following LFIQS

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFIQS (A, NCODA, FACT, RJ, AINV(:,J), RES)

 RJ(J) = 0.0E0

 10 CONTINUE

! Print the results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

 CALL WRRRN (‘AINV‘, AINV)

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND = 0.160

L1 Condition number = 6.239

 AINV

 1 2 3 4

 1 0.6667 -0.3333 0.1667 -0.0833

 2 -0.3333 0.6667 -0.3333 0.1667

314 Chapter 1: Linear Systems IMSL MATH LIBRARY

 3 0.1667 -0.3333 0.6667 -0.3333

 4 -0.0833 0.1667 -0.3333 0.6667

LFTQS

Computes the R
T
R Cholesky factorization of a real symmetric positive definite matrix in band

symmetric storage mode.

Required Arguments

A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in

band symmetric storage mode to be factored. (Input)

NCODA — Number of upper codiagonals of A. (Input)

FACT — NCODA + 1 by N array containing the R
T

R factorization of the matrix A. (Output)

If A s not needed, A and FACT can share the same storage locations.

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTQS (A, NCODA, FACT [,…])

Specific: The specific interface names are S_LFTQS and D_LFTQS.

FORTRAN 77 Interface

Single: CALL LFTQS (N, A, LDA, NCODA, FACT, LDFACT)

Double: The double precision name is DLFTQS.

Description

Routine LFTQS computes an R
T
 R Cholesky factorization of a real symmetric positive definite

band coefficient matrix. R is an upper triangular band matrix.

IMSL MATH LIBRARY Chapter 1: Linear Systems 315

LFTQS fails if any submatrix of R is not positive definite or if R has a zero diagonal element.

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive

definite.

The R
T
 R factors are returned in a form that is compatible with routines LFIQS, LFSQS and LFDQS.

To solve systems of equations with multiple right hand-side vectors, use LFTQS followed by either

LFIQS or LFSQS called once for each right-hand side. The routine LFDQS can be called to compute

the determinant of the coefficient matrix after LFTQS has performed the factorization.

LFTQS is based on the LINPACK routine CPBFA; see Dongarra et al. (1979).

Comments

Informational error

Type Code

4 2 The input matrix is not positive definite.

Example

The inverse of a 3 × 3 matrix is computed. LFTQS is called to factor the matrix and to check for

nonpositive definiteness. LFSQS is called to determine the columns of the inverse.

 USE LFTQS_INT

 USE WRRRN_INT

 USE LFSQS_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NCODA

 PARAMETER (LDA=2, LDFACT=2, N=4, NCODA=1)

 REAL A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N)

!

! Set values for A in band symmetric form

!

! A = (0.0 1.0 1.0 1.0)

! (2.0 2.5 2.5 2.0)

!

 DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/

! Factor the matrix A

 CALL LFTQS (A, NCODA, FACT)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = 0.0E0

 DO 10 J=1, N

 RJ(J) = 1.0E0

! RJ is the J-th column of the identity

! matrix so the following LFSQS

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFSQS (FACT, NCODA, RJ, AINV(:,J))

 RJ(J) = 0.0E0

 10 CONTINUE

! Print the results

 CALL WRRRN (‘AINV‘, AINV, ITRING=1)

 END

316 Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

 AINV

 1 2 3 4

1 0.6667 -0.3333 0.1667 -0.0833

2 0.6667 -0.3333 0.1667

3 0.6667 -0.3333

4 0.6667

LFSQS
Solves a real symmetric positive definite system of linear equations given the factorization of the

coefficient matrix in band symmetric storage mode.

Required Arguments

FACT — NCODA + 1 by N array containing the R
T
 R factorization of the positive definite band

matrix A in band symmetric storage mode as output from subroutine LFCQS/DLFCQS or

LFTQS/DLFTQS. (Input)

NCODA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X an share the same storage locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFSQS (FACT, NCODA, B, X [,…])

Specific: The specific interface names are S_LFSQS and D_LFSQS.

FORTRAN 77 Interface

Single: CALL LFSQS (N, FACT, LDFACT, NCODA, B, X)

Double: The double precision name is DLFSQS.

IMSL MATH LIBRARY Chapter 1: Linear Systems 317

Description

Routine LFSQS computes the solution for a system of linear algebraic equations having a real

symmetric positive definite band coefficient matrix. To compute the solution, the coefficient

matrix must first undergo an R
T
 R factorization. This may be done by calling either LFCQS or

LFTQS. R is an upper triangular band matrix.

The solution to Ax = b is found by solving the triangular systems R
T
y = b and Rx = y.

LFSQS and LFIQS both solve a linear system given its R
T
 R factorization. LFIQS generally takes

more time and produces a more accurate answer than LFSQS. Each iteration of the iterative

refinement algorithm used by LFIQS calls LFSQS.

LFSQS is based on the LINPACK routine SPBSL; see Dongarra et al. (1979).

Comments

Informational error

Type Code

4 1 The factored matrix is singular.

Example

A set of linear systems is solved successively. LFTQS is called to factor the coefficient matrix.

LFSQS is called to compute the four solutions for the four right-hand sides. In this case the

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be

better to call LFCQS to perform the factorization, and LFIQS to compute the solutions.

 USE LFSQS_INT

 USE LFTQS_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NCODA

 PARAMETER (LDA=3, LDFACT=3, N=4, NCODA=2)

 REAL A(LDA,N), B(N,4), FACT(LDFACT,N), X(N,4)

!

!

! Set values for A in band symmetric form, and B

!

! A = (0.0 0.0 -1.0 1.0)

! (0.0 0.0 2.0 -1.0)

! (2.0 4.0 7.0 3.0)

!

! B = (4.0 -3.0 9.0 -1.0)

! (6.0 10.0 29.0 3.0)

! (15.0 12.0 11.0 6.0)

! (-7.0 1.0 14.0 2.0)

!

 DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/

 DATA B/4.0, 6.0, 15.0, -7.0, -3.0, 10.0, 12.0, 1.0, 9.0, 29.0,&

 11.0, 14.0, -1.0, 3.0, 6.0, 2.0/

! Factor the matrix A

 CALL LFTQS (A, NCODA, FACT)

! Compute the solutions

 DO 10 I=1, 4

318 Chapter 1: Linear Systems IMSL MATH LIBRARY

 CALL LFSQS (FACT, NCODA, B(:,I), X(:,I))

 10 CONTINUE

! Print solutions

 CALL WRRRN (‘X‘, X)

!

 END

Output

 X

 1 2 3 4

1 3.000 -1.000 5.000 0.000

2 1.000 2.000 6.000 0.000

3 2.000 1.000 1.000 1.000

4 -2.000 0.000 3.000 1.000

LFIQS
Uses iterative refinement to improve the solution of a real symmetric positive definite system of

linear equations in band symmetric storage mode.

Required Arguments

A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in

band symmetric storage mode. (Input)

NCODA — Number of upper codiagonals of A. (Input)

FACT — NCODA + 1 by N array containing the R
T

R factorization of the matrix A from routine

LFCQS/DLFCQS or LFTQS/DLFTQS. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the system. (Output)

RES — Vector of length N containing the residual vector at the improved solution. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

IMSL MATH LIBRARY Chapter 1: Linear Systems 319

FORTRAN 90 Interface

Generic: CALL LFIQS (A, NCODA, FACT, B, X, RES [,…])

Specific: The specific interface names are S_LFIQS and D_LFIQS.

FORTRAN 77 Interface

Single: CALL LFIQS (N, A, LDA, NCODA, FACT, LDFACT, B, X, RES)

Double: The double precision name is DLFIQS.

Description

Routine LFIQS computes the solution of a system of linear algebraic equations having a real

symmetric positive-definite band coefficient matrix. Iterative refinement is performed on the

solution vector to improve the accuracy. Usually almost all of the digits in the solution are

accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an R
T
 R factorization. This may

be done by calling either IMSL routine LFCQS or LFTQS.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIQS and LFSQS both solve a linear system given its R
T
 R factorization. LFIQS generally takes

more time and produces a more accurate answer than LFSQS. Each iteration of the iterative

refinement algorithm used by LFIQS calls LFSQS.

Comments

Informational error

Type Code

3 4 The input matrix is too ill-conditioned for iterative refinement to be

effective.

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving

the system each of the first two times by adding 0.5 to the second element.

 USE LFIQS_INT

 USE UMACH_INT

 USE LFCQS_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NCODA, NOUT

 PARAMETER (LDA=2, LDFACT=2, N=4, NCODA=1)

 REAL A(LDA,N), B(N), RCOND, FACT(LDFACT,N), RES(N,3),&

 X(N,3)

!

! Set values for A in band symmetric form, and B

!

! A = (0.0 1.0 1.0 1.0)

320 Chapter 1: Linear Systems IMSL MATH LIBRARY

! (2.0 2.5 2.5 2.0)

!

! B = (3.0 5.0 7.0 4.0)

!

 DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/

 DATA B/3.0, 5.0, 7.0, 4.0/

! Factor the matrix A

 CALL LFCQS (A, NCODA, FACT, RCOND)

! Print the estimated condition number

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Compute the solutions

 DO 10 I=1, 3

 CALL LFIQS (A, NCODA, FACT, B, X(:,I), RES(:,I))

 B(2) = B(2) + 0.5E0

 10 CONTINUE

! Print solutions and residuals

 CALL WRRRN (‘X‘, X)

 CALL WRRRN (‘RES‘, RES)

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND = 0.160

L1 Condition number = 6.239

 X

 1 2 3

1 1.167 1.000 0.833

2 0.667 1.000 1.333

3 2.167 2.000 1.833

4 0.917 1.000 1.083

 RES

 1 2 3

1 7.947E-08 0.000E+00 9.934E-08

2 7.947E-08 0.000E+00 3.974E-08

3 7.947E-08 0.000E+00 1.589E-07

4 -3.974E-08 0.000E+00 -7.947E-08

LFDQS

Computes the determinant of a real symmetric positive definite matrix given the R
T
R Cholesky

factorization of the band symmetric storage mode.

Required Arguments

FACT — NCODA + 1 by N array containing the R
T
 R factorization of the positive definite band

matrix, A, in band symmetric storage mode as output from subroutine LFCQS/DLFCQS

or LFTQS/DLFTQS. (Input)

NCODA — Number of upper codiagonals of A. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 321

DET1 — Scalar containing the mantissa of the determinant. (Output)

The value DET1 is normalized so that 1.0 ≤ ǀDET1ǀ < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)

The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDQS (FACT, NCODA, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDQS and D_LFDQS.

FORTRAN 77 Interface

Single: CALL LFDQS (N, FACT, LDFACT, NCODA, DET1, DET2)

Double: The double precision name is DLFDQS.

Description

Routine LFDQS computes the determinant of a real symmetric positive-definite band coefficient

matrix. To compute the determinant, the coefficient matrix must first undergo an R
T
 R

factorization. This may be done by calling either IMSL routine LFCQS or LFTQS. The formula

det A = det R
T

det R = (det R)
2
 is used to compute the determinant. Since the determinant of a

triangular matrix is the product of the diagonal elements,

1
det

N

i iiR R

LFDQS is based on the LINPACK routine SPBDI; see Dongarra et al. (1979).

Example

The determinant is computed for a real positive definite 4 × 4 matrix with 2 codiagonals.

 USE LFDQS_INT

 USE LFTQS_INT

 USE UMACH_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NCODA, NOUT

 PARAMETER (LDA=3, N=4, LDFACT=3, NCODA=2)

322 Chapter 1: Linear Systems IMSL MATH LIBRARY

 REAL A(LDA,N), DET1, DET2, FACT(LDFACT,N)

!

! Set values for A in band symmetric form

!

! A = (0.0 0.0 1.0 -2.0)

! (0.0 2.0 1.0 3.0)

! (7.0 6.0 6.0 8.0)

!

 DATA A/2*0.0, 7.0, 0.0, 2.0, 6.0, 1.0, 1.0, 6.0, -2.0, 3.0, 8.0/

! Factor the matrix

 CALL LFTQS (A, NCODA, FACT)

! Compute the determinant

 CALL LFDQS (FACT, NCODA, DET1, DET2)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) DET1, DET2

!

99999 FORMAT (‘ The determinant of A is ‘,F6.3,‘ * 10**‘,F2.0)

 END

Output

The determinant of A is 1.186 * 10**3.

LSLTQ
Solves a complex tridiagonal system of linear equations.

Required Arguments

C — Complex vector of length N containing the subdiagonal of the tridiagonal matrix in C(2)

through C(N). (Input/Output)

On output C is destroyed.

D — Complex vector of length N containing the diagonal of the tridiagonal matrix.

(Input/Output)

On output D is destroyed.

E — Complex vector of length N containing the superdiagonal of the tridiagonal matrix in

E(1) through E(N − 1). (Input/Output)

On output E is destroyed.

B — Complex vector of length N containing the right-hand side of the linear system on entry

and the solution vector on return. (Input/Output)

Optional Arguments

N — Order of the tridiagonal matrix. (Input)

Default: N = size (C,1).

IMSL MATH LIBRARY Chapter 1: Linear Systems 323

FORTRAN 90 Interface

Generic: CALL LSLTQ (C, D, E, B [,…])

Specific: The specific interface names are S_LSLTQ and D_LSLTQ.

FORTRAN 77 Interface

Single: CALL LSLTQ (N, C, D, E, B)

Double: The double precision name is DLSLTQ.

Description

Routine LSLTQ factors and solves the complex tridiagonal linear system Ax = b. LSLTQ is intended

just for tridiagonal systems. The coefficient matrix does not have to be symmetric. The algorithm

is Gaussian elimination with pivoting for numerical stability. See Dongarra et al. (1979),

LINPACK subprograms CGTSL/ZGTSL, for details. When computing on vector or parallel

computers the cyclic reduction algorithm, LSLCQ, should be considered as an alternative method

to solve the system.

Comments

Informational error

Type Code

4 2 An element along the diagonal became exactly zero during

execution.

Example

A system of n = 4 linear equations is solved.

 USE LSLTQ_INT

 USE WRCRL_INT

! Declaration of variables

 INTEGER N

 PARAMETER (N=4)

!

 COMPLEX B(N), C(N), D(N), E(N)

 CHARACTER CLABEL(1)*6, FMT*8, RLABEL(1)*4

!

 DATA FMT/‘(E13.6)‘/

 DATA CLABEL/‘NUMBER‘/

 DATA RLABEL/‘NONE‘/

! C(*), D(*), E(*) and B(*)

! contain the subdiagonal,

! diagonal, superdiagonal and

! right hand side.

 DATA C/(0.0,0.0), (-9.0,3.0), (2.0,7.0), (7.0,-4.0)/

 DATA D/(3.0,-5.0), (4.0,-9.0), (-5.0,-7.0), (-2.0,-3.0)/

 DATA E/(-9.0,8.0), (1.0,8.0), (8.0,3.0), (0.0,0.0)/

 DATA B/(-16.0,-93.0), (128.0,179.0), (-60.0,-12.0), (9.0,-108.0)/

324 Chapter 1: Linear Systems IMSL MATH LIBRARY

!

!

 CALL LSLTQ (C, D, E, B)

! Output the solution.

 CALL WRCRL (‘Solution:‘, B, RLABEL, CLABEL, 1, N, 1, FMT=FMT)

 END

Output

Solution:

 1 2

(-0.400000E+01,-0.700000E+01) (-0.700000E+01, 0.400000E+01)

 3 4

(0.700000E+01,-0.700000E+01) (0.900000E+01, 0.200000E+01)

LSLCQ
Computes the LDU factorization of a complex tridiagonal matrix A using a cyclic reduction

algorithm.

Required Arguments

C — Complex array of size 2N containing the upper codiagonal of the N by N tridiagonal

matrix in the entries C(1),…, C(N − 1). (Input/Output)

A — Complex array of size 2N containing the diagonal of the N by N tridiagonal matrix in the

entries A(1), …, A(N). (Input/Output)

B — Complex array of size 2N containing the lower codiagonal of the N by N tridiagonal

matrix in the entries B(1), …, B(N − 1). (Input/Output)

Y — Complex array of size 2N containing the right-hand side of the system Ax = y in the order

Y(1),…,Y(N). (Input/Output)

The vector x overwrites Y in storage.

U — Real array of size 2N of flags that indicate any singularities of A. (Output)

A value U(I) = 1. means that a divide by zero would have occurred during the

factoring. Otherwise U(I) = 0.

IR — Array of integers that determine the sizes of loops performed in the cyclic reduction

algorithm. (Output)

IS — Array of integers that determine the sizes of loops performed in the cyclic reduction

algorithm. (Output)

The sizes of these arrays must be at least log2 (N) + 3.

IMSL MATH LIBRARY Chapter 1: Linear Systems 325

Optional Arguments

N — Order of the matrix. (Input)

N must be greater than zero.

Default: N = size (C,1).

IJOB — Flag to direct the desired factoring or solving step. (Input)

Default: IJOB =1.

IJOB Action

1 Factor the matrix A and solve the system Ax = y, where y is

stored in array Y.

2 Do the solve step only. Use y from array Y. (The factoring

step has already been done.)

3 Factor the matrix A but do not solve a system.

4 Same meaning as with the value IJOB = 3. For efficiency, no

error checking is done on the validity of any input value.

FORTRAN 90 Interface

Generic: CALL LSLCQ (C, A, B, Y, U, IR, IS [,…])

Specific: The specific interface names are S_LSLCQ and D_LSLCQ.

FORTRAN 77 Interface

Single: CALL LSLCQ (N, C, A, B, IJOB, Y, U, IR, IS)

Double: The double precision name is DLSLCQ.

Description

Routine LSLCQ factors and solves the complex tridiagonal linear system Ax = y. The matrix is

decomposed in the form A = LDU, where L is unit lower triangular, U is unit upper triangular, and

D is diagonal. The algorithm used for the factorization is effectively that described in Kershaw

(1982). More details, tests and experiments are reported in Hanson (1990).

LSLCQ is intended just for tridiagonal systems. The coefficient matrix does not have to be

Hermitian. The algorithm amounts to Gaussian elimination, with no pivoting for numerical

stability, on the matrix whose rows and columns are permuted to a new order. See Hanson (1990)

for details. The expectation is that LSLCQ will outperform either LSLTQ or LSLQB on vector or

parallel computers. Its performance may be inferior for small values of n, on scalar computers, or

high-performance computers with non-optimizing compilers.

326 Chapter 1: Linear Systems IMSL MATH LIBRARY

Example

A real skew-symmetric tridiagonal matrix, A, of dimension n = 1000 is given by ck = −k, ak = 0,

and bk = k, k = 1,…, n − 1, an = 0. This matrix will have eigenvalues that are purely imaginary.

The eigenvalue closest to the imaginary unit is required. This number is obtained by using inverse

iteration to approximate a complex eigenvector y. The eigenvalue is approximated by

/
H H

y Ay y y . (This example is contrived in the sense that the given tridiagonal skew-

symmetric matrix eigenvalue problem is essentially equivalent to the tridiagonal symmetic

eigenvalue problem where the ck = k and the other data are unchanged.)

 USE LSLCQ_INT

 USE UMACH_INT

! Declare variables

 INTEGER LP, N, N2

 PARAMETER (LP=12, N=1000, N2=2*N)

!

 INTEGER I, IJOB, IR(LP), IS(LP), K, NOUT

 REAL AIMAG, U(N2)

 COMPLEX A(N2), B(N2), C(N2), CMPLX, CONJG, S, T, Y(N2)

 INTRINSIC AIMAG, CMPLX, CONJG

! Define entries of skew-symmetric

! matrix, A:

 DO 10 I=1, N - 1

 C(I) = -I

! This amounts to subtracting the

! positive imaginary unit from the

! diagonal. (The eigenvalue closest

! to this value is desired.)

 A(I) = CMPLX(0.E0,-1.0E0)

 B(I) = I

! This initializes the approximate

! eigenvector.

 Y(I) = 1.E0

 10 CONTINUE

 A(N) = CMPLX(0.E0,-1.0E0)

 Y(N) = 1.E0

! First step of inverse iteration

! follows. Obtain decomposition of

! matrix and solve the first system:

 IJOB = 1

 CALL LSLCQ (C, A, B, Y, U, IR, IS, N=N, IJOB=IJOB)

!

! Next steps of inverse iteration

! follow. Solve the system again with

! the decomposition ready:

 IJOB = 2

 DO 20 K=1, 3

 CALL LSLCQ (C, A, B, Y, U, IR, IS, N=N, IJOB=IJOB)

 20 CONTINUE

!

! Compute the Raleigh quotient to

! estimate the eigenvalue closest to

! the positive imaginary unit. After

IMSL MATH LIBRARY Chapter 1: Linear Systems 327

! the approximate eigenvector, y, is

! computed, the estimate of the

! eigenvalue is ctrans(y)*A*y/t,

! where t = ctrans(y)*y.

 S = -CONJG(Y(1))*Y(2)

 T = CONJG(Y(1))*Y(1)

 DO 30 I=2, N - 1

 S = S + CONJG(Y(I))*((I-1)*Y(I-1)-I*Y(I+1))

 T = T + CONJG(Y(I))*Y(I)

 30 CONTINUE

 S = S + CONJG(Y(N))*(N-1)*Y(N-1)

 T = T + CONJG(Y(N))*Y(N)

 S = S/T

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ‘ The value of n is: ‘, N

 WRITE (NOUT,*) ‘ Value of approximate imaginary eigenvalue:‘,&

 AIMAG(S)

 STOP

 END

Output

The value of n is: 1000

Value of approximate imaginary eigenvalue: 1.03811

LSACB
Solves a complex system of linear equations in band storage mode with iterative refinement.

Required Arguments

A — Complex NLCA + NUCA + 1 by N array containing the N by N banded coefficient matrix in

band storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

328 Chapter 1: Linear Systems IMSL MATH LIBRARY

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
H
X = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSACB (A, NLCA, NUCA, B, X [,…])

Specific: The specific interface names are S_LSACB and D_LSACB.

FORTRAN 77 Interface

Single: CALL LSACB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Double: The double precision name is DLSACB.

Description

Routine LSACB solves a system of linear algebraic equations having a complex banded coefficient

matrix. It first uses the routine LFCCB to compute an LU factorization of the coefficient matrix and

to estimate the condition number of the matrix. The solution of the linear system is then found

using the iterative refinement routine LFICB.

LSACB fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the

iterative refinement algorithm fails to converge. These errors occur only if A is singular or very

close to a singular matrix.

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system. LSACB solves the

problem that is represented in the computer; however, this problem may differ from the problem

whose solution is desired.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2ACB/DL2ACB. The

reference is:

CALL L2ACB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — Complex work vector of length (2 * NLCA + NUCA + 1) * N

containing the LU factorization of A on output.

IPVT — Integer work vector of length N containing the pivoting information

for the LU factorization of A on output.

IMSL MATH LIBRARY Chapter 1: Linear Systems 329

WK — Complex work vector of length N.

2. Informational errors

Type Code

3 3 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2ACB the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSACB.

Additional memory allocation for FACT and option value restoration are done

automatically in LSACB. Users directly calling L2ACB can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSACB or L2ACB. Default values for the option are

IVAL(*) = 1,16,0,1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSACB temporarily replaces IVAL(2) by IVAL(1). The

routine L2CCB computes the condition number if IVAL(2) = 2. Otherwise

L2CCB skips this computation. LSACB restores the option. Default values for

the option are IVAL(*) = 1,2.

Example

A system of four linear equations is solved. The coefficient matrix has complex banded form with

one upper and one lower codiagonal. The right-hand-side vector b has four elements.

 USE LSACB_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, N, NLCA, NUCA

 PARAMETER (LDA=3, N=4, NLCA=1, NUCA=1)

 COMPLEX A(LDA,N), B(N), X(N)

!

! Set values for A in band form, and B

!

! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)

! (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)

! (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)

!

! B = (-10.0-5.0i 9.5+5.5i 12.0-12.0i 0.0+8.0i)

!

 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&

 (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&

 (1.0,-1.0), (0.0,0.0)/

 DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/

330 Chapter 1: Linear Systems IMSL MATH LIBRARY

! Solve A*X = B

 CALL LSACB (A, NLCA, NUCA, B, X)

! Print results

 CALL WRCRN (‘X‘, X, 1, N, 1)

!

 END

Output

 X

 1 2 3 4

(3.000, 0.000) (-1.000, 1.000) (3.000, 0.000) (-1.000, 1.000)

LSLCB
Solves a complex system of linear equations in band storage mode without iterative refinement.

Required Arguments

A — Complex NLCA + NUCA + 1 by N array containing the N by N banded coefficient matrix in

band storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

If B is not needed, then B and X may share the same storage locations)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
H
X = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSLCB (A, NLCA, NUCA, B, X [,…])

IMSL MATH LIBRARY Chapter 1: Linear Systems 331

Specific: The specific interface names are S_LSLCB and D_LSLCB.

FORTRAN 77 Interface

Single: CALL LSLCB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Double: The double precision name is DLSLCB.

Description

Routine LSLCB solves a system of linear algebraic equations having a complex banded coefficient

matrix. It first uses the routine LFCCB to compute an LU factorization of the coefficient matrix and

to estimate the condition number of the matrix. The solution of the linear system is then found

using LFSCB.

LSLCB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This

occurs only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that

LSACB be used.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LCB/DL2LCB The

reference is:

CALL L2LCB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — (2 * NLCA + NUCA + 1) × N complex work array containing the LU

factorization of A on output. If A is not needed, A can share the first

(NLCA + NUCA + 1) * N locations with FACT.

IPVT — Integer work vector of length N containing the pivoting information

for the LU factorization of A on output.

WK — Complex work vector of length N.

2. Informational errors

Type Code

3 3 The input matrix is too ill-conditioned. The solution might not be

accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

332 Chapter 1: Linear Systems IMSL MATH LIBRARY

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2LCB the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLCB.

Additional memory allocation for FACT and option value restoration are done

automatically in LSLCB. Users directly calling L2LCB can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSLCB or L2LCB. Default values for the option are

IVAL(*) = 1,16,0,1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSLCB temporarily replaces IVAL(2) by IVAL(1). The

routine L2CCB computes the condition number if IVAL(2) = 2. Otherwise L2CCB

skips this computation. LSLCB restores the option. Default values for the option

are IVAL(*) = 1,2.

Example

A system of four linear equations is solved. The coefficient matrix has complex banded form with

one upper and one lower codiagonal. The right-hand-side vector b has four elements.

 USE LSLCB_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, N, NLCA, NUCA

 PARAMETER (LDA=3, N=4, NLCA=1, NUCA=1)

 COMPLEX A(LDA,N), B(N), X(N)

!

! Set values for A in band form, and B

!

! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)

! (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)

! (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)

!

! B = (-10.0-5.0i 9.5+5.5i 12.0-12.0i 0.0+8.0i)

!

 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&

 (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&

 (1.0,-1.0), (0.0,0.0)/

 DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/

! Solve A*X = B

 CALL LSLCB (A, NLCA, NUCA, B, X)

! Print results

 CALL WRCRN (‘X‘, X, 1, N, 1)

!

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 333

Output

 X

 1 2 3 4

(3.000, 0.000) (-1.000, 1.000) (3.000, 0.000) (-1.000, 1.000)

LFCCB
Computes the LU factorization of a complex matrix in band storage mode and estimate its L1

condition number.

Required Arguments

A — Complex NLCA + NUCA + 1 by N array containing the N by N matrix in band storage

mode to be factored. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the

matrix A. (Output)

If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT .

IPVT — Vector of length N containing the pivoting information for the LU factorization.

(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCCB (A, NLCA, NUCA, FACT, IPVT, RCOND [,…])

Specific: The specific interface names are S_LFCCB and D_LFCCB.

334 Chapter 1: Linear Systems IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL LFCCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCCB.

Description

Routine LFCCB performs an LU factorization of a complex banded coefficient matrix. It also

estimates the condition number of the matrix. The LU factorization is done using scaled partial

pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the

same as if each row were scaled to have the same ∞-norm.

The L1 condition number of the matrix A is defined to be κ(A) = ǀǀAǀǀ1ǀǀA
-1ǀǀ1 Since it is expensive

to compute ǀǀA-1ǀǀ1, the condition number is only estimated. The estimation algorithm is the same

as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system.

LFCCB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This

can occur only if A is singular or very close to a singular matrix.

The LU factors are returned in a form that is compatible with IMSL routines LFICB, LFSCB and

LFDCB. To solve systems of equations with multiple right-hand-side vectors, use LFCCB followed

by either LFICB or LFSCB called once for each right-hand side. The routine LFDCB can be called

to compute the determinant of the coefficient matrix after LFCCB has performed the factorization.

Let F be the matrix FACT, let ml = NLCA and let mu = NUCA. The first ml + mu + 1 rows of F

contain the triangular matrix U in band storage form. The lower ml rows of F contain the

multipliers needed to reconstruct L.

LFCCB is based on the LINPACK routine CGBCO; see Dongarra et al. (1979). CGBCO uses unscaled

partial pivoting.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CCB/DL2CCB. The

reference is:

CALL L2CCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND, WK)

The additional argument is

WK — Complex work vector of length N.

2. Informational errors

Type Code

IMSL MATH LIBRARY Chapter 1: Linear Systems 335

3 1 The input matrix is algorithmically singular.

4 2 The input matrix is singular.

Example

The inverse of a 4 × 4 band matrix with one upper and one lower codiagonal is computed.

LFCCB is called to factor the matrix and to check for singularity or ill-conditioning. LFICB is

called to determine the columns of the inverse.

 USE LFCCB_INT

 USE UMACH_INT

 USE LFICB_INT

 USE WRCRN_INT

! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA, NOUT

 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)

 INTEGER IPVT(N)

 REAL RCOND

 COMPLEX A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N), RES(N)

!

! Set values for A in band form

!

! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)

! (0.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)

! (6.0+1.0i 4.0+1.0i 0.0+2.0i 0.0+0.0i)

!
 DATA A/(0.0,0.0), (0.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&

 (4.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&

 (1.0,-1.0), (0.0,0.0)/

!
 CALL LFCCB (A, NLCA, NUCA, FACT, IPVT, RCOND)

! Print the reciprocal condition number

! and the L1 condition number
 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Set up the columns of the identity

! matrix one at a time in RJ
 RJ = (0.0E0,0.0E0)

 DO 10 J=1, N

 RJ(J) = (1.0E0,0.0E0)

! RJ is the J-th column of the identity

! matrix so the following LFICB

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV
 CALL LFICB (A, NLCA, NUCA, FACT, IPVT, RJ, AINV(:,J), RES)

 RJ(J) = (0.0E0,0.0E0)

 10 CONTINUE

! Print results
 CALL WRCRN (‘AINV‘, AINV)

!

336 Chapter 1: Linear Systems IMSL MATH LIBRARY

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 condition number = ‘,F6.3)

 END

Output

RCOND = 0.022

L1 condition number = 45.933

 AINV

 1 2 3 4

 1 (0.562, 0.170) (0.125, 0.260) (-0.385,-0.135) (-0.239,-1.165)

 2 (0.122, 0.421) (-0.195, 0.094) (0.101,-0.289) (0.874,-0.179)

 3 (0.034, 0.904) (-0.437, 0.090) (-0.153,-0.527) (1.087,-1.172)

 4 (0.938, 0.870) (-0.347, 0.527) (-0.679,-0.374) (0.415,-1.759)

LFTCB
Computes the LU factorization of a complex matrix in band storage mode.

Required Arguments

A — Complex NLCA + NUCA + 1 by N array containing the N by N matrix in band storage

mode to be factored. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the

matrix A. (Output)

If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT.

IPVT — Integer vector of length N containing the pivoting information for the LU

factorization. (Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

IMSL MATH LIBRARY Chapter 1: Linear Systems 337

FORTRAN 90 Interface

Generic: CALL LFTCB (A, NLCA, NUCA, FACT, IPVT [,…])

Specific: The specific interface names are S_LFTCB and D_LFTCB.

FORTRAN 77 Interface

Single: CALL LFTCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTCB.

Description

Routine LFTCB performs an LU factorization of a complex banded coefficient matrix. The LU

factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial

pivoting in that the pivoting strategy is the same as if each row were scaled to have the same

∞-norm.

LFTCB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This

can occur only if A is singular or very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFICB, LFSCB and LFDCB.

To solve systems of equations with multiple right-hand-side vectors, use LFTCB followed by either

LFICB or LFSCB called once for each right-hand side. The routine LFDCB can be called to compute

the determinant of the coefficient matrix after LFTCB has performed the factorization.

Let F be the matrix FACT, let ml = NLCA and let mu = NUCA. The first ml + mu + 1 rows of F

contain the triangular matrix U in band storage form. The lower ml rows of F contain the

multipliers needed to reconstruct L-1
. LFTCB is based on the LINPACK routine CGBFA; see

Dongarra et al. (1979). CGBFA uses unscaled partial pivoting.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2TCB/DL2TCB The

reference is:

CALL L2TCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, WK)

The additional argument is:

WK — Complex work vector of length N used for scaling.

2. Informational error

Type Code

4 2 The input matrix is singular.

338 Chapter 1: Linear Systems IMSL MATH LIBRARY

Example

A linear system with multiple right-hand sides is solved. LFTCB is called to factor the coefficient

matrix. LFSCB is called to compute the two solutions for the two right-hand sides. In this case the

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be

better to call LFCCB to perform the factorization, and LFICB to compute the solutions.

 USE LFTCB_INT

 USE LFSCB_INT

 USE WRCRN_INT

! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA

 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)

 INTEGER IPVT(N)

 COMPLEX A(LDA,N), B(N,2), FACT(LDFACT,N), X(N,2)

!

! Set values for A in band form, and B

!

! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)

! (0.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)

! (6.0+1.0i 4.0+1.0i 0.0+2.0i 0.0+0.0i)

!

! B = (-4.0-5.0i 16.0-4.0i)

! (9.5+5.5i -9.5+19.5i)

! (9.0-9.0i 12.0+12.0i)

! (0.0+8.0i -8.0-2.0i)

!
 DATA A/(0.0,0.0), (0.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&

 (4.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&

 (1.0,-1.0), (0.0,0.0)/

 DATA B/(-4.0,-5.0), (9.5,5.5), (9.0,-9.0), (0.0,8.0),&

 (16.0,-4.0), (-9.5,19.5), (12.0,12.0), (-8.0,-2.0)/

!
 CALL LFTCB (A, NLCA, NUCA, FACT, IPVT)

! Solve for the two right-hand sides
 DO 10 J=1, 2

 CALL LFSCB (FACT, NLCA, NUCA, IPVT, B(:,J), X(:,J))

 10 CONTINUE

! Print results
 CALL WRCRN (‘X‘, X)

!
 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 339

Output

 X

 1 2

1 (3.000, 0.000) (0.000, 4.000)

2 (-1.000, 1.000) (1.000,-1.000)

3 (3.000, 0.000) (0.000, 4.000)

4 (-1.000, 1.000) (1.000,-1.000)

LFSCB
Solves a complex system of linear equations given the LU factorization of the coefficient matrix in

band storage mode.

Required Arguments

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the

coefficient matrix A as output from subroutine LFCCB/DLFCCB or LFTCB/DLFTCB.

(Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A

as output from subroutine LFCCB/DLFCCB or LFTCB/DLFTCB. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
H
X = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LFSCB (FACT, NLCA, NUCA, IPVT, B, X [,…])

340 Chapter 1: Linear Systems IMSL MATH LIBRARY

Specific: The specific interface names are S_LFSCB and D_LFSCB.

FORTRAN 77 Interface

Single: CALL LFSCB (N, FACT, LDFACT, NLCA, NUCA, IPVT, B, IPATH, X)

Double: The double precision name is DLFSCB.

Description

Routine LFSCB computes the solution of a system of linear algebraic equations having a complex

banded coefficient matrix. To compute the solution, the coefficient matrix must first undergo an

LU factorization. This may be done by calling either LFCCB or LFTCB. The solution to Ax = b is

found by solving the banded triangular systems Ly = b and Ux = y. The forward elimination step

consists of solving the system Ly = b by applying the same permutations and elimination

operations to b that were applied to the columns of A in the factorization routine. The backward

substitution step consists of solving the banded triangular system Ux = y for x.

LFSCB and LFICB both solve a linear system given its LU factorization. LFICB generally takes

more time and produces a more accurate answer than LFSCB. Each iteration of the iterative

refinement algorithm used by LFICB calls LFSCB.

LFSCB is based on the LINPACK routine CGBSL; see Dongarra et al. (1979).

Example

The inverse is computed for a real banded 4 × 4 matrix with one upper and one lower codiagonal.

The input matrix is assumed to be well-conditioned; hence LFTCB is used rather than LFCCB.

 USE LFSCB_INT

 USE LFTCB_INT

 USE WRCRN_INT

! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA

 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)

 INTEGER IPVT(N)

 COMPLEX A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N)

!

! Set values for A in band form

!

! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)

! (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)

! (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)

!
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&

 (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&

 (1.0,-1.0), (0.0,0.0)/

!
 CALL LFTCB (A, NLCA, NUCA, FACT, IPVT)

! Set up the columns of the identity

IMSL MATH LIBRARY Chapter 1: Linear Systems 341

! matrix one at a time in RJ
 RJ = (0.0E0,0.0E0)

 DO 10 J=1, N

 RJ(J) = (1.0E0,0.0E0)

! RJ is the J-th column of the identity

! matrix so the following LFSCB

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV
 CALL LFSCB (FACT, NLCA, NUCA, IPVT, RJ, AINV(:,J))

 RJ(J) = (0.0E0,0.0E0)

 10 CONTINUE

! Print results
 CALL WRCRN (‘AINV‘, AINV)

!
 END

Output

 1 2 3 4

1 (0.165,-0.341) (0.376,-0.094) (-0.282, 0.471) (-1.600, 0.000)

2 (0.588,-0.047) (0.259, 0.235) (-0.494, 0.024) (-0.800,-1.200)

3 (0.318, 0.271) (0.012, 0.247) (-0.759,-0.235) (-0.550,-2.250)

4 (0.588,-0.047) (0.259, 0.235) (-0.994, 0.524) (-2.300,-1.200)

LFICB
Uses iterative refinement to improve the solution of a complex system of linear equations in band

storage mode.

Required Arguments

A — Complex NLCA + NUCA + 1 by N array containing the N by N coefficient matrix in band

storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the

matrix A as output from routine LFCCB/DLFCCB or LFTCB/DLFTCB. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A

as output from routine LFCCB/DLFCCB or LFTCB/DLFTCB. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution. (Output)

RES — Complex vector of length N containing the residual vector at the improved solution.

(Output)

342 Chapter 1: Linear Systems IMSL MATH LIBRARY

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A
H
X = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LFICB (A, NLCA, NUCA, FACT, IPVT, B, X, RES [,…])

Specific: The specific interface names are S_LFICB and D_LFICB.

FORTRAN 77 Interface

Single: CALL LFICB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, B, IPATH, X,
RES)

Double: The double precision name is DLFICB.

Description

Routine LFICB computes the solution of a system of linear algebraic equations having a complex

banded coefficient matrix. Iterative refinement is performed on the solution vector to improve the

accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is

somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU factorization. This may

be done by calling either LFCCB or LFTCB.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFICB and LFSCB both solve a linear system given its LU factorization. LFICB generally takes

more time and produces a more accurate answer than LFSCB. Each iteration of the iterative

refinement algorithm used by LFICB calls LFSCB.

Comments

Informational error

IMSL MATH LIBRARY Chapter 1: Linear Systems 343

Type Code

3 3 The input matrix is too ill-conditioned for iterative refinement be

effective.

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving

the system each of the first two times by adding (1 + i)/2 to the second element.

 USE LFICB_INT

 USE LFCCB_INT

 USE WRCRN_INT

 USE UMACH_INT

! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA, NOUT

 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)

 INTEGER IPVT(N)

 REAL RCOND

 COMPLEX A(LDA,N), B(N), FACT(LDFACT,N), RES(N), X(N)

!

! Set values for A in band form, and B

!

! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)

! (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)

! (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)

!

! B = (-10.0-5.0i 9.5+5.5i 12.0-12.0i 0.0+8.0i)

!
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&

 (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&

 (1.0,-1.0), (0.0,0.0)/

 DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/

!
 CALL LFCCB (A, NLCA, NUCA, FACT, IPVT, RCOND)

! Print the reciprocal condition number
 CALL UMACH (2, NOUT)

 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND

! Solve the three systems
 DO 10 J=1, 3

 CALL LFICB (A, NLCA, NUCA, FACT, IPVT, B, X, RES)

! Print results
 WRITE (NOUT, 99999) J

 CALL WRCRN (‘X‘, X, 1, N, 1)

 CALL WRCRN (‘RES‘, RES, 1, N, 1)

! Perturb B by adding 0.5+0.5i to B(2)
 B(2) = B(2) + (0.5E0,0.5E0)

 10 CONTINUE

!
99998 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

99999 FORMAT (//,‘ For system ‘,I1)

 END

344 Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

RCOND = 0.014

L1 Condition number = 72.414

For system 1

 X

 1 2 3 4

(3.000, 0.000) (-1.000, 1.000) (3.000, 0.000) (-1.000, 1.000)

 RES

 1 2 3

(0.000E+00, 0.000E+00) (0.000E+00, 0.000E+00) (0.000E+00, 5.684E-14)

 4

(3.494E-22,-6.698E-22)

For system 2

 X

 1 2 3 4

(3.235, 0.141) (-0.988, 1.247) (2.882, 0.129) (-0.988, 1.247)

 RES

 1 2 3

(-1.402E-08, 6.486E-09) (-7.012E-10, 4.488E-08) (-1.122E-07, 7.188E-09)

 4

(-7.012E-10, 4.488E-08)

For system 3

 X

 1 2 3 4

(3.471, 0.282) (-0.976, 1.494) (2.765, 0.259) (-0.976, 1.494)

 RES

 1 2 3

(-2.805E-08, 1.297E-08) (-1.402E-09,-2.945E-08) (1.402E-08, 1.438E-08)

 4

(-1.402E-09,-2.945E-08)

LFDCB
Computes the determinant of a complex matrix given the LU factorization of the matrix in band

storage mode.

Required Arguments

FACT — Complex (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the

matrix A as output from routine LFTCB/DLFTCB or LFCCB/DLFCCB. (Input)

NLCA — Number of lower codiagonals in matrix A. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 345

NUCA — Number of upper codiagonals in matrix A. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization as

output from routine LFTCB/DLFTCB or LFCCB/DLFCCB. (Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)

The value DET1 is normalized so that 1.0 ≤ ǀDET1 ǀ < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)

The determinant is returned in the form det (A) = DET1 * 10DET2.

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDCB (FACT, NLCA, NUCA, IPVT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDCB and D_LFDCB.

FORTRAN 77 Interface

Single: CALL LFDCB (N, FACT, LDFACT, NLCA, NUCA, IPVT, DET1, DET2)

Double: The double precision name is DLFDCB.

Description

Routine LFDCB computes the determinant of a complex banded coefficient matrix. To compute the

determinant, the coefficient matrix must first undergo an LU factorization. This may be done by

calling either LFCCB or LFTCB. The formula det A = det L det U is used to compute the

determinant. Since the determinant of a triangular matrix is the product of the diagonal elements,

1
det

N

i iiU U

(The matrix U is stored in the upper NUCA + NLCA + 1 rows of FACT as a banded matrix.) Since L

is the product of triangular matrices with unit diagonals and of permutation matrices, det L = (−1)
k
,

where k is the number of pivoting interchanges.

LFDCB is based on the LINPACK routine CGBDI; see Dongarra et al. (1979).

346 Chapter 1: Linear Systems IMSL MATH LIBRARY

Example

The determinant is computed for a complex banded 4 × 4 matrix with one upper and one lower

codiagonal.

 USE LFDCB_INT

 USE LFTCB_INT

 USE UMACH_INT

! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA, NOUT

 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)

 INTEGER IPVT(N)

 REAL DET2

 COMPLEX A(LDA,N), DET1, FACT(LDFACT,N)

!

! Set values for A in band form

!

! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)

! (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)

! (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)

!
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&

 (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&

 (1.0,-1.0), (0.0,0.0)/

!
 CALL LFTCB (A, NLCA, NUCA, FACT, IPVT)

! Compute the determinant
 CALL LFDCB (FACT, NLCA, NUCA, IPVT, DET1, DET2)

! Print the results
 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) DET1, DET2

!
99999 FORMAT (‘ The determinant of A is (‘, F6.3, ‘,‘, F6.3, ‘) * 10**‘,&

 F2.0)

 END

Output

The determinant of A is (2.500,-1.500) * 10**1.

LSAQH
Solves a complex Hermitian positive definite system of linear equations in band Hermitian storage

mode with iterative refinement.

Required Arguments

A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian

coefficient matrix in band Hermitian storage mode. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 347

NCODA — Number of upper or lower codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LSAQH (A, NCODA, B, X [,…])

Specific: The specific interface names are S_LSAQH and D_LSAQH.

FORTRAN 77 Interface

Single: CALL LSAQH (N, A, LDA, NCODA, B, X)

Double: The double precision name is DLSAQH.

Description

Routine LSAQH solves a system of linear algebraic equations having a complex Hermitian positive

definite band coefficient matrix. It first uses the IMSL routine LFCQH to compute an R
H

 R

Cholesky factorization of the coefficient matrix and to estimate the condition number of the

matrix. R is an upper triangular band matrix. The solution of the linear system is then found using

the iterative refinement IMSL routine LFIQH.

LSAQH fails if any submatrix of R is not positive definite, if R has a zero diagonal element, or if the

iterative refinement agorithm fails to converge. These errors occur only if the matrix A either is

very close to a singular matrix or is a matrix that is not positive definite.

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system. LSAQH solves the

problem that is represented in the computer; however, this problem may differ from the problem

whose solution is desired.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2AQH/DL2AQH The

reference is:

348 Chapter 1: Linear Systems IMSL MATH LIBRARY

CALL L2AQH (N, A, LDA, NCODA, B, X, FACT, WK)

The additional arguments are as follows:

FACT — Complex work vector of length (NCODA + 1) * N containing the

R
H

 R factorization of A in band Hermitian storage form on output.

WK — Complex work vector of length N.

2. Informational errors

Type Code

3 3 The input matrix is too ill-conditioned. The solution might not be

accurate.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.

4 2 The input matrix is not positive definite.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2AQH the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSAQH.

Additional memory allocation for FACT and option value restoration are done

automatically in LSAQH. Users directly calling L2AQH can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSAQH or L2AQH. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSAQH temporarily replaces IVAL(2) by IVAL(1). The

routine L2CQH computes the condition number if IVAL(2) = 2. Otherwise L2CQH

skips this computation. LSAQH restores the option. Default values for the option

are IVAL(*) = 1, 2.

Example

A system of five linear equations is solved. The coefficient matrix has complex Hermitian positive

definite band form with one codiagonal and the right-hand-side vector b has five elements.

 USE LSAQH_INT

 USE WRCRN_INT

! Declare variables

IMSL MATH LIBRARY Chapter 1: Linear Systems 349

 INTEGER LDA, N, NCODA

 PARAMETER (LDA=2, N=5, NCODA=1)

 COMPLEX A(LDA,N), B(N), X(N)

!

! Set values for A in band Hermitian form, and B

!

! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)

! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)

!

! B = (1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i)

!
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),&

 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/

 DATA B/(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),&

 (25.0,16.0)/

! Solve A*X = B
 CALL LSAQH (A, NCODA, B, X)

! Print results
 CALL WRCRN (‘X‘, X, 1, N, 1)

!
 END

Output

 X

 1 2 3 4

(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)

 5

(3.000, 2.000)

LSLQH
Solves a complex Hermitian positive definite system of linear equations in band Hermitian storage

mode without iterative refinement.

Required Arguments

A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian

coefficient matrix in band Hermitian storage mode. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

350 Chapter 1: Linear Systems IMSL MATH LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LSLQH (A, NCODA, B, X [,…])

Specific: The specific interface names are S_LSLQH and D_LSLQH.

FORTRAN 77 Interface

Single: CALL LSLQH (N, A, LDA, NCODA, B, X)

Double: The double precision name is DLSLQH.

Description

Routine LSLQH solves a system of linear algebraic equations having a complex Hermitian positive

definite band coefficient matrix. It first uses the routine LFCQH to compute an R
H

 R Cholesky

factorization of the coefficient matrix and to estimate the condition number of the matrix. R is an

upper triangular band matrix. The solution of the linear system is then found using the routine

LFSQH.

LSLQH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.

These errors occur only if A either is very close to a singular matrix or is a matrix that is not

positive definite.

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. If the coefficient matrix is ill-conditioned or poorly sealed, it is recommended that

LSAQH be used.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LQH/DL2LQH The

reference is:

CALL L2LQH (N, A, LDA, NCODA, B, X, FACT, WK)

The additional arguments are as follows:

FACT — (NCODA + 1) × N complex work array containing the R
H

 R

factorization of A in band Hermitian storage form on output. If A is not

needed, A and FACT can share the same storage locations.

WK — Complex work vector of length N.

IMSL MATH LIBRARY Chapter 1: Linear Systems 351

2. Informational errors

Type Code

3 3 The input matrix is too ill-conditioned. The solution might not be

accurate.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.

4 2 The input matrix is not positive definite.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2LQH the leading dimension of FACT is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLQH.

Additional memory allocation for FACT and option value restoration are done

automatically in LSLQH. Users directly calling L2LQH can allocate additional

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSLQH or L2LQH. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSLQH temporarily replaces IVAL(2) by IVAL(1). The

routine L2CQH computes the condition number if IVAL(2) = 2. Otherwise L2CQH

skips this computation. LSLQH restores the option. Default values for the option

are IVAL(*) = 1, 2.

Example

A system of five linear equations is solved. The coefficient matrix has complex Hermitian positive

definite band form with one codiagonal and the right-hand-side vector b has five elements.

 USE LSLQH_INT

 USE WRCRN_INT

! Declare variables
 INTEGER N, NCODA, LDA

 PARAMETER (N=5, NCODA=1, LDA=NCODA+1)

 COMPLEX A(LDA,N), B(N), X(N)

!

! Set values for A in band Hermitian form, and B

!

! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)

! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
!

! B = (1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i)

!

352 Chapter 1: Linear Systems IMSL MATH LIBRARY

 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),&

 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/

 DATA B/(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),&

 (25.0,16.0)/

! Solve A*X = B

 CALL LSLQH (A, NCODA, B, X)

! Print results

 CALL WRCRN (‘X‘, X, 1, N, 1)

!

 END

Output

 X

 1 2 3 4

(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)

 5

(3.000, 2.000)

LSLQB

Computes the R
H

 DR Cholesky factorization of a complex Hermitian positive-definite matrix A in

codiagonal band Hermitian storage mode. Solve a system Ax = b.

Required Arguments

A — Array containing the N by N positive-definite band coefficient matrix and the right hand

side in codiagonal band Hermitian storage mode. (Input/Output)

The number of array columns must be at least 2 * NCODA + 3. The number of columns

is not an input to this subprogram.

NCODA — Number of upper codiagonals of matrix A. (Input)

Must satisfy NCODA ≥ 0 and NCODA < N.

U — Array of flags that indicate any singularities of A, namely loss of positive-definiteness of

a leading minor. (Output)

A value U(I) = 0. means that the leading minor of dimension I is not positive-definite.

Otherwise, U(I) = 1.

Optional Arguments

N — Order of the matrix. (Input)

Must satisfy N > 0.

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 353

Must satisfy LDA ≥ N + NCODA.

Default: LDA = size (A,1).

IJOB — flag to direct the desired factorization or solving step. (Input)

Default: IJOB =1.

IJOB Meaning

1 factor the matrix A and solve the system Ax = b; where the real part of b is

stored in column 2 * NCODA + 2 and the imaginary part of b is stored in column

2 * NCODA + 3 of array A. The real and imaginary parts of b are overwritten by

the real and imaginary parts of x.

2 solve step only. Use the real part of b as column 2 * NCODA + 2 and the

imaginary part of b as column 2 * NCODA + 3 of A. (The factorization step has

already been done.) The real and imaginary parts of b are overwritten by the real

and imaginary parts of x.

3 factor the matrix A but do not solve a system.

4,5,6 same meaning as with the value IJOB = 3. For efficiency, no error checking is

done on values LDA, N, NCODA, and U(*).

FORTRAN 90 Interface

Generic: CALL LSLQB (A, NCODA, U [,…])

Specific: The specific interface names are S_LSLQB and D_LSLQB.

FORTRAN 77 Interface

Single: CALL LSLQB (N, A, LDA, NCODA, IJOB, U)

Double: The double precision name is DLSLQB.

Description

Routine LSLQB factors and solves the Hermitian positive definite banded linear system Ax = b.

The matrix is factored so that A = R
H

 DR, where R is unit upper triangular and D is diagonal and

real. The reciprocals of the diagonal entries of D are computed and saved to make the solving step

more efficient. Errors will occur if D has a nonpositive diagonal element. Such events occur only

if A is very close to a singular matrix or is not positive definite.

LSLQB is efficient for problems with a small band width. The particular cases NCODA = 0, 1 are

done with special loops within the code. These cases will give good performance. See Hanson

(1989) for more on the algorithm. When solving tridiagonal systems, NCODA = 1, the cyclic

reduction code LSLCQ should be considered as an alternative. The expectation is that LSLCQ will

outperform LSLQB on vector or parallel computers. It may be inferior on scalar computers or even

parallel computers with non-optimizing compilers.

354 Chapter 1: Linear Systems IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LQB/DL2LQB The

reference is:

CALL L2LQB (N, A, LDA, NCODA, IJOB, U, WK1, WK2)

The additional arguments are as follows:

WK1 — Work vector of length NCODA.

WK2 — Work vector of length NCODA.

2. Informational error

Type Code

4 2 The input matrix is not positive definite.

Example

A system of five linear equations is solved. The coefficient matrix has real positive definite

codiagonal Hermitian band form and the right-hand-side vector b has five elements.

 USE LSLQB_INT

 USE WRRRN_INT

 INTEGER LDA, N, NCODA

 PARAMETER (N=5, NCODA=1, LDA=N+NCODA)

!

 INTEGER I, IJOB, J

 REAL A(LDA,2*NCODA+3), U(N)

!

! Set values for A and right hand side

! in codiagonal band Hermitian form:

!

! (* * * * *)

! (2.0 * * 1.0 5.0)

! A = (4.0 -1.0 1.0 12.0 -6.0)

! (10.0 1.0 2.0 1.0 -16.0)

! (6.0 0.0 4.0 -3.0 -3.0)

! (9.0 1.0 1.0 25.0 16.0)

!

 DATA ((A(I+NCODA,J),I=1,N),J=1,2*NCODA+3)/2.0, 4.0, 10.0, 6.0,&

 9.0, 0.0, -1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 2.0, 4.0, 1.0,&

 1.0, 12.0, 1.0, -3.0, 25.0, 5.0, -6.0, -16.0, -3.0, 16.0/

!

! Factor and solve A*x = b.

!

 IJOB = 1

 CALL LSLQB (A, NCODA, U)

!

! Print results

!

 CALL WRRRN (‘REAL(X)‘, A((NCODA+1):,(2*NCODA+2):), 1, N, 1)

IMSL MATH LIBRARY Chapter 1: Linear Systems 355

 CALL WRRRN (‘IMAG(X)‘, A((NCODA+1):,(2*NCODA+3):), 1, N, 1)

 END

Output

 REAL(X)

 1 2 3 4 5

2.000 3.000 -1.000 0.000 3.000

 IMAG(X)

 1 2 3 4 5

1.000 0.000 -1.000 -2.000 2.000

LFCQH

Computes the R
H

 R factorization of a complex Hermitian positive definite matrix in band

Hermitian storage mode and estimate its L1 condition number.

Required Arguments

A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian

matrix to be factored in band Hermitian storage mode. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

FACT — Complex NCODA + 1 by N array containing the R
H

 R factorization of the matrix A.

(Output)

If A is not needed, A and FACT can share the same storage locations.

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.

(Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCQH (A, NCODA, FACT, RCOND [,…])

Specific: The specific interface names are S_LFCQH and D_LFCQH.

356 Chapter 1: Linear Systems IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL LFCQH (N, A, LDA, NCODA, FACT, LDFACT, RCOND)

Double: The double precision name is DLFCQH.

Description

Routine LFCQH computes an R
H

 R Cholesky factorization and estimates the condition number of a

complex Hermitian positive definite band coefficient matrix. R is an upper triangular band matrix.

The L1 condition number of the matrix A is defined to be κ(A) = ǀǀA ǀǀ1ǀǀA
-1ǀǀ1. Since it is expensive

to compute ǀǀA-1ǀǀ1, the condition number is only estimated. The estimation algorithm is the same

as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning

error is issued. This indicates that very small changes in A can cause very large changes in the

solution x. Iterative refinement can sometimes find the solution to such a system.

LFCQH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.

These errors occur only if A either is very close to a singular matrix or is a matrix which is not

positive definite.

The R
H

 R factors are returned in a form that is compatible with routines LFIQH, LFSQH and

LFDQH. To solve systems of equations with multiple right-hand-side vectors, use LFCQH followed

by either LFIQH or LFSQH called once for each right-hand side. The routine LFDQH can be called

to compute the determinant of the coefficient matrix after LFCQH has performed the factorization.

LFCQH is based on the LINPACK routine CPBCO; see Dongarra et al. (1979).

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CQH/DL2CQH. The

reference is:

CALL L2CQH (N, A, LDA, NCODA, FACT, LDFACT, RCOND, WK)

The additional argument is:

WK — Complex work vector of length N.

2. Informational errors

Type Code

3 1 The input matrix is algorithmically singular.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.

4 2 The input matrix is not positive definite.

IMSL MATH LIBRARY Chapter 1: Linear Systems 357

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part

Example

The inverse of a 5 × 5 band Hermitian matrix with one codiagonal is computed. LFCQH is called

to factor the matrix and to check for nonpositive definiteness or ill-conditioning. LFIQH is called

to determine the columns of the inverse.

 USE LFCQH_INT

 USE LFIQH_INT

 USE UMACH_INT

 USE WRCRN_INT

! Declare variables

 INTEGER N, NCODA, LDA, LDFACT, NOUT

 PARAMETER (N=5, NCODA=1, LDA=NCODA+1, LDFACT=LDA)

 REAL RCOND

 COMPLEX A(LDA,N), AINV(N,N), FACT(LDFACT,N), RES(N), RJ(N)

!

! Set values for A in band Hermitian form

!

! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)

! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)

!

 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0), &

 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/

! Factor the matrix A

 CALL LFCQH (A, NCODA, FACT, RCOND)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = (0.0E0,0.0E0)

 DO 10 J=1, N

 RJ(J) = (1.0E0,0.0E0)

! RJ is the J-th column of the identity

! matrix so the following LFIQH

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFIQH (A, NCODA, FACT, RJ, AINV(:,J), RES)

 RJ(J) = (0.0E0,0.0E0)

 10 CONTINUE

! Print the results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

 CALL WRCRN (‘AINV‘, AINV)

!

99999 FORMAT (‘ RCOND = ‘,F5.3,/,‘ L1 Condition number = ‘,F6.3)

 END

Output

RCOND = 0.067

L1 Condition number = 14.961

 AINV

358 Chapter 1: Linear Systems IMSL MATH LIBRARY

 1 2 3 4

1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)

2 (0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)

3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)

4 (-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)

5 (0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)

 5

1 (0.0092,-0.0046)

2 (0.0138, 0.0046)

3 (-0.0138, 0.0138)

4 (-0.0288,-0.0288)

5 (0.1175, 0.0000)

LFTQH

Computes the R
H

 R factorization of a complex Hermitian positive definite matrix in band

Hermitian storage mode.

Required Arguments

A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian

matrix to be factored in band Hermitian storage mode. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

FACT — Complex NCODA + 1 by N array containing the R
H

 R factorization of the matrix A.

(Output)

If A is not needed, A and FACT can share the same storage locations.

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTQH (A, NCODA, FACT [,…])

Specific: The specific interface names are S_LFTQH and D_LFTQH.

IMSL MATH LIBRARY Chapter 1: Linear Systems 359

FORTRAN 77 Interface

Single: CALL LFTQH (N, A, LDA, NCODA, FACT, LDFACT)

Double: The double precision name is DLFTQH.

Description

Routine LFTQH computes an R
H

R Cholesky factorization of a complex Hermitian positive definite

band coefficient matrix. R is an upper triangular band matrix.

LFTQH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.

These errors occur only if A either is very close to a singular matrix or is a matrix which is not

positive definite.

The R
H

 R factors are returned in a form that is compatible with routines LFIQH, LFSQH and

LFDQH. To solve systems of equations with multiple right-hand-side vectors, use LFTQH followed

by either LFIQH or LFSQH called once for each right-hand side. The routine LFDQH can be called

to compute the determinant of the coefficient matrix after LFTQH has performed the factorization.

LFTQH is based on the LINPACK routine SPBFA; see Dongarra et al. (1979).

Comments

Informational errors

Type Code

3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.

4 2 The input matrix is not positive definite.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

Example

The inverse of a 5 × 5 band Hermitian matrix with one codiagonal is computed. LFTQH is called

to factor the matrix and to check for nonpositive definiteness. LFSQH is called to determine the

columns of the inverse.

 USE LFTQH_INT

 USE LFSQH_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NCODA

 PARAMETER (LDA=2, LDFACT=2, N=5, NCODA=1)

 COMPLEX A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N)

!

! Set values for A in band Hermitian form

!

! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)

! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)

!

 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),&

360 Chapter 1: Linear Systems IMSL MATH LIBRARY

 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/

! Factor the matrix A

 CALL LFTQH (A, NCODA, FACT)

! Set up the columns of the identity

! matrix one at a time in RJ

 RJ = (0.0E0,0.0E0)

 DO 10 J=1, N

 RJ(J) = (1.0E0,0.0E0)

! RJ is the J-th column of the identity

! matrix so the following LFSQH

! reference places the J-th column of

! the inverse of A in the J-th column

! of AINV

 CALL LFSQH (FACT, NCODA, RJ, AINV(:,J))

 RJ(J) = (0.0E0,0.0E0)

 10 CONTINUE

! Print the results

 CALL WRCRN (‘AINV‘, AINV)

!

 END

Output

 AINV

 1 2 3 4

1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)

2 (0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)

3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)

4 (-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)

5 (0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)

 5

1 (0.0092,-0.0046)

2 (0.0138, 0.0046)

3 (-0.0138, 0.0138)

4 (-0.0288,-0.0288)

5 (0.1175, 0.0000)

LFSQH
Solves a complex Hermitian positive definite system of linear equations given the factorization of

the coefficient matrix in band Hermitian storage mode.

Required Arguments

FACT — Complex NCODA + 1 by N array containing the R
H

 R factorization of the Hermitian

positive definite band matrix A. (Input)

FACT is obtained as output from routine LFCQH/DLFCQH or LFTQH/DLFTQH .

NCODA — Number of upper or lower codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand-side of the linear system. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 361

X — Complex vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFSQH (FACT, NCODA, B, X [,…])

Specific: The specific interface names are S_LFSQH and D_LFSQH.

FORTRAN 77 Interface

Single: CALL LFSQH (N, FACT, LDFACT, NCODA, B, X)

Double: The double precision name is DLFSQH.

Description

Routine LFSQH computes the solution for a system of linear algebraic equations having a complex

Hermitian positive definite band coefficient matrix. To compute the solution, the coefficient

matrix must first undergo an R
H

 R factorization. This may be done by calling either IMSL routine

LFCQH or LFTQH. R is an upper triangular band matrix.

The solution to Ax = b is found by solving the triangular systems R
H

 y = b and Rx = y.

LFSQH and LFIQH both solve a linear system given its R
H

 R factorization. LFIQH generally takes

more time and produces a more accurate answer than LFSQH. Each iteration of the iterative

refinement algorithm used by LFIQH calls LFSQH.

LFSQH is based on the LINPACK routine CPBSL; see Dongarra et al. (1979).

Comments

Informational error

Type Code

4 1 The factored matrix has a diagonal element close to zero.

Example

A set of linear systems is solved successively. LFTQH is called to factor the coefficient matrix.

LFSQH is called to compute the three solutions for the three right-hand sides. In this case the

362 Chapter 1: Linear Systems IMSL MATH LIBRARY

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be

better to call LFCQH to perform the factorization, and LFIQH to compute the solutions.

 USE LFSQH_INT

 USE LFTQH_INT

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NCODA

 PARAMETER (LDA=2, LDFACT=2, N=5, NCODA=1)

 COMPLEX A(LDA,N), B(N,3), FACT(LDFACT,N), X(N,3)

!

! Set values for A in band Hermitian form, and B

!

! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)

! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)

!

! B = (3.0+3.0i 4.0+0.0i 29.0-9.0i)

! (5.0-5.0i 15.0-10.0i -36.0-17.0i)

! (5.0+4.0i -12.0-56.0i -15.0-24.0i)

! (9.0+7.0i -12.0+10.0i -23.0-15.0i)

! (-22.0+1.0i 3.0-1.0i -23.0-28.0i)

!

 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),&

 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/

 DATA B/(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0),&

 (4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.0,10.0),&

 (3.0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),&

 (-23.0,-15.0), (-23.0,-28.0)/

! Factor the matrix A

 CALL LFTQH (A, NCODA, FACT)

! Compute the solutions

 DO 10 I=1, 3

 CALL LFSQH (FACT, NCODA, B(:,I), X(:,I))

 10 CONTINUE

! Print solutions

 CALL WRCRN (‘X‘, X)

 END

Output

 X

 1 2 3

1 (1.00, 0.00) (3.00, -1.00) (11.00, -1.00)

2 (1.00, -2.00) (2.00, 0.00) (-7.00, 0.00)

3 (2.00, 0.00) (-1.00, -6.00) (-2.00, -3.00)

4 (2.00, 3.00) (2.00, 1.00) (-2.00, -3.00)

5 (-3.00, 0.00) (0.00, 0.00) (-2.00, -3.00)

LFIQH
Uses iterative refinement to improve the solution of a complex Hermitian positive definite system

of linear equations in band Hermitian storage mode.

IMSL MATH LIBRARY Chapter 1: Linear Systems 363

Required Arguments

A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian

coefficient matrix in band Hermitian storage mode. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

FACT — Complex NCODA + 1 by N array containing the R
H

 R factorization of the matrix A as

output from routine LFCQH/DLFCQH or LFTQH/DLFTQH. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

RES — Complex vector of length N containing the residual vector at the improved solution.

(Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFIQH (A, NCODA, FACT, B, X, RES [,…])

Specific: The specific interface names are S_LFIQH and D_LFIQH.

FORTRAN 77 Interface

Single: CALL LFIQH (N, A, LDA, NCODA, FACT, LDFACT, B, X, RES)

Double: The double precision name is DLFIQH.

Description

Routine LFIQH computes the solution for a system of linear algebraic equations having a complex

Hermitian positive definite band coefficient matrix. To compute the solution, the coefficient

matrix must first undergo an R
H

 R factorization. This may be done by calling either IMSL routine

LFCQH or LFTQH. R is an upper triangular band matrix.

364 Chapter 1: Linear Systems IMSL MATH LIBRARY

The solution to Ax = b is found by solving the triangular systems R
H

 y = b and Rx = y.

LFSQH and LFIQH both solve a linear system given its R
H

 R factorization. LFIQH generally takes

more time and produces a more accurate answer than LFSQH. Each iteration of the iterative

refinement algorithm used by LFIQH calls LFSQH.

Comments

Informational error

Type Code

4 1 The factored matrix has a diagonal element close to zero.

Example

A set of linear systems is solved successively. The right-hand side vector is perturbed after solving

the system each of the fisrt two times by adding (1 + i)/2 to the second element.

 USE IMSL_LIBRARIES

! Declare variables

 INTEGER LDA, LDFACT, N, NCODA

 PARAMETER (LDA=2, LDFACT=2, N=5, NCODA=1)

 REAL RCOND

 COMPLEX A(LDA,N), B(N), FACT(LDFACT,N), RES(N,3), X(N,3)

!

! Set values for A in band Hermitian form, and B

!

! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)

! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)

!

! B = (3.0+3.0i 5.0-5.0i 5.0+4.0i 9.0+7.0i -22.0+1.0i)

!

 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),&

 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/

 DATA B/(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/

! Factor the matrix A

 CALL LFCQH (A, NCODA, FACT, RCOND=RCOND)

! Print the estimated condition number

 CALL UMACH (2, NOUT)

 WRITE (NOUT, 99999) RCOND, 1.0E0/RCOND

! Compute the solutions

 DO 10 I=1, 3

 CALL LFIQH (A, NCODA, FACT, B, X(:,I), RES(:,I))

 B(2) = B(2) + (0.5E0, 0.5E0)

 10 CONTINUE

! Print solutions

 CALL WRCRN ('X', X)

 CALL WRCRN ('RES', RES)

99999 FORMAT (' RCOND = ', F5.3, /, ' L1 Condition number = ', F6.3)

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 365

Output

 X

 1 2 3

1 (1.00, 0.00) (3.00, -1.00) (11.00, -1.00)

2 (1.00, -2.00) (2.00, 0.00) (-7.00, 0.00)

3 (2.00, 0.00) (-1.00, -6.00) (-2.00, -3.00)

4 (2.00, 3.00) (2.00, 1.00) (-2.00, -3.00)

5 (-3.00, 0.00) (0.00, 0.00) (-2.00, -3.00)

LFDQH

Computes the determinant of a complex Hermitian positive definite matrix given the R
H

R

Cholesky factorization in band Hermitian storage mode.

Required Arguments

FACT — Complex NCODA + 1 by N array containing the R
H

R factorization of the Hermitian

positive definite band matrix A. (Input)

FACT is obtained as output from routine LFCQH/DLFCQH or LFTQH/DLFTQH.

NCODA — Number of upper or lower codiagonals of A. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)

The value DET1 is normalized so that 1.0 ≤ ǀDET1 ǀ < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)

The determinant is returned in the form det (A) = DET1 * 10DET2.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDQH (FACT, NCODA, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDQH and D_LFDQH.

FORTRAN 77 Interface

Single: CALL LFDQH (N, FACT, LDFACT, NCODA, DET1, DET2)

Double: The double precision name is DLFDQH.

366 Chapter 1: Linear Systems IMSL MATH LIBRARY

Description

Routine LFDQH computes the determinant of a complex Hermitian positive definite band

coefficient matrix. To compute the determinant, the coefficient matrix must first undergo an

R
H

 R factorization. This may be done by calling either LFCQH or LFTQH. The formula

det A = det R
H

 det R = (det R)
2
 is used to compute the determinant. Since the determinant of a

triangular matrix is the product of the diagonal elements,

1
det

N

i iiR R

LFDQH is based on the LINPACK routine CPBDI; see Dongarra et al. (1979).

Example

The determinant is computed for a 5 × 5 complex Hermitian positive definite band matrix with

one codiagonal.

 USE LFDQH_INT

 USE LFTQH_INT

 USE UMACH_INT

! Declare variables

 INTEGER LDA, LDFACT, N, NCODA, NOUT

 PARAMETER (LDA=2, N=5, LDFACT=2, NCODA=1)

 REAL DET1, DET2

 COMPLEX A(LDA,N), FACT(LDFACT,N)

!

! Set values for A in band Hermitian form

!

! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)

! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)

!

 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),&

 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/

! Factor the matrix

 CALL LFTQH (A, NCODA, FACT)

! Compute the determinant

 CALL LFDQH (FACT, NCODA, DET1, DET2)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) DET1, DET2

!

99999 FORMAT (‘ The determinant of A is ‘,F6.3,‘ * 10**‘,F2.0)

 END

Output

The determinant of A is 1.736 * 10**3.

LSLXG
Solves a sparse system of linear algebraic equations by Gaussian elimination.

IMSL MATH LIBRARY Chapter 1: Linear Systems 367

Required Arguments

A — Vector of length NZ containing the nonzero coefficients of the linear system. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding elements in

A. (Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements

in A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (B,1).

NZ — The number of nonzero coefficients in the linear system. (Input)

Default: NZ = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system Ax = b is solved.

IPATH = 2 means the system A
T
x = b is solved.

Default: IPATH = 1.

IPARAM — Parameter vector of length 6. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM.

Default: IPARAM(1) = 0.

See Comment 3.

RPARAM — Parameter vector of length 5. (Input/Output)

See Comment 3.

FORTRAN 90 Interface

Generic: CALL LSLXG (A, IROW, JCOL, B, X [,…])

Specific: The specific interface names are S_LSLXG and D_LSLXG.

FORTRAN 77 Interface

Single: CALL LSLXG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X)

Double: The double precision name is DLSLXG.

368 Chapter 1: Linear Systems IMSL MATH LIBRARY

Description

Consider the linear equation

Ax b

where A is a n × n sparse matrix. The sparse coordinate format for the matrix A requires one real

and two integer vectors. The real array a contains all the nonzeros in A. Let the number of

nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the row and

column numbers for these entries in A. That is

 , 1, ,i iA a i i
irow icol

nz

with all other entries in A zero.

The routine LSLXG solves a system of linear algebraic equations having a real sparse coefficient

matrix. It first uses the routine LFTXG to perform an LU factorization of the coefficient matrix. The

solution of the linear system is then found using LFSXG.

The routine LFTXG by default uses a symmetric Markowitz strategy (Crowe et al. 1990) to choose

pivots that most likely would reduce fill-ins while maintaining numerical stability. Different

strategies are also provided as options for row oriented or column oriented problems. The

algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the Markowitz

strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively.

Finally, the solution x is obtained by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LXG/DL2LXG. The

reference is:

CALL L2LXG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X, WK, LWK, IWK,
LIWK)

The additional arguments are as follows:

WK — Real work vector of length LWK.

LWK — The length of WK, LWK should be at least 2N + MAXNZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 17N + 4 * MAXNZ.

IMSL MATH LIBRARY Chapter 1: Linear Systems 369

The workspace limit is determined by MAXNZ, where

MAXNZ = MIN0(LWK-2N, INT(0.25(LIWK-17N)))

2. Informational errors

Type Code

3 1 The coefficient matrix is numerically singular.

3 2 The growth factor is too large to continue.

3 3 The matrix is too ill-conditioned for iterative refinement.

3. If the default parameters are desired for LSLXG, then set IPARAM(1) to zero and call the

routine LSLXG. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM. then the following steps should be taken before calling LSLXG.

 CALL L4LXG (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LXG will set IPARAM and RPARAM to their default values, so only

nondefault values need to be set above.

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = The pivoting strategy

IPARAM(2) Action

1 Markowitz row search

2 Markowitz column search

3 Symmetric Markowitz search

Default: 3.

IPARAM(3) = The number of rows which have least numbers of nonzero

elements that will be searched for a pivotal element.

Default: 3.

IPARAM(4) = The maximal number of nonzero elements in A at any stage of

the Gaussian elimination. (Output)

IPARAM(5) = The workspace limit.

IPARAM(5) Action

0 Default limit, see Comment 1.

integer This integer value replaces the default workspace limit.

370 Chapter 1: Linear Systems IMSL MATH LIBRARY

 When L2LXG is called, the values of LWK and LIWK are used instead of

IPARAM(5).

Default: 0.

IPARAM(6) = Iterative refinement is done when this is nonzero.

Default: 0.

RPARAM — Real vector of length 5.

RPARAM(1) = The upper limit on the growth factor. The computation stops

when the growth factor exceeds the limit.

Default: 10
16

RPARAM(2) = The stability factor. The absolute value of the pivotal element

must be bigger than the largest element in absolute value in its row

divided by RPARAM(2).

Default: 10.0.

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor L

will be removed if its absolute value becomes smaller than the drop-

tolerance at any stage of the Gaussian elimination.

Default: 0.0.

RPARAM(4) = The growth factor. It is calculated as the largest element in

absolute value in A at any stage of the Gaussian elimination divided by

the largest element in absolute value in the original A matrix. (Output)

Large value of the growth factor indicates that an appreciable error in

the computed solution is possible.

RPARAM(5) = The value of the smallest pivotal element in absolute value.

(Output)

 If double precision is required, then DL4LXG is called and RPARAM is declared double

precision.

Example

As an example consider the 6× 6 linear system:

IMSL MATH LIBRARY Chapter 1: Linear Systems 371

10 0 0 0 0 0

0 10 3 1 0 0

0 0 15 0 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

A

10 0 0 0 0 0

0 10 3 1 0 0

0 0 1 50 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

A

Let x
T
 = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33,−34, 31)

T
. The number of nonzeros in A is

nz = 15. The sparse coordinate form for A is given by:

irow 6 2 3 2 4 4 5 5 5 5 1 6 6 2 4

jcol 6 2 3 3 4 5 1 6 4 4 1 1 2 4 1

a 6 10 15 3 10 1 1 3 5 1 10 1 2 1 2

 USE LSLXG_INT

 USE WRRRN_INT

 USE L4LXG_INT

 INTEGER N, NZ

 PARAMETER (N=6, NZ=15)

!

 INTEGER IPARAM(6), IROW(NZ), JCOL(NZ)

 REAL A(NZ), B(N), RPARAM(5), X(N)

!

 DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,&

 -2., -1., -2./

 DATA B/10., 7., 45., 33., -34., 31./

 DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/

 DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/

!

! Change a default parameter

 CALL L4LXG (IPARAM, RPARAM)

 IPARAM(5) = 203

! Solve for X

 CALL LSLXG (A, IROW, JCOL, B, X, IPARAM=IPARAM)

!

372 Chapter 1: Linear Systems IMSL MATH LIBRARY

 CALL WRRRN (‘ x ‘, X, 1, N, 1)

 END

Output

 x

 1 2 3 4 5 6

1.000 2.000 3.000 4.000 5.000 6.000

LFTXG
Computes the LU factorization of a real general sparse matrix..

Required Arguments

A — Vector of length NZ containing the nonzero coefficients of the linear system. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding elements in

A. (Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements

in A. (Input)

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal

elements. (Output)

NFAC — On input, the dimension of vector FACT. (Input/Output)

On output, the number of nonzero coefficients in the triangular matrix L and U.

FACT — Vector of length NFAC containing the nonzero elements of L (excluding the

diagonals) in the first NL locations and the nonzero elements of U in NL + 1 to NFAC

locations. (Output)

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements

in FACT. (Output)

JCFAC — Vector of length NFAC containing the column numbers of the corresponding

elements in FACT. (Output)

IPVT — Vector of length N containing the row pivoting information for the LU factorization.

(Output)

JPVT — Vector of length N containing the column pivoting information for the LU

factorization. (Output)

IMSL MATH LIBRARY Chapter 1: Linear Systems 373

Optional Arguments

N — Number of equations. (Input)

Default: N = size (IPVT,1).

NZ — The number of nonzero coefficients in the linear system. (Input)

Default: NZ = size (A,1).

IPARAM — Parameter vector of length 6. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM.

Default: IPARAM(1) = 0.

See Comment 3.

RPARAM — Parameter vector of length 5. (Input/Output)

See Comment 3.

FORTRAN 90 Interface

Generic: CALL LFTXG (A, IROW, JCOL, NL, NFAC, FACT, IRFAC, JCFAC, IPVT,
JPVT [,…])

Specific: The specific interface names are S_LFTXG and D_LFTXG.

FORTRAN 77 Interface

Single: CALL LFTXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT,

IRFAC, JCFAC, IPVT, JPVT)

Double: The double precision name is DLFTXG.

Description

Consider the linear equation

Ax b

where A is a n × n sparse matrix. The sparse coordinate format for the matrix A requires one real

and two integer vectors. The real array a contains all the nonzeros in A. Let the number of

nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the row and

column numbers for these entries in A. That is

 , 1, ,i iA a i i
irow icol

nz

with all other entries in A zero.

The routine LFTXG performs an LU factorization of the coefficient matrix A. It by default uses a

symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots that most likely would reduce

fillins while maintaining numerical stability. Different strategies are also provided as options for

row oriented or column oriented problems. The algorithm can be expressed as

P AQ = LU

374 Chapter 1: Linear Systems IMSL MATH LIBRARY

where P and Q are the row and column permutation matrices determined by the Markowitz

strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively.

Finally, the solution x is obtained using LFSXG by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

Comments

1. Workspace may be explicitly provided, if desired, by use of L2TXG/DL2TXG. The

reference is:

CALL L2TXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT,

IRFAC, JCFAC, IPVT, JPVT, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Real work vector of length LWK.

LWK — The length of WK, LWK should be at least MAXNZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 15N + 4 * MAXNZ.

The workspace limit is determined by MAXNZ, where

MAXNZ = MIN0(LWK, INT(0.25(LIWK-15N)))

2. Informational errors

Type Code

3 1 The coefficient matrix is numerically singular.

3 2 The growth factor is too large to continue.

3. If the default parameters are desired for LFTXG, then set IPARAM(1) to zero and call the

routine LFTXG. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling LFTXG.

 CALL L4LXG (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LXG will set IPARAM and RPARAM to their default values, so

only nondefault values need to be set above.

IMSL MATH LIBRARY Chapter 1: Linear Systems 375

 The arguments are as follows:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = The pivoting strategy.

IPARAM(2) Action

1 Markowitz row search

2 Markowitz column search

3 Symmetric Markowitz search

 Default: 3.

IPARAM(3) = The number of rows which have least numbers of nonzero

elements that will be searched for a pivotal element.

Default: 3.

IPARAM(4) = The maximal number of nonzero elements in A at any stage of

the Gaussian elimination. (Output)

IPARAM(5) = The workspace limit.

IPARAM(5) Action

0 Default limit, see Comment 1.

integer This integer value replaces the default workspace

limit.

 When L2TXG is called, the values of LWK and LIWK are used instead of

IPARAM(5).

IPARAM(6) = Not used in LFTXG.

RPARAM — Real vector of length 5.

RPARAM(1) = The upper limit on the growth factor. The computation stops

when the growth factor exceeds the limit.

Default: 10.

RPARAM(2) = The stability factor. The absolute value of the pivotal element

must be bigger than the largest element in absolute value in its row

divided by RPARAM(2).

Default: 10.0.

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor L

will be removed if its absolute value becomes smaller than the drop-

tolerance at any stage of the Gaussian elimination.

Default: 0.0.

376 Chapter 1: Linear Systems IMSL MATH LIBRARY

RPARAM(4) = The growth factor. It is calculated as the largest element in

absolute value in A at any stage of the Gaussian elimination divided by

the largest element in absolute value in the original A matrix. (Output)

Large value of the growth factor indicates that an appreciable error in

the computed solution is possible.

RPARAM(5) = The value of the smallest pivotal element in absolute value.

(Output)

 If double precision is required, then DL4LXG is called and RPARAM is declared double

precision.

Example

As an example, consider the 6 × 6 matrix of a linear system:

10 0 0 0 0 0

0 10 3 1 0 0

0 0 15 0 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

A

The sparse coordinate form for A is given by:

irow 6 2 3 2 4 4 5 5 5 5 1 6 6 2 4

jcol 6 2 3 3 4 5 1 6 4 5 1 1 2 4 1

a 6 10 15 3 10 1 1 3 5 1 10 1 2 1 2

 USE LFTXG_INT

 USE WRRRN_INT

 USE WRIRN_INT

 INTEGER N, NZ

 PARAMETER (N=6, NZ=15)

 INTEGER IROW(NZ), JCOL(NZ), NFAC, NL,&

 IRFAC(3*NZ), JCFAC(3*NZ), IPVT(N), JPVT(N)

 REAL A(NZ), FACT(3*NZ)

!

 DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,&

 -2., -1., -2./

 DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/

 DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/

!

 NFAC = 3*NZ

! Use default options

 CALL LFTXG (A, IROW, JCOL, NL, NFAC, FACT, IRFAC, JCFAC, IPVT, JPVT)

!

IMSL MATH LIBRARY Chapter 1: Linear Systems 377

 CALL WRRRN (‘ fact ‘, FACT, 1, NFAC, 1)

 CALL WRIRN (‘ irfac ‘, IRFAC, 1, NFAC, 1)

 CALL WRIRN (‘ jcfac ‘, JCFAC, 1, NFAC, 1)

 CALL WRIRN (‘ p ‘, IPVT, 1, N, 1)

 CALL WRIRN (‘ q ‘, JPVT, 1, N, 1)

!

 END

Output

 fact

 1 2 3 4 5 6 7 8 9 10

-0.10 -5.00 -0.20 -0.10 -0.10 -1.00 -0.20 4.90 -5.10 1.00

 11 12 13 14 15 16

-1.00 30.00 6.00 -2.00 10.00 15.00

 irfac

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 4 4 5 5 6 6 6 5 5 4 4 3 3 2 1

 jcfac

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 1 4 2 5 2 6 6 5 6 4 4 3 2 1

 p

1 2 3 4 5 6

3 1 6 2 5 4

 q

1 2 3 4 5 6

3 1 2 6 5 4

LFSXG
Solves a sparse system of linear equations given the LU factorization of the coefficient matrix..

Required Arguments

NFAC — The number of nonzero coefficients in FACT as output from subroutine

LFTXG/DLFTXG. (Input)

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal

elements as output from subroutine LFTXG/DLFTXG. (Input)

FACT — Vector of length NFAC containing the nonzero elements of L (excluding the

diagonals) in the first NL locations and the nonzero elements of U in NL + 1 to NFAC

locations as output from subroutine LFTXG/DLFTXG. (Input)

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements

in FACT as output from subroutine LFTXG/DLFTXG. (Input)

378 Chapter 1: Linear Systems IMSL MATH LIBRARY

JCFAC — Vector of length NFAC containing the column numbers of the corresponding

elements in FACT as output from subroutine LFTXG/DLFTXG. (Input)

IPVT — Vector of length N containing the row pivoting information for the LU factorization

as output from subroutine LFTXG/DLFTXG. (Input)

JPVT — Vector of length N containing the column pivoting information for the LU

factorization as output from subroutine LFTXG/DLFTXG. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (B,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system Ax = B is solved.

IPATH = 2 means the system A
T
x = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LFSXG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, X [,…])

Specific: The specific interface names are S_LFSXG and D_LFSXG.

FORTRAN 77 Interface

Single: CALL LFSXG (N, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, IPATH, X)

Double: The double precision name is DLFSXG.

Description

Consider the linear equation

Ax b

where A is a n× n sparse matrix. The sparse coordinate format for the matrix A requires one real

and two integer vectors. The real array a contains all the nonzeros in A. Let the number of

nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the row and

column numbers for these entries in A. That is

 , 1, ,i iA a i i
irow icol

nz

IMSL MATH LIBRARY Chapter 1: Linear Systems 379

with all other entries in A zero. The routine LFSXG computes the solution of the linear equation

given its LU factorization. The factorization is performed by calling LFTXG. The solution of the

linear system is then found by the forward and backward substitution. The algorithm can be

expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the Markowitz

strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively.

Finally, the solution x is obtained by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

For more details, see Crowe et al. (1990).

Example

As an example, consider the 6 × 6 linear system:

10 0 0 0 0 0

0 10 3 1 0 0

0 0 15 0 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

A

Let

 1 1,2,3,4,5,6Tx

so that Ax1 = (10, 7, 45, 33,−34, 31)
T
, and

 2 6,5,4,3,2,1Tx

so that Ax2 = (60, 35, 60, 16, −22, 10)
T
. The sparse coordinate form for A is given by:

irow 6 2 3 2 4 4 5 5 5 5 1 6 6 2 4

jcol 6 2 3 3 4 5 1 6 4 5 1 1 2 4 1

a 6 10 15 3 10 1 1 3 5 1 10 1 2 1 2

 USE LFSXG_INT

 USE WRRRL_INT

 USE LFTXG_INT

 INTEGER N, NZ

 PARAMETER (N=6, NZ=15)

 INTEGER IPATH, IROW(NZ), JCOL(NZ), NFAC,&

 NL, IRFAC(3*NZ), JCFAC(3*NZ), IPVT(N), JPVT(N)

380 Chapter 1: Linear Systems IMSL MATH LIBRARY

 REAL X(N), A(NZ), B(N,2), FACT(3*NZ)

 CHARACTER TITLE(2)*2, RLABEL(1)*4, CLABEL(1)*6

 DATA RLABEL(1)/‘NONE‘/, CLABEL(1)/‘NUMBER‘/

!

 DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,&

 -2., -1., -2./

 DATA B/10., 7., 45., 33., -34., 31.,&

 60., 35., 60., 16., -22., -10./

 DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/

 DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/

 DATA TITLE/‘x1‘, ‘x2‘/

!

 NFAC = 3*NZ

! Perform LU factorization

 CALL LFTXG (A, IROW, JCOL, NL, NFAC, FACT, IRFAC, JCFAC, IPVT, JPVT)

!

 DO 10 I = 1, 2

! Solve A * X(i) = B(i)

 CALL LFSXG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B(:,I), X)

!

 CALL WRRRL (TITLE(I), X, RLABEL, CLABEL, 1, N, 1)

 10 CONTINUE

 END

Output

 x1

 1 2 3 4 5 6

1.0 2.0 3.0 4.0 5.0 6.0

 x2

 1 2 3 4 5 6

6.0 5.0 4.0 3.0 2.0 1.0

LSLZG
Solves a complex sparse system of linear equations by Gaussian elimination.

Required Arguments

A — Complex vector of length NZ containing the nonzero coefficients of the linear system.

(Input)

IROW — Vector of length NZ containing the row numbers of the corresponding elements in

A. (Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements

in A. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

IMSL MATH LIBRARY Chapter 1: Linear Systems 381

Optional Arguments

N — Number of equations. (Input)

Default: N = size (B,1).

NZ — The number of nonzero coefficients in the linear system. (Input)

Default: NZ = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system Ax = b is solved.

IPATH = 2 means the system A
H

 x = b is solved.

Default: IPATH =1.

IPARAM — Parameter vector of length 6. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 3.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 5. (Input/Output)

See Comment 3

FORTRAN 90 Interface

Generic: CALL LSLZG (A, IROW, JCOL, B, X [,…])

Specific: The specific interface names are S_LSLZG and D_LSLZG.

FORTRAN 77 Interface

Single: CALL LSLZG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X)

Double: The double precision name is DLSLZG.

Description

Consider the linear equation

Ax b

where A is a n × n complex sparse matrix. The sparse coordinate format for the matrix A requires

one complex and two integer vectors. The complex array a contains all the nonzeros in A. Let the

number of nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the

row and column numbers for these entries in A. That is

 , 1, ,i iA a i i
irow icol

nz

with all other entries in A zero.

The subroutine LSLZG solves a system of linear algebraic equations having a complex sparse

coefficient matrix. It first uses the routine LFTZG to perform an LU factorization of the coefficient

matrix. The solution of the linear system is then found using LFSZG. The routine LFTZG by default

382 Chapter 1: Linear Systems IMSL MATH LIBRARY

uses a symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots that most likely would

reduce fill-ins while maintaining numerical stability. Different strategies are also provided as

options for row oriented or column oriented problems. The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the Markowitz

strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively.

Finally, the solution x is obtained by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LZG/DL2LZG. The

reference is:

CALL L2LZG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X, WK,

LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Complex work vector of length LWK.

LWK — The length of WK, LWK should be at least 2N+ MAXNZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 17N + 4 * MAXNZ.

The workspace limit is determined by MAXNZ, where

MAXNZ = MIN0(LWK-2N, INT(0.25(LIWK-17N)))

2. Informational errors

Type Code

3 1 The coefficient matrix is numerically singular.

3 2 The growth factor is too large to continue.

3 3 The matrix is too ill-conditioned for iterative refinement.

3. If the default parameters are desired for LSLZG, then set IPARAM(1) to zero and call the

routine LSLZG. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM. then the following steps should be taken before calling LSLZG.

 CALL L4LZG (IPARAM, RPARAM)

IMSL MATH LIBRARY Chapter 1: Linear Systems 383

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LZG will set IPARAM and RPARAM to their default values, so only

nondefault values need to be set above. The arguments are as follows:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = The pivoting strategy.

IPARAM(2) Action

1 Markowitz row search

2 Markowitz column search

3 Symmetric Markowitz search

 Default: 3.

IPARAM(3) = The number of rows which have least numbers of nonzero

elements that will be searched for a pivotal element.

Default: 3.

IPARAM(4) = The maximal number of nonzero elements in A at any stage of

the Gaussian elimination. (Output)

IPARAM(5) = The workspace limit.

IPARAM(5) Action

0 Default limit, see Comment 1.

integer This integer value replaces the default workspace

limit.

 When L2LZG is called, the values of LWK and LIWK are used instead of

IPARAM(5).

 Default: 0.

IPARAM(6) = Iterative refinement is done when this is nonzero.

Default: 0.

RPARAM — Real vector of length 5.

RPARAM(1) = The upper limit on the growth factor. The computation stops

when the growth factor exceeds the limit.

Default: 10.

RPARAM(2) = The stability factor. The absolute value of the pivotal element

must be bigger than the largest element in absolute value in its row

384 Chapter 1: Linear Systems IMSL MATH LIBRARY

divided by RPARAM(2).

Default: 10.0.

RPARAM(3) = Drop-tolerance. Any element in A will be removed if its absolute

value becomes smaller than the drop-tolerance at any stage of the

Gaussian elimination.

Default: 0.0.

RPARAM(4) = The growth factor. It is calculated as the largest element in

absolute value in A at any stage of the Gaussian elimination divided by

the largest element in absolute value in the original A matrix. (Output)

Large value of the growth factor indicates that an appreciable error in

the computed solution is possible.

RPARAM(5) = The value of the smallest pivotal element in absolute value.

(Output)

 If double precision is required, then DL4LZG is called and RPARAM is declared double

precision.

Example

As an example, consider the 6× 6 linear system:

10 7 0 0 0 0 0

0 3 2 3 0 1 2 0 0

0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0

5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

i

i i i

i
A

i i i

i i i i

i i i

Let

x
T
 = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i)

so that

Ax = (3 + 17i, −19 + 5i, 6 + 18i, −38 + 32i, −63 + 49i, −57 + 83i)
T

The number of nonzeros in A is nz = 15. The sparse coordinate form for A is given by:

irow 6 2 2 4 3 1 5 4 6 5 5 6 4 2 5

jcol 6 2 3 5 3 1 1 4 1 4 5 2 1 4 6

 USE LSLZG_INT

 USE WRCRN_INT

 INTEGER N, NZ

 PARAMETER (N=6, NZ=15)

IMSL MATH LIBRARY Chapter 1: Linear Systems 385

!

 INTEGER IROW(NZ), JCOL(NZ)

 COMPLEX A(NZ), B(N), X(N)

!

 DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),&

 (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),&

 (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/

 DATA B/(3.0,17.0), (-19.0,5.0), (6.0,18.0), (-38.0,32.0),&

 (-63.0,49.0), (-57.0,83.0)/

 DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/

 DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/

!

! Use default options

 CALL LSLZG (A, IROW, JCOL, B, X)

!

 CALL WRCRN (‘X‘, X)

 END

Output

 X

1 (1.000, 1.000)

2 (2.000, 2.000)

3 (3.000, 3.000)

4 (4.000, 4.000)

5 (5.000, 5.000)

6 (6.000, 6.000)

LFTZG
Computes the LU factorization of a complex general sparse matrix.

Required Arguments

A — Complex vector of length NZ containing the nonzero coefficients of the linear system.

(Input)

IROW — Vector of length NZ containing the row numbers of the corresponding elements in

A. (Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements

in A. (Input)

NFAC — On input, the dimension of vector FACT. (Input/Output)

On output, the number of nonzero coefficients in the triangular matrix L and U.

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal

elements. (Output)

FACT — Complex vector of length NFAC containing the nonzero elements of L (excluding

the diagonals) in the first NL locations and the nonzero elements of U in NL + 1 to NFAC

locations. (Output)

386 Chapter 1: Linear Systems IMSL MATH LIBRARY

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements

in FACT. (Output)

JCFAC — Vector of length NFAC containing the column numbers of the corresponding

elements in FACT. (Output)

IPVT — Vector of length N containing the row pivoting information for the LU factorization.

(Output)

JPVT — Vector of length N containing the column pivoting information for the LU

factorization. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (IPVT,1).

NZ — The number of nonzero coefficients in the linear system. (Input)

Default: NZ = size (A,1).

IPARAM — Parameter vector of length 6. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 3.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 5. (Input/Output)

See Comment 3.

FORTRAN 90 Interface

Generic: CALL LFTZG (A, IROW, JCOL, NFAC, NL, FACT, IRFAC, JCFAC, IPVT,
JPVT [,…])

Specific: The specific interface names are S_LFTZG and D_LFTZG.

FORTRAN 77 Interface

Single: CALL LFTZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT,

IRFAC, JCFAC, IPVT, JPVT)

Double: The double precision name is DLFTZG.

Description

Consider the linear equation

Ax b

IMSL MATH LIBRARY Chapter 1: Linear Systems 387

where A is a complex n × n sparse matrix. The sparse coordinate format for the matrix A requires

one complex and two integer vectors. The complex array a contains all the nonzeros in A. Let the

number of nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the

row and column indices for these entries in A. That is

 , 1, ,i iA a i i
irow icol

nz

with all other entries in A zero.

The routine LFTZG performs an LU factorization of the coefficient matrix A. It uses by default a

symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots that most likely would reduce

fill-ins while maintaining numerical stability. Different strategies are also provided as options for

row oriented or column oriented problems. The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the Markowitz

strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively.

Finally, the solution x is obtained using LFSZG by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

Comments

1. Workspace may be explicitly provided, if desired, by use of L2TZG/DL2TZG. The

reference is:

CALL L2TZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT,

IRFAC, JCFAC, IPVT, JPVT, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Complex work vector of length LWK.

LWK — The length of WK, LWK should be at least MAXNZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 15N + 4 * MAXNZ.

The workspace limit is determined by MAXNZ, where

MAXNZ = MIN0(LWK, INT(0.25(LIWK-15N)))

2. Informational errors

Type Code

3 1 The coefficient matrix is numerically singular.

388 Chapter 1: Linear Systems IMSL MATH LIBRARY

3 2 The growth factor is too large to continue.

3. If the default parameters are desired for LFTZG, then set IPARAM(1) to zero and call the

routine LFTZG. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM. then the following steps should be taken before calling LFTZG:

 CALL L4LZG (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LZG will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above. The arguments are as follows:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = The pivoting strategy.

IPARAM(2) Action

1 Markowitz row search

2 Markowitz column search

3 Symmetric Markowitz search

IPARAM(3) = The number of rows which have least numbers of nonzero

elements that will be searched for a pivotal element.

Default: 3.

IPARAM(4) = The maximal number of nonzero elements in A at any stage of

the Gaussian elimination. (Output)

IPARAM(5) = The workspace limit.

IPARAM(5) Action

0 Default limit, see Comment 1.

integer This integer value replaces the default workspace

limit. When L2TZG is called, the values of LWK

and LIWK are used instead of IPARAM(5).

Default: 0.

IPARAM(6) = Not used in LFTZG.

RPARAM — Real vector of length 5.

IMSL MATH LIBRARY Chapter 1: Linear Systems 389

RPARAM(1) = The upper limit on the growth factor. The computation stops

when the growth factor exceeds the limit.

Default: 10.

RPARAM(2) = The stability factor. The absolute value of the pivotal element

must be bigger than the largest element in absolute value in its row

divided by RPARAM(2).

Default: 10.0.

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor L

will be removed if its absolute value becomes smaller than the drop-

tolerance at any stage of the Gaussian elimination.

Default: 0.0.

RPARAM(4) = The growth factor. It is calculated as the largest element in

absolute value in A at any stage of the Gaussian elimination divided by

the largest element in absolute value in the original A matrix. (Output)

Large value of the growth factor indicates that an appreciable error in

the computed solution is possible.

RPARAM(5) = The value of the smallest pivotal element in absolute value.

(Output)

If double precision is required, then DL4LZG is called and RPARAM is declared

double precision.

Example

As an example, the following 6 × 6 matrix is factorized, and the outcome is printed:

10 7 0 0 0 0 0

0 3 2 3 0 1 2 0 0

0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0

5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

i

i i i

i
A

i i i

i i i i

i i i

The sparse coordinate form for A is given by:

irow 6 2 2 4 3 1 5 4 6 5 5 6 4 2 5

jcol 6 2 3 5 3 1 1 4 1 4 5 2 1 4 6

 USE LFTZG_INT

 USE WRCRN_INT

 USE WRIRN_INT

 INTEGER N, NFAC, NZ

390 Chapter 1: Linear Systems IMSL MATH LIBRARY

 PARAMETER (N=6, NZ=15)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER IPVT(N), IRFAC(45), IROW(NZ), JCFAC(45),&

 JCOL(NZ), JPVT(N), NL

 COMPLEX A(NZ), FAC(45)

!

 DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),&

 (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),&

 (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/

 DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/

 DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/

 DATA NFAC/45/

! Use default options

 CALL LFTZG (A, IROW, JCOL, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT)

!

 CALL WRCRN (‘fact‘,FACT, 1, NFAC, 1)

 CALL WRIRN (‘ irfac ‘,IRFAC, 1, NFAC, 1)

 CALL WRIRN (‘ jcfac ‘,JCFAC, 1, NFAC, 1)

 CALL WRIRN (‘ p ‘,IPVT, 1, N, 1)

 CALL WRIRN (‘ q ‘,JPVT, 1, N, 1)

!

 END

Output

 fact

 1 (0.50, 0.85)

 2 (0.15, -0.41)

 3 (-0.60, 0.30)

 4 (2.23, -1.97)

 5 (-0.15, 0.50)

 6 (-0.04, 0.26)

 7 (-0.32, -0.17)

 8 (-0.92, 7.46)

 9 (-6.71, -6.42)

10 (12.00, 2.00)

11 (-1.00, 2.00)

12 (-3.32, 0.21)

13 (3.00, 7.00)

14 (-2.00, 8.00)

15 (10.00, 7.00)

16 (4.00, 2.00)

 irfac

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 4 4 5 5 6 6 6 5 5 4 4 3 3 2 1

 jcfac

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 1 4 2 5 2 6 6 5 6 4 4 3 2 1

 p

1 2 3 4 5 6

IMSL MATH LIBRARY Chapter 1: Linear Systems 391

3 1 6 2 5 4

 q

1 2 3 4 5 6

3 1 2 6 5 4

LFSZG
Solves a complex sparse system of linear equations given the LU factorization of the coefficient

matrix.

Required Arguments

NFAC — The number of nonzero coefficients in FACT as output from subroutine

LFTZG/DLFTZG. (Input)

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal

elements as output from subroutine LFTZG/DLFTZG. (Input)

FACT — Complex vector of length NFAC containing the nonzero elements of L (excluding

the diagonals) in the first NL locations and the nonzero elements of U in NL+ 1 to NFAC

locations as output from subroutine LFTZG/DLFTZG. (Input)

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements

in FACT as output from subroutine LFTZG/DLFTZG. (Input)

JCFAC — Vector of length NFAC containing the column numbers of the corresponding

elements in FACT as output from subroutine LFTZG/DLFTZG. (Input)

IPVT — Vector of length N containing the row pivoting information for the LU factorization

as output from subroutine LFTZG/DLFTZG. (Input)

JPVT — Vector of length N containing the column pivoting information for the LU

factorization as output from subroutine LFTZG/DLFTZG. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (B,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system Ax = b is solved.

IPATH = 2 means the system A
H

 x = b is solved.

Default: IPATH = 1.

392 Chapter 1: Linear Systems IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL LFSZG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, X [,…])

Specific: The specific interface names are S_LFSZG and D_LFSZG.

FORTRAN 77 Interface

Single: CALL LFSZG (N, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, IPATH, X)

Double: The double precision name is DLFSZG.

Description

Consider the linear equation

Ax b

where A is a complex n × n sparse matrix. The sparse coordinate format for the matrix A requires

one complex and two integer vectors. The complex array a contains all the nonzeros in A. Let the

number of nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the

row and column numbers for these entries in A. That is

 , 1, ,i iA a i i
irow icol

nz

with all other entries in A zero.

The routine LFSZG computes the solution of the linear equation given its LU factorization. The

factorization is performed by calling LFTZG. The solution of the linear system is then found by the

forward and backward substitution. The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the Markowitz

strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively.

Finally, the solution x is obtained by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

For more details, see Crowe et al. (1990).

Example

As an example, consider the 6 × 6 linear system:

IMSL MATH LIBRARY Chapter 1: Linear Systems 393

10 7 0 0 0 0 0

0 3 2 3 0 1 2 0 0

0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0

5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

i

i i i

i
A

i i i

i i i i

i i i

Let

 1 1 ,2 2 ,3 3 ,4 4 ,5 5 ,6 6Tx i i i i i i

so that

Ax1 = (3 + 17i, −19 + 5i, 6 + 18i, −38 + 32i, −63 + 49i, −57 + 83i)
T

and

 2 6 6 ,5 5 ,4 4 ,3 3 ,2 2 ,1Tx i i i i i i

so that

Ax2 = (18 + 102i, −16 + 16i, 8 + 24i, −11 −11i, −63 + 7i, −132 + 106i)
T

The sparse coordinate form for A is given by:

irow 6 2 2 4 3 1 5 4 6 5 5 6 4 2 5

jcol 6 2 3 5 3 1 1 4 1 4 5 2 1 4 6

 USE LFSZG_INT

 USE WRCRN_INT

 USE LFTZG_INT

 INTEGER N, NZ

 PARAMETER (N=6, NZ=15)

!

 INTEGER IPATH, IPVT(N), IRFAC(3*NZ), IROW(NZ),&

 JCFAC(3*NZ), JCOL(NZ), JPVT(N), NFAC, NL

 COMPLEX A(NZ), B(N,2), FACT(3*NZ), X(N)

 CHARACTER TITLE(2)*2

!

 DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),&

 (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),&

 (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/

 DATA B/(3.0,17.0), (-19.0,5.0), (6.0,18.0), (-38.0,32.0),&

 (-63.0,49.0), (-57.0,83.0), (18.0,102.0), (-16.0,16.0),&

 (8.0,24.0), (-11.0,-11.0), (-63.0,7.0), (-132.0,106.0)/

 DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/

 DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/

 DATA TITLE/‘x1‘,‘x2‘/

!

 NFAC = 3*NZ

! Perform LU factorization

 CALL LFTZG (A, IROW, JCOL, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT)

394 Chapter 1: Linear Systems IMSL MATH LIBRARY

!

 IPATH = 1

 DO 10 I = 1,2

! Solve A * X(i) = B(i)

 CALL LFSZG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT,&

 B(:,I), X)

 CALL WRCRN (TITLE(I), X)

 10 CONTINUE

!

 END

Output

 x1

1 (1.000, 1.000)

2 (2.000, 2.000)

3 (3.000, 3.000)

4 (4.000, 4.000)

5 (5.000, 5.000)

6 (6.000, 6.000)

 x2

1 (6.000, 6.000)

2 (5.000, 5.000)

3 (4.000, 4.000)

4 (3.000, 3.000)

5 (2.000, 2.000)

6 (1.000, 1.000)

LSLXD
Solves a sparse system of symmetric positive definite linear algebraic equations by Gaussian

elimination.

Required Arguments

A — Vector of length NZ containing the nonzero coefficients in the lower triangle of the linear

system. (Input)

The sparse matrix has nonzeroes only in entries (IROW (i), JCOL(i)) for i = 1 to NZ, and

at this location the sparse matrix has value A(i).

IROW — Vector of length NZ containing the row numbers of the corresponding elements in

the lower triangle of A. (Input)

Note IROW(i) ≥ JCOL(i), since we are only indexing the lower triangle.

JCOL — Vector of length NZ containing the column numbers of the corresponding elements

in the lower triangle of A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

IMSL MATH LIBRARY Chapter 1: Linear Systems 395

Optional Arguments

N — Number of equations. (Input)

Default: N = size (B,1).

NZ — The number of nonzero coefficients in the lower triangle of the linear system. (Input)

Default: NZ = size (A,1).

ITWKSP — The total workspace needed. (Input)

If the default is desired, set ITWKSP to zero.

Default: ITWKSP = 0.

FORTRAN 90 Interface

Generic: CALL LSLXD (A, IROW, JCOL, B, X [,…])

Specific: The specific interface names are S_LSLXD and D_LSLXD.

FORTRAN 77 Interface

Single: CALL LSLXD (N, NZ, A, IROW, JCOL, B, ITWKSP, X)

Double: The double precision name is DLSLXD.

Description

Consider the linear equation

Ax b

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix A

requires one real and two integer vectors. The real array a contains all the nonzeros in the lower

triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer arrays

irow and jcol, each of length nz, contain the row and column indices for these entries in A. That

is

 , 1, ,i iA a i i
irow icol

nz

 1, ,i i i irow jcol nz

with all other entries in the lower triangle of A zero.

The routine LSLXD solves a system of linear algebraic equations having a real, sparse and positive

definite coefficient matrix. It first uses the routine LSCXD to compute a symbolic factorization of a

permutation of the coefficient matrix. It then calls LNFXD to perform the numerical factorization.

The solution of the linear system is then found using LFSXD.

The routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set

up the sparse data structure for the Cholesky factor, L. Then the routine LNFXD produces the

numerical entries in L so that we have

P AP
T
= LL

T

396 Chapter 1: Linear Systems IMSL MATH LIBRARY

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first method performs the

factorization using a multifrontal technique. This option requires more storage but in certain cases

will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed

description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987),

Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George and

Liu (1981). This is just the standard factorization method based on the sparse compressed storage

scheme.

Finally, the solution x is obtained by the following calculations:

1) Ly1 = Pb

2) L
T
y2 = y1

3) x = P
T
y2

The routine LFSXD accepts b and the permutation vector which determines P. It then returns x.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LXD/DL2LXD. The

reference is:

CALL L2LXD (N, NZ, A, IROW, JCOL, B, X, IPER, IPARAM,

RPARAM, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

IPER — Vector of length N containing the ordering.

IPARAM — Integer vector of length 4. See Comment 3.

RPARAM — Real vector of length 2. See Comment 3.

WK — Real work vector of length LWK.

LWK — The length of WK, LWK should be at least 2N + 6NZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 15N + 15NZ + 9.

Note that the parameter ITWKSP is not an argument to this routine.

2. Informational errors

Type Code

4 1 The coefficient matrix is not positive definite.

IMSL MATH LIBRARY Chapter 1: Linear Systems 397

4 2 A column without nonzero elements has been found in the

coefficient matrix.

3. If the default parameters are desired for L2LXD, then set IPARAM(1) to zero and call the

routine L2LXD. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling L2LXD.

 CALL L4LXD (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LXD will set IPARAM and RPARAM to their default values, so only

nondefault values need to be set above. The arguments are as follows:

IPARAM — Integer vector of length 4.

IPARAM(1) = Initialization flag.

IPARAM(2) = The numerical factorization method.

IPARAM(2) Action

0 Multifrontal

1 Markowitz column search

 Default: 0.

IPARAM(3) = The ordering option.

IPARAM(3) Action

0 Minimum degree ordering

1 User‘s ordering specified in IPER

 Default: 0.

IPARAM(4) = The total number of nonzeros in the factorization matrix.

RPARAM — Real vector of length 2.

RPARAM(1) = The value of the largest diagonal element in the Cholesky

factorization.

RPARAM(2) = The value of the smallest diagonal element in the Cholesky

factorization.

 If double precision is required, then DL4LXD is called and RPARAM is declared double

precision.

398 Chapter 1: Linear Systems IMSL MATH LIBRARY

Example

As an example consider the 5× 5 linear system:

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

A

Let x
T
 = (1, 2, 3, 4, 5) so that Ax = (23, 55, 107, 197, 278)

T
. The number of nonzeros in the lower

triangle of A is nz = 10. The sparse coordinate form for the lower triangle of A is given by:

irow 1 2 3 3 4 4 5 5 5 5

jcol 1 2 1 3 3 4 1 2 4 5

a 10 20 1 30 4 40 2 3 5 50

or equivalently by

irow 4 5 5 5 1 2 3 3 4 5

jcol 4 1 2 4 1 2 1 3 3 5

a 40 2 3 5 10 20 1 30 4 50

 USE LSLXD_INT

 USE WRRRN_INT

 INTEGER N, NZ

 PARAMETER (N=5, NZ=10)

!

 INTEGER IROW(NZ), JCOL(NZ)

 REAL A(NZ), B(N), X(N)

!

 DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./

 DATA B/23., 55., 107., 197., 278./

 DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/

 DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/

! Solve A * X = B

 CALL LSLXD (A, IROW, JCOL, B, X)

! Print results

 CALL WRRRN (‘ x ‘, X, 1, N, 1)

 END

Output

 x

 1 2 3 4 5

1.000 2.000 3.000 4.000 5.000

IMSL MATH LIBRARY Chapter 1: Linear Systems 399

LSCXD
Performs the symbolic Cholesky factorization for a sparse symmetric matrix using a minimum

degree ordering or a user-specified ordering, and set up the data structure for the numerical

Cholesky factorization

Required Arguments

IROW — Vector of length NZ containing the row subscripts of the nonzeros in the lower

triangular part of the matrix including the nonzeros on the diagonal. (Input)

JCOL — Vector of length NZ containing the column subscripts of the nonzeros in the lower

triangular part of the matrix including the nonzeros on the diagonal. (Input)

(IROW (K), JCOL(K)) gives the row and column indices of the k-th nonzero element of

the matrix stored in coordinate form. Note, IROW(K) ≥ JCOL(K).

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-diagonal

nonzeros in the Cholesky factor in compressed format. (Output)

INZSUB — Vector of length N + 1 containing pointers for NZSUB. The row subscripts for the

off-diagonal nonzeros in column J are stored in NZSUB from location INZSUB (J) to

INZSUB(J + (ILNZ (J +1) −ILNZ(J) − 1). (Output)

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor. (Output)

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor. The off-diagonal

nonzeros in column J of the factor are stored from location ILNZ (J) to

ILNZ(J + 1) − 1. (Output)

(ILNZ, NZSUB, INZSUB) sets up the data structure for the off-diagonal nonzeros of the

Cholesky factor in column ordered form using compressed subscript format.

INVPER — Vector of length N containing the inverse permutation. (Output)

INVPER (K) = I indicates that the original row K is the new row I.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (INVPER,1).

NZ — Total number of the nonzeros in the lower triangular part of the symmetric matrix,

including the nonzeros on the diagonal. (Input)

Default: NZ = size (IROW,1).

IJOB — Integer parameter selecting an ordering to permute the matrix symmetrically.

(Input)

IJOB = 0 selects the user ordering specified in IPER and reorders it so that the

multifrontal method can be used in the numerical factorization.

IJOB = 1 selects the user ordering specified in IPER.

400 Chapter 1: Linear Systems IMSL MATH LIBRARY

IJOB = 2 selects a minimum degree ordering.

IJOB = 3 selects a minimum degree ordering suitable for the multifrontal method in the

numerical factorization.

Default: IJOB = 3.

ITWKSP — The total workspace needed. (Input)

If the default is desired, set ITWKSP to zero.

Default: ITWKSP = 0.

MAXSUB — Number of subscripts contained in array NZSUB. (Input/Output)

On input, MAXSUB gives the size of the array NZSUB.

Note that when default workspace (ITWKSP = 0) is used, set MAXSUB = 3 * NZ.

Otherwise (ITWKSP > 0), set MAXSUB = (ITWKSP − 10 * N − 7) ∕ 4. On output, MAXSUB

gives the number of subscripts used by the compressed subscript format.

Default: MAXSUB = 3*NZ.

IPER — Vector of length N containing the ordering specified by IJOB. (Input/Output)

IPER (I) = K indicates that the original row K is the new row I.

ISPACE — The storage space needed for stack of frontal matrices. (Output)

FORTRAN 90 Interface

Generic: Because the Fortran compiler cannot determine the precision desired from the

required arguments, there is no generic Fortran 90 Interface for this routine. The specific

Fortran 90 Interfaces are:

Single: CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…])

Or

 CALL S_LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…])

Double: CALL DLSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…])

Or

 CALL D_LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…])

FORTRAN 77 Interface

Single: CALL LSCXD (N, NZ, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB, INZSUB,

MAXNZ, ILNZ, IPER, INVPER, ISPACE)

Double: The double precision name is DLSCXD.

IMSL MATH LIBRARY Chapter 1: Linear Systems 401

Description

Consider the linear equation

Ax b

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix A

requires one real and two integer vectors. The real array a contains all the nonzeros in the lower

triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer arrays

irow and jcol, each of length nz, contain the row and column indices for these entries in A. That

is

 , 1, ,i iA a i i
irow icol

nz

 1, ,i i i irow jcol nz

with all other entries in the lower triangle of A zero.

The routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set

up the sparse data structure for the Cholesky factor, L. Then the routine LNFXD produces the

numerical entries in L so that we have

P AP
T
= LL

T

Here, P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first method performs the

factorization using a multifrontal technique. This option requires more storage but in certain cases

will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed

description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987),

Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George and

Liu (1981). This is just the standard factorization method based on the sparse compressed storage

scheme.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CXD. The reference is:

CALL L2CXD (N, NZ, IROW, JCOL, IJOB, MAXSUB, NZSUB,

INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE, LIWK,
IWK)

The additional arguments are as follows:

LIWK — The length of IWK, LIWK should be at least 10N + 12NZ + 7. Note

that the argument MAXSUB should be set to (LIWK − 10N − 7)/4.

IWK — Integer work vector of length LIWK.

Note that the parameter ITWKSP is not an argument to this routine.

2. Informational errors

Type Code

402 Chapter 1: Linear Systems IMSL MATH LIBRARY

4 1 The matrix is structurally singular.

Example

As an example, the following matrix is symbolically factorized, and the result is printed:

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

A

The number of nonzeros in the lower triangle of A is nz= 10. The sparse coordinate form for the

lower triangle of A is given by:

irow 1 2 3 3 4 4 5 5 5 5

jcol 1 2 1 3 3 4 1 2 4 5

or equivalently by

irow 4 5 5 5 1 2 3 3 4 5

jcol 4 1 2 4 1 2 1 3 3 5

 USE LSCXD_INT

 USE WRIRN_INT

 INTEGER N, NZ

 PARAMETER (N=5, NZ=10)

!

 INTEGER ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),&

 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,&

 NZSUB(3*NZ)

!

 DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/

 DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/

 MAXSUB = 3 * NZ

 CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER,&

 MAXSUB=MAXSUB, IPER=IPER)

! Print results

 CALL WRIRN (‘ iper ‘, IPER, 1, N, 1)

 CALL WRIRN (‘ invper ‘,INVPER, 1, N, 1)

 CALL WRIRN (‘ nzsub ‘, NZSUB, 1, MAXSUB, 1)

 CALL WRIRN (‘ inzsub ‘, INZSUB, 1, N+1, 1)

 CALL WRIRN (‘ ilnz ‘, ILNZ, 1, N+1, 1)

 END

Output

 iper

1 2 3 4 5

IMSL MATH LIBRARY Chapter 1: Linear Systems 403

2 1 5 4 3

 invper

1 2 3 4 5

2 1 5 4 3

 nzsub

1 2 3 4

3 5 4 5

 inzsub

1 2 3 4 5 6

1 1 3 4 4 4

 ilnz

1 2 3 4 5 6

1 2 4 6 7 7

LNFXD
Computes the numerical Cholesky factorization of a sparse symmetrical matrix A.

Required Arguments

A — Vector of length NZ containing the nonzero coefficients of the lower triangle of the

linear system. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding elements in

the lower triangle of A. (Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements

in the lower triangle of A. (Input)

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine

LSCXD/DLSCXD. (Input)

NZSUB — Vector of length MAXSUB containing the row subscripts for the nonzeros in the

Cholesky factor in compressed format as output from subroutine LSCXD/DLSCXD.

(Input)

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine

LSCXD/DLSCXD. (Input)

The row subscripts for the nonzeros in column J are stored from location INZSUB (J)

to INZSUB(J + 1) − 1.

MAXNZ — Length of RLNZ as output from subroutine LSCXD/DLSCXD. (Input)

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor as output from

subroutine LSCXD/DLSCXD. (Input)

The row subscripts for the nonzeros in column J of the factor are stored from location

404 Chapter 1: Linear Systems IMSL MATH LIBRARY

ILNZ(J) to ILNZ(J + 1) − 1. (ILNZ, NZSUB, INZSUB) sets up the compressed data

structure in column ordered form for the Cholesky factor.

IPER — Vector of length N containing the permutation as output from subroutine

LSCXD/DLSCXD. (Input)

INVPER — Vector of length N containing the inverse permutation as output from subroutine

LSCXD/DLSCXD. (Input)

ISPACE — The storage space needed for the stack of frontal matrices as output from

subroutine LSCXD/DLSCXD. (Input)

DIAGNL — Vector of length N containing the diagonal of the factor. (Output)

RLNZ — Vector of length MAXNZ containing the strictly lower triangle nonzeros of the

Cholesky factor. (Output)

RPARAM — Parameter vector containing factorization information. (Output)

RPARAM(1) = smallest diagonal element.

RPARAM(2) = largest diagonal element.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (IPER,1).

NZ — The number of nonzero coefficients in the linear system. (Input)

Default: NZ = size (A,1).

IJOB — Integer parameter selecting factorization method. (Input)

IJOB = 1 yields factorization in sparse column format.

IJOB = 2 yields factorization using multifrontal method.

Default: IJOB = 1.

ITWKSP — The total workspace needed. (Input)

If the default is desired, set ITWKSP to zero.

Default: ITWKSP = 0.

FORTRAN 90 Interface

Generic: CALL LNFXD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ, IPER,

INVPER, ISPACE, DIAGNL, RLNZ, RPARAM [,…])

Specific: The specific interface names are S_LNFXD and D_LNFXD.

IMSL MATH LIBRARY Chapter 1: Linear Systems 405

FORTRAN 77 Interface

Single: CALL LNFXD (N, NZ, A, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB, INZSUB,

MAXNZ, ILNZ, IPER, INVPER, ISPACE, ITWKSP, DIAGNL, RLNZ, RPARAM)

Double: The double precision name is DLNFXD.

Description

Consider the linear equation

Ax b

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix A

requires one real and two integer vectors. The real array a contains all the nonzeros in the lower

triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer arrays

irow and jcol, each of length nz, contain the row and column indices for these entries in A. That

is

 , 1, ,i iA a i i
irow icol

nz

 1, ,i i i irow jcol nz

with all other entries in the lower triangle of A zero. The routine LNFXD produces the Cholesky

factorization of P AP
T
given the symbolic factorization of A which is computed by LSCXD. That is,

this routine computes L which satisfies

P AP
T
= LL

T

The diagonal of L is stored in DIAGNL and the strictly lower triangular part of L is stored in

compressed subscript form in R = RLNZ as follows. The nonzeros in the j-th column of L are stored

in locations R(i),…, R(i + k) where i = ILNZ(j) and k = ILNZ(j + 1) − ILNZ(j) − 1. The row

subscripts are stored in the vector NZSUB from locations INZSUB(j) to INZSUB(j) + k.

The numerical computations can be carried out in one of two ways. The first method (when

IJOB = 2) performs the factorization using a multifrontal technique. This option requires more

storage but in certain cases will be faster. The multifrontal method is based on the routines in Liu

(1987). For detailed description of this method, see Liu (1990), also Duff and Reid (1983, 1984),

Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989). The second method (when

IJOB = 1) is fully described in George and Liu (1981). This is just the standard factorization

method based on the sparse compressed storage scheme.

Comments

1. Workspace may be explicitly provided by use of L2FXD/DL2FXD . The reference is:

CALL L2FXD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB,

INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE, DIAGNL,

RLNZ, RPARAM, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

406 Chapter 1: Linear Systems IMSL MATH LIBRARY

WK — Real work vector of length LWK.

LWK — The length of WK, LWK should be at least N + 3NZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 2N.

Note that the parameter ITWKSP is not an argument to this routine.

2. Informational errors

Type Code

4 1 The coefficient matrix is not positive definite.

4 2 A column without nonzero elements has been found in the

coefficient matrix.

Example

As an example, consider the 5 × 5 linear system:

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

A

The number of nonzeros in the lower triangle of A is nz = 10. The sparse coordinate form for the

lower triangle of A is given by:

irow 1 2 3 3 4 4 5 5 5 5

jcol 1 2 1 3 3 4 1 2 4 5

a 10 20 1 30 4 40 2 3 5 50

or equivalently by

irow 4 5 5 5 1 2 3 3 4 5

jcol 4 1 2 4 1 2 1 3 3 5

a 40 2 3 5 10 20 1 30 4 50

We first call LSCXD to produce the symbolic information needed to pass on to LNFXD. Then call

LNFXD to factor this matrix. The results are displayed below.

 USE LNFXD_INT

 USE LSCXD_INT

IMSL MATH LIBRARY Chapter 1: Linear Systems 407

 USE WRRRN_INT

 INTEGER N, NZ, NRLNZ

 PARAMETER (N=5, NZ=10, NRLNZ=10)

!

 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),&

 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,&

 NZSUB(3*NZ)

 REAL A(NZ), DIAGNL(N), RLNZ(NRLNZ), RPARAM(2) , R(N,N)

!

 DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./

 DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/

 DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/

! Select minimum degree ordering

! for multifrontal method

 IJOB = 3

! Use default workspace

 MAXSUB = 3*NZ

 CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, &

 MAXSUB=MAXSUB)

! Check if NRLNZ is large enough

 IF (NRLNZ .GE. MAXNZ) THEN

! Choose multifrontal method

 IJOB = 2

 CALL LNFXD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, &

 ILNZ,IPER, INVPER, ISPACE, DIAGNL, RLNZ, RPARAM, &

 IJOB=IJOB)

! Print results

 CALL WRRRN (' diagnl ', DIAGNL, NRA=1, NCA=N, LDA=1)

 CALL WRRRN (' rlnz ', RLNZ, NRA= 1, NCA= MAXNZ, LDA= 1)

 END IF

!

! Construct L matrix

 DO I=1,N

! Diagonal

 R(I,I) = DIAG(I)

 IF (ILNZ(I) .GT. MAXNZ) GO TO 50

! Find elements of RLNZ for this column

 ISTRT = ILNZ(I)

 ISTOP = ILNZ(I+1) - 1

! Get starting index for NZSUB

 K = INZSUB(I)

 DO J=ISTRT, ISTOP

! NZSUB(K) is the row for this element of

 RLNZ

 R((NZSUB(K)),I) = RLNZ(J)

 K = K + 1

 END DO

 END DO

 50 CONTINUE

 CALL WRRRN ('L', R, NRA=N, NCA=N)

 END

Output

 diagnl

 1 2 3 4 5

408 Chapter 1: Linear Systems IMSL MATH LIBRARY

4.472 3.162 7.011 6.284 5.430

 rlnz

 1 2 3 4 5 6

0.6708 0.6325 0.3162 0.7132 -0.0285 0.6398

 L

 1 2 3 4 5

 1 4.472 0.000 0.000 0.000 0.000

 2 0.000 3.162 0.000 0.000 0.000

 3 0.671 0.632 7.011 0.000 0.000

 4 0.000 0.000 0.713 6.284 0.000

 5 0.000 0.316 -0.029 0.640 5.430

LFSXD
Solves a real sparse symmetric positive definite system of linear equations, given the Cholesky

factorization of the coefficient matrix.

Required Arguments

N — Number of equations. (Input)

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine

LSCXD/DLSCXD. (Input)

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-diagonal

nonzeros in the factor as output from subroutine LSCXD/DLSCXD. (Input)

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine

LSCXD/DLSCXD. (Input)

The row subscripts of column J are stored from location INZSUB(J) to

INZSUB(J + 1) − 1.

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor as output from

subroutine LSCXD/DLSCXD. (Input)

RLNZ — Vector of length MAXNZ containing the off-diagonal nonzeros in the factor in

column ordered format as output from subroutine LNFXD/DLNFXD. (Input)

ILNZ — Vector of length N + 1 containing pointers to RLNZ as output from subroutine

LSCXD/DLSCXD. The nonzeros in column J of the factor are stored from location

ILNZ(J) to ILNZ(J + 1) − 1. (Input)

The values (RLNZ, ILNZ, NZSUB, INZSUB) give the off-diagonal nonzeros of the factor

in a compressed subscript data format.

DIAGNL — Vector of length N containing the diagonals of the Cholesky factor as output

from subroutine LNFXD/DLNFXD. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 409

IPER — Vector of length N containing the ordering as output from subroutine

LSCXD/DLSCXD. (Input)

IPER(I) = K indicates that the original row K is the new row I.

B — Vector of length N containing the right-hand side. (Input)

X — Vector of length N containing the solution. (Output)

FORTRAN 90 Interface

Generic: CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,

IPER, B, X)

Specific: The specific interface names are S_LFSXD and D_LFSXD.

FORTRAN 77 Interface

Single: CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,

IPER, B, X)

Double: The double precision name is DLFSXD.

Description

Consider the linear equation

Ax b

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix A

requires one real and two integer vectors. The real array a contains all the nonzeros in the lower

triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer arrays

irow and jcol, each of length nz, contain the row and column indices for these entries in A. That

is

 , 1, ,i iA a i i
irow icol

nz

 1, ,i i i irow jcol nz

with all other entries in the lower triangle of A zero.

The routine LFSXD computes the solution of the linear system given its Cholesky factorization.

The factorization is performed by calling LSCXD followed by LNFXD. The routine LSCXD computes

a minimum degree ordering or uses a user-supplied ordering to set up the sparse data structure for

the Cholesky factor, L. Then the routine LNFXD produces the numerical entries in L so that we

have

P AP
T
= LL

T

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first method performs the

factorization using a multifrontal technique. This option requires more storage but in certain cases

410 Chapter 1: Linear Systems IMSL MATH LIBRARY

will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed

description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987),

Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George and

Liu (1981). This is just the standard factorization method based on the sparse compressed storage

scheme.

Finally, the solution x is obtained by the following calculations:

1) Ly1 = Pb

2) L
T
y2 = y1

3) x = P
T
y2

Comments

Informational error

Type Code

4 1 The input matrix is numerically singular.

Example

As an example, consider the 5 × 5 linear system:

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

A

Let

 1 1,2,3,4,5Tx

so that Ax1 = (23, 55, 107, 197, 278)
T
, and

 2 5,4,3,2,1Tx

so that Ax2 = (55, 83, 103, 97, 82)
T
. The number of nonzeros in the lower triangle of A is nz = 10.

The sparse coordinate form for the lower triangle of A is given by:

irow 1 2 3 3 4 4 5 5 5 5

jcol 1 2 1 3 3 4 1 2 4 5

a 10 20 1 30 4 40 2 3 5 50

or equivalently by

IMSL MATH LIBRARY Chapter 1: Linear Systems 411

irow 4 5 5 5 1 2 3 3 4 5

jcol 4 1 2 4 1 2 1 3 3 5

a 40 2 3 5 10 20 1 30 4 50

 USE LFSXD_INT

 USE LNFXD_INT

 USE LSCXD_INT

 USE WRRRN_INT

 INTEGER N, NZ, NRLNZ

 PARAMETER (N=5, NZ=10, NRLNZ=10)

!

 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),&

 IROW(NZ), ISPACE, ITWKSP, JCOL(NZ), MAXNZ, MAXSUB,&

 NZSUB(3*NZ)

 REAL A(NZ), B1(N), B2(N), DIAGNL(N), RLNZ(NRLNZ), RPARAM(2),&

 X(N)

!

 DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./

 DATA B1/23., 55., 107., 197., 278./

 DATA B2/55., 83., 103., 97., 82./

 DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/

 DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/

! Select minimum degree ordering

! for multifrontal method

 IJOB = 3

! Use default workspace

 ITWKSP = 0

 MAXSUB = 3*NZ

 CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, &

 MAXSUB=MAXSUB, IPER=IPER, ISPACE=ISPACE)

! Check if NRLNZ is large enough

 IF (NRLNZ .GE. MAXNZ) THEN

! Choose multifrontal method

 IJOB = 2

 CALL LNFXD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ,&

 IPER, INVPER,ISPACE, DIAGNL, RLNZ, RPARAM, IJOB=IJOB)

! Solve A * X1 = B1

 CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,&

 IPER, B1, X)

! Print X1

 CALL WRRRN (‘ x1 ‘, X, 1, N, 1)

! Solve A * X2 = B2

 CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, &

 DIAGNL, IPER, B2, X)

! Print X2

 CALL WRRRN (‘ x2 ‘ X, 1, N, 1)

 END IF

!

 END

Output

412 Chapter 1: Linear Systems IMSL MATH LIBRARY

 x1

 1 2 3 4 5

1.000 2.000 3.000 4.000 5.000

 x2

 1 2 3 4 5

5.000 4.000 3.000 2.000 1.000

LSLZD
Solves a complex sparse Hermitian positive definite system of linear equations by Gaussian

elimination.

Required Arguments

A — Complex vector of length NZ containing the nonzero coefficients in the lower triangle of

the linear system. (Input)

The sparse matrix has nonzeroes only in entries (IROW (i), JCOL(i)) for i = 1 to NZ, and

at this location the sparse matrix has value A(i).

IROW — Vector of length NZ containing the row numbers of the corresponding elements in

the lower triangle of A. (Input)

Note IROW(i)≥ JCOL(i), since we are only indexing the lower triangle.

JCOL — Vector of length NZ containing the column numbers of the corresponding elements

in the lower triangle of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)

Default: N = size (B,1).

NZ — The number of nonzero coefficients in the lower triangle of the linear system. (Input)

Default: NZ = size (A,1).

ITWKSP — The total workspace needed. (Input)

If the default is desired, set ITWKSP to zero.

Default: ITWKSP = 0.

FORTRAN 90 Interface

Generic: CALL LSLZD (A, IROW, JCOL, B, X [,…])

Specific: The specific interface names are S_LSLZD and D_LSLZD.

IMSL MATH LIBRARY Chapter 1: Linear Systems 413

FORTRAN 77 Interface

Single: CALL LSLZD (N, NZ, A, IROW, JCOL, B, ITWKSP, X)

Double: The double precision name is DLSLZD.

Description

Consider the linear equation

Ax b

where A is sparse, positive definite and Hermitian. The sparse coordinate format for the matrix A

requires one complex and two integer vectors. The complex array a contains all the nonzeros in

the lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer

arrays irow and jcol, each of length nz, contain the row and column indices for these entries in

A. That is

 , 1, ,i iA a i i
irow icol

nz

 1, ,i i i irow jcol nz

with all other entries in the lower triangle of A zero.

The routine LSLZD solves a system of linear algebraic equations having a complex, sparse,

Hermitian and positive definite coefficient matrix. It first uses the routine LSCXD to compute a

symbolic factorization of a permutation of the coefficient matrix. It then calls LNFZD to perform

the numerical factorization. The solution of the linear system is then found using LFSZD.

The routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set

up the sparse data structure for the Cholesky factor, L. Then the routine LNFZD produces the

numerical entries in L so that we have

P AP
T
= LL

H

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first method performs the

factorization using a multifrontal technique. This option requires more storage but in certain cases

will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed

description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987),

Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George and

Liu (1981). This is just the standard factorization method based on the sparse compressed storage

scheme.

Finally, the solution x is obtained by the following calculations:

1) Ly1 = Pb

2) L
H

 y2 = y1

3) x = P
T

y2

The routine LFSZD accepts b and the permutation vector which determines P . It then returns x.

414 Chapter 1: Linear Systems IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LZD/DL2LZD. The

reference is:

CALL L2LZD (N, NZ, A, IROW, JCOL, B, X, IPER, IPARAM,

RPARAM, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

IPER — Vector of length N containing the ordering.

IPARAM — Integer vector of length 4. See Comment 3.

RPARAM — Real vector of length 2. See Comment 3.

WK — Complex work vector of length LWK.

LWK — The length of WK, LWK should be at least 2N + 6NZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 15N + 15NZ + 9.

Note that the parameter ITWKSP is not an argument for this routine.

2. Informational errors

Type Code

4 1 The coefficient matrix is not positive definite.

4 2 A column without nonzero elements has been found in the

coefficient matrix.

3. If the default parameters are desired for L2LZD, then set IPARAM(1) to zero and call the

routine L2LZD. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling L2LZD.

 CALL L4LZD (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LZD will set IPARAM and RPARAM to their default values, so only

nondefault values need to be set above. The arguments are as follows:

IPARAM — Integer vector of length 4.

IPARAM(1) = Initialization flag.

IMSL MATH LIBRARY Chapter 1: Linear Systems 415

IPARAM(2) = The numerical factorization method.

IPARAM(2) Action

0 Multifrontal

1 Sparse column

 Default: 0.

IPARAM(3) = The ordering option.

IPARAM(3 Action

0 Minimum degree ordering

1 User‘s ordering specified in IPER

 Default: 0.

IPARAM(4) = The total number of nonzeros in the factorization matrix.

RPARAM — Real vector of length 2.

RPARAM(1) = The absolute value of the largest diagonal element in the

Cholesky factorization.

RPARAM(2) = The absolute value of the smallest diagonal element in the

Cholesky factorization.

 If double precision is required, then DL4LZD is called and RPARAM is declared double

precision.

Example

As an example, consider the 3× 3 linear system:

2 0 1 0

1 4 0 1 2

0 1 2 10 0

i i

A i i i

i i

Let x
T
 = (1 + i, 2 + 2i, 3 + 3i) so that Ax = (−2 + 2i, 5 + 15i, 36 + 28i)

T
. The number of nonzeros

in the lower triangle of A is nz = 5. The sparse coordinate form for the lower triangle of A is given

by:

irow 1 2 3 2 3

jcol 1 2 3 1 2

a 2 0 4 0 10 0 1 1 2i i i i i

or equivalently by

416 Chapter 1: Linear Systems IMSL MATH LIBRARY

irow 3 2 3 1 2

jcol 3 1 2 1 2

a 10 0 1 1 2 2 0 4 0i i i i i

 USE LSLZD_INT

 USE WRCRN_INT

 INTEGER N, NZ

 PARAMETER (N=3, NZ=5)

!

 INTEGER IROW(NZ), JCOL(NZ)

 COMPLEX A(NZ), B(N), X(N)

!

 DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/

 DATA B/(-2.0,2.0), (5.0,15.0), (36.0,28.0)/

 DATA IROW/1, 2, 3, 2, 3/

 DATA JCOL/1, 2, 3, 1, 2/

! Solve A * X = B

 CALL LSLZD (A, IROW, JCOL, B, X)

! Print results

 CALL WRCRN (‘ x ‘, X, 1, N, 1)

 END

Output

 x

 1 2 3

(1.000, 1.000) (2.000, 2.000) (3.000, 3.000)

LNFZD
Computes the numerical Cholesky factorization of a sparse Hermitian matrix A.

Required Arguments

A — Complex vector of length NZ containing the nonzero coefficients of the lower triangle of

the linear system. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding elements in

the lower triangle of A. (Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements

in the lower triangle of A. (Input)

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine

LSCXD/DLSCXD. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 417

NZSUB — Vector of length MAXSUB containing the row subscripts for the nonzeros in the

Cholesky factor in compressed format as output from subroutine LSCXD/DLSCXD.

(Input)

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine

LSCXD/DLSCXD. (Input)

The row subscripts for the nonzeros in column J are stored from location INZSUB(J) to

INZSUB(J + 1) − 1.

MAXNZ — Length of RLNZ as output from subroutine LSCXD/DLSCXD. (Input)

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor as output from

subroutine LSCXD/DLSCXD. (Input)

The row subscripts for the nonzeros in column J of the factor are stored from location

ILNZ(J) to ILNZ(J + 1) − 1.

(ILNZ , NZSUB, INZSUB) sets up the compressed data structure in column ordered form

for the Cholesky factor.

IPER — Vector of length N containing the permutation as output from subroutine

LSCXD/DLSCXD. (Input)

INVPER — Vector of length N containing the inverse permutation as output from subroutine

LSCXD/DLSCXD. (Input)

ISPACE — The storage space needed for the stack of frontal matrices as output from

subroutine LSCXD/DLSCXD. (Input)

DIAGNL — Complex vector of length N containing the diagonal of the factor. (Output)

RLNZ — Complex vector of length MAXNZ containing the strictly lower triangle nonzeros of

the Cholesky factor. (Output)

RPARAM — Parameter vector containing factorization information. (Output)

RPARAM (1) = smallest diagonal element in absolute value.

RPARAM (2) = largest diagonal element in absolute value.

Optional Arguments

N — Number of equations. (Input)

Default: N = size (IPER,1).

NZ — The number of nonzero coefficients in the linear system. (Input)

Default: NZ = size (A,1).

IJOB — Integer parameter selecting factorization method. (Input)

IJOB = 1 yields factorization in sparse column format.

IJOB = 2 yields factorization using multifrontal method.

Default: IJOB = 1.

418 Chapter 1: Linear Systems IMSL MATH LIBRARY

ITWKSP — The total workspace needed. (Input)

If the default is desired, set ITWKSP to zero. See Comment 1 for the default.

Default: ITWKSP = 0.

FORTRAN 90 Interface

Generic: CALL LNFZD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ, IPER,

 INVPER, ISPACE, DIAGNL, RLNZ, RPARAM [,…])

Specific: The specific interface names are S_LNFZD and D_LNFZD.

FORTRAN 77 Interface

Single: CALL LNFZD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB, MAXNZ,

ILNZ, IPER, INVPER, ISPACE, ITWKSP, DIAGNL, RLNZ, RPARAM)

Double: The double precision name is DLNFZD.

Description

Consider the linear equation

Ax b

where A is sparse, positive definite and Hermitian. The sparse coordinate format for the matrix A

requires one complex and two integer vectors. The complex array a contains all the nonzeros in

the lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer

arrays irow and jcol, each of length nz, contain the row and column indices for these entries in

A. That is

 , 1, ,i iA a i i
irow icol

nz

 1, ,i i i irow jcol nz

with all other entries in the lower triangle of A zero.

The routine LNFZD produces the Cholesky factorization of P AP
T

given the symbolic factorization

of A which is computed by LSCXD. That is, this routine computes L which satisfies

P AP
T
= LL

H

The diagonal of L is stored in DIAGNL and the strictly lower triangular part of L is stored in

compressed subscript form in R = RLNZ as follows. The nonzeros in the jth column of L are stored

in locations R(i), …, R(i + k) where i = ILNZ(j) and k = ILNZ(j + 1)− ILNZ(j) − 1. The row

subscripts are stored in the vector NZSUB from locations INZSUB(j) to INZSUB(j) + k.

The numerical computations can be carried out in one of two ways. The first method

(when IJOB = 2) performs the factorization using a multifrontal technique. This option requires

more storage but in certain cases will be faster. The multifrontal method is based on the routines in

Liu (1987). For detailed description of this method, see Liu (1990), also Duff and Reid (1983,

IMSL MATH LIBRARY Chapter 1: Linear Systems 419

1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989). The second method (when

IJOB = 1) is fully described in George and Liu (1981). This is just the standard factorization

method based on the sparse compressed storage scheme.

Comments

1. Workspace may be explicitly provided by use of L2FZD/DL2FZD. The reference is:

CALL L2FZD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB,

INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE, DIAGNL,

RLNZ, RPARAM, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Complex work vector of length LWK.

LWK — The length of WK, LWK should be at least N + 3NZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 2N.

Note that the parameter ITWKSP is not an argument to this routine.

2. Informational errors

Type Code

4 1 The coefficient matrix is not positive definite.

4 2 A column without nonzero elements has been found in the

coefficient matrix.

Example

As an example, consider the 3× 3 linear system:

2 0 1 0

1 4 0 1 2

0 1 2 10 0

i i

A i i i

i i

The number of nonzeros in the lower triangle of A is nz = 5. The sparse coordinate form for the

lower triangle of A is given by:

irow 1 2 3 2 3

jcol 1 2 3 1 2

a 2 0 4 0 10 0 1 1 2i i i i i

or equivalently by

420 Chapter 1: Linear Systems IMSL MATH LIBRARY

irow 3 2 3 1 2

jcol 3 1 2 1 2

a 10 0 1 1 2 2 0 4 0i i i i i

We first call LSCXD to produce the symbolic information needed to pass on to LNFZD. Then call

LNFZD to factor this matrix. The results are displayed below.

 USE LNFZD_INT

 USE LSCXD_INT

 USE WRCRN_INT

 INTEGER N, NZ, NRLNZ

 PARAMETER (N=3, NZ=5, NRLNZ=5)

!

 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),&

 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,&

 NZSUB(3*NZ)

 REAL RPARAM(2)

 COMPLEX A(NZ), DIAGNL(N), RLNZ(NRLNZ)

!

 DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/

 DATA IROW/1, 2, 3, 2, 3/

 DATA JCOL/1, 2, 3, 1, 2/

! Select minimum degree ordering

! for multifrontal method

 IJOB = 3

 MAXSUB = 3*NZ

 CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, &

 IJOB=IJOB, MAXSUB=MAXSUB)

! Check if NRLNZ is large enough

 IF (NRLNZ .GE. MAXNZ) THEN

! Choose multifrontal method

 IJOB = 2

 CALL LNFZD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, &
 ILNZ, IPER, INVPER, ISPACE, DIAGNL, RLNZ, RPARAM, &

 IJOB=IJOB)

! Print results

 CALL WRCRN (‘ diagnl ‘, DIAGNL, 1, N, 1)

 CALL WRCRN (‘ rlnz ‘, RLNZ, 1, MAXNZ, 1)

 END IF

!

 END

Output

 diagnl

 1 2 3

(1.414, 0.000) (1.732, 0.000) (2.887, 0.000)

 rlnz

 1 2

(-0.707,-0.707) (0.577,-1.155)

IMSL MATH LIBRARY Chapter 1: Linear Systems 421

LFSZD
Solves a complex sparse Hermitian positive definite system of linear equations, given the

Cholesky factorization of the coefficient matrix.

Required Arguments

N — Number of equations. (Input)

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine

LSCXD/DLSCXD. (Input)

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-diagonal

nonzeros in the factor as output from subroutine LSCXD/DLSCXD. (Input)

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine

LSCXD/DLSCXD. (Input)

The row subscripts of column J are stored from location INZSUB(J) to

INZSUB(J + 1) − 1.

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor as output from

subroutine LSCXD/DLSCXD. (Input)

RLNZ — Complex vector of length MAXNZ containing the off-diagonal nonzeros in the factor

in column ordered format as output from subroutine LNFZD/DLNFZD. (Input)

ILNZ — Vector of length N +1 containing pointers to RLNZ as output from subroutine

LSCXD/DLSCXD. The nonzeros in column J of the factor are stored from location

ILNZ(J) to ILNZ(J + 1) − 1. (Input)

The values (RLNZ, ILNZ, NZSUB, INZSUB) give the off-diagonal nonzeros of the factor

in a compressed subscript data format.

DIAGNL — Complex vector of length N containing the diagonals of the Cholesky factor as

output from subroutine LNFZD/DLNFZD. (Input)

IPER — Vector of length N containing the ordering as output from subroutine

LSCXD/DLSCXD. (Input)

IPER(I) = K indicates that the original row K is the new row I.

B — Complex vector of length N containing the right-hand side. (Input)

X — Complex vector of length N containing the solution. (Output)

FORTRAN 90 Interface

Generic: CALL LFSZD (N, MAXZUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,

 IPER, B, X)

422 Chapter 1: Linear Systems IMSL MATH LIBRARY

Specific: The specific interface names are S_LFSZD and D_LFSZD.

FORTRAN 77 Interface

Single: CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,

IPER, B, X)

Double: The double precision name is DLFSZD.

Description

Consider the linear equation

Ax b

where A is sparse, positive definite and Hermitian. The sparse coordinate format for the matrix A

requires one complex and two integer vectors. The complex array a contains all the nonzeros in

the lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer

arrays irow and jcol, each of length nz, contain the row and column indices for these entries in

A. That is

 , 1, ,i iA a i i
irow icol

nz

 1, ,i i i irow jcol nz

with all other entries in the lower triangle of A zero.

The routine LFSZD computes the solution of the linear system given its Cholesky factorization.

The factorization is performed by calling LSCXD followed by LNFZD. The routine LSCXD computes

a minimum degree ordering or uses a user-supplied ordering to set up the sparse data structure for

the Cholesky factor, L. Then the routine LNFZD produces the numerical entries in L so that we

have

P AP
T

= LL
H

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first method performs the

factorization using a multifrontal technique. This option requires more storage but in certain cases

will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed

description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987),

Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George and

Liu (1981). This is just the standard factorization method based on the sparse compressed storage

scheme. Finally, the solution x is obtained by the following calculations:

1) Ly1 = Pb

 2) L
H

y2 = y1

3) x = P
T

y2

IMSL MATH LIBRARY Chapter 1: Linear Systems 423

Comments

Informational error

Type Code

4 1 The input matrix is numerically singular.

Example

As an example, consider the 3 × 3 linear system:

2 0 1 0

1 4 0 1 2

0 1 2 10 0

i i

A i i i

i i

Let

 1 1 ,2 2 ,3 3Tx i i i

so that Ax1 = (−2 + 2i, 5 + 15i, 36 + 28i)
T
, and

 2 3 3 ,2 2 ,1 1Tx i i i

so that Ax2 = (2 + 6i, 7 − 5i, 16 + 8i)
T
. The number of nonzeros in the lower triangle of A is nz =

5. The sparse coordinate form for the lower triangle of A is given by:

irow 1 2 3 2 3

jcol 1 2 3 1 2

a 2 0 4 0 10 0 1 1 2i i i i i

or equivalently by

irow 3 2 3 1 2

jcol 3 1 2 1 2

a 10 0 1 1 2 2 0 4 0i i i i i

 USE IMSL_LIBRARIES

 INTEGER N, NZ, NRLNZ

 PARAMETER (N=3, NZ=5, NRLNZ=5)

!

 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),&

 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,&

 NZSUB(3*NZ)

 COMPLEX A(NZ), B1(N), B2(N), DIAGNL(N), RLNZ(NRLNZ), X(N)

 REAL RPARAM(2)

!

 DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/

 DATA B1/(-2.0,2.0), (5.0,15.0), (36.0,28.0)/

 DATA B2/(2.0,6.0), (7.0,5.0), (16.0,8.0)/

 DATA IROW/1, 2, 3, 2, 3/

424 Chapter 1: Linear Systems IMSL MATH LIBRARY

 DATA JCOL/1, 2, 3, 1, 2/

! Select minimum degree ordering

! for multifrontal method

 IJOB = 3

! Use default workspace

 MAXSUB = 3*NZ

 CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, &

 IJOB=IJOB, MAXSUB=MAXSUB, IPER=IPER, ISPACE=ISPACE)

! Check if NRLNZ is large enough

 IF (NRLNZ .GE. MAXNZ) THEN

! Choose multifrontal method

 IJOB = 2

 CALL LNFZD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB,&

 MAXNZ, ILNZ, IPER, INVPER, ISPACE, DIAGNL,&

 RLNZ, RPARAM, IJOB=IJOB)

! Solve A * X1 = B1

 CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,&

 IPER, B1, X)

! Print X1

 CALL WRCRN (‘ x1 ‘, X, 1, N,1)

! Solve A * X2 = B2

 CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,&

 IPER, B2, X)

! Print X2

 CALL WRCRN (‘ x2 ‘, X, 1, N,1)

 END IF

!

 END

Output

 x1

 1 2 3

(1.000, 1.000) (2.000, 2.000) (3.000, 3.000)

 x2

 1 2 3

(3.000, 3.000) (2.000, 2.000) (1.000, 1.000)

LSLTO
Solves a complex sparse Hermitian positive definite system of linear equations, given the

Cholesky factorization of the coefficient matrix.

Required Arguments

A — Real vector of length 2N − 1 containing the first row of the coefficient matrix followed

by its first column beginning with the second element. (Input)

See Comment 2.

B — Real vector of length N containing the right-hand side of the linear system. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 425

X — Real vector of length N containing the solution of the linear system. (Output)

If B is not needed then B and X may share the same storage locations.

Optional Arguments

N — Order of the matrix represented by A. (Input)

Default: N = (size (A,1) +1)/2

IPATH — Integer flag. (Input)

IPATH = 1 means the system Ax = B is solved.

IPATH = 2 means the system A
T

x = B is solved.

Default: IPATH =1.

FORTRAN 90 Interface

Generic: CALL LSLTO (A, B, X [,…])

Specific: The specific interface names are S_LSLTO and D_LSLTO.

FORTRAN 77 Interface

Single: CALL LSLTO (N, A, B, IPATH, X)

Double: The double precision name is DLSLTO.

Description

Toeplitz matrices have entries that are constant along each diagonal, for example,

0 1 2 4

1 0 1 2

2 1 0 1

3 2 1 0

p p p p

p p p p
A

p p p p

p p p p

The routine LSLTO is based on the routine TSLS in the TOEPLITZ package, see Arushanian et al.

(1983). It is based on an algorithm of Trench (1964). This algorithm is also described by Golub

and van Loan (1983), pages 125−133.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LTO/DL2LTO. The

reference is:

CALL L2LTO (N, A, B, IPATH, X, WK)

The additional argument is:

426 Chapter 1: Linear Systems IMSL MATH LIBRARY

WK — Work vector of length 2N − 2.

2. Because of the special structure of Toeplitz matrices, the first row and the first column

of a Toeplitz matrix completely characterize the matrix. Hence, only the elements

A(1, 1), …, A(1, N), A(2, 1), …, A(N, 1) need to be stored.

Example

A system of four linear equations is solved. Note that only the first row and column of the matrix

A are entered.

 USE LSLTO_INT

 USE WRRRN_INT

! Declare variables

 INTEGER N

 PARAMETER (N=4)

 REAL A(2*N-1), B(N), X(N)

! Set values for A, and B

!

! A = (2 -3 -1 6)

! (1 2 -3 -1)

! (4 1 2 -3)

! (3 4 1 2)

!

! B = (16 -29 -7 5)

!

 DATA A/2.0, -3.0, -1.0, 6.0, 1.0, 4.0, 3.0/

 DATA B/16.0, -29.0, -7.0, 5.0/

! Solve AX = B

 CALL LSLTO (A, B, X)

! Print results

 CALL WRRRN (‘X‘, X, 1, N, 1)

 END

Output

 X

 1 2 3 4

-2.000 -1.000 7.000 4.000

LSLTC
Solves a complex Toeplitz linear system.

Required Arguments

A — Complex vector of length 2N − 1 containing the first row of the coefficient matrix

followed by its first column beginning with the second element. (Input)

See Comment 2.

IMSL MATH LIBRARY Chapter 1: Linear Systems 427

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution of the linear system. (Output)

Optional Arguments

N — Order of the matrix represented by A. (Input)

Default: N = size (A,1).

IPATH — Integer flag. (Input)

IPATH = 1 means the system Ax = B is solved.

IPATH = 2 means the system A
T
x = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSLTC (A, B, X [,…])

Specific: The specific interface names are S_LSLTC and D_LSLTC.

FORTRAN 77 Interface

Single: CALL LSLTC (N, A, B, IPATH, X)

Double: The double precision name is DLSLTC.

Description

Toeplitz matrices have entries which are constant along each diagonal, for example,

0 1 2 4

1 0 1 2

2 1 0 1

3 2 1 0

p p p p

p p p p
A

p p p p

p p p p

The routine LSLTC is based on the routine TSLC in the TOEPLITZ package, see Arushanian et al.

(1983). It is based on an algorithm of Trench (1964). This algorithm is also described by Golub

and van Loan (1983), pages 125−133.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LTC/DL2LTC. The

reference is:

CALL L2LTC (N, A, B, IPATH, X, WK)

The additional argument is

428 Chapter 1: Linear Systems IMSL MATH LIBRARY

WK — Complex work vector of length 2N − 2.

2. Because of the special structure of Toeplitz matrices, the first row and the first column

of a Toeplitz matrix completely characterize the matrix. Hence, only the elements

A(1, 1), …, A(1, N), A(2, 1), …, A(N, 1) need to be stored.

Example

A system of four complex linear equations is solved. Note that only the first row and column of

the matrix A are entered.

 USE LSLTC_INT

 USE WRCRN_INT

! Declare variables

 PARAMETER (N=4)

 COMPLEX A(2*N-1), B(N), X(N)

! Set values for A and B

!

! A = (2+2i -3 1+4i 6-2i)

! (i 2+2i -3 1+4i)

! (4+2i i 2+2i -3)

! (3-4i 4+2i i 2+2i)

!

! B = (6+65i -29-16i 7+i -10+i)

!

 DATA A/(2.0,2.0), (-3.0,0.0), (1.0,4.0), (6.0,-2.0), (0.0,1.0),&

 (4.0,2.0), (3.0,-4.0)/

 DATA B/(6.0,65.0), (-29.0,-16.0), (7.0,1.0), (-10.0,1.0)/

! Solve AX = B

 CALL LSLTC (A, B, X)

! Print results

 CALL WRCRN (‘X‘, X, 1, N, 1)

 END

Output

 X

 1 2 3 4

(-2.000, 0.000) (-1.000,-5.000) (7.000, 2.000) (0.000, 4.000)

LSLCC

Solves a complex circulant linear system.

IMSL MATH LIBRARY Chapter 1: Linear Systems 429

Required Arguments

A — Complex vector of length N containing the first row of the coefficient matrix. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution of the linear system. (Output)

Optional Arguments

N — Order of the matrix represented by A. (Input)

Default: N = size (A,1).

IPATH — Integer flag. (Input)

IPATH = 1 means the system Ax = B is solved.

IPATH = 2 means the system A
T
x = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSLCC (A, B, X [,…])

Specific: The specific interface names are S_LSLCC and D_LSLCC.

FORTRAN 77 Interface

Single: CALL LSLCC (N, A, B, IPATH, X)

Double: The double precision name is DLSLCC.

Description

Circulant matrices have the property that each row is obtained by shifting the row above it one

place to the right. Entries that are shifted off at the right re-enter at the left. For example,

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

p p p p

p p p p
A

p p p p

p p p p

If qk = p− k and the subscripts on p and q are interpreted modulo N, then

1 1

1 1

() ()
N N

j i j i j i i i

i i

Ax p x q x q x

where q * x is the convolution of q and x. By the convolution theorem, if q * x = b, then

430 Chapter 1: Linear Systems IMSL MATH LIBRARY

ˆˆ ˆ ˆ, where q x b q

is the discrete Fourier transform of q as computed by the IMSL routine FFTCF and ⊗ denotes

elementwise multiplication. By division,

ˆˆ ˆx b q

where ∅ denotes elementwise division. The vector x is recovered from

x̂

through the use of IMSL routine FFTCB.

To solve A
T

x = b, use the vector p instead of q in the above algorithm.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LCC/DL2LCC. The

reference is:

CALL L2LCC (N, A, B, IPATH, X, ACOPY, WK)

The additional arguments are as follows:

ACOPY — Complex work vector of length N. If A is not needed, then A and

ACOPY may be the same.

WK — Work vector of length 6N + 15.

2. Informational error

Type Code

4 2 The input matrix is singular.

3. Because of the special structure of circulant matrices, the first row of a circulant matrix

completely characterizes the matrix. Hence, only the elements A(1, 1), …, A(1, N) need

to be stored.

Example

A system of four linear equations is solved. Note that only the first row of the matrix A is entered.

 USE LSLCC_INT

 USE WRCRN_INT

! Declare variables

 INTEGER N

 PARAMETER (N=4)

 COMPLEX A(N), B(N), X(N)

! Set values for A, and B

!

IMSL MATH LIBRARY Chapter 1: Linear Systems 431

! A = (2+2i -3+0i 1+4i 6-2i)

!

! B = (6+65i -41-10i -8-30i 63-3i)

!

 DATA A/(2.0,2.0), (-3.0,0.0), (1.0,4.0), (6.0,-2.0)/

 DATA B/(6.0,65.0), (-41.0,-10.0), (-8.0,-30.0), (63.0,-3.0)/

! Solve AX = B (IPATH = 1)

 CALL LSLCC (A, B, X)

! Print results

 CALL WRCRN (‘X‘, X, 1, N, 1)

 END

Output

 1 2 3 4

(-2.000, 0.000) (-1.000,-5.000) (7.000, 2.000) (0.000, 4.000)

PCGRC
Solves a real symmetric definite linear system using a preconditioned conjugate gradient method

with reverse communication.

Required Arguments

IDO — Flag indicating task to be done. (Input/Output)

On the initial call IDO must be 0. If the routine returns with IDO = 1, then set Z = AP,

where A is the matrix, and call PCGRC again. If the routine returns with IDO = 2, then

set Z to the solution of the system MZ = R, where M is the preconditioning matrix, and

call PCGRC again. If the routine returns with IDO = 3, then the iteration has converged

and X contains the solution.

X — Array of length N containing the solution. (Input/Output)

On input, X contains the initial guess of the solution. On output, X contains the solution

to the system.

P — Array of length N. (Output)

Its use is described under IDO.

R — Array of length N. (Input/Output)

On initial input, it contains the right-hand side of the linear system. On output, it

contains the residual.

Z — Array of length N. (Input)

When IDO = 1, it contains AP, where A is the linear system. When IDO = 2, it contains

the solution of MZ = R, where M is the preconditioning matrix. When IDO = 0, it is

ignored. Its use is described under IDO.

Optional Arguments

N — Order of the linear system. (Input)

Default: N = size (X,1).

432 Chapter 1: Linear Systems IMSL MATH LIBRARY

RELERR — Relative error desired. (Input)

Default: RELERR = 1.e-5 for single precision and 1.d-10 for double precision.

ITMAX — Maximum number of iterations allowed. (Input)

Default: ITMAX = N.

FORTRAN 90 Interface

Generic: CALL PCGRC (IDO, X, P, R, Z [,…])

Specific: The specific interface names are S_PCGRC and D_PCGRC.

FORTRAN 77 Interface

Single: CALL PCGRC (IDO, N, X, P, R, Z, RELERR, ITMAX)

Double: The double precision name is DPCGRC.

Description

Routine PCGRC solves the symmetric definite linear system Ax = b using the preconditioned

conjugate gradient method. This method is described in detail by Golub and Van Loan (1983,

Chapter 10), and in Hageman and Young (1981, Chapter 7).

The preconditioning matrix, M, is a matrix that approximates A, and for which the linear system

Mz = r is easy to solve. These two properties are in conflict; balancing them is a topic of much

current research.

The number of iterations needed depends on the matrix and the error tolerance RELERR. As a

rough guide, ITMAX = N
1/2

 is often sufficient when N >> 1. See the references for further

information.

Let M be the preconditioning matrix, let b, p, r, x and z be vectors and let τ be the desired relative

error. Then the algorithm used is as follows.

λ = −1

p0 = x0

r1 = b − Ap

For k = 1, …, itmax

zk = M-
1rk

If k = 1 then

 βk = 1

IMSL MATH LIBRARY Chapter 1: Linear Systems 433

 pk = zk

Else

 1 1/T T
k k k k kz r z r

 k k k kp z p

End if

1 1 /

k

T T
k k k k k

k k k k

k k k k

z Ap

z r z p

x x p

r r z

If (||zk||2 ≤ τ(1 − λ)||xk||2) Then

 Recompute λ

 If (||zk||2 ≤ τ(1 − λ)||xk||2) Exit

End if

End loop

Here λ is an estimate of λmax(G), the largest eigenvalue of the iteration matrix G = I − M-1
 A. The

stopping criterion is based on the result (Hageman and Young, 1981, pages 148−151)

max

1

1 ()

k M k M

M k M

x x z

x G x

Where

2 T
Mx x Mx

It is known that

 max 1 max 2 max 1T T G

where the Tn are the symmetric, tridiagonal matrices

434 Chapter 1: Linear Systems IMSL MATH LIBRARY

1 2

2 2 3

3 3 4
nT

with

1 1 11 / 1/ , 1 1/k k k k

and

1/k k k

The largest eigenvalue of Tk is found using the routine EVASB. Usually this eigenvalue

computation is needed for only a few of the iterations.

Comments

1. Workspace may be explicitly provided, if desired, by use of P2GRC/DP2GRC. The

reference is:

CALL P2GRC (IDO, N, X, P, R, Z, RELERR, ITMAX, TRI, WK,
IWK)

The additional arguments are as follows:

TRI — Workspace of length 2 * ITMAX containing a tridiagonal matrix (in

band symmetric form) whose largest eigenvalue is approximately the

same as the largest eigenvalue of the iteration matrix. The workspace

arrays TRI, WK and IWK should not be changed between the initial call

with IDO = 0 and PCGRC/DPCGRC returning with IDO = 3.

WK — Workspace of length 5 * ITMAX.

IWK — Workspace of length ITMAX.

2. Informational errors

Type Code

4 1 The preconditioning matrix is singular.

4 2 The preconditioning matrix is not definite.

4 3 The linear system is not definite.

4 4 The linear system is singular.

4 5 No convergence after ITMAX iterations.

IMSL MATH LIBRARY Chapter 1: Linear Systems 435

Example

In this example, the solution to a linear system is found. The coefficient matrix A is stored as a full

matrix. The preconditioning matrix is the diagonal of A. This is called the Jacobi preconditioner.

It is also used by the IMSL routine JCGRC.

 USE PCGRC_INT

 USE MURRV_INT

 USE WRRRN_INT

 USE SCOPY_INT

 INTEGER LDA, N

 PARAMETER (N=3, LDA=N)

!

 INTEGER IDO, ITMAX, J

 REAL A(LDA,N), B(N), P(N), R(N), X(N), Z(N)

! (1, -3, 2)

! A = (-3, 10, -5)

! (2, -5, 6)

 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

! B = (27.0, -78.0, 64.0)

 DATA B/27.0, -78.0, 64.0/

! Set R to right side

 CALL SCOPY (N, B, 1, R, 1)

! Initial guess for X is B

 CALL SCOPY (N, B, 1, X, 1)

!

 ITMAX = 100

 IDO = 0

 10 CALL PCGRC (IDO, X, P, R, Z, ITMAX=ITMAX)

 IF (IDO .EQ. 1) THEN

! Set z = Ap

 CALL MURRV (A, P, Z)

 GO TO 10

 ELSE IF (IDO .EQ. 2) THEN

! Use diagonal of A as the

! preconditioning matrix M

! and set z = inv(M)*r

 DO 20 J=1, N

 Z(J) = R(J)/A(J,J)

 20 CONTINUE

 GO TO 10

 END IF

! Print the solution

 CALL WRRRN (‘Solution‘, X)

!

 END

Output

Solution

1 1.001

2 -4.000

3 7.000

436 Chapter 1: Linear Systems IMSL MATH LIBRARY

Example 2

In this example, a more complicated preconditioner is used to find the solution of a linear system

which occurs in a finite-difference solution of Laplace‘s equation on a 4 × 4 grid. The matrix is

4 1 0 1

1 4 1 0 1

0 1 4 1 0 1

1 0 1 4 1 0 1

1 0 1 4 1 0 1

1 0 1 4 1 0 1

1 0 1 4 1 0

1 0 1 4 1

1 0 1 4

A

The preconditioning matrix M is the symmetric tridiagonal part of A,

4 1

1 4 1

1 4 1

1 4 1

1 4 1

1 4 1

1 4 1

1 4 1

1 4

M

Note that M, called PRECND in the program, is factored once.

 USE IMSL_LIBRARIES

 INTEGER LDA, LDPRE, N, NCODA, NCOPRE

 PARAMETER (N=9, NCODA=3, NCOPRE=1, LDA=2*NCODA+1,&

 LDPRE=NCOPRE+1)

!

 INTEGER IDO, ITMAX

 REAL A(LDA,N), P(N), PRECND(LDPRE,N), PREFAC(LDPRE,N),&

 R(N), RCOND, RELERR, X(N), Z(N)

! Set A in band form

 DATA A/3*0.0, 4.0, -1.0, 0.0, -1.0, 2*0.0, -1.0, 4.0, -1.0, 0.0,&

 -1.0, 2*0.0, -1.0, 4.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0,&

 4.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0, 4.0, -1.0, 0.0,&

 -1.0, -1.0, 0.0, -1.0, 4.0, -1.0, 0.0, -1.0, -1.0, 0.0,&

 -1.0, 4.0, -1.0, 2*0.0, -1.0, 0.0, -1.0, 4.0, -1.0, 2*0.0,&

IMSL MATH LIBRARY Chapter 1: Linear Systems 437

 -1.0, 0.0, -1.0, 4.0, 3*0.0/

! Set PRECND in band symmetric form

 DATA PRECND/0.0, 4.0, -1.0, 4.0, -1.0, 4.0, -1.0, 4.0, -1.0, 4.0,&

 -1.0, 4.0, -1.0, 4.0, -1.0, 4.0, -1.0, 4.0/

! Right side is (1, ..., 1)

 R = 1.0E0

! Initial guess for X is 0

 X = 0.0E0

! Factor the preconditioning matrix

 CALL LFCQS (PRECND, NCOPRE, PREFAC, RCOND)

!

 ITMAX = 100

 RELERR = 1.0E-4

 IDO = 0

 10 CALL PCGRC (IDO, X, P, R, Z, RELERR=RELERR, ITMAX=ITMAX)

 IF (IDO .EQ. 1) THEN

! Set z = Ap

 CALL MURBV (A, NCODA, NCODA, P, Z)

 GO TO 10

 ELSE IF (IDO .EQ. 2) THEN

! Solve PRECND*z = r for r

 CALL LSLQS (PREFAC, NCOPRE, R, Z)

 GO TO 10

 END IF

! Print the solution

 CALL WRRRN (‘Solution‘, X)

!

 END

Output

Solution

1 0.955

2 1.241

3 1.349

4 1.578

5 1.660

6 1.578

7 1.349

8 1.241

9 0.955

JCGRC
Solves a real symmetric definite linear system using the Jacobi-preconditioned conjugate gradient

method with reverse communication.

Required Arguments

IDO — Flag indicating task to be done. (Input/Output)

On the initial call IDO must be 0. If the routine returns with IDO = 1, then set

Z = A * P, where A is the matrix, and call JCGRC again. If the routine returns with

IDO = 2, then the iteration has converged and X contains the solution.

438 Chapter 1: Linear Systems IMSL MATH LIBRARY

DIAGNL — Vector of length N containing the diagonal of the matrix. (Input)

Its elements must be all strictly positive or all strictly negative.

X — Array of length N containing the solution. (Input/Output)

On input, X contains the initial guess of the solution. On output, X contains the solution

to the system.

P — Array of length N. (Output)

Its use is described under IDO.

R — Array of length N. (Input/Output)

On initial input, it contains the right-hand side of the linear system. On output, it

contains the residual.

Z — Array of length N. (Input)

When IDO = 1, it contains AP, where A is the linear system. When IDO = 0, it is

ignored. Its use is described under IDO.

Optional Arguments

N — Order of the linear system. (Input)

Default: N = size (X,1).

RELERR — Relative error desired. (Input)

Default: RELERR = 1.e-5 for single precision and 1.d-10 for double precision.

ITMAX — Maximum number of iterations allowed. (Input)

Default: ITMAX = 100.

FORTRAN 90 Interface

Generic: CALL JCGRC (IDO, DIAGNL, X, P, R, Z [,…])

Specific: The specific interface names are S_JCGRC and D_JPCGRC.

FORTRAN 77 Interface

Single: CALL JCGRC (IDO, N, DIAGNL, X, P, R, Z, RELERR, ITMAX)

Double: The double precision name is DJCGRC.

Description

Routine JCGRC solves the symmetric definite linear system Ax = b using the Jacobi conjugate

gradient method. This method is described in detail by Golub and Van Loan (1983, Chapter 10),

and in Hageman and Young (1981, Chapter 7).

IMSL MATH LIBRARY Chapter 1: Linear Systems 439

This routine is a special case of the routine PCGRC, with the diagonal of the matrix A used as the

preconditioning matrix. For details of the algorithm see PCGRC.

The number of iterations needed depends on the matrix and the error tolerance RELERR. As a

rough guide, ITMAX = N is often sufficient when N » 1. See the references for further information.

Comments

1. Workspace may be explicitly provided, if desired, by use of J2GRC/DJ2GRC. The

reference is:

CALL J2GRC (IDO, N, DIAGNL, X, P, R, Z, RELERR, ITMAX, TRI, WK, IWK)

The additional arguments are as follows:

TRI — Workspace of length 2 * ITMAX containing a tridiagonal matrix (in

band symmetric form) whose largest eigenvalue is approximately the

same as the largest eigenvalue of the iteration matrix. The workspace

arrays TRI, WK and IWK should not be changed between the initial call

with IDO = 0 and JCGRC/DJCGRC returning with IDO = 2.

WK — Workspace of length 5 * ITMAX.

IWK — Workspace of length ITMAX.

2. Informational errors

Type Code

4 1 The diagonal contains a zero.

4 2 The diagonal elements have different signs.

4 3 No convergence after ITMAX iterations.

4 4 The linear system is not definite.

4 5 The linear system is singular.

Example

In this example, the solution to a linear system is found. The coefficient matrix A is stored as a full

matrix.

 USE IMSL_LIBRARIES

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

!

 INTEGER IDO, ITMAX

 REAL A(LDA,N), B(N), DIAGNL(N), P(N), R(N), X(N), &

 Z(N)

! (1, -3, 2)

! A = (-3, 10, -5)

! (2, -5, 6)

 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

440 Chapter 1: Linear Systems IMSL MATH LIBRARY

! B = (27.0, -78.0, 64.0)

 DATA B/27.0, -78.0, 64.0/

! Set R to right side

 CALL SCOPY (N, B, 1, R, 1)

! Initial guess for X is B

 CALL SCOPY (N, B, 1, X, 1)

! Copy diagonal of A to DIAGNL

 CALL SCOPY (N, A(:, 1), LDA+1, DIAGNL, 1)

! Set parameters

 ITMAX = 100

 IDO = 0

 10 CALL JCGRC (IDO, DIAGNL, X, P, R, Z, ITMAX=ITMAX)

 IF (IDO .EQ. 1) THEN

! Set z = Ap

 CALL MURRV (A, P, Z)

 GO TO 10

 END IF

! Print the solution

 CALL WRRRN (‘Solution‘, X)

!

 END

Output

Solution

1 1.001

2 -4.000

3 7.000

GMRES
Uses the Generalized Minimal Residual Method with reverse communication to generate an

approximate solution of Ax = b.

Required Arguments

IDO— Flag indicating task to be done. (Input/Output)

On the initial call IDO must be 0. If the routine returns with IDO = 1, then set Z = AP,

where A is the matrix, and call GMRES again. If the routine returns with IDO = 2, then

set Z to the solution of the system MZ = P, where M is the preconditioning matrix, and

call GMRES again. If the routine returns with IDO = 3, set Z = AM
-1

P, and call GMRES

again. If the routine returns with IDO = 4, the iteration has converged, and X contains

the approximate solution to the linear system.

X — Array of length N containing an approximate solution. (Input/Output)

On input, X contains an initial guess of the solution. On output, X contains the

approximate solution.

P — Array of length N. (Output)

Its use is described under IDO.

IMSL MATH LIBRARY Chapter 1: Linear Systems 441

R — Array of length N. (Input/Output)

On initial input, it contains the right-hand side of the linear system. On output, it

contains the residual, b − Ax.

Z — Array of length N. (Input)

When IDO = 1, it contains AP, where A is the coefficient matrix. When IDO = 2, it

contains M
-1

P. When IDO = 3, it contains AM
-1

P. When IDO = 0, it is ignored.

TOL — Stopping tolerance. (Input/Output)

The algorithm attempts to generate a solution x such that |b − Ax| ≤ TOL*|b|. On

output, TOL contains the final residual norm.

Optional Arguments

N — Order of the linear system. (Input)

Default: N = size (X,1).

FORTRAN 90 Interface

Generic: CALL GMRES (IDO, X, P, R, Z, TOL [,…])

Specific: The specific interface names are S_GMRES and D_GMRES.

FORTRAN 77 Interface

Single: CALL GMRES (IDO, N, X, P, R, Z, TOL)

Double: The double precision name is DGMRES.

Description

The routine GMRES implements restarted GMRES with reverse communication to generate an

approximate solution to Ax = b. It is based on GMRESD by Homer Walker.

There are four distinct GMRES implementations, selectable through the parameter vector INFO. The

first Gram-Schmidt implementation, INFO(1) = 1, is essentially the original algorithm by Saad

and Schultz (1986). The second Gram-Schmidt implementation, developed by Homer Walker and

Lou Zhou, is simpler than the first implementation. The least squares problem is constructed in

upper-triangular form and the residual vector updating at the end of a GMRES cycle is cheaper. The

first Householder implementation is algorithm 2.2 of Walker (1988), but with more efficient

correction accumulation at the end of each GMRES cycle. The second Householder implementation

is algorithm 3.1 of Walker (1988). The products of Householder transformations are expanded as

sums, allowing most work to be formulated as large scale matrix-vector operations. Although

BLAS are used wherever possible, extensive use of Level 2 BLAS in the second Householder

implementation may yield a performance advantage on certain computing environments.

The Gram-Schmidt implementations are less expensive than the Householder, the latter requiring

about twice as much arithmetic beyond the coefficient matrix/vector products. However, the

Householder implementations may be more reliable near the limits of residual reduction. See

442 Chapter 1: Linear Systems IMSL MATH LIBRARY

Walker (1988) for details. Issues such as the cost of coefficient matrix/vector products, availability

of effective preconditioners, and features of particular computing environments may serve to

mitigate the extra expense of the Householder implementations.

Comments

1. Workspace may be explicitly provided, if desired, by use of G2RES/DG2RES. The

reference is:

CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, USRNPR,

USRNRM, WORK)

The additional arguments are as follows:

INFO — Integer vector of length 10 used to change parameters of GMRES.

(Input/Output).

 For any components INFO(1) ... INFO(7) with value zero on input, the default

value is used.

INFO(1) = IMP, the flag indicating the desired implementation.

IMP Action

1 first Gram-Schmidt implementation

2 second Gram-Schmidt implementation

3 first Householder implementation

4 second Householder implementation

 Default: IMP = 1

INFO(2) = KDMAX, the maximum Krylor subspace dimension, i.e., the

maximum allowable number of GMRES iterations before restarting. It

must satisfy 1 ≤ KDMAX ≤ N.

Default: KDMAX = min(N, 20)

INFO(3) = ITMAX, the maximum number of GMRES iterations allowed.

Default: ITMAX = 1000

INFO(4) = IRP, the flag indicating whether right preconditioning is used.

If IRP = 0, no right preconditioning is performed. If IRP = 1, right

preconditioning is performed. If IRP = 0, then IDO = 2 or 3 will not

occur.

Default: IRP = 0

INFO(5) = IRESUP, the flag that indicates the desired residual vector

updating prior to restarting or on termination.

IMSL MATH LIBRARY Chapter 1: Linear Systems 443

IRESUP Action

1 update by linear combination, restarting only

2 update by linear combination, restarting and termination

3 update by direct evaluation, restarting only

4 update by direct evaluation, restarting and termination

 Updating by direct evaluation requires an otherwise unnecessary

matrix-vector product. The alternative is to update by forming a linear

combination of various available vectors. This may or may not be

cheaper and may be less reliable if the residual vector has been greatly

reduced. If IRESUP = 2 or 4, then the residual vector is returned in

WORK(1), ..., WORK(N). This is useful in some applications but costs

another unnecessary residual update. It is recommended that

IRESUP = 1 or 2 be used, unless matrix-vector products are

inexpensive or great residual reduction is required. In this case use

IRESUP = 3 or 4. The meaning of ―inexpensive‖ varies with IMP as

follows:

IMP ≤

1 (KDMAX + 1) *N flops

2 N flops

3 (2*KDMAX + 1) *N flops

4 (2*KDMAX + 1) *N flops

 ―Great residual reduction‖ means that TOL is only a few orders of

magnitude larger than machine epsilon.

Default: IRESUP = 1

INFO(6) = flag for indicating the inner product and norm used in the Gram-

Schmidt implementations. If INFO(6) = 0, sdot and snrm2, from

BLAS, are used. If INFO(6) = 1, the user must provide the routines, as

specified under arguments USRNPR and USRNRM.

Default: INFO(6) = 0

INFO(7) = IPRINT, the print flag. If IPRINT = 0, no printing is performed. If

IPRINT = 1, print the iteration numbers and residuals.

Default: IPRINT = 0

INFO(8) = the total number of GMRES iterations on output.

INFO(9) = the total number of matrix-vector products in GMRES on output.

INFO(10) = the total number of right preconditioner solves in GMRES on

output if IRP = 1.

444 Chapter 1: Linear Systems IMSL MATH LIBRARY

USRNPR — User-supplied FUNCTION to use as the inner product in the Gram-Schmidt

implementation, if INFO(6) = 1. If INFO(6) = 0, the dummy function

G8RES/DG8RES may be used. The usage is

REAL FUNCTION USRNPR (N, SX, INCX, SY, INCY)

N — Length of vectors X and Y. (Input)

SX — Real vector of length MAX(N*IABS(INCX),1). (Input)

INCX — Displacement between elements of SX. (Input)

X(I) is defined to be SX(1+(I-1)*INCX) if INCX is greater than 0,

or

SX(1+(I-N)*INCX) if INCX is less than 0.

SY — Real vector of length MAX(N*IABS(INXY),1). (Input)

INCY — Displacement between elements of SY. (Input)

Y(I) is defined to be SY(1+(I-1)*INCY) if INCY is greater than 0, or

SY(1+(I-N)*INCY) if INCY is less than zero.

USRNPR must be declared EXTERNAL in the calling program.

USRNRM — User-supplied FUNCTION to use as the norm ||X|| in the Gram-Schmidt

implementation, if INFO(6) = 1. If INFO(6) = 0, the dummy function

G9RES/DG9RES may be used.The usage is

REAL FUNCTION USRNRM (N, SX, INCX)

N — Length of vectors X and Y. (Input)

SX — Real vector of length MAX(N*IABS(INCX),1). (Input)

INCX — Displacement between elements of SX. (Input)

X(I) is defined to be SX(1+(I-1)*INCX) if INCX is greater than 0, or

SX(1+(I-N)*INCX) if INCX is less than 0.

USRNRM must be declared EXTERNAL in the calling program.

WORK — Work array whose length is dependent on the chosen implementation.

IMP length of WORK

1 N*(KDMAX + 2) + KDMAX**2 + 3 *KDMAX + 2

2 N*(KDMAX + 2) + KDMAX**2 + 2 *KDMAX + 1

3 N*(KDMAX + 2) + 3 *KDMAX + 2

4 N*(KDMAX + 2) + KDMAX**2 + 2 *KDMAX + 2

Example 1

IMSL MATH LIBRARY Chapter 1: Linear Systems 445

This is a simple example of GMRES usage. A solution to a small linear system is found. The

coefficient matrix A is stored as a full matrix, and no preconditioning is used. Typically,

preconditioning is required to achieve convergence in a reasonable number of iterations.

 USE IMSL_LIBRARIES

! Declare variables

 INTEGER LDA, N

 PARAMETER (N=3, LDA=N)

! Specifications for local variables

 INTEGER IDO, NOUT

 REAL P(N), TOL, X(N), Z(N)

 REAL A(LDA,N), R(N)

 SAVE A, R

! Specifications for intrinsics

 INTRINSIC SQRT

 REAL SQRT

! (33.0 16.0 72.0)

! A = (-24.0 -10.0 -57.0)

! (18.0 -11.0 7.0)

!

! B = (129.0 -96.0 8.5)

!

 DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/

 DATA R/129.0, -96.0, 8.5/

!

 CALL UMACH (2, NOUT)

!

! Initial guess = (0 ... 0)

!

 X = 0.0E0

! Set stopping tolerance to

! square root of machine epsilon

 TOL = AMACH(4)

 TOL = SQRT(TOL)

 IDO = 0

 10 CONTINUE

 CALL GMRES (IDO, X, P, R, Z, TOL)

 IF (IDO .EQ. 1) THEN

! Set z = A*p

 CALL MURRV (A, P, Z)

 GO TO 10

 END IF

!

 CALL WRRRN ('Solution', X, 1, N, 1)

 WRITE (NOUT,'(A11, E15.5)') 'Residual = ', TOL

 END

446 Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

 Solution

 1 2 3

1.000 1.500 1.000

Residual = 0.29746E-05

Additional Examples

Example 2

This example solves a linear system with a coefficient matrix stored in coordinate form, the same

problem as in the document example for LSLXG. Jacobi preconditioning is used, i.e. the

preconditioning matrix M is the diagonal matrix with Mii = Aii, for i = 1, …, n.

 USE IMSL_LIBRARIES

 INTEGER N, NZ

 PARAMETER (N=6, NZ=15)

! Specifications for local variables

 INTEGER IDO, INFO(10), NOUT

 REAL P(N), TOL, WORK(1000), X(N), Z(N)

 REAL DIAGIN(N), R(N)

! Specifications for intrinsics

 INTRINSIC SQRT

 REAL SQRT

! Specifications for subroutines

 EXTERNAL AMULTP

! Specifications for functions

 EXTERNAL G8RES, G9RES

!

 DATA DIAGIN/0.1, 0.1, 0.0666667, 0.1, 1.0, 0.16666667/

 DATA R/10.0, 7.0, 45.0, 33.0, -34.0, 31.0/

!

 CALL UMACH (2, NOUT)

! Initial guess = (1 ... 1)

 X = 1.0E0

! Set up the options vector INFO

! to use preconditioning

 INFO = 0

 INFO(4) = 1

! Set stopping tolerance to

! square root of machine epsilon

 TOL = AMACH(4)

 TOL = SQRT(TOL)

 IDO = 0

 10 CONTINUE

 CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK)

 IF (IDO .EQ. 1) THEN

! Set z = A*p

 CALL AMULTP (P, Z)

 GO TO 10

 ELSE IF (IDO .EQ. 2) THEN

IMSL MATH LIBRARY Chapter 1: Linear Systems 447

!

! Set z = inv(M)*p

! The diagonal of inv(M) is stored

! in DIAGIN

!

 CALL SHPROD (N, DIAGIN, 1, P, 1, Z, 1)

 GO TO 10

 ELSE IF (IDO .EQ. 3) THEN

!

! Set z = A*inv(M)*p

!

 CALL SHPROD (N, DIAGIN, 1, P, 1, Z, 1)

 P = Z

 CALL AMULTP (P, Z)

 GO TO 10

 END IF

!

 CALL WRRRN ('Solution', X)

 WRITE (NOUT,'(A11, E15.5)') 'Residual = ', TOL

 END

!

 SUBROUTINE AMULTP (P, Z)

 USE IMSL_LIBRARIES

 INTEGER NZ

 PARAMETER (NZ=15)

! SPECIFICATIONS FOR ARGUMENTS

 REAL P(*), Z(*)

! SPECIFICATIONS FOR PARAMETERS

 INTEGER N

 PARAMETER (N=6)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I

 INTEGER IROW(NZ), JCOL(NZ)

 REAL A(NZ)

 SAVE A, IROW, JCOL

! SPECIFICATIONS FOR SUBROUTINES

! Define the matrix A

!

 DATA A/6.0, 10.0, 15.0, -3.0, 10.0, -1.0, -1.0, -3.0, -5.0, 1.0, &

 10.0, -1.0, -2.0, -1.0, -2.0/

 DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/

 DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/

!

 CALL SSET(N, 0.0, Z, 1)

! Accumulate the product A*p in z

 DO 10 I=1, NZ

 Z(IROW(I)) = Z(IROW(I)) + A(I)*P(JCOL(I))

 10 CONTINUE

 RETURN

 END

Output

 Solution

1 1.000

2 2.000

3 3.000

448 Chapter 1: Linear Systems IMSL MATH LIBRARY

4 4.000

5 5.000

6 6.000

Residual = 0.25882E-05

Example 3

The coefficient matrix in this example corresponds to the five-point discretization of the 2-d

Poisson equation with the Dirichlet boundary condition. Assuming the natural ordering of the

unknowns, and moving all boundary terms to the right hand side, we obtain the block tridiagonal

matrix

T I

I
A

I

I T

where

4 1

1

1

1 4

T

and I is the identity matrix. Discretizing on a k × k grid implies that T and I are both k × k, and

thus the coefficient matrix A is k
2
 × k

2
.

The problem is solved twice, with discretization on a 50 × 50 grid. During both solutions, use the

second Householder implementation to take advantage of the large scale matrix/vector operations

done in Level 2 BLAS. Also choose to update the residual vector by direct evaluation since the

small tolerance will require large residual reduction.

The first solution uses no preconditioning. For the second solution, we construct a block diagonal

preconditioning matrix

T

M

T

M is factored once, and these factors are used in the forward solves and back substitutions

necessary when GMRES returns with IDO = 2 or 3.

Timings are obtained for both solutions, and the ratio of the time for the solution with no

preconditioning to the time for the solution with preconditioning is printed. Though the exact

results are machine dependent, we see that the savings realized by faster convergence from using a

preconditioner exceed the cost of factoring M and performing repeated forward and back solves.

IMSL MATH LIBRARY Chapter 1: Linear Systems 449

 USE IMSL_LIBRARIES

 INTEGER K, N

 PARAMETER (K=50, N=K*K)

! Specifications for local variables

 INTEGER IDO, INFO(10), IR(20), IS(20), NOUT

 REAL A(2*N), B(2*N), C(2*N), G8RES, G9RES, P(2*N), R(N), &

 TNOPRE, TOL, TPRE, U(2*N), WORK(100000), X(N), &

 Y(2*N), Z(2*N)

! Specifications for subroutines

 EXTERNAL AMULTP, G8RES, G9RES

! Specifications for functions

 CALL UMACH (2, NOUT)

! Right hand side and initial guess

! to (1 ... 1)

 R = 1.0E0

 X = 1.0E0

! Use the 2nd Householder

! implementation and update the

! residual by direct evaluation

 INFO = 0

 INFO(1) = 4

 INFO(5) = 3

 TOL = AMACH(4)

 TOL = 100.0*TOL

 IDO = 0

! Time the solution with no

! preconditioning

 TNOPRE = CPSEC()

 10 CONTINUE

 CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK)

 IF (IDO .EQ. 1) THEN

!

! Set z = A*p

!

 CALL AMULTP (K, P, Z)

 GO TO 10

 END IF

 TNOPRE = CPSEC() - TNOPRE

!

 WRITE (NOUT,'(A32, I4)') 'Iterations, no preconditioner = ', &

 INFO(8)

!

! Solve again using the diagonal blocks

! of A as the preconditioning matrix M

 R = 1.0E0

 X = 1.0E0

! Define M

 CALL SSET (N-1, -1.0, B, 1)

 CALL SSET (N-1, -1.0, C, 1)

 CALL SSET (N, 4.0, A, 1)

 INFO(4) = 1

 TOL = AMACH(4)

 TOL = 100.0*TOL

 IDO = 0

 TPRE = CPSEC()

! Compute the LDU factorization of M

!

450 Chapter 1: Linear Systems IMSL MATH LIBRARY

 CALL LSLCR (C, A, B, Y, U, IR, IS, IJOB=6)

 20 CONTINUE

 CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK)

 IF (IDO .EQ. 1) THEN

!

! Set z = A*p

!

 CALL AMULTP (K, P, Z)

 GO TO 20

 ELSE IF (IDO .EQ. 2) THEN

!

! Set z = inv(M)*p

!

 CALL SCOPY (N, P, 1, Z, 1)

 CALL LSLCR (C, A, B, Z, U, IR, IS, IJOB=5)

 GO TO 20

 ELSE IF (IDO .EQ. 3) THEN

!

! Set z = A*inv(M)*p

!

 CALL LSLCR (C, A, B, P, U, IR, IS, IJOB=5)

 CALL AMULTP (K, P, Z)

 GO TO 20

 END IF

 TPRE = CPSEC() - TPRE

 WRITE (NOUT,'(A35, I4)') 'Iterations, with preconditioning = ',&

 INFO(8)

 WRITE (NOUT,'(A45, F10.5)') '(Precondition time)/(No '// &

 'precondition time) = ', TPRE/TNOPRE

!

 END

!

 SUBROUTINE AMULTP (K, P, Z)

 USE IMSL_LIBRARIES

! Specifications for arguments

 INTEGER K

 REAL P(*), Z(*)

! Specifications for local variables

 INTEGER I, N

!

 N = K*K

! Multiply by diagonal blocks

!

 CALL SVCAL (N, 4.0, P, 1, Z, 1)

 CALL SAXPY (N-1, -1.0, P(2:(N)), 1, Z, 1)

 CALL SAXPY (N-1, -1.0, P, 1, Z(2:(N)), 1)

!

! Correct for terms not properly in

! block diagonal

 DO 10 I=K, N - K, K

 Z(I) = Z(I) + P(I+1)

 Z(I+1) = Z(I+1) + P(I)

 10 CONTINUE

! Do the super and subdiagonal blocks,

! the -I's

!

IMSL MATH LIBRARY Chapter 1: Linear Systems 451

 CALL SAXPY (N-K, -1.0, P((K+1):(N)), 1, Z, 1)

 CALL SAXPY (N-K, -1.0, P, 1, Z((K+1):(N)), 1)

!

 RETURN

 END

Output

Iterations, no preconditioner = 329

Iterations, with preconditioning = 192

(Precondition time)/(No precondition time) = 0.66278

ARPACK_SVD
Computes some singular values and left and right singular vectors of a real rectangular

matrix
T

M NA USV . There is no restriction on the relative sizes, M and N . The user

supplies matrix-vector products y Ax and
Ty A x for the iterative method. This routine calls

ARPACK_SYMMETRIC. Descriptions for both ARPACK_SVD and ARPACK_SYMMETRIC are found in

Chapter 2, ―Eigensystem Analysis‖.

LSQRR

Solves a linear least-squares problem without iterative refinement.

Required Arguments

A — NRA by NCA matrix containing the coefficient matrix of the least-squares system to be

solved. (Input)

B — Vector of length NRA containing the right-hand side of the least-squares system. (Input)

X — Vector of length NCA containing the solution vector with components corresponding to

the columns not used set to zero. (Output)

RES — Vector of length NRA containing the residual vector B − A * X. (Output)

KBASIS — Scalar containing the number of columns used in the solution.

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

452 Chapter 1: Linear Systems IMSL MATH LIBRARY

NCA — Number of columns of A. (Input)

Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

TOL — Scalar containing the nonnegative tolerance used to determine the subset of columns

of A to be included in the solution. (Input)

If TOL is zero, a full complement of min(NRA, NCA) columns is used. See Comments.

Default: TOL = 0.0

FORTRAN 90 Interface

Generic: CALL LSQRR (A, B, X, RES, KBASIS [,…])

Specific: The specific interface names are S_LSQRR and D_LSQRR.

FORTRAN 77 Interface

Single: CALL LSQRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS)

Double: The double precision name is DLSQRR.

ScaLAPACK Interface

Generic: CALL LSQRR (A0, B0, X0, RES0, KBASIS [,…])

Specific: The specific interface names are S_LSQRR and D_LSQRR.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LSQRR solves the linear least-squares problem. The underlying code is based on either

LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries are used

during linking. For a detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and

EISPACK‖ in the Introduction section of this manual. The routine LQRRR is first used to compute

the QR decomposition of A. Pivoting, with all rows free, is used. Column k is in the basis if

11kkR R

with τ = TOL. The truncated least-squares problem is then solved using IMSL routine LQRSL.

Finally, the components in the solution, with the same index as columns that are not in the basis,

are set to zero; and then, the permutation determined by the pivoting in IMSL routine LQRRR is

applied.

IMSL MATH LIBRARY Chapter 1: Linear Systems 453

Comments

1. Workspace may be explicitly provided, if desired, by use of L2QRR/DL2QRR. The

reference is:

CALL L2QRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS, QR,

 QRAUX, IPVT, WORK)

The additional arguments are as follows:

QR — Work vector of length NRA * NCA representing an NRA by NCA matrix

that contains information from the QR factorization of A. The upper

trapezoidal part of QR contains the upper trapezoidal part of R with its

diagonal elements ordered in decreasing magnitude. The strict lower

trapezoidal part of QR contains information to recover the orthogonal

matrix Q of the factorization. If A is not needed, QR can share the same

storage locations as A.

QRAUX — Work vector of length NCA containing information about the

orthogonal factor of the QR factorization of A.

IPVT — Integer work vector of length NCA containing the pivoting

information for the QR factorization of A.

WORK — Work vector of length 2 * NCA − 1.

2. Routine LSQRR calculates the QR decomposition with pivoting of a matrix A and tests

the diagonal elements against a user-supplied tolerance TOL. The first integer

KBASIS = k is determined for which

1, 1 11TOL *k kr r

In effect, this condition implies that a set of columns with a condition number

approximately bounded by 1.0/TOL is used. Then, LQRSL performs a truncated fit of

the first KBASIS columns of the permuted A to an input vector B. The coefficient of this

fit is unscrambled to correspond to the original columns of A, and the coefficients

corresponding to unused columns are set to zero. It may be helpful to scale the rows

and columns of A so that the error estimates in the elements of the scaled matrix are

roughly equal to TOL.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2QRR the leading dimension of QR is increased by IVAL(3)

when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSQRR.

Additional memory allocation for QR and option value restoration are done

automatically in LSQRR. Users directly calling L2QRR can allocate additional

space for QR and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

454 Chapter 1: Linear Systems IMSL MATH LIBRARY

applications that use LSQRR or L2QRR. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSQRR temporarily replaces IVAL(2) by IVAL(1). The

routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG

skips this computation. LSQRR restores the option. Default values for the option

are IVAL(*) = 1, 2.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the coefficient matrix of the least squares system to be solved. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B.

B contains the right-hand side of the least squares system. (Input)

X0 — Local vector of length MXLDX containing the local portions of the distributed vector X.

X contains the solution vector with components corresponding to the columns not used

set to zero. (Output)

RES0 — Local vector of length MXLDA containing the local portions of the distributed

vector RES. RES contains the residual vector B – A * X. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA, MXLDX, and MXCOL can be obtained through a

call to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has

been made. See the ScaLAPACK Example below.

Example

Consider the problem of finding the coefficients ci in

f(x) = c0 + c1x + c2x2

given data at x = 1, 2, 3 and 4, using the method of least squares. The row of the matrix A contains

the value of 1, x and x2 at the data points. The vector b contains the data, chosen such that

c0 ≈ 1, c1 ≈ 2 and c2 ≈ 0. The routine LSQRR solves this least-squares problem.

 USE LSQRR_INT

 USE UMACH_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (NRA=4, NCA=3, LDA=NRA)

 REAL A(LDA,NCA), B(NRA), X(NCA), RES(NRA), TOL

!

! Set values for A

!

! A = (1 2 4)

IMSL MATH LIBRARY Chapter 1: Linear Systems 455

! (1 4 16)

! (1 6 36)

! (1 8 64)

!

 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/

!

! Set values for B

!

 DATA B/ 4.999, 9.001, 12.999, 17.001 /

!

! Solve the least squares problem

 TOL = 1.0E-4

 CALL LSQRR (A, B, X, RES, KBASIS, TOL=TOL)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ‘KBASIS = ‘, KBASIS

 CALL WRRRN (‘X‘, X, 1, NCA, 1)

 CALL WRRRN (‘RES‘, RES, 1, NRA, 1)

!

 END

Output

KBASIS = 3

 X

 1 2 3

0.999 2.000 0.000

 RES

 1 2 3 4

-0.000400 0.001200 -0.001200 0.000400

ScaLAPACK Example

The previous example is repeated here as a distributed computing example. Consider the problem

of finding the coefficients ci in

f(x) = c0 + c1x + c2x2

given data at x = 1, 2, 3 and 4, using the method of least squares. The row of the matrix A contains

the value of 1, x and x2 at the data points. The vector b contains the data, chosen such that

c0 ≈ 1, c1 ≈ 2 and c2 ≈ 0. The routine LSQRR solves this least-squares problem. SCALAPACK_MAP

and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map and unmap arrays to

and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools

routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LSQRR_INT

 USE UMACH_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

456 Chapter 1: Linear Systems IMSL MATH LIBRARY

 INTEGER LDA, NRA, NCA, DESCA(9), DESCX(9), DESCR(9)

 INTEGER INFO, KBASIS, MXCOL, MXLDA, MXCOLX, MXLDX, NOUT

 REAL TOL

 REAL, ALLOCATABLE :: A(:,:), B(:), X(:), RES(:)

 REAL, ALLOCATABLE :: A0(:,:), B0(:), X0(:), RES0(:)

 PARAMETER (NRA=4, NCA=3, LDA=NRA)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,NCA), B(NRA), X(NCA), RES(NRA))

! Set values for A and B

 A(1,:) = (/ 1.0, 2.0, 4.0/)

 A(2,:) = (/ 1.0, 4.0, 16.0/)

 A(3,:) = (/ 1.0, 6.0, 36.0/)

 A(4,:) = (/ 1.0, 8.0, 64.0/)

!

 B = (/4.999, 9.001, 12.999, 17.001/)

 ENDIF

! Set up a 2D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(NRA, NCA, .TRUE., .FALSE.)

! Get the array descriptor entities MXLDA,

! MXCOL, MXLDX, and MXCOLX

 CALL SCALAPACK_GETDIM(NRA, NCA, MP_MB, MP_NB, MXLDA, MXCOL)

 CALL SCALAPACK_GETDIM(NCA, 1, MP_NB, 1, MXLDX, MXCOLX)

! Set up the array descriptors

 CALL DESCINIT(DESCA, NRA, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, &

 INFO)

 CALL DESCINIT(DESCX, NCA, 1, MP_NB, 1, 0, 0, MP_ICTXT, MXLDX, INFO)

 CALL DESCINIT(DESCR, NRA, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDX), RES0(MXLDA))

! Map input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 CALL SCALAPACK_MAP(B, DESCR, B0)

! Solve the least squares problem

 TOL = 1.0E-4

 CALL LSQRR (A0, B0, X0, RES0, KBASIS, TOL=TOL)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

 CALL SCALAPACK_UNMAP(RES0, DESCR, RES)

! Print results.

! Only Rank=0 has the solution.

 IF(MP_RANK .EQ. 0)THEN

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ‗KBASIS = ‗, KBASIS

 CALL WRRRN (‘X‘, X, 1, NCA, 1)

 CALL WRRRN (‘RES‘, RES, 1, NRA, 1)

 ENDIF

 IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, RES, X)

 DEALLOCATE(A0, B0, RES0, X0)

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

IMSL MATH LIBRARY Chapter 1: Linear Systems 457

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

KBASIS = 3

 X

 1 2 3

0.999 2.000 0.000

 RES

 1 2 3 4

-0.000400 0.001200 -0.001200 0.000400

LQRRV

Computes the least-squares solution using Householder transformations applied in blocked form.

Required Arguments

A — Real LDA by (NCA + NUMEXC) array containing the matrix and right-hand sides. (Input)

The right-hand sides are input in A(1 : NRA, NCA + j), j = 1, …, NUMEXC. The array A

is preserved upon output. The Householder factorization of the matrix is computed and

used to solve the systems.

X — Real LDX by NUMEXC array containing the solution. (Output)

Optional Arguments

NRA — Number of rows in the matrix. (Input)

Default: NRA = size (A,1).

NCA — Number of columns in the matrix. (Input)

Default: NCA = size (A,2) - NUMEXC.

NUMEXC — Number of right-hand sides. (Input)

Default: NUMEXC = size (X,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

458 Chapter 1: Linear Systems IMSL MATH LIBRARY

LDX — Leading dimension of the solution array X exactly as specified in the dimension

statement of the calling program. (Input)

Default: LDX = size (X,1).

FORTRAN 90 Interface

Generic: CALL LQRRV (A, X [,…])

Specific: The specific interface names are S_LQRRV and D_LQRRV.

FORTRAN 77 Interface

Single: CALL LQRRV (NRA, NCA, NUMEXC, A, LDA, X, LDX)

Double: The double precision name is DLQRRV.

ScaLAPACK Interface

Generic: CALL LQRRV (A0, X0 [,…])

Specific: The specific interface names are S_LQRRV and D_LQRRV.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

The routine LQRRV computes the QR decomposition of a matrix A using blocked Householder

transformations. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK

code depending upon which supporting libraries are used during linking. For a detailed

explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction

section of this manual. The standard algorithm is based on the storage-efficient WY representation

for products of Householder transformations. See Schreiber and Van Loan (1989).

The routine LQRRV determines an orthogonal matrix Q and an upper triangular matrix R such that

A = QR. The QR factorization of a matrix A having NRA rows and NCA columns is as follows:

Initialize A1 ← A

For k = 1, min(NRA - 1, NCA)

 Determine a Householder transformation for column k of Ak having the form

T
k k k kH I

 where uk has zeros in the first k − 1 positions and τk is a scalar.

 Update

 1 1 1 k

TT
A H A A Ak k k k k k k

IMSL MATH LIBRARY Chapter 1: Linear Systems 459

End k

Thus,

1 1
T

p p pA H H H A Q A R

where p = min(NRA − 1, NCA). The matrix Q is not produced directly by LQRRV. The information

needed to construct the Householder transformations is saved instead. If the matrix Q is needed

explicitly, Q
T
 can be determined while the matrix is factored. No pivoting among the columns is

done. The primary purpose of LQRRV is to give the user a high-performance QR least-squares

solver. It is intended for least-squares problems that are well-posed. For background, see Golub

and Van Loan (1989, page 225). During the QR factorization, the most time−consuming step is

computing the matrix−vector update Ak ← HkAk −1. The routine LQRRV constructs ―block‖ of NB

Householder transformations in which the update is ―rich‖ in matrix multiplication. The product of

NB Householder transformations are written in the form

1 1
T

k k k nbH H H I YTY

where YNRA×NB is a lower trapezoidal matrix and TNB × NB is upper triangular. The optimal choice

of the block size parameter NB varies among computer systems. Users may want to change it from

its default value of 1.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2RRV/DL2RRV. The

reference is:

CALL L2RRV (NRA, NCA, NUMEXC, A, LDA, X, LDX, FACT, LDFACT, WK)

The additional arguments are as follows:

FACT — LDFACT × (NCA + NUMEXC) work array containing the Householder

factorization of the matrix on output. If the input data is not needed, A

and FACT can share the same storage locations.

LDFACT — Leading dimension of the array FACT exactly as specified in the

dimension statement of the calling program. (Input)

If A and FACT are sharing the same storage, then LDA = LDFACT is

required.

WK — Work vector of length (NCA + NUMEXC + 1) * (NB + 1) . The default

value is

NB = 1. This value can be reset. See item 3 below.

2. Informational errors

Type Code

4 1 The input matrix is singular.

460 Chapter 1: Linear Systems IMSL MATH LIBRARY

3. Integer Options with Chapter 11 Options Manager

5 This option allows the user to reset the blocking factor used in computing the

factorization. On some computers, changing IVAL(*) to a value larger than 1

will result in greater efficiency. The value IVAL(*) is the maximum value to use.

(The software is specialized so that IVAL(*) is reset to an ―optimal‖ used value

within routine L2RRV.) The user can control the blocking by resetting IVAL(*)

to a smaller value than the default. Default values are IVAL(*) = 1, IMACH(5).

6 This option is the vector dimension where a shift is made from in-line level-2

loops to the use of level-2 BLAS in forming the partial product of Householder

transformations. Default value is IVAL(*) = IMACH(5).

10 This option allows the user to control the factorization step. If the value is 1 the

Householder factorization will be computed. If the value is 2, the factorization

will not be computed. In this latter case the decomposition has already been

computed. Default value is IVAL(*) = 1.

11 This option allows the user to control the solving steps. The rules for IVAL(*)

are:

1. Compute b ← Q
T
b, and x ← R+b.

2. Compute b ← Q
T
b.

3. Compute b ← Qb.

4. Compute x ← R+b.

Default value is IVAL (*) = 1. Note that IVAL (*) = 2 or 3 may only be set when

calling L2RRV/DL2RRV.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix

A. A contains the matrix and right-hand sides. (Input)

The right-hand sides are input in A(1 : NRA, NCA + j), j = 1,…, NUMEXC. The array A

is preserved upon output. The Householder factorization of the matrix is computed and

used to solve the systems.. (Input)

X0 — MXLDX by MXCOLX local matrix containing the local portions of the distributed

matrix X. X contains the solution. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA, MXLDX, MXCOL, and MXCOLX can be

obtained through a call to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP

(see Utilities) has been made. See the ScaLAPACK Example below.

IMSL MATH LIBRARY Chapter 1: Linear Systems 461

Example

Given a real m × k matrix B it is often necessary to compute the k least-squares solutions of the

linear system AX = B, where A is an m × n real matrix. When m > n the system is considered

overdetermined. A solution with a zero residual normally does not exist. Instead the minimization

problem

2
min

n
j

j j
x

Ax b

R

is solved k times where xj, bj are the j-th columns of the matrices X, B respectively. When A is of

full column rank there exits a unique solution XLS that solves the above minimization problem. By

using the routine LQRRV, XLS is computed.

 USE LQRRV_INT

 USE WRRRN_INT

 USE SGEMM_INT

! Declare variables

 INTEGER LDA, LDX, NCA, NRA, NUMEXC

 PARAMETER (NCA=3, NRA=5, NUMEXC=2, LDA=NRA, LDX=NCA)

! SPECIFICATIONS FOR LOCAL VARIABLES

 REAL X(LDX,NUMEXC)

! SPECIFICATIONS FOR SAVE VARIABLES

 REAL A(LDA,NCA+NUMEXC)

 SAVE A

! SPECIFICATIONS FOR SUBROUTINES

!

! Set values for A and the

! righthand sides.

!

! A = (1 2 4 | 7 10)

! (1 4 16 | 21 10)

! (1 6 36 | 43 9)

! (1 8 64 | 73 10)

! (1 10 100 | 111 10)

!

 DATA A/5*1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 4.0, 16.0, 36.0, 64.0, &

 100.0, 7.0, 21.0, 43.0, 73.0, 111.0, 2*10., 9., 2*10./

!

!

! QR factorization and solution

 CALL LQRRV (A, X)

 CALL WRRRN (‘SOLUTIONS 1-2‘, X)

! Compute residuals and print

 CALL SGEMM (‘N‘, ‘N‘, NRA, NUMEXC, NCA, 1.E0, A, LDA, X, LDX, &

 -1.E0, A(1:,(NCA+1):),LDA)

 CALL WRRRN (‘RESIDUALS 1-2‘, A(1:,(NCA+1):))

!

 END

Output

 SOLUTIONS 1-2

 1 2

1 1.00 10.80

462 Chapter 1: Linear Systems IMSL MATH LIBRARY

2 1.00 -0.43

3 1.00 0.04

 RESIDUALS 1-2

 1 2

1 0.0000 0.0857

2 0.0000 -0.3429

3 0.0000 0.5143

4 0.0000 -0.3429

5 0.0000 0.0857

ScaLAPACK Example

The previous example is repeated here as a distributed computing example. Given a real m × k

matrix B it is often necessary to compute the k least-squares solutions of the linear system

AX = B, where A is an m × n real matrix. When m > n the system is considered overdetermined. A

solution with a zero residual normally does not exist. Instead the minimization problem

2
min

n
j

j j
x

Ax b

R

is solved k times where xj, bj are the j-th columns of the matrices X, B respectively. When A is of

full column rank there exits a unique solution XLS that solves the above minimization problem. By

using the routine LQRRV, XLS is computed. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL

utility routines (see Utilities) used to map and unmap arrays to and from the processor grid. They

are used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the

descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LQRRV_INT

 USE SGEMM_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, LDX, NCA, NRA, NUMEXC, DESCA(9), DESCX(9)

 INTEGER INFO, MXCOL, MXLDA, MXLDX, MXCOLX

 INTEGER K

 REAL, ALLOCATABLE :: A(:,:), X(:)

 REAL, ALLOCATABLE :: A0(:,:), X0(:)

 PARAMETER (NRA=5, NCA=3, NUMEXC=2, LDA=NRA, LDX=NCA)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,NCA+NUMEXC), X(LDX, NUMEXC))

! Set values for A and the righthand sides

 A(1,:) = (/ 1.0, 2.0, 4.0, 7.0, 10.0/)

 A(2,:) = (/ 1.0, 4.0, 16.0, 21.0, 10.0/)

 A(3,:) = (/ 1.0, 6.0, 36.0, 43.0, 9.0/)

 A(4,:) = (/ 1.0, 8.0, 64.0, 73.0, 10.0/)

 A(5,:) = (/ 1.0, 10.0, 100.0, 111.0, 10.0/)

 ENDIF

IMSL MATH LIBRARY Chapter 1: Linear Systems 463

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(NRA, NCA+NUMEXC, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(NRA, NCA+NUMEXC, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

CALL DESCINIT(DESCA, NRA, NCA+NUMEXC, MP_MB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDA, INFO)

 K = MIN0(NRA, NCA)

! Need to get dimensions of local x

! separate since x's leading

! dimension differs from A's

! Get the array descriptor entities

! MXLDX, AND MXCOLX

 CALL SCALAPACK_GETDIM(K, NUMEXC, MP_MB, MP_NB, MXLDX, MXCOLX)

 CALL DESCINIT (DESCX, K, NUMEXC, MP_NB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDX, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), X0(MXLDX,MXCOLX))

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Solve the least squares problem

 CALL LQRRV (A0, X0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK .EQ. 0)THEN

 CALL WRRRN (‘SOLUTIONS 1-2‘, X)

! Compute residuals and print

 CALL SGEMM (‘N‘, ‘N‘, NRA, NUMEXC, NCA, 1.E0, A, LDA, X, LDX, &

 -1.E0, A(1:,(NCA+1):),LDA)

 CALL WRRRN (‘RESIDUALS 1-2‘, A(1:,(NCA+1):))

 ENDIF

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

LSBRR

Solves a linear least-squares problem with iterative refinement.

464 Chapter 1: Linear Systems IMSL MATH LIBRARY

Required Arguments

A — Real NRA by NCA matrix containing the coefficient matrix of the least-squares system to

be solved. (Input)

B — Real vector of length NRA containing the right-hand side of the least-squares system.

(Input)

X — Real vector of length NCA containing the solution vector with components corresponding

to the columns not used set to zero. (Output)

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)

Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

TOL — Real scalar containing the nonnegative tolerance used to determine the subset of

columns of A to be included in the solution. (Input)

If TOL is zero, a full complement of min(NRA, NCA) columns is used. See Comments.

Default: TOL = 0.0

RES — Real vector of length NRA containing the residual vector B − AX. (Output)

KBASIS — Integer scalar containing the number of columns used in the solution. (Output)

FORTRAN 90 Interface

Generic: CALL LSBRR (A, B, X [,…])

Specific: The specific interface names are S_LSBRR and D_LSBRR.

FORTRAN 77 Interface

Single: CALL LSBRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS)

Double: The double precision name is DLSBRR.

IMSL MATH LIBRARY Chapter 1: Linear Systems 465

Description

Routine LSBRR solves the linear least-squares problem using iterative refinement. The iterative

refinement algorithm is due to Björck (1967, 1968). It is also described by Golub and Van Loan

(1983, pages 182−183).

Comments

1. Workspace may be explicitly provided, if desired, by use of L2BRR/DL2BRR. The

reference is:

CALL L2BRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS, QR, BRRUX,

 IPVT, WK)

The additional arguments are as follows:

QR — Work vector of length NRA * NCA representing an NRA by NCA matrix

that contains information from the QR factorization of A. See LQRRR

for details.

BRRUX — Work vector of length NCA containing information about the

orthogonal factor of the QR factorization of A. See LQRRR for details.

IPVT — Integer work vector of length NCA containing the pivoting

information for the QR factorization of A. See LQRRR for details.

WK — Work vector of length NRA + 2 * NCA − 1.

2. Informational error

Type Code

4 1 The data matrix is too ill-conditioned for iterative refinement to be

effective.

3. Routine LSBRR calculates the QR decomposition with pivoting of a matrix A and tests

the diagonal elements against a user-supplied tolerance TOL. The first integer

KBASIS = k is determined for which

1, 1 11TOL*k kr r

 In effect, this condition implies that a set of columns with a condition number

approximately bounded by 1.0/TOL is used. Then, LQRSL performs a truncated fit of the

first KBASIS columns of the permuted A to an input vector B. The coefficient of this fit

is unscrambled to correspond to the original columns of A, and the coefficients

corresponding to unused columns are set to zero. It may be helpful to scale the rows

and columns of A so that the error estimates in the elements of the scaled matrix are

roughly equal to TOL. The iterative refinement method of Björck is then applied to this

factorization.

466 Chapter 1: Linear Systems IMSL MATH LIBRARY

4. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2BRR the leading dimension of QR is increased by IVAL(3)

when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSBRR.

Additional memory allocation for QR and option value restoration are done

automatically in LSBRR. Users directly calling L2BRR can allocate additional

space for QR and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSBRR or L2BRR. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two valuess that determine if the L1 condition number is to be

computed. Routine LSBRR temporarily replaces IVAL(2) by IVAL(1). The

routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG

skips this computation. LSBRR restores the option. Default values for the option

are IVAL(*) = 1, 2.

Example

This example solves the linear least-squares problem with A, an 8 × 4 matrix. Note that the second

and fourth columns of A are identical. Routine LSBRR determines that there are three columns in

the basis.

 USE LSBRR_INT

 USE UMACH_INT

 USE WRRRN_INT

! Declare variables

 PARAMETER (NRA=8, NCA=4, LDA=NRA)

 REAL A(LDA,NCA), B(NRA), X(NCA), RES(NRA), TOL

!

! Set values for A

!

! A = (1 5 15 5)

! (1 4 17 4)

! (1 7 14 7)

! (1 3 18 3)

! (1 1 15 1)

! (1 8 11 8)

! (1 3 9 3)

! (1 4 10 4)

!

 DATA A/8*1, 5., 4., 7., 3., 1., 8., 3., 4., 15., 17., 14., &

 18., 15., 11., 9., 10., 5., 4., 7., 3., 1., 8., 3., 4. /

!

! Set values for B

!

 DATA B/ 30., 31., 35., 29., 18., 35., 20., 22. /

!

! Solve the least squares problem

IMSL MATH LIBRARY Chapter 1: Linear Systems 467

 TOL = 1.0E-4

 CALL LSBRR (A, B, X, TOL=TOL, RES=RES, KBASIS=KBASIS)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ‘KBASIS = ‘, KBASIS

 CALL WRRRN (‘X‘, X, 1, NCA, 1)

 CALL WRRRN (‘RES‘, RES, 1, NRA, 1)

!

 END

Output

KBASIS = 3

 X

 1 2 3 4

 0.636 2.845 1.058 0.000

 RES

 1 2 3 4 5 6 7 8

 -0.733 0.996 -0.365 0.783 -1.353 -0.036 1.306 -0.597

LCLSQ
Solves a linear least-squares problem with linear constraints.

Required Arguments

A — Matrix of dimension NRA by NCA containing the coefficients of the NRA least squares

equations. (Input)

B — Vector of length NRA containing the right-hand sides of the least squares equations.

(Input)

C — Matrix of dimension NCON by NCA containing the coefficients of the NCON constraints.

(Input)

If NCON = 0, C is not referenced.

BL — Vector of length NCON containing the lower limit of the general constraints. (Input)

If there is no lower limit on the I-th constraint, then BL(I) will not be referenced.

BU — Vector of length NCON containing the upper limit of the general constraints. (Input)

If there is no upper limit on the I-th constraint, then BU(I) will not be referenced. If

there is no range constraint, BL and BU can share the same storage locations.

IRTYPE — Vector of length NCON indicating the type of constraints exclusive of simple

bounds, where IRTYPE(I) = 0, 1, 2, 3 indicates .EQ., .LE., .GE., and range

constraints respectively. (Input)

XLB — Vector of length NCA containing the lower bound on the variables. (Input)

If there is no lower bound on the I-th variable, then XLB(I) should be set to 1.0E30.

468 Chapter 1: Linear Systems IMSL MATH LIBRARY

XUB — Vector of length NCA containing the upper bound on the variables. (Input)

If there is no upper bound on the I-th variable, then XUB(I) should be set −1.0E30.

X — Vector of length NCA containing the approximate solution. (Output)

Optional Arguments

NRA — Number of least-squares equations. (Input)

Default: NRA = size (A,1).

NCA — Number of variables. (Input)

Default: NCA = size (A,2).

NCON — Number of constraints. (Input)

Default: NCON = size (C,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the

calling program. (Input)

LDA must be at least NRA.

Default: LDA = size (A,1).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling

program. (Input)

LDC must be at least NCON.

Default: LDC = size (C,1).

RES — Vector of length NRA containing the residuals B − AX of the least-squares equations at

the approximate solution. (Output)

FORTRAN 90 Interface

Generic: CALL LCLSQ (A, B, C, BL, BU, IRTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_LCLSQ and D_LCLSQ.

FORTRAN 77 Interface

Single: CALL LCLSQ (NRA, NCA, NCON, A, LDA, B, C, LDC, BL, BU, IRTYPE, XLB, XUB,

X, RES)

Double: The double precision name is DLCLSQ.

Description

The routine LCLSQ solves linear least-squares problems with linear constraints. These are systems

of least-squares equations of the form Ax ≅ b

subject to

IMSL MATH LIBRARY Chapter 1: Linear Systems 469

bl ≤ Cx ≤ bu

xl ≤ x ≤ xu

Here, A is the coefficient matrix of the least-squares equations, b is the right-hand side, and C is

the coefficient matrix of the constraints. The vectors bl, bu, xl and xu are the lower and upper

bounds on the constraints and the variables, respectively. The system is solved by defining

dependent variables y ≡ Cx and then solving the least squares system with the lower and upper

bounds on x and y. The equation Cx − y = 0 is a set of equality constraints. These constraints are

realized by heavy weighting, i.e. a penalty method, Hanson, (1986, pages 826−834).

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LSQ/DL2LSQ. The

reference is:

CALL L2LSQ (NRA, NCA, NCON, A, LDA, B, C, LDC, BL, BU,

IRTYPE, XLB, XUB, X, RES, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length (NCON + MAXDIM) * (NCA + NCON + 1) + 10

* NCA + 9 * NCON + 3.

IWK — Integer work vector of length 3 * (NCON + NCA).

2. Informational errors

Type Code

3 1 The rank determination tolerance is less than machine precision.

4 2 The bounds on the variables are inconsistent.

4 3 The constraint bounds are inconsistent.

4 4 Maximum number of iterations exceeded.

3. Integer Options with Chapter 11 Options Manager

13 Debug output flag. If more detailed output is desired, set this option to the value

1. Otherwise, set it to 0. Default value is 0.

14 Maximum number of add/drop iterations. If the value of this option is zero, up to

5 * max(nra, nca) iterations will be allowed. Otherwise set this option to the

desired iteration limit. Default value is 0.

4. Floating Point Options with Chapter 11 Options Manager

2 The value of this option is the relative rank determination tolerance to be used.

Default value is sqrt(AMACH (4)).

470 Chapter 1: Linear Systems IMSL MATH LIBRARY

5 The value of this option is the absolute rank determination tolerance to be used.

Default value is sqrt(AMACH (4)).

Example

A linear least-squares problem with linear constraints is solved.

 USE LCLSQ_INT

 USE UMACH_INT

 USE SNRM2_INT

!

! Solve the following in the least squares sense:

! 3x1 + 2x2 + x3 = 3.3

! 4x1 + 2x2 + x3 = 2.3

! 2x1 + 2x2 + x3 = 1.3

! x1 + x2 + x3 = 1.0

!

! Subject to: x1 + x2 + x3 <= 1

! 0 <= x1 <= .5

! 0 <= x2 <= .5

! 0 <= x3 <= .5

!

! --

! Declaration of variables

!

 INTEGER NRA, NCA, MCON, LDA, LDC

 PARAMETER (NRA=4, NCA=3, MCON=1, LDC=MCON, LDA=NRA)

!

 INTEGER IRTYPE(MCON), NOUT

 REAL A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA), &

 RESNRM, XSOL(NCA), XLB(NCA), XUB(NCA)

! Data initialization!

 DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, &

 2.0E0, 2.0E0, 1.0E0, 1.0E0, 1.0E0, 1.0E0, 1.0E0/, &

 B/3.3E0, 2.3E0, 1.3E0, 1.0E0/, &

 C/3*1.0E0/, &

 BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/

!

! Solve the bounded, constrained

! least squares problem.

!

 CALL LCLSQ (A, B, C, BC, BC, IRTYPE, XLB, XUB, XSOL, RES=RES)

! Compute the 2-norm of the residuals.

 RESNRM = SNRM2 (NRA, RES, 1)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT, 999) XSOL, RES, RESNRM

!

 999 FORMAT (‘ The solution is ‘, 3F9.4, //, ‘ The residuals ‘, &

 ‘evaluated at the solution are ‘, /, 18X, 4F9.4, //, &

 ‘ The norm of the residual vector is ‘, F8.4)

!

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 471

Output

The solution is 0.5000 0.3000 0.2000

The residuals evaluated at the solution are

 -1.0000 0.5000 0.5000 0.0000

The norm of the residual vector is 1.2247

LQRRR

Computes the QR decomposition, AP = QR, using Householder transformations.

Required Arguments

A — Real NRA by NCA matrix containing the matrix whose QR factorization is to be

computed. (Input)

QR — Real NRA by NCA matrix containing information required for the QR factorization.

(Output)

The upper trapezoidal part of QR contains the upper trapezoidal part of R with its

diagonal elements ordered in decreasing magnitude. The strict lower trapezoidal part of

QR contains information to recover the orthogonal matrix Q of the factorization.

Arguments A and QR can occupy the same storage locations. In this case, A will not be

preserved on output.

QRAUX — Real vector of length NCA containing information about the orthogonal part of the

decomposition in the first min(NRA, NCA) position. (Output)

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)

Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

PIVOT — Logical variable. (Input)

PIVOT = .TRUE. means column pivoting is enforced.

PIVOT = .FALSE. means column pivoting is not done.

Default: PIVOT = .TRUE.

472 Chapter 1: Linear Systems IMSL MATH LIBRARY

IPVT — Integer vector of length NCA containing information that controls the final order of

the columns of the factored matrix A. (Input/Output)

On input, if IPVT(K) > 0, then the K-th column of A is an initial column. If IPVT(K) = 0,

then the K-th column of A is a free column. If IPVT(K) < 0, then the K-th column of A is

a final column. See Comments.

On output, IPVT(K) contains the index of the column of A that has been interchanged

into the K-th column. This defines the permutation matrix P. The array IPVT is

referenced only if PIVOT is equal to .TRUE.

Default: IPVT = 0.

LDQR — Leading dimension of QR exactly as specified in the dimension statement of the

calling program. (Input)

Default: LDQR = size (QR,1).

CONORM — Real vector of length NCA containing the norms of the columns of the input

matrix. (Output)

If this information is not needed, CONORM and QRAUX can share the same storage

locations.

FORTRAN 90 Interface

Generic: CALL LQRRR (A, QR, QRAUX [,…])

Specific: The specific interface names are S_LQRRR and D_LQRRR.

FORTRAN 77 Interface

Single: CALL LQRRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX, CONORM)

Double: The double precision name is DLQRRR.

ScaLAPACK Interface

Generic: CALL LQRRR (A0, QR0, QRAUX0 [,…])

Specific: The specific interface names are S_LQRRR and D_LQRRR.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

The routine LQRRR computes the QR decomposition of a matrix using Householder

transformations. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK

code depending upon which supporting libraries are used during linking. For a detailed

explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction

section of this manual.

IMSL MATH LIBRARY Chapter 1: Linear Systems 473

LQRRR determines an orthogonal matrix Q, a permutation matrix P, and an upper trapezoidal

matrix R with diagonal elements of nonincreasing magnitude, such that AP = QR. The

Householder transformation for column k is of the form

T
k k

k

u u
I

p

for k = 1, 2, …, min(NRA, NCA), where u has zeros in the first k − 1 positions. The matrix Q is not

produced directly by LQRRR . Instead the information needed to reconstruct the Householder

transformations is saved. If the matrix Q is needed explicitly, the subroutine LQERR can be called

after LQRRR. This routine accumulates Q from its factored form.

Before the decomposition is computed, initial columns are moved to the beginning of the array A

and the final columns to the end. Both initial and final columns are frozen in place during the

computation. Only free columns are pivoted. Pivoting, when requested, is done on the free

columns of largest reduced norm.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2RRR/DL2RRR. The

reference is:

CALL L2RRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX, CONORM,

 WORK)

The additional argument is

WORK — Work vector of length 2NCA − 1. Only NCA − 1 locations of WORK

are referenced if PIVOT = .FALSE. .

2. LQRRR determines an orthogonal matrix Q, permutation matrix P, and an upper

trapezoidal matrix R with diagonal elements of nonincreasing magnitude, such that

AP = QR. The Householder transformation for column k, k = 1, …, min(NRA, NCA) is of

the form

1 T
kI u uu

where u has zeros in the first k − 1 positions. If the explicit matrix Q is needed, the

user can call routine LQERR after calling LQRRR. This routine accumulates Q from its

factored form.

3. Before the decomposition is computed, initial columns are moved to the beginning and

the final columns to the end of the array A. Both initial and final columns are not

moved during the computation. Only free columns are moved. Pivoting, if requested, is

done on the free columns of largest reduced norm.

4. When pivoting has been selected by having entries of IPVT initialized to zero, an

estimate of the condition number of A can be obtained from the output by computing

the magnitude of the number QR(1, 1)/QR(K, K), where K = MIN(NRA, NCA). This

474 Chapter 1: Linear Systems IMSL MATH LIBRARY

estimate can be used to select the number of columns, KBASIS, used in the solution

step computed with routine LQRSL.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A.

A contains the matrix whose QR factorization is to be computed. (Input)

QR0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix QR. QR contains the information required for the QR factorization. (Output)

The upper trapezoidal part of QR contains the upper trapezoidal part of R with its

diagonal elements ordered in decreasing magnitude. The strict lower trapezoidal part of

QR contains information to recover the orthogonal matrix Q of the factorization.

Arguments A and QR can occupy the same storage locations. In this case, A will not be

preserved on output.

QRAUX0 — Real vector of length MXCOL containing the local portions of the distributed

matrix QRAUX. QRAUX contains information about the orthogonal part of the

decomposition in the first MIN(NRA, NCA) position. (Output)

IPVT0 — Integer vector of length MXLDB containing the local portions of the distributed

vector IPVT. IPVT contains the information that controls the final order of the

columns of the factored matrix A. (Input/Output)

On input, if IPVT(K) > 0, then the K-th column of A is an initial column. If IPVT(K) = 0,

then the K-th column of A is a free column. If IPVT(K) < 0, then the K-th column of A is

a final column. See Comments.

On output, IPVT(K) contains the index of the column of A that has been interchanged

into the K-th column. This defines the permutation matrix P. The array IPVT is

referenced only if PIVOT is equal to .TRUE.

Default: IPVT = 0.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA, MXLDB, and MXCOL can be obtained through a

call to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has

been made. See the ScaLAPACK Example below.

Example

In various statistical algorithms it is necessary to compute q = x
T
(A

T
A) -

1
x, where A is a

rectangular matrix of full column rank. By using the QR decomposition, q can be computed

without forming A
T
A. Note that

A
T

A = (QRP-1
)
T

(QRP-1
) = P-T R

T
(Q

T
Q)RP-1

 = P R
T

RP
T

since Q is orthogonal (Q
T
Q = I) and P is a permutation matrix. Let

IMSL MATH LIBRARY Chapter 1: Linear Systems 475

1

0

T R
Q AP R

where R1 is an upper triangular nonsingular matrix. Then

1

1 1 1 2
1 1 1 2

T T T T Tx A A x x PR R P x R P x

In the following program, first the vector t = P-1
 x is computed. Then

1: Tt R t

Finally,

2
q t

 USE IMSL_LIBRARIES

! Declare variables

 INTEGER LDA, LDQR, NCA, NRA

 PARAMETER (NCA=3, NRA=4, LDA=NRA, LDQR=NRA)

! SPECIFICATIONS FOR PARAMETERS

 INTEGER LDQ

 PARAMETER (LDQ=NRA)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER IPVT(NCA), NOUT

 REAL CONORM(NCA), Q, QR(LDQR,NCA), QRAUX(NCA), T(NCA)

 LOGICAL PIVOT

 REAL A(LDA,NCA), X(NCA)

!

! Set values for A

!

! A = (1 2 4)

! (1 4 16)

! (1 6 36)

! (1 8 64)

!

 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/

!

! Set values for X

!

! X = (1 2 3)

 DATA X/1.0, 2.0, 3.0/

!

! QR factorization

 PIVOT = .TRUE.

 IPVT=0

 CALL LQRRR (A, QR, QRAUX, PIVOT=PIVOT, IPVT=IPVT)

! Set t = inv(P)*x

 CALL PERMU (X, IPVT, T, IPATH=1)

! Compute t = inv(trans(R))*t

 CALL LSLRT (QR, T, T, IPATH=4)

! Compute 2-norm of t, squared.

 Q = SDOT(NCA,T,1,T,1)

! Print result

 CALL UMACH (2, NOUT)

476 Chapter 1: Linear Systems IMSL MATH LIBRARY

 WRITE (NOUT,*) ‘Q = ‘, Q

!

 END

Output

Q = 0.840624

ScaLAPACK Example

The previous example is repeated here as a distributed computing example. In various statistical

algorithms it is necessary to compute q = x
T
(A

T
A) -

1
x, where A is a rectangular matrix of full

column rank. By using the QR decomposition, q can be computed without forming A
T

A. Note that

A
T

A = (QRP-1
)
T

(QRP-1
) = P-

T R
T

(Q
T

Q)RP-1
 = P R

T
RP

T

since Q is orthogonal (Q
T
Q = I) and P is a permutation matrix. Let

1

0

T R
Q AP R

where R1 is an upper triangular nonsingular matrix. Then

1

1 1 1 2
1 1 1 2

T T T T Tx A A x x PR R P x R P x

In the following program, first the vector t = P-1
 x is computed. Then

1: Tt R t

Finally,

2
q t

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map

and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a

ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LQRRR_INT

 USE PERMU_INT

 USE LSLRT_INT

 USE UMACH_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER LDA, LDQR, NCA, NRA, DESCA(9), DESCB(9), DESCL(9)

 INTEGER INFO, MXCOL, MXLDA, MXLDB, MXCOLB, NOUT

 INTEGER, ALLOCATABLE :: IPVT(:), IPVT0(:)

 LOGICAL PIVOT

IMSL MATH LIBRARY Chapter 1: Linear Systems 477

 REAL Q

 REAL, ALLOCATABLE :: A(:,:), X(:), T(:)

 REAL, ALLOCATABLE :: A0(:,:), T0(:), QR0(:,:), QRAUX0(:)

 REAL, (KIND(1E0))SDOT

 PARAMETER (NRA=4, NCA=3, LDA=NRA, LDQR=NRA)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,NCA), X(NCA), T(NCA), IPVT(NCA))

! Set values for A and the righthand side

 A(1,:) = (/ 1.0, 2.0, 4.0/)

 A(2,:) = (/ 1.0, 4.0, 16.0/)

 A(3,:) = (/ 1.0, 6.0, 36.0/)

 A(4,:) = (/ 1.0, 8.0, 64.0/)

!

 X = (/ 1.0, 2.0, 3.0/)

!

 IPVT = 0

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(NRA, NCA, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! MXCOL, MXLDB, MXCOLB

 CALL SCALAPACK_GETDIM(NRA, NCA, MP_MB, MP_NB, MXLDA, MXCOL)

 CALL SCALAPACK_GETDIM(NCA, 1, MP_NB, 1, MXLDB, MXCOLB)

! Set up the array descriptors

 CALL DESCINIT(DESCA, NRA, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, &

 INFO)

 CALL DESCINIT(DESCL, 1, NCA, 1, MP_NB, 0, 0, MP_ICTXT, 1, INFO)

 CALL DESCINIT(DESCB, NCA, 1, MP_NB, 1, 0, 0, MP_ICTXT, MXLDB, &

 INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), QR0(MXLDA,MXCOL), QRAUX0(MXCOL), &

 IPVT0(MXCOL), T0(MXLDB))

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 PIVOT = .TRUE.

 CALL SCALAPACK_MAP(IPVT, DESCL, IPVT0)

! QR factorization

 CALL LQRRR (A0, QR0, QRAUX0, PIVOT=PIVOT, IPVT=IPVT0)

! Unmap the results from the distributed

! array back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(IPVT0, DESCL, IPVT, NCA, .FALSE.)

 IF(MP_RANK .EQ. 0) CALL PERMU (X, IPVT, T, IPATH=1)

 CALL SCALAPACK_MAP(T, DESCB, T0)

 CALL LSLRT (QR0, T0, T0, IPATH=4)

 CALL SCALAPACK_UNMAP(T0, DESCB, T)

! Print results.

! Only Rank=0 has the solution.

 IF(MP_RANK .EQ. 0)THEN

 Q = SDOT(NCA, T, 1, T, 1)

 CALL UMACH (2, NOUT)

 WRITE (NOUT, *) ‗Q = ‗, Q

478 Chapter 1: Linear Systems IMSL MATH LIBRARY

 ENDIF

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

Q = 0.840624

LQERR

Accumulates the orthogonal matrix Q from its factored form given the QR factorization of a

rectangular matrix A.

Required Arguments

QR — Real NRQR by NCQR matrix containing the factored form of the matrix Q in the first

min(NRQR, NCQR) columns of the strict lower trapezoidal part of QR as output from

subroutine LQRRR/DLQRRR. (Input)

QRAUX — Real vector of length NCQR containing information about the orthogonal part of

the decomposition in the first min(NRQR, NCQR) position as output from routine

LQRRR/DLQRRR. (Input)

Q — Real NRQR by NRQR matrix containing the accumulated orthogonal matrix Q; Q and QR

can share the same storage locations if QR is not needed. (Output)

Optional Arguments

NRQR — Number of rows in QR. (Input)

Default: NRQR = size (QR,1).

NCQR — Number of columns in QR. (Input)

Default: NCQR = size (QR,2).

LDQR — Leading dimension of QR exactly as specified in the dimension statement of the

calling program. (Input)

Default: LDQR = size (QR,1).

IMSL MATH LIBRARY Chapter 1: Linear Systems 479

LDQ — Leading dimension of Q exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDQ = size (Q,1).

FORTRAN 90 Interface

Generic: CALL LQERR (QR, QRAUX, Q [,…])

Specific: The specific interface names are S_LQERR and D_LQERR.

FORTRAN 77 Interface

Single: CALL LQERR (NRQR, NCQR, QR, LDQR, QRAUX, Q, LDQ)

Double: The double precision name is DLQERR.

ScaLAPACK Interface

Generic: CALL LQERR (QR0, QRAUX0, Q0 [,…])

Specific: The specific interface names are S_LQERR and D_LQERR.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

The routine LQERR accumulates the Householder transformations computed by IMSL routine

LQRRR to produce the orthogonal matrix Q.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending

upon which supporting libraries are used during linking. For a detailed explanation see ―Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2ERR/DL2ERR. The

reference is:

CALL L2ERR (NRQR, NCQR, QR, LDQR, QRAUX, Q, LDQ, WK)

The additional argument is

WK — Work vector of length 2 * NRQR.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

480 Chapter 1: Linear Systems IMSL MATH LIBRARY

QR0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix QR. QR contains the factored form of the matrix Q in the first min(NRQR, NCQR)

columns of the strict lower trapezoidal part of QR as output from subroutine

LQRRR/DLQRRR. (Input)

QRAUX0 — Real vector of length MXCOL containing the local portions of the

 distributed matrix QRAUX. QRAUX contains the information about the

 orthogonal part of the decomposition in the first min(NRA, NCA) positions as

 output from subroutine LQRRR/DLQRRR. (Input)

Q0 — MXLDA by MXLDA local matrix containing the local portions of the distributed matrix

Q. Q contains the accumulated orthogonal matrix ; Q and QR can share the same storage

locations if QR is not needed. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA and MXCOL can be obtained through a call

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

In this example, the orthogonal matrix Q in the QR decomposition of a matrix A is computed. The

product X = QR is also computed. Note that X can be obtained from A by reordering the columns

of A according to IPVT.

 USE IMSL_LIBRARIES

! Declare variables

 INTEGER LDA, LDQ, LDQR, NCA, NRA

 PARAMETER (NCA=3, NRA=4, LDA=NRA, LDQ=NRA, LDQR=NRA)

!

 INTEGER IPVT(NCA), J

 REAL A(LDA,NCA), CONORM(NCA), Q(LDQ,NRA), QR(LDQR,NCA), &

 QRAUX(NCA), R(NRA,NCA), X(NRA,NCA)

 LOGICAL PIVOT

!

! Set values for A

!

! A = (1 2 4)

! (1 4 16)

! (1 6 36)

! (1 8 64)

!

 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/

!

! QR factorization

! Set IPVT = 0 (all columns free)

 IPVT = 0

 PIVOT = .TRUE.

 CALL LQRRR (A, QR, QRAUX, IPVT=IPVT, PIVOT=PIVOT)

! Accumulate Q

 CALL LQERR (QR, QRAUX, Q)

! R is the upper trapezoidal part of QR

IMSL MATH LIBRARY Chapter 1: Linear Systems 481

 R = 0.0E0

 DO 10 J=1, NCA

 CALL SCOPY (J, QR(:,J), 1, R(:,J), 1)

 10 CONTINUE

! Compute X = Q*R

 CALL MRRRR (Q, R, X)

! Print results

 CALL WRIRN (‘IPVT‘, IPVT, 1, NCA, 1)

 CALL WRRRN (‘Q‘, Q)

 CALL WRRRN (‘R‘, R)

 CALL WRRRN (‘X = Q*R‘, X)

!

 END

Output

 IPVT

 1 2 3

 3 2 1

 Q

 1 2 3 4

1 -0.0531 -0.5422 0.8082 -0.2236

2 -0.2126 -0.6574 -0.2694 0.6708

3 -0.4783 -0.3458 -0.4490 -0.6708

4 -0.8504 0.3928 0.2694 0.2236

 R

 1 2 3

1 -75.26 -10.63 -1.59

2 0.00 -2.65 -1.15

3 0.00 0.00 0.36

4 0.00 0.00 0.00

 X = Q*R

 1 2 3

1 4.00 2.00 1.00

2 16.00 4.00 1.00

3 36.00 6.00 1.00

4 64.00 8.00 1.00

ScaLAPACK Example

In this example, the orthogonal matrix Q in the QR decomposition of a matrix A is computed.

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map

and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a

ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 USE MPI_SETUP_INT

 USE LQRRR_INT

 USE LQERR_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

482 Chapter 1: Linear Systems IMSL MATH LIBRARY

 INTEGER LDA, LDQR, NCA, NRA, DESCA(9), DESCL(9), DESCQ(9)

 INTEGER INFO, MXCOL, MXLDA, LDQ

 INTEGER, ALLOCATABLE :: IPVT(:), IPVT0(:)

 LOGICAL PIVOT

 REAL, ALLOCATABLE :: A(:,:), QR(:,:), Q(:,:), QRAUX(:)

 REAL, ALLOCATABLE :: A0(:,:), QR0(:,:), Q0(:,:), QRAUX0(:)

 PARAMETER (NRA=4, NCA=3, LDA=NRA, LDQR=NRA, LDQ=NRA)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(NRA,NCA), Q(NRA,NRA), QR(NRA,NCA), &

 QRAUX(NCA), IPVT(NCA))

! Set values for A and the righthand sides

 A(1,:) = (/ 1.0, 2.0, 4.0/)

 A(2,:) = (/ 1.0, 4.0, 16.0/)

 A(3,:) = (/ 1.0, 6.0, 36.0/)

 A(4,:) = (/ 1.0, 8.0, 64.0/)

!

 IPVT = 0

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(NRA, NCA, .FALSE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(NRA, NCA, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESCA, NRA, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, &

 INFO)

 CALL DESCINIT(DESCL, 1, NCA, 1, MP_NB, 0, 0, MP_ICTXT, 1, INFO)

 CALL DESCINIT(DESCQ, NRA, NRA, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, &

 INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), QR0(MXLDA,MXCOL), QRAUX0(MXCOL), &

 IPVT0(MXCOL), Q0(MXLDA,MXLDA))

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

 PIVOT = .TRUE.

 CALL SCALAPACK_MAP(IPVT, DESCL, IPVT0)

! QR factorization

 CALL LQRRR (A0, QR0, QRAUX0, PIVOT=PIVOT, IPVT=IPVT0)

 CALL LQERR (QR0, QRAUX0, Q0)

! Unmap the results from the distributed

! array back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(Q0, DESCQ, Q)

! Print results.

! Only Rank=0 has the solution, Q.

 IF(MP_RANK .EQ. 0) CALL WRRRN (‘Q‘, Q)

! Exit Scalapack usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 483

LQRSL

Computes the coordinate transformation, projection, and complete the solution of the least-squares

problem Ax = b.

Required Arguments

KBASIS — Number of columns of the submatrix Ak of A. (Input)

The value KBASIS must not exceed min(NRA, NCA), where NCA is the number of

columns in matrix A. The value NCA is an argument to routine LQRRR. The value of

KBASIS is normally NCA unless the matrix is rank-deficient. The user must analyze the

problem data and determine the value of KBASIS. See Comments.

QR — NRA by NCA array containing information about the QR factorization of A as output

from routine LQRRR/DLQRRR. (Input)

QRAUX — Vector of length NCA containing information about the QR factorization of A as

output from routine LQRRR/DLQRRR. (Input)

B — Vector b of length NRA to be manipulated. (Input)

IPATH — Option parameter specifying what is to be computed. (Input)

The value IPATH has the decimal expansion IJKLM, such that:

I ≠ 0 means compute Qb;

J ≠ 0 means compute Q
T
b;

K ≠ 0 means compute Q
T
b and x;

L ≠ 0 means compute Q
T
b and b − Ax;

M ≠ 0 means compute Q
T
b and Ax.

 For example, if the decimal number IPATH = 01101, then I = 0, J = 1, K = 1,

L= 0, and M= 1.

Optional Arguments

NRA — Number of rows of matrix A. (Input)

Default: NRA = size (QR,1).

LDQR — Leading dimension of QR exactly as specified in the dimension statement of the

calling program. (Input)

Default: LDQR = size (QR,1).

QB — Vector of length NRA containing Qb if requested in the option IPATH. (Output)

484 Chapter 1: Linear Systems IMSL MATH LIBRARY

QTB — Vector of length NRA containing Q
T
b if requested in the option IPATH. (Output)

X — Vector of length KBASIS containing the solution of the least-squares problem Akx = b, if

this is requested in the option IPATH. (Output)

If pivoting was requested in routine LQRRR/DLQRRR, then the J-th entry of X will be

associated with column IPVT(J) of the original matrix A. See Comments.

RES — Vector of length NRA containing the residuals (b − Ax) of the least-squares problem if

requested in the option IPATH. (Output)

This vector is the orthogonal projection of b onto the orthogonal complement of the

column space of A.

AX — Vector of length NRA containing the least-squares approximation Ax if requested in the

option IPATH. (Output)

This vector is the orthogonal projection of b onto the column space of A.

FORTRAN 90 Interface

Generic: CALL LQRSL (KBASIS, QR, QRAUX, B, IPATH [,…])

Specific: The specific interface names are S_LQRSL and D_LQRSL.

FORTRAN 77 Interface

Single: CALL LQRSL (NRA, KBASIS, QR, LDQR, QRAUX, B, IPATH, QB, QTB, X, RES,
AX)

Double: The double precision name is DLQRSL.

ScaLAPACK Interface

Generic: CALL LQRSL (KBASIS, QR0, QRAUX0, B0, IPATH [,…])

Specific: The specific interface names are S_LQRSL and D_LQRSL.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

The underlying code of routine LQRSL is based on either LINPACK , LAPACK, or ScaLAPACK

code depending upon which supporting libraries are used during linking. For a detailed

explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction

section of this manual.

The most important use of LQRSL is for solving the least-squares problem Ax = b, with coefficient

matrix A and data vector b. This problem can be formulated, using the normal equations method,

as A
T

Ax = A
T

b. Using LQRRR the QR decomposition of A, AP = QR, is computed. Here P is a

IMSL MATH LIBRARY Chapter 1: Linear Systems 485

permutation matrix (P = P), Q is an orthogonal matrix (Q = Q
T
) and R is an upper trapezoidal

matrix. The normal equations can then be written as

(PR
T
)(Q

T
Q)R(P

T
x) = (PR

T
)Q

T
b

If A
T
A is nonsingular, then R is also nonsingular and the normal equations can be written as

R(P
T
x) = Q

T
b. LQRSL can be used to compute Q

T
b and then solve for P

T
x. Note that the permuted

solution is returned.

The routine LQRSL can also be used to compute the least-squares residual, b − Ax. This is the

projection of b onto the orthogonal complement of the column space of A. It can also compute Qb,

Q
T
b and Ax, the orthogonal projection of x onto the column space of A.

Comments

1. Informational error

Type Code

4 1 Computation of the least-squares solution of AK * X = B is requested,

but the upper triangular matrix R from the QR factorization is

singular.

2. This routine is designed to be used together with LQRRR. It assumes that LQRRR/DLQRR

has been called to get QR, QRAUX and IPVT. The submatrix Ak mentioned above is

actually equal to Ak = (A(IPVT(1)), A(IPVT(2)), …, A(IPVT (KBASIS))), where

A(IPVT(I)) is the IPVT(I)-th column of the original matrix.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

QR0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix QR. QR contains the factored form of the matrix Q in the first min(NRQR, NCQR)

columns of the strict lower trapezoidal part of QR as output from subroutine

LQRRR/DLQRRR. (Input)

QRAUX0 — Real vector of length MXCOL containing the local portions of the distributed

matrix QRAUX. QRAUX contains the information about the orthogonal part of the

decomposition in the first min(NRA, NCA) positions as output from subroutine

LQRRR/DLQRRR. (Input)

B0 — Real vector of length MXLDA containing the local portions of the distributed vector B.

B contains the vector to be manipulated. (Input)

QB0 — Real vector of length MXLDA containing the local portions of the distributed vector

Qb if requested in the option IPATH. (Output)

QTB0 — Real vector of length MXLDA containing the local portions of the distributed vector

Q
T
b if requested in the option IPATH. (Output)

486 Chapter 1: Linear Systems IMSL MATH LIBRARY

X0 — Real vector of length MXLDX containing the local portions of the distributed vector X. X

contains the solution of the least-squares problem Akx = b, if this is requested in the

option IPATH. (Output)

If pivoting was requested in routine LQRRR/DLQRRR, then the J-th entry of X will be

associated with column IPVT(J) of the original matrix A. See Comments.

RES0 — Real vector of length MXLDA containing the local portions of the distributed vector

RES. RES contains the residuals (b − Ax) of the least-squares problem if requested in

the option IPATH. (Output)

This vector is the orthogonal projection of b onto the orthogonal complement of the

column space of A.

AX0 — Real vector of length MXLDA containing the local portions of the distributed vector

AX. AX contains the least-squares approximation Ax if requested in the option IPATH.

(Output)

This vector is the orthogonal projection of b onto the column space of A.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA, MXLDX and MXCOL can be obtained through

a call to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has

been made. See the ScaLAPACK Example below.

Example

Consider the problem of finding the coefficients ci in

f(x) = c0 + c1x + c2x2

given data at xi = 2i,i = 1, 2, 3, 4, using the method of least squares. The row of the matrix A

contains the value of 1, xi and

2
ix

at the data points. The vector b contains the data. The routine LQRRR is used to compute the QR

decomposition of A. Then LQRSL is then used to solve the least-squares problem and compute the

residual vector.

 USE IMSL_LIBRARIES

! Declare variables

 PARAMETER (NRA=4, NCA=3, KBASIS=3, LDA=NRA, LDQR=NRA)

 INTEGER IPVT(NCA)

 REAL A(LDA,NCA), QR(LDQR,NCA), QRAUX(NCA), CONORM(NCA), &

 X(KBASIS), QB(1), QTB(NRA), RES(NRA), &

 AX(1), B(NRA)

 LOGICAL PIVOT

!

! Set values for A

!

! A = (1 2 4)

! (1 4 16)

! (1 6 36)

! (1 8 64)

IMSL MATH LIBRARY Chapter 1: Linear Systems 487

!

 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/

!

! Set values for B

!

! B = (16.99 57.01 120.99 209.01)

 DATA B/ 16.99, 57.01, 120.99, 209.01 /

!

! QR factorization

 PIVOT = .TRUE.

 IPVT = 0

 CALL LQRRR (A, QR, QRAUX, PIVOT=PIVOT, IPVT=IPVT)

! Solve the least squares problem

 IPATH = 00110

 CALL LQRSL (KBASIS, QR, QRAUX, B, IPATH, X=X, RES=RES)

! Print results

 CALL WRIRN (‘IPVT‘, IPVT, 1, NCA, 1)

 CALL WRRRN (‘X‘, X, 1, KBASIS, 1)

 CALL WRRRN (‘RES‘, RES, 1, NRA, 1)

!

 END

Output

 IPVT

 1 2 3

 3 2 1

 X

 1 2 3

3.000 2.002 0.990

 RES

 1 2 3 4

-0.00400 0.01200 -0.01200 0.00400

Note that since IPVT is (3, 2, 1) the array X contains the solution coefficients ci in reverse order.

ScaLAPACK Example

The previous example is repeated here as a distributed example. Consider the problem of finding

the coefficients ci in

f(x) = c0 + c1x + c2x2

given data at xi = 2i, i = 1, 2, 3, 4, using the method of least squares. The row of the matrix A

contains the value of 1, xi and

2
ix

at the data points. The vector b contains the data. The routine LQRRR is used to compute the QR

decomposition of A. Then LQRSL is then used to solve the least-squares problem and compute the

residual vector. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines

(see Utilities) used to map and unmap arrays to and from the processor grid. They are used here

488 Chapter 1: Linear Systems IMSL MATH LIBRARY

for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the

local arrays.

 USE MPI_SETUP_INT

 USE LQRRR_INT

 USE LQRSL_INT

 USE WRIRN_INT

 USE WRRRN_INT

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER KBASIS, LDA, LDQR, NCA, NRA, DESCA(9), DESCL(9), &

 DESCX(9), DESCB(9)

 INTEGER INFO, MXCOL, MXCOLX, MXLDA, MXLDX, LDQ, IPATH

 INTEGER, ALLOCATABLE :: IPVT(:), IPVT0(:)

 REAL, ALLOCATABLE :: A(:,:), B(:), QR(:,:), QRAUX(:), X(:), &

 RES(:)

 REAL, ALLOCATABLE :: A0(:,:), QR0(:,:), QRAUX0(:), X0(:), &

 RES0(:), B0(:), QTB0(:)

 LOGICAL PIVOT

 PARAMETER (NRA=4, NCA=3, LDA=NRA, LDQR=NRA, KBASIS=3)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,NCA), B(NRA), QR(LDQR,NCA), &

 QRAUX(NCA), IPVT(NCA), X(NCA), RES(NRA))

! Set values for A and the righthand sides

 A(1,:) = (/ 1.0, 2.0, 4.0/)

 A(2,:) = (/ 1.0, 4.0, 16.0/)

 A(3,:) = (/ 1.0, 6.0, 36.0/)

 A(4,:) = (/ 1.0, 8.0, 64.0/)

!

 B = (/ 16.99, 57.01, 120.99, 209.01 /)

!

 IPVT = 0

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(NRA, NCA, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! and MXCOL

 CALL SCALAPACK_GETDIM(NRA, NCA, MP_MB, MP_NB, MXLDA, MXCOL)

 CALL SCALAPACK_GETDIM(KBASIS, 1, MP_NB, 1, MXLDX, MXCOLX)

! Set up the array descriptors

 CALL DESCINIT(DESCA, NRA, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDA,INFO)

 CALL DESCINIT(DESCL, 1, NCA, 1, MP_NB, 0, 0, MP_ICTXT, 1, INFO)

 CALL DESCINIT(DESCX, KBASIS, 1, MP_NB, 1, 0, 0, MP_ICTXT, MXLDX, INFO)

 CALL DESCINIT(DESCB, NRA, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays

ALLOCATE (A0(MXLDA,MXCOL), QR0(MXLDA,MXCOL), QRAUX0(MXCOL), &

IPVT0(MXCOL), B0(MXLDA), X0(MXLDX), RES0(MXLDA), QTB0(MXLDA))

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

IMSL MATH LIBRARY Chapter 1: Linear Systems 489

 CALL SCALAPACK_MAP(B, DESCB, B0)

 PIVOT = .TRUE.

 CALL SCALAPACK_MAP(IPVT, DESCL, IPVT0)

! QR factorization

 CALL LQRRR (A0, QR0, QRAUX0, PIVOT=PIVOT, IPVT=IPVT0)

 IPATH = 00110

 CALL LQRSL (KBASIS, QR0, QRAUX0, B0, IPATH, QTB=QTB0, X=X0, RES=RES0)

! Unmap the results from the distributed

! array back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(IPVT0, DESCL, IPVT, NCA, .FALSE.)

 CALL SCALAPACK_UNMAP(X0, DESCX, X)

 CALL SCALAPACK_UNMAP(RES0, DESCB, RES)

! Print results.

! Only Rank=0 has the solution, X.

 IF(MP_RANK .EQ. 0) THEN

 CALL WRIRN (‘IPVT‘, IPVT, 1, NCA, 1)

 CALL WRRRN (‘X‘, X, 1, KBASIS, 1)

 CALL WRRRN (‘RES‘, RES, 1, NRA, 1)

 ENDIF

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

 IPVT

 1 2 3

 3 2 1

 X

 1 2 3

3.000 2.002 0.990

 RES

 1 2 3 4

-0.00400 0.01200 -0.01200 0.00400

Note that since IPVT is (3, 2, 1) the array X contains the solution coefficients ci in reverse order.

LUPQR

Computes an updated QR factorization after the rank-one matrix xy
T
 is added.

Required Arguments

ALPHA — Scalar determining the rank-one update to be added. (Input)

490 Chapter 1: Linear Systems IMSL MATH LIBRARY

W — Vector of length NROW determining the rank-one matrix to be added. (Input)

The updated matrix is A + xy
T
. If I = 0 then W contains the vector x. If I = 1 then W

contains the vector Q
T
x.

Y — Vector of length NCOL determining the rank-one matrix to be added. (Input)

R — Matrix of order NROW by NCOL containing the R matrix from the QR factorization.

(Input)

Only the upper trapezoidal part of R is referenced.

IPATH — Flag used to control the computation of the QR update. (Input)

IPATH has the decimal expansion IJ such that: I = 0 means W contains the vector x.

I= 1 means W contains the vector Q
T
x.

J = 0 means do not update the matrix Q. J = 1 means update the matrix Q. For example,

if IPATH = 10 then, I = 1 and J = 0.

RNEW — Matrix of order NROW by NCOL containing the updated R matrix in the QR

factorization. (Output)

Only the upper trapezoidal part of RNEW is updated. R and RNEW may be the same.

Optional Arguments

NROW — Number of rows in the matrix A = Q * R. (Input)

Default: NROW = size (W,1).

NCOL — Number of columns in the matrix A = Q * R. (Input)

 Default: NCOL = size (Y,1).

Q — Matrix of order NROW containing the Q matrix from the QR factorization. (Input)

Ignored if IPATH = 0.

Default: Q is 1x1 and un-initialized.

LDQ — Leading dimension of Q exactly as specified in the dimension statement of the calling

program. (Input)

Ignored if IPATH = 0.

Default: LDQ = size (Q,1).

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDR = size (R,1).

QNEW — Matrix of order NROW containing the updated Q matrix in the QR factorization.

(Output)

Ignored if J = 0, see IPATH for definition of J.

LDQNEW — Leading dimension of QNEW exactly as specified in the dimension statement of

the calling program. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems 491

Ignored if J = 0; see IPATH for definition of J.

Default: LDQNEW = size (QNEW,1).

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDRNEW = size (RNEW,1).

FORTRAN 90 Interface

Generic: CALL LUPQR (ALPHA, W, Y, R, IPATH, RNEW [,…])

Specific: The specific interface names are S_LUPQR and D_LUPQR.

FORTRAN 77 Interface

Single: CALL LUPQR (NROW, NCOL, ALPHA, W, Y, Q, LDQ, R, LDR, IPATH, QNEW,

LDQNEW, RNEW, LDRNEW)

Double: The double precision name is DLUPQR.

Description

Let A be an m × n matrix and let A = QR be its QR decomposition. (In the program, m is called

NROW and n is called NCOL) Then

A + αxy
T
 = QR + αxy

T
 = Q(R + αQ

T
xy

T
) = Q(R + αwy

T
)

where w = Q
T

x. An orthogonal transformation J can be constructed, using a sequence of m − 1

Givens rotations, such that Jw = ωe1, where ω = ±||w||2 and e1 = (1, 0, …, 0)
T
. Then

A + αxy
T
 = (QJ

T
)(JR + αωe1y

T
)

Since JR is an upper Hessenberg matrix, H = JR + αωe1y
T
 is also an upper Hessenberg matrix.

Again using m − 1 Givens rotations, an orthogonal transformation G can be constructed such that

GH is an upper triangular matrix. Then

, where T T TA xy QR Q QJ G

is orthogonal and

R GH

is upper triangular.

If the last k components of w are zero, then the number of Givens rotations needed to construct

J or G is m − k − 1 instead of m − 1.

For further information, see Dennis and Schnabel (1983, pages 55− 58 and 311−313), or Golub

and Van Loan (1983, pages 437− 439).

492 Chapter 1: Linear Systems IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of L2PQR/DL2PQR. The

reference is:

CALL L2PQR (NROW, NCOL, ALPHA, W, Y, Q, LDQ, R, LDR, IPATH, QNEW,

LDQNEW, RNEW, LDRNEW, Z, WORK)

The additional arguments are as follows:

Z — Work vector of length NROW.

WORK — Work vector of length MIN(NROW − 1, NCOL).

Example

The QR factorization of A is found. It is then used to find the QR factorization of A + xy
T
. Since

pivoting is used, the QR factorization routine finds AP = QR, where P is a permutation matrix

determined by IPVT. We compute

 TTAP xy A x Py P QR

The IMSL routine PERMU (see Utilities) is used to compute Py. As a check

QR

is computed and printed. It can also be obtained from A + xy
T
 by permuting its columns using the

order given by IPVT.

 USE IMSL_LIBRARIES

! Declare variables

 INTEGER LDA, LDAQR, LDQ, LDQNEW, LDQR, LDR, LDRNEW, NCOL, NROW

 PARAMETER (NCOL=3, NROW=4, LDA=NROW, LDAQR=NROW, LDQ=NROW, &

 LDQNEW=NROW, LDQR=NROW, LDR=NROW, LDRNEW=NROW)

!

 INTEGER IPATH, IPVT(NCOL), J, MIN0

 REAL A(LDA,NCOL), ALPHA, AQR(LDAQR,NCOL), CONORM(NCOL), &

 Q(LDQ,NROW), QNEW(LDQNEW,NROW), QR(LDQR,NCOL), &

 QRAUX(NCOL), R(LDR,NCOL), RNEW(LDRNEW,NCOL), W(NROW), &

 Y(NCOL)

 LOGICAL PIVOT

 INTRINSIC MIN0

!

! Set values for A

!

! A = (1 2 4)

! (1 4 16)

! (1 6 36)

! (1 8 64)

!

 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/

IMSL MATH LIBRARY Chapter 1: Linear Systems 493

! Set values for W and Y

 DATA W/1., 2., 3., 4./

 DATA Y/3., 2., 1./

!

! QR factorization

! Set IPVT = 0 (all columns free)

 IPVT = 0

 PIVOT = .TRUE.

 CALL LQRRR (A, QR, QRAUX, IPVT=IPVT, PIVOT=PIVOT)

! Accumulate Q

 CALL LQERR (QR, QRAUX, Q)

! Permute Y

 CALL PERMU (Y, IPVT, Y)

! R is the upper trapezoidal part of QR

 R = 0.0E0

 DO 10 J=1, NCOL

 CALL SCOPY (MIN0(J,NROW), QR(:,J), 1, R(:,J), 1)

 10 CONTINUE

! Update Q and R

 ALPHA = 1.0

 IPATH = 01

 CALL LUPQR (ALPHA, W, Y, R, IPATH, RNEW, Q=Q, QNEW=QNEW)

! Compute AQR = Q*R

 CALL MRRRR (QNEW, RNEW, AQR)

! Print results

 CALL WRIRN (‘IPVT‘, IPVT, 1, NCOL,1)

 CALL WRRRN (‘QNEW‘, QNEW)

 CALL WRRRN (‘RNEW‘, RNEW)

 CALL WRRRN (‘QNEW*RNEW‘, AQR)

 END

Output

 IPVT

 1 2 3

 3 2 1

 QNEW

 1 2 3 4

1 -0.0620 -0.5412 0.8082 -0.2236

2 -0.2234 -0.6539 -0.2694 0.6708

3 -0.4840 -0.3379 -0.4490 -0.6708

4 -0.8438 0.4067 0.2694 0.2236

 RNEW

 1 2 3

1 -80.59 -21.34 -17.62

2 0.00 -4.94 -4.83

3 0.00 0.00 0.36

4 0.00 0.00 0.00

 QNEW*RNEW

 1 2 3

1 5.00 4.00 4.00

2 18.00 8.00 7.00

3 39.00 12.00 10.00

4 68.00 16.00 13.00

494 Chapter 1: Linear Systems IMSL MATH LIBRARY

LCHRG
Computes the Cholesky decomposition of a symmetric positive definite matrix with optional

column pivoting.

Required Arguments

A — N by N symmetric positive definite matrix to be decomposed. (Input)

Only the upper triangle of A is referenced.

FACT — N by N matrix containing the Cholesky factor of the permuted matrix in its upper

triangle. (Output)

If A is not needed, A and FACT can share the same storage locations.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

PIVOT — Logical variable. (Input)

PIVOT = .TRUE. means column pivoting is done. PIVOT = .FALSE. means no

pivoting is done.

Default: PIVOT = .TRUE.

IPVT — Integer vector of length N containing information that controls the selection of the

pivot columns. (Input/Output)

On input, if IPVT(K) > 0, then the K-th column of A is an initial column; if

IPVT(K) = 0, then the K-th column of A is a free column; if IPVT(K) < 0, then the K-th

column of A is a final column. See Comments. On output, IPVT(K) contains the index

of the diagonal element of A that was moved into the K-th position. IPVT is only

referenced when PIVOT is equal to .TRUE..

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LCHRG (A, FACT [,…])

Specific: The specific interface names are S_LCHRG and D_LCHRG.

IMSL MATH LIBRARY Chapter 1: Linear Systems 495

FORTRAN 77 Interface

Single: CALL LCHRG (N, A, LDA, PIVOT, IPVT, FACT, LDFACT)

Double: The double precision name is DLCHRG.

Description

Routine LCHRG is based on the LINPACK routine SCHDC; see Dongarra et al. (1979).

Before the decomposition is computed, initial elements are moved to the leading part of A and

final elements to the trailing part of A. During the decomposition only rows and columns

corresponding to the free elements are moved. The result of the decomposition is an upper

triangular matrix R and a permutation matrix P that satisfy P
T

AP = R
T

R, where P is represented

by IPVT.

Comments

1. Informational error

Type Code

4 1 The input matrix is not positive definite.

2. Before the decomposition is computed, initial elements are moved to the leading part

of A and final elements to the trailing part of A. During the decomposition only rows

and columns corresponding to the free elements are moved. The result of the

decomposition is an upper triangular matrix R and a permutation matrix P that satisfy

P
T

AP = R
T

R, where P is represented by IPVT.

3. LCHRG can be used together with subroutines PERMU and LSLDS to solve the positive

definite linear system AX = B with the solution X overwriting the right-hand side B as

follows:

 CALL ISET (N, 0, IPVT, 1)

CALL LCHRG (A, FACT, N, LDA,.TRUE, IPVT, LDFACT)

CALL PERMU (B, IPVT, B, N, 1)

CALL LSLDS (FACT, B, B, N, LDFACT)

CALL PERMU (B, IPVT, B, N, 2)

Example

Routine LCHRG can be used together with the IMSL routines PERMU (see Chapter 11) and LFSDS

to solve a positive definite linear system Ax = b. Since A = PR
T

RP, the system Ax = b is equivalent

to R
T

R(Px) = Pb. LFSDS is used to solve R
T

Ry = Pb for y. The routine PERMU is used to compute

both Pb and x = Py.

 USE IMSL_LIBRARIES

! Declare variables

 PARAMETER (N=3, LDA=N, LDFACT=N)

 INTEGER IPVT(N)

 REAL A(LDA,N), FACT(LDFACT,N), B(N), X(N)

496 Chapter 1: Linear Systems IMSL MATH LIBRARY

 LOGICAL PIVOT

!

! Set values for A and B

!

! A = (1 -3 2)

! (-3 10 -5)

! (2 -5 6)

!

! B = (27 -78 64)

!

 DATA A/1.,-3.,2.,-3.,10.,-5.,2.,-5.,6./

 DATA B/27.,-78.,64./

! Pivot using all columns

 PIVOT = .TRUE.

 IPVT = 0

! Compute Cholesky factorization

 CALL LCHRG (A, FACT, PIVOT=PIVOT, IPVT=IPVT)

! Permute B and store in X

 CALL PERMU (B, IPVT, X, IPATH=1)

! Solve for X

 CALL LFSDS (FACT, X, X)

! Inverse permutation

 CALL PERMU (X, IPVT, X, IPATH=2)

! Print X

 CALL WRRRN (‘X‘, X, 1, N, 1)

!

 END

Output

 X

 1 2 3

1.000 -4.000 7.000

LUPCH

Updates the R
T

R Cholesky factorization of a real symmetric positive definite matrix after a rank-

one matrix is added.

Required Arguments

R — N by N upper triangular matrix containing the upper triangular factor to be updated.

(Input)

Only the upper triangle of R is referenced.

X — Vector of length N determining the rank-one matrix to be added to the factorization

R
T

R. (Input)

RNEW — N by N upper triangular matrix containing the updated triangular factor of

R
T

R + XX
T
. (Output)

IMSL MATH LIBRARY Chapter 1: Linear Systems 497

Only the upper triangle of RNEW is referenced. If R is not needed, R and RNEW can share

the same storage locations.

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (R,2).

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDR = size (R,1).

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDRNEW = size (RNEW,1).

CS — Vector of length N containing the cosines of the rotations. (Output)

SN — Vector of length N containing the sines of the rotations. (Output)

FORTRAN 90 Interface

Generic: CALL LUPCH (R, X, RNEW [,…])

Specific: The specific interface names are S_LUPCH and D_LUPCH.

FORTRAN 77 Interface

Single: CALL LUPCH (N, R, LDR, X, RNEW, LDRNEW, CS, SN)

Double: The double precision name is DLUPCH.

Description

The routine LUPCH is based on the LINPACK routine SCHUD; see Dongarra et al. (1979).

The Cholesky factorization of a matrix is A = R
T

R, where R is an upper triangular matrix. Given

this factorization, LUPCH computes the factorization

T TA xx R R

In the program

R

is called RNEW.

LUPCH determines an orthogonal matrix U as the product GN…G1 of Givens rotations, such that

498 Chapter 1: Linear Systems IMSL MATH LIBRARY

0T

R R
U

x

By multiplying this equation by its transpose, and noting that U
T

U = I, the desired result

T T TR R xx R R

is obtained.

Each Givens rotation, Gi, is chosen to zero out an element in x
T
. The matrix

Gi is (N + 1) × (N + 1) and has the form

1 0 0 0

0 0

0 0 0

0 0

i

i i
i

N i

i i

I

c s
G

I

s c

Where Ik is the identity matrix of order k and ci = cosθi = CS(I), si = sinθi = SN(I) for some θi.

Example

A linear system Az = b is solved using the Cholesky factorization of A. This factorization is then

updated and the system (A + xx
T
) z = b is solved using this updated factorization.

 USE IMSL_LIBRARIES

! Declare variables

 INTEGER LDA, LDFACT, N

 PARAMETER (LDA=3, LDFACT=3, N=3)

 REAL A(LDA,LDA), FACT(LDFACT,LDFACT), FACNEW(LDFACT,LDFACT), &

 X(N), B(N), CS(N), SN(N), Z(N)

!

! Set values for A

! A = (1.0 -3.0 2.0)

! (-3.0 10.0 -5.0)

! (2.0 -5.0 6.0)

!

 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

!

! Set values for X and B

 DATA X/3.0, 2.0, 1.0/

 DATA B/53.0, 20.0, 31.0/

! Factor the matrix A

 CALL LFTDS (A, FACT)

! Solve the original system

 CALL LFSDS (FACT, B, Z)

! Print the results

 CALL WRRRN (‘FACT‘, FACT, ITRING=1)

 CALL WRRRN (‘Z‘, Z, 1, N, 1)

! Update the factorization

 CALL LUPCH (FACT, X, FACNEW)

IMSL MATH LIBRARY Chapter 1: Linear Systems 499

! Solve the updated system

 CALL LFSDS (FACNEW, B, Z)

! Print the results

 CALL WRRRN (‘FACNEW‘, FACNEW, ITRING=1)

 CALL WRRRN (‘Z‘, Z, 1, N, 1)

!

 END

Output

 FACT

 1 2 3

1 1.000 -3.000 2.000

2 1.000 1.000

3 1.000

 Z

 1 2 3

1860.0 433.0 -254.0

 FACNEW

 1 2 3

1 3.162 0.949 1.581

2 3.619 -1.243

3 -1.719

 Z

 1 2 3

4.000 1.000 2.000

LDNCH

Downdates the R
T

R Cholesky factorization of a real symmetric positive definite matrix after a

rank-one matrix is removed.

Required Arguments

R — N by N upper triangular matrix containing the upper triangular factor to be downdated.

(Input)

Only the upper triangle of R is referenced.

X — Vector of length N determining the rank-one matrix to be subtracted from the

factorization R
T

R. (Input)

RNEW — N by N upper triangular matrix containing the downdated triangular factor of

R
T

R − X X
T
. (Output)

Only the upper triangle of RNEW is referenced. If R is not needed, R and RNEW can share

the same storage locations.

500 Chapter 1: Linear Systems IMSL MATH LIBRARY

Optional Arguments

N — Order of the matrix. (Input)

Default: N = size (R,2).

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDR = size (R,1).

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDRNEW = size (RNEW,1).

CS — Vector of length N containing the cosines of the rotations. (Output)

SN — Vector of length N containing the sines of the rotations. (Output)

FORTRAN 90 Interface

Generic: CALL LDNCH (R, X, RNEW [,…])

Specific: The specific interface names are S_LDNCH and D_LDNCH.

FORTRAN 77 Interface

Single: CALL LDNCH (N, R, LDR, X, RNEW, LDRNEW, CS, SN)

Double: The double precision name is DLDNCH.

Description

The routine LDNCH is based on the LINPACK routine SCHDD; see Dongarra et al. (1979).

The Cholesky factorization of a matrix is A = R
T

R, where R is an upper triangular matrix. Given

this factorization, LDNCH computes the factorization

T TA xx R R

In the program

R

is called RNEW. This is not always possible, since A − xx
T
 may not be positive definite.

LDNCH determines an orthogonal matrix U as the product GN …G1of Givens rotations, such that

0 T
RR

U
x

IMSL MATH LIBRARY Chapter 1: Linear Systems 501

By multiplying this equation by its transpose and noting that U
T

U = I, the desired result

T T TR R xx R R

is obtained.

Let a be the solution of the linear system R
T

a = x and let

2

2
1 a

The Givens rotations, Gi, are chosen such that

1

0
1N

a
G G

The Gi are (N + 1) × (N + 1) matrices of the form

1 0 0 0

0 0

0 0 0

0 0

i

i i
i

N i

i i

I

c s
G

I

s c

where Ik is the identity matrix of order k; and ci= cosθi = CS(I), si= sinθi = SN(I) for some θi.

The Givens rotations are then used to form

1,
0

N T

RR
R G G

x

The matrix

R

is upper triangular and

x x

because

0

0 0 1
T T T Ta a

x R R U U R x x

Comments

Informational error

Type Code

4 1 R
T
R − X X

T
 is not positive definite. R cannot be downdated.

502 Chapter 1: Linear Systems IMSL MATH LIBRARY

Example

A linear system Az = b is solved using the Cholesky factorization of A. This factorization is then

downdated, and the system (A − xx
T
)z = b is solved using this downdated factorization.

 USE LDNCH_INT

 USE LFTDS_INT

 USE LFSDS_INT

 USE WRRRN_INT

! Declare variables

 INTEGER LDA, LDFACT, N

 PARAMETER (LDA=3, LDFACT=3, N=3)

 REAL A(LDA,LDA), FACT(LDFACT,LDFACT), FACNEW(LDFACT,LDFACT), &

 X(N), B(N), CS(N), SN(N), Z(N)

!

! Set values for A

! A = (10.0 3.0 5.0)

! (3.0 14.0 -3.0)

! (5.0 -3.0 7.0)

!

 DATA A/10.0, 3.0, 5.0, 3.0, 14.0, -3.0, 5.0, -3.0, 7.0/

!

! Set values for X and B

 DATA X/3.0, 2.0, 1.0/

 DATA B/53.0, 20.0, 31.0/

! Factor the matrix A

 CALL LFTDS (A, FACT)

! Solve the original system

 CALL LFSDS (FACT, B, Z)

! Print the results

 CALL WRRRN (‘FACT‘, FACT, ITRING=1)

 CALL WRRRN (‘Z‘, Z, 1, N, 1)

! Downdate the factorization

 CALL LDNCH (FACT, X, FACNEW)

! Solve the updated system

 CALL LFSDS (FACNEW, B, Z)

! Print the results

 CALL WRRRN (‘FACNEW‘, FACNEW, ITRING=1)

 CALL WRRRN (‘Z‘, Z, 1, N, 1)

!

 END

Output

 FACT

 1 2 3

1 3.162 0.949 1.581

2 3.619 -1.243

3 1.719

 Z

 1 2 3

 4.000 1.000 2.000

 FACNEW

 1 2 3

IMSL MATH LIBRARY Chapter 1: Linear Systems 503

1 1.000 -3.000 2.000

2 1.000 1.000

3 1.000

 Z

 1 2 3

1859.9 433.0 -254.0

LSVRR

Computes the singular value decomposition of a real matrix.

Required Arguments

A — NRA by NCA matrix whose singular value decomposition is to be computed. (Input)

IPATH — Flag used to control the computation of the singular vectors. (Input)

IPATH has the decimal expansion IJ such that:

I = 0 means do not compute the left singular vectors;

I = 1 means return the NRA left singular vectors in U;

NOTE: This option is not available for the ScaLAPACK interface. If this option is

chosen for ScaLAPACK usage, the min(NRA, NCA) left singular vectors will be

returned.

I = 2 means return only the min(NRA, NCA) left singular vectors in U;

J = 0 means do not compute the right singular vectors,

J = 1 means return the right singular vectors in V.

 For example, IPATH = 20 means I = 2 and J = 0.

S — Vector of length min(NRA + 1, NCA) containing the singular values of A in descending

order of magnitude in the first min(NRA, NCA) positions. (Output)

Optional Arguments

NRA — Number of rows in the matrix A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns in the matrix A. (Input)

Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

504 Chapter 1: Linear Systems IMSL MATH LIBRARY

TOL — Scalar containing the tolerance used to determine when a singular value is negligible.

(Input)

If TOL is positive, then a singular value σi considered negligible if σi ≤ TOL . If TOL is

negative, then a singular value σi considered negligible if σi ≤ |TOL| * ||A||∞. In this

case, |TOL| generally contains an estimate of the level of the relative error in the data.

Default: TOL = 1.0e-5 for single precision and 1.0d-10 for double precision.

IRANK — Scalar containing an estimate of the rank of A. (Output)

U — NRA by NCU matrix containing the left singular vectors of A. (Output)

NCU must be equal to NRA if I is equal to 1. NCU must be equal to min(NRA, NCA) if I is

equal to 2. U will not be referenced if I is equal to zero. If NRA is less than or equal to

NCU, then U can share the same storage locations as A. See Comments.

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDU = size (U,1).

V — NCA by NCA matrix containing the right singular vectors of A. (Output)

V will not be referenced if J is equal to zero. V can share the same storage location as

A, however, U and V cannot both coincide with A simultaneously.

LDV — Leading dimension of V exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDV = size (V,1).

FORTRAN 90 Interface

Generic: CALL LSVRR (A, IPATH, S [,…])

Specific: The specific interface names are S_LSVRR and D_LSVRR.

FORTRAN 77 Interface

Single: CALL LSVRR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV)

Double: The double precision name is DLSVRR.

ScaLAPACK Interface

Generic: CALL LSVRR (A0, IPATH, S [,…])

Specific: The specific interface names are S_LSVRR and D_LSVRR.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

IMSL MATH LIBRARY Chapter 1: Linear Systems 505

Description

The underlying code of routine LSVRR is based on either LINPACK , LAPACK, or ScaLAPACK

code depending upon which supporting libraries are used during linking. For a detailed

explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction

section of this manual.

Let n = NRA (the number of rows in A) and let p = NCA (the number of columns in A). For any

n × p matrix A, there exists an n × n orthogonal matrix U and a p × p orthogonal matrix V such

that

if
0

0 if

T
n p

U AV

n p

where ∑ = diag(σ1, …, σm), and m = min(n, p). The scalars σ1 ≥ σ2 ≥… ≥ σm ≥ 0 are called the

singular values of A. The columns of U are called the left singular vectors of A. The columns of V

are called the right singular vectors of A.

The estimated rank of A is the number of σk that is larger than a tolerance η. If τ is the parameter

TOL in the program, then

if > 0

if < 0A

Comments

1. Workspace may be explicitly provided, if desired, by use of L2VRR/DL2VRR. The

reference is:

CALL L2VRR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV,

ACOPY, WK)

The additional arguments are as follows:

ACOPY — NRA × NCA work array for the matrix A. If A is not needed, then A

and ACOPY may share the same storage locations.

WK — Work vector of length NRA + NCA + max(NRA, NCA) − 1.

2. Informational error

Type Code

4 1 Convergence cannot be achieved for all the singular values and their

corresponding singular vectors.

3. When NRA is much greater than NCA, it might not be reasonable to store the whole

matrix U. In this case, IPATH with I = 2 allows a singular value factorization of A to be

506 Chapter 1: Linear Systems IMSL MATH LIBRARY

computed in which only the first NCA columns of U are computed, and in many

applications those are all that are needed.

4. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2VRR the leading dimension of ACOPY is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSVRR.

Additional memory allocation for ACOPY and option value restoration are done

automatically in LSVRR. Users directly calling L2VRR can allocate additional

space for ACOPY and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

applications that use LSVRR or L2VRR. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSVRR temporarily replaces IVAL(2) by IVAL(1). The

routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG

skips this computation. LSVRR restores the option. Default values for the option

are IVAL(*) = 1, 2.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A.

A contains the matrix whose singular value decomposition is to be computed. (Input)

U0 — MXLDU by MXCOLU local matrix containing the local portions of the left singular

vectors of the distributed matrix A. (Output)

U0 will not be referenced if I is equal to zero. If NRA is less than or equal to NCU, then

U0 can share the same storage locations as A0. See Comments.

V0 — MXLDV by MXCOLV local matrix containing the local portions of the right singular

vectors of the distributed matrix A. (Output)

V0 will not be referenced if J is equal to zero. V0 can share the same storage location

as A0, however, U0 and V0 cannot both coincide with A0 simultaneously.

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA, MXCOL, MXLDU, MXCOLU, MXLDV and MXCOLV

can be obtained through a call to ScaLAPACK_GETDIM (Chapter 11, ―Utilities‖) after a call to

ScaLAPACK_SETUP (Chapter 11, ―Utilities‖) has been made. See the ScaLAPACK Example

below.

IMSL MATH LIBRARY Chapter 1: Linear Systems 507

Example

This example computes the singular value decomposition of a 6 × 4 matrix A. The matrices U and

V containing the left and right singular vectors, respectively, and the diagonal of ∑, containing

singular values, are printed. On some systems, the signs of some of the columns of U and V may

be reversed.

 USE IMSL_LIBRARIES

! Declare variables

 PARAMETER (NRA=6, NCA=4, LDA=NRA, LDU=NRA, LDV=NCA)

 REAL A(LDA,NCA), U(LDU,NRA), V(LDV,NCA), S(NCA)

!

! Set values for A

!

! A = (1 2 1 4)

! (3 2 1 3)

! (4 3 1 4)

! (2 1 3 1)

! (1 5 2 2)

! (1 2 2 3)

!

 DATA A/1., 3., 4., 2., 1., 1., 2., 2., 3., 1., 5., 2., 3*1., &

 3., 2., 2., 4., 3., 4., 1., 2., 3./

!

! Compute all singular vectors

 IPATH = 11

 TOL = AMACH(4)

 TOL = 10.*TOL

 CALL LSVRR(A, IPATH, S, TOL=TOL, IRANK=IRANK, U=U, V=V)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT, *) ‘IRANK = ‘, IRANK

 CALL WRRRN (‘U‘, U, NRA, NCA)

 CALL WRRRN (‘S‘, S, 1, NCA, 1)

 CALL WRRRN (‘V‘, V)

!

 END

Output

IRANK = 4

 U

 1 2 3 4

1 -0.3805 0.1197 0.4391 -0.5654

2 -0.4038 0.3451 -0.0566 0.2148

3 -0.5451 0.4293 0.0514 0.4321

4 -0.2648 -0.0683 -0.8839 -0.2153

5 -0.4463 -0.8168 0.1419 0.3213

6 -0.3546 -0.1021 -0.0043 -0.5458

 S

 1 2 3 4

 11.49 3.27 2.65 2.09

 V

 1 2 3 4

508 Chapter 1: Linear Systems IMSL MATH LIBRARY

1 -0.4443 0.5555 -0.4354 0.5518

2 -0.5581 -0.6543 0.2775 0.4283

3 -0.3244 -0.3514 -0.7321 -0.4851

4 -0.6212 0.3739 0.4444 -0.5261

ScaLAPACK Example

The previous example is repeated here as a distributed example. This example computes the

singular value decomposition of a 6 × 4 matrix A. The matrices U and V containing the left and

right singular vectors, respectively, and the diagonal of S, containing singular values, are printed.

On some systems, the signs of some of the columns of U and V may be reversed..

 USE MPI_SETUP_INT

 USE IMSL_LIBRARIES

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER KBASIS, LDA, LDQR, NCA, NRA, DESCA(9), DESCU(9), &

 DESCV(9), MXLDV, MXCOLV, NSZ, MXLDU, MXCOLU

 INTEGER INFO, MXCOL, MXLDA, LDU, LDV, IPATH, IRANK

 REAL TOL, AMACH

 REAL, ALLOCATABLE :: A(:,:),U(:,:), V(:,:), S(:)

 REAL, ALLOCATABLE :: A0(:,:), U0(:,:), V0(:,:), S0(:)

 PARAMETER (NRA=6, NCA=4, LDA=NRA, LDU=NRA, LDV=NCA)

 NSZ = MIN(NRA,NCA)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,NCA), U(LDU,NCA), V(LDV,NCA), S(NCA))

! Set values for A

 A(1,:) = (/ 1.0, 2.0, 1.0, 4.0/)

 A(2,:) = (/ 3.0, 2.0, 1.0, 3.0/)

 A(3,:) = (/ 4.0, 3.0, 1.0, 4.0/)

 A(4,:) = (/ 2.0, 1.0, 3.0, 1.0/)

 A(5,:) = (/ 1.0, 5.0, 2.0, 2.0/)

 A(6,:) = (/ 1.0, 2.0, 2.0, 3.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(NRA, NCA, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! MXCOL, MXLDU, MXCOLU, MXLDV, AND MXCOLV

 CALL SCALAPACK_GETDIM(NRA, NCA, MP_MB, MP_NB, MXLDA, MXCOL)

 CALL SCALAPACK_GETDIM(NRA, NSZ, MP_MB, MP_NB, MXLDU, MXCOLU)

 CALL SCALAPACK_GETDIM(NSZ, NCA, MP_MB, MP_NB, MXLDV, MXCOLV)

! Set up the array descriptors

 CALL DESCINIT(DESCA, NRA, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDA, INFO)

 CALL DESCINIT(DESCU, NRA, NSZ, MP_MB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDU, INFO)

 CALL DESCINIT(DESCV, NSZ, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDV, INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), U0(MXLDU,MXCOLU), V0(MXLDV,MXCOLV), S(NCA))

IMSL MATH LIBRARY Chapter 1: Linear Systems 509

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Compute all singular vectors

 IPATH = 11

 TOL = AMACH(4)

 TOL = 10. * TOL

 CALL LSVRR (A0, IPATH, S, TOL=TOL, IRANK=IRANK, U=U0, V=V0)

! Unmap the results from the distributed

! array back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(U0, DESCU, U)

 CALL SCALAPACK_UNMAP(V0, DESCV, V)

! Print results.

! Only Rank=0 has the solution.

 IF(MP_RANK .EQ. 0) THEN

 CALL WRRRN (‘U‘, U, NRA, NCA)

 CALL WRRRN (‘S‘, S, 1, NCA, 1)

 CALL WRRRN (‘V‘, V)

 ENDIF

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

IRANK = 4

 U

 1 2 3 4

1 -0.3805 0.1197 0.4391 -0.5654

2 -0.4038 0.3451 -0.0566 0.2148

3 -0.5451 0.4293 0.0514 0.4321

4 -0.2648 -0.0683 -0.8839 -0.2153

5 -0.4463 -0.8168 0.1419 0.3213

6 -0.3546 -0.1021 -0.0043 -0.5458

 S

 1 2 3 4

 11.49 3.27 2.65 2.09

 V

 1 2 3 4

1 -0.4443 0.5555 -0.4354 0.5518

2 -0.5581 -0.6543 0.2775 0.4283

3 -0.3244 -0.3514 -0.7321 -0.4851

4 -0.6212 0.3739 0.4444 -0.5261

510 Chapter 1: Linear Systems IMSL MATH LIBRARY

LSVCR

Computes the singular value decomposition of a complex matrix.

Required Arguments

A — Complex NRA by NCA matrix whose singular value decomposition is to be computed.

(Input)

IPATH — Integer flag used to control the computation of the singular vectors. (Input)

IPATH has the decimal expansion IJ such that:

I=0 means do not compute the left singular vectors;

I=1 means return the NCA left singular vectors in U;

I=2 means return only the min(NRA, NCA) left singular vectors in U;

J=0 means do not compute the right singular vectors;

J=1 means return the right singular vectors in V.

For example, IPATH = 20 means I = 2 and J = 0.

S — Complex vector of length min(NRA + 1, NCA) containing the singular values of A in

descending order of magnitude in the first min(NRA, NCA) positions. (Output)

Optional Arguments

NRA — Number of rows in the matrix A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns in the matrix A. (Input)

Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

TOL — Real scalar containing the tolerance used to determine when a singular value is

negligible. (Input)

If TOL is positive, then a singular value SI is considered negligible if SI ≤ TOL . If

TOL is negative, then a singular value SI is considered negligible if

SI ≤ ǀTOLǀ*(Infinity norm of A). In this case ǀTOLǀ should generally contain an

estimate of the level of relative error in the data.

Default: TOL = 1.0e-5 for single precision and 1.0d-10 for double precision.

IMSL MATH LIBRARY Chapter 1: Linear Systems 511

IRANK — Integer scalar containing an estimate of the rank of A. (Output)

U — Complex NRA by NRA if I = 1 or NRA by min(NRA, NCA) if I = 2 matrix containing the

left singular vectors of A. (Output)

U will not be referenced if I is equal to zero. If NRA is less than or equal to NCA or

IPATH = 2, then U can share the same storage locations as A.

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDU = size (U,1).

V — Complex NCA by NCA matrix containing the right singular vectors of A. (Output)

V will not be referenced if J is equal to zero. If NCA is less than or equal to NRA, then V

can share the same storage locations as A; however U and V cannot both coincide with A

simultaneously.

LDV — Leading dimension of V exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDV = size (V,1).

FORTRAN 90 Interface

Generic: CALL LSVCR (A, IPATH, S [,…])

Specific: The specific interface names are S_LSVCR and D_LSVCR.

FORTRAN 77 Interface

Single: CALL LSVCR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV)

Double: The double precision name is DLSVCR.

Description

The underlying code of routine LSVCR is based on either LINPACK or LAPACK code depending

upon which supporting libraries are used during linking. For a detailed explanation see “Using

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Let n = NRA (the number of rows in A) and let p = NCA (the number of columns in A).For any n ×

p matrix A there exists an n × n orthogonal matrix U and a p × p orthogonal matrix V such that

if
0

0 if

T
n p

U AV

n p

512 Chapter 1: Linear Systems IMSL MATH LIBRARY

where ∑ = diag(σ1, …, σm), and m = min(n, p). The scalars σ1 ≥ σ2 ≥ … ≥ 0 are called the

singular values of A. The columns of U are called the left singular vectors of A. The columns of V

are called the right singular vectors of A.

The estimated rank of A is the number of σk which are larger than a tolerance η. If τ is the

parameter TOL in the program, then

if > 0

if < 0A

Comments

1. Workspace may be explicitly provided, if desired, by use of L2VCR/DL2VCR. The

reference is

CALL L2VCR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV,

ACOPY, WK)

The additional arguments are as follows:

ACOPY — NRA * NCA complex work array of length for the matrix A. If A is

not needed, then A and ACOPY can share the same storage locations.

WK — Complex work vector of length NRA + NCA + max(NRA, NCA) 1.

2. Informational error

Type Code

4 1 Convergence cannot be achieved for all the singular values and their

corresponding singular vectors.

3. When NRA is much greater than NCA, it might not be reasonable to store the whole

matrix U. In this case IPATH with I = 2 allows a singular value factorization of A to be

computed in which only the first NCA columns of U are computed, and in many

applications those are all that are needed.

4. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)

problems. In routine L2VCR the leading dimension of ACOPY is increased by

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSVCR.

Additional memory allocation for ACOPY and option value restoration are done

automatically in LSVCR. Users directly calling L2VCR can allocate additional

space for ACOPY and set IVAL(3) and IVAL(4) so that memory bank conflicts no

longer cause inefficiencies. There is no requirement that users change existing

IMSL MATH LIBRARY Chapter 1: Linear Systems 513

applications that use LSVCR or L2VCR. Default values for the option are

IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition number is to be

computed. Routine LSVCR temporarily replaces IVAL(2) by IVAL(1). The

routine L2CCG computes the condition number if IVAL(2) = 2. Otherwise L2CCG

skips this computation. LSVCR restores the option. Default values for the option

are IVAL(*) = 1, 2.

Example

This example computes the singular value decomposition of a 6 × 3 matrix A. The matrices U and

V containing the left and right singular vectors, respectively, and the diagonal of ∑, containing

singular values, are printed. On some systems, the signs of some of the columns of U and V may

be reversed.

 USE IMSL_LIBRARIES

! Declare variables

 PARAMETER (NRA=6, NCA=3, LDA=NRA, LDU=NRA, LDV=NCA)

 COMPLEX A(LDA,NCA), U(LDU,NRA), V(LDV,NCA), S(NCA)

!

! Set values for A

!

! A = (1+2i 3+2i 1-4i)

! (3-2i 2-4i 1+3i)

! (4+3i -2+1i 1+4i)

! (2-1i 3+0i 3-1i)

! (1-5i 2-5i 2+2i)

! (1+2i 4-2i 2-3i)

!

 DATA A/(1.0,2.0), (3.0,-2.0), (4.0,3.0), (2.0,-1.0), (1.0,-5.0), &

 (1.0,2.0), (3.0,2.0), (2.0,-4.0), (-2.0,1.0), (3.0,0.0), &

 (2.0,-5.0), (4.0,-2.0), (1.0,-4.0), (1.0,3.0), (1.0,4.0), &

 (3.0,-1.0), (2.0,2.0), (2.0,-3.0)/

!

! Compute all singular vectors

 IPATH = 11

 TOL = AMACH(4)

 TOL = 10. * TOL

 CALL LSVCR(A, IPATH, S, TOL = TOL, IRANK=IRANK, U=U, V=V)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT, *) ‘IRANK = ‘, IRANK

 CALL WRCRN (‘U‘, U, NRA, NCA)

 CALL WRCRN (‘S‘, S, 1, NCA, 1)

 CALL WRCRN (‘V‘, V)

!

 END

Output

IRANK = 3

514 Chapter 1: Linear Systems IMSL MATH LIBRARY

 U

 1 2 3

1 (0.1968, 0.2186) (0.5011, 0.0217) (-0.2007,-0.1003)

2 (0.3443,-0.3542) (-0.2933, 0.0248) (0.1155,-0.2338)

3 (0.1457, 0.2307) (-0.5424, 0.1381) (-0.4361,-0.4407)

4 (0.3016,-0.0844) (0.2157, 0.2659) (-0.0523,-0.0894)

5 (0.2283,-0.6008) (-0.1325, 0.1433) (0.3152,-0.0090)

6 (0.2876,-0.0350) (0.4377,-0.0400) (0.0458,-0.6205)

 S

 1 2 3

(11.77, 0.00) (9.30, 0.00) (4.99, 0.00)

 V

 1 2 3

1 (0.6616, 0.0000) (-0.2651, 0.0000) (-0.7014, 0.0000)

2 (0.7355, 0.0379) (0.3850,-0.0707) (0.5482, 0.0624)

3 (0.0507,-0.1317) (0.1724, 0.8642) (-0.0173,-0.4509)

LSGRR

Computes the generalized inverse of a real matrix.

Required Arguments

A — NRA by NCA matrix whose generalized inverse is to be computed. (Input)

GINVA — NCA by NRA matrix containing the generalized inverse of A. (Output)

Optional Arguments

NRA — Number of rows in the matrix A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns in the matrix A. (Input)

Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

TOL — Scalar containing the tolerance used to determine when a singular value (from the

singular value decomposition of A) is negligible. (Input)

If TOL is positive, then a singular value σi considered negligible if σi ≤ TOL . If TOL is

IMSL MATH LIBRARY Chapter 1: Linear Systems 515

negative, then a singular value σi considered negligible if σi ≤ |TOL| * ||A||∞. In this

case, |TOL| generally contains an estimate of the level of the relative error in the data.

Default: TOL = 1.0e-5 for single precision and 1.0d-10 for double precision.

IRANK — Scalar containing an estimate of the rank of A. (Output)

LDGINV — Leading dimension of GINVA exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDGINV = size (GINV,1).

FORTRAN 90 Interface

Generic: CALL LSGRR (A, GINVA [,…])

Specific: The specific interface names are S_LSGRR and D_LSGRR.

FORTRAN 77 Interface

Single: CALL LSGRR (NRA, NCA, A, LDA, TOL, IRANK, GINVA, LDGINV)

Double: The double precision name is DLSGRR.

ScaLAPACK Interface

Generic: CALL LSGRR (A0, GINVA0 [,…])

Specific: The specific interface names are S_LSGRR and D_LSGRR.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Let k = IRANK, the rank of A; let n = NRA, the number of rows in A; let p = NCA, the number of

columns in A; and let

† GINVA

be the generalized inverse of A.

To compute the Moore-Penrose generalized inverse, the routine LSVRR is first used to compute

the singular value decomposition of A. A singular value decomposition of A consists of an n × n

orthogonal matrix U, a p × p orthogonal matrix V and a diagonal matrix ∑ = diag(σ1,…, σm),

m = min(n, p), such that U
T
 AV = [∑, 0] if n ≤ p and U

T
 AV = [∑, 0]

T
 if n ≥ p. Only the first p

columns of U are computed. The rank k is estimated by counting the number of nonnegligible σi.

The matrices U and V can be partitioned as U = (U1, U2) and V = (V1, V2) where both U1 and V1 are

k × k matrices. Let∑1 = diag(σ1, …, σk). The Moore-Penrose generalized inverse of A is

516 Chapter 1: Linear Systems IMSL MATH LIBRARY

† 1
1 1 1V TA U

The underlying code of routine LSGRR is based on either LINPACK, LAPACK, or ScaLAPACK

code depending upon which supporting libraries are used during linking. For a detailed

explanation see “Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction

section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2GRR/DL2GRR. The

reference is:

CALL L2GRR (NRA, NCA, A, LDA, TOL, IRANK, GINVA, LDGINV,

WKA, WK)

The additional arguments are as follows:

WKA — Work vector of length NRA * NCA used as workspace for the matrix

A. If A is not needed, WKA and A can share the same storage locations.

WK — Work vector of length LWK where LWK is equal to

NRA
2
 + NCA

2
 + min(NRA + 1, NCA) + NRA + NCA + max(NRA, NCA) − 2.

2. Informational error

Type Code

4 1 Convergence cannot be achieved for all the singular values and their

corresponding singular vectors.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed

matrix A. A contains the matrix for which the generalized inverse is to be computed.

(Input)

GINVA0 — MXLDG by MXCOLG local matrix containing the local portions of the distributed

matrix GINVA. GINVA contains the generalized inverse of matrix A. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MXLDA, MXCOL, MXLDG, and MXCOLG can be

obtained through a call to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP

(see Chapter 11, Utilities) has been made. See the ScaLAPACK Example below.

Example

This example computes the generalized inverse of a 3 × 2 matrix A. The rank k = IRANK and the

inverse

IMSL MATH LIBRARY Chapter 1: Linear Systems 517

† GINVA

are printed.

 USE IMSL_LIBRARIES

! Declare variables

 PARAMETER (NRA=3, NCA=2, LDA=NRA, LDGINV=NCA)

 REAL A(LDA,NCA), GINV(LDGINV,NRA)

!

! Set values for A

!

! A = (1 0)

! (1 1)

! (100 -50)

! `

 DATA A/1., 1., 100., 0., 1., -50./

!

! Compute generalized inverse

 TOL = AMACH(4)

 TOL = 10.*TOL

 CALL LSGRR (A, GINV,TOL=TOL, IRANK=IRANK)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT, *) ‘IRANK = ‘, IRANK

 CALL WRRRN (‘GINV‘, GINV)

!

 END

Output

IRANK = 2

 GINV

 1 2 3

1 0.1000 0.3000 0.0060

2 0.2000 0.6000 -0.0080

ScaLAPACK Example

This example computes the generalized inverse of a 6 × 4 matrix A as a distributed example. The

rank k = IRANK and the inverse

† GINVA

are printed.

 USE MPI_SETUP_INT

 USE IMSL_LIBRARIES

 USE SCALAPACK_SUPPORT

 IMPLICIT NONE

 INCLUDE ‗mpif.h‘

! Declare variables

 INTEGER IRANK, LDA, NCA, NRA, DESCA(9), DESCG(9), &

 LDGINV, MXLDG, MXCOLG, NOUT

 INTEGER INFO, MXCOL, MXLDA

 REAL TOL, AMACH

518 Chapter 1: Linear Systems IMSL MATH LIBRARY

 REAL, ALLOCATABLE :: A(:,:),GINVA(:,:)

 REAL, ALLOCATABLE :: A0(:,:), GINVA0(:,:)

 PARAMETER (NRA=6, NCA=4, LDA=NRA, LDGINV=NCA)

! Set up for MPI

 MP_NPROCS = MP_SETUP()

 IF(MP_RANK .EQ. 0) THEN

 ALLOCATE (A(LDA,NCA), GINVA(NCA,NRA))

! Set values for A

 A(1,:) = (/ 1.0, 2.0, 1.0, 4.0/)

 A(2,:) = (/ 3.0, 2.0, 1.0, 3.0/)

 A(3,:) = (/ 4.0, 3.0, 1.0, 4.0/)

 A(4,:) = (/ 2.0, 1.0, 3.0, 1.0/)

 A(5,:) = (/ 1.0, 5.0, 2.0, 2.0/)

 A(6,:) = (/ 1.0, 2.0, 2.0, 3.0/)

 ENDIF

! Set up a 1D processor grid and define

! its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(NRA, NCA, .TRUE., .TRUE.)

! Get the array descriptor entities MXLDA,

! MXCOL, MXLDG, and MXCOLG

 CALL SCALAPACK_GETDIM(NRA, NCA, MP_MB, MP_NB, MXLDA, MXCOL)

 CALL SCALAPACK_GETDIM(NCA, NRA, MP_NB, MP_MB, MXLDG, MXCOLG)

! Set up the array descriptors

 CALL DESCINIT(DESCA, NRA, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, &

 INFO)

 CALL DESCINIT(DESCG, NCA, NRA, MP_NB, MP_MB, 0, 0, MP_ICTXT, MXLDG, &

 INFO)

! Allocate space for the local arrays

 ALLOCATE (A0(MXLDA,MXCOL), GINVA0(MXLDG,MXCOLG))

! Map input array to the processor grid

 CALL SCALAPACK_MAP(A, DESCA, A0)

! Compute the generalized inverse

 TOL = AMACH(4)

 TOL = 10. * TOL

 CALL LSGRR (A0, GINVA0, TOL=TOL, IRANK=IRANK)

! Unmap the results from the distributed

! array back to a non-distributed array.

! After the unmap, only Rank=0 has the full

! array.

 CALL SCALAPACK_UNMAP(GINVA0, DESCG, GINVA)

! Print results.

! Only Rank=0 has the solution, GINVA

 IF(MP_RANK .EQ. 0) THEN

 CALL UMACH (2, NOUT)

 WRITE (NOUT, *) ‗IRANK = ‗,IRANK

 CALL WRRRN (‗GINVA‘, GINVA)

 ENDIF

! Exit ScaLAPACK usage

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

IMSL MATH LIBRARY Chapter 1: Linear Systems 519

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 521

Chapter 2: Eigensystem Analysis

Routines

2.1. Eigenvalue Decomposition

2.1.1 Computes the eigenvalues of a self-adjoint
matrix, A ... LIN_EIG_SELF 526

2.1.2 Computes the eigenvalues of an n × n
matrix, A .. LIN_EIG_GEN 533

2.1.3 Computes the generalized eigenvalues of an

n × n matrix pencil, Av = Bv LIN_GEIG_GEN 542

2.2. Eigenvalues and (Optionally) Eigenvectors of Ax = x

2.2.1 Real General Problem Ax = x
All eigenvalues ... EVLRG 549
All eigenvalues and eigenvectors EVCRG 552
Performance index .. EPIRG 555

2.2.2 Complex General Problem Ax = x
All eigenvalues ... EVLCG 557
All eigenvalues and eigenvectors EVCCG 559
Performance index .. EPICG 562

2.2.3 Real Symmetric Problem Ax = x
All eigenvalues ..EVLSF 564
All eigenvalues and eigenvectors .. EVCSF 566
Extreme eigenvalues ... EVASF 568
Extreme eigenvalues and their eigenvectors EVESF 570
Eigenvalues in an interval .. EVBSF 573
Eigenvalues in an interval and their eigenvectors EVFSF 575
Performance index ...EPISF 578

2.2.4 Real Band Symmetric Matrices in Band Storage Mode
All eigenvalues ... EVLSB 580
All eigenvalues and eigenvectors .. EVCSB 582
Extreme eigenvalues ... EVASB 585
Extreme eigenvalues and their eigenvectors EVESB 588
Eigenvalues in an interval .. EVBSB 591
Eigenvalues in an interval and their eigenvectors EVFSB 593
Performance index .. EPISB 596

522 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

2.2.5 Complex Hermitian Matrices
All eigenvalues ... EVLHF 598
All eigenvalues and eigenvectors .. EVCHF 601
Extreme eigenvalues ... EVAHF 604
Extreme eigenvalues and their eigenvectors EVEHF 606
Eigenvalues in an interval ... EVBHF 609
Eigenvalues in an interval and their eigenvectors EVFHF 612
Performance index .. EPIHF 615

2.2.6 Real Upper Hessenberg Matrices
All eigenvalues .. EVLRH 617
All eigenvalues and eigenvectors .. EVCRH 619

2.2.7 Complex Upper Hessenberg Matrices
All eigenvalues .. EVLCH 621
All eigenvalues and eigenvectors .. EVCCH 623

2.3. Eigenvalues and (Optionally) Eigenvectors of Ax = Bx

2.3.1 Real General Problem Ax = Bx
All eigenvalues .. GVLRG 626
All eigenvalues and eigenvectors GVCRG 629
Performance index ... GPIRG 632

2.3.2 Complex General Problem Ax = Bx
All eigenvalues .. GVLCG 634
All eigenvalues and eigenvectors GVCCG 637
Performance index ... GPICG 640

2.3.3 Real Symmetric Problem Ax = Bx
All eigenvalues .. GVLSP 642
All eigenvalues and eigenvectors .. GVCSP 645
Performance index ... GPISP 648

2.4. Eigenvalues and Eigenvectors Computed with ARPACK
Fortran 2003 Usage ... 651
The Base Class .. ARPACKBASE 653

Real Symmetric Problem Ax = Bx ARPACK_SYMMETRIC 654
Real singular value decomposition AV = US ARPACK_SVD 668

Real General Problem Ax = Bx ARPACK_NONSYMMETRIC 676

Complex General Problem Ax = Bx ARPACK_COMPLEX 685

Usage Notes
This chapter includes routines for linear eigensystem analysis. Many of these are for matrices with

special properties. Some routines compute just a portion of the eigensystem. Use of the

appropriate routine can substantially reduce computing time and storage requirements compared to

computing a full eigensystem for a general complex matrix.

An ordinary linear eigensystem problem is represented by the equation Ax = x where A denotes

an n n matrix. The value is an eigenvalue and x ≠ 0 is the corresponding eigenvector. The

eigenvector is determined up to a scalar factor. In all routines, we have chosen this factor so that x

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 523

has Euclidean length with value one, and the component of x of smallest index and largest

magnitude is positive. In case x is a complex vector, this largest component is real and positive.

Similar comments hold for the use of the remaining Level 1 routines in the following tables in

those cases where the second character of the Level 2 routine name is no longer the character "2".

A generalized linear eigensystem problem is represented by Ax = Bx where A and B are n × n

matrices. The value is an eigenvalue, and x is the corresponding eigenvector. The eigenvectors

are normalized in the same manner as for the ordinary eigensystem problem. The linear

eigensystem routines have names that begin with the letter ―E‖. The generalized linear

eigensystem routines have names that begin with the letter ―G‖. This prefix is followed by a two-

letter code for the type of analysis that is performed. That is followed by another two-letter suffix

for the form of the coefficient matrix. The following tables summarize the names of the

eigensystem routines.

Symmetric and Hermitian Eigensystems

 Symmetric
Full

Symmetric
Band

Hermitian
Full

All eigenvalues EVLSF EVLSB EVLHF

All eigenvalues

and eigenvectors

EVCSF EVCSB EVCHF

Extreme eigenvalues EVASF EVASB EVAHF

Extreme eigenvalues

and eigenvectors

EVESF EVESB EVEHF

Eigenvalues in

an interval

EVBSF EVBSB EVBHF

Eigenvalues and

eigevectors in an interval

EVFSF EVFSB EVFHF

Performance index EPISF EPISB EPIHF

General Eigensystems

 Real
General

Complex
General

Real
Hessenberg

Complex
Hessenberg

All eigenvalues EVLRG EVLCG EVLRH EVLCH

All eigenvalues

and eigenvectors

EVCRG EVCCG EVCRH EVCCH

Performance

index

EPIRG EPICG EPIRG EPICG

524 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Generalized Eigensystems Ax = Bx

 Real
General

Complex
General

A Symmetric
B Positive

Definite

All eigenvalues GVLRG GVLCG GVLSP

All eigenvalues and

eigenvectors

GVCRG GVCCG GVCSP

Performance index GPIRG GPICG GPISP

Error Analysis and Accuracy

The remarks in this section are for the ordinary eigenvalue problem. Except in special cases,

routines will not return the exact eigenvalue-eigenvector pair for the ordinary eigenvalue problem

Ax = x. The computed pair

,x

is an exact eigenvector-eigenvalue pair for a ―nearby‖ matrix A + E. Information about E is known

only in terms of bounds of the form || E||2 ≤ (n) ||A||2 ε. The value of (n) depends on the

algorithm but is typically a small fractional power of n. The parameter ε is the machine precision.

By a theorem due to Bauer and Fike (see Golub and Van Loan [1989, page 342]),

2

min for all in AX E

where σ (A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of

eigenvectors, || ||2 is the 2-norm, and κ(X) is the condition number of X defined as

κ (X) = || X ||2 || X-1
 ||2. If A is a real symmetric or complex Hermitian matrix, then its eigenvector

matrix X is respectively orthogonal or unitary. For these matrices, κ(X) = 1.

The eigenvalues

j

and eigenvectors

jx

computed by EVC** can be checked by computing their performance index τ using EPI**. The

performance index is defined by Smith et al. (1976, pages 124− 126) to be

1

1
1 1

max
10

j j j

j n
j

Ax x

n A x

No significance should be attached to the factor of 10 used in the denominator. For a real vector x,

the symbol || x ||1 represents the usual 1-norm of x. For a complex vector x, the symbol || x ||1 is

defined by

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 525

 1
1

N

k k

k

x x x

The performance index τ is related to the error analysis because

2 2j j j jEx Ax x

where E is the ―nearby‖ matrix discussed above.

While the exact value of τ is machine and precision dependent, the performance of an eigensystem

analysis routine is defined as excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. This is an

arbitrary definition, but large values of τ can serve as a warning that there is a blunder in the

calculation. There are also similar routines GPI** to compute the performance index for

generalized eigenvalue problems.

If the condition number κ(X) of the eigenvector matrix X is large, there can be large errors in the

eigenvalues even if τ is small. In particular, it is often difficult to recognize near multiple

eigenvalues or unstable mathematical problems from numerical results. This facet of the

eigenvalue problem is difficult to understand: A user often asks for the accuracy of an individual

eigenvalue. This can be answered approximately by computing the condition number of an

individual eigenvalue. See Golub and Van Loan (1989, pages 344-345). For matrices A such that

the computed array of normalized eigenvectors X is invertible, the condition number of j is κj

the Euclidean length of row j of the inverse matrix X
-1

. Users can choose to compute this matrix

with routine LINCG, see Chapter 1, Linear Systems. An approximate bound for the accuracy of a

computed eigenvalue is then given by κj ε|| A ||. To compute an approximate bound for the

relative accuracy of an eigenvalue, divide this bound by | j |.

Reformulating Generalized Eigenvalue Problems

The generalized eigenvalue problem Ax = Bx is often difficult for users to analyze because it is

frequently ill-conditioned. There are occasionally changes of variables that can be performed on

the given problem to ease this ill-conditioning. Suppose that B is singular but A is nonsingular.

Define the reciprocal μ = -1
. Then, the roles of A and B are interchanged so that the reformulated

problem

Bx = μAx is solved. Those generalized eigenvalues μj = 0 correspond to eigenvalues j = ∞. The

remaining

1
j j

The generalized eigenvectors for j correspond to those for μj. Other reformulations can be made:

If B is nonsingular, the user can solve the ordinary eigenvalue problem Cx B-1
 Ax = x. This is

not recommended as a computational algorithm for two reasons. First, it is generally less efficient

than solving the generalized problem directly. Second, the matrix C will be subject to

perturbations due to ill-conditioning and rounding errors when computing B-1
 A. Computing the

condition numbers of the eigenvalues for C may, however, be helpful for analyzing the accuracy

of results for the generalized problem.

There is another method that users can consider to reduce the generalized problem to an alternate

ordinary problem. This technique is based on first computing a matrix decomposition B = PQ,

where both P and Q are matrices that are ―simple‖ to invert. Then, the given generalized problem

526 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

is equivalent to the ordinary eigenvalue problem Fy = y. The matrix F P-1
 AQ-1

. The

unnormalized eigenvectors of the generalized problem are given by x = Q-1
 y. An example of this

reformulation is used in the case where A and B are real and symmetric with B positive definite.

The IMSL routines GVLSP and GVCSP use P = R
T
 and Q = R where R is an upper triangular matrix

obtained from a Cholesky decomposition, B = R
T
R. The matrix F = R-T AR-1

 is symmetric and

real. Computation of the eigenvalue-eigenvector expansion for F is based on routine EVCSF.

Using ARPACK for Ordinary and Generalized Eigenvalue Problems

ARPACK consists of a set of Fortran 77 subroutines which use the Arnoldi method (Sorensen,

1992) to solve eigenvalue problems. ARPACK is well suited for large structured eigenvalue

problems where structured means that a matrix-vector product w← Av requires O(n) rather than

the usual O(n
2
) floating point operations.

The suite of features that we have implemented from ARPACK are described in the work of

Lehoucq, Sorensen and Yang, ARPACK Users’ Guide, SIAM Publications, (1998). Users will

find access to this Guide helpful. Due to the size of the package, we provide for the use of double

precision real and complex arithmetic only.

The ARPACK computational algorithm computes a partial set of approximate eigenvalues or

singular values for various classes of problems. This includes the ordinary problem, Ax x ,

the generalized problem, Ax Bx , and the singular value decomposition,
TA USV .

The original API for ARPACK is a Reverse Communication Interface. This interface can be used

as illustrated in the Guide. However, we provide a Fortran 2003 interface to ARPACK that will be

preferred by some users. This is a forward communication interface based on user-written

functions for matrix-vector products or linear equation solving steps required by the algorithms in

ARPACK. It is not necessary that the linear operators be expressed as dense or sparse matrices.

That is permitted, but for some problems the best approach is the ability to form a product of the

operator with a vector.

The forward communication interface includes an argument of a user-extended derived type or

class object. The intent of producing this argument is that an extended type provides access to

threaded user data or other required information, including procedure pointers, for use in the user-

written product functions. It also hides information that can often be ignored with a first use.

LIN_EIG_SELF
Computes the eigenvalues of a self-adjoint (i.e. real symmetric or complex Hermitian) matrix, A.

Optionally, the eigenvectors can be computed. This gives the decomposition A = VDV
T
 , where V

is an n × n orthogonal matrix and D is a real diagonal matrix.

Required Arguments

A — Array of size n × n containing the matrix. (Input [/Output])

D — Array of size n containing the eigenvalues. The values are in order of decreasing

absolute value. (Output)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 527

Optional Arguments

NROWS = n (Input)

Uses array A(1:n, 1:n) for the input matrix.

Default: n = size(A, 1)

v = v(:,:) (Output)

Array of the same type and kind as A(1:n, 1:n). It contains the n × n orthogonal matrix

V.

iopt = iopt(:) (Input)

Derived type array with the same precision as the input matrix; used for passing

optional data to the routine. The options are as follows:

Packaged Options for LIN_EIG_SELF

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ Lin_eig_self_set_small 1

s_, d_, c_, z_ Lin_eig_self_overwrite_input 2

s_, d_, c_, z_ Lin_eig_self_scan_for_NaN 3

s_, d_, c_, z_ Lin_eig_self_use_QR 4

s_, d_, c_, z_ Lin_eig_self_skip_Orth 5

s_, d_, c_, z_ Lin_eig_self_use_Gauss_elim 6

s_, d_, c_, z_ Lin_eig_self_set_perf_ratio 7

iopt(IO) = ?_options(?_lin_eig_self_set_small, Small)

If a denominator term is smaller in magnitude than the value Small, it is replaced by

Small.

Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_eig_self_overwrite_input, ?_dummy)

Do not save the input array A(:, :).

iopt(IO) = ?_options(?_lin_eig_self_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

 isNaN(a(i,j)) == .true.

 See the isNaN() function, Chapter 10.

Default: The array is not scanned for NaNs.

iopt(IO) = ?_options(?_lin_eig_use_QR, ?_dummy)

Uses a rational QR algorithm to compute eigenvalues. Accumulate the eigenvectors

using this algorithm.

Default: the eigenvectors computed using inverse iteration

iopt(IO) = ?_options(?_lin_eig_skip_Orth, ?_dummy)

If the eigenvalues are computed using inverse iteration, skips the final

528 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

orthogonalization of the vectors. This will result in a more efficient computation but

the eigenvectors, while a complete set, may be far from orthogonal.

Default: the eigenvectors are normally orthogonalized if obtained using inverse

iteration.

iopt(IO) = ?_options(?_lin_eig_use_Gauss_elim, ?_dummy)

If the eigenvalues are computed using inverse iteration, uses standard elimination with

partial pivoting to solve the inverse iteration problems.

Default: the eigenvectors computed using cyclic reduction

iopt(IO) = ?_options(?_lin_eig_self_set_perf_ratio, perf_ratio)

Uses residuals for approximate normalized eigenvectors if they have a performance

index no larger than perf_ratio. Otherwise an alternate approach is taken and the

eigenvectors are computed again: Standard elimination is used instead of cyclic

reduction, or the standard QR algorithm is used as a backup procedure to inverse

iteration. Larger values of perf_ratio are less likely to cause these exceptions.

Default: perf_ratio = 4

FORTRAN 90 Interface

Generic: CALL LIN_EIG_SELF (A, D [,…])

Specific: The specific interface names are S_LIN_EIG_SELF, D_LIN_EIG_SELF,

C_LIN_EIG_SELF, and Z_LIN_EIG_SELF.

Description

Routine LIN_EIG_SELF is an implementation of the QR algorithm for self-adjoint matrices. An

orthogonal similarity reduction of the input matrix to self-adjoint tridiagonal form is performed.

Then, the eigenvalue-eigenvector decomposition of a real tridiagonal matrix is calculated. The ex-

pansion of the matrix as AV = VD results from a product of these matrix factors. See Golub and

Van Loan (1989, Chapter 8) for details.

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for LIN_EIG_SELF. These error messages are

numbered 8190; 101110; 121129; 141149.

Example 1: Computing Eigenvalues

The eigenvalues of a self-adjoint matrix are computed. The matrix A = C+C
T
 is used, where C is

random. The magnitudes of eigenvalues of A agree with the singular values of A. Also, see

operator_ex25, supplied with the product examples.

 use lin_eig_self_int

 use lin_sol_svd_int

 use rand_gen_int

 implicit none

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 529

! This is Example 1 for LIN_EIG_SELF.

 integer, parameter :: n=64

 real(kind(1e0)), parameter :: one=1e0

 real(kind(1e0)) :: A(n,n), b(n,0), D(n), S(n), x(n,0), y(n*n)

! Generate a random matrix and from it

! a self-adjoint matrix.

 call rand_gen(y)

 A = reshape(y,(/n,n/))

 A = A + transpose(A)

! Compute the eigenvalues of the matrix.

 call lin_eig_self(A, D)

! For comparison, compute the singular values.

 call lin_sol_svd(A, b, x, nrhs=0, s=S)

! Check the results: Magnitude of eigenvalues should equal

! the singular values.

 if (sum(abs(abs(D) - S)) <= &

 sqrt(epsilon(one))*S(1)) then

 write (*,*) 'Example 1 for LIN_EIG_SELF is correct.'

 end if

 end

Output

Example 1 for LIN_EIG_SELF is correct.

Additional Examples

Example 2: Eigenvalue-Eigenvector Expansion of a Square Matrix

A self-adjoint matrix is generated and the eigenvalues and eigenvectors are computed. Thus,

A = VDV
T
, where V is orthogonal and D is a real diagonal matrix. The matrix V is obtained using

an optional argument. Also, see operator_ex26, Chapter 10.

 use lin_eig_self_int

 use rand_gen_int

 implicit none

! This is Example 2 for LIN_EIG_SELF.

 integer, parameter :: n=8

 real(kind(1e0)), parameter :: one=1e0

 real(kind(1e0)) :: a(n,n), d(n), v_s(n,n), y(n*n)

! Generate a random self-adjoint matrix.

 call rand_gen(y)

 a = reshape(y,(/n,n/))

 a = a + transpose(a)

! Compute the eigenvalues and eigenvectors.

 call lin_eig_self(a, d, v=v_s)

! Check the results for small residuals.

530 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 if (sum(abs(matmul(a,v_s)-v_s*spread(d,1,n)))/d(1) <= &

 sqrt(epsilon(one))) then

 write (*,*) 'Example 2 for LIN_EIG_SELF is correct.'

 end if

 end

Output

Example 2 for LIN_EIG_SELF is correct.

Example 3: Computing a few Eigenvectors with Inverse Iteration

A self-adjoint n × n matrix is generated and the eigenvalues, id , are computed. The

eigenvectors associated with the first k of these are computed using the self-adjoint solver,

lin_sol_self, and inverse iteration. With random right-hand sides, these systems are as

follows:

 A d I v b
i i i

The solutions are then orthogonalized as in Hanson et al. (1991) to comprise a partial decomposition

AV = VD where V is an n × k matrix resulting from the orthogonalized iv and D is the k × k

diagonal matrix of the distinguished eigenvalues. It is necessary to suppress the error message when

the matrix is singular. Since these singularities are desirable, it is appropriate to ignore the

exceptions and not print the message text. Also, see operator_ex27, supplied with the product

examples.

 use lin_eig_self_int

 use lin_sol_self_int

 use rand_gen_int

 use error_option_packet

 implicit none

! This is Example 3 for LIN_EIG_SELF.

 integer i, j

 integer, parameter :: n=64, k=8

 real(kind(1d0)), parameter :: one=1d0, zero=0d0

 real(kind(1d0)) big, err

 real(kind(1d0)) :: a(n,n), b(n,1), d(n), res(n,k), temp(n,n), &

 v(n,k), y(n*n)

 type(d_options) :: iopti(2)=d_options(0,zero)

! Generate a random self-adjoint matrix.

 call rand_gen(y)

 a = reshape(y,(/n,n/))

 a = a + transpose(a)

! Compute just the eigenvalues.

 call lin_eig_self(a, d)

 do i=1, k

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 531

! Define a temporary array to hold the matrices A - eigenvalue*I.

 temp = a

 do j=1, n

 temp(j,j) = temp(j,j) - d(i)

 end do

! Use packaged option to reset the value of a small diagonal.

 iopti(1) = d_options(d_lin_sol_self_set_small,&

 epsilon(one)*abs(d(i)))

! Use packaged option to skip singularity messages.

 iopti(2) = d_options(d_lin_sol_self_no_sing_mess,&

 zero)

 call rand_gen(b(1:n,1))

 call lin_sol_self(temp, b, v(1:,i:i),&

 iopt=iopti)

 end do

! Orthogonalize the eigenvectors.

 do i=1, k

 big = maxval(abs(v(1:,i)))

 v(1:,i) = v(1:,i)/big

 v(1:,i) = v(1:,i)/sqrt(sum(v(1:,i)**2))

 if (i == k) cycle

 v(1:,i+1:k) = v(1:,i+1:k) + &

 spread(-matmul(v(1:,i),v(1:,i+1:k)),1,n)* &

 spread(v(1:,i),2,k-i)

 end do

 do i=k-1, 1, -1

 v(1:,i+1:k) = v(1:,i+1:k) + &

 spread(-matmul(v(1:,i),v(1:,i+1:k)),1,n)* &

 spread(v(1:,i),2,k-i)

 end do

! Check the results for both orthogonality of vectors and small

! residuals.

 res(1:k,1:k) = matmul(transpose(v),v)

 do i=1,k

 res(i,i)=res(i,i)-one

 end do

 err = sum(abs(res))/k**2

 res = matmul(a,v) - v*spread(d(1:k),1,n)

 if (err <= sqrt(epsilon(one))) then

 if (sum(abs(res))/abs(d(1)) <= sqrt(epsilon(one))) then

 write (*,*) 'Example 3 for LIN_EIG_SELF is correct.'

 end if

 end if

 end

Output

Example 3 for LIN_EIG_SELF is correct.

532 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Example 4: Analysis and Reduction of a Generalized Eigensystem

A generalized eigenvalue problem is Ax = Bx, where A and B are n × n self-adjoint matrices. The

matrix B is positive definite. This problem is reduced to an ordinary self-adjoint eigenvalue

problem Cy = y by changing the variables of the generalized problem to an equivalent form. The

eigenvalue-eigenvector decomposition B = VSV
T
 is first computed, labeling an eigenvalue too

small if it is less than epsilon(1.d0). The ordinary self-adjoint eigenvalue problem is Cy = y

provided that the rank of B, based on this definition of Small, has the value n. In that case,

TC DV AVD

where

1/ 2D S

The relationship between x and y is summarized as X = VDY, computed after the ordinary

eigenvalue problem is solved for the eigenvectors Y of C. The matrix X is normalized so that each

column has Euclidean length of value one. This solution method is nonstandard for any but the

most

ill-conditioned matrices B. The standard approach is to compute an ordinary self-adjoint problem

following computation of the Cholesky decomposition

TB R R

where R is upper triangular. The computation of C can also be completed efficiently by exploiting

its self-adjoint property. See Golub and Van Loan (1989, Chapter 8) for more information. Also,

see operator_ex28, Chapter 10.

 use lin_eig_self_int

 use rand_gen_int

 implicit none

! This is Example 4 for LIN_EIG_SELF.

 integer i

 integer, parameter :: n=64

 real(kind(1e0)), parameter :: one=1d0

 real(kind(1e0)) b_sum

 real(kind(1e0)), dimension(n,n) :: A, B, C, D(n), lambda(n), &

 S(n), vb_d, X, ytemp(n*n), res

! Generate random self-adjoint matrices.

 call rand_gen(ytemp)

 A = reshape(ytemp,(/n,n/))

 A = A + transpose(A)

 call rand_gen(ytemp)

 B = reshape(ytemp,(/n,n/))

 B = B + transpose(B)

 b_sum = sqrt(sum(abs(B**2))/n)

! Add a scalar matrix so B is positive definite.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 533

 do i=1, n

 B(i,i) = B(i,i) + b_sum

 end do

! Get the eigenvalues and eigenvectors for B.

 call lin_eig_self(B, S, v=vb_d)

! For full rank problems, convert to an ordinary self-adjoint

! problem. (All of these examples are full rank.)

 if (S(n) > epsilon(one)) then

 D = one/sqrt(S)

 C = spread(D,2,n)*matmul(transpose(vb_d), &

 matmul(A,vb_d))*spread(D,1,n)

! Get the eigenvalues and eigenvectors for C.

 call lin_eig_self(C, lambda, v=X)

! Compute the generalized eigenvectors.

 X = matmul(vb_d,spread(D,2,n)*X)

! Normalize the eigenvectors for the generalized problem.

 X = X * spread(one/sqrt(sum(X**2,dim=2)),1,n)

 res = matmul(A,X) - &

 matmul(B,X)*spread(lambda,1,n)

! Check the results.

 if (sum(abs(res))/(sum(abs(A))+sum(abs(B))) <= &

 sqrt(epsilon(one))) then

 write (*,*) 'Example 4 for LIN_EIG_SELF is correct.'

 end if

end if

end

Output

Example 4 for LIN_EIG_SELF is correct.

LIN_EIG_GEN

Computes the eigenvalues of an n × n matrix, A. Optionally, the eigenvectors of A or A
T
 are

computed. Using the eigenvectors of A gives the decomposition AV = VE, where V is an n × n

complex matrix of eigenvectors, and E is the complex diagonal matrix of eigenvalues. Other

options include the reduction of A to upper triangular or Schur form, reduction to block upper

534 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

triangular form with 2 × 2 or unit sized diagonal block matrices, and reduction to upper

Hessenberg form.

Required Arguments

A — Array of size n × n containing the matrix. (Input [/Output])

E — Array of size n containing the eigenvalues. These complex values are in order of

decreasing absolute value. The signs of imaginary parts of the eigenvalues are in no

predictable order. (Output)

Optional Arguments

NROWS = n (Input)

Uses array A(1:n, 1:n) for the input matrix.

Default: n = SIZE(A, 1)

v = V(:,:) (Output)

Returns the complex array of eigenvectors for the matrix A.

v_adj = U(:,:) (Output)

Returns the complex array of eigenvectors for the matrix A
T
. Thus the residuals

TS A U UE

are small.

tri = T(:,:) (Output)

Returns the complex upper-triangular matrix T associated with the reduction of the

matrix A to Schur form. Optionally a unitary matrix W is returned in array V(:,:)

such that the residuals Z = AW WT are small.

iopt = iopt(:) (Input)

Derived type array with the same precision as the input matrix. Used for passing

optional data to the routine. The options are as follows:

Packaged Options for LIN_EIG_GEN

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_eig_gen_set_small 1

s_, d_, c_, z_ lin_eig_gen_overwrite_input 2

s_, d_, c_, z_ lin_eig_gen_scan_for_NaN 3

s_, d_, c_, z_ lin_eig_gen_no_balance 4

s_, d_, c_, z_ lin_eig_gen_set_iterations 5

s_, d_, c_, z_ lin_eig_gen_in_Hess_form 6

s_, d_, c_, z_ lin_eig_gen_out_Hess_form 7

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 535

Packaged Options for LIN_EIG_GEN

s_, d_, c_, z_ lin_eig_gen_out_block_form 8

s_, d_, c_, z_ lin_eig_gen_out_tri_form 9

s_, d_, c_, z_ lin_eig_gen_continue_with_V 10

s_, d_, c_, z_ lin_eig_gen_no_sorting 11

iopt(IO) = ?_options(?_lin_eig_gen_set_small, Small)

This is the tolerance used to declare off-diagonal values effectively zero compared with

the size of the numbers involved in the computation of a shift.

Default: Small = epsilon(), the relative accuracy of arithmetic

iopt(IO) = ?_options(?_lin_eig_gen_overwrite_input, ?_dummy)

Does not save the input array A(:, :).

Default: The array is saved.

iopt(IO) = ?_options(?_lin_eig_gen_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) == .true..

See the isNaN() function, Chapter 10.

Default: The array is not scanned for NaNs.

iopt(IO) = ?_options(?_lin_eig_no_balance, ?_dummy)

The input matrix is not preprocessed searching for isolated eigenvalues followed by

rescaling. See Golub and Van Loan (1989, Chapter 7) for references. With some

optional uses of the routine, this option flag is required.

Default: The matrix is first balanced.

iopt(IO) = ?_options(?_lin_eig_gen_set_iterations, ?_dummy)

Resets the maximum number of iterations permitted to isolate each diagonal block

matrix.

Default: The maximum number of iterations is 52.

iopt(IO) = ?_options(?_lin_eig_gen_in_Hess_form, ?_dummy)

The input matrix is in upper Hessenberg form. This flag is used to avoid the initial

reduction phase which may not be needed for some problem classes.

Default: The matrix is first reduced to Hessenberg form.

iopt(IO) = ?_options(?_lin_eig_gen_out_Hess_form, ?_dummy)

The output matrix is transformed to upper Hessenberg form, 1H . If the optional

argument ―v=V(:,:)‖ is passed by the calling program unit, then the array V(:,:)

contains an orthogonal matrix 1Q such that

1 1 1 0AQ Q H

Requires the simultaneous use of option ?_lin_eig_no_balance.

Default: The matrix is reduced to diagonal form.

536 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

iopt(IO) = ?_options(?_lin_eig_gen_out_block_form, ?_dummy)

The output matrix is transformed to upper Hessenberg form, 2H , which is block upper

triangular. The dimensions of the blocks are either 2 × 2 or unit sized. Nonzero

subdiagonal values of 2H determine the size of the blocks. If the optional argument

―v=V(:,:)‖ is passed by the calling program unit, then the array V(:,:) contains an

orthogonal matrix 2Q such that

2 2 2 0AQ Q H

Requires the simultaneous use of option ?_lin_eig_no_balance.

Default: The matrix is reduced to diagonal form.

iopt(IO) = ?_options(?_lin_eig_gen_out_tri_form, ?_dummy)

The output matrix is transformed to upper-triangular form, T. If the optional argument

―v=V(:,:)‖ is passed by the calling program unit, then the array V(:,:) contains a

unitary matrix W such that

AW WT 0. The upper triangular matrix T is returned in the optional argument

―tri=T(:,:)‖. The eigenvalues of A are the diagonal entries of the matrix T . They

are in no particular order. The output array E(:)is blocked with NaNs using this

option. This option requires the simultaneous use of option ?_lin_eig_no_balance.

Default: The matrix is reduced to diagonal form.

iopt(IO) = ?_options(?_lin_eig_gen_continue_with_V, ?_dummy)

As a convenience or for maintaining efficiency, the calling program unit sets the

optional argument ―v=V(:,:)‖ to a matrix that has transformed a problem to the

similar matrix, A . The contents of V(:,:) are updated by the transformations used in

the algorithm. Requires the simultaneous use of option ?_lin_eig_no_balance.

Default: The array V(:,:) is initialized to the identity matrix.

iopt(IO) = ?_options(?_lin_eig_gen_no_sorting, ?_dummy)

Does not sort the eigenvalues as they are isolated by solving the 2 × 2 or unit sized

blocks. This will have the effect of guaranteeing that complex conjugate pairs of

eigenvalues are adjacent in the array E(:).

Default: The entries of E(:) are sorted so they are non-increasing in absolute value.

FORTRAN 90 Interface

Generic: CALL LIN_EIG_GEN (A, E [,…])

 Specific: The specific interface names are S_LIN_EIG_GEN, D_LIN_EIG_GEN,

C_LIN_EIG_GEN, and Z_LIN_EIG_GEN.

Description

The input matrix A is first balanced. The resulting similar matrix is transformed to upper Hessen-

berg form using orthogonal transformations. The double-shifted QR algorithm transforms the Hes-

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 537

senberg matrix so that 2 × 2 or unit sized blocks remain along the main diagonal. Any off-diagonal

that is classified as ―small‖ in order to achieve this block form is set to the value zero. Next the

block upper triangular matrix is transformed to upper triangular form with unitary rotations. The

eigenvectors of the upper triangular matrix are computed using back substitution. Care is taken to

avoid overflows during this process. At the end, eigenvectors are normalized to have Euclidean

length one, with the largest component real and positive. This algorithm follows that given in

Golub and Van Loan, (1989, Chapter 7), with some novel organizational details for additional

options, efficiency and robustness.

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for LIN_EIG_GEN. These error messages are

numbered 841858; 861878; 881898; 901918.

Example 1: Computing Eigenvalues

The eigenvalues of a random real matrix are computed. These values define a complex diagonal

matrix E. Their correctness is checked by obtaining the eigenvector matrix V and verifying that the

residuals R = AV VE are small. Also, see operator_ex29, supplied with the product examples.

 use lin_eig_gen_int

 use rand_gen_int

 implicit none

! This is Example 1 for LIN_EIG_GEN.

 integer, parameter :: n=32

 real(kind(1d0)), parameter :: one=1d0

 real(kind(1d0)) A(n,n), y(n*n), err

 complex(kind(1d0)) E(n), V(n,n), E_T(n)

 type(d_error) :: d_epack(16) = d_error(0,0d0)

! Generate a random matrix.

 call rand_gen(y)

 A = reshape(y,(/n,n/))

! Compute only the eigenvalues.

 call lin_eig_gen(A, E)

! Compute the decomposition, A*V = V*values,

! obtaining eigenvectors.

 call lin_eig_gen(A, E_T, v=V)

! Use values from the first decomposition, vectors from the

! second decomposition, and check for small residuals.

 err = sum(abs(matmul(A,V) - V*spread(E,DIM=1,NCOPIES=n))) &

 / sum(abs(E))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for LIN_EIG_GEN is correct.'

 end if

 end

538 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Output

Example 1 for LIN_EIG_GEN is correct.

Additional Examples

Example 2: Complex Polynomial Equation Roots

The roots of a complex polynomial equation,

1

0
n

n k n
k

k

f z b z z

are required. This algebraic equation is formulated as a matrix eigenvalue problem. The equivalent

matrix eigenvalue problem is solved using the upper Hessenberg matrix which has the value zero

except in row number 1 and along the first subdiagonal. The entries in the first row are given by

a1,j = bj, i = 1, …, n, while those on the first subdiagonal have the value one. This is a companion

matrix for the polynomial. The results are checked by testing for small values of |f(ei)|, i = 1, …, n,

at the eigenvalues of the matrix, which are the roots of f(z). Also, see operator_ex30, supplied

with the product examples.

 use lin_eig_gen_int

 use rand_gen_int

 implicit none

! This is Example 2 for LIN_EIG_GEN.

 integer i

 integer, parameter :: n=12

 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0

 real(kind(1d0)) err, t(2*n)

 type(d_options) :: iopti(1)=d_options(0,zero)

 complex(kind(1d0)) a(n,n), b(n), e(n), f(n), fg(n)

 call rand_gen(t)

 b = cmplx(t(1:n),t(n+1:),kind(one))

! Define the companion matrix with polynomial coefficients

! in the first row.

 a = zero

 do i=2, n

 a(i,i-1) = one

 end do

 a(1,1:n) = -b

! Note that the input companion matrix is upper Hessenberg.

 iopti(1) = d_options(z_lin_eig_gen_in_Hess_form,zero)

! Compute complex eigenvalues of the companion matrix.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 539

 call lin_eig_gen(a, e, iopt=iopti)

 f=one; fg=one

! Use Horner's method for evaluation of the complex polynomial

! and size gauge at all roots.

 do i=1, n

 f = f*e + b(i)

 fg = fg*abs(e) + abs(b(i))

 end do

! Check for small errors at all roots.

 err = sum(abs(f/fg))/n

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 2 for LIN_EIG_GEN is correct.'

 end if

 end

Output

Example 2 for LIN_EIG_GEN is correct.

Example 3: Solving Parametric Linear Systems with a Scalar Change

The efficient solution of a family of linear algebraic equations is required. These systems are

(A + hI)x = b. Here A is an n × n real matrix, I is the identity matrix, and b is the right-hand side

matrix. The scalar h is such that the coefficient matrix is nonsingular. The method is based on the

Schur form for matrix A: AW = WT, where W is unitary and T is upper triangular. This provides an

efficient solution method for several values of h, once the Schur form is computed. The solution

steps solve, for y, the upper triangular linear system

 TT hI y W b

Then, x = x(h) = Wy. This is an efficient and accurate method for such parametric systems pro-

vided the expense of computing the Schur form has a pay-off in later efficiency. Using the Schur

form in this way, it is not required to compute an LU factorization of A + hI with each new value

of h. Note that even if the data A, h, and b are real, subexpressions for the solution may involve

complex intermediate values, with x(h) finally a real quantity. Also, see operator_ex31,

supplied with the product examples.

 use lin_eig_gen_int

 use lin_sol_gen_int

 use rand_gen_int

 implicit none

! This is Example 3 for LIN_EIG_GEN.

 integer i

 integer, parameter :: n=32, k=2

 real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0

 real(kind(1e0)) a(n,n), b(n,k), x(n,k), temp(n*max(n,k)), h, err

 type(s_options) :: iopti(2)

540 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 complex(kind(1e0)) w(n,n), t(n,n), e(n), z(n,k)

 call rand_gen(temp)

 a = reshape(temp,(/n,n/))

 call rand_gen(temp)

 b = reshape(temp,(/n,k/))

 iopti(1) = s_options(s_lin_eig_gen_out_tri_form,zero)

 iopti(2) = s_options(s_lin_eig_gen_no_balance,zero)

! Compute the Schur decomposition of the matrix.

 call lin_eig_gen(a, e, v=w, tri=t, &

 iopt=iopti)

! Choose a value so that A+h*I is non-singular.

 h = one

! Solve for (A+h*I)x=b using the Schur decomposition.

 z = matmul(conjg(transpose(w)),b)

! Solve intermediate upper-triangular system with implicit

! additive diagonal, h*I. This is the only dependence on

! h in the solution process.

 do i=n,1,-1

 z(i,1:k) = z(i,1:k)/(t(i,i)+h)

 z(1:i-1,1:k) = z(1:i-1,1:k) + &

 spread(-t(1:i-1,i),dim=2,ncopies=k)* &

 spread(z(i,1:k),dim=1,ncopies=i-1)

 end do

! Compute the solution. It should be the same as x, but will not be

! exact due to rounding errors. (The quantity real(z,kind(one)) is

! the real-valued answer when the Schur decomposition method is used.)

 z = matmul(w,z)

! Compute the solution by solving for x directly.

 do i=1, n

 a(i,i) = a(i,i) + h

 end do

 call lin_sol_gen(a, b, x)

! Check that x and z agree approximately.

 err = sum(abs(x-z))/sum(abs(x))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 3 for LIN_EIG_GEN is correct.'

 end if

 end

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 541

Output

Example 3 for LIN_EIG_GEN is correct.

Example 4: Accuracy Estimates of Eigenvalues Using Adjoint and Ordinary
Eigenvectors

A matrix A has entries that are subject to uncertainty. This is expressed as the realization that A

can be replaced by the matrix A + B, where the value is ―small‖ but still significantly larger

than machine precision. The matrix B satisfies ||B|| ≤ ||A||. A variation in eigenvalues is estimated

using analysis found in Golub and Van Loan, (1989, Chapter 7, p. 344). Each eigenvalue and

eigenvector is expanded in a power series in . With

 i i ie e e

and normalized eigenvectors, the bound

| |i

i i

A
e

u v

is satisfied. The vectors and i iu v are the ordinary and adjoint eigenvectors associated

respectively with ie and its complex conjugate. This gives an upper bound on the size of the

change to each ie due to changing the matrix data. The reciprocal

1

i iu v

is defined as the condition number of ie . Also, see operator_ex32, Chapter 10.

 use lin_eig_gen_int

 use rand_gen_int

 implicit none

! This is Example 4 for LIN_EIG_GEN.

 integer i

 integer, parameter :: n=17

 real(kind(1d0)), parameter :: one=1d0

 real(kind(1d0)) a(n,n), c(n,n), variation(n), y(n*n), temp(n), &

 norm_of_a, eta

 complex(kind(1d0)), dimension(n,n) :: e(n), d(n), u, v

! Generate a random matrix.

 call rand_gen(y)

 a = reshape(y,(/n,n/))

! Compute the eigenvalues, left- and right- eigenvectors.

 call lin_eig_gen(a, e, v=v, v_adj=u)

! Compute condition numbers and variations of eigenvalues.

542 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 norm_of_a = sqrt(sum(a**2)/n)

 do i=1, n

 variation(i) = norm_of_a/abs(dot_product(u(1:n,i), &

 v(1:n,i)))

 end do

! Now perturb the data in the matrix by the relative factors

! eta=sqrt(epsilon) and solve for values again. Check the

! differences compared to the estimates. They should not exceed

! the bounds.

 eta = sqrt(epsilon(one))

 do i=1, n

 call rand_gen(temp)

 c(1:n,i) = a(1:n,i) + (2*temp - 1)*eta*a(1:n,i)

 end do

 call lin_eig_gen(c,d)

! Looking at the differences of absolute values accounts for

! switching signs on the imaginary parts.

 if (count(abs(d)-abs(e) > eta*variation) == 0) then

 write (*,*) 'Example 4 for LIN_EIG_GEN is correct.'

 end if

 end

Output

Example 4 for LIN_EIG_GEN is correct.

LIN_GEIG_GEN

Computes the generalized eigenvalues of an n × n matrix pencil, Av = Bv. Optionally, the

generalized eigenvectors are computed. If either of A or B is nonsingular, there are diagonal

matrices α and β, and a complex matrix V, all computed such that AV β = BVα.

Required Arguments

A — Array of size n × n containing the matrix A. (Input [/Output])

B — Array of size n × n containing the matrix B. (Input [/Output])

ALPHA — Array of size n containing diagonal matrix factors of the generalized

eigenvalues. These complex values are in order of decreasing absolute value. (Output)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 543

BETAV — Array of size n containing diagonal matrix factors of the generalized

eigenvalues. These real values are in order of decreasing value. (Output)

Optional Arguments

NROWS = n (Input)

Uses arrays A(1:n, 1:n) and B(1:n, 1:n) for the input matrix pencil.

Default: n = SIZE(A, 1)

v = V(:,:) (Output)

Returns the complex array of generalized eigenvectors for the matrix pencil.

iopt = iopt(:) (Input)

Derived type array with the same precision as the input matrix. Used for passing

optional data to the routine. The options are as follows:

Packaged Options for LIN_GEIG_GEN

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_geig_gen_set_small 1

s_, d_, c_, z_ lin_geig_gen_overwrite_input 2

s_, d_, c_, z_ lin_geig_gen_scan_for_NaN 3

s_, d_, c_, z_ lin_geig_gen_self_adj_pos 4

s_, d_, c_, z_ lin_geig_gen_for_lin_sol_self 5

s_, d_, c_, z_ lin_geig_gen_for_lin_eig_self 6

s_, d_, c_, z_ lin_geig_gen_for_lin_sol_lsq 7

s_, d_, c_, z_ lin_geig_gen_for_lin_eig_gen 8

iopt(IO) = ?_options(?_lin_geig_gen_set_small, Small)

This tolerance, multiplied by the sum of absolute value of the matrix B, is used to

define a small diagonal term in the routines lin_sol_lsq and lin_sol_self. That

value can be replaced using the option flags lin_geig_gen_for_lin_sol_lsq, and

lin_geig_gen_for_lin_sol_self.

Default: Small = epsilon(.), the relative accuracy of arithmetic

iopt(IO) = ?_options(?_lin_geig_gen_overwrite_input, ?_dummy)

Does not save the input arrays A(:, :) and B(:, :).

Default: The array is saved.

iopt(IO) = ?_options(?_lin_geig_gen_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNaN(b(i,j)) == .true.

See the isNaN() function, Chapter 10.

Default: The arrays are not scanned for NaNs.

544 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

iopt(IO) = ?_options(?_lin_geig_gen_self_adj_pos, ?_dummy)

If both matrices A and B are self-adjoint and additionally B is positive-definite, then the

Cholesky algorithm is used to reduce the matrix pencil to an ordinary self-adjoint

eigenvalue problem.

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_sol_self, ?_dummy)

iopt(IO+1) = ?_options((k=size of options for lin_sol_self), ?_dummy)

The options for lin_sol_self follow as data in iopt().

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_eig_self, ?_dummy)

iopt(IO+1) = ?_options((k=size of options for lin_eig_self), ?_dummy)

The options for lin_eig_self follow as data in iopt().

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_sol_lsq, ?_dummy)

iopt(IO+1) = ?_options((k=size of options for lin_sol_lsq), ?_dummy)

The options for lin_sol_lsq follow as data in iopt().

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_eig_gen, ?_dummy)

iopt(IO+1) = ?_options((k=size of options for lin_eig_gen), ?_dummy)

The options for lin_eig_gen follow as data in iopt().

FORTRAN 90 Interface

Generic: CALL LIN_GEIG_GEN (A, B, ALPHA, BETAV [,…])

 Specific: The specific interface names are S_LIN_GEIG_GEN, D_LIN_GEIG_GEN,

C_LIN_GEIG_GEN, and Z_LIN_GEIG_GEN.

Description

Routine LIN_GEIG_GEN implements a standard algorithm that reduces a generalized eigenvalue

or matrix pencil problem to an ordinary eigenvalue problem. An orthogonal decomposition is

computed

TBP HR

The orthogonal matrix H is the product of n 1 row permutations, each followed by a

Householder transformation. Column permutations, P, are chosen at each step to maximize the

Euclidian length of the pivot column. The matrix R is upper triangular. Using the default tolerance

τ = ε||B||, where ε is machine relative precision, each diagonal entry of R exceeds τ in value.

Otherwise, R is singular. In that case A and B are interchanged and the orthogonal decomposition

is computed one more time. If both matrices are singular the problem is declared singular and is

not solved. The interchange of A and B is accounted for in the output diagonal matrices α and β.

The ordinary eigenvalue problem is Cx = x, where

1T TC H AP R

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 545

and

RPv = x

If the matrices A and B are self-adjoint and if, in addition, B is positive-definite, then a more

efficient reduction than the default algorithm can be optionally used to solve the problem: A

Cholesky decomposition is obtained, R
T
R R = PBP

T
. The matrix R is upper triangular and P is a

permutation matrix. This is equivalent to the ordinary self-adjoint eigenvalue problem Cx = x,

where RPv = x and

1T TC R PAP R

The self-adjoint eigenvalue problem is then solved.

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for LIN_GEIG_GEN. These error messages are

numbered 921936; 941956; 961976; 981996.

Example 1: Computing Generalized Eigenvalues

The generalized eigenvalues of a random real matrix pencil are computed. These values are

checked by obtaining the generalized eigenvectors and then showing that the residuals

1AV BV

are small. Note that when the matrix B is nonsingular β = I, the identity matrix. When B is singular

and A is nonsingular, some diagonal entries of β are essentially zero. This corresponds to ―infinite

eigenvalues‖ of the matrix pencil. This random matrix pencil example has all finite eigenvalues.

Also, see operator_ex33, Chapter 10.

 use lin_geig_gen_int

 use rand_gen_int

 implicit none

! This is Example 1 for LIN_GEIG_GEN.

 integer, parameter :: n=32

 real(kind(1d0)), parameter :: one=1d0

 real(kind(1d0)) A(n,n), B(n,n), betav(n), beta_t(n), err, y(n*n)

 complex(kind(1d0)) alpha(n), alpha_t(n), V(n,n)

! Generate random matrices for both A and B.

 call rand_gen(y)

 A = reshape(y,(/n,n/))

 call rand_gen(y)

 B = reshape(y,(/n,n/))

! Compute the generalized eigenvalues.

 call lin_geig_gen(A, B, alpha, betav)

! Compute the full decomposition once again, A*V = B*V*values.

 call lin_geig_gen(A, B, alpha_t, beta_t, &

 v=V)

546 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

! Use values from the first decomposition, vectors from the

! second decomposition, and check for small residuals.

 err = sum(abs(matmul(A,V) - &

 matmul(B,V)*spread(alpha/betav,DIM=1,NCOPIES=n))) / &

 sum(abs(a)+abs(b))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for LIN_GEIG_GEN is correct.'

 end if

 end

Output

Example 1 for LIN_GEIG_GEN is correct.

Additional Examples

Example 2: Self-Adjoint, Positive-Definite Generalized Eigenvalue Problem

This example illustrates the use of optional flags for the special case where A and B are complex

self-adjoint matrices, and B is positive-definite. For purposes of maximum efficiency an option is

passed to routine LIN_SOL_SELF so that pivoting is not used in the computation of the Cholesky

decomposition of matrix B. This example does not require that secondary option. Also, see

operator_ex34, supplied with the product examples.

 use lin_geig_gen_int

 use lin_sol_self_int

 use rand_gen_int

 implicit none

! This is Example 2 for LIN_GEIG_GEN.

 integer i

 integer, parameter :: n=32

 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0

 real(kind(1d0)) betav(n), temp_c(n,n), temp_d(n,n), err

 type(d_options) :: iopti(4)=d_options(0,zero)

 complex(kind(1d0)), dimension(n,n) :: A, B, C, D, V, alpha(n)

! Generate random matrices for both A and B.

 do i=1, n

 call rand_gen(temp_c(1:n,i))

 call rand_gen(temp_d(1:n,i))

 end do

 c = temp_c; d = temp_c

 do i=1, n

 call rand_gen(temp_c(1:n,i))

 call rand_gen(temp_d(1:n,i))

 end do

 c = cmplx(real(c),temp_c,kind(one))

 d = cmplx(real(d),temp_d,kind(one))

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 547

 a = conjg(transpose(c)) + c

 b = matmul(conjg(transpose(d)),d)

! Set option so that the generalized eigenvalue solver uses an

! efficient method for well-posed, self-adjoint problems.

 iopti(1) = d_options(z_lin_geig_gen_self_adj_pos,zero)

 iopti(2) = d_options(z_lin_geig_gen_for_lin_sol_self,zero)

! Number of secondary optional data items and the options:

 iopti(3) = d_options(1,zero)

 iopti(4) = d_options(z_lin_sol_self_no_pivoting,zero)

 call lin_geig_gen(a, b, alpha, betav, v=v, &

 iopt=iopti)

! Check that residuals are small. Use the real part of alpha

! since the values are known to be real.

 err = sum(abs(matmul(a,v) - matmul(b,v)* &

 spread(real(alpha,kind(one))/betav,dim=1,ncopies=n))) / &

 sum(abs(a)+abs(b))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 2 for LIN_GEIG_GEN is correct.'

 end if

 end

Output

Example 2 for LIN_GEIG_GEN is correct.

Example 3: A Test for a Regular Matrix Pencil

In the classification of Differential Algebraic Equations (DAE), a system with linear constant

coefficients is given by A x + Bx = f. Here A and B are n × n matrices, and f is an n-vector that is

not part of this example. The DAE system is defined as solvable if and only if the quantity det

(μA + B) does not vanish identically as a function of the dummy parameter μ. A sufficient con-

dition for solvability is that the generalized eigenvalue problem Av = Bv is nonsingular. By con-

structing A and B so that both are singular, the routine flags nonsolvability in the DAE by

returning NaN for the generalized eigenvalues. Also, see operator_ex35, supplied with the

product examples.

 use lin_geig_gen_int

 use rand_gen_int

 use error_option_packet

 use isnan_int

 implicit none

! This is Example 3 for LIN_GEIG_GEN.

 integer, parameter :: n=6

 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0

 real(kind(1d0)) a(n,n), b(n,n), betav(n), y(n*n)

 type(d_options) iopti(1)

 type(d_error) epack(1)

548 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 complex(kind(1d0)) alpha(n)

! Generate random matrices for both A and B.

 call rand_gen(y)

 a = reshape(y,(/n,n/))

 call rand_gen(y)

 b = reshape(y,(/n,n/))

! Make columns of A and B zero, so both are singular.

 a(1:n,n) = 0; b(1:n,n) = 0

! Set internal tolerance for a small diagonal term.

 iopti(1) = d_options(d_lin_geig_gen_set_small,sqrt(epsilon(one)))

! Compute the generalized eigenvalues.

 call lin_geig_gen(a, b, alpha, betav, &

 iopt=iopti,epack=epack)

! See if singular DAE system is detected.

! (The size of epack() is too small for the message, so

! output is blocked with NaNs.)

 if (isnan(alpha)) then

 write (*,*) 'Example 3 for LIN_GEIG_GEN is correct.'

 end if

 end

Output

Example 3 for LIN_GEIG_GEN is correct.

Example 4: Larger Data Uncertainty than Working Precision

Data values in both matrices A and B are assumed to have relative errors that can be as large as
1/ 2 where ε is the relative machine precision. This example illustrates the use of an optional flag

that resets the tolerance used in routine lin_sol_lsq for determining a singularity of either

matrix. The tolerance is reset to the new value
1/ 2 B and the generalized eigenvalue problem

is solved. We anticipate that B might be singular and detect this fact. Also, see operator_ex36,

Chapter 10.

 use lin_geig_gen_int

 use lin_sol_lsq_int

 use rand_gen_int

 use isNaN_int

 implicit none

! This is Example 4 for LIN_GEIG_GEN.

 integer, parameter :: n=32

 real(kind(1d0)), parameter :: one=1d0, zero=0d0

 real(kind(1d0)) a(n,n), b(n,n), betav(n), y(n*n), err

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 549

 type(d_options) iopti(4)

 type(d_error) epack(1)

 complex(kind(1d0)) alpha(n), v(n,n)

! Generate random matrices for both A and B.

 call rand_gen(y)

 a = reshape(y,(/n,n/))

 call rand_gen(y)

 b = reshape(y,(/n,n/))

! Set the option, a larger tolerance than default for lin_sol_lsq.

 iopti(1) = d_options(d_lin_geig_gen_for_lin_sol_lsq,zero)

! Number of secondary optional data items

 iopti(2) = d_options(2,zero)

 iopti(3) = d_options(d_lin_sol_lsq_set_small,sqrt(epsilon(one))*&

 sqrt(sum(b**2)/n))

 iopti(4) = d_options(d_lin_sol_lsq_no_sing_mess,zero)

! Compute the generalized eigenvalues.

 call lin_geig_gen(A, B, alpha, betav, v=v, &

 iopt=iopti, epack=epack)

 if(.not. isNaN(alpha)) then

! Check the residuals.

 err = sum(abs(matmul(A,V)*spread(betav,dim=1,ncopies=n) - &

 matmul(B,V)*spread(alpha,dim=1,ncopies=n))) / &

 sum(abs(a)+abs(b))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 4 for LIN_GEIG_GEN is correct.'

 end if

 end if

 end

Output

Example 4 for LIN_GEIG_GEN is correct.

EVLRG

Computes all of the eigenvalues of a real matrix.

Required Arguments

A — Real full matrix of order N. (Input)

550 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of

magnitude. (Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVLRG (A, EVAL [,…])

 Specific: The specific interface names are S_EVLRG and D_EVLRG.

FORTRAN 77 Interface

Single: CALL EVLRG (N, A, LDA, EVAL)

Double: The double precision name is DEVLRG.

Description

Routine EVLRG computes the eigenvalues of a real matrix. The matrix is first balanced.

Elementary or Gauss similarity transformations with partial pivoting are used to reduce this

balanced matrix to a real upper Hessenberg matrix. A hybrid double− shifted LR− QR algorithm

is used to compute the eigenvalues of the Hessenberg matrix, Watkins and Elsner (1990).

The underlying code is based on either EISPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation, see

“Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this

manual. The LR− QR algorithm is based on software work of Watkins and Haag. Further details,

some timing data, and credits are given in Hanson et al. (1990).

Comments

1. Workspace may be explicitly provided, if desired, by use of E3LRG/DE3LRG. The

reference is:

CALL E3LRG (N, A, LDA, EVAL, ACOPY, WK, IWK)

The additional arguments are as follows:

ACOPY — Real work array of length N
2
. A and ACOPY may be the same, in

which case the first N
2
 elements of A will be destroyed.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 551

WK — Floating-point work array of size 4N.

IWK — Integer work array of size 2N.

2. Informational error

Type Code

4 1 The iteration for an eigenvalue failed to converge.

3. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access

inefficiency) problems. In routine E3LRG, the internal or working leading

dimension of ACOPY is increased by IVAL(3) when N is a multiple of IVAL(4).

The values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and

IVAL(2), respectively, in routine EVLRG . Additional memory allocation and

option value restoration are automatically done in EVLRG. There is no

requirement that users change existing applications that use EVLRG or E3LRG.

Default values for the option are

IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5−8 in IVAL(*) are for the generalized

eigenvalue problem and are not used in EVLRG.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,

page 85). The eigenvalues of this real matrix are computed and printed. The exact eigenvalues are

known to be {4, 3, 2, 1}.

 USE EVLRG_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N

 PARAMETER (N=4, LDA=N)

!

 REAL A(LDA,N)

 COMPLEX EVAL(N)

! Set values of A

!

! A = (-2.0 2.0 2.0 2.0)

! (-3.0 3.0 2.0 2.0)

! (-2.0 0.0 4.0 2.0)

! (-1.0 0.0 0.0 5.0)

 DATA A/-2.0, -3.0, -2.0, -1.0, 2.0, 3.0, 0.0, 0.0, 2.0, 2.0, &

 4.0, 0.0, 2.0, 2.0, 2.0, 5.0/

!

! Find eigenvalues of A

 CALL EVLRG (A, EVAL)

! Print results

 CALL WRCRN ('EVAL', EVAL, 1, N, 1)

 END

552 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Output

 EVAL

 1 2 3 4

 (4.000, 0.000) (3.000, 0.000) (2.000, 0.000) (1.000, 0.000)

EVCRG

Computes all of the eigenvalues and eigenvectors of a real matrix.

Required Arguments

A — Floating-point array containing the matrix. (Input)

EVAL — Complex array of size N containing the eigenvalues of A in decreasing order of

magnitude. (Output)

EVEC — Complex array containing the matrix of eigenvectors. (Output)

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each

vector is normalized to have Euclidean length equal to the value one.

Optional Arguments

N — Order of the matrix. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL EVCRG (A, EVAL, EVEC [,…])

 Specific: The specific interface names are S_EVCRG and D_EVCRG.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 553

FORTRAN 77 Interface

Single: CALL EVCRG (N, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCRG.

Description

Routine EVCRG computes the eigenvalues and eigenvectors of a real matrix. The matrix is first

balanced. Orthogonal similarity transformations are used to reduce the balanced matrix to a real

upper Hessenberg matrix. The implicit double− shifted QR algorithm is used to compute the

eigenvalues and eigenvectors of this Hessenberg matrix. The eigenvectors are normalized such

that each has Euclidean length of value one. The largest component is real and positive.

The underlying code is based on either EISPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. Further details,

some timing data, and credits are given in Hanson et al. (1990).

Comments

1. Workspace may be explicitly provided, if desired, by use of E8CRG/DE8CRG. The

reference is:

CALL E8CRG (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, ECOPY,

WK, IWK)

The additional arguments are as follows:

ACOPY — Floating-point work array of size N by N. The arrays A and ACOPY

may be the same, in which case the first N
2
 elements of A will be

destroyed. The array ACOPY can have its working row dimension

increased from N to a larger value. An optional usage is required. See

Item 3 below for further details.

ECOPY — Floating-point work array of default size N by N + 1. The working,

leading dimension of ECOPY is the same as that for ACOPY. To increase

this value, an optional usage is required. See Item 3 below for further

details.

WK — Floating-point work array of size 6N.

IWK — Integer work array of size N.

2. Informational error

Type Code

4 1 The iteration for the eigenvalues failed to converge. No eigenvalues

or eigenvectors are computed.

3. Integer Options with Chapter 11 Options Manager

554 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

1 This option uses eight values to solve memory bank conflict (access

inefficiency) problems. In routine E8CRG, the internal or working leading

dimensions of ACOPY and ECOPY are both increased by IVAL(3) when N is a

multiple of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced

by IVAL(1) and IVAL(2), respectively, in routine EVCRG. Additional memory

allocation and option value restoration are automatically done in EVCRG. There

is no requirement that users change existing applications that use EVCRG or

E8CRG. Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items

58 in IVAL(*) are for the generalized eigenvalue problem and are not used in

EVCRG.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,

page 82). The eigenvalues and eigenvectors of this real matrix are computed and printed. The

performance index is also computed and printed. This serves as a check on the computations. For

more details, see IMSL routine EPIRG.

 USE EVCRG_INT

 USE EPIRG_INT

 USE UMACH_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, N

 PARAMETER (N=3, LDA=N, LDEVEC=N)

 INTEGER NOUT

 REAL PI

 COMPLEX EVAL(N), EVEC(LDEVEC,N)

 REAL A(LDA,N)

! Define values of A:

!

! A = (8.0 -1.0 -5.0)

! (-4.0 4.0 -2.0)

! (18.0 -5.0 -7.0)

!

 DATA A/8.0, -4.0, 18.0, -1.0, 4.0, -5.0, -5.0, -2.0, -7.0/

!

! Find eigenvalues and vectors of A

 CALL EVCRG (A, EVAL, EVEC)

! Compute performance index

 PI = EPIRG(N,A,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRCRN ('EVAL', EVAL, 1, N, 1)

 CALL WRCRN ('EVEC', EVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 555

Output

 EVAL

 1 2 3

 (2.000, 4.000) (2.000,-4.000) (1.000, 0.000)

 EVEC

 1 2 3

 1 (0.3162, 0.3162) (0.3162,-0.3162) (0.4082, 0.0000)

 2 (-0.0000, 0.6325) (-0.0000,-0.6325) (0.8165, 0.0000)

 3 (0.6325, 0.0000) (0.6325, 0.0000) (0.4082, 0.0000)

 Performance index = 0.026

EPIRG
This function computes the performance index for a real eigensystem.

Function Return Value

EPIRG — Performance index. (Output)

Required Arguments

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index

computation is based. (Input)

A — Matrix of order N. (Input)

EVAL — Complex vector of length NEVAL containing eigenvalues of A. (Input)

EVEC — Complex N by NEVAL array containing eigenvectors of A. (Input)

The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column

of EVEC.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

556 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: EPIRG (NEVAL, A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EPIRG and D_EPIRG.

FORTRAN 77 Interface

Single: EPIRG (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision function name is DEPIRG.

Description

Let M = NEVAL, = EVAL, xj = EVEC(*,J), the j-th column of EVEC. Also, let ε be the machine

precision given by AMACH(4). The performance index, τ, is defined to be

1

1
1 1

max
10

j j j

j M
j

Ax x

N A x

The norms used are a modified form of the 1-norm. The norm of the complex vector v is

 1
1

N

i i

i

v v v

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100.

The performance index was first developed by the EISPACK project at Argonne National

Laboratory; see Smith et al. (1976, pages 124− 125).

Comments

1. Workspace may be explicitly provided, if desired, by use of E2IRG/DE2IRG. The

reference is:

E2IRG (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, CWK)

The additional argument is:

CWK — Complex work array of length N.

2. Informational errors

Type Code

3 1 The performance index is greater than 100.

3 2 An eigenvector is zero.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 557

3 3 The matrix is zero.

Example

For an example of EPIRG, see IMSL routine EVCRG.

EVLCG

Computes all of the eigenvalues of a complex matrix.

Required Arguments

A — Complex matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of

magnitude. (Output)

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVLCG (A, EVAL [,…])

Specific: The specific interface names are S_EVLCG and D_EVLCG.

FORTRAN 77 Interface

Single: CALL EVLCG (N, A, LDA, EVAL)

Double: The double precision name is EVLCG.

Description

Routine EVLCG computes the eigenvalues of a complex matrix. The matrix is first balanced.

Unitary similarity transformations are used to reduce this balanced matrix to a complex upper

558 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Hessenberg matrix. The shifted QR algorithm is used to compute the eigenvalues of this

Hessenberg matrix.

The underlying code is based on either EISPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of E3LCG/DE3LCG. The

reference is:

CALL E3LCG (N, A, LDA, EVAL, ACOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same,

in which case the first N
2
 elements of A will be destroyed.

RWK — Work array of length N.

CWK — Complex work array of length 2N.

IWK — Integer work array of length N.

2. Informational error

Type Code

4 1 The iteration for an eigenvalue failed to converge.

3. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access

inefficiency) problems. In routine E3LCG, the internal or working, leading

dimension of ACOPY is increased by IVAL(3) when N is a multiple of IVAL(4).

The values IVAL(3) and IVAL (4) are temporarily replaced by IVAL(1) and

IVAL(2), respectively, in routine EVLCG . Additional memory allocation and

option value restoration are automatically done in EVLCG. There is no

requirement that users change existing applications that use EVLCG or E3LCG.

Default values for the option are

IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 58 in IVAL(*) are for the generalized

eigenvalue problem and are not used in EVLCG.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney

(1969, page 115). The program computes the eigenvalues of this matrix.

 USE EVLCG_INT

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 559

 USE WRCRN_INT

! Declare variables

 INTEGER LDA, N

 PARAMETER (N=3, LDA=N)

!

 COMPLEX A(LDA,N), EVAL(N)

! Set values of A

!

! A = (1+2i 3+4i 21+22i)

! (43+44i 13+14i 15+16i)

! (5+6i 7+8i 25+26i)

!

 DATA A/(1.0,2.0), (43.0,44.0), (5.0,6.0), (3.0,4.0), &

 (13.0,14.0), (7.0,8.0), (21.0,22.0), (15.0,16.0), &

 (25.0,26.0)/

!

! Find eigenvalues of A

 CALL EVLCG (A, EVAL)

! Print results

 CALL WRCRN (‘EVAL‘, EVAL, 1, N, 1)

 END

Output

 EVAL

 1 2 3

(39.78, 43.00) (6.70, -7.88) (-7.48, 6.88)

EVCCG

Computes all of the eigenvalues and eigenvectors of a complex matrix.

Required Arguments

A — Complex matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of

magnitude. (Output)

EVEC — Complex matrix of order N. (Output)

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each

vector is normalized to have Euclidean length equal to the value one.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

560 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL EVCCG (A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVCCG and D_EVCCG.

FORTRAN 77 Interface

Single: CALL EVCCG (N, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCCG.

Description

Routine EVCCG computes the eigenvalues and eigenvectors of a complex matrix. The matrix is

first balanced. Unitary similarity transformations are used to reduce this balanced matrix to a

complex upper Hessenberg matrix. The QR algorithm is used to compute the eigenvalues and

eigenvectors of this Hessenberg matrix. The eigenvectors of the original matrix are computed by

transforming the eigenvectors of the complex upper Hessenberg matrix.

The underlying code is based on either EISPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of E6CCG/DE6CCG. The

reference is:

CALL E6CCG (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, RWK,

CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N
2
. The arrays A and ACOPY may

be the same, in which case the first N
2
 elements of A will be destroyed.

RWK — Work array of length N.

CWK — Complex work array of length 2N.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 561

IWK — Integer work array of length N.

2. Informational error

Type Code

4 1 The iteration for the eigenvalues failed to converge. No eigenvalues

or eigenvectors are computed.

3. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access

inefficiency) problems. In routine E6CCG, the internal or working leading

dimensions of ACOPY and ECOPY are both increased by IVAL(3) when N is a

multiple of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced

by IVAL(1) and IVAL(2), respectively, in routine EVCCG. Additional memory

allocation and option value restoration are automatically done in EVCCG. There

is no requirement that users change existing applications that use EVCCG or

E6CCG. Default values for the option are

IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 58 in IVAL(*) are for the generalized

eigenvalue problem and are not used in EVCCG.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,

page 116). Its eigenvalues are known to be {1 + 5i, 2 + 6i, 3 + 7i, 4 + 8i}. The program computes

the eigenvalues and eigenvectors of this matrix. The performance index is also computed and

printed. This serves as a check on the computations, for more details, see IMSL routine EPICG.

 USE EVCCG_INT

 USE EPICG_INT

 USE WRCRN_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, N

 PARAMETER (N=4, LDA=N, LDEVEC=N)

!

 INTEGER NOUT

 REAL PI

 COMPLEX A(LDA,N), EVAL(N), EVEC(LDEVEC,N)

! Set values of A

!

! A = (5+9i 5+5i -6-6i -7-7i)

! (3+3i 6+10i -5-5i -6-6i)

! (2+2i 3+3i -1+3i -5-5i)

! (1+i 2+2i -3-3i 4i)

!

 DATA A/(5.0,9.0), (3.0,3.0), (2.0,2.0), (1.0,1.0), (5.0,5.0), &

 (6.0,10.0), (3.0,3.0), (2.0,2.0), (-6.0,-6.0), (-5.0,-5.0), &

 (-1.0,3.0), (-3.0,-3.0), (-7.0,-7.0), (-6.0,-6.0), &

 (-5.0,-5.0), (0.0,4.0)/

!

562 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

! Find eigenvalues and vectors of A

 CALL EVCCG (A, EVAL, EVEC)

! Compute performance index

 PI = EPICG(N,A,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRCRN ('EVAL', EVAL, 1, N, 1)

 CALL WRCRN ('EVEC', EVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

Output
 EVAL

 1 2 3 4

 (4.000, 8.000) (3.000, 7.000) (2.000, 6.000) (1.000, 5.000)

 EVEC

 1 2 3

4

 1 (0.5774, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) (0.7559,

0.0000)

 2 (0.5774,-0.0000) (0.5773,-0.0000) (0.7559, 0.0000) (0.3780,

0.0000)

 3 (0.5774,-0.0000) (-0.0000,-0.0000) (0.3780, 0.0000) (0.3780,

0.0000)

 4 (0.0000, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) (0.3780,

0.0000)

 Performance index = 0.016

EPICG
This function computes the performance index for a complex eigensystem.

Function Return Value

EPICG — Performance index. (Output)

Required Arguments

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index

computation is based. (Input)

A — Complex matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A. (Input)

EVEC — Complex matrix of order N containing the eigenvectors of A. (Input)

The J-th eigenvalue/eigenvector pair should be in EVAL(J) and in the J-th column of

EVEC.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 563

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: EPICG (NEVAL, A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EPICG and D_EPICG.

FORTRAN 77 Interface

Single: EPICG (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision function name is DEPICG.

Description

Let M = NEVAL, = EVAL, xj = EVEC(*, J), the j-th column of EVEC. Also, let ε be the machine

precision given by AMACH(4). The performance index, τ, is defined to be

1

1
1 1

max
10

j j j

j M
j

Ax x

N A x

The norms used are a modified form of the 1-norm. The norm of the complex vector v is

 1
1

N

i i

i

v v v

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. The performance index was first

developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, pages

124− 125).

Comments

1. Workspace may be explicitly provided, if desired, by use of E2ICG/DE2ICG. The

reference is:

564 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

E2ICG (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WK)

The additional argument is:

WK — Complex work array of length N.

2. Informational errors

Type Code

3 1 Performance index is greater than 100.

3 2 An eigenvector is zero.

3 3 The matrix is zero.

Example

For an example of EPICG, see IMSL routine EVCCG.

EVLSF
Computes all of the eigenvalues of a real symmetric matrix.

Required Arguments

A — Real symmetric matrix of order N. (Input)

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of

magnitude. (Output)

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVLSF (A, EVAL [,…])

Specific: The specific interface names are S_EVLSF and D_EVLSF.

FORTRAN 77 Interface

Single: CALL EVLSF (N, A, LDA, EVAL)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 565

Double: The double precision name is DEVLSF.

Description

Routine EVLSF computes the eigenvalues of a real symmetric matrix. Orthogonal similarity

transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. Then,

an implicit rational QR algorithm is used to compute the eigenvalues of this tridiagonal matrix.

The underlying code is based on either EISPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of E4LSF/DE4LSF. The

reference is:

CALL E4LSF (N, A, LDA, EVAL, WORK, IWORK)

The additional arguments are as follows:

WORK — Work array of length 2N.

IWORK — Integer array of length N.

2. Informational error

Type Code

3 1 The iteration for the eigenvalue failed to converge in 100 iterations

before deflating.

Example

In this example, the eigenvalues of a real symmetric matrix are computed and printed. This matrix

is given by Gregory and Karney (1969, page 56).

 USE EVLSF_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N

 PARAMETER (N=4, LDA=N)

!

 REAL A(LDA,N), EVAL(N)

! Set values of A

!

! A = (6.0 4.0 4.0 1.0)

! (4.0 6.0 1.0 4.0)

! (4.0 1.0 6.0 4.0)

! (1.0 4.0 4.0 6.0)

!

 DATA A /6.0, 4.0, 4.0, 1.0, 4.0, 6.0, 1.0, 4.0, 4.0, 1.0, 6.0, &

566 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 4.0, 1.0, 4.0, 4.0, 6.0 /

!

! Find eigenvalues of A

 CALL EVLSF (A, EVAL)

! Print results

 CALL WRRRN ('EVAL', EVAL, 1, N, 1)

 END

Output

 EVAL

 1 2 3 4

 15.00 5.00 5.00 -1.00

EVCSF
Computes all of the eigenvalues and eigenvectors of a real symmetric matrix.

Required Arguments

A — Real symmetric matrix of order N. (Input)

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of

magnitude. (Output)

EVEC — Real matrix of order N. (Output)

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each

vector is normalized to have Euclidean length equal to the value one.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL EVCSF (A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVCSF and D_EVCSF.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 567

FORTRAN 77 Interface

Single: CALL EVCSF (N, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCSF.

Description

Routine EVCSF computes the eigenvalues and eigenvectors of a real symmetric matrix. Orthogonal

similarity transformations are used to reduce the matrix to an equivalent symmetric tridiagonal

matrix. These transformations are accumulated. An implicit rational QR algorithm is used to

compute the eigenvalues of this tridiagonal matrix. The eigenvectors are computed using the

eigenvalues as perfect shifts, Parlett (1980, pages 169, 172). The underlying code is based on

either EISPACK or LAPACK code depending upon which supporting libraries are used during

linking. For a detailed explanation, see “Using ScaLAPACK, LAPACK, LINPACK, and

EISPACK‖ in the Introduction section of this manual. Further details, some timing data, and

credits are given in Hanson et al. (1990).

Comments

1. Workspace may be explicitly provided, if desired, by use of E5CSF/DE5CSF. The

reference is:

CALL E5CSF (N, A, LDA, EVAL, EVEC, LDEVEC, WORK, IWK)

The additional argument is:

WORK — Work array of length 3N.

IWK — Integer array of length N.

2. Informational error

Type Code

3 1 The iteration for the eigenvalue failed to converge in 100 iterations

before deflating.

Example

The eigenvalues and eigenvectors of this real symmetric matrix are computed and printed. The

performance index is also computed and printed. This serves as a check on the computations. For

more details, see EPISF.

 USE EVCSF_INT

 USE EPISF_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, N

 PARAMETER (N=3, LDA=N, LDEVEC=N)

568 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

!

 INTEGER NOUT

 REAL A(LDA,N), EVAL(N), EVEC(LDEVEC,N), PI

!

! Set values of A

!

! A = (7.0 -8.0 -8.0)

! (-8.0 -16.0 -18.0)

! (-8.0 -18.0 13.0)

!

 DATA A/7.0, -8.0, -8.0, -8.0, -16.0, -18.0, -8.0, -18.0, 13.0/

!

! Find eigenvalues and vectors of A

 CALL EVCSF (A, EVAL, EVEC)

! Compute performance index

 PI = EPISF (N, A, EVAL, EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRRRN ('EVAL', EVAL, 1, N, 1)

 CALL WRRRN ('EVEC', EVEC)

 WRITE (NOUT, '(/,A,F6.3)') ' Performance index = ', PI

 END

Output

 EVAL

 1 2 3

 -27.90 22.68 9.22

 EVEC

 1 2 3

 1 0.2945 -0.2722 0.9161

 2 0.8521 -0.3591 -0.3806

 3 0.4326 0.8927 0.1262

 Performance index = 0.019

EVASF
Computes the largest or smallest eigenvalues of a real symmetric matrix.

Required Arguments

NEVAL — Number of eigenvalues to be computed. (Input)

A — Real symmetric matrix of order N. (Input)

SMALL — Logical variable. (Input)

If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest NEVAL

eigenvalues are computed.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 569

EVAL — Real vector of length NEVAL containing the eigenvalues of A in decreasing order of

magnitude. (Output)

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVASF (NEVAL, A, SMALL, EVAL [,…])

Specific: The specific interface names are S_EVASF and D_EVASF.

FORTRAN 77 Interface

Single: CALL EVASF (N, NEVAL, A, LDA, SMALL, EVAL)

Double: The double precision name is DEVASF.

Description

Routine EVASF computes the largest or smallest eigenvalues of a real symmetric matrix.

Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric

tridiagonal matrix. Then, an implicit rational QR algorithm is used to compute the eigenvalues of

this tridiagonal matrix.

The reduction routine is based on the EISPACK routine TRED2. See Smith et al. (1976). The

rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page 169).

Comments

1. Workspace may be explicitly provided, if desired, by use of E4ASF/DE4ASF. The

reference is:

CALL E4ASF (N, NEVAL, A, LDA, SMALL, EVAL, WORK, IWK)

WORK — Work array of length 4N.

IWK — Integer work array of length N.

2. Informational error

Type Code

3 1 The iteration for an eigenvalue failed to converge. The best estimate

will be returned.

570 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Example

In this example, the three largest eigenvalues of the computed Hilbert matrix aij = 1/(i + j 1) of

order N = 10 are computed and printed.

 USE EVASF_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N, NEVAL

 PARAMETER (N=10, NEVAL=3, LDA=N)

!

 INTEGER I, J

 REAL A(LDA,N), EVAL(NEVAL), REAL

 LOGICAL SMALL

 INTRINSIC REAL

! Set up Hilbert matrix

 DO 20 J=1, N

 DO 10 I=1, N

 A(I,J) = 1.0/REAL(I+J-1)

 10 CONTINUE

 20 CONTINUE

! Find the 3 largest eigenvalues

 SMALL = .FALSE.

 CALL EVASF (NEVAL, A, SMALL, EVAL)

! Print results

 CALL WRRRN ('EVAL', EVAL, 1, NEVAL, 1)

 END

Output

 EVAL

 1 2 3

 1.752 0.343 0.036

EVESF
Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a real

symmetric matrix.

Required Arguments

NEVEC — Number of eigenvalues to be computed. (Input)

A — Real symmetric matrix of order N. (Input)

SMALL — Logical variable. (Input)

If .TRUE., the smallest NEVEC eigenvalues are computed. If .FALSE., the largest NEVEC

eigenvalues are computed.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 571

EVAL — Real vector of length NEVEC containing the eigenvalues of A in decreasing order of

magnitude. (Output)

EVEC — Real matrix of dimension N by NEVEC. (Output)

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each

vector is normalized to have Euclidean length equal to the value one.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL EVESF (NEVEC, A, SMALL, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVESF and D_EVESF.

FORTRAN 77 Interface

Single: CALL EVESF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVESF.

Description

Routine EVESF computes the largest or smallest eigenvalues and the corresponding eigenvectors

of a real symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to

an equivalent symmetric tridiagonal matrix. Then, an implicit rational QR algorithm is used to

compute the eigenvalues of this tridiagonal matrix. Inverse iteration is used to compute the

eigenvectors of the tridiagonal matrix. This is followed by orthogonalization of these vectors. The

eigenvectors of the original matrix are computed by back transforming those of the tridiagonal

matrix.

The reduction routine is based on the EISPACK routine TRED2. See Smith et al. (1976). The

rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page 169). The

inverse iteration and orthogonalization computation is discussed in Hanson et al. (1990). The back

transformation routine is based on the EISPACK routine TRBAK1.

572 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of E5ESF/DE5ESF. The

reference is:

CALL E5ESF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC,

WK, IWK)

The additional arguments are as follows:

WK — Work array of length 9N.

IWK — Integer array of length N.

2. Informational errors

Type Code

3 1 The iteration for an eigenvalue failed to converge. The best estimate

will be returned.

3 2 Inverse iteration did not converge. Eigenvector is not correct for the

specified eigenvalue.

3 3 The eigenvectors have lost orthogonality.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,

page 55). The largest two eigenvalues and their eigenvectors are computed and printed. The

performance index is also computed and printed. This serves as a check on the computations. For

more details, see IMSL routine EPISF.

 USE EVESF_INT

 USE EPISF_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, N

 PARAMETER (N=4, LDA=N, LDEVEC=N)

!

 INTEGER NEVEC, NOUT

 REAL A(LDA,N), EVAL(N), EVEC(LDEVEC,N), PI

 LOGICAL SMALL

!

! Set values of A

!

! A = (5.0 4.0 1.0 1.0)

! (4.0 5.0 1.0 1.0)

! (1.0 1.0 4.0 2.0)

! (1.0 1.0 2.0 4.0)

!

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 573

 DATA A/5.0, 4.0, 1.0, 1.0, 4.0, 5.0, 1.0, 1.0, 1.0, 1.0, 4.0, &

 2.0, 1.0, 1.0, 2.0, 4.0/

!

! Find eigenvalues and vectors of A

 NEVEC = 2

 SMALL = .FALSE.

 CALL EVESF (NEVEC, A, SMALL, EVAL, EVEC)

! Compute performance index

 PI = EPISF(NEVEC,A,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRRRN ('EVAL', EVAL, 1, NEVEC, 1)

 CALL WRRRN ('EVEC', EVEC, N, NEVEC, LDEVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

Output

 EVAL

 1 2

 10.00 5.00

 EVEC

 1 2

 1 0.6325 -0.3162

 2 0.6325 -0.3162

 3 0.3162 0.6325

 4 0.3162 0.6325

 Performance index = 0.031

EVBSF
Computes selected eigenvalues of a real symmetric matrix.

Required Arguments

MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Real symmetric matrix of order N. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought. (Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought. (Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW,

EHIGH) in decreasing order of magnitude. (Output)

Only the first NEVAL elements of EVAL are significant.

574 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVBSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL [,…])

Specific: The specific interface names are S_EVBSF and D_EVBSF.

FORTRAN 77 Interface

Single: CALL EVBSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL)

Double: The double precision name is DEVBSF.

Description

Routine EVBSF computes the eigenvalues in a given interval for a real symmetric matrix.

Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric

tridiagonal matrix. Then, an implicit rational QR algorithm is used to compute the eigenvalues of

this tridiagonal matrix. The reduction step is based on the EISPACK routine TRED1. See Smith et

al. (1976). The rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980,

page 169).

Comments

1. Workspace may be explicitly provided, if desired, by use of E5BSF/DE5BSF. The

reference is

CALL E5BSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL,

WK, IWK)

The additional arguments are as follows:

WK — Work array of length 5N.

IWK — Integer work array of length 1N.

2. Informational error

Type Code

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 575

3 1 The number of eigenvalues in the specified interval exceeds

MXEVAL. NEVAL contains the number of eigenvalues in the

interval. No eigenvalues will be returned.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,

page 56). The eigenvalues of A are known to be 1, 5, 5 and 15. The eigenvalues in the interval

[1.5, 5.5] are computed and printed. As a test, this example uses MXEVAL = 4. The routine EVBSF

computes NEVAL, the number of eigenvalues in the given interval. The value of NEVAL is 2.

 USE EVBSF_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, MXEVAL, N

 PARAMETER (MXEVAL=4, N=4, LDA=N)

!

 INTEGER NEVAL, NOUT

 REAL A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL)

!

! Set values of A

!

! A = (6.0 4.0 4.0 1.0)

! (4.0 6.0 1.0 4.0)

! (4.0 1.0 6.0 4.0)

! (1.0 4.0 4.0 6.0)

!

 DATA A/6.0, 4.0, 4.0, 1.0, 4.0, 6.0, 1.0, 4.0, 4.0, 1.0, 6.0, &

 4.0, 1.0, 4.0, 4.0, 6.0/

!

! Find eigenvalues of A

 ELOW = 1.5

 EHIGH = 5.5

 CALL EVBSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,'(/,A,I2)') ' NEVAL = ', NEVAL

 CALL WRRRN ('EVAL', EVAL, 1, NEVAL, 1)

 END

Output

NEVAL = 2

 EVAL

 1 2

 5.000 5.000

EVFSF
Computes selected eigenvalues and eigenvectors of a real symmetric matrix.

576 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Required Arguments

MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Real symmetric matrix of order N. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought. (Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought. (Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval

(ELOW, EHIGH) in decreasing order of magnitude. (Output)

Only the first NEVAL elements of EVAL are significant.

EVEC — Real matrix of dimension N by MXEVAL. (Output)

The J-th eigenvector corresponding to EVAL(J), is stored in the J-th column. Only the

first NEVAL columns of EVEC are significant. Each vector is normalized to have

Euclidean length equal to the value one.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL EVFSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVFSF and D_EVFSF.

FORTRAN 77 Interface

Single: CALL EVFSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, EVEC,
LDEVEC)

Double: The double precision name is DEVFSF.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 577

Description

Routine EVFSF computes the eigenvalues in a given interval and the corresponding eigenvectors

of a real symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to

an equivalent symmetric tridiagonal matrix. Then, an implicit rational QR algorithm is used to

compute the eigenvalues of this tridiagonal matrix. Inverse iteration is used to compute the

eigenvectors of the tridiagonal matrix. This is followed by orthogonalization of these vectors. The

eigenvectors of the original matrix are computed by back transforming those of the tridiagonal

matrix.

The reduction step is based on the EISPACK routine TRED1. The rational QR algorithm is called

the PWK algorithm. It is given in Parlett (1980, page 169). The inverse iteration and

orthogonalization processes are discussed in Hanson et al. (1990). The transformation back to the

users‘s input matrix is based on the EISPACK routine TRBAK1. See Smith et al. (1976) for the

EISPACK routines.

Comments

1. Workspace may be explicitly provided, if desired, by use of E3FSF/DE3FSF. The

reference is:

CALL E3FSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, VAL,

EVEC, LDEVEC, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 9N.

IWK — Integer work array of length N.

2. Informational errors

Type Code

3 1 The number of eigenvalues in the specified range exceeds

MXEVAL. NEVAL contains the number of eigenvalues in the

range. No eigenvalues will be computed.

3 2 Inverse iteration did not converge. Eigenvector is not correct for the

specified eigenvalue.

3 3 The eigenvectors have lost orthogonality.

Example

In this example, A is set to the computed Hilbert matrix. The eigenvalues in the interval [0.001, 1]

and their corresponding eigenvectors are computed and printed. This example uses MXEVAL = 3.

The routine EVFSF computes the number of eigenvalues NEVAL in the given interval. The value of

NEVAL is 2. The performance index is also computed and printed. For more details, see IMSL

routine EPISF.

 USE EVFSF_INT

 USE EPISF_INT

 USE WRRRN_INT

578 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, MXEVAL, N, J, I

 PARAMETER (MXEVAL=3, N=3, LDA=N, LDEVEC=N)

!

 INTEGER NEVAL, NOUT

 REAL A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL), &

 EVEC(LDEVEC,MXEVAL), PI

! Compute Hilbert matrix

 DO 20 J=1,N

 DO 10 I=1,N

 A(I,J) = 1.0/FLOAT(I+J-1)

 10 CONTINUE

 20 CONTINUE

! Find eigenvalues and vectors

 ELOW = 0.001

 EHIGH = 1.0

 CALL EVFSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC, LDEVEC)

! Compute performance index

 PI = EPISF(NEVAL,A,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,'(/,A,I2)') ' NEVAL = ', NEVAL

 CALL WRRRN ('EVAL', EVAL, 1, NEVAl, 1)

 CALL WRRRN ('EVEC', EVEC, N, NEVAL, LDEVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

Output

 NEVAL = 2

 EVAL

 1 2

 0.1223 0.0027

 EVEC

 1 2

 1 -0.5474 -0.1277

 2 0.5283 0.7137

 3 0.6490 -0.6887

 Performance index = 0.008

EPISF
This function computes the performance index for a real symmetric eigensystem.

Function Return Value

EPISF — Performance index. (Output)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 579

Required Arguments

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index

computation is based on. (Input)

A — Symmetric matrix of order N. (Input)

EVAL — Vector of length NEVAL containing eigenvalues of A. (Input)

EVEC — N by NEVAL array containing eigenvectors of A. (Input)

The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column

of EVEC.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: EPISF (NEVAL, A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EPISF and D_EPISF.

FORTRAN 77 Interface

Single: EPISF (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision function name is DEPISF.

Description

Let M = NEVAL, = EVAL, xj = EVEC(*,J), the j-th column of EVEC. Also, let ε be the machine

precision, given by AMACH(4), see the Reference chapter of this manual. The performance index, τ,

is defined to be

max
1

1

1 1
10j M

j j j

j

Ax x

N A x

580 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. The performance index was first

developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, pages

124− 125).

Comments

1. Workspace may be explicitly provided, if desired, by use of E2ISF/DE2ISF. The

reference is:

E2ISF (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WORK)

The additional argument is:

WORK — Work array of length N.

E2ISF — Performance Index.

2. Informational errors

Type Code

3 1 Performance index is greater than 100.

3 2 An eigenvector is zero.

3 3 The matrix is zero.

Example

For an example of EPISF, see routine EVCSF.

EVLSB
Computes all of the eigenvalues of a real symmetric matrix in band symmetric storage mode.

Required Arguments

A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

EVAL — Vector of length N containing the eigenvalues of A in decreasing order of

magnitude. (Output)

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 581

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVLSB (A, NCODA, EVAL [,…])

Specific: The specific interface names are S_EVLSB and D_EVLSB.

FORTRAN 77 Interface

Single: CALL EVLSB (N, A, LDA, NCODA, EVAL)

Double: The double precision name is DEVLSB.

Description

Routine EVLSB computes the eigenvalues of a real band symmetric matrix. Orthogonal similarity

transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. The

implicit QL algorithm is used to compute the eigenvalues of the resulting tridiagonal matrix.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The QL

routine is based on the EISPACK routine IMTQL1; see Smith et al. (1976).

Comments

1. Workspace may be explicitly provided, if desired, by use of E3LSB/DE3LSB. The

reference is:

CALL E3LSB (N, A, LDA, NCODA, EVAL, ACOPY, WK)

The additional arguments are as follows:

ACOPY — Work array of length N(NCODA + 1). The arrays A and ACOPY

may be the same, in which case the first N(NCODA + 1) elements of A

will be destroyed.

WK — Work array of length N.

2. Informational error

Type Code

4 1 The iteration for the eigenvalues failed to converge.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,

page 77). The eigenvalues of this matrix are given by

582 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

2

1 2cos 3
1

k

k

N

Since the eigenvalues returned by EVLSB are in decreasing magnitude, the above formula for

k = 1, …, N gives the values in a different order. The eigenvalues of this real band symmetric

matrix are computed and printed.

 USE EVLSB_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, N, NCODA

 PARAMETER (N=5, NCODA=2, LDA=NCODA+1, LDEVEC=N)

!

 REAL A(LDA,N), EVAL(N)

! Define values of A:

! A = (-1 2 1)

! (2 0 2 1)

! (1 2 0 2 1)

! (1 2 0 2)

! (1 2 -1)

! Represented in band symmetric

! form this is:

! A = (0 0 1 1 1)

! (0 2 2 2 2)

! (-1 0 0 0 -1)

!

 DATA A/0.0, 0.0, -1.0, 0.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, &

 0.0, 1.0, 2.0, -1.0/

!

 CALL EVLSB (A, NCODA, EVAL)

! Print results

 CALL WRRRN ('EVAL', EVAL, 1, N, 1)

 END

Output

 EVAL

 1 2 3 4 5

 4.464 -3.000 -2.464 -2.000 1.000

EVCSB
Computes all of the eigenvalues and eigenvectors of a real symmetric matrix in band symmetric

storage mode.

Required Arguments

A — Band symmetric matrix of order N. (Input)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 583

NCODA — Number of codiagonals in A. (Input)

EVAL — Vector of length N containing the eigenvalues of A in decreasing order of

magnitude. (Output)

EVEC — Matrix of order N containing the eigenvectors. (Output)

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each

vector is normalized to have Euclidean length equal to the value one.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL EVCSB (A, NCODA, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVCSB and D_EVCSB.

FORTRAN 77 Interface

Single: CALL EVCSB (N, A, LDA, NCODA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCSB.

Description

Routine EVCSB computes the eigenvalues and eigenvectors of a real band symmetric matrix.

Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric

tridiagonal matrix. These transformations are accumulated. The implicit QL algorithm is used to

compute the eigenvalues and eigenvectors of the resulting tridiagonal matrix.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The QL

routine is based on the EISPACK routine IMTQL2; see Smith et al. (1976).

Comments

1. Workspace may be explicitly provided, if desired, by use of E4CSB/DE4CSB. The

reference is:

584 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

CALL E4CSB (N, A, LDA, NCODA, EVAL, EVEC, LDEVEC, COPY,

WK, IWK)

The additional arguments are as follows:

ACOPY — Work array of length N(NCODA + 1). A and ACOPY may be the

same, in which case the first N * NCODA elements of A will be

destroyed.

WK — Work array of length N.

IWK — Integer work array of length N.

2. Informational error

Type Code

4 1 The iteration for the eigenvalues failed to converge.

3. The success of this routine can be checked using EPISB.

Example

In this example, a DATA statement is used to set A to a band matrix given by Gregory and Karney

(1969, page 75). The eigenvalues, k, of this matrix are given by

416sin
2 2

k

k

N

The eigenvalues and eigenvectors of this real band symmetric matrix are computed and printed.

The performance index is also computed and printed. This serves as a check on the computations;

for more details, see IMSL routine EPISB.

 USE EVCSB_INT

 USE EPISB_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, N, NCODA

 PARAMETER (N=6, NCODA=2, LDA=NCODA+1, LDEVEC=N)

!

 INTEGER NOUT

 REAL A(LDA,N), EVAL(N), EVEC(LDEVEC,N), PI

! Define values of A:

! A = (5 -4 1)

! (-4 6 -4 1)

! (1 -4 6 -4 1)

! (1 -4 6 -4 1)

! (1 -4 6 -4)

! (1 -4 5)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 585

! Represented in band symmetric

! form this is:

! A = (0 0 1 1 1 1)

! (0 -4 -4 -4 -4 -4)

! (5 6 6 6 6 5)

!

 DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, &

 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/

!

! Find eigenvalues and vectors

 CALL EVCSB (A, NCODA, EVAL, EVEC)

! Compute performance index

 PI = EPISB(N,A,NCODA,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRRRN ('EVAL', EVAL, 1, N, 1)

 CALL WRRRN ('EVEC', EVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

Output

 EVAL

 1 2 3 4 5 6

 14.45 10.54 5.98 2.42 0.57 0.04

 EVEC

 1 2 3 4 5 6

 1 -0.2319 -0.4179 -0.5211 0.5211 -0.4179 0.2319

 2 0.4179 0.5211 0.2319 0.2319 -0.5211 0.4179

 3 -0.5211 -0.2319 0.4179 -0.4179 -0.2319 0.5211

 4 0.5211 -0.2319 -0.4179 -0.4179 0.2319 0.5211

 5 -0.4179 0.5211 -0.2319 0.2319 0.5211 0.4179

 6 0.2319 -0.4179 0.5211 0.5211 0.4179 0.2319

 Performance index = 0.029

EVASB
Computes the largest or smallest eigenvalues of a real symmetric matrix in band symmetric

storage mode.

Required Arguments

NEVAL — Number of eigenvalues to be computed. (Input)

A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

SMALL — Logical variable. (Input)

If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest NEVAL

eigenvalues are computed.

586 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

EVAL — Vector of length NEVAL containing the computed eigenvalues in decreasing order of

magnitude. (Output)

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVASB (NEVAL, A, NCODA, SMALL, EVAL [,…])

Specific: The specific interface names are S_EVASB and D_EVASB.

FORTRAN 77 Interface

Single: CALL EVASB (N, NEVAL, A, LDA, NCODA, SMALL, EVAL)

Double: The double precision name is DEVASB.

Description

Routine EVASB computes the largest or smallest eigenvalues of a real band symmetric matrix.

Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric

tridiagonal matrix. The rational QR algorithm with Newton corrections is used to compute the

extreme eigenvalues of this tridiagonal matrix.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1978). The QR

routine is based on the EISPACK routine RATQR; see Smith et al. (1976).

Comments

1. Workspace may be explicitly provided, if desired, by use of E3ASB/DE3ASB. The

reference is:

CALL E3ASB (N, NEVAL, A, LDA, NCODA, SMALL, EVAL, ACOPY,

WK)

The additional arguments are as follows:

ACOPY — Work array of length N(NCODA + 1). A and ACOPY may be the

same, in which case the first N(NCODA + 1) elements of A will be

destroyed.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 587

WK — Work array of length 3N.

2. Informational error

Type Code

3 1 The iteration for an eigenvalue failed to converge. The best estimate

will be returned.

Example

The following example is given in Gregory and Karney (1969, page 63). The smallest four

eigenvalues of the matrix

5 2 1 1

2 6 3 1 1

1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1

1 1 3 6 2

1 1 2 5

A

are computed and printed.

 USE EVASB_INT

 USE WRRRN_INT

 USE SSET_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N, NCODA, NEVAL

 PARAMETER (N=11, NCODA=3, NEVAL=4, LDA=NCODA+1)

!

 REAL A(LDA,N), EVAL(NEVAL)

 LOGICAL SMALL

! Set up matrix in band symmetric

! storage mode

 CALL SSET (N, 6.0, A(4:,1), LDA)

 CALL SSET (N-1, 3.0, A(3:,2), LDA)

 CALL SSET (N-2, 1.0, A(2:,3), LDA)

 CALL SSET (N-3, 1.0, A(1:,4), LDA)

 CALL SSET (NCODA, 0.0, A(1:,1), 1)

 CALL SSET (NCODA-1, 0.0, A(1:,2), 1)

 CALL SSET (NCODA-2, 0.0, A(1:,3), 1)

 A(4,1) = 5.0

588 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 A(4,N) = 5.0

 A(3,2) = 2.0

 A(3,N) = 2.0

! Find the 4 smallest eigenvalues

 SMALL = .TRUE.

 CALL EVASB (NEVAL, A, NCODA, SMALL, EVAL)

! Print results

 CALL WRRRN ('EVAL', EVAL, 1, NEVAL, 1)

 END

Output

 EVAL

 1 2 3 4

 4.000 3.172 1.804 0.522

EVESB
Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a real

symmetric matrix in band symmetric storage mode.

Required Arguments

NEVEC — Number of eigenvectors to be calculated. (Input)

A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

SMALL — Logical variable. (Input)

If .TRUE. , the smallest NEVEC eigenvectors are computed. If .FALSE. , the largest

NEVEC eigenvectors are computed.

EVAL — Vector of length NEVEC containing the eigenvalues of A in decreasing order of

magnitude. (Output)

EVEC — Real matrix of dimension N by NEVEC. (Output)

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each

vector is normalized to have Euclidean length equal to the value one.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 589

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL EVESB (NEVEC, A, NCODA, SMALL, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVESB and D_EVESB.

FORTRAN 77 Interface

Single: CALL EVESB (N, NEVEC, A, LDA, NCODA, SMALL, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVESB.

Description

Routine EVESB computes the largest or smallest eigenvalues and the corresponding eigenvectors

of a real band symmetric matrix. Orthogonal similarity transformations are used to reduce the

matrix to an equivalent symmetric tridiagonal matrix. The rational QR algorithm with Newton

corrections is used to compute the extreme eigenvalues of this tridiagonal matrix. Inverse iteration

and orthogonalization are used to compute the eigenvectors of the given band matrix. The

reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The QR

routine is based on the EISPACK routine RATQR; see Smith et al. (1976). The inverse iteration and

orthogonalization steps are based on EISPACK routine BANDV using the additional steps given in

Hanson et al. (1990).

Comments

1. Workspace may be explicitly provided, if desired, by use of E4ESB/DE4ESB. The

reference is:

CALL E4ESB (N, NEVEC, A, LDA, NCODA, SMALL, EVAL, EVEC,

LDEVEC, ACOPY, WK, IWK)

The additional argument is:

ACOPY — Work array of length N(NCODA + 1).

WK — Work array of length N(2NCODA + 5).

IWK — Integer work array of length N.

2. Informational errors

Type Code

3 1 Inverse iteration did not converge. Eigenvector is not correct for the

specified eigenvalue.

590 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

3 2 The eigenvectors have lost orthogonality.

3. The success of this routine can be checked using EPISB.

Example

The following example is given in Gregory and Karney (1969, page 75). The largest three

eigenvalues and the corresponding eigenvectors of the matrix are computed and printed.

 USE EVESB_INT

 USE EPISB_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, N, NCODA, NEVEC

 PARAMETER (N=6, NCODA=2, NEVEC=3, LDA=NCODA+1, LDEVEC=N)

!

 INTEGER NOUT

 REAL A(LDA,N), EVAL(NEVEC), EVEC(LDEVEC,NEVEC), PI

 LOGICAL SMALL

! Define values of A:

! A = (5 -4 1)

! (-4 6 -4 1)

! (1 -4 6 -4 1)

! (1 -4 6 -4 1)

! (1 -4 6 -4)

! (1 -4 5)

! Represented in band symmetric

! form this is:

! A = (0 0 1 1 1 1)

! (0 -4 -4 -4 -4 -4)

! (5 6 6 6 6 5)

!

 DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, &

 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/

!

! Find the 3 largest eigenvalues

! and their eigenvectors.

 SMALL = .FALSE.

 CALL EVESB (NEVEC, A, NCODA, SMALL, EVAL, EVEC)

! Compute performance index

 PI = EPISB(NEVEC,A,NCODA,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRRRN ('EVAL', EVAL, 1, NEVEC, 1)

 CALL WRRRN ('EVEC', EVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

Output

 EVAL

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 591

 1 2 3

 14.45 10.54 5.98

 EVEC

 1 2 3

 1 0.2319 -0.4179 0.5211

 2 -0.4179 0.5211 -0.2319

 3 0.5211 -0.2319 -0.4179

 4 -0.5211 -0.2319 0.4179

 5 0.4179 0.5211 0.2319

 6 -0.2319 -0.4179 -0.5211

 Performance index = 0.175

EVBSB
Computes the eigenvalues in a given interval of a real symmetric matrix stored in band symmetric

storage mode.

Required Arguments

MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought. (Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought. (Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW,

EHIGH) in decreasing order of magnitude. (Output)

Only the first NEVAL elements of EVAL are set.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVBSB (MXEVAL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL [,…])

Specific: The specific interface names are S_EVBSB and D_EVBSB.

592 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL EVBSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, EVAL)

Double: The double precision name is DEVBSB.

Description

Routine EVBSB computes the eigenvalues in a given range of a real band symmetric matrix.

Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric

tridiagonal matrix. A bisection algorithm is used to compute the eigenvalues of the tridiagonal

matrix in a given range.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The

bisection routine is based on the EISPACK routine BISECT; see Smith et al. (1976).

Comments

1. Workspace may be explicitly provided, if desired, by use of E3BSB/DE3BSB. The

reference is:

CALL E3BSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, EVAL,

ACOPY, WK)

The additional arguments are as follows:

ACOPY — Work matrix of size NCODA + 1 by N. A and ACOPY may be the

same, in which case the first N(NCODA + 1) elements of A will be

destroyed.

WK — Work array of length 5N.

2. Informational error

Type Code

3 1 The number of eigenvalues in the specified interval exceeds

MXEVAL. NEVAL contains the number of eigenvalues in the

interval. No eigenvalues will be returned.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,

page 77). The eigenvalues in the range (-2.5, 1.5) are computed and printed. As a test, this

example uses MXEVAL = 5. The routine EVBSB computes NEVAL, the number of eigenvalues in the

given range, has the value 3.

 USE EVBSB_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 593

! Declare variables

 INTEGER LDA, MXEVAL, N, NCODA

 PARAMETER (MXEVAL=5, N=5, NCODA=2, LDA=NCODA+1)

!

 INTEGER NEVAL, NOUT

 REAL A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL)

!

! Define values of A:

! A = (-1 2 1)

! (2 0 2 1)

! (1 2 0 2 1)

! (1 2 0 2)

! (1 2 -1)

! Representedin band symmetric

! form this is:

! A = (0 0 1 1 1)

! (0 2 2 2 2)

! (-1 0 0 0 -1)

 DATA A/0.0, 0.0, -1.0, 0.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, &

 0.0, 1.0, 2.0, -1.0/

!

 ELOW = -2.5

 EHIGH = 1.5

 CALL EVBSB (MXEVAL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,'(/,A,I1)') ' NEVAL = ', NEVAL

 CALL WRRRN ('EVAL', EVAL, 1, NEVAl, 1)

 END

Output

NEVAL = 3

 EVAL

 1 2 3

 -2.464 -2.000 1.000

EVFSB
Computes the eigenvalues in a given interval and the corresponding eigenvectors of a real

symmetric matrix stored in band symmetric storage mode.

Required Arguments

MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought. (Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought. (Input)

594 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW,

EHIGH) in decreasing order of magnitude. (Output)

Only the first NEVAL elements of EVAL are significant.

EVEC — Real matrix containing in its first NEVAL columns the eigenvectors associated with

the eigenvalues found and stored in EVAL. Eigenvector J corresponds to eigenvalue J

for J = 1 to NEVAL. Each vector is normalized to have Euclidean length equal to the

value one. (Output)

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL EVFSB (MXEVEL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVFSB and D_EVFSB.

FORTRAN 77 Interface

Single: CALL EVFSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, EVAL, EVEC,
LDEVEC)

Double: The double precision name is DEVFSB.

Description

Routine EVFSB computes the eigenvalues in a given range and the corresponding eigenvectors of a

real band symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to

an equivalent tridiagonal matrix. A bisection algorithm is used to compute the eigenvalues of the

tridiagonal matrix in the required range. Inverse iteration and orthogonalization are used to

compute the eigenvectors of the given band symmetric matrix.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The

bisection routine is based on the EISPACK routine BISECT; see Smith et al. (1976). The inverse

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 595

iteration and orthogonalization steps are based on the EISPACK routine BANDV using remarks

from Hanson et al. (1990).

Comments

1. Workspace may be explicitly provided, if desired, by use of E3FSB/DE3FSB. The

reference is:

CALL E3FSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL,

EVAL, EVEC, LDEVEC, ACOPY, WK1, WK2, IWK)

The additional arguments are as follows:

ACOPY — Work matrix of size NCODA + 1 by N.

WK1 — Work array of length 6N.

WK2 — Work array of length 2N * NCODA + N

IWK — Integer work array of length N.

2. Informational errors

Type Code

3 1 The number of eigenvalues in the specified interval exceeds

MXEVAL. NEVAL contains the number of eigenvalues in the

interval. No eigenvalues will be returned.

3 2 Inverse iteration did not converge. Eigenvector is not correct for the

specified eigenvalue.

3 3 The eigenvectors have lost orthogonality.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,

page 75). The eigenvalues in the range [1, 6] and their corresponding eigenvectors are computed

and printed. As a test, this example uses MXEVAL = 4. The routine EVFSB computes NEVAL, the

number of eigenvalues in the given range has the value 2. As a check on the computations, the

performance index is also computed and printed. For more details, see IMSL routine EPISB.

 USE EVFSB_INT

 USE EPISB_INT

 USE WRRRN_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, MXEVAL, N, NCODA

 PARAMETER (MXEVAL=4, N=6, NCODA=2, LDA=NCODA+1, LDEVEC=N)

!

 INTEGER NEVAL, NOUT

 REAL A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL), &

596 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 EVEC(LDEVEC,MXEVAL), PI

! Define values of A:

! A = (5 -4 1)

! (-4 6 -4 1)

! (1 -4 6 -4 1)

! (1 -4 6 -4 1)

! (1 -4 6 -4)

! (1 -4 5)

! Represented in band symmetric

! form this is:

! A = (0 0 1 1 1 1)

! (0 -4 -4 -4 -4 -4)

! (5 6 6 6 6 5)

 DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, &

 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/

!

! Find eigenvalues and vectors

 ELOW = 1.0

 EHIGH = 6.0

 CALL EVFSB (MXEVAL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL, EVEC)

! Compute performance index

 PI = EPISB(NEVAL,A,NCODA,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,'(/,A,I1)') ' NEVAL = ', NEVAL

 CALL WRRRN ('EVAL', EVAL, 1, NEVAL, 1)

 CALL WRRRN ('EVEC', EVEC, N, NEVAL, LDEVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

Output

NEVAL = 2

 EVAL

 1 2

 5.978 2.418

 EVEC

 1 2

 1 0.5211 0.5211

 2 -0.2319 0.2319

 3 -0.4179 -0.4179

 4 0.4179 -0.4179

 5 0.2319 0.2319

 6 -0.5211 0.5211

 Performance index = 0.083

EPISB
This function computes the performance index for a real symmetric eigensystem in band

symmetric storage mode.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 597

Required Arguments

EPISB — Performance index. (Output)

Required Arguments

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance is based.

(Input)

A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

EVAL — Vector of length NEVAL containing eigenvalues of A. (Input)

EVEC — N by NEVAL array containing eigenvectors of A. (Input)

The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column

of EVEC.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: EPISB (NEVAL, A, NCODA, EVAL, EVEC [,…])

Specific: The specific interface names are S_EPISB and D_EPISB.

FORTRAN 77 Interface

Single: EPISB (N, NEVAL, A, LDA, NCODA, EVAL, EVEC, LDEVEC)

Double: The double precision function name is DEPISB.

Description

Let M = NEVAL, = EVAL, xj = EVEC(*,J), the j-th column of EVEC. Also, let ε be the machine

precision, given by AMACH(4), see the Reference chapter of the manual. The performance index, τ,

is defined to be

598 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

1

1
1 1

max
10

j j j

j M
j

Ax x

N A x

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. The performance index was first

developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, pages

124− 125).

Comments

1. Workspace may be explicitly provided, if desired, by use of E2ISB/DE2ISB. The

reference is:

E2ISB (N, NEVAL, A, LDA, NCODA, EVAL, EVEC, LDEVEC, WK)

The additional argument is:

WK — Work array of length N.

2. Informational errors

Type Code

3 1 Performance index is greater than 100.

3 2 An eigenvector is zero.

3 3 The matrix is zero.

Example

For an example of EPISB, see IMSL routine EVCSB.

EVLHF

Computes all of the eigenvalues of a complex Hermitian matrix.

Required Arguments

A — Complex Hermitian matrix of order N. (Input)

Only the upper triangle is used.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 599

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order

of magnitude. (Output)

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVLHF (A, EVAL [,…])

Specific: The specific interface names are S_EVLHF and D_EVLHF.

FORTRAN 77 Interface

Single: CALL EVLHF (N, A, LDA, EVAL)

Double: The double precision name is DEVLHF.

Description

Routine EVLHF computes the eigenvalues of a complex Hermitian matrix. Unitary similarity

transformations are used to reduce the matrix to an equivalent real symmetric tridiagonal matrix.

The implicit QL algorithm is used to compute the eigenvalues of this tridiagonal matrix.

The underlying code is based on either EISPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of E3LHF/DE3LHF. The

reference is:

CALL E3LHF (N, A, LDA, EVAL, ACOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same

in which case A will be destroyed.

RWK — Work array of length N.

CWK — Complex work array of length 2N.

600 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

IWK — Integer work array of length N.

2. Informational errors

Type Code

3 1 The matrix is not Hermitian. It has a diagonal entry with a small

imaginary part.

4 1 The iteration for an eigenvalue failed to converge.

4 2 The matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access

inefficiency) problems. In routine E3LHF, the internal or working leading

dimensions of ACOPY and ECOPY are both increased by IVAL(3) when N is a

multiple of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced

by IVAL(1) and IVAL(2), respectively, in routine EVLHF. Additional memory

allocation and option value restoration are automatically done in EVLHF. There

is no requirement that users change existing applications that use EVLHF or

E3LHF. Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items

5 8 in IVAL(*) are for the generalized eigenvalue problem and are not used in

EVLHF.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,

page 114). The eigenvalues of this complex Hermitian matrix are computed and printed.

 USE EVLHF_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N

 PARAMETER (N=2, LDA=N)

!

 REAL EVAL(N)

 COMPLEX A(LDA,N)

! Set values of A

!

! A = (1 -i)

! (i 1)

!

 DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/

!

! Find eigenvalues of A

 CALL EVLHF (A, EVAL)

! Print results

 CALL WRRRN ('EVAL', EVAL, 1, N, 1)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 601

 END

Output

 EVAL

 1 2

 2.000 0.000

EVCHF

Computes all of the eigenvalues and eigenvectors of a complex Hermitian matrix.

Required Arguments

A — Complex Hermitian matrix of order N. (Input)

Only the upper triangle is used.

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of

magnitude. (Output)

EVEC — Complex matrix of order N. (Output)

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each

vector is normalized to have Euclidean length equal to the value one.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL EVCHF (A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVCHF and D_EVCHF.

602 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL EVCHF (N, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCHF.

Description

Routine EVCHF computes the eigenvalues and eigenvectors of a complex Hermitian matrix.

Unitary similarity transformations are used to reduce the matrix to an equivalent real symmetric

tridiagonal matrix. The implicit QL algorithm is used to compute the eigenvalues and eigenvectors

of this tridiagonal matrix. These eigenvectors and the transformations used to reduce the matrix to

tridiagonal form are combined to obtain the eigenvectors for the user‘s problem. The underlying

code is based on either EISPACK or LAPACK code depending upon which supporting libraries

are used during linking. For a detailed explanation, see “Using ScaLAPACK, LAPACK,

LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of E5CHF/DE5CHF. The

reference is:

CALL E5CHF (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, RWK,

CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same,

in which case A will be destroyed.

RWK — Work array of length N
2
 + N.

CWK — Complex work array of length 2N.

IWK — Integer work array of length N.

2. Informational error

Type Code

3 1 The matrix is not Hermitian. It has a diagonal entry with a small

imaginary part.

4 1 The iteration for an eigenvalue failed to converge.

4 2 The matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. The success of this routine can be checked using EPIHF.

4. Integer Options with Chapter 11 Options Manager

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 603

1 This option uses eight values to solve memory bank conflict (access

inefficiency) problems. In routine E5CHF, the internal or working leading

dimensions of ACOPY and ECOPY are both increased by IVAL(3) when N is a

multiple of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced

by IVAL(1) and IVAL(2), respectively, in routine EVCHF. Additional memory

allocation and option value restoration are automatically done in EVCHF. There

is no requirement that users change existing applications that use EVCHF or

E5CHF. Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items

58 in IVAL(*) are for the generalized eigenvalue problem and are not used in

EVCHF.

Example

In this example, a DATA statement is used to set A to a complex Hermitian matrix. The eigenvalues

and eigenvectors of this matrix are computed and printed. The performance index is also

computed and printed. This serves as a check on the computations, for more details, see routine

EPIHF.

 USE IMSL_libraries

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, N

 PARAMETER (N=3, LDA=N, LDEVEC=N)

!

 INTEGER NOUT

 REAL EVAL(N), PI

 COMPLEX A(LDA,N), EVEC(LDEVEC,N)

! Set values of A

!

! A = ((1, 0) (1,-7i) (0,- i))

! ((1,7i) (5, 0) (10,-3i))

! ((0, i) (10, 3i) (-2, 0))

!

 DATA A/(1.0,0.0), (1.0,7.0), (0.0,1.0), (1.0,-7.0), (5.0,0.0), &

 (10.0, 3.0), (0.0,-1.0), (10.0,-3.0), (-2.0,0.0)/

!

! Find eigenvalues and vectors of A

 CALL EVCHF (A, EVAL, EVEC)

! Compute performance index

 PI = EPIHF(N,A,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRRRN ('EVAL', EVAL, 1, N, 1)

 CALL WRCRN ('EVEC', EVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

Output

 EVAL

 1 2 3

 15.38 -10.63 -0.75

604 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 EVEC

 1 2 3

 1 (0.0631,-0.4075) (-0.0598,-0.3117) (0.8539, 0.0000)

 2 (0.7703, 0.0000) (-0.5939, 0.1841) (-0.0313,-0.1380)

 3 (0.4668, 0.1366) (0.7160, 0.0000) (0.0808,-0.4942)

 Performance index = 0.093

EVAHF
Computes the largest or smallest eigenvalues of a complex Hermitian matrix.

Required Arguments

NEVAL — Number of eigenvalues to be calculated. (Input)

A — Complex Hermitian matrix of order N. (Input)

Only the upper triangle is used.

SMALL — Logical variable. (Input)

If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest

NEVAL eigenvalues are computed.

EVAL — Real vector of length N containing the extreme eigenvalues of A in decreasing order

of magnitude in the first NEVAL elements. (Output)

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVAHF (NEVAL, A, SMALL, EVAL [,…])

Specific: The specific interface names are S_EVAHF and D_EVAHF.

FORTRAN 77 Interface

Single: CALL EVAHF (N, NEVAL, A, LDA, SMALL, EVAL)

Double: The double precision name is DEVAHF.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 605

Description

Routine EVAHF computes the largest or smallest eigenvalues of a complex Hermitian matrix.

Unitary transformations are used to reduce the matrix to an equivalent symmetric tridiagonal

matrix. The rational QR algorithm with Newton corrections is used to compute the extreme

eigenvalues of this tridiagonal matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The QR routine is based on the

EISPACK routine RATQR. See Smith et al. (1976) for the EISPACK routines.

Comments

1. Workspace may be explicitly provided, if desired, by use of E3AHF/DE3AHF. The

reference is

CALL E3AHF (N, NEVAL, A, LDA, SMALL, EVAL, ACOPY, RWK,

CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same

in which case A will be destroyed.

RWK — Work array of length 2N.

CWK — Complex work array of length 2N.

IWK — Work array of length N.

2. Informational errors

Type Code

3 1 The iteration for an eigenvalue failed to converge. The best estimate

will be returned.

3 2 The matrix is not Hermitian. It has a diagonal entry with a small

imaginary part.

4 2 The matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,

page 114). Its largest eigenvalue is computed and printed.

 USE EVAHF_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N

 PARAMETER (N=2, LDA=N)

606 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

!

 INTEGER NEVAL

 REAL EVAL(N)

 COMPLEX A(LDA,N)

 LOGICAL SMALL

! Set values of A

!

! A = (1 -i)

! (i 1)

!

 DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/

!

! Find the largest eigenvalue of A

 NEVAL = 1

 SMALL = .FALSE.

 CALL EVAHF (NEVAL, A, SMALL, EVAL)

! Print results

 CALL WRRRN ('EVAL', EVAL, 1, NEVAl, 1)

 END

Output

 EVAL

 2.000

EVEHF
Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a complex

Hermitian matrix.

Required Arguments

NEVEC — Number of eigenvectors to be computed. (Input)

A — Complex Hermitian matrix of order N. (Input)

Only the upper triangle is used.

SMALL — Logical variable. (Input)

If .TRUE., the smallest NEVEC eigenvectors are computed. If .FALSE., the largest

NEVEC eigenvectors are computed.

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of

magnitude. (Output)

EVEC — Complex matrix of dimension N by NEVEC. (Output)

The J-th eigenvector corresponding to EVAL(J), is stored in the J-th column. Each

vector is normalized to have Euclidean length equal to the value one.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 607

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL EVEHF (NEVEC, A, SMALL, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVEHF and D_EVEHF.

FORTRAN 77 Interface

Single: CALL EVEHF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVEHF.

Description

Routine EVEHF computes the largest or smallest eigenvalues and the corresponding eigenvectors

of a complex Hermitian matrix. Unitary transformations are used to reduce the matrix to an

equivalent real symmetric tridiagonal matrix. The rational QR algorithm with Newton corrections

is used to compute the extreme eigenvalues of the tridiagonal matrix. Inverse iteration is used to

compute the eigenvectors of the tridiagonal matrix. Eigenvectors of the original matrix are found

by back transforming the eigenvectors of the tridiagonal matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The QR routine used is based on

the EISPACK routine RATQR. The inverse iteration routine is based on the EISPACK routine

TINVIT. The back transformation routine is based on the EISPACK routine HTRIBK. See Smith et

al. (1976) for the EISPACK routines.

Comments

1. Workspace may be explicitly provided, if desired, by use of E3EHF/DE3EHF. The

reference is:

CALL E3EHF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC,

ACOPY, RW1, RW2, CWK, IWK)

The additional arguments are as follows:

608 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same,

in which case A will be destroyed.

RW1 — Work array of length N * NEVEC. Used to store the real eigenvectors

of a symmetric tridiagonal matrix.

RW2 — Work array of length 8N.

CWK — Complex work array of length 2N.

IWK — Work array of length N.

2. Informational errors

Type Code

3 1 The iteration for an eigenvalue failed to converge. The best estimate

will be returned.

3 2 The iteration for an eigenvector failed to converge. The eigenvector

will be set to 0.

3 3 The matrix is not Hermitian. It has a diagonal entry with a small

imaginary part.

4 2 The matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. The success of this routine can be checked using EPIHF.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,

page 115). The smallest eigenvalue and its corresponding eigenvector is computed and printed.

The performance index is also computed and printed. This serves as a check on the computations.

For more details, see IMSL routine EPIHF.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, N, NEVEC

 PARAMETER (N=3, NEVEC=1, LDA=N, LDEVEC=N)

!

 INTEGER NOUT

 REAL EVAL(N), PI

 COMPLEX A(LDA,N), EVEC(LDEVEC,NEVEC)

 LOGICAL SMALL

! Set values of A

!

! A = (2 -i 0)

! (i 2 0)

! (0 0 3)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 609

!

 DATA A/(2.0,0.0), (0.0,1.0), (0.0,0.0), (0.0,-1.0), (2.0,0.0), &

 (0.0,0.0), (0.0,0.0), (0.0,0.0), (3.0,0.0)/

!

! Find smallest eigenvalue and its

! eigenvectors

 SMALL = .TRUE.

 CALL EVEHF (NEVEC, A, SMALL, EVAL, EVEC)

! Compute performance index

 PI = EPIHF(NEVEC,A,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRRRN ('EVAL', EVAL, 1, NEVEC, 1)

 CALL WRCRN ('EVEC', EVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

Output

 EVAL

 1.000

 EVEC

 1 (0.0000, 0.7071)

 2 (0.7071, 0.0000)

 3 (0.0000, 0.0000)

 Performance index = 0.031

EVBHF
Computes the eigenvalues in a given range of a complex Hermitian matrix.

Required Arguments

MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Complex Hermitian matrix of order N. (Input)

Only the upper triangle is used.

ELOW — Lower limit of the interval in which the eigenvalues are sought. (Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought. (Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW,

EHIGH) in decreasing order of magnitude. (Output)

Only the first NEVAL elements of EVAL are significant.

610 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVBHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL [,…])

Specific: The specific interface names are S_EVBHF and D_EVBHF.

FORTRAN 77 Interface

Single: CALL EVBHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL)

Double: The double precision name is DEVBHF.

Description

Routine EVBHF computes the eigenvalues in a given range of a complex Hermitian matrix. Unitary

transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. A

bisection algorithm is used to compute the eigenvalues in the given range of this tridiagonal

matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The bisection routine used is

based on the EISPACK routine BISECT. See Smith et al. (1976) for the EISPACK routines.

Comments

1. Workspace may be explicitly provided, if desired, by use of E3BHF/DE3BHF. The

reference is:

CALL E3BHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL,

ACOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work matrix of size N by N. A and ACOPY may be the

same, in which case the first N
2
 elements of A will be destroyed.

RWK — Work array of length 5N.

CWK — Complex work array of length 2N.

IWK — Work array of length MXEVAL.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 611

2. Informational errors

Type Code

3 1 The number of eigenvalues in the specified range exceeds

MXEVAL. NEVAL contains the number of eigenvalues in the

range. No eigenvalues will be computed.

3 2 The matrix is not Hermitian. It has a diagonal entry with a small

imaginary part.

4 2 The matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,

page 114). The eigenvalues in the range [1.5, 2.5] are computed and printed. This example allows

a maximum number of eigenvalues MXEVAL = 2. The routine computes that there is one eigenvalue

in the given range. This value is returned in NEVAL.

 USE EVBHF_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, MXEVAL, N

 PARAMETER (MXEVAL=2, N=2, LDA=N)

!

 INTEGER NEVAL, NOUT

 REAL EHIGH, ELOW, EVAL(MXEVAL)

 COMPLEX A(LDA,N)

! Set values of A

!

! A = (1 -i)

! (i 1)

!

 DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/

!

! Find eigenvalue

 ELOW = 1.5

 EHIGH = 2.5

 CALL EVBHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL)

!

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,'(/,A,I3)') ' NEVAL = ', NEVAL

 CALL WRRRN ('EVAL', EVAL, 1, NEVAL, 1)

 END

612 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Output

 NEVAL = 1

 EVAL

 2.000

EVFHF
Computes the eigenvalues in a given range and the corresponding eigenvectors of a complex

Hermitian matrix.

Required Arguments

MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Complex Hermitian matrix of order N. (Input)

Only the upper triangle is used.

ELOW — Lower limit of the interval in which the eigenvalues are sought. (Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought. (Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW,

EHIGH) in decreasing order of magnitude. (Output)

Only the first NEVAL elements of EVAL are significant.

EVEC — Complex matrix containing in its first NEVAL columns the eigenvectors associated

with the eigenvalues found stored in EVAL. Each vector is normalized to have

Euclidean length equal to the value one. (Output)

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 613

FORTRAN 90 Interface

Generic: CALL EVFHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVFHF and D_EVFHF.

FORTRAN 77 Interface

Single: CALL EVFHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, EVEC,
LDEVEC)

Double: The double precision name is DEVHFH.

Description

Routine EVFHF computes the eigenvalues in a given range and the corresponding eigenvectors of a

complex Hermitian matrix. Unitary transformations are used to reduce the matrix to an equivalent

symmetric tridiagonal matrix. A bisection algorithm is used to compute the eigenvalues in the

given range of this tridiagonal matrix. Inverse iteration is used to compute the eigenvectors of the

tridiagonal matrix. The eigenvectors of the original matrix are computed by back transforming the

eigenvectors of the tridiagonal matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The bisection routine is based on

the EISPACK routine BISECT. The inverse iteration routine is based on the EISPACK routine

TINVIT. The back transformation routine is based on the EISPACK routine HTRIBK. See Smith et

al. (1976) for the EISPACK routines.

Comments

1. Workspace may be explicitly provided, if desired, by use of E3FHF/DE3FHF. The

reference is:

CALL E3FHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL,

EVEC, LDEVEC, ACOPY, ECOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work matrix of size N by N. A and ACOPY may be the

same, in which case the first N
2
 elements of A will be destroyed.

ECOPY — Work matrix of size N by MXEVAL. Used to store eigenvectors of a

real tridiagonal matrix.

RWK — Work array of length 8N.

CWK — Complex work array of length 2N.

IWK — Work array of length MXEVAL.

2. Informational errors

614 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Type Code

3 1 The number of eigenvalues in the specified range exceeds

MXEVAL. NEVAL contains the number of eigenvalues in the

range. No eigenvalues will be computed.

3 2 The iteration for an eigenvector failed to converge. The eigenvector

will be set to 0.

3 3 The matrix is not Hermitian. It has a diagonal entry with a small

imaginary part.

4 2 The matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

Example

In this example, a DATA statement is used to set A to a complex Hermitian matrix. The eigenvalues

in the range [15, 0] and their corresponding eigenvectors are computed and printed. As a test, this

example uses MXEVAL = 3. The routine EVFHF computes the number of eigenvalues in the given

range. That value, NEVAL, is two. As a check on the computations, the performance index is also

computed and printed. For more details, see routine EPIHF.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, MXEVAL, N

 PARAMETER (MXEVAL=3, N=3, LDA=N, LDEVEC=N)

!

 INTEGER NEVAL, NOUT

 REAL EHIGH, ELOW, EVAL(MXEVAL), PI

 COMPLEX A(LDA,N), EVEC(LDEVEC,MXEVAL)

! Set values of A

!

! A = ((1, 0) (1,-7i) (0,- i))

! ((1,7i) (5, 0) (10,-3i))

! ((0, i) (10, 3i) (-2, 0))

!

 DATA A/(1.0,0.0), (1.0,7.0), (0.0,1.0), (1.0,-7.0), (5.0,0.0), &

 (10.0,3.0), (0.0,-1.0), (10.0,-3.0), (-2.0,0.0)/

!

! Find eigenvalues and vectors

 ELOW = -15.0

 EHIGH = 0.0

 CALL EVFHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC)

! Compute performance index

 PI = EPIHF(NEVAL,A,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,'(/,A,I3)') ' NEVAL = ', NEVAL

 CALL WRRRN ('EVAL', EVAL, 1, NEVAL, 1)

 CALL WRCRN ('EVEC', EVEC, N, NEVAL, LDEVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 615

 END

Output

 NEVAL = 2

 EVAL

 1 2

 -10.63 -0.75

 EVEC

 1 2

 1 (-0.0598,-0.3117) (0.8539, 0.0000)

 2 (-0.5939, 0.1841) (-0.0313,-0.1380)

 3 (0.7160, 0.0000) (0.0808,-0.4942)

 Performance index = 0.057

EPIHF
This function computes the performance index for a complex Hermitian eigensystem.

Function Return Value

EPIHF — Performance index. (Output)

Required Arguments

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index

computation is based. (Input)

A — Complex Hermitian matrix of order N. (Input)

EVAL — Vector of length NEVAL containing eigenvalues of A. (Input)

EVEC — Complex N by NEVAL array containing eigenvectors of A. (Input)

The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column

of EVEC.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

616 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: EPIHF (NEVAL, A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EPIHF and D_EPIHF.

FORTRAN 77 Interface

Single: EPIHF (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision function name is DEPIHF.

Description

Let M = NEVAL, = EVAL, xj = EVEC(*, J), the j-th column of EVEC. Also, let ε be the machine

precision, given by AMACH(4), see the Reference chapter of this manual. The performance index, τ,

is defined to be

1

1
1 1

max
10

j j j

j M
j

Ax x

N A x

The norms used are a modified form of the 1-norm. The norm of the complex vector v is

 1
1

N

i i

i

v v v

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. The performance index was first

developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, pages

124− 125).

Comments

1. Workspace may be explicitly provided, if desired, by use of E2IHF/DE2IHF. The

reference is:

E2IHF(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WK)

The additional argument is

WK — Complex work array of length N.

2. Informational errors

Type Code

3 1 Performance index is greater than 100.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 617

3 2 An eigenvector is zero.

3 3 The matrix is zero.

Example

For an example of EPIHF, see IMSL routine EVCHF.

EVLRH
Computes all of the eigenvalues of a real upper Hessenberg matrix.

Required Arguments

A — Real upper Hessenberg matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues in decreasing order of

magnitude. (Output)

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVLRH (A, EVAL [,…])

Specific: The specific interface names are S_EVLRH and D_EVLRH.

FORTRAN 77 Interface

Single: CALL EVLRH (N, A, LDA, EVAL)

Double: The double precision name is DEVLRH.

Description

Routine EVLRH computes the eigenvalues of a real upper Hessenberg matrix by using the QR

algorithm. The QR Algorithm routine is based on the EISPACK routine HQR, Smith et al. (1976).

Comments

1. Workspace may be explicitly provided, if desired, by use of E3LRH/DE3LRH. The

reference is:

618 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

CALL E3LRH (N, A, LDA, EVAL, ACOPY, WK, IWK)

The additional arguments are as follows:

ACOPY — Real N by N work matrix.

WK — Real vector of length 3n.

IWK — Integer vector of length n.

2. Informational error

Type Code

4 1 The iteration for the eigenvalues failed to converge.

Example

In this example, a DATA statement is used to set A to an upper Hessenberg matrix of integers. The

eigenvalues of this matrix are computed and printed.

 USE EVLRH_INT

 USE UMACH_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N

 PARAMETER (N=4, LDA=N)

!

 INTEGER NOUT

 REAL A(LDA,N)

 COMPLEX EVAL(N)

! Set values of A

!

! A = (2.0 1.0 3.0 4.0)

! (1.0 0.0 0.0 0.0)

! (1.0 0.0 0.0)

! (1.0 0.0)

!

 DATA A/2.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 3.0, 0.0, 0.0, &

 1.0, 4.0, 0.0, 0.0, 0.0/

!

! Find eigenvalues of A

 CALL EVLRH (A, EVAL)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRCRN ('EVAL', EVAL, 1, N, 1)

 END

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 619

Output

 EVAL

 1 2 3 4

 (2.878, 0.000) (0.011, 1.243) (0.011,-1.243) (-0.900, 0.000)

EVCRH
Computes all of the eigenvalues and eigenvectors of a real upper Hessenberg matrix.

Required Arguments

A — Real upper Hessenberg matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues in decreasing order of

magnitude. (Output)

EVEC — Complex matrix of order N. (Output)

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each

vector is normalized to have Euclidean length equal to the value one.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL EVCRH (A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVCRH and D_EVCRH.

FORTRAN 77 Interface

Single: CALL EVCRH (N, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCRH.

620 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Description

Routine EVCRH computes the eigenvalues and eigenvectors of a real upper Hessenberg matrix by

using the QR algorithm. The QR algorithm routine is based on the EISPACK routine HQR2; see

Smith et al. (1976).

Comments

1. Workspace may be explicitly provided, if desired, by use of E6CRH/DE6CRH. The

reference is:

CALL E6CRH (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, ECOPY,

RWK, IWK)

The additional arguments are as follows:

ACOPY — Real N by N work matrix.

ECOPY — Real N by N work matrix.

RWK — Real array of length 3N.

IWK — Integer array of length N.

2. Informational error

Type Code

4 1 The iteration for the eigenvalues failed to converge.

Example

In this example, a DATA statement is used to set A to a Hessenberg matrix with integer entries. The

values are returned in decreasing order of magnitude. The eigenvalues, eigenvectors and

performance index of this matrix are computed and printed. See routine EPIRG for details.

 USE EVCRH_INT

 USE EPIRG_INT

 USE UMACH_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, N

 PARAMETER (N=4, LDA=N, LDEVEC=N)

!

 INTEGER NOUT

 REAL A(LDA,N), PI

 COMPLEX EVAL(N), EVEC(LDEVEC,N)

! Define values of A:

!

! A = (-1.0 -1.0 -1.0 -1.0)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 621

! (1.0 0.0 0.0 0.0)

! (1.0 0.0 0.0)

! (1.0 0.0)

!

 DATA A/-1.0, 1.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0, &

 1.0, -1.0, 0.0, 0.0, 0.0/

!

! Find eigenvalues and vectors of A

 CALL EVCRH (A, EVAL, EVEC)

! Compute performance index

 PI = EPIRG(N,A,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRCRN ('EVAL', EVAL, 1, N, 1)

 CALL WRCRN ('EVEC', EVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

Output

 EVAL

 1 2 3 4

 (-0.8090, 0.5878) (-0.8090,-0.5878) (0.3090, 0.9511) (0.3090,-0.9511)

 EVEC

 1 2 3

4

 1 (-0.4045, 0.2939) (-0.4045,-0.2939) (-0.4045,-0.2939) (-0.4045,

0.2939)

 2 (0.5000, 0.0000) (0.5000, 0.0000) (-0.4045, 0.2939) (-0.4045,-

0.2939)

 3 (-0.4045,-0.2939) (-0.4045, 0.2939) (0.1545, 0.4755) (0.1545,-

0.4755)

 4 (0.1545, 0.4755) (0.1545,-0.4755) (0.5000, 0.0000) (0.5000,

0.0000)

 Performance index = 0.098

EVLCH
Computes all of the eigenvalues of a complex upper Hessenberg matrix.

Required Arguments

A — Complex upper Hessenberg matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of

magnitude. (Output)

Required Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

622 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL EVLCH (A, EVAL [,…])

Specific: The specific interface names are S_EVLCH and D_EVLCH.

FORTRAN 77 Interface

Single: CALL EVLCH (N, A, LDA, EVAL)

Double: The double precision name is DEVLCH.

Description

Routine EVLCH computes the eigenvalues of a complex upper Hessenberg matrix using the QR

algorithm. This routine is based on the EISPACK routine COMQR2; see Smith et al. (1976).

Comments

1. Workspace may be explicitly provided, if desired, by use of E3LCH/DE3LCH. The

reference is:

CALL E3LCH (N, A, LDA, EVAL, ACOPY, RWK, IWK)

The additional arguments are as follows:

ACOPY — Complex N by N work array. A and ACOPY may be the same, in

which case A is destroyed.

RWK — Real work array of length N.

IWK — Integer work array of length N.

2. Informational error

Type Code

4 1 The iteration for the eigenvalues failed to converge.

Example

In this example, a DATA statement is used to set the matrix A. The program computes and prints the

eigenvalues of this matrix.

 USE EVLCH_INT

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 623

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N

 PARAMETER (N=4, LDA=N)

 COMPLEX A(LDA,N), EVAL(N)

! Set values of A

!

! A = (5+9i 5+5i -6-6i -7-7i)

! (3+3i 6+10i -5-5i -6-6i)

! (0 3+3i -1+3i -5-5i)

! (0 0 -3-3i 4i)

!

 DATA A /(5.0,9.0), (3.0,3.0), (0.0,0.0), (0.0,0.0), &

 (5.0,5.0), (6.0,10.0), (3.0,3.0), (0.0,0.0), &

 (-6.0,-6.0), (-5.0,-5.0), (-1.0,3.0), (-3.0,-3.0), &

 (-7.0,-7.0), (-6.0,-6.0), (-5.0,-5.0), (0.0,4.0)/

!

! Find the eigenvalues of A

 CALL EVLCH (A, EVAL)

! Print results

 CALL WRCRN ('EVAL', EVAL, 1, N, 1)

 END

Output

 EVAL

 1 2 3 4

 (8.22, 12.22) (3.40, 7.40) (1.60, 5.60) (-3.22, 0.78)

EVCCH
Computes all of the eigenvalues and eigenvectors of a complex upper Hessenberg matrix.

Required Arguments

A — Complex upper Hessenberg matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of

magnitude. (Output)

EVEC — Complex matrix of order N. (Output)

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each

vector is normalized to have Euclidean length equal to the value one.

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

624 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL EVCCH (A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVCCH and D_EVCCH.

FORTRAN 77 Interface

Single: CALL EVCCH (N, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCCH.

Description

Routine EVCCH computes the eigenvalues and eigenvectors of a complex upper Hessenberg matrix

using the QR algorithm. This routine is based on the EISPACK routine COMQR2; see Smith et al.

(1976).

Comments

1. Workspace may be explicitly provided, if desired, by use of E4CCH/DE4CCH. The

reference is:

CALL E4CCH (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, CWORK,

RWK, IWK)

The additional arguments are as follows:

ACOPY — Complex N by N work array. A and ACOPY may be the same, in

which case A is destroyed.

CWORK — Complex work array of length 2N.

RWK — Real work array of length N.

IWK — Integer work array of length N.

2 Informational error

Type Code

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 625

4 1 The iteration for the eigenvalues failed to converge.

3. The results of EVCCH can be checked using EPICG. This requires that the matrix A

explicitly contains the zeros in A(I, J) for (I 1) > J which are assumed by EVCCH.

Example

In this example, a DATA statement is used to set the matrix A. The program computes the

eigenvalues and eigenvectors of this matrix. The performance index is also computed and printed.

This serves as a check on the computations; for more details, see IMSL routine EPICG. The zeros

in the lower part of the matrix are not referenced by EVCCH, but they are required by EPICG.

 USE EVCCH_INT

 USE EPICG_INT

 USE UMACH_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDEVEC, N

 PARAMETER (N=4, LDA=N, LDEVEC=N)

!

 INTEGER NOUT

 REAL PI

 COMPLEX A(LDA,N), EVAL(N), EVEC(LDEVEC,N)

! Set values of A

!

! A = (5+9i 5+5i -6-6i -7-7i)

! (3+3i 6+10i -5-5i -6-6i)

! (0 3+3i -1+3i -5-5i)

! (0 0 -3-3i 4i)

!

 DATA A/(5.0,9.0), (3.0,3.0), (0.0,0.0), (0.0,0.0), (5.0,5.0), &

 (6.0,10.0), (3.0,3.0), (0.0,0.0), (-6.0,-6.0), (-5.0,-5.0), &

 (-1.0,3.0), (-3.0,-3.0), (-7.0,-7.0), (-6.0,-6.0), &

 (-5.0,-5.0), (0.0,4.0)/

!

! Find eigenvalues and vectors of A

 CALL EVCCH (A, EVAL, EVEC)

! Compute performance index

 PI = EPICG(N,A,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRCRN ('EVAL', EVAL, 1, N, 1)

 CALL WRCRN ('EVEC', EVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

Output

 EVAL

 1 2 3 4

 (8.22, 12.22) (3.40, 7.40) (1.60, 5.60) (-3.22, 0.78)

 EVEC

626 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 1 2 3

4

 1 (0.7167, 0.0000) (-0.0704, 0.0000) (-0.3678, 0.0000) (0.5429,

0.0000)

 2 (0.6402,-0.0000) (-0.0046,-0.0000) (0.6767, 0.0000) (0.4298,-

0.0000)

 3 (0.2598, 0.0000) (0.7477, 0.0000) (-0.3005, 0.0000) (0.5277,-

0.0000)

 4 (-0.0948,-0.0000) (-0.6603,-0.0000) (0.5625, 0.0000) (0.4920,-

0.0000)

 Performance index = 0.020

GVLRG

Computes all of the eigenvalues of a generalized real eigensystem Az = Bz.

Required Arguments

A — Real matrix of order N. (Input)

B — Real matrix of order N. (Input)

ALPHA — Complex vector of size N containing scalars αi, i = 1, …, n. If βi ≠ 0, i = αi / βi

the eigenvalues of the system in decreasing order of magnitude. (Output)

BETAV — Vector of size N containing scalars βi. (Output)

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL GVLRG (A, B, ALPHA, BETAV [,…])

Specific: The specific interface names are S_GVLRG and D_GVLRG.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 627

FORTRAN 77 Interface

Single: CALL GVLRG (N, A, LDA, B, LDB, ALPHA, BETAV)

Double: The double precision name is DGVLRG.

Description

Routine GVLRG computes the eigenvalues of the generalized eigensystem Ax = Bx where A and B

are real matrices of order N. The eigenvalues for this problem can be infinite; so instead of

returning , GVLRG returns α and β. If β is nonzero, then = α/β.

The first step of the QZ algorithm is to simultaneously reduce A to upper Hessenberg form and B

to upper triangular form. Then, orthogonal transformations are used to reduce A to quasi-upper-

triangular form while keeping B upper triangular. The generalized eigenvalues are then computed.

The underlying code is based on either EISPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation, see

“Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this

manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of G3LRG/DG3LRG. The

reference is:

CALL G3LRG (N, A, LDA, B, LDB, ALPHA, BETAV, ACOPY, BCOPY,

RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Work array of size N
2
 . The arrays A and ACOPY may be the same,

in which case the first N
2
 elements of A will be destroyed.

BCOPY — Work array of size N
2
 . The arrays B and BCOPY may be the same,

in which case the first N
2
 elements of B will be destroyed.

RWK — Real work array of size N.

CWK — Complex work array of size N.

IWK — Integer work array of size N.

2. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access

inefficiency) problems. In routine G3LRG, the internal or working leading

dimension of ACOPY is increased by IVAL(3) when N is a multiple of IVAL(4).

The values IVAL(3) and IVAL (4) are temporarily replaced by IVAL(1) and

IVAL(2), respectively, in routine GVLRG . Analogous comments hold for BCOPY

and the values IVAL(5) IVAL(8) . Additional memory allocation and option

628 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

value restoration are automatically done in GVLRG. There is no requirement that

users change existing applications that use GVLRG or G3LRG. Default values for

the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1.

Example

In this example, DATA statements are used to set A and B. The eigenvalues are computed and

printed.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER LDA, LDB, N

 PARAMETER (N=3, LDA=N, LDB=N)

!

 INTEGER I

 REAL A(LDA,N), B(LDB,N), BETAV(N)

 COMPLEX ALPHA(N), EVAL(N)

!

! Set values of A and B

! A = (1.0 0.5 0.0)

! (-10.0 2.0 0.0)

! (5.0 1.0 0.5)

!

! B = (0.5 0.0 0.0)

! (3.0 3.0 0.0)

! (4.0 0.5 1.0)

!

! Declare variables

 DATA A/1.0, -10.0, 5.0, 0.5, 2.0, 1.0, 0.0, 0.0, 0.5/

 DATA B/0.5, 3.0, 4.0, 0.0, 3.0, 0.5, 0.0, 0.0, 1.0/

!

 CALL GVLRG (A, B, ALPHA, BETAV)

! Compute eigenvalues

 DO 10 I=1, N

 EVAL(I) = ALPHA(I)/BETAV(I)

 10 CONTINUE

! Print results

 CALL WRCRN ('EVAL', EVAL, 1, N, 1)

 END

Output

 EVAL

 1 2 3

 (0.833, 1.993) (0.833,-1.993) (0.500, 0.000)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 629

GVCRG

Computes all of the eigenvalues and eigenvectors of a generalized real eigensystem Az = Bz.

Required Arguments

A — Real matrix of order N. (Input)

B — Real matrix of order N. (Input)

ALPHA — Complex vector of size N containing scalars αi. If

βi ≠ 0, i = αi / βi, i = 1, …, n are the eigenvalues of the system.

BETAV — Vector of size N containing scalars βi. (Output)

EVEC — Complex matrix of order N. (Output)

The J-th eigenvector, corresponding to J, is stored in the J-th column. Each vector is

normalized to have Euclidean length equal to the value one.

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDB = SIZE (B,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL GVCRG (A, B, ALPHA, BETAV, EVEC [,…])

Specific: The specific interface names are S_GVCRG and D_GVCRG.

630 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL GVCRG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC)

Double: The double precision name is DGVCRG.

Description

Routine GVCRG computes the complex eigenvalues and eigenvectors of the generalized

eigensystem Ax = Bx where A and B are real matrices of order N. The eigenvalues for this

problem can be infinite; so instead of returning , GVCRG returns complex numbers α and real

numbers β. If β is nonzero, then = α/ β. For problems with small β users can choose to solve the

mathematically equivalent problem Bx = μAx where μ= -1
.

The first step of the QZ algorithm is to simultaneously reduce A to upper Hessenberg form and B

to upper triangular form. Then, orthogonal transformations are used to reduce A to quasi-upper-

triangular form while keeping B upper triangular. The generalized eigenvalues and eigenvectors

for the reduced problem are then computed.

The underlying code is based on either EISPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of G8CRG/DG8CRG. The

reference is:

CALL G8CRG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC,

ACOPY, BCOPY, ECOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Work array of size N
2
. The arrays A and ACOPY may be the same,

in which case the first N
2
 elements of A will be destroyed.

BCOPY — Work array of size N
2
. The arrays B and BCOPY may be the same,

in which case the first N
2
 elements of B will be destroyed.

ECOPY — Work array of size N
2
.

RWK — Work array of size N.

CWK — Complex work array of size N.

IWK — Integer work array of size N.

2. Integer Options with Chapter 11 Options Manager

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 631

1 This option uses eight values to solve memory bank conflict (access

inefficiency) problems. In routine G8CRG, the internal or working leading

dimensions of ACOPY and ECOPY are both increased by IVAL(3) when N is a

multiple of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced

by IVAL(1) and IVAL(2), respectively, in routine GVCRG. Analogous comments

hold for the array BCOPY and the option values IVAL(5) IVAL(8). Additional

memory allocation and option value restoration are automatically done in

GVCRG. There is no requirement that users change existing applications that use

GVCRG or G8CRG. Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16,

0, 1. Items 58 in IVAL(*) are for the generalized eigenvalue problem and are

not used in GVCRG.

Example

In this example, DATA statements are used to set A and B. The eigenvalues, eigenvectors and

performance index are computed and printed for the systems Ax = Bx and Bx = μAx where μ = -

1
. For more details about the performance index, see routine GPIRG.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER LDA, LDB, LDEVEC, N

 PARAMETER (N=3, LDA=N, LDB=N, LDEVEC=N)

!

 INTEGER I, NOUT

 REAL A(LDA,N), B(LDB,N), BETAV(N), PI

 COMPLEX ALPHA(N), EVAL(N), EVEC(LDEVEC,N)

!

! Define values of A and B:

! A = (1.0 0.5 0.0)

! (-10.0 2.0 0.0)

! (5.0 1.0 0.5)

!

! B = (0.5 0.0 0.0)

! (3.0 3.0 0.0)

! (4.0 0.5 1.0)

!

! Declare variables

 DATA A/1.0, -10.0, 5.0, 0.5, 2.0, 1.0, 0.0, 0.0, 0.5/

 DATA B/0.5, 3.0, 4.0, 0.0, 3.0, 0.5, 0.0, 0.0, 1.0/

!

 CALL GVCRG (A, B, ALPHA, BETAV, EVEC)

! Compute eigenvalues

 DO 10 I=1, N

 EVAL(I) = ALPHA(I)/BETAV(I)

 10 CONTINUE

! Compute performance index

 PI = GPIRG(N,A,B,ALPHA,BETAV,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRCRN ('EVAL', EVAL, 1, N, 1)

 CALL WRCRN ('EVEC', EVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

! Solve for reciprocals of values

632 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 CALL GVCRG (B, A, ALPHA, BETAV, EVEC)

! Compute reciprocals

 DO 20 I=1, N

 EVAL(I) = ALPHA(I)/BETAV(I)

 20 CONTINUE

! Compute performance index

 PI = GPIRG(N,B,A,ALPHA,BETAV,EVEC)

! Print results

 CALL WRCRN ('EVAL reciprocals', EVAL, 1, N, 1)

 CALL WRCRN ('EVEC', EVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

Output

 EVAL

 1 2 3

 (0.833, 1.993) (0.833,-1.993) (0.500, 0.000)

 EVEC

 1 2 3

 1 (-0.197, 0.150) (-0.197,-0.150) (-0.000, 0.000)

 2 (-0.069,-0.568) (-0.069, 0.568) (-0.000, 0.000)

 3 (0.782, 0.000) (0.782, 0.000) (1.000, 0.000)

 Performance index = 0.384

 EVAL reciprocals

 1 2 3

 (2.000, 0.000) (0.179, 0.427) (0.179,-0.427)

 EVEC

 1 2 3

 1 (0.000, 0.000) (-0.197,-0.150) (-0.197, 0.150)

 2 (0.000, 0.000) (-0.069, 0.568) (-0.069,-0.568)

 3 (1.000, 0.000) (0.782, 0.000) (0.782, 0.000)

 Performance index = 0.283

GPIRG

This function computes the performance index for a generalized real eigensystem Az = Bz.

Function Return Value

GPIRG — Performance index. (Output)

Required Arguments

NEVAL — Number of eigenvalue/eigenvector pairs performance index computation is based

on. (Input)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 633

A — Real matrix of order N. (Input)

B — Real matrix of order N. (Input)

ALPHA — Complex vector of length NEVAL containing the numerators of eigenvalues.

(Input)

BETAV — Real vector of length NEVAL containing the denominators of eigenvalues. (Input)

EVEC — Complex N by NEVAL array containing the eigenvectors. (Input)

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDB = SIZE (B,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: GPIRG (NEVAL, A, B, ALPHA, BETAV, EVEC, GPIRG [,…])

Specific: The specific interface names are S_GPIRG and D_GPIRG.

FORTRAN 77 Interface

Single: GPIRG (N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC)

Double: The double precision function name is DGPIRG.

Let M = NEVAL, xj = EVEC(*,J) , the j-th column of EVEC. Also, let ε be the machine precision

given by AMACH(4), see the Reference chapter of this manual. The performance index, τ, is defined

to be

634 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

1

1
1 1 1

max
j j j j

j M
j j j

Ax Bx

A B x

The norms used are a modified form of the 1-norm. The norm of the complex vector v is

 1
1

N

i i

i

v v v

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. The performance index was first

developed by the EISPACK project at Argonne National Laboratory; see Garbow et al. (1977,

pages 77− 79).

Comments

1. Workspace may be explicitly provided, if desired, by use of G2IRG/DG2IRG. The

reference is:

G2IRG (N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC,

LDEVEC, WK)

The additional argument is:

WK — Complex work array of length 2N.

2. Informational errors

Type Code

3 1 Performance index is greater than 100.

3 2 An eigenvector is zero.

3 3 The matrix A is zero.

3 4 The matrix B is zero.

3. The J-th eigenvalue should be ALPHA(J)/BETAV(J), its eigenvector should be in the J-

th column of EVEC.

Example

For an example of GPIRG, see routine GVCRG.

GVLCG

Computes all of the eigenvalues of a generalized complex eigensystem Az = Bz.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 635

Required Arguments

A — Complex matrix of order N. (Input)

B — Complex matrix of order N. (Input)

ALPHA — Complex vector of length N. Ultimately, alpha(i)/betav(i) (for i = 1, n), will be the

eigenvalues of the system in decreasing order of magnitude. (Output)

BETAV — Complex vector of length N. (Output)

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL GVLCG (A, B, ALPHA, BETAV [,…])

Specific: The specific interface names are S_GVLCG and D_GVLCG.

FORTRAN 77 Interface

Single: CALL GVLCG (N, A, LDA, B, LDB, ALPHA, BETAV)

Double: The double precision name is DGVLCG.

Description

Routine GVLCG computes the eigenvalues of the generalized eigensystem Ax = Bx, where A and B

are complex matrices of order n. The eigenvalues for this problem can be infinite; so instead of

returning , GVLCG returns α and β. If β is nonzero, then = α/β. If the eigenvectors are needed,

then use GVCCG.

The underlying code is based on either EISPACK or LAPACK code depending upon which

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK,

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. Some timing

information is given in Hanson et al. (1990).

636 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of G3LCG/DG3LCG. The

reference is:

CALL G3LCG (N, A, LDA, B, LDB, ALPHA, BETAV, ACOPY, BCOPY,

CWK, WK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same,

in which case A will be destroyed.

BCOPY — Complex work array of length N
2
. B and BCOPY may be the same,

in which case B will be destroyed.

CWK — Complex work array of length N.

WK — Real work array of length N.

IWK — Integer work array of length N.

2. Informational error

Type Code

4 1 The iteration for the eigenvalues failed to converge.

Example

In this example, DATA statements are used to set A and B. Then, the eigenvalues are computed and

printed.

 USE GVLCG_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declaration of variables

 INTEGER LDA, LDB, N

 PARAMETER (N=5, LDA=N, LDB=N)

!

 INTEGER I

 COMPLEX A(LDA,N), ALPHA(N), B(LDB,N), BETAV(N), EVAL(N)

!

! Define values of A and B

!

 DATA A/(-238.0,-344.0), (76.0,152.0), (118.0,284.0), &

 (-314.0,-160.0), (-54.0,-24.0), (86.0,178.0), &

 (-96.0,-128.0), (55.0,-182.0), (132.0,78.0), &

 (-205.0,-400.0), (164.0,240.0), (40.0,-32.0), &

 (-13.0,460.0), (114.0,296.0), (109.0,148.0), &

 (-166.0,-308.0), (60.0,184.0), (34.0,-192.0), &

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 637

 (-90.0,-164.0), (158.0,312.0), (56.0,158.0), &

 (-60.0,-136.0), (-176.0,-214.0), (-424.0,-374.0), &

 (-38.0,-96.0)/

 DATA B/(388.0,94.0), (-304.0,-76.0), (-658.0,-136.0), &

 (-640.0,-10.0), (-162.0,-72.0), (-386.0,-122.0), &

 (384.0,64.0), (-73.0,100.0), (204.0,-42.0), (631.0,158.0), &

 (-250.0,-14.0), (-160.0,16.0), (-109.0,-250.0), &

 (-692.0,-90.0), (131.0,52.0), (556.0,130.0), &

 (-240.0,-92.0), (-118.0,100.0), (288.0,66.0), &

 (-758.0,-184.0), (-396.0,-62.0), (240.0,68.0), &

 (406.0,96.0), (-192.0,154.0), (278.0,76.0)/

!

 CALL GVLCG (A, B, ALPHA, BETAV)

! Compute eigenvalues

 EVAL = ALPHA/BETAV

! Print results

 CALL WRCRN ('EVAL', EVAL, 1, N, 1)

 STOP

 END

Output

 EVAL

 1 2 3 4

 (-1.000,-1.333) (0.765, 0.941) (-0.353, 0.412) (-0.353,-0.412)

 5

 (-0.353,-0.412)

GVCCG

Computes all of the eigenvalues and eigenvectors of a generalized complex eigensystem Az = Bz.

Required Arguments

A — Complex matrix of order N. (Input)

B — Complex matrix of order N. (Input)

ALPHA — Complex vector of length N. Ultimately, alpha(i)/betav(i) (for i = 1, …, n), will be

the eigenvalues of the system in decreasing order of magnitude. (Output)

BETAV — Complex vector of length N. (Output)

EVEC — Complex matrix of order N. (Output)

The J-th eigenvector, corresponding to ALPHA(J)/BETAV(J), is stored in the J-th

column. Each vector is normalized to have Euclidean length equal to the value one.

638 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL GVCCG (A, B, ALPHA, BETAV, EVEC [,…])

Specific: The specific interface names are S_GVCCG and D_GVCCG.

FORTRAN 77 Interface

Single: CALL GVCCG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC)

Double: The double precision name is DGVCCG.

Description

Routine GVCCG computes the eigenvalues and eigenvectors of the generalized eigensystem Ax =

Bx. Here, A and B, are complex matrices of order n. The eigenvalues for this problem can be

infinite; so instead of returning , GVCCG returns α and β. If β is nonzero, then = α/β.

The routine GVCCG uses the QZ algorithm described by Moler and Stewart (1973). The

implementation is based on routines of Garbow (1978). Some timing results are given in Hanson

et al. (1990).

Comments

1. Workspace may be explicitly provided, if desired, by use of G6CCG/DG6CCG. The

reference is:

CALL G6CCG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC,

ACOPY, BCOPY, CWK, WK, IWK)

The additional arguments are as follows:

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 639

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same

in which case the first N
2
 elements of A will be destroyed.

BCOPY — Complex work array of length N
2
. B and BCOPY may be the same

in which case the first N
2
 elements of B will be destroyed.

CWK — Complex work array of length N.

WK — Real work array of length N.

IWK — Integer work array of length N.

2. Informational error

Type Code

4 1 The iteration for an eigenvalue failed to converge.

3. The success of this routine can be checked using GPICG.

Example

In this example, DATA statements are used to set A and B. The eigenvalues and eigenvectors are

computed and printed. The performance index is also computed and printed. This serves as a

check on the computations. For more details, see routine GPICG.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER LDA, LDB, LDEVEC, N

 PARAMETER (N=3, LDA=N, LDB=N, LDEVEC=N)

!

 INTEGER I, NOUT

 REAL PI

 COMPLEX A(LDA,N), ALPHA(N), B(LDB,N), BETAV(N), EVAL(N), &

 EVEC(LDEVEC,N)

!

! Define values of A and B

! A = (1+0i 0.5+i 0+5i)

! (-10+0i 2+i 0+0i)

! (5+i 1+0i 0.5+3i)

!

! B = (0.5+0i 0+0i 0+0i)

! (3+3i 3+3i 0+i)

! (4+2i 0.5+i 1+i)

!

! Declare variables

 DATA A/(1.0,0.0), (-10.0,0.0), (5.0,1.0), (0.5,1.0), (2.0,1.0), &

 (1.0,0.0), (0.0,5.0), (0.0,0.0), (0.5,3.0)/

 DATA B/(0.5,0.0), (3.0,3.0), (4.0,2.0), (0.0,0.0), (3.0,3.0), &

 (0.5,1.0), (0.0,0.0), (0.0,1.0), (1.0,1.0)/

! Compute eigenvalues

 CALL GVCCG (A, B, ALPHA, BETAV, EVEC)

640 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 EVAL = ALPHA/BETAV

! Compute performance index

 PI = GPICG(N,A,B,ALPHA,BETAV,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRCRN ('EVAL', EVAL, 1, N, 1)

 CALL WRCRN ('EVEC', EVEC)

 WRITE (NOUT, '(/,A,F6.3)') ' Performance index = ', PI

 END

Output

 EVAL

 1 2 3

 (-8.18,-25.38) (2.18, 0.61) (0.12, -0.39)

 EVEC

 1 2 3

 1 (-0.3267,-0.1245) (-0.3007,-0.2444) (0.0371, 0.1518)

 2 (0.1767, 0.0054) (0.8959, 0.0000) (0.9577, 0.0000)

 3 (0.9201, 0.0000) (-0.2019, 0.0801) (-0.2215, 0.0968)

 Performance index = 0.709

GPICG

This function computes the performance index for a generalized complex eigensystem Az = Bz.

Function Return Value

GPICG — Performance index. (Output)

Required Arguments

NEVAL — Number of eigenvalue/eigenvector pairs performance index computation is based

on. (Input)

A — Complex matrix of order N. (Input)

B — Complex matrix of order N. (Input)

ALPHA — Complex vector of length NEVAL containing the numerators of eigenvalues.

(Input)

BETAV — Complex vector of length NEVAL containing the denominators of eigenvalues.

(Input)

EVEC — Complex N by NEVAL array containing the eigenvectors. (Input)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 641

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDB = SIZE (B,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: GPICG (NEVAL, A, B, ALPHA, BETAV, EVEC [,…])

Specific: The specific interface names are S_GPICG and D_GPICG.

FORTRAN 77 Interface

Single: GPICG (N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC)

Double: The double precision name is DGPICG.

Description

Let M = NEVAL, xj = EVEC(*, J) , the j-th column of EVEC. Also, let ε be the machine precision

given by AMACH(4). The performance index, τ, is defined to be

1

1
1 1 1

max
j j j j

j M
j j j

Ax Bx

A B x

The norms used are a modified form of the 1-norm. The norm of the complex vector v is

 1
1

N

i i

i

v v v

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100.

The performance index was first developed by the EISPACK project at Argonne National

Laboratory; see Garbow et al. (1977, pages 77− 79).

642 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of G2ICG/DG2ICG. The

reference is:

G2ICG (N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC,

LDEVEC, WK)

The additional argument is:

WK — Complex work array of length 2N.

2. Informational errors

Type Code

3 1 Performance index is greater than 100.

3 2 An eigenvector is zero.

3 3 The matrix A is zero.

3 4 The matrix B is zero.

3. The J-th eigenvalue should be ALPHA(J)/BETAV (J), its eigenvector should be in the J-

th column of EVEC.

Example

For an example of GPICG, see routine GVCCG.

GVLSP

Computes all of the eigenvalues of the generalized real symmetric eigenvalue problem Az = Bz,

with B symmetric positive definite.

Required Arguments

A — Real symmetric matrix of order N. (Input)

B — Positive definite symmetric matrix of order N. (Input)

EVAL — Vector of length N containing the eigenvalues in decreasing order of magnitude.

(Output)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 643

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL GVLSP (A, B, EVAL [,…])

Specific: The specific interface names are S_GVLSP and D_GVLSP.

FORTRAN 77 Interface

Single: CALL GVLSP (N, A, LDA, B, LDB, EVAL)

Double: The double precision name is DGVLSP.

Description

Routine GVLSP computes the eigenvalues of Ax = Bx with A symmetric and B symmetric positive

definite. The Cholesky factorization B = R
T

R, with R a triangular matrix, is used to transform the

equation Ax = Bx to

(R-T AR-1
)(Rx) = (Rx)

The eigenvalues of C = R-T AR-1
 are then computed. This development is found in Martin and

Wilkinson (1968). The Cholesky factorization of B is computed based on IMSL routine LFTDS,

(see Chapter 1, Linear Systems). The eigenvalues of C are computed based on routine EVLSF.

Further discussion and some timing results are given Hanson et al. (1990).

Comments

1. Workspace may be explicitly provided, if desired, by use of G3LSP/DG3LSP. The

reference is:

CALL G3LSP (N, A, LDA, B, LDB, EVAL, IWK, WK1, WK2)

The additional arguments are as follows:

IWK — Integer work array of length N.

WK1 — Work array of length 2N.

644 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

WK2 — Work array of length N
2
 + N.

2. Informational errors

Type Code

4 1 The iteration for an eigenvalue failed to converge.

4 2 Matrix B is not positive definite.

Example

In this example, a DATA statement is used to set the matrices A and B. The eigenvalues of the

system are computed and printed.

 USE GVLSP_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N

 PARAMETER (N=3, LDA=N, LDB=N)

!

 REAL A(LDA,N), B(LDB,N), EVAL(N)

! Define values of A:

! A = (2 3 5)

! (3 2 4)

! (5 4 2)

 DATA A/2.0, 3.0, 5.0, 3.0, 2.0, 4.0, 5.0, 4.0, 2.0/

!

! Define values of B:

! B = (3 1 0)

! (1 2 1)

! (0 1 1)

 DATA B/3.0, 1.0, 0.0, 1.0, 2.0, 1.0, 0.0, 1.0, 1.0/

!

! Find eigenvalues

 CALL GVLSP (A, B, EVAL)

! Print results

 CALL WRRRN ('EVAL', EVAL, 1, N, 1)

 END

Output

 EVAL

 1 2 3

 -4.717 4.393 -0.676

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 645

GVCSP

Computes all of the eigenvalues and eigenvectors of the generalized real symmetric eigenvalue

problem Az = Bz, with B symmetric positive definite.

Required Arguments

A — Real symmetric matrix of order N. (Input)

B — Positive definite symmetric matrix of order N. (Input)

EVAL — Vector of length N containing the eigenvalues in decreasing order of magnitude.

(Output)

EVEC — Matrix of order N. (Output)

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each

vector is normalized to have Euclidean length equal to the value one.

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDB = SIZE (B,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: CALL GVCSP (A, B, EVAL, EVEC [,…])

Specific: The specific interface names are S_GVCSP and D_GVCSP.

646 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL GVCSP (N, A, LDA, B, LDB, EVAL, EVEC, LDEVEC)

Double: The double precision name is DGVCSP.

Description

Routine GVLSP computes the eigenvalues and eigenvectors of Az = Bz, with A symmetric and B

symmetric positive definite. The Cholesky factorization B = R
T
R, with R a triangular matrix, is

used to transform the equation Az = Bz, to

(R-T AR-1
)(Rz) = (Rz)

The eigenvalues and eigenvectors of C = R-T AR-1
 are then computed. The generalized

eigenvectors of A are given by z = R-1
 x, where x is an eigenvector of C. This development is

found in Martin and Wilkinson (1968). The Cholesky factorization is computed based on IMSL

routine LFTDS, see Chapter 1, Linear Systems. The eigenvalues and eigenvectors of C are

computed based on routine EVCSF. Further discussion and some timing results are given Hanson

et al. (1990).

Comments

1. Workspace may be explicitly provided, if desired, by use of G3CSP/DG3CSP. The

reference is:

CALL G3CSP (N, A, LDA, B, LDB, EVAL, EVEC, LDEVEC, IWK,

WK1, WK2)

The additional arguments are as follows:

IWK — Integer work array of length N.

WK1 — Work array of length 3N.

WK2 — Work array of length N
2
 + N.

2. Informational errors

Type Code

4 1 The iteration for an eigenvalue failed to converge.

4 2 Matrix B is not positive definite.

3. The success of this routine can be checked using GPISP.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 647

Example

In this example, a DATA statement is used to set the matrices A and B. The eigenvalues,

eigenvectors and performance index are computed and printed. For details on the performance

index, see IMSL routine GPISP.

 USE GVCSP_INT

 USE GPISP_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, LDEVEC, N

 PARAMETER (N=3, LDA=N, LDB=N, LDEVEC=N)

!

 INTEGER NOUT

 REAL A(LDA,N), B(LDB,N), EVAL(N), EVEC(LDEVEC,N), PI

! Define values of A:

! A = (1.1 1.2 1.4)

! (1.2 1.3 1.5)

! (1.4 1.5 1.6)

 DATA A/1.1, 1.2, 1.4, 1.2, 1.3, 1.5, 1.4, 1.5, 1.6/

!

! Define values of B:

! B = (2.0 1.0 0.0)

! (1.0 2.0 1.0)

! (0.0 1.0 2.0)

 DATA B/2.0, 1.0, 0.0, 1.0, 2.0, 1.0, 0.0, 1.0, 2.0/

!

! Find eigenvalues and vectors

 CALL GVCSP (A, B, EVAL, EVEC)

! Compute performance index

 PI = GPISP(N,A,B,EVAL,EVEC)

! Print results

 CALL UMACH (2, NOUT)

 CALL WRRRN ('EVAL', EVAL)

 CALL WRRRN ('EVEC', EVEC)

 WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI

 END

Output

 EVAL

 1 1.386

 2 -0.058

 3 -0.003

 EVEC

 1 2 3

 1 0.6431 -0.1147 -0.6817

 2 -0.0224 -0.6872 0.7266

 3 0.7655 0.7174 -0.0858

 Performance index = 0.417

648 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

GPISP
This function computes the performance index for a generalized real symmetric eigensystem

problem.

Function Return Value

GPISP — Performance index. (Output)

Required Arguments

NEVAL — Number of eigenvalue/eigenvector pairs that the performance index computation

is based on. (Input)

A — Symmetric matrix of order N. (Input)

B — Symmetric matrix of order N. (Input)

EVAL — Vector of length NEVAL containing eigenvalues. (Input)

EVEC — N by NEVAL array containing the eigenvectors. (Input)

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDB = SIZE (B,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in

the calling program. (Input)

Default: LDEVEC = SIZE (EVEC,1).

FORTRAN 90 Interface

Generic: GPISP (NEVAL, A, B, EVAL, EVEC [,…])

Specific: The specific interface names are S_GPISP and D_GPISP.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 649

FORTRAN 77 Interface

Single: GPISP (N, NEVAL, A, LDA, B, LDB, EVAL, EVEC, LDEVEC)

Double: The double precision name is DGPISP.

Description

Let M = NEVAL, = EVAL, xj = EVEC(*, J) , the j-th column of EVEC. Also, let ε be the machine

precision given by AMACH(4). The performance index, τ, is defined to be

1

1
1 1 1

max
j j j

j M
j j

Ax Bx

A B x

The norms used are a modified form of the 1-norm. The norm of the complex vector v is

 1
1

N

i i

i

v v v

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. The performance index was first

developed by the EISPACK project at Argonne National Laboratory; see Garbow et al. (1977,

pages 77− 79).

Comments

1. Workspace may be explicitly provided, if desired, by use of G2ISP/DG2ISP. The

reference is:

G2ISP (N, NEVAL, A, LDA, B, LDB, EVAL, EVEC, LDEVEC, WORK)

The additional argument is:

WORK — Work array of length 2 * N.

2. Informational errors

Type Code

3 1 Performance index is greater than 100.

3 2 An eigenvector is zero.

3 3 The matrix A is zero.

3 4 The matrix B is zero.

3. The J-th eigenvalue should be ALPHA(J)/BETAV(J), its eigenvector should be in the J-

th column of EVEC.

650 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Example

For an example of GPISP, see routine GVCSP.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 651

Eigenvalues and Eigenvectors Computed with
ARPACK

First see Using ARPACK for Ordinary and Generalized Eigenvalue Problems in the Usage Notes

section of this chapter. We describe here the Fortran 2003 usage of four basic problem types.

There must be compiler support for the object-oriented features of Fortran 2003 to use these

routines.

The generalized eigenvalue problem Ax Bx requires that some eigenvalues and eigenvectors

be computed. The organization of the user-written function for matrix-vector products depends on

the part of the eigenvalue spectrum that is desired.

For an ordinary problem with A symmetric and B I , the eigenvalues of largest or smallest

magnitude can be computed by providing the operator products w Ax . Here x is an input

vector and w is the result of applying the linear operator A to x . This process is repeated

several times within the Arnoldi algorithm, and the net result is a few eigenvalues of A and the

corresponding eigenvectors.

For a generalized problem, it is useful and efficient to consider a shift value and the ordinary

eigenvalue problem
1

Cx A B Bx x

 . The matrix pencil A B is non-singular.

The purpose of the user-written function is to provide results for the individual operator products

w Bx ,
1()w A B x , and w Ax . Usually the inverse matrix product will be

computed by solving linear systems, where the matrix pencil is the coefficient matrix. The desired

eigenvalues of this ordinary problem satisfy
1

j j .

In the special case that B is positive definite, well-conditioned, and symmetric, one may compute

the Cholesky decomposition
TB R R and then solve the ordinary eigenvalue problem

1TCy R AR y y . The product operation required by the Arnoldi algorithm, w Cx , is

performed in steps: Solve Rz x for z , compute y Az , and solve
TR x y for w . The

eigenvectors, Y , of C are transformed to those of the generalized problem, X , by

solving RX Y for X .

The operations required by ARPACK codes are returned as array functions. An array of input

values, x, will yield an output array, y. These functions are written by the user. They must be

written according to an abstract interface, given below. There are two user functions, double

precision real and complex, that we support for the eigenvalue problem, and a third for the

singular value decomposition, using double precision real data only. This interface, the named or

enumerated constants that describe what is needed, and the eigenvalue codes are in the module

ARPACK_INT. We use the notation: DKIND=kind(1.D0) to specify two double precision data

types: REAL(DKIND) and COMPLEX(DKIND). The interface SVDMV(...) is for the singular value

decomposition products only. For that problem the components EXTYPE%MROWS and

EXTYPE%NCOLS are switched between the operator sizes M and N to account for computing

M Ny A x or
Ty A x .

652 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

The Abstract Interfaces for User-Written Array Functions

 Abstract Interface

 FUNCTION DMV(X, TASK, EXTYPE)RESULT(Y)

 IMPORT DKIND, ARPACKBASE

 REAL(DKIND), INTENT(INOUT) :: X(:)

 INTEGER, INTENT(IN) :: TASK

 CLASS (ARPACKBASE), INTENT(INOUT) :: EXTYPE

 REAL(DKIND) Y(SIZE(X))

 END FUNCTION

 FUNCTION ZMV (X, TASK, EXTYPE) RESULT(Y)

 IMPORT DKIND, ARPACKBASE

 CLASS (ARPACKBASE), INTENT(INOUT) :: EXTYPE

 COMPLEX (DKIND), INTENT(INOUT) :: X(:)

 INTEGER, INTENT(IN) :: TASK

 COMPLEX (DKIND) Y(SIZE(X))

 END FUNCTION

 FUNCTION SVDMV (X, TASK, EXTYPE) RESULT(Y)

 IMPORT DKIND, ARPACKBASE

 CLASS (ARPACKBASE), INTENT(INOUT) :: EXTYPE

 REAL (DKIND), INTENT(INOUT) :: X(EXTYPE%NCOLS)

 INTEGER, INTENT(IN) :: TASK

 REAL (DKIND) Y(EXTYPE%MROWS)

 END FUNCTION

 End Interface

Figure 1 Abstract Interface for User-Written Array Functions

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 653

The Base Class ARPACKBASE
The components of the derived type ARPACKBASE contain data used by the ARPACK routines.

These will have initial or default values assigned. The default values can usually be left

unchanged with a first use of our codes. They are used as arguments to the original routines of the

ARPACK package. The more experienced user may wish to change the components marked with

‗=>‘to new values, depending on their application. These can be changed prior to calling the

ARPACK interface codes we provide. This base class can be extended to pass user data or

procedure pointers for use within the array function.

Note that the derived type argument EXTYPE, is optional in all the ARPACK_ eigenvalue routines,

but it is not optional for the user-written array functions. If EXTYPE is not included in the

argument list of the ARPACK_ eigenvalue routine, an internally declared type is passed to the array

functions as the argument, EXTYPE. Although the user may choose not to use this optional

argument when calling our interface routines, they must include this argument in their user-

supplied array function code. In this case, the array function code does not need to reference this

argument.

 TYPE, PUBLIC :: ARPACKBASE

 INTEGER :: TASK = 0 ! Local store in Class for compute

 ! tasks to follow. Used in

ARPACK_SVD.

 INTEGER :: MROWS=0 ! Defines output vector size

 INTEGER :: NCOLS=0 ! Defines input/output vector size

 => COMPLEX(DKIND) :: SHIFT=&

 (0._DKIND, 0._DKIND) ! Shift factor

 REAL(DKIND) :: TOL=EPSILON(0._DKIND) ! Error tolerance

 INTEGER :: ISHFTS = 1 ! Number of shifts – don‘t change

 => INTEGER :: MAXITR = HUGE(1) ! Max number of iterations (many!)

 => INTEGER :: MAXMV = HUGE(1) ! Max number of matrix ops (many!)

 => INTEGER :: INFO = 0 ! ARPACK error flag, = 0 is OK

 => INTEGER :: NACC = 0 ! Number of accurate eigenvalues or

 ! singular values computed.

 INTEGER :: IPARAM(11)=0 ! ARPACK array of direction and

 ! result flags

 => REAL(DKIND) :: FACTOR_MAXNCV = 2.5_DKIND ! Factor for the Number of Ritz

vectors

 ! > the number of requested

eigenvalues

 LOGICAL :: RALEIGH_QUOTIENT = .TRUE. ! Compute eigenvalues using the

 ! computed eigenvectors and Raleigh

 ! quotients.

 REAL(DKIND), ALLOCATABLE :: RESID(:) ! REAL Starting vector for Arnoldi

 ! iteration, if allocated; else

random

 COMPLEX(DKIND), ALLOCATABLE :: ZRESID(:) ! COMPLEX Starting vector for

Arnoldi

 ! iteration, if allocated; else

random

 END TYPE

Figure 2. The Base Class Derived Type – Users may extend this to provide problem data or

procedures.

654 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

ARPACK_SYMMETRIC
Computes some eigenvalues and eigenvectors of the generalized real symmetric eigenvalue

problem Ax Bx . This can be used for the case B I .

Required Arguments

N — The dimension of the problem. (Input)

F — User-supplied FUNCTION to return matrix-vector operations or linear solutions. This user

function is written corresponding to the abstract interface for the function DMV(…). The

usage is F (X, TASK, EXTYPE), where

Function Return Value

F — An array of length N containing matrix-vector operations or linear

equations solutions. Operations provided as code in the function F will be

made depending upon the value of argument TASK.

Required Arguments

X — An array of length N containing the vector to which the operator will be

applied. (Input)

TASK — An enumerated type which specifies the operation to be performed.

(Input)

TASK is an enumerated integer value, use-associated from the module

ARPACK_INT. It will be one of the following:

Value Description

ARPACK_Prepare Take initial steps to prepare for

the operations that follow. These

steps can include defining the

data for the matrices,

factorizations for upcoming

linear system solves, or

recording the vectors used in the

operations.

ARPACK_A_x y Ax

ARPACK_B_x y Bx

ARPACK_inv_A_minus_Shift_x

1
y A I x

ARPACK_inv_B_x 1y B x

ARPACK_inv_A_minus_Shift_B_x

1
y A B x

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 655

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be

used to pass additional information to/from the user-supplied function.

(Input/Output)

The user must include a USE ARPACK_INT statement in the calling

program to define this derived type. If EXTYPE is not included as an

argument to ARPACK_SYMMETRIC it should be ignored in the user-

function, F.

 The function F must be written according to the abstract interface for DMV. If F is not

use-associated nor contained in the calling program, declare it with PROCEDURE(DMV)

F.

VALUES — An array of eigenvalues. (Output)

The value NEV=size(VALUES) defines the number of eigenvalues to be computed.

The calling program declares or allocates the array VALUES(1:NEV). The number of

eigenvalues computed accurately is optionally available as the component

EXTYPE%NACC of the base class EXTYPE.

Optional Arguments

PLACE — Defines the output content of VALUES. (Input)

PLACE specifies the placement within the spectrum for the required eigenvalues.

PLACE can be one of the following enumerated integers as defined in ARPACK_INT:

Value

ARPACK_Largest_Algebraic

ARPACK_Smallest_Algebraic

ARPACK_Largest_Magnitude

ARPACK_inv_A_minus_Shift_x

ARPACK_Smallest_Magnitude

ARPACK_Both_Ends

 Default: PLACE = ARPACK_Largest_Algebraic.

TYPE — Defines the eigenvalue problem as either a standard or generalized eigenvalue

problem. (Input)

TYPE can be one of the following enumerated integers as defined in ARPACK_INT:

Value Description

ARPACK_Standard Ax x

ARPACK_Generalized Ax Bx

 Default: TYPE = ARPACK_Standard.

656 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

CATEGORY — CATEGORY and TYPE define the operation sequence provided in the user-

written function. (Input)

CATEGORY can be one of the following enumerated integers as defined in

ARPACK_INT:

Value Description

ARPACK_Regular y Ax

ARPACK_Regular_Inverse 1, ,y Ax y Bx y B x

ARPACK_Shift_Invert

1
,y Ax y A I x

ARPACK_Buckling

1
, ,y Ax y Bx y A B x

ARPACK_Cayley

1
, ,y Ax y Bx y A B x

 Default: CATEGORY = ARPACK_Regular.

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be used to pass

additional information to/from the user-supplied function. (Input/Output)

The user must include a USE ARPACK_INT statement in the calling program to define

this derived type. If EXTYPE is not included as an argument to ARPACK_SYMMETRIC it

must still be supplied as an argument to user-function, F, but is not used.

VECTORS — An allocatable array of approximate eigenvectors. (Output)

It is not necessary to allocate VECTORS(:,:). If this argument is used the allocation

occurs within the routine ARPACK_SYMMETRIC. The output sizes are

VECTORS(1:N,1:NCV). The second dimension value is NCV=min(N,

max(FACTOR_MAXNCV*NEV,NEV+1)), where the value FACTOR_MAXNCV is a

component of the base class, ARPACKBASE. The first NEV columns of VECTORS(:,:)

are the eigenvectors.

FORTRAN 2003 Interface

Generic: ARPACK_SYMMETRIC (N, F, VALUES [,…])

Specific: The specific interface name is D_ARPACK_SYMMETRIC.

FORTRAN 90 Interface

A Fortran 90 compiler version is not available for this routine.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 657

Description

Routine ARPACK_SYMMETRIC calls ARPACK subroutines to compute partial eigenvalue-

eigenvector decompositions for symmetric real matrices. The ARPACK routines are dsaupd and

dseupd (see ARPACK Users’ Guide, SIAM Publications, (1998)), which use ―reverse

communication‖ to obtain the required matrix-vector operations for this approximation.

Responses to these requests are made by calling the user-written function F. By including the

class object EXTYPE as an argument to this function, user data and procedure pointers are available

for the evaluations. A user code must extend the base class EXTYPE to include the extra data and

procedure pointers.

Comments

The user function F is written to supply requests for the matrix operations. The following

psuedo-code outlines the required responses of F depending on the circumstances. Only those

cases that follow from the settings of PLACE, TYPE and CATEGORY need to be provided in the

user code. The enumerated constants, ARPACK_A_x, etc., are available by use-association

from the module ARPACK_INT.

 FUNCTION F (X, TASK, EXTYPE) RESULT(Y)

 USE ARPACK_INT

 IMPLICIT NONE

 CLASS(ARPACKBASE), INTENT(INOUT) :: EXTYPE

 REAL(DKIND), INTENT(INOUT) :: X(:)

 INTEGER, INTENT(IN) :: TASK

 REAL(DKIND) Y(SIZE(X))

 SELECT CASE (TASK)

 CASE (ARPACK_Prepare)

 …{Take initial steps to prepare for the operations that follow.}

 CASE (ARPACK_A_x)

 … y Ax

 CASE (ARPACK_B_x)

 … y Bx

 CASE (ARPACK_inv_A_minus_Shift_x)

 …
1

y A I x

 CASE (ARPACK_inv_B_x)

 …
1y B x

 CASE (ARPACK_inv_A_minus_Shift_B_x)

 …
1

y A B x

 CASE DEFAULT

 …{This is an error condition. }

 END SELECT

 END FUNCTION

Example 1

We approximate eigenvalues and eigenfunctions of the Laplacian operator

658 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

2 2

2 2
,

u u
u u u

x y

,

on the unit square, [0,1] [0,1] , with zero Dirichlet boundary values. The full set of eigenvalues

and their eigenfunctions are given by the

sequence 2 2 2

, ,, , sin()sin()m n m nm n u x y m n , where , m n are positive

integers.

This provides a check on the accuracy of the numerical results. Equally spaced divided

differences on the unit square are used to approximate u . A few eigenvalues of smallest

magnitude, and their eigenvectors, are requested. This application requires the optional argument

PLACE=ARPACK_Smallest_Magnitude. The user function code provides the second order

divided difference operator applied to an input vector. The problem is a symmetric matrix

eigenvalue computation. It involves only the single TASK, ARPACK_A_x, in the user functions.

The function FCN defines a grid of values and provides the operation that derives from this

eigenvalue problem. The class argument EXTYPE must be declared but need not be used. Within

the main program, the function interface for the external function FCN is specified with the

declaration PROCEDURE (DMV) FCN.

Link to example source (arpack_symmetric_ex1.f90)

 PROGRAM ARPACK_SYMMETRIC_EX1

 USE ARPACK_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Compute the smallest eigenvalues of a discrete Laplacian,

! based on second order divided differences.

! The matrix used is the 2 dimensional discrete Laplacian on

! the unit square with zero Dirichlet boundary condition.

 INTEGER :: J, NOUT

 INTEGER, parameter :: NEV=5 !number of Eigenvalues required

 INTEGER, parameter :: NV=0, NX=10

 INTEGER, parameter :: N=NX**2 !size of matrix problem

 REAL(DKIND) :: VALUES(NEV), RES(N), EF(NX, NX)

 REAL(DKIND), ALLOCATABLE :: VECTORS(:,:)

 REAL(DKIND) :: NORM

 LOGICAL :: SMALL, SOLVED

 TYPE(ARPACKBASE) :: Q

 PROCEDURE(DMV) :: FCN

 CALL UMACH(2, NOUT)

! Note that VECTORS(:,:) does not need to be allocated

! in the calling program. That happens within the

! routine ARPACK_SYMMETRIC(). It is OK to do this but

! the sizes (N,NCV) are determined in ARPACK_SYMMETRIC.

 CALL ARPACK_SYMMETRIC(N, FCN, VALUES, &

 PLACE=ARPACK_Smallest_Magnitude, VECTORS=VECTORS)

 WRITE(NOUT, *) 'Number of eigenvalues requested, and declared

accurate'

LinkedDocuments/arpack_symmetric_ex1.f90

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 659

 WRITE(NOUT, *) '--

'

 WRITE(NOUT, '(5X, I4, 5X, I4)') NEV, Q%NACC

 WRITE(NOUT, *) 'Number of Matrix-Vector Products Recorded, EX-11'

 WRITE(NOUT, *) '--'

 WRITE(NOUT, '(5X, I4)') NV

 CALL WRRRN('Smallest Laplacian Eigenvalues', VALUES)

! Check residuals, A*vectors = values*vectors:

 DO J=1,NEV

! Necessary to have an unused TYPE(ARPACKBASE) :: Q as an argument:

 RES=FCN(VECTORS(:,J), ARPACK_A_x, Q)-VALUES(J)*VECTORS(:,J)

 NORM=maxval(abs(RES))

 SMALL=(NORM <= ABS(VALUES(J))*SQRT(EPSILON(NORM)))

 IF(J==1) SOLVED=SMALL

 SOLVED=SOLVED .and. SMALL

 END DO

 IF(SOLVED) THEN

 WRITE(nout,'(A///)') &

 'All Ritz Values and Vectors have small residuals.'

 ELSE

 WRITE(nout,'(A///)') &

 'Some Ritz Values and Vectors have large residuals.'

 ENDIF

! The first eigenvector is scaled to be positive.

! It defines the eigenfunction for the smallest

! eigenvalue at the grid defined by the differencing.

 EF=reshape(VECTORS(:,1),(/NX,NX/))

 CALL WRRRN('First 2D Laplacian Eigenfunction at Grid Points', EF)

 END

 FUNCTION FCN(X, TASK, EX)RESULT(Y)

 USE ARPACK_INT

 CLASS(ARPACKBASE),INTENT(INOUT) :: EX

 REAL(DKIND), INTENT(INOUT) :: X(:)

 INTEGER, INTENT(IN) :: TASK

 REAL(DKIND) Y(SIZE(X))

! Local variables:

 INTEGER J

 INTEGER, SAVE :: NX

 REAL(DKIND), SAVE :: HSQ

 SELECT CASE(TASK)

 CASE(ARPACK_A_x)

! Computes y <-- A*x, where A is the N**2 by N**2 block

! tridiagonal matrix

!

! | T -I |

! |-I T -I |

! A = | -I T |

! | ... -I|

! | -I T|

 Y(1:NX)=T(NX,X(1:NX)) - X(NX+1:2*NX)

660 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 DO J=NX+1,NX**2-NX,NX

 Y(J:J+NX-1)=T(NX,X(J:J+NX-1))&

 - X(J-NX:J-1)-X(J+NX:J+2*NX-1)

 END DO

 Y((NX-1)*NX+1:NX**2)= - X((NX-1)*NX-NX+1:(NX-1)*NX)&

 + T(NX,X((NX-1)*NX+1:NX**2))

! Note that HSQ is passed as a component of the extended type.

 Y=(1._DKIND/HSQ)*Y

 CASE(ARPACK_Prepare)

! Define NX, 1/H**2 so they are later available in the evaluator.

 NX=10 ! This value is fixed in the evaluator.

 HSQ = 1._DKIND/REAL(NX+1,DKIND)**2

 Y=0._DKIND

 CASE DEFAULT

 WRITE(NOUT,*) TASK, ': INVALID TASK REQUESTED'

 STOP 'IMSL_ERROR_WRONG_OPERATION'

 END SELECT

 CONTAINS

 FUNCTION T(NX, X)RESULT(V)

 INTEGER, INTENT(IN) :: NX

 REAL(DKIND), INTENT(IN) :: X(:)

 REAL(DKIND) :: V(NX)

 REAL(DKIND) :: MONE=-1._DKIND, FOUR=4._DKIND

 INTEGER J

 V(1)=FOUR*X(1)+MONE*X(2)

 DO J=2,NX-1

 V(J)=MONE*X(J-1)+FOUR*X(J)+MONE*X(J+1)

 END DO

 V(NX)=MONE*X(NX-1)+FOUR*X(NX)

 END FUNCTION

 END FUNCTION

Output

Number of eigenvalues requested, and declared accurate

 --

 5 0

 Number of Matrix-Vector Products Recorded, EX-11

 --

 0

 Smallest Laplacian Eigenvalues

 1 19.61

 2 48.22

 3 48.22

 4 76.83

 5 93.33

All Ritz Values and Vectors have small residuals.

 First 2D Laplacian Eigenfunction at Grid Points

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 661

 1 2 3 4 5 6 7 8

 1 0.0144 0.0277 0.0387 0.0466 0.0507 0.0507 0.0466 0.0387

 2 0.0277 0.0531 0.0743 0.0894 0.0973 0.0973 0.0894 0.0743

 3 0.0387 0.0743 0.1038 0.1250 0.1360 0.1360 0.1250 0.1038

 4 0.0466 0.0894 0.1250 0.1504 0.1637 0.1637 0.1504 0.1250

 5 0.0507 0.0973 0.1360 0.1637 0.1781 0.1781 0.1637 0.1360

 6 0.0507 0.0973 0.1360 0.1637 0.1781 0.1781 0.1637 0.1360

 7 0.0466 0.0894 0.1250 0.1504 0.1637 0.1637 0.1504 0.1250

 8 0.0387 0.0743 0.1038 0.1250 0.1360 0.1360 0.1250 0.1038

 9 0.0277 0.0531 0.0743 0.0894 0.0973 0.0973 0.0894 0.0743

 10 0.0144 0.0277 0.0387 0.0466 0.0507 0.0507 0.0466 0.0387

 9 10

 1 0.0277 0.0144

 2 0.0531 0.0277

 3 0.0743 0.0387

 4 0.0894 0.0466

 5 0.0973 0.0507

 6 0.0973 0.0507

 7 0.0894 0.0466

 8 0.0743 0.0387

 9 0.0531 0.0277

 10 0.0277 0.0144

Example 2

We approximate eigenvalues and eigenfunctions of the 1D Laplacian operator

2

2

d u
u

dx
 on the

unit interval, [0,1] . Equally spaced divided differences are used for the operator, which yields a

tri-diagonal matrix. The eigenvalues and eigenfunctions are

 2 2
, sin(), 1, 2,

n n
n u x n n . This example shows that using inverse iteration for

approximating the largest reciprocals of eigenvalues is more efficient than directly computing the

smallest magnitude eigenvalues by products of the operator. This requires the optional argument

CATEGORY=ARPACK_Shift_Invert. The user function, FCN, requires the solution of a tri-

diagonal system of linear equations applied to an input vector. The base class ARPACKBASE is

extended to the user‘s type, TYPE(ARPACKBASE_EXT), defined in the user module

ARPACK_SYMMETRIC_EX2_INT. This extension includes the number of intervals, a total kept in

FCN for noting the number of operations, and allocatable arrays used to store the LU factorization

of the tri-diagonal matrix. When FCN is entered with TASK=ARPACK_Prepare, these arrays are

allocated, defined, and the LU factorization of the shifted matrix A I is computed, here

with 0 . When FCN is later entered with TASK=ARPACK_inv_A_minus_Shift_x, the LU

factorization is available to efficiently compute
1 1y A I x A x
 . The function FCN is

also entered with TASK=ARPACK_A_x, to compute Ax .

Link to example source (arpack_symmetric_ex2.f90)

 MODULE ARPACK_SYMMETRIC_EX2_INT

 USE ARPACK_INT

 USE LSLCR_INT

 USE N1RTY_INT

LinkedDocuments/arpack_symmetric_ex2.f90

662 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 IMPLICIT NONE

 TYPE, EXTENDS(ARPACKBASE) :: ARPACKBASE_EXT

 REAL(DKIND) :: HSQ=0._DKIND

 INTEGER :: NX=0, NV=0

! This example extends the base type to

! information for solving tridiagonal systems.

 REAL(DKIND), ALLOCATABLE :: A(:), B(:), C(:)

 REAL(DKIND), ALLOCATABLE :: Y1(:), U(:)

 INTEGER, ALLOCATABLE :: IR(:), IS(:)

 END TYPE ARPACKBASE_EXT

 CONTAINS

 FUNCTION FCN(X, TASK, EX) RESULT(Y)

 CLASS (ARPACKBASE), INTENT(INOUT) :: EX

 REAL (DKIND), INTENT(INOUT) :: X(:)

 INTEGER, INTENT(IN) :: TASK

 REAL (DKIND) Y(size(X))

 INTEGER J, IERR, IJOB, NSIZE

 SELECT TYPE(EX)

 TYPE IS(ARPACKBASE_EXT)

 ASSOCIATE(N => EX%NCOLS, &

 NV => EX%NV, &

 HSQ => EX%HSQ, &

 SHIFT => EX%SHIFT)

 SELECT CASE(TASK)

 CASE(ARPACK_A_x)

 Y(1) = 2._DKIND*X(1) - X(2)

 DO J = 2,N-1

 Y(J) = - X(J-1) + 2._DKIND*X(J) - X(J+1)

 END DO

 Y(N) = - X(N-1) + 2._DKIND*X(N)

 Y=Y/HSQ

 CASE(ARPACK_inv_A_minus_Shift_x)

! Compute Y=inv(A-*I)*x. This is done with a solve

! step, using the LU factorization. Note that the data

! for the factorization is stored in the user's extended

! data type.

 EX%Y1(1:N) = X

 IJOB = 2

 CALL LSLCR (EX%C, EX%A, EX%B, EX%Y1, EX%U, &

 EX%IR, EX%IS, N=N, IJOB=IJOB)

 Y(1:N) = EX%Y1(1:N)

 IERR= N1RTY(1)

 IF (IERR==4 .OR. IERR==5) STOP

'IMSl_FATAL_ERROR_SOLVING'

! Total number of solve steps.

 NV=NV+1

 CASE(ARPACK_Prepare)

! Set up storage areas for factored tridiagonal matrix.

 IF (ALLOCATED(EX%A)) DEALLOCATE(EX%A)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 663

 IF (ALLOCATED(EX%B)) DEALLOCATE(EX%B)

 IF (ALLOCATED(EX%C)) DEALLOCATE(EX%C)

 IF (ALLOCATED(EX%Y1)) DEALLOCATE(EX%Y1)

 IF (ALLOCATED(EX%U)) DEALLOCATE(EX%U)

 IF (ALLOCATED(EX%IR)) DEALLOCATE(EX%IR)

 IF (ALLOCATED(EX%IS)) DEALLOCATE(EX%IS)

 NSIZE = (log(dble(N))/log(2.0)) + 5

 ALLOCATE(EX%A(2*N), EX%B(2*N), EX%C(2*N), EX%Y1(2*N), &

 EX%U(2*N), EX%IR(NSIZE), &

 EX%IS(NSIZE), STAT=IERR)

 IF (IERR /= 0) STOP 'IMSL_ERROR_ALLOCATING_WORKSPACE'

! Define matrix values.

 HSQ=1._DKIND/REAL((N+1)**2,DKIND)

 EX%B(1:N) = -1._DKIND/HSQ

 EX%A(1:N) = 2._DKIND/HSQ - SHIFT

 EX%C(1:N) = EX%B(1:N)

 EX%Y1(:) = 0.0_DKIND

! Factor the matrix with LU and partial pivoting.

 IJOB = 3

 CALL LSLCR (EX%C, EX%A, EX%B, EX%Y1, EX%U, &

 EX%IR, EX%IS, N=N, IJOB=IJOB)

 IERR = N1RTY(1)

 IF(IERR == 4 .or. IERR == 5) STOP 'IMSL FATAL ERROR'

! Give output some values to satisfy compiler.

 Y=0._DKIND

 NV=0

 CASE DEFAULT

 STOP 'IMSL_ERROR_WRONG_OPERATION'

 END SELECT

 END ASSOCIATE

 END SELECT

 END FUNCTION

 END MODULE

 USE ARPACK_SYMMETRIC_EX2_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Compute the smallest eigenvalues of a discrete Laplacian,

! based on second order divided differences.

! The matrix is the 1 dimensional discrete Laplacian on

! the interval 0,1 with zero Dirichlet boundary condition.

 INTEGER, PARAMETER :: NEV=4, N=100

 REAL(DKIND) :: VALUES(NEV), RES(N)

 REAL(DKIND), ALLOCATABLE :: VECTORS(:,:)

 REAL(DKIND) NORM

 LOGICAL SMALL, SOLVED

 INTEGER J, NOUT

 TYPE(ARPACKBASE_EXT) EX

 ASSOCIATE(NX => EX%NX, &

 NV => EX%NV, &

 SIGMA => EX%SHIFT)

 CALL UMACH(2, NOUT)

664 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

! Note that VECTORS(:,:) does not need to be allocated

! in the calling program. That happens within the

! routine ARPACK_SYMMETRIC(). It is OK to do this but

! the sizes (N,NCV) are determined in ARPACK_SYMMETRIC.

 SIGMA=0._DKIND

 CALL ARPACK_SYMMETRIC(N, FCN, VALUES,&

 CATEGORY=ARPACK_Shift_Invert, EXTYPE=EX, VECTORS=VECTORS)

 WRITE(NOUT,*) 'Number of Matrix-Vector Products Required, EX-2'

 WRITE(NOUT,*) '---'

 WRITE(NOUT, '(5X, I4)') NV

 CALL WRRRN('Largest Laplacian Eigenvalues Near Zero Shift', &

 VALUES)

! Check residuals, A*vectors = values*vectors:

 DO J=1,NEV

 RES=FCN(VECTORS(:,J),ARPACK_A_x,EX)-VALUES(J)*VECTORS(:,J)

 NORM=maxval(abs(RES))

 SMALL=(NORM <= ABS(VALUES(J))*SQRT(EPSILON(NORM)))

 IF(J==1) SOLVED=SMALL

 SOLVED=SOLVED .and. SMALL

 END DO

 IF(SOLVED) THEN

 WRITE(nout,'(A///)') &

 'All Ritz Values and Vectors have small residuals.'

 ELSE

 WRITE(nout,'(A///)') &

 'Some Ritz Values and Vectors have large residuals.'

 ENDIF

 END ASSOCIATE

 END

Output

 Number of Matrix-Vector Products Required, EX-2

 24

 Largest Laplacian Eigenvalues Near Zero Shift

 1 9.9

 2 39.5

 3 88.8

 4 157.7

All Ritz Values and Vectors have small residuals.

Example 3

We compute the solution of a generalized problem. This comes from using equally spaced linear

finite element test functions to solve eigenvalues and eigenfunctions of the 1D Laplacian

operator

2

2

d u
u

dx
 on the unit interval, [0,1] . This is Example 2 but solved using finite

elements. With matrix notation, we have the matrix problem Ax Bx . Both A and B are tri-

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 665

diagonal and symmetric. The matrix B is non-singular. We compute the smallest magnitude

eigenvalues. This requires the optional arguments TYPE = ARPACK_Generalized, CATEGORY

= ARPACK_Regular_Inverse, and PLACE = ARPACK_Smallest_Magnitude. The user

function, FCN, requires the solution of a tri-diagonal system of linear equations applied to an input

vector,
1y B x . The base class ARPACKBASE is extended to the user‘s type,

TYPE(ARPACKBASE_EXT), defined in the user module ARPACK_SYMMETRIC_EX3_INT. This

extension includes the number of intervals, a total kept in FCN for noting the number of operations,

and allocatable arrays used to store the LU factorization of B . When FCN is entered with

TASK=ARPACK_Prepare, these arrays are allocated, defined, and the LU factorization of the

matrix B is computed. The function FCN is entered with the three values TASK=ARPACK_A_x,

for y Ax ; TASK=ARPACK_B_x, for y Bx ; and TASK=ARPACK_inv_B_x, for
1y B x .

Within the main program, the function interface for the external function FCN is specified with the

declaration PROCEDURE (DMV) FCN.

Link to example source (arpack_symmetric_ex3.f90)

 MODULE ARPACK_SYMMETRIC_EX3_INT

 USE ARPACK_INT

 USE LSLCR_INT

 USE N1RTY_INT

 IMPLICIT NONE

 TYPE, EXTENDS(ARPACKBASE) :: ARPACKBASE_EXT

 REAL(DKIND) :: H=0._DKIND

 INTEGER :: NX=0, NV=0

! This example extends the base type to

! information for solving tridiagonal systems.

 REAL(DKIND), ALLOCATABLE :: A(:), B(:), C(:)

 REAL(DKIND), ALLOCATABLE :: Y1(:), U(:)

 INTEGER, ALLOCATABLE :: IR(:), IS(:)

 END TYPE ARPACKBASE_EXT

 END MODULE

 PROGRAM ARPACK_SYMMETRIC_EX3

 USE ARPACK_SYMMETRIC_EX3_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

! We want to solve A*x = lambda*M*x in inverse mode,

! where A and M are obtained by the finite element method

! of the 1-dimensional discrete Laplacian

! d^2u / dx^2

! on the interval 0,1, with zero Dirichlet boundary conditions,

! using piecewise linear elements.

 INTEGER,PARAMETER :: NEV=4, N=100

 REAL(DKIND) :: VALUES(NEV), RES(N)

 REAL(DKIND), ALLOCATABLE :: VECTORS(:,:)

 REAL(DKIND) NORM

LinkedDocuments/arpack_symmetric_ex3.f90

666 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 LOGICAL :: PRINTRESULTS = .FALSE.

 LOGICAL SMALL, SOLVED

 INTEGER J, NOUT

 PROCEDURE(DMV) FCN

 TYPE(ARPACKBASE_EXT) EX

 ASSOCIATE(NX => EX%NX, &

 NV => EX%NV)

 EX%FACTOR_MAXNCV=5._DKIND

 CALL UMACH(2, NOUT)

! Note that VECTORS(:,:) does not need to be allocated

! in the calling program. That happens within the

! routine ARPACK_SYMMETRIC(). It is OK to do this but

! the sizes (N,NCV) are determined in ARPACK_SYMMETRIC.

 CALL ARPACK_SYMMETRIC(N, FCN, VALUES, &

 TYPE=ARPACK_Generalized, &

 CATEGORY=ARPACK_Regular_Inverse, &

 PLACE=ARPACK_Smallest_Magnitude, EXTYPE=EX, VECTORS=VECTORS)

 WRITE(NOUT,*) 'Number of Matrix-Vector Products Required, EX-3'

 WRITE(NOUT,*) '---'

 WRITE(NOUT, '(5X, I4)') NV

 CALL WRRRN('Largest Laplacian Eigenvalues', VALUES)

! Check residuals, A*vectors = values*B*vectors:

 DO J=1,NEV

 RES=FCN(VECTORS(:,J),ARPACK_A_x,EX)-&

 VALUES(J)*FCN(VECTORS(:,J),ARPACK_B_x,EX)

 NORM=maxval(abs(RES))

 SMALL=(NORM <= ABS(VALUES(J))*SQRT(EPSILON(NORM)))

 IF(J==1) SOLVED=SMALL

 SOLVED=SOLVED .and. SMALL

 END DO

 IF(SOLVED) THEN

 WRITE(nout,'(A///)') &

 'All Ritz Values and Vectors have small residuals.'

 ELSE

 WRITE(nout,'(A///)') &

 'Some Ritz Values and Vectors have large residuals.'

 ENDIF

 END ASSOCIATE

 END PROGRAM

 FUNCTION FCN(X, TASK, EX) RESULT(Y)

 USE ARPACK_SYMMETRIC_EX3_INT

 CLASS (ARPACKBASE), INTENT(INOUT) :: EX

 REAL (DKIND), INTENT(INOUT) :: X(:)

 INTEGER, INTENT(IN) :: TASK

 REAL (DKIND) Y(SIZE(X)), PI

 INTEGER J, IERR, IJOB, NSIZE

 SELECT TYPE(EX)

 TYPE IS(ARPACKBASE_EXT)

 ASSOCIATE(N => EX%NCOLS, &

 NV => EX%NV, &

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 667

 H => EX%H)

 SELECT CASE(TASK)

 CASE(ARPACK_A_x)

 Y(1) = 2._DKIND*X(1) - X(2)

 DO J = 2,N-1

 Y(J) = - X(J-1) + 2._DKIND*X(J) - X(J+1)

 END DO

 Y(N) = - X(N-1) + 2._DKIND*X(N)

 Y=Y/H

 CASE(ARPACK_B_x)

 Y(1) = 4._DKIND*X(1) + X(2)

 DO J = 2,N-1

 Y(J) = X(J-1) + 4._DKIND*X(J) + X(J+1)

 END DO

 Y(N) = X(N-1) + 4._DKIND*X(N)

 Y=Y*(H/6._DKIND)

 CASE(ARPACK_inv_B_x)

! Compute Y=inv(A-*I)*x. This is done with a solve

! step, using the LU factorization. Note that the data

! for the factorization is stored in the user's extended

! data type.

 EX%Y1(1:N) = X

 IJOB = 2

 CALL LSLCR (EX%C, EX%A, EX%B, EX%Y1, EX%U, &

 EX%IR, EX%IS, N=N, IJOB=IJOB)

 Y(1:N) = EX%Y1(1:N)

 IERR= N1RTY(1)

 IF (IERR==4 .OR. IERR==5) STOP 'IMSl_FATAL_ERROR_SOLVING'

! Total number of solve steps.

 NV=NV+1

 CASE(ARPACK_Prepare)

! Set up storage areas for factored tridiagonal matrix.

 IF (ALLOCATED(EX%A)) DEALLOCATE(EX%A)

 IF (ALLOCATED(EX%B)) DEALLOCATE(EX%B)

 IF (ALLOCATED(EX%C)) DEALLOCATE(EX%C)

 IF (ALLOCATED(EX%Y1)) DEALLOCATE(EX%Y1)

 IF (ALLOCATED(EX%U)) DEALLOCATE(EX%U)

 IF (ALLOCATED(EX%IR)) DEALLOCATE(EX%IR)

 IF (ALLOCATED(EX%IS)) DEALLOCATE(EX%IS)

 NSIZE = (log(dble(N))/log(2.0d0)) + 5

 ALLOCATE(EX%A(2*N), EX%B(2*N), EX%C(2*N), EX%Y1(2*N), &

 EX%U(2*N), EX%IR(NSIZE), &

 EX%IS(NSIZE), STAT=IERR)

 IF (IERR /= 0) STOP 'IMSL_ERROR_ALLOCATING_WORKSPACE'

! Define matrix values.

 PI=ATAN(1._DKIND)*4._DKIND

 H=PI/REAL(N+1,DKIND)

 EX%B(1:N) = (1._DKIND/6._DKIND)*H

 EX%A(1:N) = (2._DKIND/3._DKIND)*H

 EX%C(1:N) = EX%B(1:N)

668 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 EX%Y1(:) = 0.0_DKIND

! Factor the matrix with LU and partial pivoting.

 IJOB = 3

 CALL LSLCR (EX%C, EX%A, EX%B, EX%Y1, EX%U, &

 EX%IR, EX%IS, N=N, IJOB=IJOB)

 IERR = N1RTY(1)

 IF(IERR == 4 .or. IERR == 5) STOP 'IMSL FATAL ERROR'

! Give output some values to satisfy compiler.

 Y=0._DKIND

 NV=0

 CASE DEFAULT

 write(*,*)TASK

 STOP 'IMSL_ERROR_WRONG_OPERATION'

 END SELECT

 END ASSOCIATE

 END SELECT

 END FUNCTION

Output

 Number of Matrix-Vector Products Required, EX-3

 1126

 Largest Laplacian Eigenvalues

 1 1.00

 2 4.00

 3 9.01

 4 16.02

All Ritz Values and Vectors have small residuals.

ARPACK_SVD
Computes some singular values and left and right singular vectors of a real rectangular

matrix
T

M NA USV . There is no restriction on the relative sizes, M and N . This routine

calls ARPACK_SYMMETRIC.

Required Arguments

M — The number of matrix rows. (Input)

N — The number of matrix columns. (Input)

F — User-supplied FUNCTION to return matrix-vector operations. This user function is

written corresponding to the abstract interface for the function SVDMV(…).The

operations provided as code in the function F will be made based on the two matrix

operations y Ax and
T Ty A x x A . The usage is F (X, TASK, EXTYPE), where

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 669

Function Return Value

F — An array of length N containing matrix-vector operations or linear

equations solutions. Operations provided as code in the function F will be

made depending upon the value of argument TASK.

Required Arguments

X — An array of length N containing the vector to which the operator will be

applied. (Input)

TASK — An enumerated type which specifies the operation to be performed.

(Input)

TASK is an enumerated integer value, use-associated from the module

ARPACK_INT. It will be one of the following:

Value Description

ARPACK_Prepare Take initial steps to prepare for the

operations that follow. These steps

can include defining the data for the

matrices, factorizations for

upcoming linear system solves, or

recording the vectors used in the

operations.

ARPACK_A_x y Ax

ARPACK_xt_A y Bx

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be

used to pass additional information to/from the user-supplied function.

(Input/Output)

The user must include a USE ARPACK_INT statement in the calling

program to define this derived type. If EXTYPE is not included as an

argument to ARPACK_SVD it should be ignored in the user-function, F.

 The function F must be written according to the abstract interface for SVDMV. If F is not

use-associated nor contained in the calling program, declare it with

PROCEDURE(SVDMV) F.

SVALUES — A rank-1 array of singular values. (Output)

The value NEV = size(SVALUES) defines the number of singular values to be

computed. The calling program declares or allocates the array SVALUES(1:NEV).

Optional Arguments

PLACE — Indicates the placement in the spectrum for required singular values. (Input)

PLACE can be one of the following enumerated integers as defined in ARPACK_INT:

670 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Value

ARPACK_Largest_Algebraic

ARPACK_Smallest_Magnitude

 Default: PLACE = ARPACK_Largest_Algebraic.

ITERATION_TYPE — Indicates the method for obtaining the required singular values.

(Input)

ITERATION_TYPE can be one of the following enumerated integers as defined in

ARPACK_INT:

Value

ARPACK_Normal

ARPACK_Expanded

 For values M N , ARPACK_Normal specifies computing singular values based on

eigenvalues and eigenvectors of the normal symmetric matrix
TA A ; for values M N

this will be the alternate symmetric matrix
TAA .

 For all values of ,M N , ARPACK_Expanded specifies computing singular values

based on the symmetric matrix eigenvalue problem for the matrices

0

0T

A

A

 or

0

0

TA

A

 Default: ITERATION_TYPE = ARPACK_Normal.

CATEGORY — An integer from a packaged enumeration with values that are passed to

ARPACK_SYMMETRIC. (Input)

CATEGORY can be one of the following enumerated integers as defined in

ARPACK_INT:

Value

ARPACK_Regular

ARPACK_Regular_Inverse

 Default: CATEGORY = Regular.

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be used to pass

additional information to/from the user-supplied function. (Input/Output)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 671

The user must include a USE ARPACK_INT statement in the calling program to define

this derived type. If EXTYPE is not included as an argument to ARPACK_SVD it must

still be supplied as an argument to user-function, F, but is not used.

U_VECTORS — An allocatable array of orthogonal left singular vectors. (Output)

It is not necessary to allocate U_VECTORS(:,:). If this argument is present, the

allocation occurs within the routine ARPACK_SVD The output sizes are

UVECTORS(1:M,1:NCV). The second dimension value is NCV=min(M,

max(FACTOR_MAXNCV*NEV,NEV+1)), where the value FACTOR_MAXNCV is a

component of the base class, ARPACKBASE. The first NEV columns of

U_VECTORS(:,:) are the left singular vectors.

V_VECTORS — An allocatable array of orthogonal right singular vectors. (Output)

It is not necessary to allocate V_VECTORS(:,:). If this argument is present, the

allocation occurs within the routine ARPACK_SVD. The output sizes are

V_VECTORS(1:N,1:NCV). The second dimension value is NCV=min(M,

max(FACTOR_MAXNCV*NEV,NEV+1)), where the value FACTOR_MAXNCV is a

component of the base class, ARPACKBASE. The first NEV columns of

V_VECTORS(:,:) are the right singular vectors.

FORTRAN 2003 Interface

Generic: ARPACK_SVD (M, N, F,SVALUES [,…])

Specific: The specific interface name is D_ARPACK_SVD.

FORTRAN 90 Interface

A Fortran 90 compiler version is not available for this routine.

Description

Routine ARPACK_SVD calls ARPACK_SYMMETRIC to compute partial singular value

decompositions for rectangular real matrices. There is no restriction on the relative sizes of the

number of rows and columns. A function internal to ARPACK_SVD is used in the call to

ARPACK_SYMMETRIC. The internal function calls the user function, F, which provides matrix-

vector products of the matrix and an internally generated vector. By including the class object

EXTYPE as an argument to this function, user data and procedure pointers are available for the

evaluations. A user code must extend the base class EXTYPE to include the extra data and

procedure pointers.

Comments

The user function supplies requests for the matrix operations. Those cases that follow from

the settings of PLACE, ITERATION_TYPE and CATEGORY need to be provided in the user

code. The enumerated TASK constants, ARPACK_A_x and ARPACK_xt_A are available by

use-association from the module ARPACK_INT. The sizes of the inputs and outputs, ,x y ,

switch between the values ,n m . The values ,n mare alternated in the base class components

EXTYPE%NCOLS and EXTYPE%MROWS.

672 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

The value of Iteration_Type may impact the number of iterations required. Generally one

expects Iteration_Type=ARPACK_Normal (the default) to result in the fewest iterations,

and Iteration_Type=ARPACK_Expanded to result in singular values with the greatest

accuracy.

The output arrays U_VECTORS(:,:), SVALUES(:), and V_VECTORS(:,:) allow for

reconstruction of an approximation to the matrix A . This approximation is
TB USV . The

matrices ,U S and V are available in these respective routine arguments. The

terms
M NSVU

 and
N NSVV

 have orthogonal columns,
T T

NSVU U I V V . The diagonal

matrix
NSV NSVS

 has its entries in SVALUES(:), ordered from largest to smallest. Use the

value min((),)NSV size NACC SVALUES , where NACC is the number of accurate singular

values computed by ARPACK_SYMMETRIC. This is the component EXTYPE%NACC of the base

class EXTYPE.

After computing the singular values and right singular vectors by iteration with the normal

matrix
TA A , U is computed from the relation AV US . The result is then processed

with the modified Gram-Schmidt algorithm to assure thatU is orthogonal. When iterating

with
TAA we first compute the left singular vectorsU and then obtainV by the Gram-

Schmidt algorithm. If we use Iteration_Type=ARPACK_Expanded, U and V are

computed simultaneously, and both are orthogonal.

Example 1

We define the M N matrix ,i jA a with entries ,i ja i j . This matrix has two non-zero

singular values. With the pair of values (,) (512, 265)M N and (,) (265,512)M N we obtain

the singular decomposition for these rectangular matrices. With each pair we compute the

decomposition using the input Iteration_Type=ARPACK_Normal and

Iteration_Type=ARPACK_Expanded. The latter value requires the larger number of iterations.

The matrix A has its storage requirements changed from MN to the value 2 1M N . The

resulting product
T

B USV , when rounded to the nearest integer, satisfies B A .

The base class ARPACKBASE is extended to include an allocatable array, EXTYPE%A(:,:). This is

allocated and defined and stores the matrix A . The matrix operations y Ax and

T Ty A x x A are computed with DGEMV.

Link to example source (arpack_svd_ex1.f90)

 MODULE ARPACK_SVD_EX1_INT

 USE ARPACK_INT

 IMPLICIT NONE

 TYPE, EXTENDS(ARPACKBASE) :: ARPACKBASE_EXT

 REAL(DKIND), ALLOCATABLE :: A(:,:)

 INTEGER :: NV = 0

LinkedDocuments/arpack_svd_ex1.f90

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 673

 INTEGER :: MM = 0

 INTEGER :: NN = 0

 END TYPE ARPACKBASE_EXT

 CONTAINS

 FUNCTION FCN(X, TASK, EXTYPE) RESULT(Y)

 USE UMACH_INT

 CLASS (ARPACKBASE), INTENT(INOUT) :: EXTYPE

 REAL (DKIND), INTENT(INOUT) :: X(EXTYPE % NCOLS)

 INTEGER, INTENT(IN) :: TASK

 REAL (DKIND) Y(EXTYPE % MROWS)

 INTEGER I, J, NOUT

 CALL UMACH(2, NOUT)

 SELECT TYPE(EXTYPE)

 TYPE IS(ARPACKBASE_EXT)

 ASSOCIATE(M => EXTYPE % MM,&

 N => EXTYPE % NN,&

 A => EXTYPE % A)

 SELECT CASE(TASK)

 CASE(ARPACK_A_x)

! Computes y <-- A*x

 CALL DGEMV('N',M,N,1._DKIND,A,M,X,1,0._DKIND,Y,1)

 EXTYPE % NV = EXTYPE % NV + 1

 CASE(ARPACK_xt_A)

! Computes y <-- A^T*x = x^T * A

 CALL DGEMV('T',M,N,1._DKIND,A,M,X,1,0._DKIND,Y,1)

 EXTYPE % NV = EXTYPE % NV + 1

 CASE(ARPACK_Prepare)

 EXTYPE % NV = 0

 IF(ALLOCATED(EXTYPE % A)) DEALLOCATE(EXTYPE % A)

 ALLOCATE(EXTYPE % A(M,N))

 DO J=1,N

 DO I=1,M

 EXTYPE % A (I,J) = I + J

 END DO

 END DO

 CASE DEFAULT

 WRITE(NOUT,*) TASK, ': INVALID TASK REQUESTED'

 STOP 'IMSL_ERROR_WRONG_OPERATION'

 END SELECT

 END ASSOCIATE

 END SELECT

 END FUNCTION

 END MODULE

 USE ARPACK_SVD_EX1_INT

 USE UMACH_INT

 USE WRRRN_INT

! Compute the largest and smallest singular values of a

! patterned matrix.

 INTEGER, PARAMETER :: NSV=2

 INTEGER :: COUNT, I, J, N, M, nout

674 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 REAL(DKIND) :: SVALUESMax(NSV)

 REAL(DKIND), ALLOCATABLE :: SVALUEsMin(:)

 REAL(DKIND), ALLOCATABLE :: VECTORS(:,:), B(:,:)

 REAL(DKIND), ALLOCATABLE :: U_VECTORS(:,:), V_VECTORS(:,:)

 REAL(DKIND) NORM

 LOGICAL SMALL, SOLVED

 TYPE(ARPACKBASE_EXT) EX

 ASSOCIATE(M=>EX % MM,&

 N=>EX % NN,&

 NACC=>EX % NACC,&

 TOL =>EX % TOL,&

 MAXMV => EX % MAXMV)

 SOLVED = .true.

 CALL UMACH(2, NOUT)

! Define size of matrix problem.

 N=800

 M=600

 DO COUNT =1,2

! Some values will not be accurately determined for rank

! deficient problems. This next value drops the number

! requested after every sequence of iterations of this size.

 MAXMV=500

 CALL ARPACK_SVD(M, N, FCN, SVALUESMax, &

 PLACE=ARPACK_Largest_Algebraic, & !Default

 Iteration_TYPE=ARPACK_Normal, & !Default

 CATEGORY=ARPACK_Regular, & !Default

 EXTYPE=EX, U_VECTORS=U_VECTORS, &

 V_VECTORS=V_VECTORS)

 CALL WRRRN('Largest Singular values, Normal Method', &

 SVALUESMax)

 WRITE(NOUT, *) 'Number of matrix-vector products'

 WRITE(NOUT, *) '--------------------------------'

 WRITE(NOUT, '(5X, I4)') EX % NV

 IF(ALLOCATED(B))DEALLOCATE(B)

 ALLOCATE(B(M,N))

! Reconstruct an approximation to A, B = U * S * V ^T.

! Use only the singular values accurately determined.

 DO I=1,NACC

 U_VECTORS(:,I)=U_VECTORS(:,I)*SVALUESMax(I)

 END DO

 B=matmul(U_VECTORS(:,1:NACC),transpose(V_VECTORS(:,1:NACC)))

! Truncate the approximation to nearest integers.

! Subtract known integer matrix and check agreement with

! the approximation.

 DO I=1,M

 DO J=1,N

 B(I,J)=REAL(NINT(B(I,J)),DKIND)

 B(I,J)=B(I,J)-EX % A(I,J)

 END DO

 END DO

 WRITE(NOUT,'(/A,I6)')&

 'Number of singular values, S and columns of U,V =', NACC

 WRITE(NOUT,'(/A,F6.2)')&

 'Integer units of error with U,V and S =', maxval(B)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 675

 if (maxval(B) > 0.0d0) then

 solved = .false.

 else

 solved = solved .and. .true.

 end if

 SVALUESMax=0._DKIND

! Do same SVD with the Expanded form of the symmetric matrix.

 CALL ARPACK_SVD(M, N, FCN, SVALUESMax,&

 PLACE=ARPACK_Largest_Algebraic, & !Default

 Iteration_TYPE=ARPACK_Expanded, &

 CATEGORY=ARPACK_Regular, & !Default

 EXTYPE=EX, U_VECTORS=U_VECTORS, &

 V_VECTORS=V_VECTORS)

 CALL WRRRN('Largest Singular values, Expanded Method', SVALUESMax)

 WRITE(NOUT, *) 'Number of matrix-vector products'

 WRITE(NOUT, *) '--------------------------------'

 WRITE(NOUT, '(5X,I4)') EX % NV

! Reconstruct an approximation to A, B = U * S * V ^T.

! Use only the singular values accurately determined.

 DO I=1,NACC

 U_VECTORS(:,I)=U_VECTORS(:,I)*SVALUESMax(I)

 END DO

 B=matmul(U_VECTORS(:,1:NACC),transpose(V_VECTORS(:,1:NACC)))

! Truncate the approximation to nearest integers.

! Subtract known integer matrix and check agreement with

! the approximation.

 DO I=1,M

 DO J=1,N

 B(I,J)=REAL(NINT(B(I,J)),DKIND)

 B(I,J)=B(I,J)-EX % A(I,J)

 END DO

 END DO

 WRITE(NOUT,'(A,I6)')&

 'Number of singular values, S and columns of U,V =', NACC

 WRITE(NOUT,'(A,F6.2)')&

 'Integer units of error with U,V and S =', maxval(B)

 if (maxval(B) > 0.0d0) then

 solved = .false.

 else

 solved = solved .and. .true.

 end if

 M=800

 N=600

 DEALLOCATE(U_VECTORS, V_VECTORS)

 END DO

 END ASSOCIATE

 END

Output

 Largest Singular values, Normal Method

 1 523955.7

 2 36644.2

676 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 Number of matrix-vector products

 12

Number of singular values, S and columns of U,V = 2

Integer units of error with U,V and S = 0.00

 Largest Singular values, Expanded Method

 1 523955.7

 2 36644.2

 Number of matrix-vector products

 22

Number of singular values, S and columns of U,V = 2

Integer units of error with U,V and S = 0.00

 Largest Singular values, Normal Method

 1 523955.7

 2 36644.2

 Number of matrix-vector products

 12

Number of singular values, S and columns of U,V = 2

Integer units of error with U,V and S = 0.00

 Largest Singular values, Expanded Method

 1 523955.7

 2 36644.2

 Number of matrix-vector products

 18

Number of singular values, S and columns of U,V = 2

Integer units of error with U,V and S = 0.00

ARPACK_NONSYMMETRIC
Compute some eigenvalues and eigenvectors of the generalized eigenvalue problem Ax Bx .

This can be used for the case B I . The values for ,A B are real, but eigenvalues may be

complex and occur in conjugate pairs.

Required Arguments

N — The dimension of the problem. (Input)

F — User-supplied FUNCTION to return matrix-vector operations or linear solutions. This user

function is written corresponding to the abstract interface for the function DMV(…). The

usage is F (X, TASK, EXTYPE), where

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 677

Function Return Value

F — An array of length N containing matrix-vector operations or linear

equations solutions. Operations provided as code in the function F will be

made depending upon the value of argument TASK.

Required Arguments

X — An array of length N containing the vector to which the operator will be

applied. (Input)

TASK — An enumerated type which specifies the operation to be performed.

(Input)

TASK is an enumerated integer value, use-associated from the module

ARPACK_INT. It will be one of the following:

Value Description

ARPACK_Prepare Take initial steps to prepare for the

operations that follow. These steps

can include defining the data for the

matrices, factorizations for

upcoming linear system solves, or

recording the vectors used in the

operations.

ARPACK_A_x y Ax

ARPACK_B_x y Bx

ARPACK_inv_A_minus_Shift_x

1
y A I x

ARPACK_inv_B_x 1y B x

ARPACK_inv_A_minus_Shift_B

_x
1

y A B x

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be

used to pass additional information to/from the user-supplied function.

(Input/Output)

The user must include a USE ARPACK_INT statement in the calling

program to define this derived type. If EXTYPE is not included as an

argument to ARPACK_NONSYMMETRIC it should be ignored in the user-

function, F.

 The function F must be written according to the abstract interface for DMV. If F is not

use-associated nor contained in the calling program, declare it with PROCEDURE(DMV)

F.

ZVALUES — A complex array of eigenvalues. (Output)

The value NEV=size(ZVALUES) defines the number of eigenvalues to be computed.

The calling program declares or allocates the array ZVALUES(1:NEV). The size value

678 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

NEV should account for pairs of complex conjugates. The number of eigenvalues

computed accurately is optionally available as the component EXTYPE%NACC of the

base class EXTYPE.

Optional Arguments

PLACE — Defines the placement in the spectrum for required eigenvalues. (Input)

PLACE can be one of the following enumerated integers as defined in ARPACK_INT:

Value

ARPACK_Largest_Magnitude

ARPACK_Smallest_Magnitude

ARPACK_Largest_Real_Parts

ARPACK_Smallest_Real_Parts

ARPACK_Largest_Imag_Parts

ARPACK_Smallest_Imag_Parts

 Default: ARPACK_Largest_Magnitude.

TYPE — Defines the eigenvalue problem as either a standard or generalized eigenvalue

problem. (Input)

TYPE can be one of the following enumerated integers as defined in ARPACK_INT:

Value Description

ARPACK_Standard Ax x

ARPACK_Generalized Ax Bx

 Default: TYPE = ARPACK_Standard.

CATEGORY —CATEGORY and TYPE define the operation sequence provided in the user-

written function. (Input)

CATEGORY can be one of the following enumerated integers as defined in

ARPACK_INT:

Value Description

ARPACK_Regular Ax x

ARPACK_Regular_Inverse 1, ,y Ax y Bx y B x

ARPACK_Shift_Invert

1 1
, ,y Ax y A I x y A B x

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 679

Value Description

ARPACK_Regular Ax x

ARPACK_Complex_Part_Shift_Invert

1 1
, ,y Ax y A I x y A B x

1

, , Im{ }y Ax y Bx y A B x

1

, , Re{ }y Ax y Bx y A B x

 Default: CATEGORY = ARPACK_Regular.

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be used to pass

additional information to/from the user-supplied function. (Input/Output)

The user must include a USE ARPACK_INT statement in the calling program to define

this derived type. If EXTYPE is not included as an argument to

ARPACK_NONSYMMETRIC it must still be supplied as an argument to user-function, F,

but is not used.

VECTORS — An allocatable array of approximate eigenvectors. (Output)

It is not necessary to allocate VECTORS(:,:). If this argument is used the allocation

occurs within the routine ARPACK_NONSYMMETRIC. The output sizes are

VECTORS(1:N,1:NCV). The second dimension value is

NCV=min(N, max(FACTOR_MAXNCV*NEV,NEV+1)), where the value FACTOR_MAXNCV

is a component of the base class, ARPACKBASE. The first NEV columns of

VECTORS(:,:) represent the eigenvectors (see Comments).

FORTRAN 2003 Interface

Generic: ARPACK_NONSYMMETRIC (N, F,ZVALUES [,…])

Specific: The specific interface name is D_ARPACK_NONSYMMETRIC.

FORTRAN 90 Interface

A Fortran 90 compiler version is not available for this routine.

Description

Routine ARPACK_NONSYMMETRIC calls ARPACK subroutines to compute partial eigenvalue-

eigenvector decompositions for real matrices. The ARPACK routines are dnaupd and dneupd

(see ARPACK Users’ Guide, SIAM Publications, (1998)), which use ―reverse communication‖ to

obtain the required matrix-vector operations for this approximation. Responses to these requests

are made by calling the user-written function F. By including the class object EXTYPE as an

argument to this function, user data and procedure pointers are available for the evaluations. A

user code must extend the base class EXTYPE to include the extra data and procedure pointers.

680 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Comments

The non-symmetric problem may have complex eigenvalues that occur in conjugate pairs, and

the eigenvectors are returned in the REAL(DKIND) array VECTORS(:,:) but with a compact

representation: If the eigenvalue j has an imaginary part with a negative value, construct the

complex eigenvector from the relation 1j j jw v iv . The real vectors 1,j jv v are

consecutive columns of the array VECTORS (:,:). The eigenvalue-eigenvector relationship

is j j jAw w . Since A is real, j is also an eigenvalue; thus the conjugate

relationship j j jAw w will hold. For purposes of checking results the complex

residual j j j jr Aw w should be small in norm relative to the norm of A . If that is true,

there is no need to check the alternate relationship. This compact representation of the

eigenvectors can be expanded to require twice the storage requirements, but that is not done

here in the interest of saving large blocks of storage.

For the generalized eigenvalue problem Ax Bx the eigenvalues are optionally computed

based on the Raleigh Quotient. Because of the shifts used, only the eigenvectors may be

computed. The eigenvalues are returned by solving j jAw Bw for :

 /H H

j j j j jw Aw w Bw . j is valid if the denominator is non-zero. If j has a non-

zero imaginary part, then the complex conjugate j is also an eigenvalue. The Raleigh

Quotient for eigenvalues of generalized problems is used when vectors are requested and the

user has requested it be used with the base class component EXTYPE%RALEIGH_QUOTIENT

== .TRUE.. This is the component‘s default value.

Example 1

We solve the generalized eigenvalue problem Ax Bx using the shift-invert category. The

matrix A is tri-diagonal with the values 2 on the diagonal, -2 on the sub-diagonal, and 3 on the

super-diagonal. The matrix B is tri-diagonal with the values 4 on the diagonal and 1 on the off-

diagonals. We use the complex shift 0.4 0.6i and increase the factor for the number of

Ritz vectors from 2.5 to 5. Two strategies of shift-invert are illustrated,
1Re()y A B Bx and

1Im()y A B Bx . In each case NEV=6 eigenvalues are

obtained, each with 3 pairs of complex conjugate values.

Link to example source (arpack_nonsymmetric_ex1.f90)

 MODULE ARPACK_NONSYMMETRIC_EX1_INT

 USE ARPACK_INT

 USE LSLCQ_INT

 USE N1RTY_INT

 IMPLICIT NONE

 TYPE, EXTENDS(ARPACKBASE) :: ARPACKBASE_EXT

LinkedDocuments/arpack_nonsymmetric_ex1.f90

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 681

 INTEGER :: NX=0

 INTEGER :: NV=0

! This example extends the base type to

! information for solving complex tridiagonal systems.

 COMPLEX(DKIND), ALLOCATABLE :: A(:), B(:), C(:)

 INTEGER, ALLOCATABLE :: IR(:), IS(:)

! This controls the type of shifting. When

! the value is 1, use real part of inv(A-*M)*x.

! If value is 2, use imaginary part of same.

 INTEGER :: SHIFT_STRATEGY=1

 END TYPE ARPACKBASE_EXT

 CONTAINS

 FUNCTION FCN(X, TASK, EX) RESULT(Y)

 USE UMACH_INT

 CLASS (ARPACKBASE), INTENT(INOUT) :: EX

 REAL (DKIND), INTENT(INOUT) :: X(:)

 INTEGER, INTENT(IN) :: TASK

 INTEGER, PARAMETER :: NSIZE=12

 REAL(DKIND) Y(size(X))

 REAL(DKIND) DL, DD, DU

 COMPLEX(DKIND) Z(2*size(X))

 REAL(DKIND) U(2*size(X))

 INTEGER J, IERR, NOUT, IJOB

 CALL UMACH(2, NOUT)

 SELECT TYPE(EX)

 TYPE IS(ARPACKBASE_EXT)

 ASSOCIATE(N => EX % NCOLS,&

 NV => EX % NV, &

 SHIFT => EX % SHIFT)

 SELECT CASE(TASK)

 CASE(ARPACK_A_x)

 DL = -2._DKIND

 DD = 2._DKIND

 DU = 3._DKIND

 Y(1) = DD*X(1) + DU*X(2)

 DO J = 2,N-1

 Y(J) = DL*X(J-1) + DD*X(J) + DU*X(J+1)

 END DO

 Y(N) = DL*X(N-1) + DD*X(N)

 NV=NV+1

 CASE(ARPACK_B_x)

 Y(1) = 4._DKIND*X(1) + X(2)

 DO J = 2,N-1

 Y(J) = X(J-1) + 4._DKIND*X(J) + X(J+1)

 END DO

 Y(N) = X(N-1) + 4._DKIND*X(N)

 NV=NV+1

 CASE(ARPACK_inv_A_minus_Shift_B_x)

! Compute Y=REAL/AIMAG(inv(A-*B)*x). This is done with a solve

! step, using the LU factorization. Note that the data

! for the factorization is stored in the user's extended

682 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

! data type.

 Z=CMPLX(X,0._DKIND,DKIND)

 IJOB = 2

 CALL LSLCQ (EX%C, EX%A, EX%B, Z, U, &

 EX%IR, EX%IS, N=N, IJOB=IJOB)

 IERR= N1RTY(1)

 IF (IERR==4 .OR. IERR==5) &

 STOP 'IMSl_FATAL_ERROR_SOLVING'

 IF(EX % SHIFT_STRATEGY == 1) THEN

 Y(1:N)=REAL(Z(1:N),DKIND)

 ELSE IF (EX % SHIFT_STRATEGY == 2)THEN

 Y(1:N)=AIMAG(Z(1:N))

 END IF

! Total number of solve steps.

 NV=NV+1

 CASE(ARPACK_Prepare)

! Set up storage areas for factored tridiagonal matrix.

 IF (ALLOCATED(EX%A)) DEALLOCATE(EX%A)

 IF (ALLOCATED(EX%B)) DEALLOCATE(EX%B)

 IF (ALLOCATED(EX%C)) DEALLOCATE(EX%C)

 IF (ALLOCATED(EX%IR)) DEALLOCATE(EX%IR)

 IF (ALLOCATED(EX%IS)) DEALLOCATE(EX%IS)

 ALLOCATE(EX%A(2*N), EX%B(2*N), EX%C(2*N), &

 EX%IR(NSIZE), EX%IS(NSIZE), STAT=IERR)

 IF (IERR /= 0) STOP 'IMSL_ERROR_ALLOCATING_WORKSPACE'

! Define matrix, A-SHIFT*B.

 EX % B(1:N) = -2._DKIND-SHIFT

 EX % A(1:N) = 2._DKIND-4._DKIND*SHIFT

 EX % C(1:N) = 3._DKIND-SHIFT

! Factor the matrix with LU and partial pivoting.

 IJOB = 3

 CALL LSLCQ (EX%C, EX%A, EX%B, Z, U, &

 EX%IR, EX%IS, N=N, IJOB=IJOB)

 IERR = N1RTY(1)

 IF(IERR == 4 .or. IERR == 5) STOP 'IMSL FATAL ERROR'

! Give output some ZVALUES to satisfy compiler.

 Y=0._DKIND

 NV=0

 CASE DEFAULT

 WRITE(NOUT,*) TASK, ': INVALID OPERATION REQUESTED'

 STOP 'IMSL_ERROR_WRONG_OPERATION'

 END SELECT

 END ASSOCIATE

 END SELECT

 END FUNCTION

 END MODULE

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 683

! Suppose we want to solve A*x = lambda*B*x in -invert mode

! The matrix A is the tridiagonal matrix with 2 on the diagonal,

! -2 on the subdiagonal and 3 on the superdiagonal. The matrix

! is the tridiagonal matrix with 4 on the diagonal and 1 on the

! off-diagonals.

! The sigma is a complex number (sigmar, sigmai).

! OP = Real_Part{invA-(SIGMAR,SIGMAI)*B*B.

 USE ARPACK_NONSYMMETRIC_EX1_INT

 USE UMACH_INT

 USE WRCRN_INT

 INTEGER, PARAMETER :: NEV=6, N=100

 COMPLEX(DKIND) :: ZVALUES(NEV), RES(N),U(N),V(N),W(N)

 REAL(DKIND), ALLOCATABLE :: VECTORS(:,:)

 REAL(DKIND) NORM

 LOGICAL SKIP, SMALL, SOLVED

 INTEGER J, STRATEGY, NOUT

 CHARACTER(LEN=12) TAG

 CHARACTER(LEN=60) TITLE

 TYPE(ARPACKBASE_EXT) EX

 ASSOCIATE(NX => EX % NX, &

 NV => EX % NV, &

 SHIFT => EX % SHIFT,&

 FACTOR => EX % FACTOR_MAXNCV,&

 NACC => EX % NACC)

! Note that VECTORS(:,:) does not need to be allocated

! in the calling program. That happens within the

! routine ARPACK_NONSYMMETRIC(). It is OK to do this but

! the sizes (N,NCV) are determined in ARPACK_NONSYMMETRIC.

 CALL UMACH(2, NOUT)

 SOLVED=.TRUE.

 DO STRATEGY=1,2

 SHIFT=CMPLX(0.4_DKIND,0.6_DKIND,DKIND)

 FACTOR=5._DKIND

 EX % SHIFT_STRATEGY=STRATEGY

 CALL ARPACK_NONSYMMETRIC(N, FCN, ZVALUES, &

 TYPE=ARPACK_Generalized, &

 CATEGORY=ARPACK_Complex_Part_Shift_Invert, &

 EXTYPE=EX, VECTORS=VECTORS)

 WRITE(NOUT, *) &

 'Number of Matrix-Vector Products Required, NS Ex-1'

 WRITE(NOUT, *) &

 '--'

 WRITE(NOUT, '(5X,I4)') NV

 WRITE(NOUT, *) 'Number of accurate values determined'

 WRITE(NOUT, *) '------------------------------------'

 WRITE(NOUT, '(5X, I4)') NACC

! Check residuals, A*vectors = ZVALUES*M*vectors:

 SKIP=.FALSE.

 DO J=1,NACC

 IF(SKIP) THEN

684 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

 SKIP=.FALSE.

 CYCLE

 END IF

! The eigenvalue is complex and the pair of vectors

! for the complex eigenvector is returned.

 IF(AIMAG(ZVALUES(J)) /= 0._DKIND)THEN

! Make calls for real and imaginary parts of eigenvectors

! applied to the operators A, M

 U=CMPLX(FCN(VECTORS(:,J),ARPACK_A_x,EX),&

 FCN(VECTORS(:,J+1),ARPACK_A_x,EX),DKIND)

 V=CMPLX(FCN(VECTORS(:,J),ARPACK_B_x,EX),&

 FCN(VECTORS(:,J+1),ARPACK_B_x,EX),DKIND)

! Since the matrix is real, there is an additional conjugate:

 RES=U-ZVALUES(J)*V

 SKIP=.TRUE.

 ELSE

! The eigenvalue is real and the real eigenvector is returned.

 RES=FCN(VECTORS(:,J),ARPACK_A_x,EX)-ZVALUES(J)*&

 FCN(VECTORS(:,J),ARPACK_B_x,EX)

 END IF

 NORM=maxval(abs(RES))

 SMALL=(NORM <= ABS(ZVALUES(J))*SQRT(EPSILON(NORM)))

 SOLVED=SOLVED .and. SMALL

 END DO

 IF(STRATEGY==1) TAG='REAL SHIFT'

 IF(STRATEGY==2) TAG='IMAG SHIFT'

 TITLE = 'Largest Raleigh Quotient Eigenvalues,'//TAG

 CALL WRCRN(TITLE, ZVALUES)

 IF(SOLVED) THEN

 WRITE(NOUT,'(A///)') &

 'All Ritz Values and Vectors have small residuals.'

 ELSE

 WRITE(NOUT,'(A///)') &

 'Some Ritz Values and Vectors have large residuals.'

 END IF

 END DO ! Shift strategy

 END ASSOCIATE

 END

Output

 Number of Matrix-Vector Products Required, NS Ex-1

 --

 280

 Number of accurate values determined

 6

 Largest Raleigh Quotient Eigenvalues,REAL SHIFT

 1 (0.5000,-0.5958)

 2 (0.5000, 0.5958)

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 685

 3 (0.5000,-0.6331)

 4 (0.5000, 0.6331)

 5 (0.5000, 0.5583)

 6 (0.5000,-0.5583)

All Ritz Values and Vectors have small residuals.

 Number of Matrix-Vector Products Required, NS Ex-1

 --

 248

 Number of accurate values determined

 6

 Largest Raleigh Quotient Eigenvalues,IMAG SHIFT

 1 (0.5000,-0.5958)

 2 (0.5000, 0.5958)

 3 (0.5000,-0.5583)

 4 (0.5000, 0.5583)

 5 (0.5000,-0.6331)

 6 (0.5000, 0.6331)

All Ritz Values and Vectors have small residuals.

ARPACK_COMPLEX

Compute some eigenvalues and eigenvectors of the generalized eigenvalue problem Ax Bx .

This can be used for the case B I . The values for ,A B are real or complex. When the values

are complex the eigenvalues may be complex and are not expected to occur in complex conjugate

pairs.

Required Arguments

N — The dimension of the problem. (Input)

F — User-supplied FUNCTION to return matrix-vector operations or linear solutions. This user

function is written corresponding to the abstract interface for the function ZMV(…). The

usage is F (X, TASK, EXTYPE), where

Function Return Value

F — An array of length N containing matrix-vector operations or linear

equations solutions. Operations provided as code in the function F will be

made depending upon the value of argument TASK.

Required Arguments

X — An array of length N containing the vector to which the operator will be

applied. (Input)

TASK — An enumerated type which specifies the operation to be performed.

(Input)

686 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

TASK is an enumerated integer value, use-associated from the module

ARPACK_INT. It will be one of the following:

Value Description

ARPACK_Prepare Take initial steps to prepare for

the operations that follow. These

steps can include defining the data

for the matrices, factorizations for

upcoming linear system solves, or

recording the vectors used in the

operations.

ARPACK_A_x y Ax

ARPACK_xt_A y Bx

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be

used to pass additional information to/from the user-supplied function.

(Input/Output)

The user must include a USE ARPACK_INT statement in the calling

program to define this derived type. If EXTYPE is not included as an

argument to ARPACK_COMPLEX it should be ignored in the user-function, F.

 The function F must be written according to the abstract interface for ZMV. If F is not

use-associated nor contained in the calling program, declare it with PROCEDURE(ZMV)

F.

ZVALUES — A complex array of eigenvalues. (Output)

The value NEV=size(ZVALUES) defines the number of eigenvalues to be computed.

The calling program declares or allocates the array ZVALUES(1:NEV). The number of

eigenvalues computed accurately is optionally available as the component

EXTYPE%NACC of the base class EXTYPE.

Optional Arguments

PLACE — Defines the output content of VALUES. (Input)

PLACE specifies the placement within the spectrum for the required eigenvalues.

PLACE can be one of the following enumerated integers as defined in ARPACK_INT:

Value

ARPACK_Largest_Magnitude

ARPACK_Smallest_Magnitude

ARPACK_Largest_Real_Parts

ARPACK_Smallest_Real_Parts

ARPACK_Largest_Imag_Parts

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 687

Value

ARPACK_Largest_Magnitude

ARPACK_Smallest_Imag_Parts

 Default: PLACE = ARPACK_Largest_Magnitude.

TYPE — Defines the eigenvalue problem as either a standard or generalized eigenvalue

problem. (Input)

TYPE can be one of the following enumerated integers as defined in ARPACK_INT:

Value Description

ARPACK_Standard Ax x

ARPACK_Generalized Ax Bx

 Default: TYPE = ARPACK_Standard.

CATEGORY — CATEGORY and TYPE define the operation sequence provided in the user-

written function. (Input)

CATEGORY can be one of the following enumerated integers as defined in

ARPACK_INT:

Value Description

ARPACK_Regular y Ax

ARPACK_Regular_Inverse 1, ,y Ax y Bx y B x

ARPACK_Shift_Invert

1 1
, ,y Ax y A I x y A B x

ARPACK_Complex_Part_Shift_Invert

1
, , Re{ }y Ax y Bx y A B x

1

, , Im{ }y Ax y Bx y A B x

 Default: CATEGORY = ARPACK_Regular.

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be used to pass

additional information to/from the user-supplied function. (Input/Output)

The user must include a USE ARPACK_INT statement in the calling program to define

this derived type. If EXTYPE is not included as an argument to ARPACK_COMPLEX it

must still be supplied as an argument to user-function, F, but is not used.

688 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

VECTORS — An allocatable array of approximate eigenvectors. (Output)

It is not necessary to allocate VECTORS(:,:). If this argument is used the allocation

occurs within the routine ARPACK_NONSYMMETRIC. The output sizes are

VECTORS(1:N,1:NCV). The second dimension value is NCV=min(N,

max(FACTOR_MAXNCV*NEV,NEV+1)), where the value FACTOR_MAXNCV is a

component of the base class, ARPACKBASE. The first NEV columns of VECTORS(:,:)

represent the eigenvectors jw (see Comments).

FORTRAN 2003 Interface

Generic: ARPACK_COMPLEX (N, F,ZVALUES [,…])

Specific: The specific interface name is Z_ARPACK_COMPLEX.

FORTRAN 90 Interface

A Fortran 90 compiler version is not available for this routine.

Description

Routine ARPACK_COMPLEX calls ARPACK subroutines to compute partial eigenvalue-eigenvector

decompositions for complex matrices. The ARPACK routines are dzaupd and dzeupd (see

ARPACK Users’ Guide, SIAM Publications, (1998)), which use ―reverse communication‖ to

obtain the required matrix-vector operations for this approximation. Responses to these requests

are made by calling the user-written function F. By including the class object EXTYPE as an

argument to this function, user data and procedure pointers are available for the evaluations. A

user code must extend the base class EXTYPE to include the extra data and procedure pointers.

Comments

For purposes of checking results the complex residual j j j jr Aw w should be small in

norm relative to the norm of A . For the generalized eigenvalue problem Ax Bx the

eigenvalues are optionally computed based on the Raleigh Quotient. Because of the shifts

used, only the eigenvectors may be computed. The eigenvalues are returned based on

solving j jAw Bw for j ,

where

 /H H

j j j j jw Aw w Bw
.

The eigenvalue j is finite and valid if the denominator is non-zero. The Raleigh Quotient

for eigenvalues of generalized problems is used only when vectors are requested and the user

has requested it be used with the base class component EXTYPE%RALEIGH_QUOTIENT =

.TRUE. This is the component‘s default value.

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 689

Example 1

This example is a variation of the first example for ARPACK_SYMMETRIC. We approximate

eigenvalues and eigenfunctions of the Laplacian operator

2 2

2 2
,

u u u
u u u

x y x

,

on the unit square, [0,1] [0,1] . But now the parameter is complex. Thus the eigenvalues and

eigenfunctions are complex.

Link to example source

 (arpack_complex_ex1.f90)

 MODULE ARPACK_COMPLEX_EX1_INT

 USE ARPACK_INT

 IMPLICIT NONE

 TYPE, EXTENDS(ARPACKBASE), PUBLIC :: ARPACKBASE_EXT

 REAL(DKIND) :: H =0._DKIND

 REAL(DKIND) :: HSQ=0._DKIND

 COMPLEX(DKIND) :: RHO=(0._DKIND,0._DKIND)

 COMPLEX(DKIND) :: DL=(0._DKIND,0._DKIND)

 COMPLEX(DKIND) :: DD=(0._DKIND,0._DKIND)

 COMPLEX(DKIND) :: DU=(0._DKIND,0._DKIND)

 INTEGER :: NX=0

 INTEGER :: NV=0

 END TYPE ARPACKBASE_EXT

 CONTAINS

 FUNCTION FZ1(X, TASK, EXTYPE) RESULT(Y)

 USE UMACH_INT

 CLASS (ARPACKBASE), INTENT(INOUT) :: EXTYPE

 COMPLEX (DKIND), INTENT(INOUT) :: X(:)

 INTEGER, INTENT(IN) :: TASK

 COMPLEX (DKIND) Y(size(X))

 COMPLEX (DKIND) DT(3)

 REAL(DKIND) :: ONE=1._DKIND

 INTEGER J, NOUT

 CALL UMACH(2, NOUT)

 SELECT TYPE(EXTYPE)

 TYPE IS(ARPACKBASE_EXT)

 ASSOCIATE(NX => EXTYPE % NX,&

 H => EXTYPE % H,&

 HSQ => EXTYPE % HSQ,&

 RHO => EXTYPE % RHO,&

 DL => EXTYPE % DL,&

 DD => EXTYPE % DD,&

 DU => EXTYPE % DU,&

 NV => EXTYPE % NV)

 SELECT CASE(TASK)

 CASE(ARPACK_A_x)

! Computes y <-- A*x, where A is the N**2 by N**2 block

LinkedDocuments/arpack_complex_ex1.f90

690 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

! tridiagonal matrix deriving from (Laplacian u) + rho*(du/dx).

 DT=(/DL,DD,DU/)

 Y(1:NX)=T(NX,X(1:NX),DT) - X(NX+1:2*NX)/HSQ

 DO J=NX+1,NX**2-NX,NX

 Y(J:J+NX-1)=T(NX,X(J:J+NX-1),DT) &

 - (X(J-NX:J-1)+ X(J+NX:J+2*NX-1))/HSQ

 END DO

 Y((NX-1)*NX+1:NX**2)= - X((NX-1)*NX-NX+1:(NX-1)*NX) &

 / HSQ + T(NX,X((NX-1)*NX+1:NX**2),DT)

! Total the number of matrix-vector products.

 NV=NV+1

 CASE(ARPACK_Prepare)

! Define 1/H**2, etc. so they are available in the evaluator.

 H = ONE/REAL(NX+1,DKIND)

 HSQ = H**2

 DD = (4.0D+0, 0.0D+0) / HSQ

 DL = -ONE/HSQ - (5.0D-1, 0.0D+0) *RHO/H

 DU = -ONE/HSQ + (5.0D-1, 0.0D+0) *RHO/H

 NV = 0

 CASE DEFAULT

 WRITE(nout,*) TASK, ': INVALID TASK REQUESTED'

 STOP 'IMSL_ERROR_WRONG_OPERATION'

 END SELECT

 END ASSOCIATE

 END SELECT

 END FUNCTION

 FUNCTION T(NX, X, DT)RESULT(V)

 INTEGER, INTENT(IN) :: NX

 COMPLEX(DKIND), INTENT(IN) :: X(:), DT(3)

 COMPLEX(DKIND) :: V(NX)

 INTEGER J

 ASSOCIATE(DL => DT(1),&

 DD => DT(2),&

 DU => DT(3))

 V(1) = DD*X(1) + DU*X(2)

 DO J = 2,NX-1

 V(J) = DL*X(J-1) + DD*X(J) + DU*X(J+1)

 END DO

 V(NX) = DL*X(NX-1) + DD*X(NX)

 END ASSOCIATE

 END FUNCTION

 END MODULE

! Compute the largest magnitude eigenvalues of a discrete Laplacian,

! based on second order divided differences.

! The matrix used is obtained from the standard central difference

! discretization of the convection-diffusion operator

! (Laplacian u) + rho*(du / dx)

! on the unit squre 0,1x0,1 with zero Dirichlet boundary

! conditions.

 USE ARPACK_COMPLEX_EX1_INT

 USE UMACH_INT

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis 691

 USE WRCRN_INT

 INTEGER, PARAMETER :: NEV=6

 INTEGER :: J, N, NOUT

 COMPLEX(DKIND) :: VALUES(NEV)

 COMPLEX(DKIND), ALLOCATABLE :: RES(:), EF(:,:)

 COMPLEX(DKIND), ALLOCATABLE :: VECTORS(:,:)

 REAL(DKIND) NORM

 LOGICAL SMALL, SOLVED

 TYPE(ARPACKBASE_EXT) EX

 ASSOCIATE(NX => EX % NX, &

 NV => EX % NV, &

 RHO => EX % RHO,&

 NACC => EX % NACC)

 CALL UMACH(2, NOUT)

 NX=10

 RHO=(100._DKIND,1._DKIND)

! Define size of matrix problem.

 N=NX**2

! Note that VECTORS(:,:) does not need to be allocated

! in the calling program. That happens within the

! routine ARPACK_COMPLEX(). It is OK to do this but

! the sizes (N,NCV) are determined in ARPACK_COMPLEX.

 CALL ARPACK_COMPLEX(N, FZ1, VALUES, EXTYPE=EX, VECTORS=VECTORS)

 WRITE(NOUT, *) 'Number of eigenvalues requested, and accurate'

 WRITE(NOUT, *) '---'

 WRITE(NOUT, '(5X, I4, 5X, I4)') NEV, NACC

 WRITE(NOUT, *) 'Number of Matrix-Vector Products Required, ZEX-1'

 WRITE(NOUT, *) '--'

 WRITE(NOUT, '(5X, I4)') NV

 CALL WRCRN ('Largest Magnitude Operator Eigenvalues', VALUES)

! Check residuals, A*vectors = values*vectors:

 ALLOCATE(RES(N))

 DO J=1,NACC

 RES=FZ1(VECTORS(:,J),ARPACK_A_x,EX)-VALUES(J)*VECTORS(:,J)

 NORM=maxval(abs(RES))

 SMALL=(NORM <= ABS(VALUES(J))*SQRT(EPSILON(NORM)))

 IF(J==1) SOLVED=SMALL

 SOLVED=SOLVED .and. SMALL

 END DO

 IF(SOLVED) THEN

 WRITE(NOUT,'(A///)') &

 'All Ritz Values and Vectors have small residuals.'

 ELSE

 WRITE(NOUT,'(A///)') &

 'Some Ritz Values and Vectors have large residuals.'

 END IF

 END ASSOCIATE

 END

692 Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY

Output

 Number of eigenvalues requested, and accurate

 6 6

 Number of Matrix-Vector Products Required, ZEX-1

 --

 475

 Largest Magnitude Operator Eigenvalues

 1 (727.0,-1029.6)

 2 (705.4, 1029.6)

 3 (698.4,-1029.6)

 4 (676.8, 1029.6)

 5 (653.3,-1029.6)

 6 (631.7, 1029.6)

All Ritz Values and Vectors have small residuals.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 693

Chapter 3: Interpolation and
Approximation

Routines

3.1 Curve and Surface Fitting with Splines

Returns the derived type array result SPLINE_CONSTRAINTS 702
Returns an array result, given an array
of input .. SPLINE_VALUES 703
Weighted least-squares fitting by B-splines to discrete
One-Dimensional data is performed SPLINE_FITTING 704
Returns the derived type array result given
optional input....................................... SURFACE_CONSTRAINTS 714
Returns a tensor product array result, given two arrays of
independent variable values SURFACE_VALUES 715
Weighted least-squares fitting by tensor product
B-splines to discrete two-dimensional data
is performed .. SURFACE_FITTING 716

3.2. Cubic Spline Interpolation
Easy to use cubic spline routine ... CSIEZ 727
Not-a-knot ... CSINT 729
Derivative end conditions .. CSDEC 732
Hermite ... CSHER 737
Akima .. CSAKM 740
Shape preserving .. CSCON 742
Periodic ..CSPER 746

3.3. Cubic Spline Evaluation and Integration
Evaluation .. CSVAL 749
Evaluation of the derivative ... CSDER 750
Evaluation on a grid ...CS1GD 753
Integration ... CSITG 756

3.4. B-spline Interpolation
Easy to use spline routine ...SPLEZ 758
One-dimensional interpolation .. BSINT 761
Knot sequence given interpolation data BSNAK 765
Optimal knot sequence given interpolation dataBSOPK 768

694 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Two-dimensional tensor product interpolation BS2IN 771
Three-dimensional tensor product interpolation BS3IN 776

3.5. Spline Evaluation, Integration, and Conversion to Piecewise
Polynomial Given the B-spline Representation
Evaluation ... BSVAL 782
Evaluation of the derivative ... BSDER 783
Evaluation on a grid ... BS1GD 786
One-dimensional integration ... BSITG 789
Two-dimensional evaluation ... BS2VL 792
Two-dimensional evaluation of the derivative BS2DR 794
Two-dimensional evaluation on a grid BS2GD 797
Two-dimensional integration ... BS2IG 801
Three-dimensional evaluation .. BS3VL 805
Three-dimensional evaluation of the derivative BS3DR 807
Three-dimensional evaluation on a grid BS3GD 811
Three-dimensional integration ... BS3IG 817
Convert B-spline representation to piecewise polynomial .. BSCPP 821

3.6. Piecewise Polynomial
Evaluation ... PPVAL 823
Evaluation of the derivative ... PPDER 825
Evaluation on a grid ... PP1GD 828
Integration ... PPITG 831

3.7. Quadratic Polynomial Interpolation Routines for Gridded Data
One-dimensional evaluation .. QDVAL 833
One-dimensional evaluation of the derivative QDDER 835
Two-dimensional evaluation ... QD2VL 838
Two-dimensional evaluation of the derivative QD2DR 840
Three-dimensional evaluation .. QD3VL 843
Three-dimensional evaluation of the derivative QD3DR 847

3.8. Multi-dimensional Interpolation
Akima’s surface fitting method ... SURF 851
Multidimensional interpolation and differentiation SURFND 855

3.9. Least-Squares Approximation
Linear polynomial .. RLINE 858
General polynomial ... RCURV 861
General functions .. FNLSQ 865
Splines with fixed knots ... BSLSQ 870
Splines with variable knot ... BSVLS 874
Splines with linear constraints ... CONFT 879
Two-dimensional tensor-product splines with fixed knots BSLS2 889
Three-dimensional tensor-product splines with fixed knots . BSLS3 894

3.10. Cubic Spline Smoothing
Smoothing by error detection .. CSSED 900
Smoothing spline .. CSSMH 904
Smoothing spline using cross-validation CSSCV 907

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 695

3.11. Rational L∞ Approximation
Rational Chebyshev ...RATCH 910

Usage Notes
The majority of the routines in this chapter produce piecewise polynomial or spline functions that

either interpolate or approximate given data, or are support routines for the evaluation, integration,

and conversion from one representation to another. Two major subdivisions of routines are

provided. The cubic spline routines begin with the letters ―CS‖ and utilize the piecewise

polynomial representation described below. The B-spline routines begin with the letters ―BS‖ and

utilize the B-spline representation described below. Most of the spline routines are based on

routines in the book by de Boor (1978).

Piecewise Polynomials

A univariate piecewise polynomial (function) p is specified by giving its breakpoint sequence

ξ ∈ R
n
, the order k (degree k − 1) of its polynomial pieces, and the k × (n − 1) matrix c of its

local polynomial coefficients. In terms of this information, the piecewise polynomial (pp) function

is given by

1

1

1

for <
1 !

jk
i

ji i i

j

x
p x c x

j

The breakpoint sequence ξ is assumed to be strictly increasing, and we extend the pp function to

the entire real axis by extrapolation from the first and last intervals. The subroutines in this chapter

will consistently make the following identifications for FORTRAN variables:

PPCOEF

BREAK

KORDER

NBREAK

c

k

N

This representation is redundant when the pp function is known to be smooth. For example, if p is

known to be continuous, then we can compute c1,i+1 from the cji as follows

1

1, 1 1 1 2
1 !

k

i
i i i i i kic p c c c

k

where Δξi := ξi+1 − ξi. For smooth pp, we prefer to use the irredundant representation in terms of

the B-(for ‗basis‘)-splines, at least when such a function is first to be determined. The above pp

representation is employed for evaluation of the pp function at many points since it is more

efficient.

Splines and B-splines

B-splines provide a particularly convenient and suitable basis for a given class of smooth pp

functions. Such a class is specified by giving its breakpoint sequence, its order, and the required

696 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

smoothness across each of the interior breakpoints. The corresponding B-spline basis is specified

by giving its knot sequence t ∈ R
M

. The specification rule is the following: If the class is to have

all derivatives up to and including the j-th derivative continuous across the interior breakpoint ξi,

then the number ξi should occur k − j − 1 times in the knot sequence. Assuming that ξ1, and ξn

are the endpoints of the interval of interest, one chooses the first k knots equal to ξ1 and the last k

knots equal to ξn. This can be done since the B-splines are defined to be right continuous near ξ1

and left continuous near ξn.

When the above construction is completed, we will have generated a knot sequence t of length M;

and there will be m := M − k B-splines of order k, say B1 ,…, Bm that span the pp functions on the

interval with the indicated smoothness. That is, each pp function in this class has a unique

representation

p = a1B1 + a2B2 + … + amBm

as a linear combination of B-splines. The B-spline routines will consistently make use of the

following identifiers for FORTRAN variables:

BSCOEF

XKNOT

NCOEF

NKNOT

a

m

M

t

A B-spline is a particularly compact pp function. Bi is a nonnegative function that is nonzero only

on the interval [ti, ti + k]. More precisely, the support of the i-th B-spline is [ti, ti + k]. No pp function

in the same class (other than the zero function) has smaller support (i.e., vanishes on more

intervals) than a B-spline. This makes B-splines particularly attractive basis functions since the

influence of any particular B-spline coefficient extends only over a few intervals. When it is

necessary to emphasize the dependence of the B-spline on its parameters, we will use the notation

Bi,k,t

to denote the i-th B-spline of order k for the knot sequence t.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 697

CSAKM

CSINT
CSDEC (natural spline)

CSCON

BSINT with K=3 BSINT with K=5

Figure 3- 1 Spline Interpolants of the Same Data

Cubic Splines

Cubic splines are smooth (i.e., C
1
 or C

2
) fourth-order pp functions. For historical and other

reasons, cubic splines are the most heavily used pp functions. Therefore, we provide special

routines for their construction and evaluation. The routines for their determination use yet another

representation (in terms of value and slope at all the breakpoints) but output the pp representation

as described above for general pp functions.

We provide seven cubic spline interpolation routines: CSIEZ, CSINT, CSDEC, CSHER, CSAKM,

CSCON, and CSPER. The first routine, CSIEZ, is an easy-to-use version of CSINT coupled with

CSVAL. The routine CSIEZ will compute the value of the cubic spline interpolant (to given data

using the ‗not-a-knot‘ criterion) on a grid. The routine CSDEC allows the user to specify various

endpoint conditions (such as the value of the first or second derivative at the right and left points).

This means that the natural cubic spline can be obtained using this routine by setting the second

derivative to zero at both endpoints. If function values and derivatives are available, then the

Hermite cubic interpolant can be computed using CSHER. The two routines CSAKM and CSCON are

698 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

designed so that the shape of the curve matches the shape of the data. In particular, CSCON

preserves the convexity of the data while CSAKM attempts to minimize oscillations. If the data is

periodic, then CSPER will produce a periodic interpolant. The routine CONFT allows the user wide

latitude in enforcing shapes. This routine returns the B-spline representation.

It is possible that the cubic spline interpolation routines will produce unsatisfactory results. The

adventurous user should consider using the B-spline interpolation routine BSINT that allows one

to choose the knots and order of the spline interpolant.

In Figure 3-1, we display six spline interpolants to the same data. This data can be found in

Example 1 of the IMSL routine CSCON Notice the different characteristics of the interpolants. The

interpolation routines CSAKM and CSCON are the only two that attempt to preserve the shape of the

data. The other routines tend to have extraneous inflection points, with the piecewise quartic

(k = 5) exhibiting the most oscillation.

Tensor Product Splines

The simplest method of obtaining multivariate interpolation and approximation routines is to take

univariate methods and form a multivariate method via tensor products. In the case of

two-dimensional spline interpolation, the development proceeds as follows: Let tx be a knot

sequence for splines of order kx, and ty be a knot sequence for splines of order ky. Let Nx + kx be

the length of tx, and Ny + ky be the length of ty. Then, the tensor product spline has the form

, , , ,

1 1

() ()
y x

x x y y

N N

nm n k m k

m n

c B x B y

 t t

Given two sets of points

1 1

 and x yN N

i ii i
x y

for which the corresponding univariate interpolation problem could be solved, the tensor product

interpolation problem becomes: Find the coefficients cnm so that

, , , ,

1 1

() ()
y x

x x y y

N N

nm n k i m k i ij

m n

c B x B y f

 t t

This problem can be solved efficiently by repeatedly solving univariate interpolation problems as

described in de Boor (1978, page 347). Three-dimensional interpolation has analogous behavior.

In this chapter, we provide routines that compute the two-dimensional tensorproduct spline

coefficients given two-dimensional interpolation data (BS2IN), compute the three-dimensional

tensor-product spline coefficients given three-dimensional interpolation data (BS3IN) compute the

two-dimensional tensor-product spline coefficients for a tensor-product least squares problem

(BSLS2), and compute the three-dimensional tensor-product spline coefficients for a

tensor-product least squares problem (BSLS3). In addition, we provide evaluation, differentiation,

and integration routines for the twoand three-dimensional tensor-product spline functions. The

relevant routines are BS2VL, BS3VL, BS2DR, BS3DR, BS2GD, BS3GD, BS2IG, and BS3IG.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 699

Quadratic Interpolation

The routines that begin with the letters ―QD‖ in this chapter are designed to interpolate a one-,

two-, or three-dimensional (tensor product) table of values and return an approximation to the

value of the underlying function or one of its derivatives at a given point. These routines are all

based on quadratic polynomial interpolation.

Multi-dimensional Interpolation

We have one routine, SURF, that will return values of an interpolant to scattered data in the plane.

This routine is based on work by Akima (1978), which utilizes C
1
 piecewise quintics on a

triangular mesh. SURFND computes a piecewise polynomial interpolant, of up to 15-th degree, to a

function of up to 7 variables, defined on a multi-dimensional grid.

Least Squares

Routines are provided to smooth noisy data: regression using linear regression using arbitrary

polynomials (RCURV), and regression using user-supplied functions (FNLSQ). Additional routines

compute the least-squares fit using splines with fixed knots (BSLSQ) or free knots (BSVLS). These

routines can produce cubic-spline least-squares fit simply by setting the order to 4. The routine

CONFT computes a fixed-knot spline weighted least-squares fit subject to linear constraints. This

routine is very general and is recommended if issues of shape are important. The two- and three-

dimensional tensor-product spline regression routines are (BSLS2) and (BSLS3).

Smoothing by Cubic Splines

Two ―smoothing spline‖ routines are provided. The routine CSSMH returns the cubic spline that

smooths the data, given a smoothing parameter chosen by the user. Whereas, CSSCV estimates the

smoothing parameter by cross-validation and then returns the cubic spline that smooths the data.

In this sense, CSSCV is the easier of the two routines to use. The routine CSSED returns a smoothed

data vector approximating the values of the underlying function when the data are contaminated

by a few random spikes.

Rational Chebyshev Approximation

The routine RATCH computes a rational Chebyshev approximation to a user-supplied function.

Since polynomials are rational functions, this routine can be used to compute best polynomial

approximations.

Using the Univariate Spline Routines

An easy to use spline interpolation routine CSIEZ is provided . This routine computes an

interpolant and returns the values of the interpolant on a user-supplied grid. A slightly more

advanced routine SPLEZ computes (at the users discretion) one of several interpolants or least-

squares fits and returns function values or derivatives on a user-supplied grid.

For more advanced uses of the interpolation (or least squares) spline routines, one first forms an

interpolant from interpolation (or least-squares) data. Then it must be evaluated, differentiated, or

integrated once the interpolant has been formed. One way to perform these tasks, using cubic

splines with the ‗not-a-knot‘ end condition, is to call CSINT to obtain the local coefficients of the

700 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

piecewise cubic interpolant and then call CSVAL to evaluate the interpolant. A more complicated

situation arises if one wants to compute a quadratic spline interpolant and then evaluate it

(efficiently) many times. Typically, the sequence of routines called might be BSNAK (get the

knots), BSINT (returns the B-spline coefficients of the interpolant), BSCPP (convert to pp form),

and PPVAL (evaluate). The last two calls could be replaced by a call to the B-spline grid evaluator

BS1GD, or the last call could be replaced with pp grid evaluator PP1GD. The interconnection of the

spline routines is summarized in Figure 3-2.

CSVAL

CSDER

CSITG

CS1GD

BSNAK

BSOPK

BSINT

BSLSQ

BSVLS

CONFT

BSCPP

BSVAL

BSDER

BSITG

BS1GD

DATA

CSSMH

CSSCV

PPVAL

PPDER

PPITG

PP1GD

OUT

CSINT

CSHER

CSCON

CSPER

CSAKM

CSDEC

Figure 3- 2 Interrelation of the Spline Routines

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 701

Choosing an Interpolation Routine

The choice of an interpolation routine depends both on the type of data and on the use of the

interpolant. We provide 19 interpolation routines. These routines are depicted in a decision tree in

Figure 3-3. This figure provides a guide for selecting an appropriate interpolation routine. For

example, if periodic one-dimensional (univariate) data is available, then the path through

univariate to periodic leads to the IMSL routine CSPER, which is the proper routine for this

setting. The general-purpose univariate interpolation routines can be found in the box beginning

with CSINT. Multidimensional tensor-product interpolation routines are also provided. For two-

dimensional scattered data, the appropriate routine is SURF.

Figure 3- 3 Choosing an Interpolation Routine

702 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

SPLINE_CONSTRAINTS
This function returns the derived type array result, ?_SPLINE_CONSTRAINTS, given optional

input. There are optional arguments for the derivative index, the value applied to the spline, and

the periodic point for any periodic constraint.

The function is used, for entry number j,
?_SPLINE_CONSTRAINTS(J) = &

 SPLINE_CONSTRAINTS([DERIVATIVE=DERIVATIVE_INDEX,] &

 POINT = WHERE_APPLIED, [VALUE=VALUE_APPLIED,], &

 TYPE = CONSTRAINT_INDICATOR, &

 [PERIODIC_POINT = VALUE_APPLIED])

The square brackets enclose optional arguments. For each constraint either (but not both) the

‗VALUE =‘ or the ‗PERIODIC_POINT =‘ optional arguments must be present.

Required Arguments

POINT = WHERE_APPLIED (Input)

The point in the data interval where a constraint is to be applied.

TYPE = CONSTRAINT_INDICATOR (Input)

The indicator for the type of constraint the spline function or its derivatives is to

satisfy at the point: where_applied. The choices are the character strings

‗==‘, ‗<=‘, ‗>=‘, ‗.=.‘, and ‗.=-‘. They respectively indicate that the

spline value or its derivatives will be equal to, not greater than, not less than,

equal to the value of the spline at another point, or equal to the negative of the

spline value at another point. These last two constraints are called periodic and

negative-periodic, respectively. The alternate independent variable point is

value_applied for either periodic constraint. There is a use of periodic

constraints in .

Optional Arguments

DERIVATIVE = DERIVATIVE_INDEX (Input)

This is the number of the derivative for the spline to apply the constraint. The

value 0 corresponds to the function, the value 1 to the first derivative, etc. If this

argument is not present in the list, the value 0 is substituted automatically. Thus

a constraint without the derivative listed applies to the spline function.

PERIODIC_POINT = VALUE_APPLIED

This optional argument improves readability by automatically identifying the

second independent variable value for periodic constraints.

FORTRAN 90 Interface

Generic: CALL SPLINE_CONSTRAINTS (POINT, TYPE [,…])

Specific: The specific interface names are S_SPLINE_CONSTRAINTS and

D_SPLINE_CONSTRAINTS.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 703

SPLINE_VALUES
This rank-1 array function returns an array result, given an array of input. Use the optional

argument for the covariance matrix when the square root of the variance function is required. The

result will be a scalar value when the input variable is scalar.

Required Arguments

DERIVATIVE = DERIVATIVE (Input)

The index of the derivative evaluated. Use non-negative integer values. For the

function itself use the value 0.

VARIABLES = VARIABLES (Input)

The independent variable values where the spline or its derivatives are

evaluated. Either a rank-1 array or a scalar can be used as this argument.

KNOTS = KNOTS (Input)

The derived type ?_spline_knots, defined as the array COEFFS was obtained

with the function SPLINE_FITTING. This contains the polynomial spline

degree and the number of knots and the knots themselves for this spline

function.

COEFFS = C (Input)

The coefficients in the representation for the spline function,

1

N

j j

j

f x c B x

.

These result from the fitting process or array assignment

C=SPLINE_FITTING(...), defined below. The value

 N = size(C) satisfies the identity

N - 1 + spline_degree = size (?_knots), where the two right-most quantities refer

to components of the argument knots.

Optional Arguments

COVARIANCE = G (Input)

This argument, when present, results in the evaluation of the square root of the

variance function

1/ 2

T
e x b x Gb x

where

 1 , ,
T

Nb x B x B x

and G is the covariance matrix associated with the coefficients of the spline

 1, ,
T

Nc c c

704 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

The argument G is an optional output parameter from the function

SPLINE_FITTING, described below. When the square root of the variance

function is computed, the arguments DERIVATIVE and C are not used.

IOPT = IOPT (Input)

This optional argument, of derived type ?_options, is not used in this

release.

FORTRAN 90 Interface

Generic: CALL SPLINE_VALUES (DERIVATIVE, VARAIBLES, KNOTS, COEFFS [,…])

Specific: The specific interface names are S_SPLINE_VALUES and D_SPLINE_VALUES.

SPLINE_FITTING
Weighted least-squares fitting by B-splines to discrete One-Dimensional data is performed.

Constraints on the spline or its derivatives are optional. The spline function

1

N

j j

j

f x c B x

its derivatives, or the square root of its variance function are evaluated after the fitting.

Required Arguments

DATA = DATA(1:3,:) (Input/Output)

An assumed-shape array with size(data,1) = 3. The data are placed in the array:

data(1,i) = ix , data(2,i) = iy , and data(3,i) = i , 1,...,i ndata . If the

variances are not known but are proportional to an unknown value, users may set

data(3,i) = 1, 1,...,i ndata .

KNOTS = KNOTS (Input)

A derived type, ?_spline_knots, that defines the degree of the spline and the

breakpoints for the data fitting interval.

Optional Arguments

CONSTRAINTS = SPLINE_CONSTRAINTS (Input)

A rank-1 array of derived type ?_spline_constraints that give constraints the

output spline is to satisfy.

COVARIANCE = G (Output)

An assumed-shape rank-2 array of the same precision as the data. This output is the

covariance matrix of the coefficients. It is optionally used to evaluate the square root

of the variance function.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 705

IOPT = IOPT(:) (Input/Output)

Derived type array with the same precision as the input array; used for passing optional

data to SPLINE_FITTING. The options are as follows:

Packaged Options for SPLINE_FITTING

Prefix = None Option Name Option Value

 SPLINE_FITTING_TOL_EQUAL 1

 SPLINE_FITTING_TOL_LEAST 2

IOPT(IO) = ?_OPTIONS(SPLINE_FITTING_TOL_EQUAL, ?_VALUE)

This resets the value for determining that equality constraint equations are rank-

deficient. The default is ?_value = 10
-4

.

IOPT(IO) = ?_OPTIONS(SPLINE_FITTING_TOL_LEAST, ?_VALUE)

This resets the value for determining that least-squares equations are rank-deficient.

The default is ?_value = 10
-4

.

FORTRAN 90 Interface

Generic: CALL SPLINE_FITTING (DATA, KNOTS [,…])

Specific: The specific interface names are S_SPLINE_FITTING and D_SPLINE_FITTING.

Description

This routine has similar scope to CONFT found in IMSL (2003, pp 734-743). We provide the

square root of the variance function, but we do not provide for constraints on the integral of the

spline. The least-squares matrix problem for the coefficients is banded, with band-width equal to

the spline order. This fact is used to obtain an efficient solution algorithm when there are no

constraints. When constraints are present the routine solves a linear-least squares problem with

equality and inequality constraints. The processed least-squares equations result in a banded and

upper triangular matrix, following accumulation of the spline fitting equations. The algorithm

used for solving the constrained least-squares system will handle rank-deficient problems. A set

of reference are available in Hanson (1995) and Lawson and Hanson (1995). The CONFT routine

uses QPROG (loc cit., p. 959), which requires that the least-squares equations be of full rank.

Fatal and Terminal Error Messages

See the messages.gls file for error messages for SPLINE_FITTING. These error messages are

numbered 13401367.

Example 1: Natural Cubic Spline Interpolation to Data

The function

 2exp / 2g x x

is interpolated by cubic splines on the grid of points

706 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 1 , 1,...,ix i x i ndata

Those natural conditions are

2 2

2 2
, 0,..., ; , 0 and i i i i

d f d g
f x g x i ndata x x i ndata

dx dx

Our program checks the term .const appearing in the maximum truncation error term

4.error const x

at a finer grid.

 USE spline_fitting_int

 USE show_int

 USE norm_int

 implicit none

! This is Example 1 for SPLINE_FITTING, Natural Spline

! Interpolation using cubic splines. Use the function

! exp(-x**2/2) to generate samples.

 integer :: i

 integer, parameter :: ndata=24, nord=4, ndegree=nord-1, &

 nbkpt=ndata+2*ndegree, ncoeff=nbkpt-nord, nvalues=2*ndata

 real(kind(1e0)), parameter :: zero=0e0, one=1e0, half=5e-1

 real(kind(1e0)), parameter :: delta_x=0.15, delta_xv=0.4*delta_x

 real(kind(1e0)), target :: xdata(ndata), ydata(ndata), &

 spline_data (3, ndata), bkpt(nbkpt), &

 ycheck(nvalues), coeff(ncoeff), &

 xvalues(nvalues), yvalues(nvalues), diffs

 real(kind(1e0)), pointer :: pointer_bkpt(:)

 type (s_spline_knots) break_points

 type (s_spline_constraints) constraints(2)

 xdata = (/((i-1)*delta_x, i=1,ndata)/)

 ydata = exp(-half*xdata**2)

 xvalues =(/(0.03+(i-1)*delta_xv,i=1,nvalues)/)

 ycheck= exp(-half*xvalues**2)

 spline_data(1,:)=xdata

 spline_data(2,:)=ydata

 spline_data(3,:)=one

! Define the knots for the interpolation problem.

 bkpt(1:ndegree) = (/(i*delta_x, i=-ndegree,-1)/)

 bkpt(nord:nbkpt-ndegree) = xdata

 bkpt(nbkpt-ndegree+1:nbkpt) = &

 (/(xdata(ndata)+i*delta_x, i=1,ndegree)/)

! Assign the degree of the polynomial and the knots.

 pointer_bkpt => bkpt

 break_points=s_spline_knots(ndegree, pointer_bkpt)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 707

! These are the natural conditions for interpolating cubic

! splines. The derivatives match those of the interpolating

! function at the ends.

 constraints(1)=spline_constraints &

 (derivative=2, point=bkpt(nord), type='==', value=-one)

 constraints(2)=spline_constraints &

 (derivative=2,point=bkpt(nbkpt-ndegree), type= '==', &

 value=(-one+xdata(ndata)**2)*ydata(ndata))

 coeff = spline_fitting(data=spline_data, knots=break_points,&

 constraints=constraints)

 yvalues=spline_values(0, xvalues, break_points, coeff)

 diffs=norm(yvalues-ycheck,huge(1))/delta_x**nord

 if (diffs <= one) then

 write(*,*) 'Example 1 for SPLINE_FITTING is correct.'

 end if

 end

Output

Example 1 for SPLINE_FITTING is correct.

Additional Examples

Example 2: Shaping a Curve and its Derivatives

The function

 2exp / 2 1g x x noise

is fit by cubic splines on the grid of equally spaced points

 1 , 1,...,ix i x i ndata

The term noise is uniform random numbers from the normalized interval

 , , where 0.01 . The spline curve is constrained to be convex down for for 0 ≤ x ≤ 1

convex upward for 1< x ≤ 4, and have the second derivative exactly equal to the value zero at

x = 1. The first derivative is constrained with the value zero at x = 0 and is non-negative at the

right and of the interval, x = 4. A sample table of independent variables, second derivatives and

square root of variance function values is printed.

 use spline_fitting_int

 use show_int

 use rand_int

 use norm_int

 implicit none

! This is Example 2 for SPLINE_FITTING. Use 1st and 2nd derivative

! constraints to shape the splines.

708 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 integer :: i, icurv

 integer, parameter :: nbkptin=13, nord=4, ndegree=nord-1, &

 nbkpt=nbkptin+2*ndegree, ndata=21, ncoeff=nbkpt-nord

 real(kind(1e0)), parameter :: zero=0e0, one=1e0, half=5e-1

 real(kind(1e0)), parameter :: range=4.0, ratio=0.02, tol=ratio*half

 real(kind(1e0)), parameter :: delta_x=range/(ndata-1), &

 delta_b=range/(nbkptin-1)

 real(kind(1e0)), target :: xdata(ndata), ydata(ndata), ynoise(ndata),&

 sddata(ndata), spline_data (3, ndata), bkpt(nbkpt), &

 values(ndata), derivat1(ndata), derivat2(ndata), &

 coeff(ncoeff), root_variance(ndata), diffs

 real(kind(1e0)), dimension(ncoeff,ncoeff) :: sigma_squared

 real(kind(1e0)), pointer :: pointer_bkpt(:)

 type (s_spline_knots) break_points

 type (s_spline_constraints) constraints(nbkptin+2)

 xdata = (/((i-1)*delta_x, i=1,ndata)/)

 ydata = exp(-half*xdata**2)

 ynoise = ratio*ydata*(rand(ynoise)-half)

 ydata = ydata+ynoise

 sddata = ynoise

 spline_data(1,:)=xdata

 spline_data(2,:)=ydata

 spline_data(3,:)=sddata

 bkpt=(/((i-nord)*delta_b, i=1,nbkpt)/)

! Assign the degree of the polynomial and the knots.

 pointer_bkpt => bkpt

 break_points=s_spline_knots(ndegree, pointer_bkpt)

 icurv=int(one/delta_b)+1

! At first shape the curve to be convex down.

 do i=1,icurv-1

 constraints(i)=spline_constraints &

 (derivative=2, point=bkpt(i+ndegree), type='<=', value=zero)

 end do

! Force a curvature change.

 constraints(icurv)=spline_constraints &

 (derivative=2, point=bkpt(icurv+ndegree), type='==', value=zero)

! Finally, shape the curve to be convex up.

 do i=icurv+1,nbkptin

 constraints(i)=spline_constraints &

 (derivative=2, point=bkpt(i+ndegree), type='>=', value=zero)

 end do

! Make the slope zero and value non-negative at right.

 constraints(nbkptin+1)=spline_constraints &

 (derivative=1, point=bkpt(nord), type='==', value=zero)

 constraints(nbkptin+2)=spline_constraints &

 (derivative=0, point=bkpt(nbkptin+ndegree), type='>=', value=zero)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 709

 coeff = spline_fitting(data=spline_data, knots=break_points, &

 constraints=constraints, covariance=sigma_squared)

! Compute value, first two derivatives and the variance.

 values=spline_values(0, xdata, break_points, coeff)

 root_variance=spline_values(0, xdata, break_points, coeff, &

 covariance=sigma_squared)

 derivat1=spline_values(1, xdata, break_points, coeff)

 derivat2=spline_values(2, xdata, break_points, coeff)

 call show(reshape((/xdata, derivat2, root_variance/),(/ndata,3/)),&

"The x values, 2-nd derivatives, and square root of variance.")

! See that differences are relatively small and the curve has

! the right shape and signs.

 diffs=norm(values-ydata)/norm(ydata)

 if (all(values > zero) .and. all(derivat1 < epsilon(zero))&

 .and. diffs <= tol) then

 write(*,*) 'Example 2 for SPLINE_FITTING is correct.'

 end if

 end

Output

Example 2 for SPLINE_FITTING is correct.

Example 3: Splines Model a Random Number Generator

The function

 2exp / 2 , 1 1

0, | | 1

g x x x

x

is an unnormalized probability distribution. This function is similar to the standard Normal

distribution, with specific choices for the mean and variance, except that it is truncated. Our

algorithm interpolates g(x) with a natural cubic spline, f(x). The cumulative distribution is

approximated by precise evaluation of the function

1

x
q x f t dt

Gauss-Legendre quadrature formulas, IMSL (1994, pp. 621-626), of order two are used on each

polynomial piece of f(t) to evaluate q(x) cheaply. After normalizing the cubic spline so that

q(1) = 1, we may then generate random numbers according to the distribution f x g x .

The values of x are evaluated by solving q(x) = u, -1 < x < 1. Here u is a uniform random

sample. Newton‘s method, for a vector of unknowns, is used for the solution algorithm.

Recalling the relation

 , 1 1
d

q x u f x x
dx

710 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

we believe this illustrates a method for generating a vector of random numbers according to a

continuous distribution function having finite support.

 use spline_fitting_int

 use linear_operators

 use Numerical_Libraries

 implicit none

! This is Example 3 for SPLINE_FITTING. Use splines to

! generate random (almost normal) numbers. The normal distribution

! function has support (-1,+1), and is zero outside this interval.

! The variance is 0.5.

 integer i, niterat

 integer, parameter :: iweight=1, nfix=0, nord=4, ndata=50

 integer, parameter :: nquad=(nord+1)/2, ndegree=nord-1

 integer, parameter :: nbkpt=ndata+2*ndegree, ncoeff=nbkpt-nord

 integer, parameter :: last=nbkpt-ndegree, n_samples=1000

 integer, parameter :: limit=10

 real(kind(1e0)), dimension(n_samples) :: fn, rn, x, alpha_x, beta_x

 INTEGER LEFT_OF(n_samples)

 real(kind(1e0)), parameter :: one=1e0, half=5e-1, zero=0e0, two=2e0

 real(kind(1e0)), parameter :: delta_x=two/(ndata-1)

 real(kind(1e0)), parameter :: qalpha=zero, qbeta=zero, domain=two

 real(kind(1e0)) qx(nquad), qxi(nquad), qw(nquad), qxfix(nquad)

 real(kind(1e0)) alpha_, beta_, quad(0:ndata-1)

 real(kind(1e0)), target :: xdata(ndata), ydata(ndata),&

 coeff(ncoeff), spline_data(3, ndata), bkpt(nbkpt)

 real(kind(1e0)), pointer :: pointer_bkpt(:)

 type (s_spline_knots) break_points

 type (s_spline_constraints) constraints(2)

! Approximate the probability density function by splines.

 xdata = (/(-one+(i-1)*delta_x, i=1,ndata)/)

 ydata = exp(-half*xdata**2)

 spline_data(1,:)=xdata

 spline_data(2,:)=ydata

 spline_data(3,:)=one

 bkpt=(/(-one+(i-nord)*delta_x, i=1,nbkpt)/)

! Assign the degree of the polynomial and the knots.

 pointer_bkpt => bkpt

 break_points=s_spline_knots(ndegree, pointer_bkpt)

! Define the natural derivatives constraints:

 constraints(1)=spline_constraints &

 (derivative=2, point=bkpt(nord), type='==', &

 value=(-one+xdata(1)**2)*ydata(1))

 constraints(2)=spline_constraints &

 (derivative=2, point=bkpt(last), type='==', &

 value=(-one+xdata(ndata)**2)*ydata(ndata))

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 711

! Obtain the spline coefficients.

 coeff=spline_fitting(data=spline_data, knots=break_points,&

 constraints=constraints)

! Compute the evaluation points 'qx(*)' and weights 'qw(*)' for

! the Gauss-Legendre quadrature. This will give a precise

! quadrature for polynomials of degree <= nquad*2.

 call gqrul(nquad, iweight, qalpha, qbeta, nfix, qxfix, qx, qw)

! Compute pieces of the accumulated distribution function:

 quad(0)=zero

 do i=1, ndata-1

 alpha_= (bkpt(nord+i)-bkpt(ndegree+i))*half

 beta_ = (bkpt(nord+i)+bkpt(ndegree+i))*half

! Normalized abscissas are stretched to each spline interval.

! Each polynomial piece is integrated and accumulated.

 qxi = alpha_*qx+beta_

 quad(i) = sum(qw*spline_values(0, qxi, break_points,&

 coeff))*alpha_&

 + quad(i-1)

 end do

! Normalize the coefficients and partial integrals so that the

! total integral has the value one.

 coeff=coeff/quad(ndata-1); quad=quad/quad(ndata-1)

 rn=rand(rn)

 x=zero; niterat=0

 solve_equation: do

! Find the intervals where the x values are located.

 LEFT_OF=NDEGREE; I=NDEGREE

 do

 I=I+1; if(I >= LAST) EXIT

 WHERE(x >= BKPT(I))LEFT_OF = LEFT_OF+1

 end do

! Use Newton's method to solve the nonlinear equation:

! accumulated_distribution_function - random_number = 0.

 alpha_x = (x-bkpt(LEFT_OF))*half

 beta_x = (x+bkpt(LEFT_OF))*half

 FN=QUAD(LEFT_OF-NORD)-RN

 DO I=1,NQUAD

 FN=FN+QW(I)*spline_values(0, alpha_x*QX(I)+beta_x,&

 break_points, coeff)*alpha_x

 END DO

! This is the Newton method update step:

 x=x-fn/spline_values(0, x, break_points, coeff)

 niterat=niterat+1

! Constrain the values so they fall back into the interval.

! Newton's method may give approximates outside the interval.

 where(x <= -one .or. x >= one) x=zero

712 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 if(norm(fn,1) <= sqrt(epsilon(one))*norm(x,1))&

 exit solve_equation

 end do solve_equation

! Check that Newton's method converges.

 if (niterat <= limit) then

 write (*,*) 'Example 3 for SPLINE_FITTING is correct.'

 end if

 end

Output

Example 3 for SPLINE_FITTING is correct.

Example 4: Represent a Periodic Curve

The curve tracing the edge of a rectangular box, traversed in a counter-clockwise direction, is

parameterized with a spline representation for each coordinate function, (x(t), y(t)). The functions

are constrained to be periodic at the ends of the parameter interval. Since the perimeter arcs are

piece-wise linear functions, the degree of the splines is the value one. Some breakpoints are

chosen so they correspond to corners of the box, where the derivatives of the coordinate functions

are discontinuous. The value of this representation is that for each t the splines representing

(x(t), y(t)) are points on the perimeter of the box. This ―eases‖ the complexity of evaluating the

edge of the box. This example illustrates a method for representing the edge of a domain in two

dimensions, bounded by a periodic curve.

 use spline_fitting_int

 use norm_int

 implicit none

! This is Example 4 for SPLINE_FITTING. Use piecewise-linear

! splines to represent the perimeter of a rectangular box.

 integer i, j

 integer, parameter :: nbkpt=9, nord=2, ndegree=nord-1, &

 ncoeff=nbkpt-nord, ndata=7, ngrid=100, &

 nvalues=(ndata-1)*ngrid

 real(kind(1e0)), parameter :: zero=0e0, one=1e0

 real(kind(1e0)), parameter :: delta_t=one, delta_b=one, delta_v=0.01

 real(kind(1e0)) delta_x, delta_y

 real(kind(1e0)), dimension(ndata) :: sddata=one, &

! These are redundant coordinates on the edge of the box.

 xdata=(/0.0, 1.0, 2.0, 2.0, 1.0, 0.0, 0.0/), &

 ydata=(/0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0/)

 real(kind(1e0)) tdata(ndata), xspline_data(3, ndata), &

 yspline_data(3, ndata), tvalues(nvalues), &

 xvalues(nvalues), yvalues(nvalues), xcoeff(ncoeff), &

 ycoeff(ncoeff), xcheck(nvalues), ycheck(nvalues), diffs

 real(kind(1e0)), target :: bkpt(nbkpt)

 real(kind(1e0)), pointer :: pointer_bkpt(:)

 type (s_spline_knots) break_points

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 713

 type (s_spline_constraints) constraints(1)

 tdata = (/((i-1)*delta_t, i=1,ndata)/)

 xspline_data(1,:)=tdata; yspline_data(1,:)=tdata

 xspline_data(2,:)=xdata; yspline_data(2,:)=ydata

 xspline_data(3,:)=sddata; yspline_data(3,:)=sddata

 bkpt(nord:nbkpt-ndegree)=(/((i-nord)*delta_b, &

 i=nord, nbkpt-ndegree)/)

! Collapse the outside knots.

 bkpt(1:ndegree)=bkpt(nord)

 bkpt(nbkpt-ndegree+1:nbkpt)=bkpt(nbkpt-ndegree)

! Assign the degree of the polynomial and the knots.

 pointer_bkpt => bkpt

 break_points=s_spline_knots(ndegree, pointer_bkpt)

! Make the two parametric curves also periodic.

 constraints(1)=spline_constraints &

 (derivative=0, point=bkpt(nord), type='.=.', &

 value=bkpt(nbkpt-ndegree))

 xcoeff = spline_fitting(data=xspline_data, knots=break_points, &

 constraints=constraints)

 ycoeff = spline_fitting(data=yspline_data, knots=break_points, &

 constraints=constraints)

! Use the splines to compute the coordinates of points along the perimeter.

! Compare them with the coordinates of the edge points.

 tvalues= (/((i-1)*delta_v, i=1,nvalues)/)

 xvalues=spline_values(0, tvalues, break_points, xcoeff)

 yvalues=spline_values(0, tvalues, break_points, ycoeff)

 do i=1, nvalues

 j=(i-1)/ngrid+1

 delta_x=(xdata(j+1)-xdata(j))/ngrid

 delta_y=(ydata(j+1)-ydata(j))/ngrid

 xcheck(i)=xdata(j)+mod(i+ngrid-1,ngrid)*delta_x

 ycheck(i)=ydata(j)+mod(i+ngrid-1,ngrid)*delta_y

 end do

 diffs=norm(xvalues-xcheck,1)/norm(xcheck,1)+&

 norm(yvalues-ycheck,1)/norm(ycheck,1)

 if (diffs <= sqrt(epsilon(one))) then

 write(*,*) 'Example 4 for SPLINE_FITTING is correct.'

 end if

 end

Output

Example 4 for SPLINE_FITTING is correct.

714 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

SURFACE_CONSTRAINTS
To further shape a surface defined by a tensor product of B-splines, the routine SURFACE_FITTING

will least squares fit data with equality, inequality and periodic constraints. These can apply to the

surface function or its partial derivatives. Each constraint is packaged in the derived type

?_SURFACE_CONSTRAINTS. This function uses the data consisting of: the place where the

constraint is to hold, the partial derivative indices, and the type of the constraint. This object is

returned as the derived type function result ?_SURFACE_CONSTRAINTS. The function itself has

two required and two optional arguments. In a list of constraints, the j-th item will be:

?_SURFACE_CONSTRAINTS(j) = &

SURFACE_CONSTRAINTS&

 ([DERIVATIVE=DERIVATIVE_INDEX(1:2),] &

 POINT = WHERE_APPLIED(1:2),[VALUE=VALUE_APPLIED,],&

 TYPE = CONSTRAINT_INDICATOR, &

 [PERIODIC_POINT = PERIODIC_POINT(1:2)])

The square brackets enclose optional arguments. For each constraint the arguments ‗value =‘

and ‗PERIODIC_POINT =‘ are not used at the same time.

Required Arguments

POINT = WHERE_APPLIED (Input)

The point in the data domain where a constraint is to be applied. Each point has

an x and y coordinate, in that order.

TYPE = CONSTRAINT_INDICATOR (Input)

The indicator for the type of constraint the tensor product spline function or its

partial derivatives is to satisfy at the point: where_applied. The choices are

the character strings ‗==‘, ‗<=‘, ‗>=‘, ‗.=.‘, and ‗.=-‘. They

respectively indicate that the spline value or its derivatives will be equal to, not

greater than, not less than, equal to the value of the spline at another point, or

equal to the negative of the spline value at another point. These last two

constraints are called periodic and negative-periodic, respectively.

Optional Arguments

DERIVATIVE = DERIVATIVE_INDEX(1:2) (Input)

These are the number of the partial derivatives for the tensor product spline to

apply the constraint. The array (/0,0/) corresponds to the function, the value

(/1,0/) to the first partial derivative with respect to x, etc. If this argument is

not present in the list, the value (/0,0/) is substituted automatically. Thus a

constraint without the derivatives listed applies to the tensor product spline

function.

PERIODIC = PERIODIC_POINT(1:2)

This optional argument improves readability by identifying the second pair of

independent variable values for periodic constraints.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 715

FORTRAN 90 Interface

Generic: CALL SURFACE_CONSTRAINTS (POINT, TYPE [,…])

Specific: The specific interface names are S_SURFACE_CONSTRAINTS and

D_SURFACE_CONSTRAINTS.

SURFACE_VALUES
This rank-2 array function returns a tensor product array result, given two arrays of independent

variable values. Use the optional input argument for the covariance matrix when the square root

of the variance function is evaluated. The result will be a scalar value when the input independent

variable is scalar.

Required Arguments

DERIVATIVE = DERIVATIVE(1:2) (Input)

The indices of the partial derivative evaluated. Use non-negative integer values.

For the function itself use the array (/0,0/).

VARIABLESX = VARIABLESX (Input)

The independent variable values in the first or x dimension where the spline or

its derivatives are evaluated. Either a rank-1 array or a scalar can be used as this

argument.

VARIABLESY = VARIABLESY (Input)

The independent variable values in the second or y dimension where the spline

or its derivatives are evaluated. Either a rank-1 array or a scalar can be used as

this argument.

KNOTSX = KNOTSX (Input)

The derived type ?_spline_knots, used when the array coeffs(:,:)was

obtained with the function SURFACE_FITTING. This contains the polynomial

spline degree and the number of knots and the knots themselves, in the x

dimension.

KNOTSY = KNOTSY (Input)

The derived type ?_spline_knots, used when the array coeffs(:,:) was

obtained with the function SURFACE_FITTING. This contains the polynomial

spline degree and the number of knots and the knots themselves, in the y

dimension.

COEFFS = C (Input)

The coefficients in the representation for the spline function,

1 1

,
N M

ij i j

j i

f x y c B y B x

These result from the fitting process or array assignment

C=SURFACE_FITTING(...), defined below.

The values M = size (C,1) and N = size (C,2) satisfies the respective identities

716 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

N -1 + spline_degree = size (?_knotsx), and

M -1 + spline_degree = size (?_knotsy) , where the two right-most quantities in

both equations refer to components of the arguments knotsx and knotsy. The

same value of spline_degree must be used for both knotsx and knotsy.

Optional Arguments

COVARIANCE = G (Input)

This argument, when present, results in the evaluation of the square root of the

variance function

1/ 2

, , ,
T

e x y b x y Gb x y

where

 1 1 1, , , ,
T

Nb x y B x B y B x B y

and G is the covariance matrix associated with the coefficients of the spline

 11 1, , ,
T

Nc c c

The argument G is an optional output from SURFACE_FITTING, described

below. When the square root of the variance function is computed, the

arguments DERIVATIVE and C are not used.

IOPT = IOPT (Input)

This optional argument, of derived type ?_options, is not used in this

release.

FORTRAN 90 Interface

Generic: CALL SURFACE_VALUES (DERIVATIVE, VARIABLESX, VARIABLESY, KNOTSX,

KNOTSY, COEFFS [,…])

Specific: The specific interface names are S_SURFACE_VALUES and

D_SURFACE_VALUES.

SURFACE_FITTING
Weighted least-squares fitting by tensor product B-splines to discrete two-dimensional data is

performed. Constraints on the spline or its partial derivatives are optional. The spline function

1 1

,
N M

ij i j

j i

f x y c B y B x

,

its derivatives, or the square root of its variance function are evaluated after the fitting.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 717

Required Arguments

DATA = DATA(1:4,:) (Input/Output)

An assumed-shape array with size(data,1) = 4. The data are placed in the array:

 data(1,i) = ix ,

 data(2,i) = iy ,

 data(3,i) = iz ,

 data(4,i) = i , 1,...,i ndata .

If the variances are not known, but are proportional to an unknown value, use

 data(4,i) = 1, 1,...,i ndata .

KNOTSX = KNOTSX (Input)

A derived type, ?_SPLINE_KNOTS, that defines the degree of the spline and the

breakpoints for the data fitting domain, in the first dimension.

KNOTSY = KNOTSY (Input)

A derived type, ?_SPLINE_KNOTS, that defines the degree of the spline and the

breakpoints for the data fitting domain, in the second dimension.

Optional Arguments

CONSTRAINTS = SURFACE_CONSTRAINTS (Input)

A rank-1 array of derived type ?_SURFACE_CONSTRAINTS that defines constraints the

tensor product spline is to satisfy.

COVARIANCE = G (Output)

An assumed-shape rank-2 array of the same precision as the data. This output is the

covariance matrix of the coefficients. It is optionally used to evaluate the square root

of the variance function.

IOPT = IOPT(:) (Input/Output)

Derived type array with the same precision as the input array; used for passing optional

data to SURFACE_FITTING. The options are as follows:

Packaged Options for SURFACE_FITTING

Prefix = None Option Name Option Value

 SURFACE_FITTING_SMALLNESS 1

 SURFACE_FITTING_FLATNESS 2

 SURFACE_FITTING_TOL_EQUAL 3

 SURFACE_FITTING_TOL_LEAST 4

 SURFACE_FITTING_RESIDUALS 5

718 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Packaged Options for SURFACE_FITTING

 SURFACE_FITTING_PRINT 6

 SURFACE_FITTING_THINNESS 7

IOPT(IO) = ?_OPTIONS&

 (surface_fitting_smallnes, ?_value)

This resets the square root of the regularizing parameter multiplying the squared

integral of the unknown function. The argument ?_value is replaced by the default

value. The default is ?_value = 0.

IOPT(IO) = ?_OPTIONS&

 (SURFACE_FITTING_FLATNESS, ?_VALUE)

This resets the square root of the regularizing parameter multiplying the squared

integral of the partial derivatives of the unknown function. The argument ?_VALUE

is replaced by the default value. The default is

?_VALUE = SQRT(EPSILON(?_VALUE))*SIZE, where

 | (3,:) / (4,:) | / 1size data data ndata .

IOPT(IO) = ?_OPTIONS&

 (SURFACE_FITTING_TOL_EQUAL, ?_VALUE)

This resets the value for determining that equality constraint equations are rank-

deficient. The default is ?_VALUE = 10
-4

.

IOPT(IO) = ?_OPTIONS&

 (SURFACE_FITTING_TOL_LEAST, ?_VALUE)

This resets the value for determining that least-squares equations are rank-deficient.

The default is ?_VALUE = 10
-4

.

IOPT(IO) = ?_OPTIONS&

 (SURFACE_FITTING_RESIDUALS, DUMMY)

This option returns the residuals = surface - data, in data(4,:). That row of the

array is overwritten by the residuals. The data is returned in the order of cell

processing order, or left-to-right in x and then increasing in y. The allocation of a

temporary for data(1:4,:) is avoided, which may be desirable for problems with

large amounts of data. The default is to not evaluate the residuals and to leave

data(1:4,:) as input.

IOPT(IO) = ?_OPTIONS&

 (SURFACE_FITTING_PRINT, DUMMY)

This option prints the knots or breakpoints for x and y, and the count of data points in

cell processing order. The default is to not print these arrays.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 719

IOPT(IO) = ?_OPTIONS&

 (SURFACE_FITTING_THINNESS, ?_VALUE)

This resets the square root of the regularizing parameter multiplying the squared

integral of the second partial derivatives of the unknown function. The argument

?_VALUE is replaced by the default value. The default is ?_VALUE = 10
-3

 × SIZE,,

where

 | (3,:) / (4,:) | / 1size data data ndata .

FORTRAN 90 Interface

Generic: CALL SURFACE_FITTING (DATA, KNOTSX, KNOTSX, KNOTSY[,…])

Specific: The specific interface names are S_SURFACE_FITTING and

D_SURFACE_FITTING.

Description

The coefficients are obtained by solving a least-squares system of linear algebraic equations,

subject to linear equality and inequality constraints. The system is the result of the weighted data

equations and regularization. If there are no constraints, the solution is computed using a banded

least-squares solver. Details are found in Hanson (1995).

Fatal and Terminal Error Messages

See the messages.gls file for error messages for SURFACE_FITTING. These error messages are

numbered 1151-1152, 1161-1162, 1370-1393.

Example 1: Tensor Product Spline Fitting of Data

The function

 2 2, expg x y x y

is least-squares fit by a tensor product of cubic splines on the square

 0, 2 0, 2

There are ndata random pairs of values for the independent variables. Each datum is given unit

uncertainty. The grid of knots in both x and y dimensions are equally spaced, in the interior cells,

and identical to each other. After the coefficients are computed a check is made that the surface

approximately agrees with g(x,y) at a tensor product grid of equally spaced values.

 USE surface_fitting_int

 USE rand_int

 USE norm_int

 implicit none

! This is Example 1 for SURFACE_FITTING, tensor product

720 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

! B-splines approximation. Use the function

! exp(-x**2-y**2) on the square (0, 2) x (0, 2) for samples.

! The spline order is "nord" and the number of cells is

! "(ngrid-1)**2". There are "ndata" data values in the square.

 integer :: i

 integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &

 nbkpt=ngrid+2*ndegree, ndata = 2000, nvalues=100

 real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0

 real(kind(1d0)), parameter :: TOLERANCE=1d-3

 real(kind(1d0)), target :: spline_data (4, ndata), bkpt(nbkpt), &

 coeff(ngrid+ndegree-1,ngrid+ndegree-1), delta, sizev, &

 x(nvalues), y(nvalues), values(nvalues, nvalues)

 real(kind(1d0)), pointer :: pointer_bkpt(:)

 type (d_spline_knots) knotsx, knotsy

! Generate random (x,y) pairs and evaluate the

! example exponential function at these values.

 spline_data(1:2,:)=two*rand(spline_data(1:2,:))

 spline_data(3,:)=exp(-sum(spline_data(1:2,:)**2,dim=1))

 spline_data(4,:)=one

! Define the knots for the tensor product data fitting problem.

 delta = two/(ngrid-1)

 bkpt(1:ndegree) = zero

 bkpt(nbkpt-ndegree+1:nbkpt) = two

 bkpt(nord:nbkpt-ndegree)=(/(i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots.

 pointer_bkpt => bkpt

 knotsx=d_spline_knots(ndegree, pointer_bkpt)

 knotsy=knotsx

! Fit the data and obtain the coefficients.

 coeff = surface_fitting(spline_data, knotsx, knotsy)

! Evaluate the residual = spline - function

! at a grid of points inside the square.

 delta=two/(nvalues+1)

 x=(/(i*delta,i=1,nvalues)/); y=x

 values=exp(-spread(x**2,1,nvalues)-spread(y**2,2,nvalues))

 values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)-&

 values

! Compute the R.M.S. error:

 sizev=norm(pack(values, (values == values)))/nvalues

 if (sizev <= TOLERANCE) then

 write(*,*) 'Example 1 for SURFACE_FITTING is correct.'

 end if

 end

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 721

Output

Example 1 for SURFACE_FITTING is correct.

Additional Examples

Example 2: Parametric Representation of a Sphere

From Struik (1961), the parametric representation of points (x,y,z) on the surface of a sphere of

radius a > 0 is expressed in terms of spherical coordinates,

, cos cos , 2

, cos sin ,

, sin

x u v a u v u

y u v a u v v

z u v a u

The parameters are radians of latitude (u)and longitude (v). The example program fits the same

ndata random pairs of latitude and longitude in each coordinate. We have covered the sphere

twice by allowing

u

for latitude. We solve three data fitting problems, one for each coordinate function. Periodic

constraints on the value of the spline are used for both u and v. We could reduce the

computational effort by fitting a spline function in one variable for the z coordinate. To illustrate

the representation of more general surfaces than spheres, we did not do this. When the surface is

evaluated we compute latitude, moving from the South Pole to the North Pole,

2u

Our surface will approximately satisfy the equality

2 2 2 2x y z a

These residuals are checked at a rectangular mesh of latitude and longitude pairs. To illustrate the

use of some options, we have reset the three regularization parameters to the value zero, the least-

squares system tolerance to a smaller value than the default, and obtained the residuals for each

parametric coordinate function at the data points.

 USE surface_fitting_int

 USE rand_int

 USE norm_int

 USE Numerical_Libraries

 implicit none

! This is Example 2 for SURFACE_FITTING, tensor product

! B-splines approximation. Fit x, y, z parametric functions

! for points on the surface of a sphere of radius ―A‖.

! Random values of latitude and longitude are used to generate

! data. The functions are evaluated at a rectangular grid

! in latitude and longitude and checked to lie on the surface

! of the sphere.

 integer :: i, j

722 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 integer, parameter :: ngrid=6, nord=6, ndegree=nord-1, &

 nbkpt=ngrid+2*ndegree, ndata =1000, nvalues=50, NOPT=5

 real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0

 real(kind(1d0)), parameter :: TOLERANCE=1d-2

 real(kind(1d0)), target :: spline_data (4, ndata, 3), bkpt(nbkpt), &

 coeff(ngrid+ndegree-1,ngrid+ndegree-1, 3), delta, sizev, &

 pi, A, x(nvalues), y(nvalues), values(nvalues, nvalues), &

 data(4,ndata)

 real(kind(1d0)), pointer :: pointer_bkpt(:)

 type (d_spline_knots) knotsx, knotsy

 type (d_options) OPTIONS(NOPT)

! Get the constant "pi" and a random radius, > 1.

 pi = DCONST("pi"); A=one+rand(A)

! Generate random (latitude, longitude) pairs and evaluate the

! surface parameters at these points.

 spline_data(1:2,:,1)=pi*(two*rand(spline_data(1:2,:,1))-one)

 spline_data(1:2,:,2)=spline_data(1:2,:,1)

 spline_data(1:2,:,3)=spline_data(1:2,:,1)

! Evaluate x, y, z parametric points.

 spline_data(3,:,1)=A*cos(spline_data(1,:,1))*cos(spline_data(2,:,1))

 spline_data(3,:,2)=A*cos(spline_data(1,:,2))*sin(spline_data(2,:,2))

 spline_data(3,:,3)=A*sin(spline_data(1,:,3))

! The values are equally uncertain.

 spline_data(4,:,:)=one

! Define the knots for the tensor product data fitting problem.

 delta = two*pi/(ngrid-1)

 bkpt(1:ndegree) = -pi

 bkpt(nbkpt-ndegree+1:nbkpt) = pi

 bkpt(nord:nbkpt-ndegree)=(/(-pi+i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots.

 pointer_bkpt => bkpt

 knotsx=d_spline_knots(ndegree, pointer_bkpt)

 knotsy=knotsx

! Fit a data surface for each coordinate.

! Set default regularization parameters to zero and compute

! residuals of the individual points. These are returned

! in DATA(4,:).

 do j=1,3

 data=spline_data(:,:,j)

 OPTIONS(1)=d_options(surface_fitting_thinness,zero)

 OPTIONS(2)=d_options(surface_fitting_flatness,zero)

 OPTIONS(3)=d_options(surface_fitting_smallness,zero)

 OPTIONS(4)=d_options(surface_fitting_tol_least,1d-5)

 OPTIONS(5)=surface_fitting_residuals

 coeff(:,:,j) = surface_fitting(data, knotsx, knotsy,&

 IOPT=OPTIONS)

 end do

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 723

! Evaluate the function at a grid of points inside the rectangle of

! latitude and longitude covering the sphere just once. Add the

! sum of squares. They should equal "A**2" but will not due to

! truncation and rounding errors.

 delta=pi/(nvalues+1)

 x=(/(-pi/two+i*delta,i=1,nvalues)/); y=two*x

 values=zero

 do j=1,3

 values=values+&

 surface_values((/0,0/), x, y, knotsx, knotsy, coeff(:,:,j))**2

 end do

 values=values-A**2

! Compute the R.M.S. error:

 sizev=norm(pack(values, (values == values)))/nvalues

 if (sizev <= TOLERANCE) then

 write(*,*) "Example 2 for SURFACE_FITTING is correct."

 end if

 end

Output

Example 2 for SURFACE_FITTING is correct.

Example 3: Constraining Some Points using a Spline Surface

This example illustrates the use of discrete constraints to shape the surface. The data fitting

problem of Example 1 is modified by requiring that the surface interpolate the value one at

x = y = 0. The shape is constrained so first partial derivatives in both x and y are zero at x = y = 0.

These constraints mimic some properties of the function g(x,y). The size of the residuals at a grid

of points and the residuals of the constraints are checked.

 USE surface_fitting_int

 USE rand_int

 USE norm_int

 implicit none

! This is Example 3 for SURFACE_FITTING, tensor product

! B-splines approximation, f(x,y). Use the function

! exp(-x**2-y**2) on the square (0, 2) x (0, 2) for samples.

! The spline order is "nord" and the number of cells is

! "(ngrid-1)**2". There are "ndata" data values in the square.

! Constraints are put on the surface at (0,0). Namely

! f(0,0) = 1, f_x(0,0) = 0, f_y(0,0) = 0.

 integer :: i

 integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &

 nbkpt=ngrid+2*ndegree, ndata = 2000, nvalues=100, NC = 3

 real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0

 real(kind(1d0)), parameter :: TOLERANCE=1d-3

 real(kind(1d0)), target :: spline_data (4, ndata), bkpt(nbkpt), &

 coeff(ngrid+ndegree-1,ngrid+ndegree-1), delta, sizev, &

 x(nvalues), y(nvalues), values(nvalues, nvalues), &

 f_00, f_x00, f_y00

724 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 real(kind(1d0)), pointer :: pointer_bkpt(:)

 type (d_spline_knots) knotsx, knotsy

 type (d_surface_constraints) C(NC)

 LOGICAL PASS

! Generate random (x,y) pairs and evaluate the

! example exponential function at these values.

 spline_data(1:2,:)=two*rand(spline_data(1:2,:))

 spline_data(3,:)=exp(-sum(spline_data(1:2,:)**2,dim=1))

 spline_data(4,:)=one

! Define the knots for the tensor product data fitting problem.

 delta = two/(ngrid-1)

 bkpt(1:ndegree) = zero

 bkpt(nbkpt-ndegree+1:nbkpt) = two

 bkpt(nord:nbkpt-ndegree)=(/(i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots.

 pointer_bkpt => bkpt

 knotsx=d_spline_knots(ndegree, pointer_bkpt)

 knotsy=knotsx

! Define the constraints for the fitted surface.

 C(1)=surface_constraints(point=(/zero,zero/),type='==',value=one)

 C(2)=surface_constraints(derivative=(/1,0/),&

 point=(/zero,zero/),type='==',value=zero)

 C(3)=surface_constraints(derivative=(/0,1/),&

 point=(/zero,zero/),type='==',value=zero)

! Fit the data and obtain the coefficients.

 coeff = surface_fitting(spline_data, knotsx, knotsy,&

 CONSTRAINTS=C)

! Evaluate the residual = spline - function

! at a grid of points inside the square.

 delta=two/(nvalues+1)

 x=(/(i*delta,i=1,nvalues)/); y=x

 values=exp(-spread(x**2,1,nvalues)-spread(y**2,2,nvalues))

 values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)-&

 values

 f_00 = surface_values((/0,0/), zero, zero, knotsx, knotsy, coeff)

 f_x00= surface_values((/1,0/), zero, zero, knotsx, knotsy, coeff)

 f_y00= surface_values((/0,1/), zero, zero, knotsx, knotsy, coeff)

! Compute the R.M.S. error:

 sizev=norm(pack(values, (values == values)))/nvalues

 PASS = sizev <= TOLERANCE

 PASS = abs (f_00 - one) <= sqrt(epsilon(one)) .and. PASS

 PASS = f_x00 <= sqrt(epsilon(one)) .and. PASS

 PASS = f_y00 <= sqrt(epsilon(one)) .and. PASS

 if (PASS) then

 write(*,*) 'Example 3 for SURFACE_FITTING is correct.'

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 725

 end if

 end

Output

Example 3 for SURFACE_FITTING is correct.

Example 4: Constraining a Spline Surface to be non-Negative

The review of interpolating methods by Franke (1982) uses a test data set originally due to James

Ferguson. We use this data set of 25 points, with unit uncertainty for each dependent variable.

Our algorithm does not interpolate the data values but approximately fits them in the least-squares

sense. We reset the regularization parameter values of flatness and thinness, Hanson (1995).

Then the surface is fit to the data and evaluated at a grid of points. Although the surface appears

smooth and fits the data, the values are negative near one corner. Our scenario for the application

assumes that the surface be non-negative at all points of the rectangle containing the independent

variable data pairs. Our algorithm for constraining the surface is simple but effective in this case.

The data fitting is repeated one more time but with positive constraints at the grid of points where

it was previously negative.

 USE surface_fitting_int

 USE rand_int

 USE surface_fitting_int

 USE rand_int

 USE norm_int

 implicit none

! This is Example 4 for SURFACE_FITTING, tensor product

! B-splines approximation, f(x,y). Use the data set from

! Franke, due to Ferguson. Without constraints the function

! becomes negative in a corner. Constrain the surface

! at a grid of values so it is non-negative.

 integer :: i, j, q

 integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &

 nbkpt=ngrid+2*ndegree, ndata = 25, nvalues=50

 real(kind(1d0)), parameter :: zero=0d0, one=1d0

 real(kind(1d0)), parameter :: TOLERANCE=1d-3

 real(kind(1d0)), target :: spline_data (4, ndata), bkptx(nbkpt), &

 bkpty(nbkpt),coeff(ngrid+ndegree-1,ngrid+ndegree-1), &

 x(nvalues), y(nvalues), values(nvalues, nvalues), &

 delta

 real(kind(1d0)), pointer :: pointer_bkpt(:)

 type (d_spline_knots) knotsx, knotsy

 type (d_surface_constraints), allocatable :: C(:)

 real(kind(1e0)) :: data (3*ndata) = & ! This is Ferguson's data:

(/2.0 , 15.0 , 2.5 , 2.49 , 7.647, 3.2,&

 2.981 , 0.291, 3.4 , 3.471, -7.062, 3.5,&

 3.961 , -14.418, 3.5 , 7.45 , 12.003, 2.5,&

 7.35 , 6.012, 3.5 , 7.251, 0.018, 3.0,&

 7.151 , -5.973, 2.0 , 7.051, -11.967, 2.5,&

 10.901, 9.015, 2.0 , 10.751, 4.536, 1.925,&

 10.602, 0.06 , 1.85, 10.453, -4.419, 1.576,&

726 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 10.304, -8.895, 1.7 , 14.055, 10.509, 1.5,&

 14.194, 6.783, 1.3 , 14.331, 3.054, 1.7,&

 14.469, -0.672, 2.1 , 14.607, -4.398, 1.75,&

 15.0 , 12.0 , 0.5 , 15.729, 8.067, 0.5,&

 16.457, 4.134, 0.7 , 17.185, 0.198, 1.1,&

 17.914, -3.735, 1.7/)

 spline_data(1:3,:)=reshape(data,(/3,ndata/)); spline_data(4,:)=one

! Define the knots for the tensor product data fitting problem.

! Use the data limits to the knot sequences.

 bkptx(1:ndegree) = minval(spline_data(1,:))

 bkptx(nbkpt-ndegree+1:nbkpt) = maxval(spline_data(1,:))

 delta=(bkptx(nbkpt)-bkptx(ndegree))/(ngrid-1)

 bkptx(nord:nbkpt-ndegree)=(/(bkptx(1)+i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots for x.

 pointer_bkpt => bkptx

 knotsx=d_spline_knots(ndegree, pointer_bkpt)

 bkpty(1:ndegree) = minval(spline_data(2,:))

 bkpty(nbkpt-ndegree+1:nbkpt) = maxval(spline_data(2,:))

 delta=(bkpty(nbkpt)-bkpty(ndegree))/(ngrid-1)

 bkpty(nord:nbkpt-ndegree)=(/(bkpty(1)+i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots for y.

 pointer_bkpt => bkpty

 knotsy=d_spline_knots(ndegree, pointer_bkpt)

! Fit the data and obtain the coefficients.

 coeff = surface_fitting(spline_data, knotsx, knotsy)

 delta=(bkptx(nbkpt)-bkptx(1))/(nvalues+1)

 x=(/(bkptx(1)+i*delta,i=1,nvalues)/)

 delta=(bkpty(nbkpt)-bkpty(1))/(nvalues+1)

 y=(/(bkpty(1)+i*delta,i=1,nvalues)/)

! Evaluate the function at a rectangular grid.

! Use non-positive values to a constraint.

 values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)

! Count the number of values <= zero. Then constrain the spline

! so that it is >= TOLERANCE at those points where it was <= zero.

 q=count(values <= zero)

 allocate (C(q))

 DO I=1,nvalues

 DO J=1,nvalues

 IF(values(I,J) <= zero) THEN

 C(q)=surface_constraints(point=(/x(i),y(j)/), type='>=',&

 value=TOLERANCE)

 q=q-1

 END IF

 END DO

 END DO

! Fit the data with constraints and obtain the coefficients.

 coeff = surface_fitting(spline_data, knotsx, knotsy,&

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 727

 CONSTRAINTS=C)

 deallocate(C)

! Evaluate the surface at a grid and check, once again, for

! non-positive values. All values should now be positive.

 values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)

if (count(values <= zero) == 0) then

 write(*,*) 'Example 4 for SURFACE_FITTING is correct.'

 end if

 end

Output

Example 4 for SURFACE_FITTING is correct.

CSIEZ
Computes the cubic spline interpolant with the ‗not-a-knot‘ condition and return values of the

interpolant at specified points.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input)

The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

XVEC — Array of length N containing the points at which the spline is to be evaluated.

(Input)

VALUE — Array of length N containing the values of the spline at the points in XVEC.

(Output)

Optional Arguments

NDATA — Number of data points. (Input)

NDATA must be at least 2.

Default: NDATA = size (XDATA,1).

N — Length of vector XVEC. (Input)

Default: N = size (XVEC,1).

FORTRAN 90 Interface

Generic: CALL CSIEZ (XDATA, FDATA, XVEC, VALUE [,…])

Specific: The specific interface names are S_CSIEZ and D_CSIEZ.

728 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL CSIEZ (NDATA, XDATA, FDATA, N, XVEC, VALUE)

Double: The double precision name is DCSIEZ.

Description

This routine is designed to let the user easily compute the values of a cubic spline interpolant. The

routine CSIEZ computes a spline interpolant to a set of data points (xi, fi) for i = 1, …, NDATA. The

output for this routine consists of a vector of values of the computed cubic spline. Specifically, let

n = N, v = XVEC, and y = VALUE, then if s is the computed spline we set

yj = s(vj) j = 1, …, n

Additional documentation can be found by referring to the IMSL routines CSINT or SPLEZ.

Comments

Workspace may be explicitly provided, if desired, by use of C2IEZ/DC2IEZ. The reference is:

CALL C2IEZ (NDATA, XDATA, FDATA, N, XVEC, VALUE, IWK, WK1, WK2)

The additional arguments are as follows:

IWK — Integer work array of length MAX0(N, NDATA) + N.

WK1 — Real work array of length 5 * NDATA.

WK2 — Real work array of length 2 * N.

Example

In this example, a cubic spline interpolant to a function F is computed. The values of this spline

are then compared with the exact function values.

 USE CSIEZ_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NDATA

 PARAMETER (NDATA=11)

!

 INTEGER I, NOUT

 REAL F, FDATA(NDATA), FLOAT, SIN, VALUE(2*NDATA-1), X,&

 XDATA(NDATA), XVEC(2*NDATA-1)

 INTRINSIC FLOAT, SIN

! Define function

 F(X) = SIN(15.0*X)

! Set up a grid

 DO 10 I=1, NDATA

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 729

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

 DO 20 I=1, 2*NDATA - 1

 XVEC(I) = FLOAT(I-1)/FLOAT(2*NDATA-2)

 20 CONTINUE

! Compute cubic spline interpolant

 CALL CSIEZ (XDATA, FDATA, XVEC, VALUE)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99998)

99998 FORMAT (13X, 'X', 9X, 'INTERPOLANT', 5X, 'ERROR')

! Print the interpolant and the error

! on a finer grid

 DO 30 I=1, 2*NDATA - 1

 WRITE (NOUT,99999) XVEC(I), VALUE(I), F(XVEC(I)) - VALUE(I)

 30 CONTINUE

99999 FORMAT(' ', 2F15.3, F15.6)

 END

Output

 X INTERPOLANT ERROR

0.000 0.000 0.000000

0.050 0.809 -0.127025

0.100 0.997 0.000000

0.150 0.723 0.055214

0.200 0.141 0.000000

0.250 -0.549 -0.022789

0.300 -0.978 0.000000

0.350 -0.843 -0.016246

0.400 -0.279 0.000000

0.450 0.441 0.009348

0.500 0.938 0.000000

0.550 0.903 0.019947

0.600 0.412 0.000000

0.650 -0.315 -0.004895

0.700 -0.880 0.000000

0.750 -0.938 -0.029541

0.800 -0.537 0.000000

0.850 0.148 0.034693

0.900 0.804 0.000000

0.950 1.086 -0.092559

1.000 0.650 0.000000

CSINT
Computes the cubic spline interpolant with the ‗not-a-knot‘ condition.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input)

The data point abscissas must be distinct.

730 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

FDATA — Array of length NDATA containing the data point ordinates. (Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic

representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.

(Output)

Optional Arguments

NDATA — Number of data points. (Input)

NDATA must be at least 2.

Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface

Generic: CALL CSINT (XDATA, FDATA, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSINT and D_CSINT.

FORTRAN 77 Interface

Single: CALL CSINT (NDATA, XDATA, FDATA, BREAK, CSCOEF)

Double: The double precision name is DCSINT.

Description

The routine CSINT computes a C
2
 cubic spline interpolant to a set of data points (xi, fi) for

i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are

automatically determined by the program. These conditions correspond to the ―not-a-knot‖

condition (see de Boor 1978), which requires that the third derivative of the spline be continuous

at the second and next-to-last breakpoint. If N is 2 or 3, then the linear or quadratic interpolating

polynomial is computed, respectively.

If the data points arise from the values of a smooth (say C
4
) function f, i.e. fi = f(xi), then the error

will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline

interpolant. Then, the maximum absolute error satisfies

 1
1

44

,
,N

N

f s C f

where

1
2, ,

: max i i
i N

For more details, see de Boor (1978, pages 55− 56).

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 731

Comments

1. Workspace may be explicitly provided, if desired, by use of C2INT/DC2INT. The

reference is:

CALL C2INT (NDATA, XDATA, FDATA, BREAK, CSCOEF, IWK)

The additional argument is

IWK — Work array of length NDATA.

2. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using

CSDER.

3. Note that column NDATA of CSCOEF is used as workspace.

Example

In this example, a cubic spline interpolant to a function F is computed. The values of this spline

are then compared with the exact function values.

 USE CSINT_INT

 USE UMACH_INT

 USE CSVAL_INT

 IMPLICIT NONE

! Specifications

 INTEGER NDATA

 PARAMETER (NDATA=11)

!

 INTEGER I, NINTV, NOUT

 REAL BREAK(NDATA), CSCOEF(4,NDATA), F,&

 FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA)

 INTRINSIC FLOAT, SIN

! Define function

 F(X) = SIN(15.0*X)

! Set up a grid

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Compute cubic spline interpolant

 CALL CSINT (XDATA, FDATA, BREAK, CSCOEF)

! Get output unit number.

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error')

 NINTV = NDATA - 1

! Print the interpolant and the error

! on a finer grid

 DO 20 I=1, 2*NDATA - 1

 X = FLOAT(I-1)/FLOAT(2*NDATA-2)

 WRITE (NOUT,'(2F15.3,F15.6)') X, CSVAL(X,BREAK,CSCOEF),&

 F(X) - CSVAL(X,BREAK,&

732 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 CSCOEF)

 20 CONTINUE

 END

Output

 X Interpolant Error

0.000 0.000 0.000000

0.050 0.809 -0.127025

0.100 0.997 0.000000

0.150 0.723 0.055214

0.200 0.141 0.000000

0.250 -0.549 -0.022789

0.300 -0.978 0.000000

0.350 -0.843 -0.016246

0.400 -0.279 0.000000

0.450 0.441 0.009348

0.500 0.938 0.000000

0.550 0.903 0.019947

0.600 0.412 0.000000

0.650 -0.315 -0.004895

0.700 -0.880 0.000000

0.750 -0.938 -0.029541

0.800 -0.537 0.000000

0.850 0.148 0.034693

0.900 0.804 0.000000

0.950 1.086 -0.092559

1.000 0.650 0.000000

CSDEC
Computes the cubic spline interpolant with specified derivative endpoint conditions.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input) The data

point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

ILEFT — Type of end condition at the left endpoint. (Input)

ILEFT Condition

 0 ―Not-a-knot‖ condition

 1 First derivative specified by DLEFT

 2 Second derivative specified by DLEFT

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 733

DLEFT — Derivative at left endpoint if ILEFT is equal to 1 or 2. (Input)

If ILEFT = 0, then DLEFT is ignored.

IRIGHT — Type of end condition at the right endpoint. (Input)

IRIGHT Condition

 0 ―Not-a-knot‖ condition

 1 First derivative specified by DRIGHT

 2 Second derivative specified by DRIGHT

DRIGHT — Derivative at right endpoint if IRIGHT is equal to 1 or 2. (Input) If IRIGHT = 0

then DRIGHT is ignored.

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic

representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.

(Output)

Optional Arguments

NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface

Generic: CALL CSDEC (XDATA, FDATA, ILEFT, DLEFT, IRIGHT, DRIGHT, BREAK,
CSCOEF [,…])

Specific: The specific interface names are S_CSDEC and D_CSDEC.

FORTRAN 77 Interface

Single: CALL CSDEC (NDATA, XDATA, FDATA, ILEFT, DLEFT, IRIGHT, DRIGHT,

BREAK, CSCOEF)

Double: The double precision name is DCSDEC.

Description

The routine CSDEC computes a C
2
 cubic spline interpolant to a set of data points (xi, fi) for

i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are to be

selected by the user. The user may specify not-a-knot, first derivative, or second derivative at each

endpoint (see de Boor 1978, Chapter 4).

734 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

If the data (including the endpoint conditions) arise from the values of a smooth (say C
4
) function

f, i.e. fi = f(xi), then the error will behave in a predictable fashion. Let ξ be the breakpoint vector

for the above spline interpolant. Then, the maximum absolute error satisfies

 1
1

44

,
,N

N

f s C f

where

1
2, ,

: i i
i N

For more details, see de Boor (1978, Chapter 4 and 5).

Comments

1. Workspace may be explicitly provided, if desired, by use of C2DEC/DC2DEC. The

reference is:

CALL C2DEC (NDATA, XDATA, FDATA, ILEFT, DLEFT, IRIGHT,

DRIGHT, BREAK, CSCOEF, IWK)

The additional argument is:

IWK — Work array of length NDATA.

2. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using

CSDER.

3. Note that column NDATA of CSCOEF is used as workspace.

Example 1

In Example 1, a cubic spline interpolant to a function f is computed. The value of the derivative at

the left endpoint and the value of the second derivative at the right endpoint are specified. The

values of this spline are then compared with the exact function values.

 USE CSDEC_INT

 USE UMACH_INT

 USE CSVAL_INT

 IMPLICIT NONE

 INTEGER ILEFT, IRIGHT, NDATA

 PARAMETER (ILEFT=1, IRIGHT=2, NDATA=11)

!

 INTEGER I, NINTV, NOUT

 REAL BREAK(NDATA), COS, CSCOEF(4,NDATA), DLEFT,&

 DRIGHT, F, FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA)

 INTRINSIC COS, FLOAT, SIN

! Define function

 F(X) = SIN(15.0*X)

! Initialize DLEFT and DRIGHT

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 735

 DLEFT = 15.0*COS(15.0*0.0)

 DRIGHT = -15.0*15.0*SIN(15.0*1.0)

! Set up a grid

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Compute cubic spline interpolant

 CALL CSDEC (XDATA, FDATA, ILEFT, DLEFT, IRIGHT, &

 DRIGHT, BREAK, CSCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error')

 NINTV = NDATA - 1

! Print the interpolant on a finer grid

 DO 20 I=1, 2*NDATA - 1

 X = FLOAT(I-1)/FLOAT(2*NDATA-2)

 WRITE (NOUT,'(2F15.3,F15.6)') X, CSVAL(X,BREAK,CSCOEF),&

 F(X) - CSVAL(X,BREAK,&

 CSCOEF)

 20 CONTINUE

 END

Output

 X Interpolant Error

0.000 0.000 0.000000

0.050 0.675 0.006332

0.100 0.997 0.000000

0.150 0.759 0.019485

0.200 0.141 0.000000

0.250 -0.558 -0.013227

0.300 -0.978 0.000000

0.350 -0.840 -0.018765

0.400 -0.279 0.000000

0.450 0.440 0.009859

0.500 0.938 0.000000

0.550 0.902 0.020420

0.600 0.412 0.000000

0.650 -0.312 -0.007301

0.700 -0.880 0.000000

0.750 -0.947 -0.020391

0.800 -0.537 0.000000

0.850 0.182 0.000497

0.900 0.804 0.000000

0.950 0.959 0.035074

1.000 0.650 0.000000

736 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Additional Examples

Example 2

In Example 2, we compute the natural cubic spline interpolant to a function f by forcing the

second derivative of the interpolant to be zero at both endpoints. As in the previous example, we

compare the exact function values with the values of the spline.

 USE CSDEC_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER ILEFT, IRIGHT, NDATA, NOUT

 PARAMETER (ILEFT=2, IRIGHT=2, NDATA=11)

!

 INTEGER I, NINTV

 REAL BREAK(NDATA), CSCOEF(4,NDATA), DLEFT, DRIGHT,&

 F, FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA), CSVAL

 INTRINSIC FLOAT, SIN

! Initialize DLEFT and DRIGHT

 DATA DLEFT/0./, DRIGHT/0./

! Define function

 F(X) = SIN(15.0*X)

! Set up a grid

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Compute cubic spline interpolant

 CALL CSDEC (XDATA, FDATA, ILEFT, DLEFT, IRIGHT, DRIGHT,&

 BREAK, CSCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error')

 NINTV = NDATA - 1

! Print the interpolant on a finer grid

 DO 20 I=1, 2*NDATA - 1

 X = FLOAT(I-1)/FLOAT(2*NDATA-2)

 WRITE (NOUT,'(2F15.3,F15.6)') X, CSVAL(X,BREAK,CSCOEF),&

 F(X) - CSVAL(X,BREAK,&

 CSCOEF)

 20 CONTINUE

 END

Output

 X Interpolant Error

0.000 0.000 0.000000

0.050 0.667 0.015027

0.100 0.997 0.000000

0.150 0.761 0.017156

0.200 0.141 0.000000

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 737

0.250 -0.559 -0.012609

0.300 -0.978 0.000000

0.350 -0.840 -0.018907

0.400 -0.279 0.000000

0.450 0.440 0.009812

0.500 0.938 0.000000

0.550 0.902 0.020753

0.600 0.412 0.000000

0.650 -0.311 -0.008586

0.700 -0.880 0.000000

0.750 -0.952 -0.015585

0.800 -0.537 0.000000

CSHER
Computes the Hermite cubic spline interpolant.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input)

The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

DFDATA — Array of length NDATA containing the values of the derivative. (Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic

representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.

(Output)

Optional Arguments

NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface

Generic: CALL CSHER (XDATA, FDATA, DFDATA, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSHER and D_CSHER.

FORTRAN 77 Interface

Single: CALL CSHER (NDATA, XDATA, FDATA, BREAK, CSCOEF)

Double: The double precision name is DCSHER.

738 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Description

The routine CSHER computes a C
1
 cubic spline interpolant to the set of data points

 , and ,i i i ix f x f

for i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas.

If the data points arise from the values of a smooth (say C
4
) function f, i.e.,

()and ()i i i if f x f f x

then the error will behave in a predictable fashion. Let ξ be the

breakpoint vector for the above spline interpolant. Then, the maximum absolute error satisfies

 1
1

44

,
,N

N

f s C f

where

1
2, ,

: i i
i N

For more details, see de Boor (1978, page 51).

Comments

1. Workspace may be explicitly provided, if desired, by use of C2HER/DC2HER. The

reference is:

CALL C2HER (NDATA, XDATA, FDATA, DFDATA, BREAK, CSCOEF,

IWK)

The additional argument is:

IWK — Work array of length NDATA.

2. Informational error

Type Code

4 2 The XDATA values must be distinct.

3. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using

CSDER.

4. Note that column NDATA of CSCOEF is used as workspace.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 739

Example

In this example, a cubic spline interpolant to a function f is computed. The value of the function f

and its derivative f ʹ are computed on the interpolation nodes and passed to CSHER. The values of

this spline are then compared with the exact function values.

 USE CSHER_INT

 USE UMACH_INT

 USE CSVAL_INT

 IMPLICIT NONE

 INTEGER NDATA

 PARAMETER (NDATA=11)

!

 INTEGER I, NINTV, NOUT

 REAL BREAK(NDATA), COS, CSCOEF(4,NDATA), DF,&

 DFDATA(NDATA), F, FDATA(NDATA), FLOAT, SIN, X,&

 XDATA(NDATA)

 INTRINSIC COS, FLOAT, SIN

! Define function and derivative

 F(X) = SIN(15.0*X)

 DF(X) = 15.0*COS(15.0*X)

! Set up a grid

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 DFDATA(I) = DF(XDATA(I))

 10 CONTINUE

! Compute cubic spline interpolant

 CALL CSHER (XDATA, FDATA, DFDATA, BREAK, CSCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error')

 NINTV = NDATA - 1

! Print the interpolant on a finer grid

 DO 20 I=1, 2*NDATA - 1

 X = FLOAT(I-1)/FLOAT(2*NDATA-2)

 WRITE (NOUT,'(2F15.3, F15.6)') X, CSVAL(X,BREAK,CSCOEF)&

 , F(X) - CSVAL(X,BREAK,&

 CSCOEF)

 20 CONTINUE

 END

Output

 X Interpolant Error

0.000 0.000 0.000000

0.050 0.673 0.008654

0.100 0.997 0.000000

0.150 0.768 0.009879

0.200 0.141 0.000000

0.250 -0.564 -0.007257

0.300 -0.978 0.000000

740 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

0.350 -0.848 -0.010906

0.400 -0.279 0.000000

0.450 0.444 0.005714

0.500 0.938 0.000000

0.550 0.911 0.011714

0.600 0.412 0.000000

0.650 -0.315 -0.004057

0.700 -0.880 0.000000

0.750 -0.956 -0.012288

0.800 -0.537 0.000000

0.850 0.180 0.002318

0.900 0.804 0.000000

0.950 0.981 0.012616

1.000 0.650 0.000000

CSAKM
Computes the Akima cubic spline interpolant.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input)

The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic

representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.

(Output)

Optional Arguments

NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface

Generic: CALL CSAKM (XDATA, FDATA, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSAKM and D_CSAKM.

FORTRAN 77 Interface

Single: CALL CSAKM (NDATA, XDATA, FDATA, BREAK, CSCOEF)

Double: The double precision name is DCSAKM.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 741

Description

The routine CSAKM computes a C
1
 cubic spline interpolant to a set of data points (xi, fi) for

i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are

automatically determined by the program; see Akima (1970) or de Boor (1978).

If the data points arise from the values of a smooth (say C
4
) function f, i.e. fi = f(xi), then the error

will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline

interpolant. Then, the maximum absolute error satisfies

 1
1

22

,
,N

N

f s C f

where

1
2, ,

: max i i
i N

The routine CSAKM is based on a method by Akima (1970) to combat wiggles in the interpolant.

The method is nonlinear; and although the interpolant is a piecewise cubic, cubic polynomials are

not reproduced. (However, linear polynomials are reproduced.)

Comments

1. Workspace may be explicitly provided, if desired, by use of C2AKMD/C2AKM. The

reference is:

CALL C2AKM (NDATA, XDATA, FDATA, BREAK, CSCOEF, IWK)

The additional argument is:

IWK — Work array of length NDATA.

2. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using

CSDER.

3. Note that column NDATA of CSCOEF is used as workspace.

Example

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are

then compared with the exact function values.

 USE CSAKM_INT

 USE UMACH_INT

 USE CSVAL_INT

 IMPLICIT NONE

 INTEGER NDATA

 PARAMETER (NDATA=11)

!

 INTEGER I, NINTV, NOUT

 REAL BREAK(NDATA), CSCOEF(4,NDATA), F,&

742 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA)

 INTRINSIC FLOAT, SIN

! Define function

 F(X) = SIN(15.0*X)

! Set up a grid

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Compute cubic spline interpolant

 CALL CSAKM (XDATA, FDATA, BREAK, CSCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error')

 NINTV = NDATA - 1

! Print the interpolant on a finer grid

 DO 20 I=1, 2*NDATA - 1

 X = FLOAT(I-1)/FLOAT(2*NDATA-2)

 WRITE (NOUT,'(2F15.3,F15.6)') X, CSVAL(X,BREAK,CSCOEF),&

 F(X) - CSVAL(X,BREAK,&

 CSCOEF)

 20 CONTINUE

 END

Output

 X Interpolant Error

0.000 0.000 0.000000

0.050 0.818 -0.135988

0.100 0.997 0.000000

0.150 0.615 0.163487

0.200 0.141 0.000000

0.250 -0.478 -0.093376

0.300 -0.978 0.000000

0.350 -0.812 -0.046447

0.400 -0.279 0.000000

0.450 0.386 0.064491

0.500 0.938 0.000000

0.550 0.854 0.068274

0.600 0.412 0.000000

0.650 -0.276 -0.043288

0.700 -0.880 0.000000

0.750 -0.889 -0.078947

0.800 -0.537 0.000000

0.850 0.149 0.033757

0.900 0.804 0.000000

0.950 0.932 0.061260

1.000 0.650 0.000000

CSCON
Computes a cubic spline interpolant that is consistent with the concavity of the data.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 743

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input)

The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

IBREAK — The number of breakpoints. (Output)

It will be less than 2 * NDATA.

BREAK — Array of length IBREAK containing the breakpoints for the piecewise cubic

representation in its first IBREAK positions. (Output)

The dimension of BREAK must be at least 2 * NDATA.

CSCOEF — Matrix of size 4 by N where N is the dimension of BREAK. (Output)

The first IBREAK − 1 columns of CSCOEF contain the local coefficients of the cubic

pieces.

Optional Arguments

NDATA — Number of data points. (Input)

NDATA must be at least 3.

Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface

Generic: CALL CSCON (XDATA, FDATA, IBREAK, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSCON and D_CSCON.

FORTRAN 77 Interface

Single: CALL CSCON (NDATA, XDATA, FDATA, IBREAK, BREAK, CSCOEF)

Double: The double precision name is DCSCON.

Descritpion

The routine CSCON computes a cubic spline interpolant to n = NDATA data points {xi, fi} for

i = 1, …, n. For ease of explanation, we will assume that xi < xi + 1, although it is not necessary for

the user to sort these data values. If the data are strictly convex, then the computed spline is

convex, C
2
, and minimizes the expression

1

2
nx

x
g

over all convex C
1
 functions that interpolate the data. In the general case when the data have both

convex and concave regions, the convexity of the spline is consistent with the data and the above

744 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

integral is minimized under the appropriate constraints. For more information on this interpolation

scheme, we refer the reader to Micchelli et al. (1985) and Irvine et al. (1986).

One important feature of the splines produced by this subroutine is that it is not possible, a priori,

to predict the number of breakpoints of the resulting interpolant. In most cases, there will be

breakpoints at places other than data locations. The method is nonlinear; and although the

interpolant is a piecewise cubic, cubic polynomials are not reproduced. (However, linear

polynomials are reproduced.) This routine should be used when it is important to preserve the

convex and concave regions implied by the data.

Comments

1. Workspace may be explicitly provided, if desired, by use of C2CON/DC2CON. The

reference is:

CALL C2CON (NDATA, XDATA, FDATA, IBREAK, BREAK, CSCOEF,

ITMAX, XSRT, FSRT, A, Y, DIVD, ID, WK)

The additional arguments are as follows:

ITMAX — Maximum number of iterations of Newton‘s method. (Input)

XSRT — Work array of length NDATA to hold the sorted XDATA values.

FSRT — Work array of length NDATA to hold the sorted FDATA values.

A — Work array of length NDATA.

Y — Work array of length NDATA − 2.

DIVD — Work array of length NDATA − 2.

ID — Integer work array of length NDATA.

WK — Work array of length 5 * (NDATA − 2).

2. Informational errors

Type Code

3 16 Maximum number of iterations exceeded, call C2CON/DC2CON to set

a larger number for ITMAX.

4 3 The XDATA values must be distinct.

3. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using

CSDER.

4. The default value for ITMAX is 25. This can be reset by calling C2CON/DC2CON directly.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 745

Example

We first compute the shape-preserving interpolant using CSCON, and display the coefficients and

breakpoints. Second, we interpolate the same data using CSINT in a program not shown and

overlay the two results. The graph of the result from CSINT is represented by the dashed line.

Notice the extra inflection points in the curve produced by CSINT.

 USE CSCON_INT

 USE UMACH_INT

 USE WRRRL_INT

 IMPLICIT NONE

! Specifications

 INTEGER NDATA

 PARAMETER (NDATA=9)

!

 INTEGER IBREAK, NOUT

 REAL BREAK(2*NDATA), CSCOEF(4,2*NDATA), FDATA(NDATA),&

 XDATA(NDATA)

 CHARACTER CLABEL(14)*2, RLABEL(4)*2

!

 DATA XDATA/0.0, .1, .2, .3, .4, .5, .6, .8, 1./

 DATA FDATA/0.0, .9, .95, .9, .1, .05, .05, .2, 1./

 DATA RLABEL/' 1', ' 2', ' 3', ' 4'/

 DATA CLABEL/' ', ' 1', ' 2', ' 3', ' 4', ' 5', ' 6',&

 ' 7', ' 8', ' 9', '10', '11', '12', '13'/

! Compute cubic spline interpolant

 CALL CSCON (XDATA, FDATA, IBREAK, BREAK, CSCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Print the BREAK points and the

! coefficients (CSCOEF) for

! checking purposes.

 WRITE (NOUT,'(1X,A,I2)') 'IBREAK = ', IBREAK

 CALL WRRRL ('BREAK', BREAK, RLABEL, CLABEL, 1, IBREAK, 1, &

 FMT='(F9.3)')

 CALL WRRRL ('CSCOEF', CSCOEF, RLABEL, CLABEL, 4, IBREAK, 4, &

 FMT='(F9.3)')

 END

Output

IBREAK = 13

 BREAK

 1 2 3 4 5 6

1 0.000 0.100 0.136 0.200 0.259 0.300

 7 8 9 10 11 12

1 0.400 0.436 0.500 0.600 0.609 0.800

 13

1 1.000

 CSCOEF

 1 2 3 4 5 6

1 0.000 0.900 0.942 0.950 0.958 0.900

746 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

2 11.886 3.228 0.131 0.131 0.131 -4.434

3 0.000 -173.170 0.000 0.000 0.000 220.218

4 -1731.699 4841.604 0.000 0.000 -5312.082 4466.875

 7 8 9 10 11 12

1 0.100 0.050 0.050 0.050 0.050 0.200

2 -4.121 0.000 0.000 0.000 0.000 2.356

3 226.470 0.000 0.000 0.000 0.000 24.664

4 -6222.348 0.000 0.000 0.000 129.115 123.321

 13

1 1.000

2 0.000

3 0.000

4 0.000

Figure 3- 4 CSCON vs. CSINT

CSPER
Computes the cubic spline interpolant with periodic boundary conditions.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input)

The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 747

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic

representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.

(Output)

Optional Arguments

NDATA — Number of data points. (Input)

NDATA must be at least 4.

Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface

Generic: CALL CSPER (XDATA, FDATA, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSPER and D_CSPER.

FORTRAN 77 Interface

Single: CALL CSPER (NDATA, XDATA, FDATA, BREAK, CSCOEF)

Double: The double precision name is DCSPER.

Description

The routine CSPER computes a C
2
 cubic spline interpolant to a set of data points (xi, fi) for

i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas. The program enforces

periodic endpoint conditions. This means that the spline s satisfies s(a) = s(b), sʹ(a) = sʹ(b), and

s"(a) = s"(b), where a is the leftmost abscissa and b is the rightmost abscissa. If the ordinate values

corresponding to a and b are not equal, then a warning message is issued. The ordinate value at b

is set equal to the ordinate value at a and the interpolant is computed.

If the data points arise from the values of a smooth (say C
4
) periodic function f, i.e. fi = f(xi), then

the error will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline

interpolant. Then, the maximum absolute error satisfies

 1
1

44

,
,N

N

f s C f

where

1
2, ,

: max i i
i N

For more details, see de Boor (1978, pages 320− 322).

748 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of C2PER/DC2PER. The

reference is:

CALL C2PER (NDATA, XDATA, FDATA, BREAK, CSCOEF, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 6 * NDATA.

IWK — Work array of length NDATA.

2. Informational error

Type Code

3 1 The data set is not periodic, i.e., the function values at the smallest

and largest XDATA points are not equal. The value at the smallest

XDATA point is used.

3. The cubic spline can be evaluated using CSVAL and its derivative can be evaluated

using CSDER.

Example

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are

then compared with the exact function values.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER NDATA

 PARAMETER (NDATA=11)

!

 INTEGER I, NINTV, NOUT

 REAL BREAK(NDATA), CSCOEF(4,NDATA), F,&

 FDATA(NDATA), FLOAT, H, PI, SIN, X, XDATA(NDATA)

 INTRINSIC FLOAT, SIN

!

! Define function

 F(X) = SIN(15.0*X)

! Set up a grid

 PI = CONST('PI')

 H = 2.0*PI/15.0/10.0

 DO 10 I=1, NDATA

 XDATA(I) = H*FLOAT(I-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Round off will cause FDATA(11) to

! be nonzero; this would produce a

! warning error since FDATA(1) is zero.

! Therefore, the value of FDATA(1) is

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 749

! used rather than the value of

! FDATA(11).

 FDATA(NDATA) = FDATA(1)

!

! Compute cubic spline interpolant

 CALL CSPER (XDATA, FDATA, BREAK, CSCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error')

 NINTV = NDATA - 1

 H = H/2.0

! Print the interpolant on a finer grid

 DO 20 I=1, 2*NDATA - 1

 X = H*FLOAT(I-1)

 WRITE (NOUT,'(2F15.3,F15.6)') X, CSVAL(X,BREAK,CSCOEF),&

 F(X) - CSVAL(X,BREAK,&

 CSCOEF)

 20 CONTINUE

 END

Output

 X Interpolant Error

0.000 0.000 0.000000

0.021 0.309 0.000138

0.042 0.588 0.000000

0.063 0.809 0.000362

0.084 0.951 0.000000

0.105 1.000 0.000447

0.126 0.951 0.000000

0.147 0.809 0.000362

0.168 0.588 0.000000

0.188 0.309 0.000138

0.209 0.000 0.000000

0.230 -0.309 -0.000138

0.251 -0.588 0.000000

0.272 -0.809 -0.000362

0.293 -0.951 0.000000

0.314 -1.000 -0.000447

0.335 -0.951 0.000000

0.356 -0.809 -0.000362

0.377 -0.588 0.000000

0.398 -0.309 -0.000138

0.419 0.000 0.000000

CSVAL
This function evaluates a cubic spline.

Function Return Value

CSVAL — Value of the polynomial at X. (Output)

750 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Required Arguments

X — Point at which the spline is to be evaluated. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic

representation. (Input)

BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic

pieces. (Input)

Optional Arguments

NINTV — Number of polynomial pieces. (Input)

FORTRAN 90 Interface

Generic: CSVAL (X, BREAK, CSCOEF[,…])

Specific: The specific interface names are S_CSVAL and D_CSVAL.

FORTRAN 77 Interface

Single: CSVAL (X, NINTV, BREAK, CSCOEF)

Double: The double precision function name is DCSVAL.

Description

The routine CSVAL evaluates a cubic spline at a given point. It is a special case of the routine

PPDER, which evaluates the derivative of a piecewise polynomial. (The value of a piecewise

polynomial is its zero-th derivative and a cubic spline is a piecewise polynomial of order 4.) The

routine PPDER is based on the routine PPVALU in de Boor (1978, page 89).

Example

For an example of the use of CSVAL, see IMSL routine CSINT.

CSDER
This function evaluates the derivative of a cubic spline.

Function Return Value

CSDER — Value of the IDERIV-th derivative of the polynomial at X. (Output)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 751

Required Arguments

IDERIV — Order of the derivative to be evaluated. (Input)

In particular, IDERIV = 0 returns the value of the polynomial.

X — Point at which the polynomial is to be evaluated. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic

representation. (Input)

BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic

pieces. (Input)

Optional Arguments

NINTV — Number of polynomial pieces. (Input)

Default: NINTV = size (BREAK,1) – 1.

FORTRAN 90 Interface

Generic: CSDER (IDERIV, X, BREAK, CSCOEF, CSDER [,…])

Specific: The specific interface names are S_CSDER and D_CSDER.

FORTRAN 77 Interface

Single: CSDER (IDERIV, X, NINTV, BREAK, CSCOEF)

Double: The double precision function name is DCSDER.

Description

The function CSDER evaluates the derivative of a cubic spline at a given point. It is a special case

of the routine PPDER, which evaluates the derivative of a piecewise polynomial. (A cubic spline is

a piecewise polynomial of order 4.) The routine PPDER is based on the routine PPVALU in de Boor

(1978, page 89).

Example

In this example, we compute a cubic spline interpolant to a function f using IMSL routine CSINT.

The values of the spline and its first and second derivatives are computed using CSDER. These

values can then be compared with the corresponding values of the interpolated function.

 USE CSDER_INT

 USE CSINT_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NDATA

 PARAMETER (NDATA=10)

752 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

!

 INTEGER I, NINTV, NOUT

 REAL BREAK(NDATA), CDDF, CDF, CF, COS, CSCOEF(4,NDATA),&

 DDF, DF, F, FDATA(NDATA), FLOAT, SIN, X,&

 XDATA(NDATA)

 INTRINSIC COS, FLOAT, SIN

! Define function and derivatives

 F(X) = SIN(15.0*X)

 DF(X) = 15.0*COS(15.0*X)

 DDF(X) = -225.0*SIN(15.0*X)

! Set up a grid

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Compute cubic spline interpolant

 CALL CSINT (XDATA, FDATA, BREAK, CSCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

99999 FORMAT (9X, 'X', 8X, 'S(X)', 5X, 'Error', 6X, 'S''(X)', 5X,&

 'Error', 6X, 'S''''(X)', 4X, 'Error', /)

 NINTV = NDATA - 1

! Print the interpolant on a finer grid

 DO 20 I=1, 2*NDATA

 X = FLOAT(I-1)/FLOAT(2*NDATA-1)

 CF = CSDER(0,X,BREAK,CSCOEF)

 CDF = CSDER(1,X,BREAK,CSCOEF)

 CDDF = CSDER(2,X,BREAK,CSCOEF)

 WRITE (NOUT,'(F11.3, 3(F11.3, F11.6))') X, CF, F(X) - CF,&

 CDF, DF(X) - CDF,&

 CDDF, DDF(X) - CDDF

 20 CONTINUE

 END

Output

 X S(X) Error S‘(X) Error S‘‘(X) Error

0.000 0.000 0.000000 26.285 -11.284739 -379.458 379.457794

0.053 0.902 -0.192203 8.841 1.722460 -283.411 123.664734

0.105 1.019 -0.019333 -3.548 3.425718 -187.364 -37.628586

0.158 0.617 0.081009 -10.882 0.146207 -91.317 -65.824875

0.211 -0.037 0.021155 -13.160 -1.837700 4.730 -1.062027

0.263 -0.674 -0.046945 -10.033 -0.355268 117.916 44.391640

0.316 -0.985 -0.015060 -0.719 1.086203 235.999 -11.066727

0.368 -0.682 -0.004651 11.314 -0.409097 154.861 -0.365387

0.421 0.045 -0.011915 14.708 0.284042 -25.887 18.552732

0.474 0.708 0.024292 9.508 0.702690 -143.785 -21.041260

0.526 0.978 0.020854 0.161 -0.771948 -211.402 -13.411087

0.579 0.673 0.001410 -11.394 0.322443 -163.483 11.674103

0.632 -0.064 0.015118 -14.937 -0.045511 28.856 -17.856323

0.684 -0.724 -0.019246 -8.859 -1.170871 163.866 3.435547

0.737 -0.954 -0.044143 0.301 0.554493 184.217 40.417282

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 753

0.789 -0.675 0.012143 10.307 0.928152 166.021 -16.939514

0.842 0.027 0.038176 15.015 -0.047344 12.914 -27.575521

0.895 0.764 -0.010112 11.666 -1.819128 -140.193 -29.538193

0.947 1.114 -0.116304 0.258 -1.357680 -293.301 68.905701

1.000 0.650 0.000000 -19.208 7.812407 -446.408 300.092896

CS1GD
Evaluates the derivative of a cubic spline on a grid.

Required Arguments

IDERIV — Order of the derivative to be evaluated. (Input)

In particular, IDERIV = 0 returns the values of the cubic spline.

XVEC — Array of length N containing the points at which the cubic spline is to be evaluated.

(Input)

The points in XVEC should be strictly increasing.

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic

representation. (Input)

BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic

pieces. (Input)

VALUE — Array of length N containing the values of the IDERIV-th derivative of the cubic

spline at the points in XVEC. (Output)

Optional Arguments

N — Length of vector XVEC. (Input)

Default: N = size (XVEC,1).

NINTV — Number of polynomial pieces. (Input)

Default: NINTV = size (BREAK,1) – 1.

FORTRAN 90 Interface

Generic: CALL CS1GD (IDERIV, XVEC, BREAK, CSCOEF, VALUE [,…])

Specific: The specific interface names are S_CS1GD and D_CS1GD.

FORTRAN 77 Interface

Single: CALL CS1GD (IDERIV, N, XVEC, NINTV, BREAK, CSCOEF, VALUE)

Double: The double precision name is DCS1GD.

754 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Description

The routine CS1GD evaluates a cubic spline (or its derivative) at a vector of points. That is, given a

vector x of length n satisfying xi < xi + 1 for i = 1, …, n − 1, a derivative value j, and a cubic spline

s that is represented by a breakpoint sequence and coefficient matrix this routine returns the values

s
(j)

(xi) i = 1, …, n

in the array VALUE. The functionality of this routine is the same as that of CSDER called in a loop,

however CS1GD should be much more efficient.

Comments

1. Workspace may be explicitly provided, if desired, by use of C21GD/DC21GD. The

reference is:

CALL C21GD (IDERIV, N, XVEC, NINTV, BREAK, CSCOEF, VALUE,

IWK, WORK1, WORK2)

The additional arguments are as follows:

IWK — Array of length N.

WORK1 — Array of length N.

WORK2 — Array of length N.

2. Informational error

Type Code

4 4 The points in XVEC must be strictly increasing.

Example

To illustrate the use of CS1GD, we modify the example program for CSINT. In this example, a

cubic spline interpolant to F is computed. The values of this spline are then compared with the

exact function values. The routine CS1GD is based on the routine PPVALU in de Boor (1978, page

89).

 USE CS1GD_INT

 USE CSINT_INT

 USE UMACH_INT

 USE CSVAL_INT

 IMPLICIT NONE

! Specifications

 INTEGER NDATA, N, IDERIV, J

 PARAMETER (NDATA=11, N=2*NDATA-1)

!

 INTEGER I, NINTV, NOUT

 REAL BREAK(NDATA), CSCOEF(4,NDATA), F,&

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 755

 FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA),&

 FVALUE(N), VALUE(N), XVEC(N)

 INTRINSIC FLOAT, SIN

! Define function

 F(X) = SIN(15.0*X)

! Set up a grid

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Compute cubic spline interpolant

 CALL CSINT (XDATA, FDATA, BREAK, CSCOEF)

 DO 20 I=1, N

 XVEC(I) = FLOAT(I-1)/FLOAT(2*NDATA-2)

 FVALUE(I) = F(XVEC(I))

 20 CONTINUE

 IDERIV = 0

 NINTV = NDATA - 1

 CALL CS1GD (IDERIV, XVEC, BREAK, CSCOEF, VALUE)

! Get output unit number.

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error')

! Print the interpolant and the error

! on a finer grid

 DO 30 J=1, N

 WRITE (NOUT,'(2F15.3,F15.6)') XVEC(J), VALUE(J),&

 FVALUE(J)-VALUE(J)

 30 CONTINUE

 END

Output

 X Interpolant Error

0.000 0.000 0.000000

0.050 0.809 -0.127025

0.100 0.997 0.000000

0.150 0.723 0.055214

0.200 0.141 0.000000

0.250 -0.549 -0.022789

0.300 -0.978 0.000000

0.350 -0.843 -0.016246

0.400 -0.279 0.000000

0.450 0.441 0.009348

0.500 0.938 0.000000

0.550 0.903 0.019947

0.600 0.412 0.000000

0.650 -0.315 -0.004895

0.700 -0.880 0.000000

0.750 -0.938 -0.029541

0.800 -0.537 0.000000

0.850 0.148 0.034693

0.900 0.804 0.000000

0.950 1.086 -0.092559

1.000 0.650 0.000000

756 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

CSITG
This function evaluates the integral of a cubic spline.

Function Return Value

CSITG — Value of the integral of the spline from A to B. (Output)

Required Arguments

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic

representation. (Input)

BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic

pieces. (Input)

Optional Arguments

NINTV — Number of polynomial pieces. (Input)

Default: NINTV = size (BREAK,1) – 1.

FORTRAN 90 Interface

Generic: CSITG (A, B, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSITG and D_CSITG.

FORTRAN 77 Interface

Single: CSITG(A, B, NINTV, BREAK, CSCOEF)

Double: The double precision function name is DCSITG.

Description

The function CSITG evaluates the integral of a cubic spline over an interval. It is a special case of

the routine PPITG, which evaluates the integral of a piecewise polynomial. (A cubic spline is a

piecewise polynomial of order 4.)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 757

Example

This example computes a cubic spline interpolant to the function x
2
 using CSINT and evaluates its

integral over the intervals [0., .5] and [0., 2.]. Since CSINT uses the not-a knot condition, the

interpolant reproduces x
2
, hence the integral values are 1/24 and 8/3, respectively.

 USE CSITG_INT

 USE UMACH_INT

 USE CSINT_INT

 IMPLICIT NONE

 INTEGER NDATA

 PARAMETER (NDATA=10)

!

 INTEGER I, NINTV, NOUT

 REAL A, B, BREAK(NDATA), CSCOEF(4,NDATA), ERROR,&

 EXACT, F, FDATA(NDATA), FI, FLOAT, VALUE, X,&

 XDATA(NDATA)

 INTRINSIC FLOAT

! Define function and integral

 F(X) = X*X

 FI(X) = X*X*X/3.0

! Set up a grid

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Compute cubic spline interpolant

 CALL CSINT (XDATA, FDATA, BREAK, CSCOEF)

! Compute the integral of F over

! [0.0,0.5]

 A = 0.0

 B = 0.5

 NINTV = NDATA - 1

 VALUE = CSITG(A,B,BREAK,CSCOEF)

 EXACT = FI(B) - FI(A)

 ERROR = EXACT - VALUE

! Get output unit number

 CALL UMACH (2, NOUT)

! Print the result

 WRITE (NOUT,99999) A, B, VALUE, EXACT, ERROR

! Compute the integral of F over

! [0.0,2.0]

 A = 0.0

 B = 2.0

 VALUE = CSITG(A,B,BREAK,CSCOEF)

 EXACT = FI(B) - FI(A)

 ERROR = EXACT - VALUE

! Print the result

 WRITE (NOUT,99999) A, B, VALUE, EXACT, ERROR

99999 FORMAT (' On the closed interval (', F3.1, ',', F3.1,&

 ') we have :', /, 1X, 'Computed Integral = ', F10.5, /,&

 1X, 'Exact Integral = ', F10.5, /, 1X, 'Error '&

 , ' = ', F10.6, /, /)

 END

758 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Output

On the closed interval (0.0,0.5) we have :

Computed Integral = 0.04167

Exact Integral = 0.04167

Error = 0.000000

On the closed interval (0.0,2.0) we have :

Computed Integral = 2.66666

Exact Integral = 2.66667

Error = 0.000006

SPLEZ

Computes the values of a spline that either interpolates or fits user-supplied data.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissae. (Input)

The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

XVEC — Array of length N containing the points at which the spline function values are

desired. (Input)

The entries of XVEC must be distinct.

VALUE — Array of length N containing the spline values. (Output)

VALUE (I) = S(XVEC (I)) if IDER = 0, VALUE(I) = Sʹ(XVEC (I)) if IDER = 1, and so

forth, where S is the computed spline.

Optional Arguments

NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

All choices of ITYPE are valid if NDATA is larger than 6. More specifically,

NDATA > ITYPE or ITYPE = 1.

NDATA > 3 for ITYPE = 2, 3.

NDATA > (ITYPE − 3) for ITYPE = 4, 5, 6, 7, 8.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 759

NDATA > 3 for ITYPE = 9, 10, 11, 12.

NDATA > KORDER for ITYPE = 13, 14, 15.

ITYPE — Type of interpolant desired. (Input)

Default: ITYPE = 1.

ITYPE

1 yields CSINT

2 yields CSAKM

3 yields CSCON

4 yields BSINT-BSNAK K = 2

5 yields BSINT-BSNAK K = 3

6 yields BSINT-BSNAK K = 4

7 yields BSINT-BSNAK K = 5

8 yields BSINT-BSNAK K = 6

9 yields CSSCV

10 yields BSLSQ K = 2

11 yields BSLSQ K = 3

12 yields BSLSQ K = 4

13 yields BSVLS K = 2

14 yields BSVLS K = 3

15 yields BSVLS K = 4

IDER — Order of the derivative desired. (Input)

Default: IDER = 0.

N — Number of function values desired. (Input)

Default: N = size (XVEC,1).

FORTRAN 90 Interface

Generic: CALL SPLEZ (XDATA, FDATA, XVEC, VALUE [,…])

Specific: The specific interface names are S_SPLEZ and D_SPLEZ.

FORTRAN 77 Interface

Single: CALL SPLEZ (NDATA, XDATA, FDATA, ITYPE, IDER, N, XVEC, VALUE)

Double: The double precision name is DSPLEZ.

760 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Description

This routine is designed to let the user experiment with various interpolation and smoothing

routines in the library.

The routine SPLEZ computes a spline interpolant to a set of data points (xi, fi) for i = 1, …, NDATA

if ITYPE = 1, …, 8. If ITYPE ≥ 9, various smoothing or least squares splines are computed. The

output for this routine consists of a vector of values of the computed spline or its derivatives.

Specifically, let i = IDER, n = N, v = XVEC, and y = VALUE, then if s is the computed spline we set

yj = s
(i)

(vj) j = 1, …, n

The routines called are listed above under the ITYPE heading. Additional documentation can be

found by referring to these routines.

Example

In this example, all the ITYPE parameters are exercised. The values of the spline are then

compared with the exact function values and derivatives.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER NDATA, N

 PARAMETER (NDATA=21, N=2*NDATA-1)

! Specifications for local variables

 INTEGER I, IDER, ITYPE, NOUT

 REAL FDATA(NDATA), FPVAL(N), FVALUE(N),&

 VALUE(N), XDATA(NDATA), XVEC(N), EMAX1(15),&

 EMAX2(15), X

! Specifications for intrinsics

 INTRINSIC FLOAT, SIN, COS

 REAL FLOAT, SIN, COS

! Specifications for subroutines

!

 REAL F, FP

!

! Define a function

 F(X) = SIN(X*X)

 FP(X) = 2*X*COS(X*X)

!

 CALL UMACH (2, NOUT)

! Set up a grid

 DO 10 I=1, NDATA

 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1))

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

 DO 20 I=1, N

 XVEC(I) = 3.0*(FLOAT(I-1)/FLOAT(2*NDATA-2))

 FVALUE(I) = F(XVEC(I))

 FPVAL(I) = FP(XVEC(I))

 20 CONTINUE

!

 WRITE (NOUT,99999)

! Loop to call SPLEZ for each ITYPE

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 761

 DO 40 ITYPE=1, 15

 DO 30 IDER=0, 1

 CALL SPLEZ (XDATA, FDATA, XVEC, VALUE, ITYPE=ITYPE, &

 IDER=IDER)

! Compute the maximum error

 IF (IDER .EQ. 0) THEN

 CALL SAXPY (N, -1.0, FVALUE, 1, VALUE, 1)

 EMAX1(ITYPE) = ABS(VALUE(ISAMAX(N,VALUE,1)))

 ELSE

 CALL SAXPY (N, -1.0, FPVAL, 1, VALUE, 1)

 EMAX2(ITYPE) = ABS(VALUE(ISAMAX(N,VALUE,1)))

 END IF

 30 CONTINUE

 WRITE (NOUT,'(I7,2F20.6)') ITYPE, EMAX1(ITYPE), EMAX2(ITYPE)

 40 CONTINUE

!

99999 FORMAT (4X, 'ITYPE', 6X, 'Max error for f', 5X,&

 'Max error for f''', /)

 END

Output

ITYPE Max error for f Max error for f‘

 1 0.014082 0.658018

 2 0.024682 0.897757

 3 0.020896 0.813228

 4 0.083615 2.168083

 5 0.010403 0.508043

 6 0.014082 0.658020

 7 0.004756 0.228858

 8 0.001070 0.077159

 9 0.020896 0.813228

10 0.392603 6.047916

11 0.162793 1.983959

12 0.045404 1.582624

13 0.588370 7.680381

14 0.752475 9.673786

15 0.049340 1.713031

BSINT

Computes the spline interpolant, returning the B-spline coefficients.

Required Arguments

NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the data point abscissas. (Input)

762 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

FDATA — Array of length NDATA containing the data point ordinates. (Input)

KORDER — Order of the spline. (Input)

KORDER must be less than or equal to NDATA.

XKNOT — Array of length NDATA + KORDER containing the knot sequence. (Input)

XKNOT must be nondecreasing.

BSCOEF — Array of length NDATA containing the B-spline coefficients. (Output)

FORTRAN 90 Interface

Generic: CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

Specific: The specific interface names are S_BSINT and D_BSINT.

FORTRAN 77 Interface

Single: CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

Double: The double precision name is DBSINT.

Description

Following the notation in de Boor (1978, page 108), let Bj = Bj,k,t denote the j-th B-spline of order

k with respect to the knot sequence t. Then, BSINT computes the vector a satisfying

1

N

j j i i

j

a B x f

and returns the result in BSCOEF = a. This linear system is banded with at most k − 1 subdiagonals

and k − 1 superdiagonals. The matrix

A = (Bj (xi))

is totally positive and is invertible if and only if the diagonal entries are nonzero. The routine

BSINT is based on the routine SPLINT by de Boor (1978, page 204).

The routine BSINT produces the coefficients of the B-spline interpolant of order KORDER with knot

sequence XKNOT to the data (xi, fi) for i = 1 to NDATA, where x = XDATA and f = FDATA. Let

t = XKNOT, k = KORDER, and N = NDATA. First, BSINT sorts the XDATA vector and stores the result

in x. The elements of the FDATA vector are permuted appropriately and stored in f, yielding the

equivalent data (xi, fi) for i = 1 to N. The following preliminary checks are performed on the data.

We verify that

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 763

1

1

1, , 1

1, ,

1, , 1

i i

i i

i i k

x x i N

i N

i N k

t t

t t

The first test checks to see that the abscissas are distinct. The second and third inequalities verify

that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, we also check tk ≤ x ≤ tN + 1 for i = 1 to N.

This first inequality in the last check is necessary since the method used to generate the entries of

the interpolation matrix requires that the k possibly nonzero B-splines at xi,

Bj - k +1, …, Bj where j satisfies tj ≤ xi < tj + 1

be well-defined (that is, j − k + 1 ≥ 1).

General conditions are not known for the exact behavior of the error in spline interpolation,

however, if t and x are selected properly and the data points arise from the values of a smooth (say

C
k
) function f, i.e. fi = f(xi), then the error will behave in a predictable fashion. The maximum

absolute error satisfies

 1
1

,
,k N

k N

kk
f s C f

t t

t t
t

where

1
, ,

: max i i
i k N

 t t t

For more information on this problem, see de Boor (1978, Chapter 13) and the references therein.

This routine can be used in place of the IMSL routine CSINT by calling BSNAK to obtain the

proper knots, then calling BSINT yielding the B-spline coefficients, and finally calling IMSL

routine BSCPP to convert to piecewise polynomial form.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2INT/DB2INT. The

reference is:

CALL B2INT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF,

WK1, WK2, WK3, IWK)

The additional arguments are as follows:

WK1 — Work array of length (5 * KORDER − 2) * NDATA.

WK2 — Work array of length NDATA.

WK3 — Work array of length NDATA.

IWK — Work array of length NDATA.

764 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

2. Informational errors

Type Code

3 1 The interpolation matrix is ill-conditioned.

4 3 The XDATA values must be distinct.

4 4 Multiplicity of the knots cannot exceed the order of the spline.

4 5 The knots must be nondecreasing.

4 15 The I-th smallest element of the data point array must be greater than

the Ith knot and less than the (I + KORDER)-th knot.

4 16 The largest element of the data point array must be greater than the

(NDATA)-th knot and less than or equal to the

(NDATA + KORDER)-th knot.

4 17 The smallest element of the data point array must be greater than or

equal to the first knot and less than the (KORDER + 1)st knot.

3. The spline can be evaluated using BSVAL, and its derivative can be evaluated using

BSDER.

Example

In this example, a spline interpolant s, to

 f x x

is computed. The interpolated values are then compared with the exact function values using the

IMSL routine BSVAL.

 USE BSINT_INT

 USE BSNAK_INT

 USE UMACH_INT

 USE BSVAL_INT

 IMPLICIT NONE

 INTEGER KORDER, NDATA, NKNOT

 PARAMETER (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER)

!

 INTEGER I, NCOEF, NOUT

 REAL BSCOEF(NDATA), BT, F, FDATA(NDATA), FLOAT,&

 SQRT, X, XDATA(NDATA), XKNOT(NKNOT), XT

 INTRINSIC FLOAT, SQRT

! Define function

 F(X) = SQRT(X)

! Set up interpolation points

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Generate knot sequence

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 765

 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

! Interpolate

 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Print on a finer grid

 NCOEF = NDATA

 XT = XDATA(1)

! Evaluate spline

 BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF)

 WRITE (NOUT,99998) XT, BT, F(XT) - BT

 DO 20 I=2, NDATA

 XT = (XDATA(I-1)+XDATA(I))/2.0

! Evaluate spline

 BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF)

 WRITE (NOUT,99998) XT, BT, F(XT) - BT

 XT = XDATA(I)

! Evaluate spline

 BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF)

 WRITE (NOUT,99998) XT, BT, F(XT) - BT

 20 CONTINUE

99998 FORMAT (' ', F6.4, 15X, F8.4, 12X, F11.6)

99999 FORMAT (/, 6X, 'X', 19X, 'S(X)', 18X, 'Error', /)

 END

Output

 X S(X) Error

0.0000 0.0000 0.000000

0.1250 0.2918 0.061781

0.2500 0.5000 0.000000

0.3750 0.6247 -0.012311

0.5000 0.7071 0.000000

0.6250 0.7886 0.002013

0.7500 0.8660 0.000000

0.8750 0.9365 -0.001092

1.0000 1.0000 0.000000

BSNAK
Computes the ―not-a-knot‖ spline knot sequence.

Required Arguments

NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the location of the data points. (Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length NDATA + KORDER containing the knot sequence. (Output)

766 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

Specific: The specific interface names are S_BSNAK and D_BSNAK.

FORTRAN 77 Interface

Single: CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

Double: The double precision name is DBSNAK.

Description

Given the data points x = XDATA , the order of the spline k = KORDER, and the number N = NDATA

of elements in XDATA, the subroutine BSNAK returns in t = XKNOT a knot sequence that is

appropriate for interpolation of data on x by splines of order k. The vector t contains the knot

sequence in its first N + k positions. If k is even and we assume that the entries in the input vector

x are increasing, then t is returned as

ti = x1 for i = 1, …, k

ti = xi - k/2 for i = k + 1, …, N

ti = xN + ɛ for i = N + 1, …, N + k

where ɛ is a small positive constant. There is some discussion concerning this selection of knots in

de Boor (1978, page 211). If k is odd, then t is returned as

1 for = 1, , i x i kt

1 1
1

2 2

() / 2 for = + 1, , i k k
i i

x x i k N

 t

for = + 1, , + i Nx i N N k t

It is not necessary to sort the values in x since this is done in the routine BSNAK.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2NAK/DB2NAK. The

reference is:

CALL B2NAK (NDATA, XDATA, KORDER, XKNOT, XSRT, IWK)

The additional arguments are as follows:

XSRT — Work array of length NDATA to hold the sorted XDATA values. If

XDATA is not needed, XSRT may be the same as XDATA.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 767

IWK — Work array of length NDATA to hold the permutation of XDATA.

2. Informational error

Type Code

4 4 The XDATA values must be distinct.

3. The first knot is at the left endpoint and the last knot is slightly beyond the last

endpoint. Both endpoints have multiplicity KORDER.

4. Interior knots have multiplicity one.

Example

In this example, we compute (for k = 3, …, 8) six spline interpolants sk to F(x) = sin(10x
3
) on the

interval [0,1]. The routine BSNAK is used to generate the knot sequences for sk and then BSINT is

called to obtain the interpolant. We evaluate the absolute error

|sk − F|

at 100 equally spaced points and print the maximum error for each k.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER KMAX, KMIN, NDATA

 PARAMETER (KMAX=8, KMIN=3, NDATA=20)

!

 INTEGER I, K, KORDER, NOUT

 REAL ABS, AMAX1, BSCOEF(NDATA), DIF, DIFMAX, F,&

 FDATA(NDATA), FLOAT, FT, SIN, ST, T, X, XDATA(NDATA),&

 XKNOT(KMAX+NDATA), XT

 INTRINSIC ABS, AMAX1, FLOAT, SIN

! Define function and tau function

 F(X) = SIN(10.0*X*X*X)

 T(X) = 1.0 - X*X

! Set up data

 DO 10 I=1, NDATA

 XT = FLOAT(I-1)/FLOAT(NDATA-1)

 XDATA(I) = T(XT)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Loop over different orders

 DO 30 K=KMIN, KMAX

 KORDER = K

! Generate knots

 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

! Interpolate

 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

 DIFMAX = 0.0

768 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 DO 20 I=1, 100

 XT = FLOAT(I-1)/99.0

! Evaluate spline

 ST = BSVAL(XT,KORDER,XKNOT,NDATA,BSCOEF)

 FT = F(XT)

 DIF = ABS(FT-ST)

! Compute maximum difference

 DIFMAX = AMAX1(DIF,DIFMAX)

 20 CONTINUE

! Print maximum difference

 WRITE (NOUT,99998) KORDER, DIFMAX

 30 CONTINUE

!

99998 FORMAT (' ', I3, 5X, F9.4)

99999 FORMAT (' KORDER', 5X, 'Maximum difference', /)

 END

Output

KORDER Maximum difference

 3 0.0080

 4 0.0026

 5 0.0004

 6 0.0008

 7 0.0010

 8 0.0004

BSOPK

Computes the ―optimal‖ spline knot sequence.

Required Arguments

NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the location of the data points. (Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length NDATA + KORDER containing the knot sequence. (Output)

FORTRAN 90 Interface

Generic: CALL BSOPK (NDATA, XDATA, KORDER, XKNOT)

Specific: The specific interface names are S_BSOPK and D_BSOPK.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 769

FORTRAN 77 Interface

Single: CALL BSOPK (NDATA, XDATA, KORDER, XKNOT)

Double: The double precision name is DBSOPK.

Description

Given the abscissas x = XDATA for an interpolation problem and the order of the spline interpolant

k = KORDER, BSOPK returns the knot sequence t = XKNOT that minimizes the constant in the error

estimate

|| f − s || ≤ c || f
(k)

 ||

In the above formula, f is any function in C
k
 and s is the spline interpolant to f at the abscissas x

with knot sequence t.

The algorithm is based on a routine described in de Boor (1978, page 204), which in turn is based

on a theorem of Micchelli, Rivlin and Winograd (1976).

Comments

1. Workspace may be explicitly provided, if desired, by use of B2OPK/DB2OPK. The

reference is:

CALL B2OPK (NDATA, XDATA, KORDER, XKNOT, MAXIT, WK, IWK)

The additional arguments are as follows:

MAXIT — Maximum number of iterations of Newton‘s Method. (Input) A

suggested value is 10.

WK — Work array of length (NDATA − KORDER) * (3 * KORDER − 2)
+ 6 * NDATA + 2 * KORDER + 5.

IWK — Work array of length NDATA.

2. Informational errors

Type Code

3 6 Newton‘s method iteration did not converge.

4 3 The XDATA values must be distinct.

4 4 Interpolation matrix is singular. The XDATA values may be too close

together.

3. The default value for MAXIT is 10, this can be overridden by calling B2OPK/DB2OPK

directly with a larger value.

770 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Example

In this example, we compute (for k = 3, …, 8) six spline interpolants sk to F(x) = sin(10x
3
) on the

interval [0, 1]. The routine BSOPK is used to generate the knot sequences for sk and then BSINT is

called to obtain the interpolant. We evaluate the absolute error

| sk − F |

at 100 equally spaced points and print the maximum error for each k.

 USE BSOPK_INT

 USE BSINT_INT

 USE UMACH_INT

 USE BSVAL_INT

 IMPLICIT NONE

 INTEGER KMAX, KMIN, NDATA

 PARAMETER (KMAX=8, KMIN=3, NDATA=20)

!

 INTEGER I, K, KORDER, NOUT

 REAL ABS, AMAX1, BSCOEF(NDATA), DIF, DIFMAX, F,&

 FDATA(NDATA), FLOAT, FT, SIN, ST, T, X, XDATA(NDATA),&

 XKNOT(KMAX+NDATA), XT

 INTRINSIC ABS, AMAX1, FLOAT, SIN

! Define function and tau function

 F(X) = SIN(10.0*X*X*X)

 T(X) = 1.0 - X*X

! Set up data

 DO 10 I=1, NDATA

 XT = FLOAT(I-1)/FLOAT(NDATA-1)

 XDATA(I) = T(XT)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Loop over different orders

 DO 30 K=KMIN, KMAX

 KORDER = K

! Generate knots

 CALL BSOPK (NDATA, XDATA, KORDER, XKNOT)

! Interpolate

 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

 DIFMAX = 0.0

 DO 20 I=1, 100

 XT = FLOAT(I-1)/99.0

! Evaluate spline

 ST = BSVAL(XT,KORDER,XKNOT,NDATA,BSCOEF)

 FT = F(XT)

 DIF = ABS(FT-ST)

! Compute maximum difference

 DIFMAX = AMAX1(DIF,DIFMAX)

 20 CONTINUE

! Print maximum difference

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 771

 WRITE (NOUT,99998) KORDER, DIFMAX

 30 CONTINUE

!

99998 FORMAT (' ', I3, 5X, F9.4)

99999 FORMAT (' KORDER', 5X, 'Maximum difference', /)

 END

Output

KORDER Maximum difference

 3 0.0096

 4 0.0018

 5 0.0005

 6 0.0004

 7 0.0007

 8 0.0035

BS2IN

Computes a two-dimensional tensor-product spline interpolant, returning the tensor-product B-

spline coefficients.

Required Arguments

XDATA — Array of length NXDATA containing the data points in the X-direction. (Input)

XDATA must be strictly increasing.

YDATA — Array of length NYDATA containing the data points in the Y-direction. (Input)

YDATA must be strictly increasing.

FDATA — Array of size NXDATA by NYDATA containing the values to be interpolated.

(Input)

FDATA (I, J) is the value at (XDATA (I), YDATA(J)).

KXORD — Order of the spline in the X-direction. (Input)

KXORD must be less than or equal to NXDATA.

KYORD — Order of the spline in the Y-direction. (Input)

KYORD must be less than or equal to NYDATA.

XKNOT — Array of length NXDATA + KXORD containing the knot sequence in the X-direction.

(Input)

XKNOT must be nondecreasing.

772 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

YKNOT — Array of length NYDATA + KYORD containing the knot sequence in the Y-direction.

(Input)

YKNOT must be nondecreasing.

BSCOEF — Array of length NXDATA * NYDATA containing the tensor-product B-spline

coefficients. (Output)

BSCOEF is treated internally as a matrix of size NXDATA by NYDATA.

Optional Arguments

NXDATA — Number of data points in the X-direction. (Input)

Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the Y-direction. (Input)

Default: NYDATA = size (YDATA,1).

LDF — The leading dimension of FDATA exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDF = size (FDATA,1).

FORTRAN 90 Interface

Generic: CALL BS2IN (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, YKNOT,
BSCOEF [,…])

Specific: The specific interface names are S_BS2IN and D_BS2IN.

FORTRAN 77 Interface

Single: CALL BS2IN (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, KXORD, KYORD,

XKNOT, YKNOT, BSCOEF)

Double: The double precision name is DBS2IN.

Description

The routine BS2IN computes a tensor product spline interpolant. The tensor product spline

interpolant to data {(xi, yj, fij)}, where 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny, has the form

 , , , ,

1

y

x x y y

N

n k m k

m

B x B y

 t t

where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in

KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences (XKNOT

and YKNOT). The algorithm requires that

tx(kx) ≤ xi ≤ tx(Nx + 1) 1 ≤ i ≤ Nx

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 773

ty(ky) ≤ yj ≤ ty(Ny + 1) 1 ≤ j ≤ Ny

Tensor product spline interpolants in two dimensions can be computed quite efficiently by solving

(repeatedly) two univariate interpolation problems. The computation is motivated by the following

observations. It is necessary to solve the system of equations

 , , , ,

1 1

y x

x x y y

N N

nm n k i m k j ij

m n

c B x B y f

 t t

Setting

 , ,1

x

x

N

mi nm n k x in
h c B x

 t

we note that for each fixed i from 1 to Nx, we have Ny linear equations in the same number of

unknowns as can be seen below:

 , ,

1

y

y y

N

mi m k j ij

m

h B y f

 t

The same matrix appears in all of the equations above:

 , , 1 ,
y y ym k jB y m j N

 t

Thus, we need only factor this matrix once and then apply this factorization to the Nx righthand

sides. Once this is done and we have computed hmi, then we must solve for the coefficients cnm

using the relation

 , ,

1

x

x x

N

nm n k i mi

n

c B x h

 t

for m from 1 to Ny, which again involves one factorization and Ny solutions to the different right-

hand sides. The routine BS2IN is based on the routine SPLI2D by de Boor (1978, page 347).

Comments

1. Workspace may be explicitly provided, if desired, by use of B22IN/DB22IN. The

reference is:

CALL B22IN (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,

KXORD, KYORD, XKNOT, YKNOT, BSCOEF, WK, IWK)

The additional arguments are as follows:

WK — Work array of length NXDATA * NYDATA + MAX((2 * KXORD −1)

NXDATA, (2 * KYORD − 1) * NYDATA) + MAX((3 * KXORD −

2) * NXDATA, (3 * KYORD − 2) * NYDATA) + 2 *
MAX(NXDATA, NYDATA).

774 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

IWK — Work array of length MAX(NXDATA, NYDATA).

2. Informational errors

Type Code

3 1 Interpolation matrix is nearly singular. LU factorization failed.

3 2 Interpolation matrix is nearly singular. Iterative refinement failed.

4 6 The XDATA values must be strictly increasing.

4 7 The YDATA values must be strictly increasing.

4 13 Multiplicity of the knots cannot exceed the order of the spline.

4 14 The knots must be nondecreasing.

4 15 The I-th smallest element of the data point array must be greater

than the I-th knot and less than the (I + K_ORD)-th knot.

4 16 The largest element of the data point array must be greater than the

(N_DATA)-th knot and less than or equal to the (N_DATA + K_ORD)-th

knot.

4 17 The smallest element of the data point array must be greater than or

equal to the first knot and less than the (K_ORD + 1)st knot.

Example

In this example, a tensor product spline interpolant to a function f is computed. The values of the

interpolant and the error on a 4 × 4 grid are displayed.

 USE BS2IN_INT

 USE BSNAK_INT

 USE BS2VL_INT

 USE UMACH_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR PARAMETERS

 INTEGER KXORD, KYORD, LDF, NXDATA, NXKNOT, NXVEC, NYDATA,&

 NYKNOT, NYVEC

 PARAMETER (KXORD=5, KYORD=2, NXDATA=21, NXVEC=4, NYDATA=6,&

 NYVEC=4, LDF=NXDATA, NXKNOT=NXDATA+KXORD,&

 NYKNOT=NYDATA+KYORD)

!

 INTEGER I, J, NOUT, NXCOEF, NYCOEF

 REAL BSCOEF(NXDATA,NYDATA), F, FDATA(LDF,NYDATA), FLOAT,&

 X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(NXVEC), Y,&

 YDATA(NYDATA), YKNOT(NYKNOT), YVEC(NYVEC),VL

 INTRINSIC FLOAT

! Define function

 F(X,Y) = X*X*X + X*Y

! Set up interpolation points

 DO 10 I=1, NXDATA

 XDATA(I) = FLOAT(I-11)/10.0

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 775

 10 CONTINUE

! Generate knot sequence

 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)

! Set up interpolation points

 DO 20 I=1, NYDATA

 YDATA(I) = FLOAT(I-1)/5.0

 20 CONTINUE

! Generate knot sequence

 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)

! Generate FDATA

 DO 40 I=1, NYDATA

 DO 30 J=1, NXDATA

 FDATA(J,I) = F(XDATA(J),YDATA(I))

 30 CONTINUE

 40 CONTINUE

! Interpolate

 CALL BS2IN (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, YKNOT,&

 BSCOEF)

 NXCOEF = NXDATA

 NYCOEF = NYDATA

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Print over a grid of

! [0.0,1.0] x [0.0,1.0] at 16 points.

 DO 50 I=1, NXVEC

 XVEC(I) = FLOAT(I-1)/3.0

 50 CONTINUE

 DO 60 I=1, NYVEC

 YVEC(I) = FLOAT(I-1)/3.0

 60 CONTINUE

! Evaluate spline

 DO 80 I=1, NXVEC

 DO 70 J=1, NYVEC

 VL = BS2VL (XVEC(I), YVEC(J), KXORD, KYORD, XKNOT,&

 YKNOT, NXCOEF, NYCOEF, BSCOEF)

 WRITE (NOUT,'(3F15.4,F15.6)') XVEC(I), YVEC(J),&

 VL, (F(XVEC(I),YVEC(J))-VL)

 70 CONTINUE

 80 CONTINUE

99999 FORMAT (13X, 'X', 14X, 'Y', 10X, 'S(X,Y)', 9X, 'Error')

 END

Output

 X Y S(X,Y) Error

0.0000 0.0000 0.0000 0.000000

0.0000 0.3333 0.0000 0.000000

0.0000 0.6667 0.0000 0.000000

0.0000 1.0000 0.0000 0.000000

0.3333 0.0000 0.0370 0.000000

0.3333 0.3333 0.1481 0.000000

0.3333 0.6667 0.2593 0.000000

0.3333 1.0000 0.3704 0.000000

0.6667 0.0000 0.2963 0.000000

776 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

0.6667 0.3333 0.5185 0.000000

0.6667 0.6667 0.7407 0.000000

0.6667 1.0000 0.9630 0.000000

1.0000 0.0000 1.0000 0.000000

1.0000 0.3333 1.3333 0.000000

1.0000 0.6667 1.6667 0.000000

1.0000 1.0000 2.0000 0.000000

BS3IN

Computes a three-dimensional tensor-product spline interpolant, returning the tensor-product B-

spline coefficients.

Required Arguments

XDATA — Array of length NXDATA containing the data points in the x-direction. (Input)

XDATA must be increasing.

YDATA — Array of length NYDATA containing the data points in the y-direction. (Input)

YDATA must be increasing.

ZDATA — Array of length NZDATA containing the data points in the z-direction. (Input)

ZDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing the values to be

interpolated. (Input)

FDATA (I, J, K) contains the value at (XDATA (I), YDATA(J), ZDATA(K)).

KXORD — Order of the spline in the x-direction. (Input)

KXORD must be less than or equal to NXDATA.

KYORD — Order of the spline in the y-direction. (Input)

KYORD must be less than or equal to NYDATA.

KZORD — Order of the spline in the z-direction. (Input)

KZORD must be less than or equal to NZDATA.

XKNOT — Array of length NXDATA + KXORD containing the knot sequence in the x-direction.

(Input)

XKNOT must be nondecreasing.

YKNOT — Array of length NYDATA + KYORD containing the knot sequence in the y-direction.

(Input)

YKNOT must be nondecreasing.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 777

ZKNOT — Array of length NZDATA + KZORD containing the knot sequence in the z-direction.

(Input)

ZKNOT must be nondecreasing.

BSCOEF — Array of length NXDATA * NYDATA * NZDATA containing the tensor-product B-

spline coefficients. (Output)

BSCOEF is treated internally as a matrix of size NXDATA by NYDATA by NZDATA.

Optional Arguments

NXDATA — Number of data points in the x-direction. (Input)

Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the y-direction. (Input)

Default: NYDATA = size (YDATA,1).

NZDATA — Number of data points in the z-direction. (Input)

Default: NZDATA = size (ZDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the

calling program. (Input)

Default: LDF = size (FDATA,1).

MDF — Middle dimension of FDATA exactly as specified in the dimension statement of the

calling program. (Input)

Default: MDF = size (FDATA,2).

FORTRAN 90 Interface

Generic: CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT,

YKNOT, ZKNOT, BSCOEF [,…])

Specific: The specific interface names are S_BS3IN and D_BS3IN.

FORTRAN 77 Interface

Single: CALL BS3IN (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, FDATA, LDF,

MDF, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF)

Double: The double precision name is DBS3IN.

Description

The routine BS3IN computes a tensor-product spline interpolant. The tensor-product spline

interpolant to data {(xi, yj, zk, fijk)}, where 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, and 1 ≤ k ≤ Nz has the form

778 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 , , , , , ,

1 1 1

y xz

x x y y z z

N NN

nml n k m k l k

l m n

c B x B y B z

 t t t

where kx, ky, and kz are the orders of the splines (these numbers are passed to the subroutine in

KXORD, KYORD, and KZORD, respectively). Likewise, tx, ty, and tz are the corresponding knot

sequences (XKNOT, YKNOT, and ZKNOT). The algorithm requires that

1 1

1 1

1 1

x x i x x x

y y j y y y

z z k z z z

k x N i N

k y N j N

k z N k N

t t

t t

t t

Tensor-product spline interpolants can be computed quite efficiently by solving (repeatedly) three

univariate interpolation problems. The computation is motivated by the following observations. It

is necessary to solve the system of equations

 , , , , , ,

1 1 1

y xz

x x y y z z

N NN

nml n k i m k j l k k ijk

l m n

c B x B y B z f

 t t t

Setting

 , , , ,1 1

y x

x x y y

N N

lij nml n k i m k jm n
h c B x B y

 t t

we note that for each fixed pair ij we have Nz linear equations in the same number of unknowns as

can be seen below:

 , ,

1

z

z z

N

lij l k k ijk

l

h B z f

 t

The same interpolation matrix appears in all of the equations above:

 , , 1 ,
z zl k k zB z l k N t

Thus, we need only factor this matrix once and then apply it to the NxNy right-hand sides. Once

this is done and we have computed hlij, then we must solve for the coefficients cnml using the

relation

 , , , ,

1 1

y x

x x y y

N N

nml n k i m k j lij

m n

c B x B y h

 t t

that is the bivariate tensor-product problem addressed by the IMSL routine BS2IN. The interested

reader should consult the algorithm description in the two-dimensional routine if more detail is

desired. The routine BS3IN is based on the routine SPLI2D by de Boor (1978, page 347).

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 779

Comments

1. Workspace may be explicitly provided, if desired, by use of B23IN/DB23IN. The

reference is:

CALL B23IN (NXDATA, XDATA, NYDATA, YDATA, NZDAYA, ZDATA,

FDATA, LDF, MDF, KXORD, KYORD, KZORD, XKNOT, YKNOT,

ZKNOT, BSCOEF, WK, IWK)

The additional arguments are as follows:

WK — Work array of length MAX((2 * KXORD − 1) * NXDATA, (2 *

KYORD − 1) * NYDATA, (2 * KZORD − 1) * NZDATA) +

MAX((3 * KXORD − 2) * NXDATA, (3 * KYORD − 2) *

NYDATA + (3 * KZORD − 2) * NZDATA) + NXDATA * NYDATA
*NZDATA + 2 * MAX(NXDATA, NYDATA, NZDATA).

IWK — Work array of length MAX(NXDATA, NYDATA, NZDATA).

2. Informational errors

Type Code

3 1 Interpolation matrix is nearly singular. LU factorization failed.

3 2 Interpolation matrix is nearly singular. Iterative refinement failed.

4 13 Multiplicity of the knots cannot exceed the order of the spline.

4 14 The knots must be nondecreasing.

4 15 The I-th smallest element of the data point array must be greater

than the Ith knot and less than the (I + K_ORD)-th knot.

4 16 The largest element of the data point array must be greater than the

(N_DATA)-th knot and less than or equal to the (N_DATA + K_ORD)-th

knot.

4 17 The smallest element of the data point array must be greater than or

equal to the first knot and less than the (K_ORD + 1)st knot.

4 18 The XDATA values must be strictly increasing.

4 19 The YDATA values must be strictly increasing.

4 20 The ZDATA values must be strictly increasing.

Example

In this example, a tensor-product spline interpolant to a function f is computed. The values of the

interpolant and the error on a 4 × 4 × 2 grid are displayed.

 USE BS3IN_INT

 USE BSNAK_INT

 USE UMACH_INT

780 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 USE BS3GD_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR PARAMETERS

 INTEGER KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT, NXVEC,&

 NYDATA, NYKNOT, NYVEC, NZDATA, NZKNOT, NZVEC

 PARAMETER (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NXVEC=4,&

 NYDATA=6, NYVEC=4, NZDATA=8, NZVEC=2, LDF=NXDATA,&

 MDF=NYDATA, NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,&

 NZKNOT=NZDATA+KZORD)

!

 INTEGER I, J, K, NOUT, NXCOEF, NYCOEF, NZCOEF

 REAL BSCOEF(NXDATA,NYDATA,NZDATA), F,&

 FDATA(LDF,MDF,NZDATA), FLOAT, VALUE(NXVEC,NYVEC,NZVEC)&

 , X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(NXVEC), Y,&

 YDATA(NYDATA), YKNOT(NYKNOT), YVEC(NYVEC), Z,&

 ZDATA(NZDATA), ZKNOT(NZKNOT), ZVEC(NZVEC)

 INTRINSIC FLOAT

! Define function.

 F(X,Y,Z) = X*X*X + X*Y*Z

! Set up X-interpolation points

 DO 10 I=1, NXDATA

 XDATA(I) = FLOAT(I-11)/10.0

 10 CONTINUE

! Set up Y-interpolation points

 DO 20 I=1, NYDATA

 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)

 20 CONTINUE

! Set up Z-interpolation points

 DO 30 I=1, NZDATA

 ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)

 30 CONTINUE

! Generate knots

 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)

 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)

 CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)

! Generate FDATA

 DO 50 K=1, NZDATA

 DO 40 I=1, NYDATA

 DO 40 J=1, NXDATA

 FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))

 40 CONTINUE

 50 CONTINUE

! Get output unit number

 CALL UMACH (2, NOUT)

! Interpolate

 CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, &

 KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF)

!

 NXCOEF = NXDATA

 NYCOEF = NYDATA

 NZCOEF = NZDATA

! Write heading

 WRITE (NOUT,99999)

! Print over a grid of

! [-1.0,1.0] x [0.0,1.0] x [0.0,1.0]

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 781

! at 32 points.

 DO 60 I=1, NXVEC

 XVEC(I) = 2.0*(FLOAT(I-1)/3.0) - 1.0

 60 CONTINUE

 DO 70 I=1, NYVEC

 YVEC(I) = FLOAT(I-1)/3.0

 70 CONTINUE

 DO 80 I=1, NZVEC

 ZVEC(I) = FLOAT(I-1)

 80 CONTINUE

! Call the evaluation routine.

 CALL BS3GD (0, 0, 0, XVEC, YVEC, ZVEC,&

 KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, VALUE)

 DO 110 I=1, NXVEC

 DO 100 J=1, NYVEC

 DO 90 K=1, NZVEC

 WRITE (NOUT,'(4F13.4, F13.6)') XVEC(I), YVEC(K),&

 ZVEC(K), VALUE(I,J,K),&

 F(XVEC(I),YVEC(J),ZVEC(K))&

 - VALUE(I,J,K)

 90 CONTINUE

 100 CONTINUE

 110 CONTINUE

99999 FORMAT (10X, 'X', 11X, 'Y', 10X, 'Z', 10X, 'S(X,Y,Z)', 7X,&

 'Error')

 END

Output

 X Y Z S(X,Y,Z) Error

-1.0000 0.0000 0.0000 -1.0000 0.000000

-1.0000 0.3333 1.0000 -1.0000 0.000000

-1.0000 0.0000 0.0000 -1.0000 0.000000

-1.0000 0.3333 1.0000 -1.3333 0.000000

-1.0000 0.0000 0.0000 -1.0000 0.000000

-1.0000 0.3333 1.0000 -1.6667 0.000000

-1.0000 0.0000 0.0000 -1.0000 0.000000

-1.0000 0.3333 1.0000 -2.0000 0.000000

-0.3333 0.0000 0.0000 -0.0370 0.000000

-0.3333 0.3333 1.0000 -0.0370 0.000000

-0.3333 0.0000 0.0000 -0.0370 0.000000

-0.3333 0.3333 1.0000 -0.1481 0.000000

-0.3333 0.0000 0.0000 -0.0370 0.000000

-0.3333 0.3333 1.0000 -0.2593 0.000000

-0.3333 0.0000 0.0000 -0.0370 0.000000

-0.3333 0.3333 1.0000 -0.3704 0.000000

 0.3333 0.0000 0.0000 0.0370 0.000000

 0.3333 0.3333 1.0000 0.0370 0.000000

 0.3333 0.0000 0.0000 0.0370 0.000000

 0.3333 0.3333 1.0000 0.1481 0.000000

 0.3333 0.0000 0.0000 0.0370 0.000000

 0.3333 0.3333 1.0000 0.2593 0.000000

 0.3333 0.0000 0.0000 0.0370 0.000000

 0.3333 0.3333 1.0000 0.3704 0.000000

 1.0000 0.0000 0.0000 1.0000 0.000000

 1.0000 0.3333 1.0000 1.0000 0.000000

 1.0000 0.0000 0.0000 1.0000 0.000000

782 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 1.0000 0.3333 1.0000 1.3333 0.000000

 1.0000 0.0000 0.0000 1.0000 0.000000

 1.0000 0.3333 1.0000 1.6667 0.000000

 1.0000 0.0000 0.0000 1.0000 0.000000

 1.0000 0.3333 1.0000 2.0000 0.000000

BSVAL
This function evaluates a spline, given its B-spline representation.

Function Return Value

BSVAL — Value of the spline at X. (Output)

Required Arguments

X — Point at which the spline is to be evaluated. (Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length KORDER + NCOEF containing the knot sequence. (Input)

XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

FORTRAN 90 Interface

Generic: BSVAL (X, KORDER, XKNOT, NCOEF, BSCOEF)

Specific: The specific interface names are S_BSVAL and D_BSVAL.

FORTRAN 77 Interface

Single: BSVAL (X, KORDER, XKNOT, NCOEF, BSCOEF)

Double: The double precision function name is DBSVAL.

Description

The function BSVAL evaluates a spline (given its B-spline representation) at a specific point. It is a

special case of the routine BSDER, which evaluates the derivative of a spline given its B-spline

representation. The routine BSDER is based on the routine BVALUE by de Boor (1978, page 144).

Specifically, given the knot vector t, the number of coefficients N, the coefficient vector a, and a

point x, BSVAL returns the number

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 783

 ,

1

N

j j k

j

a B x

where Bj,k is the j-th B-spline of order k for the knot sequence t. Note that this function routine

arbitrarily treats these functions as if they were right continuous near XKNOT(KORDER) and left

continuous near XKNOT(NCOEF + 1). Thus, if we have KORDER knots stacked at the left or right end

point, and if we try to evaluate at these end points, then we will get the value of the limit from the

interior of the interval.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2VAL/DB2VAL. The

reference is:

CALL B2VAL(X, KORDER, XKNOT, NCOEF, BSCOEF, WK1, WK2, WK3)

The additional arguments are as follows:

WK1 — Work array of length KORDER.

WK2 — Work array of length KORDER.

WK3 — Work array of length KORDER.

2. Informational errors

Type Code

4 4 Multiplicity of the knots cannot exceed the order of the spline.

4 5 The knots must be nondecreasing.

Example

For an example of the use of BSVAL, see IMSL routine BSINT.

BSDER
This function evaluates the derivative of a spline, given its B-spline representation.

Function Return Value

BSDER — Value of the IDERIV-th derivative of the spline at X. (Output)

Required Arguments

IDERIV — Order of the derivative to be evaluated. (Input)

In particular, IDERIV = 0 returns the value of the spline.

X — Point at which the spline is to be evaluated. (Input)

784 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

KORDER — Order of the spline. (Input)

XKNOT — Array of length NCOEF + KORDER containing the knot sequence. (Input)

XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

FORTRAN 90 Interface

Generic: BSDER (IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF)

Specific: The specific interface names are S_BSDER and D_BSDER.

FORTRAN 77 Interface

Single: BSDER (IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF)

Double: The double precision function name is DBSDER.

Description

The function BSDER produces the value of a spline or one of its derivatives (given its B-spline

representation) at a specific point. The function BSDER is based on the routine BVALUE by de Boor

(1978, page 144).

Specifically, given the knot vector t, the number of coefficients N, the coefficient vector a, the

order of the derivative i and a point x, BSDER returns the number

 ,
1

N
i

j j k
j

a B x

where Bj,k is the j-th B-spline of order k for the knot sequence t. Note that this function routine

arbitrarily treats these functions as if they were right continuous near XKNOT(KORDER) and left

continuous near XKNOT(NCOEF + 1). Thus, if we have KORDER knots stacked at the left or right end

point, and if we try to evaluate at these end points, then we will get the value of the limit from the

interior of the interval.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2DER/DB2DER. The

reference is:

CALL B2DER(IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF, WK1, WK2, WK3)

The additional arguments are as follows:

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 785

WK1 — Array of length KORDER.

WK2 — Array of length KORDER.

WK3 — Array of length KORDER.

2. Informational errors

Type Code

4 4 Multiplicity of the knots cannot exceed the order of the spline.

4 5 The knots must be nondecreasing.

Example

A spline interpolant to the function

()f x x

is constructed using BSINT. The B-spline representation, which is returned by the IMSL routine

BSINT, is then used by BSDER to compute the value and derivative of the interpolant. The output

consists of the interpolation values and the error at the data points and the midpoints. In addition,

we display the value of the derivative and the error at these same points.

 USE BSDER_INT

 USE BSINT_INT

 USE BSNAK_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER KORDER, NDATA, NKNOT

 PARAMETER (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER)

!

 INTEGER I, NCOEF, NOUT

 REAL BSCOEF(NDATA), BT0, BT1, DF, F, FDATA(NDATA),&

 FLOAT, SQRT, X, XDATA(NDATA), XKNOT(NKNOT), XT

 INTRINSIC FLOAT, SQRT

! Define function and derivative

 F(X) = SQRT(X)

 DF(X) = 0.5/SQRT(X)

! Set up interpolation points

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I)/FLOAT(NDATA)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Generate knot sequence

 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

! Interpolate

 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Print on a finer grid

 NCOEF = NDATA

786 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 XT = XDATA(1)

! Evaluate spline

 BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF)

 BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF)

 WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1

 DO 20 I=2, NDATA

 XT = (XDATA(I-1)+XDATA(I))/2.0

! Evaluate spline

 BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF)

 BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF)

 WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1

 XT = XDATA(I)

! Evaluate spline

 BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF)

 BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF)

 WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1

 20 CONTINUE

99998 FORMAT (' ', F6.4, 5X, F7.4, 3X, F10.6, 5X, F8.4, 3X, F10.6)

99999 FORMAT (6X, 'X', 8X, 'S(X)', 7X, 'Error', 8X, 'S''(X)', 8X,&

 'Error', /)

 END

Output

 X S(X) Error S‘(X) Error

0.2000 0.4472 0.000000 1.0423 0.075738

0.3000 0.5456 0.002084 0.9262 -0.013339

0.4000 0.6325 0.000000 0.8101 -0.019553

0.5000 0.7077 -0.000557 0.6940 0.013071

0.6000 0.7746 0.000000 0.6446 0.000869

0.7000 0.8366 0.000071 0.5952 0.002394

0.8000 0.8944 0.000000 0.5615 -0.002525

0.9000 0.9489 -0.000214 0.5279 -0.000818

1.0000 1.0000 0.000000 0.4942 0.005814

BS1GD
Evaluates the derivative of a spline on a grid, given its B-spline representation.

Required Arguments

IDERIV — Order of the derivative to be evaluated. (Input)

In particular, IDERIV = 0 returns the value of the spline.

XVEC — Array of length N containing the points at which the spline is to be evaluated.

(Input)

XVEC should be strictly increasing.

KORDER — Order of the spline. (Input)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 787

XKNOT — Array of length NCOEF + KORDER containing the knot sequence. (Input)

XKNOT must be nondecreasing.

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

VALUE — Array of length N containing the values of the IDERIV-th derivative of the spline

at the points in XVEC. (Output)

Optional Arguments

N — Length of vector XVEC. (Input)

Default: N = size (XVEC,1).

NCOEF — Number of B-spline coefficients. (Input)

Default: NCOEF = size (BSCOEF,1).

FORTRAN 90 Interface

Generic: CALL BS1GD (IDERIV, XVEC, KORDER, XKNOT, BSCOEF, VALUE [,…])

Specific: The specific interface names are S_BS1GD and D_BS1GD.

FORTRAN 77 Interface

Single: CALL BS1GD (IDERIV, N, XVEC, KORDER, XKNOT, NCOEF, BSCOEF, VALUE)

Double: The double precision name is DBS1GD.

Description

The routine BS1GD evaluates a B-spline (or its derivative) at a vector of points. That is, given a

vector x of length n satisfying xi < xi + 1 for i = 1, …, n − 1, a derivative value j, and a B-spline s

that is represented by a knot sequence and coefficient sequence, this routine returns the values

 1, ,
j

is x i n

in the array VALUE. The functionality of this routine is the same as that of BSDER called in a loop,

however BS1GD should be much more efficient. This routine converts the B-spline representation

to piecewise polynomial form using the IMSL routine BSCPP, and then uses the IMSL routine

PPVAL for evaluation.

Comments

1. Workspace may be explicitly provided, if desired, by use of B21GD/DB21GD. The

reference is:

CALL B21GD (IDERIV, N, XVEC, KORDER, XKNOT, NCOEF, BSCOEF,

VALUE, RWK1, RWK2, IWK3, RWK4, RWK5, RWK6)

The additional arguments are as follows:

788 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

RWK1 — Real array of length KORDER * (NCOEF − KORDER + 1).

RWK2 — Real array of length NCOEF − KORDER + 2.

IWK3 — Integer array of length N.

RWK4 — Real array of length N.

RWK5 — Real array of length N.

RWK6 — Real array of length (KORDER + 3) * KORDER

2. Informational error

Type Code

4 5 The points in XVEC must be strictly increasing.

Example

To illustrate the use of BS1GD, we modify the example program for BSDER. In this example, a

quadratic (order 3) spline interpolant to F is computed. The values and derivatives of this spline

are then compared with the exact function and derivative values. The routine BS1GD is based on

the routines BSPLPP and PPVALU in de Boor (1978, page 89).

 USE BS1GD_INT

 USE BSINT_INT

 USE BSNAK_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER KORDER, NDATA, NKNOT, NFGRID

 PARAMETER (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER, NFGRID = 9)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I, NCOEF, NOUT

 REAL ANS0(NFGRID), ANS1(NFGRID), BSCOEF(NDATA),&

 FDATA(NDATA),&

 X, XDATA(NDATA), XKNOT(NKNOT), XVEC(NFGRID)

! SPECIFICATIONS FOR INTRINSICS

 INTRINSIC FLOAT, SQRT

 REAL FLOAT, SQRT

! SPECIFICATIONS FOR SUBROUTINES

 REAL DF, F

!

 F(X) = SQRT(X)

 DF(X) = 0.5/SQRT(X)

!

 CALL UMACH (2, NOUT)

! Set up interpolation points

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I)/FLOAT(NDATA)

 FDATA(I) = F(XDATA(I))

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 789

 10 CONTINUE

 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

! Interpolate

 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

 WRITE (NOUT,99999)

! Print on a finer grid

 NCOEF = NDATA

 XVEC(1) = XDATA(1)

 DO 20 I=2, 2*NDATA - 2, 2

 XVEC(I) = (XDATA(I/2+1)+XDATA(I/2))/2.0

 XVEC(I+1) = XDATA(I/2+1)

 20 CONTINUE

 CALL BS1GD (0, XVEC, KORDER, XKNOT, BSCOEF, ANS0)

 CALL BS1GD (1, XVEC, KORDER, XKNOT, BSCOEF, ANS1)

 DO 30 I=1, 2*NDATA - 1

 WRITE (NOUT,99998) XVEC(I), ANS0(I), F(XVEC(I)) - ANS0(I),&

 ANS1(I), DF(XVEC(I)) - ANS1(I)

 30 CONTINUE

99998 FORMAT (' ', F6.4, 5X, F7.4, 5X, F8.4, 5X, F8.4, 5X, F8.4)

99999 FORMAT (6X, 'X', 8X, 'S(X)', 7X, 'Error', 8X, 'S''(X)', 8X,&

 'Error', /)

 END

Output

 X S(X) Error S‘(X) Error

0.2000 0.4472 0.0000 1.0423 0.0757

0.3000 0.5456 0.0021 0.9262 -0.0133

0.4000 0.6325 0.0000 0.8101 -0.0196

0.5000 0.7077 -0.0006 0.6940 0.0131

0.6000 0.7746 0.0000 0.6446 0.0009

0.7000 0.8366 0.0001 0.5952 0.0024

0.8000 0.8944 0.0000 0.5615 -0.0025

0.9000 0.9489 -0.0002 0.5279 -0.0008

1.0000 1.0000 0.0000 0.4942 0.0058

BSITG
This function evaluates the integral of a spline, given its B-spline representation.

Function Return Value

BSITG — Value of the integral of the spline from A to B. (Output)

Required Arguments

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

KORDER — Order of the spline. (Input)

790 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

XKNOT — Array of length KORDER + NCOEF containing the knot sequence. (Input)

XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

FORTRAN 90 Interface

Generic: BSITG (A, B, KORDER, XKNOT, NCOEF, BSCOEF)

Specific: The specific interface names are S_BSITG and D_BSITG.

FORTRAN 77 Interface

Single: BSITG (A, B, KORDER, XKNOT, NCOEF, BSCOEF)

Double: The double precision function name is DBSITG.

Description

The function BSITG computes the integral of a spline given its B-spline representation.

Specifically, given the knot sequence t = XKNOT, the order k = KORDER, the coefficients

a = BSCOEF , n = NCOEF and an interval [a, b], BSITG returns the value

 , ,

1

n
b

i i ka
i

a B x dx

 t

This routine uses the identity (22) on page 151 of de Boor (1978), and it assumes that t1 = … = tk

and tn + 1= … = tn + k.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2ITG/DB2ITG. The

reference is:

CALL B2ITG(A, B, KORDER, XKNOT, NCOEF, BSCOEF, TCOEF, AJ,

DL, DR)

The additional arguments are as follows:

TCOEF — Work array of length KORDER + 1.

AJ — Work array of length KORDER + 1.

DL — Work array of length KORDER + 1.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 791

DR — Work array of length KORDER + 1.

2. Informational errors

Type Code

3 7 The upper and lower endpoints of integration are equal.

3 8 The lower limit of integration is less than XKNOT(KORDER).

3 9 The upper limit of integration is greater than XKNOT(NCOEF + 1).

4 4 Multiplicity of the knots cannot exceed the order of the spline.

4 5 The knots must be nondecreasing.

Example

We integrate the quartic (k = 5) spline that interpolates x
3
 at the points {i/10 : i = −10, …, 10}

over the interval [0, 1]. The exact answer is 1/4 since the interpolant reproduces cubic

polynomials.

 USE BSITG_INT

 USE BSNAK_INT

 USE BSINT_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER KORDER, NDATA, NKNOT

 PARAMETER (KORDER=5, NDATA=21, NKNOT=NDATA+KORDER)

!

 INTEGER I, NCOEF, NOUT

 REAL A, B, BSCOEF(NDATA), ERROR, EXACT, F,&

 FDATA(NDATA), FI, FLOAT, VAL, X, XDATA(NDATA),&

 XKNOT(NKNOT)

 INTRINSIC FLOAT

! Define function and integral

 F(X) = X*X*X

 FI(X) = X**4/4.0

! Set up interpolation points

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-11)/10.0

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Generate knot sequence

 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

! Interpolate

 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

!

 NCOEF = NDATA

 A = 0.0

 B = 1.0

! Integrate from A to B

 VAL = BSITG(A,B,KORDER,XKNOT,NCOEF,BSCOEF)

 EXACT = FI(B) - FI(A)

792 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 ERROR = EXACT - VAL

! Print results

 WRITE (NOUT,99999) A, B, VAL, EXACT, ERROR

99999 FORMAT (' On the closed interval (', F3.1, ',', F3.1,&

 ') we have :', /, 1X, 'Computed Integral = ', F10.5, /,&

 1X, 'Exact Integral = ', F10.5, /, 1X, 'Error '&

 , ' = ', F10.6, /, /)

 END

Output

On the closed interval (0.0,1.0) we have :

Computed Integral = 0.25000

Exact Integral = 0.25000

Error = 0.000000

BS2VL
This function evaluates a two-dimensional tensor-product spline, given its tensor-product B-spline

representation.

Function Return Value

BS2VL — Value of the spline at (X, Y). (Output)

Required Arguments

X — X-coordinate of the point at which the spline is to be evaluated. (Input)

Y — Y-coordinate of the point at which the spline is to be evaluated. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.

(Input)

XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.

(Input)

YKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 793

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline

coefficients. (Input)

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

FORTRAN 90 Interface

Generic: BS2VL (X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF)

Specific: The specific interface names are S_BS2VL and D_BS2VL.

FORTRAN 77 Interface

Single: BS2VL (X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF)

Double: The double precision function name is DBS2VL.

Description

The function BS2VL evaluates a bivariate tensor product spline (represented as a linear

combination of tensor product B-splines) at a given point. This routine is a special case of the

routine BS2DR, which evaluates partial derivatives of such a spline. (The value of a spline is its

zero-th derivative.) For more information see de Boor (1978, pages 351− 353).

This routine returns the value of the function s at a point (x, y) given the coefficients c by

computing

 , , , ,

1 1

,
y x

x x y y

N N

nm n k m k

m n

s x y c B x B y

 t t

where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in

KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences (XKNOT

and YKNOT).

Comments

Workspace may be explicitly provided, if desired, by use of B22VL/DB22VL. The reference

is:

CALL B22VL(X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF,

BSCOEF, WK)

The additional argument is

WK — Work array of length 3 * MAX(KXORD, KYORD) + KYORD.

Example

For an example of the use of BS2VL, see IMSL routine BS2IN.

794 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

BS2DR
This function evaluates the derivative of a two-dimensional tensor-product spline, given its tensor-

product B-spline representation.

Function Return Value

BS2DR — Value of the (IXDER, IYDER) derivative of the spline at (X, Y). (Output)

Required Arguments

IXDER — Order of the derivative in the X-direction. (Input)

IYDER — Order of the derivative in the Y-direction. (Input)

X — X-coordinate of the point at which the spline is to be evaluated. (Input)

Y — Y-coordinate of the point at which the spline is to be evaluated. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-

direction. (Input)

XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.

(Input)

YKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline

coefficients. (Input)

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

FORTRAN 90 Interface

Generic: BS2DR (IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF,
BSCOEF)

Specific: The specific interface names are S_BS2DR and D_BS2DR.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 795

FORTRAN 77 Interface

Single: BS2DR (IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF,
BSCOEF)

Double: The double precision function name is DBS2DR.

Description

The routine BS2DR evaluates a partial derivative of a bivariate tensor-product spline (represented

as a linear combination of tensor product B-splines) at a given point; see de Boor (1978, pages

351− 353).

This routine returns the value of s
(p,q)

at a point (x, y) given the coefficients c by computing

 ,
, , , ,

1 1

,
y x

x x y y

N N
p q p q

nm n k m k

m n

s x y c B x B y

 t t

where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in

KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences (XKNOT

and YKNOT).

Comments

1. Workspace may be explicitly provided, if desired, by use of B22DR/DB22DR. The

reference is:

CALL B22DR(IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT,

NXCOEF, NYCOEF, BSCOEF, WK)

The additional argument is:

WK — Work array of length 3 * MAX(KXORD, KYORD) + KYORD.

2. Informational errors

Type Code

3 1 The point X does not satisfy

XKNOT(KXORD) .LE. X .LE. XKNOT(NXCOEF + 1).

3 2 The point Y does not satisfy

YKNOT(KYORD) .LE. Y .LE. YKNOT(NYCOEF + 1).

Example

In this example, a spline interpolant s to a function f is constructed. We use the IMSL routine

BS2IN to compute the interpolant and then BS2DR is employed to compute s
(2,1)

(x, y). The values

of this partial derivative and the error are computed on a 4 × 4 grid and then displayed.

 USE BS2DR_INT

796 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 USE BSNAK_INT

 USE UMACH_INT

 USE BS2IN_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR PARAMETERS

 INTEGER KXORD, KYORD, LDF, NXDATA, NXKNOT, NYDATA, NYKNOT

 PARAMETER (KXORD=5, KYORD=3, NXDATA=21, NYDATA=6, LDF=NXDATA,&

 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD)

!

 INTEGER I, J, NOUT, NXCOEF, NYCOEF

 REAL BSCOEF(NXDATA,NYDATA), F, F21,&

 FDATA(LDF,NYDATA), FLOAT, S21, X, XDATA(NXDATA),&

 XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT)

 INTRINSIC FLOAT

! Define function and (2,1) derivative

 F(X,Y) = X*X*X*X + X*X*X*Y*Y

 F21(X,Y) = 12.0*X*Y

! Set up interpolation points

 DO 10 I=1, NXDATA

 XDATA(I) = FLOAT(I-11)/10.0

 10 CONTINUE

! Generate knot sequence

 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)

! Set up interpolation points

 DO 20 I=1, NYDATA

 YDATA(I) = FLOAT(I-1)/5.0

 20 CONTINUE

! Generate knot sequence

 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)

! Generate FDATA

 DO 40 I=1, NYDATA

 DO 30 J=1, NXDATA

 FDATA(J,I) = F(XDATA(J),YDATA(I))

 30 CONTINUE

 40 CONTINUE

! Interpolate

 CALL BS2IN (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, &

 YKNOT, BSCOEF)

 NXCOEF = NXDATA

 NYCOEF = NYDATA

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Print (2,1) derivative over a

! grid of [0.0,1.0] x [0.0,1.0]

! at 16 points.

 DO 60 I=1, 4

 DO 50 J=1, 4

 X = FLOAT(I-1)/3.0

 Y = FLOAT(J-1)/3.0

! Evaluate spline

 S21 = BS2DR(2,1,X,Y,KXORD,KYORD,XKNOT,YKNOT,NXCOEF,NYCOEF,&

 BSCOEF)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 797

 WRITE (NOUT,'(3F15.4, F15.6)') X, Y, S21, F21(X,Y) - S21

 50 CONTINUE

 60 CONTINUE

99999 FORMAT (39X, '(2,1)', /, 13X, 'X', 14X, 'Y', 10X, 'S (X,Y)',&

 5X, 'Error')

 END

Output

 (2,1)

 X Y S (X,Y) Error

0.0000 0.0000 0.0000 0.000000

0.0000 0.3333 0.0000 0.000000

0.0000 0.6667 0.0000 0.000000

0.0000 1.0000 0.0000 0.000001

0.3333 0.0000 0.0000 0.000000

0.3333 0.3333 1.3333 0.000002

0.3333 0.6667 2.6667 -0.000002

0.3333 1.0000 4.0000 0.000008

0.6667 0.0000 0.0000 0.000006

0.6667 0.3333 2.6667 -0.000011

0.6667 0.6667 5.3333 0.000028

0.6667 1.0000 8.0001 -0.000134

1.0000 0.0000 -0.0004 0.000439

1.0000 0.3333 4.0003 -0.000319

1.0000 0.6667 7.9996 0.000363

1.0000 1.0000 12.0005 -0.000458

BS2GD
Evaluates the derivative of a two-dimensional tensor-product spline, given its tensor-product

B-spline representation on a grid.

Required Arguments

IXDER — Order of the derivative in the X-direction. (Input)

IYDER — Order of the derivative in the Y-direction. (Input)

XVEC — Array of length NX containing the X-coordinates at which the spline is to be

evaluated. (Input)

The points in XVEC should be strictly increasing.

YVEC — Array of length NY containing the Y-coordinates at which the spline is to be

evaluated. (Input)

The points in YVEC should be strictly increasing.

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

798 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.

(Input)

XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.

(Input)

YKNOT must be nondecreasing.

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline

coefficients. (Input)

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

VALUE — Value of the (IXDER, IYDER) derivative of the spline on the NX by NY grid.

(Output)

VALUE (I, J) contains the derivative of the spline at the point (XVEC(I), YVEC(J)).

Optional Arguments

NX — Number of grid points in the X-direction. (Input)

Default: NX = size (XVEC,1).

NY — Number of grid points in the Y-direction. (Input)

Default: NY = size (YVEC,1).

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

Default: NXCOEF = size (XKNOT,1) – KXORD.

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

Default: NYCOEF = size (YKNOT,1) – KYORD.

LDVALU — Leading dimension of VALUE exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDVALU = SIZE (VALUE,1).

FORTRAN 90 Interface

Generic: CALL BS2GD (IXDER, IDER, XVEC, YVEC, KXORD, KYORD, XKNOT, YKNOT,

BSCOEF, VALUE [,…])

Specific: The specific interface names are S_BS2GD and D_BS2GD.

FORTRAN 77 Interface

Single: CALL BS2GD (IXDER, IYDER, NX, XVEC, NY, YVEC, KXORD, KYORD, XKNOT,

YKNOT, NXCOEF, NYCOEF, BSCOEF, VALUE, LDVALU)

Double: The double precision name is DBS2GD.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 799

Description

The routine BS2GD evaluates a partial derivative of a bivariate tensor-product spline (represented

as a linear combination of tensor-product B-splines) on a grid of points; see de Boor (1978, pages

351− 353).

This routine returns the values of s
(p,q)

on the grid (xi, yj) for i = 1, …, nx and j = 1, …, ny given the

coefficients c by computing (for all (x, y) in the grid)

 ,

, , , ,
1 1

,
y x

x x y y

N N
p qp q

nm n k m k
m n

s x y c B x B y

 t t

where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in

KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences (XKNOT

and YKNOT). The grid must be ordered in the sense that xi < xi+1 and yj < yj+1.

Comments

1. Workspace may be explicitly provided, if desired, by use of B22GD/DB22GD. The

reference is:

CALL B22GD (IXDER, IYDER, NX, XVEC, NY, YVEC, KXORD,

KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF, VALUE,

LDVALU, LEFTX, LEFTY, A, B, DBIATX, DBIATY, BX, BY)

The additional arguments are as follows:

LEFTX — Integer work array of length NX.

LEFTY — Integer work array of length NY.

A — Work array of length KXORD * KXORD.

B — Work array of length KYORD * KYORD.

DBIATX — Work array of length KXORD * (IXDER + 1).

DBIATY — Work array of length KYORD * (IYDER + 1).

BX — Work array of length KXORD * NX.

BY — Work array of length KYORD * NY.

2 Informational errors

Type Code

3 1 XVEC(I) does not satisfy

XKNOT (KXORD) .LE. XVEC(I) .LE. XKNOT(NXCOEF + 1)

800 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

3 2 YVEC(I) does not satisfy

YKNOT (KYORD) .LE. YVEC(I) .LE. YKNOT(NYCOEF + 1)

4 3 XVEC is not strictly increasing.

4 4 YVEC is not strictly increasing.

Example

In this example, a spline interpolant s to a function f is constructed. We use the IMSL routine

BS2IN to compute the interpolant and then BS2GD is employed to compute s
(2,1)

 (x, y) on a grid.

The values of this partial derivative and the error are computed on a 4 × 4 grid and then displayed.

 USE BS2GD_INT

 USE BS2IN_INT

 USE BSNAK_INT

 USE UMACH_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I, J, KXORD, KYORD, LDF, NOUT, NXCOEF, NXDATA,&

 NYCOEF, NYDATA

 REAL DCCFD(21,6), DOCBSC(21,6), DOCXD(21), DOCXK(26),&

 DOCYD(6), DOCYK(9), F, F21, FLOAT, VALUE(4,4),&

 X, XVEC(4), Y, YVEC(4)

 INTRINSIC FLOAT

! Define function and derivative

 F(X,Y) = X*X*X*X + X*X*X*Y*Y

 F21(X,Y) = 12.0*X*Y

! yj Initialize/Setup

 CALL UMACH (2, NOUT)

 KXORD = 5

 KYORD = 3

 NXDATA = 21

 NYDATA = 6

 LDF = NXDATA

! Set up interpolation points

 DO 10 I=1, NXDATA

 DOCXD(I) = FLOAT(I-11)/10.0

 10 CONTINUE

! Set up interpolation points

 DO 20 I=1, NYDATA

 DOCYD(I) = FLOAT(I-1)/5.0

 20 CONTINUE

! Generate knot sequence

 CALL BSNAK (NXDATA, DOCXD, KXORD, DOCXK)

! Generate knot sequence

 CALL BSNAK (NYDATA, DOCYD, KYORD, DOCYK)

! Generate FDATA

 DO 40 I=1, NYDATA

 DO 30 J=1, NXDATA

 DCCFD(J,I) = F(DOCXD(J),DOCYD(I))

 30 CONTINUE

 40 CONTINUE

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 801

! Interpolate

 CALL BS2IN (DOCXD, DOCYD, DCCFD, KXORD, KYORD, &

 DOCXK, DOCYK, DOCBSC)

! Print (2,1) derivative over a

! grid of [0.0,1.0] x [0.0,1.0]

! at 16 points.

 NXCOEF = NXDATA

 NYCOEF = NYDATA

 WRITE (NOUT,99999)

 DO 50 I=1, 4

 XVEC(I) = FLOAT(I-1)/3.0

 YVEC(I) = XVEC(I)

 50 CONTINUE

 CALL BS2GD (2, 1, XVEC, YVEC, KXORD, KYORD, DOCXK, DOCYK,&

 DOCBSC, VALUE)

 DO 70 I=1, 4

 DO 60 J=1, 4

 WRITE (NOUT,'(3F15.4,F15.6)') XVEC(I), YVEC(J),&

 VALUE(I,J),&

 F21(XVEC(I),YVEC(J)) -&

 VALUE(I,J)

 60 CONTINUE

 70 CONTINUE

99999 FORMAT (39X, '(2,1)', /, 13X, 'X', 14X, 'Y', 10X, 'S (X,Y)',&

 5X, 'Error')

 END

Output

 (2,1)

 X Y S (X,Y) Error

0.0000 0.0000 0.0000 0.000000

0.0000 0.3333 0.0000 0.000000

0.0000 0.6667 0.0000 0.000000

0.0000 1.0000 0.0000 0.000001

0.3333 0.0000 0.0000 -0.000001

0.3333 0.3333 1.3333 0.000001

0.3333 0.6667 2.6667 -0.000004

0.3333 1.0000 4.0000 0.000008

0.6667 0.0000 0.0000 -0.000001

0.6667 0.3333 2.6667 -0.000008

0.6667 0.6667 5.3333 0.000038

0.6667 1.0000 8.0001 -0.000113

1.0000 0.0000 -0.0005 0.000488

1.0000 0.3333 4.0004 -0.000412

1.0000 0.6667 7.9995 0.000488

1.0000 1.0000 12.0002 -0.000244

BS2IG
This function evaluates the integral of a tensor-product spline on a rectangular domain, given its

tensor-product B-spline representation.

802 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Function Return Value

BS2IG — Integral of the spline over the rectangle (A, B) by (C, D).

(Output)

Required Arguments

A — Lower limit of the X-variable. (Input)

B — Upper limit of the X-variable. (Input)

C — Lower limit of the Y-variable. (Input)

D — Upper limit of the Y-variable. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.

(Input)

XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.

(Input)

YKNOT must be nondecreasing.

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline

coefficients. (Input)

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

Optional Arguments

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

Default: NXCOEF = size (XKNOT,1) – KXORD.

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

Default: NYCOEF = size (YKNOT,1) – KYORD.

FORTRAN 90 Interface

Generic: BS2IG (A, B, C, D, KXORD, KYORD, XKNOT, YKNOT, BSCOEF [,…])

Specific: The specific interface names are S_BS2IG and D_BS2IG.

FORTRAN 77 Interface

Single: BS2IG (A, B, C, D, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 803

Double: The double precision function name is DBS2IG.

Description

The function BS2IG computes the integral of a tensor-product two-dimensional spline given its

B-spline representation. Specifically, given the knot sequence tx = XKNOT, ty = YKNOT, the order

kx = KXORD, ky = KYORD, the coefficients β = BSCOEF, the number of coefficients nx = NXCOEF,

ny = NYCOEF and a rectangle [a, b] by [c, d], BS2IG returns the value

1 1

yx
nn

b d

ij ija c
i j

B dy dx

where

 , , , , ,,
x x y yi j i k j kB x y B x B y t t

This routine uses the identity (22) on page 151 of de Boor (1978). It assumes (for all knot

sequences) that the first and last k knots are stacked, that is,t1 = … = tk and tn + 1 = … = tn + k,

where k is the order of the spline in the x or y direction.

Comments

1. Workspace may be explicitly provided, if desired, by use of B22IG/DB22IG. The

reference is:

CALL B22IG(A, B, C, D, KXORD, KYORD, XKNOT, YKNOT, NXCOEF,

NYCOEF, BSCOEF, WK)

The additional argument is:

WK — Work array of length 4 * (MAX(KXORD, KYORD) + 1) + NYCOEF.

2. Informational errors

Type Code

3 1 The lower limit of the X-integration is less than XKNOT(KXORD).

3 2 The upper limit of the X-integration is greater than XKNOT(NXCOEF +

1).

3 3 The lower limit of the Y-integration is less than YKNOT(KYORD).

3 4 The upper limit of the Y-integration is greater than YKNOT(NYCOEF +

1).

4 13 Multiplicity of the knots cannot exceed the order of the spline.

4 14 The knots must be nondecreasing.

804 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Example

We integrate the two-dimensional tensor-product quartic (kx = 5) by linear (ky = 2) spline that

interpolates x
3
 + xy at the points {(i/10, j/5) : i = −10, …, 10 and j = 0, …, 5} over the rectangle

[0, 1] × [.5, 1]. The exact answer is 5/16.

 USE BS2IG_INT

 USE BSNAK_INT

 USE BS2IN_INT

 USE UMACH_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR PARAMETERS

 INTEGER KXORD, KYORD, LDF, NXDATA, NXKNOT, NYDATA, NYKNOT

 PARAMETER (KXORD=5, KYORD=2, NXDATA=21, NYDATA=6, LDF=NXDATA,&

 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD)

!

 INTEGER I, J, NOUT, NXCOEF, NYCOEF

 REAL A, B, BSCOEF(NXDATA,NYDATA), C , D, F,&

 FDATA(LDF,NYDATA), FI, FLOAT, VAL, X, XDATA(NXDATA),&

 XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT)

 INTRINSIC FLOAT

! Define function and integral

 F(X,Y) = X*X*X + X*Y

 FI(A,B,C ,D) = .25*((B**4-A**4)*(D-C)+(B*B-A*A)*(D*D-C *C))

! Set up interpolation points

 DO 10 I=1, NXDATA

 XDATA(I) = FLOAT(I-11)/10.0

 10 CONTINUE

! Generate knot sequence

 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)

! Set up interpolation points

 DO 20 I=1, NYDATA

 YDATA(I) = FLOAT(I-1)/5.0

 20 CONTINUE

! Generate knot sequence

 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)

! Generate FDATA

 DO 40 I=1, NYDATA

 DO 30 J=1, NXDATA

 FDATA(J,I) = F(XDATA(J),YDATA(I))

 30 CONTINUE

 40 CONTINUE

! Interpolate

 CALL BS2IN (XDATA, YDATA, FDATA, KXORD,&

 KYORD, XKNOT, YKNOT, BSCOEF)

! Integrate over rectangle

! [0.0,1.0] x [0.0,0.5]

 NXCOEF = NXDATA

 NYCOEF = NYDATA

 A = 0.0

 B = 1.0

 C = 0.5

 D = 1.0

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 805

 VAL = BS2IG(A,B,C ,D,KXORD,KYORD,XKNOT,YKNOT,BSCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Print results

 WRITE (NOUT,99999) VAL, FI(A,B,C ,D), FI(A,B,C ,D) - VAL

99999 FORMAT (' Computed Integral = ', F10.5, /, ' Exact Integral '&

 , '= ', F10.5, /, ' Error '&

 , '= ', F10.6, /)

 END

Output

Computed Integral = 0.31250

Exact Integral = 0.31250

Error = 0.000000

BS3VL
This function Evaluates a three-dimensional tensor-product spline, given its tensor-product B-

spline representation.

Function Return Value

BS3VL — Value of the spline at (X, Y, Z). (Output)

Required Arguments

X — X-coordinate of the point at which the spline is to be evaluated. (Input)

Y — Y-coordinate of the point at which the spline is to be evaluated. (Input)

Z — Z-coordinate of the point at which the spline is to be evaluated. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

KZORD — Order of the spline in the Z-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.

(Input)

XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.

(Input)

YKNOT must be nondecreasing.

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the Z-direction.

(Input)

ZKNOT must be nondecreasing.

806 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

NZCOEF — Number of B-spline coefficients in the Z-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product

B-spline coefficients. (Input)

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.

FORTRAN 90 Interface

Generic: BS3VL (X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF,

NYCOEF, NZCOEF, BSCOEF)

 Specific: The specific interface names are S_BS3VL and D_BS3VL.

FORTRAN 77 Interface

Single: BS3VL (X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF,

NYCOEF, NZCOEF, BSCOEF)

Double: The double precision function name is DBS3VL.

Description

The function BS3VL evaluates a trivariate tensor-product spline (represented as a linear

combination of tensor-product B-splines) at a given point. This routine is a special case of the

IMSL routine BS3DR, which evaluates a partial derivative of such a spline. (The value of a spline

is its zero-th derivative.) For more information, see de Boor (1978, pages 351− 353).

This routine returns the value of the function s at a point (x, y, z) given the coefficients c by

computing

 , , , , , ,

1 1 1

, ,
y xz

x x y y z z

N NN

nml n k m k l k

l m n

s x y z c B x B y B z

 t t t

where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in

KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot

sequences (XKNOT, YKNOT, and ZKNOT).

Comments

Workspace may be explicitly provided, if desired, by use of B23VL/DB23VL. The reference is:

CALL B23VL (X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT,

ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, WK)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 807

The additional argument is:

WK — Work array of length 3 * MAX(KXORD, KYORD, KZORD) + KYORD *

KZORD + KZORD.

Example

For an example of the use of BS3VL, see IMSL routine BS3IN.

BS3DR
This function evaluates the derivative of a three-dimensional tensor-product spline, given its

tensor-product B-spline representation.

Function Return Value

BS3DR — Value of the (IXDER, IYDER, IZDER) derivative of the spline at (X, Y, Z).

(Output)

Required Arguments

IXDER — Order of the X-derivative. (Input)

IYDER — Order of the Y-derivative. (Input)

IZDER — Order of the Z-derivative. (Input)

X — X-coordinate of the point at which the spline is to be evaluated. (Input)

Y — Y-coordinate of the point at which the spline is to be evaluated. (Input)

Z — Z-coordinate of the point at which the spline is to be evaluated. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

KZORD — Order of the spline in the Z-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.

(Input)

KNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.

(Input)

YKNOT must be nondecreasing.

808 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the Z-direction.

(Input)

ZKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

NZCOEF — Number of B-spline coefficients in the Z-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product

B-spline coefficients. (Input)

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.

FORTRAN 90 Interface

Generic: BS3DR (IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT,

ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF)

Specific: The specific interface names are S_BS3DR and D_BS3DR.

FORTRAN 77 Interface

Single: BS3DR (IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT,

ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF)

Double: The double precision function name is DBS3DR.

Description

The function BS3DR evaluates a partial derivative of a trivariate tensor-product spline (represented

as a linear combination of tensor-product B-splines) at a given point. For more information, see de

Boor (1978, pages 351− 353).

This routine returns the value of the function s
(p,

q,

r)

 at a point (x, y, z) given the coefficients c by

computing

 , ,

, , , , , ,
1 1 1

, ,
y xz

x x y y z z

N NN
p q rp q r

nml n k m k l k
l m n

s x y z c B x B y B z

 t t t

where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in

KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot

sequences (XKNOT, YKNOT, and ZKNOT).

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 809

Comments

1. Workspace may be explicitly provided, if desired, by use of B23DR/DB23DR. The

reference is:

CALL B23DR(IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD,

KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF,

BSCOEF, WK)

The additional argument is:

WK — Work array of length 3 * MAX0(KXORD, KYORD, KZORD) + KYORD *

KZORD + KZORD.

2. Informational errors

Type Code

3 1 The point X does not satisfy

XKNOT(KXORD) .LE. X .LE. XKNOT(NXCOEF + 1).

3 2 The point Y does not satisfy

YKNOT(KYORD) .LE. Y .LE. YKNOT(NYCOEF + 1).

3 3 The point Z does not satisfy

ZKNOT (KZORD) .LE. Z .LE. ZKNOT(NZCOEF + 1).

Example

In this example, a spline interpolant s to a function f(x, y, z) = x
4
 + y(xz)

3
 is constructed using

BS3IN. Next, BS3DR is used to compute s
(2,0,1)

(x, y, z). The values of this partial derivative and the

error are computed on a 4 × 4 × 2 grid and then displayed.

 USE BS3DR_INT

 USE BS3IN_INT

 USE BSNAK_INT

 USE UMACH_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR PARAMETERS

 INTEGER KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT,&

 NYDATA, NYKNOT, NZDATA, NZKNOT

 PARAMETER (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NYDATA=6,&

 NZDATA=8, LDF=NXDATA, MDF=NYDATA,&

 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,&

 NZKNOT=NZDATA+KZORD)

!

 INTEGER I, J, K, L, NOUT, NXCOEF, NYCOEF, NZCOEF

 REAL BSCOEF(NXDATA,NYDATA,NZDATA), F, F201,&

 FDATA(LDF,MDF,NZDATA), FLOAT, S201, X, XDATA(NXDATA),&

 XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT), Z,&

 ZDATA(NZDATA), ZKNOT(NZKNOT)

 INTRINSIC FLOAT

! Define function and (2,0,1)

! derivative

810 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 F(X,Y,Z) = X*X*X*X + X*X*X*Y*Z*Z*Z

 F201(X,Y,Z) = 18.0*X*Y*Z

! Set up X-interpolation points

 DO 10 I=1, NXDATA

 XDATA(I) = FLOAT(I-11)/10.0

 10 CONTINUE

! Set up Y-interpolation points

 DO 20 I=1, NYDATA

 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)

 20 CONTINUE

! Set up Z-interpolation points

 DO 30 I=1, NZDATA

 ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)

 30 CONTINUE

! Generate knots

 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)

 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)

 CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)

! Generate FDATA

 DO 50 K=1, NZDATA

 DO 40 I=1, NYDATA

 DO 40 J=1, NXDATA

 FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))

 40 CONTINUE

 50 CONTINUE

! Get output unit number

 CALL UMACH (2, NOUT)

! Interpolate&

 CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT, &

 YKNOT, ZKNOT, BSCOEF)

!

 NXCOEF = NXDATA

 NYCOEF = NYDATA

 NZCOEF = NZDATA

! Write heading

 WRITE (NOUT,99999)

! Print over a grid of

! [-1.0,1.0] x [0.0,1.0] x [0.0,1.0]

! at 32 points.

 DO 80 I=1, 4

 DO 70 J=1, 4

 DO 60 L=1, 2

 X = 2.0*(FLOAT(I-1)/3.0) - 1.0

 Y = FLOAT(J-1)/3.0

 Z = FLOAT(L-1)

! Evaluate spline

 S201 = BS3DR(2,0,1,X,Y,Z,KXORD,KYORD,KZORD,XKNOT,YKNOT,&

 ZKNOT,NXCOEF,NYCOEF,NZCOEF,BSCOEF)

 WRITE (NOUT,'(3F12.4,2F12.6)') X, Y, Z, S201,&

 F201(X,Y,Z) - S201

 60 CONTINUE

 70 CONTINUE

 80 CONTINUE

99999 FORMAT (38X, '(2,0,1)', /, 9X, 'X', 11X,&

 'Y', 11X, 'Z', 4X, 'S (X,Y,Z) Error')

 END

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 811

Output

 (2,0,1)

 X Y Z S (X,Y,Z) Error

-1.0000 0.0000 0.0000 -0.000107 0.000107

-1.0000 0.0000 1.0000 0.000053 -0.000053

-1.0000 0.3333 0.0000 0.064051 -0.064051

-1.0000 0.3333 1.0000 -5.935941 -0.064059

-1.0000 0.6667 0.0000 0.127542 -0.127542

-1.0000 0.6667 1.0000 -11.873034 -0.126966

-1.0000 1.0000 0.0000 0.191166 -0.191166

-1.0000 1.0000 1.0000 -17.808527 -0.191473

-0.3333 0.0000 0.0000 -0.000002 0.000002

-0.3333 0.0000 1.0000 0.000000 0.000000

-0.3333 0.3333 0.0000 0.021228 -0.021228

-0.3333 0.3333 1.0000 -1.978768 -0.021232

-0.3333 0.6667 0.0000 0.042464 -0.042464

-0.3333 0.6667 1.0000 -3.957536 -0.042464

-0.3333 1.0000 0.0000 0.063700 -0.063700

-0.3333 1.0000 1.0000 -5.936305 -0.063694

 0.3333 0.0000 0.0000 -0.000003 0.000003

 0.3333 0.0000 1.0000 0.000000 0.000000

 0.3333 0.3333 0.0000 -0.021229 0.021229

 0.3333 0.3333 1.0000 1.978763 0.021238

 0.3333 0.6667 0.0000 -0.042465 0.042465

 0.3333 0.6667 1.0000 3.957539 0.042462

 0.3333 1.0000 0.0000 -0.063700 0.063700

 0.3333 1.0000 1.0000 5.936304 0.063697

 1.0000 0.0000 0.0000 -0.000098 0.000098

 1.0000 0.0000 1.0000 0.000053 -0.000053

 1.0000 0.3333 0.0000 -0.063855 0.063855

 1.0000 0.3333 1.0000 5.936146 0.063854

 1.0000 0.6667 0.0000 -0.127631 0.127631

 1.0000 0.6667 1.0000 11.873067 0.126933

 1.0000 1.0000 0.0000 -0.191442 0.191442

 1.0000 1.0000 1.0000 17.807940 0.192060

BS3GD
Evaluates the derivative of a three-dimensional tensor-product spline, given its tensor-product

B-spline representation on a grid.

Required Arguments

IXDER — Order of the X-derivative. (Input)

IYDER — Order of the Y-derivative. (Input)

IZDER — Order of the Z-derivative. (Input)

XVEC — Array of length NX containing the x-coordinates at which the spline is to be

evaluated. (Input)

The points in XVEC should be strictly increasing.

812 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

YVEC — Array of length NY containing the y-coordinates at which the spline is to be

evaluated. (Input)

The points in YVEC should be strictly increasing.

ZVEC — Array of length NY containing the y-coordinates at which the spline is to be

evaluated. (Input)

The points in YVEC should be strictly increasing.

KXORD — Order of the spline in the x-direction. (Input)

KYORD — Order of the spline in the y-direction. (Input)

KZORD — Order of the spline in the z-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the x-direction.

(Input)

XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the y-direction.

(Input)

YKNOT must be nondecreasing.

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the z-direction.

(Input)

ZKNOT must be nondecreasing.

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product

B-spline coefficients. (Input)

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.

VALUE — Array of size NX by NY by NZ containing the values of the (IXDER, IYDER,

IZDER) derivative of the spline on the NX by NY by NZ grid. (Output)

VALUE(I, J, K) contains the derivative of the spline at the point (XVEC(I), YVEC(J),

ZVEC(K)).

Optional Arguments

NX — Number of grid points in the x-direction. (Input)

Default: NX = size (XVEC,1).

NY — Number of grid points in the y-direction. (Input)

Default: NY = size (YVEC,1).

NZ — Number of grid points in the z-direction. (Input)

Default: NZ = size (ZVEC,1).

NXCOEF — Number of B-spline coefficients in the x-direction. (Input)

Default: NXCOEF = size (XKNOT,1) – KXORD.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 813

NYCOEF — Number of B-spline coefficients in the y-direction. (Input)

Default: NYCOEF = size (YKNOT,1) – KYORD.

NZCOEF — Number of B-spline coefficients in the z-direction. (Input)

Default: NZCOEF = size (ZKNOT,1) – KZORD.

LDVALU — Leading dimension of VALUE exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDVALU = SIZE (VALUE,1).

MDVALU — Middle dimension of VALUE exactly as specified in the dimension statement of

the calling program. (Input)

Default: MDVALU = SIZE (VALUE,2).

FORTRAN 90 Interface

Generic: CALL BS3GD (IXDER, IYDER, IZDER, XVEC, YVEC, ZVEC, KXORD, KYORD,

KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, VALUE [,…])

Specific: The specific interface names are S_BS3GD and D_BS3GD.

FORTRAN 77 Interface

Single: CALL BS3GD (IXDER, IYDER, IZDER, NX, XVEC, NY, YVEC, NZ, ZVEC, KXORD,

KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF,

VALUE, LDVALU, MDVALU)

Double: The double precision name is DBS3GD.

Description

The routine BS3GD evaluates a partial derivative of a trivariate tensor-product spline (represented

as a linear combination of tensor-product B-splines) on a grid. For more information, see de Boor

(1978, pages 351− 353).

This routine returns the value of the function s
(p,q,r)

 on the grid (xi, yj, zk) for i = 1, …, nx,

j = 1, …, ny, and k = 1, …, nz given the coefficients c by computing (for all (x, y, z) on the grid)

 , ,

, , , , , ,
1 1 1

, ,
y xz

x x y y z z

N NN
p q rp q r

nml n k m k l k
l m n

s x y z c B x B y B z

 t t t

where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in

KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot

sequences (XKNOT, YKNOT, and ZKNOT). The grid must be ordered in the sense that

xi < xi + 1, yj < yj + 1, and zk < zk + 1.

814 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of B23GD/DB23GD. The

reference is:

CALL B23GD ((IXDER, IYDER, IZDER, NX, XVEC, NY, YVEC, NZ,

ZVEC, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT,

NXCOEF, NYCOEF, NZCOEF, BSCOEF, VALUE, LDVALU,

MDVALU, LEFTX, LEFTY, LEFTZ, A, B, C, DBIATX, DBIATY,

DBIATZ, BX, BY, BZ)

The additional arguments are as follows:

LEFTX — Work array of length NX.

LEFTY — Work array of length NY.

LEFTZ — Work array of length NZ.

A — Work array of length KXORD * KXORD.

B — Work array of length KYORD * KYORD.

C — Work array of length KZORD * KZORD.

DBIATX — Work array of length KXORD * (IXDER + 1).

DBIATY — Work array of length KYORD * (IYDER + 1).

DBIATZ — Work array of length KZORD * (IZDER + 1).

BX — Work array of length KXORD * NX.

BY — Work array of length KYORD * NY.

BZ — Work array of length KZORD * NZ.

2. Informational errors

Type Code

3 1 XVEC(I) does not satisfy

XKNOT(KXORD) ≤ XVEC(I) ≤ XKNOT(NXCOEF + 1).

3 2 YVEC(I) does not satisfy

YKNOT(KYORD) ≤ YVEC(I) ≤ YKNOT(NYCOEF + 1).

3 3 ZVEC(I) does not satisfy

ZKNOT(KZORD) ≤ ZVEC(I) ≤ ZKNOT(NZCOEF + 1).

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 815

4 4 XVEC is not strictly increasing.

4 5 YVEC is not strictly increasing.

4 6 ZVEC is not strictly increasing.

Example

In this example, a spline interpolant s to a function f(x, y, z) = x
4
 + y(xz)

3
 is constructed using

BS3IN. Next, BS3GD is used to compute s
(2,0,1)

(x, y, z) on the grid. The values of this partial

derivative and the error are computed on a 4 × 4 × 2 grid and then displayed.

 USE BS3GD_INT

 USE BS3IN_INT

 USE BSNAK_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER KXORD, KYORD, KZORD, LDF, LDVAL, MDF, MDVAL, NXDATA,&

 NXKNOT, NYDATA, NYKNOT, NZ, NZDATA, NZKNOT

 PARAMETER (KXORD=5, KYORD=2, KZORD=3, LDVAL=4, MDVAL=4,&

 NXDATA=21, NYDATA=6, NZ=2, NZDATA=8, LDF=NXDATA,&

 MDF=NYDATA, NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,&

 NZKNOT=NZDATA+KZORD)

!

 INTEGER I, J, K, L, NOUT, NXCOEF, NYCOEF, NZCOEF

 REAL BSCOEF(NXDATA,NYDATA,NZDATA), F, F201,&

 FDATA(LDF,MDF,NZDATA), FLOAT, VALUE(LDVAL,MDVAL,NZ),&

 X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(LDVAL), Y,&

 YDATA(NYDATA), YKNOT(NYKNOT), YVEC(MDVAL), Z,&

 ZDATA(NZDATA), ZKNOT(NZKNOT), ZVEC(NZ)

 INTRINSIC FLOAT

!

!

!

 F(X,Y,Z) = X*X*X*X + X*X*X*Y*Z*Z*Z

 F201(X,Y,Z) = 18.0*X*Y*Z

!

 CALL UMACH (2, NOUT)

! Set up X interpolation points

 DO 10 I=1, NXDATA

 XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) - 1.0

 10 CONTINUE

! Set up Y interpolation points

 DO 20 I=1, NYDATA

 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)

 20 CONTINUE

! Set up Z interpolation points

 DO 30 I=1, NZDATA

 ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)

 30 CONTINUE

! Generate knots

 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)

 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)

 CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)

! Generate FDATA

816 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 DO 50 K=1, NZDATA

 DO 40 I=1, NYDATA

 DO 40 J=1, NXDATA

 FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))

 40 CONTINUE

 50 CONTINUE

! Interpolate

 CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD,&

 KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF)

!

 NXCOEF = NXDATA

 NYCOEF = NYDATA

 NZCOEF = NZDATA

! Print over a grid of

! [-1.0,1.0] x [0.0,1.0] x [0.0,1.0]

! at 32 points.

 DO 60 I=1, 4

 XVEC(I) = 2.0*(FLOAT(I-1)/3.0) - 1.0

 60 CONTINUE

 DO 70 J=1, 4

 YVEC(J) = FLOAT(J-1)/3.0

 70 CONTINUE

 DO 80 L=1, 2

 ZVEC(L) = FLOAT(L-1)

 80 CONTINUE

 CALL BS3GD (2, 0, 1, XVEC, YVEC, ZVEC, KXORD, KYORD,&

 KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, VALUE)

!

!

 WRITE (NOUT,99999)

 DO 110 I=1, 4

 DO 100 J=1, 4

 DO 90 L=1, 2

 WRITE (NOUT,'(5F13.4)') XVEC(I), YVEC(J), ZVEC(L),&

 VALUE(I,J,L),&

 F201(XVEC(I),YVEC(J),ZVEC(L)) -&

 VALUE(I,J,L)

 90 CONTINUE

 100 CONTINUE

 110 CONTINUE

99999 FORMAT (44X, '(2,0,1)', /, 10X, 'X', 11X, 'Y', 10X, 'Z', 10X,&

 'S (X,Y,Z) Error')

 STOP

 END

Output

 (2,0,1)

 X Y Z S (X,Y,Z) Error

 -1.0000 0.0000 0.0000 -0.0005 0.0005

 -1.0000 0.0000 1.0000 0.0002 -0.0002

 -1.0000 0.3333 0.0000 0.0641 -0.0641

 -1.0000 0.3333 1.0000 -5.9360 -0.0640

 -1.0000 0.6667 0.0000 0.1274 -0.1274

 -1.0000 0.6667 1.0000 -11.8730 -0.1270

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 817

 -1.0000 1.0000 0.0000 0.1911 -0.1911

 -1.0000 1.0000 1.0000 -17.8086 -0.1914

 -0.3333 0.0000 0.0000 0.0000 0.0000

 -0.3333 0.0000 1.0000 0.0000 0.0000

 -0.3333 0.3333 0.0000 0.0212 -0.0212

 -0.3333 0.3333 1.0000 -1.9788 -0.0212

 -0.3333 0.6667 0.0000 0.0425 -0.0425

 -0.3333 0.6667 1.0000 -3.9575 -0.0425

 -0.3333 1.0000 0.0000 0.0637 -0.0637

 -0.3333 1.0000 1.0000 -5.9363 -0.0637

 0.3333 0.0000 0.0000 0.0000 0.0000

 0.3333 0.0000 1.0000 0.0000 0.0000

 0.3333 0.3333 0.0000 -0.0212 0.0212

 0.3333 0.3333 1.0000 1.9788 0.0212

 0.3333 0.6667 0.0000 -0.0425 0.0425

 0.3333 0.6667 1.0000 3.9575 0.0425

 0.3333 1.0000 0.0000 -0.0637 0.0637

 0.3333 1.0000 1.0000 5.9363 0.0637

 1.0000 0.0000 0.0000 -0.0005 0.0005

 1.0000 0.0000 1.0000 0.0000 0.0000

 1.0000 0.3333 0.0000 -0.0637 0.0637

 1.0000 0.3333 1.0000 5.9359 0.0641

 1.0000 0.6667 0.0000 -0.1273 0.1273

 1.0000 0.6667 1.0000 11.8733 0.1267

 1.0000 1.0000 0.0000 -0.1912 0.1912

 1.0000 1.0000 1.0000 17.8096 0.1904

BS3IG
This function evaluates the integral of a tensor-product spline in three dimensions over a three-

dimensional rectangle, given its tensor-product B-spline representation.

Function Return Value

BS3IG — Integral of the spline over the three-dimensional rectangle (A, B) by (C, D) by (E, F).

(Output)

Required Arguments

A — Lower limit of the X-variable. (Input)

B — Upper limit of the X-variable. (Input)

C — Lower limit of the Y-variable. (Input)

D — Upper limit of the Y-variable. (Input)

E — Lower limit of the Z-variable. (Input)

F — Upper limit of the Z-variable. (Input)

KXORD — Order of the spline in the X-direction. (Input)

818 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

KYORD — Order of the spline in the Y-direction. (Input)

KZORD — Order of the spline in the Z-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.

(Input)

XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.

(Input)

YKNOT must be nondecreasing.

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the Z-direction.

(Input)

ZKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

NZCOEF — Number of B-spline coefficients in the Z-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product

B-spline coefficients. (Input)

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.

FORTRAN 90 Interface

Generic: BS3IG (A, B, C, D, E, F, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT,

NXCOEF, NYCOEF, NZCOEF, BSCOEF)

Specific: The specific interface names are S_BS3IG and D_BS3IG.

FORTRAN 77 Interface

Single: BS3IG (A, B, C, D, E, F, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT,

NXCOEF, NYCOEF, NZCOEF, BSCOEF)

Double: The double precision function name is DBS3IG.

Description

The routine BS3IG computes the integral of a tensor-product three-dimensional spline, given its

B-spline representation. Specifically, given the knot sequence tx = XKNOT, ty = YKNOT, tz = ZKNOT,

the order kx = KXORD, ky = KYORD, kz = KZORD, the coefficients β = BSCOEF, the number of

coefficients nx = NXCOEF, ny = NYCOEF, nz = NZCOEF, and a three-dimensional rectangle [a, b] by

[c, d] by [e, f], BS3IG returns the value

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 819

1 1 1

yx z
nn n

b d f

ijm ijma c e
i j m

B dz dy dx

where

 , , , , ,, ,
x x y y z zijm i k j k m kB x y z B x B y B z t t t

This routine uses the identity (22) on page 151 of de Boor (1978). It assumes (for all knot

sequences) that the first and last k knots are stacked, that is, t1 = … = tk and tn + 1 = … = tn + k,

where k is the order of the spline in the x, y, or z direction.

Comments

1. Workspace may be explicitly provided, if desired, by use of B23IG/DB23IG. The

reference is:

CALL B23IG(A, B, C, D, E, F, KXORD, KYORD, KZORD, XKNOT,

YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, WK)

The additional argument is:

WK — Work array of length 4 * (MAX(KXORD, KYORD, KZORD) + 1) +
NYCOEF + NZCOEF.

2. Informational errors

Type Code

3 1 The lower limit of the X-integration is less than XKNOT(KXORD).

3 2 The upper limit of the X-integration is greater than

XKNOT(NXCOEF + 1).

3 3 The lower limit of the Y-integration is less than YKNOT(KYORD).

3 4 The upper limit of the Y-integration is greater than

YKNOT(NYCOEF + 1).

3 5 The lower limit of the Z- integration is less than ZKNOT(KZORD).

3 6 The upper limit of the Z-integration is greater than

ZKNOT(NZCOEF + 1).

4 13 Multiplicity of the knots cannot exceed the order of the spline.

4 14 The knots must be nondecreasing.

Example

We integrate the three-dimensional tensor-product quartic (kx = 5) by linear (ky = 2) by quadratic

(kz = 3) spline which interpolates x
3
 + xyz at the points

 /10, / 5, / 7 : 10, ,10, 0, , 5, and 0, , 7i j m i j m

820 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

over the rectangle [0, 1] × [.5, 1] × [0, .5]. The exact answer is 11/128.

 USE BS3IG_INT

 USE BS3IN_INT

 USE BSNAK_INT

 USE UMACH_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR PARAMETERS

 INTEGER KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT,&

 NYDATA, NYKNOT, NZDATA, NZKNOT

 PARAMETER (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NYDATA=6,&

 NZDATA=8, LDF=NXDATA, MDF=NYDATA,&

 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,&

 NZKNOT=NZDATA+KZORD)

!

 INTEGER I, J, K, NOUT, NXCOEF, NYCOEF, NZCOEF

 REAL A, B, BSCOEF(NXDATA,NYDATA,NZDATA), C , D, E,&

 F, FDATA(LDF,MDF,NZDATA), FF, FIG, FLOAT, G, H, RI,&

 RJ, VAL, X, XDATA(NXDATA), XKNOT(NXKNOT), Y,&

 YDATA(NYDATA), YKNOT(NYKNOT), Z, ZDATA(NZDATA),&

 ZKNOT(NZKNOT)

 INTRINSIC FLOAT

! Define function

 F(X,Y,Z) = X*X*X + X*Y*Z

! Set up interpolation points

 DO 10 I=1, NXDATA

 XDATA(I) = FLOAT(I-11)/10.0

 10 CONTINUE

! Generate knot sequence

 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)

! Set up interpolation points

 DO 20 I=1, NYDATA

 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)

 20 CONTINUE

! Generate knot sequence

 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)

! Set up interpolation points

 DO 30 I=1, NZDATA

 ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)

 30 CONTINUE

! Generate knot sequence

 CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)

! Generate FDATA

 DO 50 K=1, NZDATA

 DO 40 I=1, NYDATA

 DO 40 J=1, NXDATA

 FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))

 40 CONTINUE

 50 CONTINUE

! Get output unit number

 CALL UMACH (2, NOUT)

! Interpolate

 CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT, &

 YKNOT, ZKNOT, BSCOEF)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 821

!

 NXCOEF = NXDATA

 NYCOEF = NYDATA

 NZCOEF = NZDATA

 A = 0.0

 B = 1.0

 C = 0.5

 D = 1.0

 E = 0.0

 FF = 0.5

! Integrate

 VAL = BS3IG(A,B,C ,D,E,FF,KXORD,KYORD,KZORD,XKNOT,YKNOT,ZKNOT,&

 NXCOEF,NYCOEF,NZCOEF,BSCOEF)

! Calculate integral directly

 G = .5*(B**4-A**4)

 H = (B-A)*(B+A)

 RI = G*(D-C)

 RJ = .5*H*(D-C)*(D+C)

 FIG = .5*(RI*(FF-E)+.5*RJ*(FF-E)*(FF+E))

! Print results

 WRITE (NOUT,99999) VAL, FIG, FIG - VAL

99999 FORMAT (' Computed Integral = ', F10.5, /, ' Exact Integral '&

 , '= ', F10.5,/, ' Error '&

 , '= ', F10.6, /)

 END

Output

Computed Integral = 0.08594

Exact Integral = 0.08594

Error = 0.000000

BSCPP
Converts a spline in B-spline representation to piecewise polynomial representation.

Required Arguments

KORDER — Order of the spline. (Input)

XKNOT — Array of length KORDER + NCOEF containing the knot sequence. (Input)

XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

NPPCF — Number of piecewise polynomial pieces. (Output)

NPPCF is always less than or equal to NCOEF − KORDER + 1.

822 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

BREAK — Array of length (NPPCF + 1) containing the breakpoints of the piecewise

polynomial representation. (Output)

BREAK must be dimensioned at least NCOEF − KORDER + 2.

PPCOEF — Array of length KORDER * NPPCF containing the local coefficients of the

polynomial pieces. (Output)

PPCOEF is treated internally as a matrix of size KORDER by NPPCF.

FORTRAN 90 Interface

Generic: CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF)

Specific: The specific interface names are S_BSCPP and D_BSCPP.

FORTRAN 77 Interface

Single: CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF)

Double: The double precision name is DBSCPP.

Description

The routine BSCPP is based on the routine BSPLPP by de Boor (1978, page 140). This routine is

used to convert a spline in B-spline representation to a piecewise polynomial (pp) representation

which can then be evaluated more efficiently. There is some overhead in converting from the

B-spline representation to the pp representation, but the conversion to pp form is recommended

when 3 or more function values are needed per polynomial piece.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2CPP/DB2CPP. The

reference is:

CALL B2CPP (KORDER, XKNOT, NCOEF, BSCOEFF, NPPCF, BREAK,

PPCOEF, WK)

The additional argument is

WK — Work array of length (KORDER + 3) * KORDER.

2. Informational errors

Type Code

4 4 Multiplicity of the knots cannot exceed the order of the spline.

4 5 The knots must be nondecreasing.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 823

Example

For an example of the use of BSCPP, see PPDER.

PPVAL
This function evaluates a piecewise polynomial.

Function Return Value

PPVAL — Value of the piecewise polynomial at X. (Output)

Required Arguments

X — Point at which the polynomial is to be evaluated. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints of the piecewise

polynomial representation. (Input)

BREAK must be strictly increasing.

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise

polynomial pieces. (Input)

PPCOEF is treated internally as a matrix of size KORDER by NINTV.

Optional Arguments

KORDER — Order of the polynomial. (Input)

Default: KORDER = size (PPCOEF,1).

NINTV — Number of polynomial pieces. (Input)

Default: NINTV = size (PPCOEF,2).

FORTRAN 90 Interface

Generic: PPVAL (X, BREAK, PPCOEF [,…])

Specific: The specific interface names are S_PPVAL and D_PPVAL.

FORTRAN 77 Interface

Single: PPVAL (X, KORDER, NINTV, BREAK, PPCOEF)

Double: The double precision function name is DPPVAL.

Description

The routine PPVAL evaluates a piecewise polynomial at a given point. This routine is a special

case of the routine PPDER, which evaluates the derivative of a piecewise polynomial. (The value

of a piecewise polynomial is its zero-th derivative.)

824 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

The routine PPDER is based on the routine PPVALU in de Boor (1978, page 89).

Example

In this example, a spline interpolant to a function f is computed using the IMSL routine BSINT.

This routine represents the interpolant as a linear combination of B-splines. This representation is

then converted to piecewise polynomial representation by calling the IMSL routine BSCPP. The

piecewise polynomial is evaluated using PPVAL. These values are compared to the corresponding

values of f.

 USE PPVAL_INT

 USE BSNAK_INT

 USE BSCPP_INT

 USE BSINT_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER KORDER, NCOEF, NDATA, NKNOT

 PARAMETER (KORDER=4, NCOEF=20, NDATA=20, NKNOT=NDATA+KORDER)

!

 INTEGER I, NOUT, NPPCF

 REAL BREAK(NCOEF), BSCOEF(NCOEF), EXP, F, FDATA(NDATA),&

 FLOAT, PPCOEF(KORDER,NCOEF), S, X, XDATA(NDATA),&

 XKNOT(NKNOT)

 INTRINSIC EXP, FLOAT

! Define function

 F(X) = X*EXP(X)

! Set up interpolation points

 DO 30 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 30 CONTINUE

! Generate knot sequence

 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

! Compute the B-spline interpolant

 CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

! Convert to piecewise polynomial

 CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Print the interpolant on a uniform

! grid

 DO 40 I=1, NDATA

 X = FLOAT(I-1)/FLOAT(NDATA-1)

! Compute value of the piecewise

! polynomial

 S = PPVAL(X,BREAK,PPCOEF)

 WRITE (NOUT,'(2F12.3, E14.3)') X, S, F(X) - S

 40 CONTINUE

99999 FORMAT (11X, 'X', 8X, 'S(X)', 7X, 'Error')

 END

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 825

Output

 X S(X) Error

0.000 0.000 0.000E+00

0.053 0.055 -0.745E-08

0.105 0.117 0.000E+00

0.158 0.185 0.000E+00

0.211 0.260 -0.298E-07

0.263 0.342 0.298E-07

0.316 0.433 0.000E+00

0.368 0.533 0.000E+00

0.421 0.642 0.000E+00

0.474 0.761 0.596E-07

0.526 0.891 0.000E+00

0.579 1.033 0.000E+00

0.632 1.188 0.000E+00

0.684 1.356 0.000E+00

0.737 1.540 -0.119E-06

0.789 1.739 0.000E+00

0.842 1.955 0.000E+00

0.895 2.189 0.238E-06

0.947 2.443 0.238E-06

1.000 2.718 0.238E-06

PPDER
This function evaluates the derivative of a piecewise polynomial.

Function Return Value

PPDER — Value of the IDERIV-th derivative of the piecewise polynomial at X. (Output)

Required Arguments

X — Point at which the polynomial is to be evaluated. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints of the piecewise

polynomial representation. (Input)

BREAK must be strictly increasing.

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise

polynomial pieces. (Input)

PPCOEF is treated internally as a matrix of size KORDER by NINTV.

Optional Arguments

IDERIV — Order of the derivative to be evaluated. (Input)

In particular, IDERIV = 0 returns the value of the polynomial.

Default: IDERIV = 1.

KORDER — Order of the polynomial. (Input)

Default: KORDER = size (PPCOEF,1).

826 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

NINTV — Number of polynomial pieces. (Input)

Default: NINTV = size (PPCOEF,2).

FORTRAN 90 Interface

Generic: PPDER (X, BREAK, PPCOEF [,…])

Specific: The specific interface names are S_PPDER and D_PPDER.

FORTRAN 77 Interface

Single: PPDER (IDERIV, X, KORDER, NINTV, BREAK, PPCOEF)

Double: The double precision function name is DPPDER.

Description

The routine PPDER evaluates the derivative of a piecewise polynomial function f at a given point.

This routine is based on the subroutine PPVALU by de Boor (1978, page 89). In particular, if the

breakpoint sequence is stored in ξ (a vector of length N = NINTV + 1), and if the coefficients of the

piecewise polynomial representation are stored in c, then the value of the j-th derivative of f at x

in[ξi, ξi + 1) is

1

1,
!

m jk
j i

m i

m j

x
f x c

m j

when j = 0 to k − 1 and zero otherwise. Notice that this representation forces the function to be

right continuous. If x is less than ξ1, then i is set to 1 in the above formula; if x is greater than or

equal to ξN , then i is set to N − 1. This has the effect of extending the piecewise polynomial

representation to the real axis by extrapolation of the first and last pieces.

Example

In this example, a spline interpolant to a function f is computed using the IMSL routine BSINT.

This routine represents the interpolant as a linear combination of B-splines. This representation is

then converted to piecewise polynomial representation by calling the IMSL routine BSCPP. The

piecewise polynomial‘s zero-th and first derivative are evaluated using PPDER. These values are

compared to the corresponding values of f.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER KORDER, NCOEF, NDATA, NKNOT

 PARAMETER (KORDER=4, NCOEF=20, NDATA=20, NKNOT=NDATA+KORDER)

!

 INTEGER I, NOUT, NPPCF

 REAL BREAK(NCOEF), BSCOEF(NCOEF), DF, DS, EXP, F,&

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 827

 FDATA(NDATA), FLOAT, PPCOEF(KORDER,NCOEF), S,&

 X, XDATA(NDATA), XKNOT(NKNOT)

 INTRINSIC EXP, FLOAT

!

 F(X) = X*EXP(X)

 DF(X) = (X+1.)*EXP(X)

! Set up interpolation points

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Generate knot sequence

 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

! Compute the B-spline interpolant

 CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

! Convert to piecewise polynomial

 CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Print the interpolant on a uniform

! grid

 DO 20 I=1, NDATA

 X = FLOAT(I-1)/FLOAT(NDATA-1)

! Compute value of the piecewise

! polynomial

 S = PPDER(X,BREAK,PPCOEF, IDERIV=0, NINTV=NPPCF)

! Compute derivative of the piecewise

! polynomial

 DS = PPDER(X,BREAK,PPCOEF, IDERIV=1, NINTV=NPPCF)

 WRITE (NOUT,'(2F12.3,F12.6,F12.3,F12.6)') X, S, F(X) - S, DS,&

 DF(X), DS

 20 CONTINUE

99999 FORMAT (11X, 'X', 8X, 'S(X)', 7X, 'Error', 7X, 'S''(X)', 7X,&

 'Error')

 END

Output

 X S(X) Error S‘(X) Error

0.000 0.000 0.000000 1.000 -0.000112

0.053 0.055 0.000000 1.109 0.000030

0.105 0.117 0.000000 1.228 -0.000008

0.158 0.185 0.000000 1.356 0.000002

0.211 0.260 0.000000 1.494 0.000000

0.263 0.342 0.000000 1.643 0.000000

0.316 0.433 0.000000 1.804 -0.000001

0.368 0.533 0.000000 1.978 0.000002

0.421 0.642 0.000000 2.165 0.000001

0.474 0.761 0.000000 2.367 0.000000

0.526 0.891 0.000000 2.584 -0.000001

0.579 1.033 0.000000 2.817 0.000001

0.632 1.188 0.000000 3.068 0.000001

0.684 1.356 0.000000 3.338 0.000001

0.737 1.540 0.000000 3.629 0.000001

0.789 1.739 0.000000 3.941 0.000000

828 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

0.842 1.955 0.000000 4.276 -0.000006

0.895 2.189 0.000000 4.636 0.000024

0.947 2.443 0.000000 5.022 -0.000090

1.000 2.718 0.000000 5.436 0.000341

PP1GD
Evaluates the derivative of a piecewise polynomial on a grid.

Required Arguments

XVEC — Array of length N containing the points at which the piecewise polynomial is to be

evaluated. (Input)

The points in XVEC should be strictly increasing.

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise

polynomial representation. (Input)

BREAK must be strictly increasing.

PPCOEF — Matrix of size KORDER by NINTV containing the local coefficients of the

polynomial pieces. (Input)

VALUE — Array of length N containing the values of the IDERIV-th derivative of the

piecewise polynomial at the points in XVEC. (Output)

Optional Arguments

IDERIV — Order of the derivative to be evaluated. (Input)

In particular, IDERIV = 0 returns the values of the piecewise polynomial.

Default: IDERIV = 1.

N — Length of vector XVEC. (Input)

Default: N = size (XVEC,1).

KORDER — Order of the polynomial. (Input)

Default: KORDER = size (PPCOEF,1).

NINTV — Number of polynomial pieces. (Input)

Default: NINTV = size (PPCOEF,2).

FORTRAN 90 Interface

Generic: CALL PP1GD (XVEC, BREAK, PPCOEF, VALUE [,…])

Specific: The specific interface names are S_PP1GD and D_PP1GD.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 829

FORTRAN 77 Interface

Single: CALL PP1GD (IDERIV, N, XVEC, KORDER, NINTV, BREAK, PPCOEF, VALUE)

Double: The double precision name is DPP1GD.

Description

The routine PP1GD evaluates a piecewise polynomial function f (or its derivative) at a vector of

points. That is, given a vector x of length n satisfying xi < xi + 1 for i = 1, …, n − 1, a derivative

value j, and a piecewise polynomial function f that is represented by a breakpoint sequence and

coefficient matrix this routine returns the values

 1, ,
j

if x i n

in the array VALUE. The functionality of this routine is the same as that of PPDER called in a loop,

however PP1GD is much more efficient.

Comments

1. Workspace may be explicitly provided, if desired, by use of P21GD/DP21GD. The

reference is:

CALL P21GD (IDERIV, N, XVEC, KORDER, NINTV, BREAK, PPCOEF,

VALUE, IWK, WORK1, WORK2)

The additional arguments are as follows:

IWK — Array of length N.

WORK1 — Array of length N.

WORK2 — Array of length N.

2. Informational error

Type Code

4 4 The points in XVEC must be strictly increasing.

Example

To illustrate the use of PP1GD, we modify the example program for PPDER. In this example, a

piecewise polynomial interpolant to F is computed. The values of this polynomial are then

compared with the exact function values. The routine PP1GD is based on the routine PPVALU in de

Boor (1978, page 89).

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER KORDER, N, NCOEF, NDATA, NKNOT

 PARAMETER (KORDER=4, N=20, NCOEF=20, NDATA=20,&

830 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 NKNOT=NDATA+KORDER)

!

 INTEGER I, NINTV, NOUT, NPPCF

 REAL BREAK(NCOEF), BSCOEF(NCOEF), DF, EXP, F,&

 FDATA(NDATA), FLOAT, PPCOEF(KORDER,NCOEF), VALUE1(N),&

 VALUE2(N), X, XDATA(NDATA), XKNOT(NKNOT), XVEC(N)

 INTRINSIC EXP, FLOAT

!

 F(X) = X*EXP(X)

 DF(X) = (X+1.)*EXP(X)

! Set up interpolation points

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Generate knot sequence

 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

! Compute the B-spline interpolant

 CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

! Convert to piecewise polynomial

 CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF)

! Compute evaluation points

 DO 20 I=1, N

 XVEC(I) = FLOAT(I-1)/FLOAT(N-1)

 20 CONTINUE

! Compute values of the piecewise

! polynomial

 NINTV = NPPCF

 CALL PP1GD (XVEC, BREAK, PPCOEF, VALUE1, IDERIV=0, NINTV=NINTV)

! Compute the values of the first

! derivative of the piecewise

! polynomial

 CALL PP1GD (XVEC, BREAK, PPCOEF, VALUE2, IDERIV=1, NINTV=NINTV)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99998)

! Print the results on a uniform

! grid

 DO 30 I=1, N

 WRITE (NOUT,99999) XVEC(I), VALUE1(I), F(XVEC(I)) - VALUE1(I)&

 , VALUE2(I), DF(XVEC(I)) - VALUE2(I)

 30 CONTINUE

99998 FORMAT (11X, 'X', 8X, 'S(X)', 7X, 'Error', 7X, 'S''(X)', 7X,&

 'Error')

99999 FORMAT (' ', 2F12.3, F12.6, F12.3, F12.6)

 END

Output

 X S(X) Error S‘(X) Error

0.000 0.000 0.000000 1.000 -0.000112

0.053 0.055 0.000000 1.109 0.000030

0.105 0.117 0.000000 1.228 -0.000008

0.158 0.185 0.000000 1.356 0.000002

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 831

0.211 0.260 0.000000 1.494 0.000000

0.263 0.342 0.000000 1.643 0.000000

0.316 0.433 0.000000 1.804 -0.000001

0.368 0.533 0.000000 1.978 0.000002

0.421 0.642 0.000000 2.165 0.000001

0.474 0.761 0.000000 2.367 0.000000

0.526 0.891 0.000000 2.584 -0.000001

0.579 1.033 0.000000 2.817 0.000001

0.632 1.188 0.000000 3.068 0.000001

0.684 1.356 0.000000 3.338 0.000001

0.737 1.540 0.000000 3.629 0.000001

0.789 1.739 0.000000 3.941 0.000000

0.842 1.955 0.000000 4.276 -0.000006

0.895 2.189 0.000000 4.636 0.000024

0.947 2.443 0.000000 5.022 -0.000090

1.000 2.718 0.000000 5.436 0.000341

PPITG
This function evaluates the integral of a piecewise polynomial.

Function Return Value

PPITG — Value of the integral from A to B of the piecewise polynomial. (Output)

Required Arguments

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise

polynomial. (Input)

BREAK must be strictly increasing.

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise

polynomial pieces. (Input)

PPCOEF is treated internally as a matrix of size KORDER by NINTV.

Optional Arguments

KORDER — Order of the polynomial. (Input)

Default: KORDER = size (PPCOEF,1).

NINTV — Number of piecewise polynomial pieces. (Input)

Default: NINTV = size (PPCOEF,2).

FORTRAN 90 Interface

Generic: PP1TG (A, B, BREAK, PPCOEF [,…])

832 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Specific: The specific interface names are S_PP1TG and D_PP1TG.

FORTRAN 77 Interface

Single: PP1TG (A, B, KORDER, NINTV, BREAK, PPCOEF)

Double: The double precision function name is DPP1TG.

Description

The routine PPITG evaluates the integral of a piecewise polynomial over an interval.

Example

In this example, we compute a quadratic spline interpolant to the function x
2
 using the IMSL

routine BSINT. We then evaluate the integral of the spline interpolant over the intervals [0, 1/2]

and [0, 2]. The interpolant reproduces x
2
, and hence, the values of the integrals are 1/24 and 8/3,

respectively.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER KORDER, NDATA, NKNOT

 PARAMETER (KORDER=3, NDATA=10, NKNOT=NDATA+KORDER)

!

 INTEGER I, NOUT, NPPCF

 REAL A, B, BREAK(NDATA), BSCOEF(NDATA), EXACT, F,&

 FDATA(NDATA), FI, FLOAT, PPCOEF(KORDER,NDATA),&

 VALUE, X, XDATA(NDATA), XKNOT(NKNOT)

 INTRINSIC FLOAT

!

 F(X) = X*X

 FI(X) = X*X*X/3.0

! Set up interpolation points

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Generate knot sequence

 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

! Interpolate

 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

! Convert to piecewise polynomial

 CALL BSCPP (KORDER, XKNOT, NDATA, BSCOEF, NPPCF, BREAK, PPCOEF)

! Compute the integral of F over

! [0.0,0.5]

 A = 0.0

 B = 0.5

 VALUE = PPITG(A,B,BREAK,PPCOEF,NINTV=NPPCF)

 EXACT = FI(B) - FI(A)

! Get output unit number

 CALL UMACH (2, NOUT)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 833

! Print the result

 WRITE (NOUT,99999) A, B, VALUE, EXACT, EXACT - VALUE

! Compute the integral of F over

! [0.0,2.0]

 A = 0.0

 B = 2.0

 VALUE = PPITG(A,B,BREAK,PPCOEF,NINTV=NPPCF)

 EXACT = FI(B) - FI(A)

! Print the result

 WRITE (NOUT,99999) A, B, VALUE, EXACT, EXACT - VALUE

99999 FORMAT (' On the closed interval (', F3.1, ',', F3.1,&

 ') we have :', /, 1X, 'Computed Integral = ', F10.5, /,&

 1X, 'Exact Integral = ', F10.5, /, 1X, 'Error '&

 , ' = ', F10.6, /, /)

!

 END

Output

On the closed interval (0.0,0.5) we have :

Computed Integral = 0.04167

Exact Integral = 0.04167

Error = 0.000000

On the closed interval (0.0,2.0) we have :

Computed Integral = 2.66667

Exact Integral = 2.66667

Error = 0.000001

QDVAL
This function evaluates a function defined on a set of points using quadratic interpolation.

Function Return Value

QDVAL — Value of the quadratic interpolant at X. (Output)

Required Arguments

X — Coordinate of the point at which the function is to be evaluated. (Input)

XDATA — Array of length NDATA containing the location of the data points. (Input)

XDATA must be strictly increasing.

FDATA — Array of length NDATA containing the function values. (Input)

FDATA(I) is the value of the function at XDATA(I).

Optional Arguments

NDATA — Number of data points. (Input)

NDATA must be at least 3.

Default: NDATA = size (XDATA,1).

834 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

CHECK — Logical variable that is .TRUE. if checking of XDATA is required or .FALSE. if

checking is not required. (Input)

Default: CHECK = .TRUE.

FORTRAN 90 Interface

Generic: QDVAL (X, XDATA, FDATA [,…])

Specific: The specific interface names are S_QDVAL and D_QDVAL.

FORTRAN 77 Interface

Single: QDVAL (X, NDATA, XDATA, FDATA, CHECK)

Double: The double precision name is DQDVAL.

Description

The function QDVAL interpolates a table of values, using quadratic polynomials, returning an

approximation to the tabulated function. Let (xi, fi) for i = 1, …, n be the tabular data. Given a

number x at which an interpolated value is desired, we first find the nearest interior grid point xi. A

quadratic interpolant q is then formed using the three points (xi-1, fi-1), (xi, fi), and (xi+1, fi+1). The

number returned by QDVAL is q(x).

Comments

Informational error

Type Code

4 3 The XDATA values must be strictly increasing.

Example

In this example, the value of sin x is approximated at π/4 by using QDVAL on a table of 33 equally

spaced values.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER NDATA

 PARAMETER (NDATA=33)

!

 INTEGER I, NOUT

 REAL F, FDATA(NDATA), H, PI, QT, SIN, X,&

 XDATA(NDATA)

 INTRINSIC SIN

! Define function

 F(X) = SIN(X)

! Generate data points

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 835

 XDATA(1) = 0.0

 FDATA(1) = F(XDATA(1))

 H = 1.0/32.0

 DO 10 I=2, NDATA

 XDATA(I) = XDATA(I-1) + H

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Get value of PI and set X

 PI = CONST('PI')

 X = PI/4.0

! Evaluate at PI/4

 QT = QDVAL(X,XDATA,FDATA)

! Get output unit number

 CALL UMACH (2, NOUT)

! Print results

 WRITE (NOUT,99999) X, F(X), QT, (F(X)-QT)

!

99999 FORMAT (15X, 'X', 6X, 'F(X)', 6X, 'QDVAL', 5X, 'ERROR', //, 6X,&

 4F10.3, /)

 END

Output

 X F(X) QDVAL ERROR

0.785 0.707 0.707 0.000

QDDER
This function evaluates the derivative of a function defined on a set of points using quadratic

interpolation.

Function Return Value

QDDER — Value of the IDERIV-th derivative of the quadratic interpolant at X. (Output)

Required Arguments

IDERIV — Order of the derivative. (Input)

X — Coordinate of the point at which the function is to be evaluated. (Input)

XDATA — Array of length NDATA containing the location of the data points. (Input) XDATA

must be strictly increasing.

FDATA — Array of length NDATA containing the function values. (Input)

FDATA(I) is the value of the function at XDATA(I).

836 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Optional Arguments

NDATA — Number of data points. (Input)

NDATA must be at least three.

Default: NDATA = size (XDATA,1).

CHECK — Logical variable that is .TRUE. if checking of XDATA is required or .FALSE. if

checking is not required. (Input)

Default: CHECK = .TRUE.

FORTRAN 90 Interface

Generic: QDDER(IDERIV, X, XDATA, FDATA [,…])

Specific: The specific interface names are S_QDVAL and D_QDVAL.

FORTRAN 77 Interface

Single: QDDER(IDERIV, X, NDATA, XDATA, FDATA, CHECK)

Double: The double precision function name is DQDVAL.

Description

The function QDDER interpolates a table of values, using quadratic polynomials, returning an

approximation to the derivative of the tabulated function. Let (xi, fi) for i = 1, …, n be the tabular

data. Given a number x at which an interpolated value is desired, we first find the nearest interior

grid point xi. A quadratic interpolant q is then formed using the three points (xi-1, fi-1)

(xi, fi), and (xi+1, fi+1). The number returned by QDDER is q
(j)

(x), where j = IDERIV.

Comments

1. Informational error

Type Code

4 3 The XDATA values must be strictly increasing.

2. Because quadratic interpolation is used, if the order of the derivative is greater than

two, then the returned value is zero.

Example

In this example, the value of sin x and its derivatives are approximated at π/4 by using QDDER on a

table of 33 equally spaced values.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 837

 INTEGER NDATA

 PARAMETER (NDATA=33)

!

 INTEGER I, IDERIV, NOUT

 REAL COS, F, F1, F2, FDATA(NDATA), H, PI,&

 QT, SIN, X, XDATA(NDATA)

 LOGICAL CHECK

 INTRINSIC COS, SIN

! Define function and derivatives

 F(X) = SIN(X)

 F1(X) = COS(X)

 F2(X) = -SIN(X)

! Generate data points

 XDATA(1) = 0.0

 FDATA(1) = F(XDATA(1))

 H = 1.0/32.0

 DO 10 I=2, NDATA

 XDATA(I) = XDATA(I-1) + H

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Get value of PI and set X

 PI = CONST('PI')

 X = PI/4.0

! Check XDATA

 CHECK = .TRUE.

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99998)

! Evaluate quadratic at PI/4

 IDERIV = 0

 QT = QDDER(IDERIV,X,XDATA,FDATA, CHECK=CHECK)

 WRITE (NOUT,99999) X, IDERIV, F(X), QT, (F(X)-QT)

 CHECK = .FALSE.

! Evaluate first derivative at PI/4

 IDERIV = 1

 QT = QDDER(IDERIV,X,XDATA,FDATA)

 WRITE (NOUT,99999) X, IDERIV, F1(X), QT, (F1(X)-QT)

! Evaluate second derivative at PI/4

 IDERIV = 2

 QT = QDDER(IDERIV,X,XDATA,FDATA, CHECK=CHECK)

 WRITE (NOUT,99999) X, IDERIV, F2(X), QT, (F2(X)-QT)

!

99998 FORMAT (33X, 'IDER', /, 15X, 'X', 6X, 'IDER', 6X, 'F (X)',&

 5X, 'QDDER', 6X, 'ERROR', //)

99999 FORMAT (7X, F10.3, I8, 3F12.3/)

 END

Output

 IDER

 X IDER F (X) QDDER ERROR

0.785 0 0.707 0.707 0.000

0.785 1 0.707 0.707 0.000

838 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

0.785 2 -0.707 -0.704 -0.003

QD2VL
This function evaluates a function defined on a rectangular grid using quadratic interpolation.

Function Return Value

QD2VL — Value of the function at (X, Y). (Output)

Required Arguments

X — x-coordinate of the point at which the function is to be evaluated. (Input)

Y — y-coordinate of the point at which the function is to be evaluated. (Input)

XDATA — Array of length NXDATA containing the location of the data points in the

x-direction. (Input)

XDATA must be increasing.

YDATA — Array of length NYDATA containing the location of the data points in the

y-direction. (Input)

YDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA containing function values. (Input)

FDATA (I, J) is the value of the function at (XDATA (I), YDATA(J)).

Optional Arguments

NXDATA — Number of data points in the x-direction. (Input)

NXDATA must be at least three.

Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the y-direction. (Input)

NYDATA must be at least three.

Default: NYDATA = size (YDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the

calling program. (Input)

LDF must be at least as large as NXDATA.

Default: LDF = size (FDATA,1).

CHECK — Logical variable that is .TRUE. if checking of XDATA and YDATA is required or

.FALSE. if checking is not required. (Input)

Default: CHECK = .TRUE.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 839

FORTRAN 90 Interface

Generic: QD2VL(X, Y, XDATA, YDATA, FDATA [,…])

Specific: The specific interface names are S_QD2VL and D_QD2VL.

FORTRAN 77 Interface

Single: QD2VL(X, Y, NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, CHECK)

Double: The double precision function name is DQD2VL.

Description

The function QD2VL interpolates a table of values, using quadratic polynomials, returning an

approximation to the tabulated function. Let (xi, yj, fij) for i = 1, …, nx and j = 1, …, ny be the

tabular data. Given a point (x, y) at which an interpolated value is desired, we first find the nearest

interior grid point (xi, yj). A bivariate quadratic interpolant q is then formed using six points near

(x, y). Five of the six points are (xi, yj), (xi ±1, yj), and (xi, yj ±1). The sixth point is the nearest point

to (x, y) of the grid points (xi±1, yj±1). The value q(x, y) is returned by QD2VL.

Comments

Informational errors

Type Code

4 6 The XDATA values must be strictly increasing.

4 7 The YDATA values must be strictly increasing.

Example

In this example, the value of sin(x + y) at x = y = π/4 is approximated by using QDVAL on a table

of size 21 × 42 equally spaced values on the unit square.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER LDF, NXDATA, NYDATA

 PARAMETER (NXDATA=21, NYDATA=42, LDF=NXDATA)

!

 INTEGER I, J, NOUT

 REAL F, FDATA(LDF,NYDATA), FLOAT, PI, Q, &

 SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA)

 INTRINSIC FLOAT, SIN

! Define function

 F(X,Y) = SIN(X+Y)

! Set up X-grid

 DO 10 I=1, NXDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NXDATA-1)

 10 CONTINUE

! Set up Y-grid

840 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 DO 20 I=1, NYDATA

 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)

 20 CONTINUE

! Evaluate function on grid

 DO 30 I=1, NXDATA

 DO 30 J=1, NYDATA

 FDATA(I,J) = F(XDATA(I),YDATA(J))

 30 CONTINUE

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Get value for PI and set X and Y

 PI = CONST('PI')

 X = PI/4.0

 Y = PI/4.0

! Evaluate quadratic at (X,Y)

 Q = QD2VL(X,Y,XDATA,YDATA,FDATA)

! Print results

 WRITE (NOUT,'(5F12.4)') X, Y, F(X,Y), Q, (Q-F(X,Y))

99999 FORMAT (10X, 'X', 11X, 'Y', 7X, 'F(X,Y)', 7X, 'QD2VL', 9X,&

 'DIF')

 END

Output

 X Y F(X,Y) QD2VL DIF

0.7854 0.7854 1.0000 1.0000 0.0000

QD2DR
This function evaluates the derivative of a function defined on a rectangular grid using quadratic

interpolation.

Function Return Value

QD2DR — Value of the (IXDER, IYDER) derivative of the function at (X, Y). (Output)

Required Arguments

IXDER — Order of the x-derivative. (Input)

IYDER — Order of the y-derivative. (Input)

X — X-coordinate of the point at which the function is to be evaluated. (Input)

Y — Y-coordinate of the point at which the function is to be evaluated. (Input)

XDATA — Array of length NXDATA containing the location of the data points in the

x-direction. (Input)

XDATA must be increasing.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 841

YDATA — Array of length NYDATA containing the location of the data points in the

y-direction. (Input)

YDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA containing function values. (Input)

FDATA(I, J) is the value of the function at (XDATA(I), YDATA(J)).

Optional Arguments

NXDATA — Number of data points in the x-direction. (Input)

NXDATA must be at least three.

Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the y-direction. (Input)

NYDATA must be at least three.

Default: NYDATA = size (YDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the

calling program. (Input)

LDF must be at least as large as NXDATA.

Default: LDF = size (FDATA,1).

CHECK — Logical variable that is .TRUE. if checking of XDATA and YDATA is required or

.FALSE. if checking is not required. (Input)

Default: CHECK = .TRUE.

FORTRAN 90 Interface

Generic: QD2DR (IXDER, IYDER, X, Y, XDATA, YDATA, FDATA [,…])

Specific: The specific interface names are S_QD2DR and D_QD2DR.

FORTRAN 77 Interface

Single: QD2DR (IXDER, IYDER, X, Y, NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,
CHECK)

Double: The double precision fucntion name is DQD2DR.

Description

The function QD2DR interpolates a table of values, using quadratic polynomials, returning an

approximation to the tabulated function. Let (xi, yj, fij) for i = 1, …, nx and j = 1, …, ny be the

tabular data. Given a point (x, y) at which an interpolated value is desired, we first find the nearest

interior grid point (xi, yj). A bivariate quadratic interpolant q is then formed using six points near

(x, y). Five of the six points are (xi, yj), (xi±1, yj), and (xi, yj±1). The sixth point is the nearest point to

(x, y) of the grid points (xi±1, yj±1). The value q
(p,

r)

(x, y) is returned by QD2DR, where p = IXDER

and r = IYDER.

842 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Comments

1. Informational errors

Type Code

4 6 The XDATA values must be strictly increasing.

4 7 The YDATA values must be strictly increasing.

2. Because quadratic interpolation is used, if the order of any derivative is greater than

two, then the returned value is zero.

Example

In this example, the partial derivatives of sin(x + y) at x = y = π/3 are approximated by using

QD2DR on a table of size 21 × 42 equally spaced values on the rectangle [0, 2] × [0, 2].

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER LDF, NXDATA, NYDATA

 PARAMETER (NXDATA=21, NYDATA=42, LDF=NXDATA)

!

 INTEGER I, IXDER, IYDER, J, NOUT

 REAL F, FDATA(LDF,NYDATA), FLOAT, FU, FUNC, PI, Q,&

 SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA)

 INTRINSIC FLOAT, SIN

 EXTERNAL FUNC

! Define function

 F(X,Y) = SIN(X+Y)

! Set up X-grid

 DO 10 I=1, NXDATA

 XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1))

 10 CONTINUE

! Set up Y-grid

 DO 20 I=1, NYDATA

 YDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NYDATA-1))

 20 CONTINUE

! Evaluate function on grid

 DO 30 I=1, NXDATA

 DO 30 J=1, NYDATA

 FDATA(I,J) = F(XDATA(I),YDATA(J))

 30 CONTINUE

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99998)

! Check XDATA and YDATA

! Get value for PI and set X and Y

 PI = CONST('PI')

 X = PI/3.0

 Y = PI/3.0

! Evaluate and print the function

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 843

! and its derivatives at X=PI/3 and

! Y=PI/3.

 DO 40 IXDER=0, 1

 DO 40 IYDER=0, 1

 Q = QD2DR(IXDER,IYDER,X,Y,XDATA,YDATA,FDATA)

 FU = FUNC(IXDER,IYDER,X,Y)

 WRITE (NOUT,99999) X, Y, IXDER, IYDER, FU, Q, (FU-Q)

 40 CONTINUE

!

99998 FORMAT (32X, '(IDX,IDY)', /, 8X, 'X', 8X, 'Y', 3X, 'IDX', 2X,&

 'IDY', 3X, 'F (X,Y)', 3X, 'QD2DR', 6X, 'ERROR')

99999 FORMAT (2F9.4, 2I5, 3X, F9.4, 2X, 2F11.4)

 END

 REAL FUNCTION FUNC (IX, IY, X, Y)

 INTEGER IX, IY

 REAL X, Y

!

 REAL COS, SIN

 INTRINSIC COS, SIN

!

 IF (IX.EQ.0 .AND. IY.EQ.0) THEN

! Define (0,0) derivative

 FUNC = SIN(X+Y)

 ELSE IF (IX.EQ.0 .AND. IY.EQ.1) THEN

! Define (0,1) derivative

 FUNC = COS(X+Y)

 ELSE IF (IX.EQ.1 .AND. IY.EQ.0) THEN

! Define (1,0) derivative

 FUNC = COS(X+Y)

 ELSE IF (IX.EQ.1 .AND. IY.EQ.1) THEN

! Define (1,1) derivative

 FUNC = -SIN(X+Y)

 ELSE

 FUNC = 0.0

 END IF

 RETURN

 END

Output

 (IDX,IDY)

 X Y IDX IDY F (X,Y) QD2DR ERROR

1.0472 1.0472 0 0 0.8660 0.8661 -0.0001

1.0472 1.0472 0 1 -0.5000 -0.4993 -0.0007

1.0472 1.0472 1 0 -0.5000 -0.4995 -0.0005

1.0472 1.0472 1 1 -0.8660 -0.8634 -0.0026

QD3VL
This function evaluates a function defined on a rectangular three-dimensional grid using quadratic

interpolation.

Function Return Value

QD3VL — Value of the function at (X, Y, Z). (Output)

844 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Required Arguments

X — x-coordinate of the point at which the function is to be evaluated. (Input)

Y — y-coordinate of the point at which the function is to be evaluated. (Input)

Z — z-coordinate of the point at which the function is to be evaluated. (Input)

XDATA — Array of length NXDATA containing the location of the data points in the

x-direction. (Input)

XDATA must be increasing.

YDATA — Array of length NYDATA containing the location of the data points in the

y-direction. (Input)

YDATA must be increasing.

ZDATA — Array of length NZDATA containing the location of the data points in the

z-direction. (Input)

ZDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing function values. (Input)

FDATA(I, J, K) is the value of the function at (XDATA(I), YDATA(J), ZDATA(K)).

Optional Arguments

NXDATA — Number of data points in the x-direction. (Input)

NXDATA must be at least three.

Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the y-direction. (Input)

NYDATA must be at least three.

Default: NYDATA = size (YDATA,1).

NZDATA — Number of data points in the z-direction. (Input)

NZDATA must be at least three.

Default: NZDATA = size (ZDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the

calling program. (Input)

LDF must be at least as large as NXDATA.

Default: LDF = size (FDATA,1).

MDF — Middle (second) dimension of FDATA exactly as specified in the dimension

statement of the calling program. (Input)

MDF must be at least as large as NYDATA.

Default: MDF = size (FDATA,2).

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 845

CHECK — Logical variable that is .TRUE. if checking of XDATA, YDATA, and ZDATA is

required or .FALSE. if checking is not required. (Input)

Default: CHECK = .TRUE.

FORTRAN 90 Interface

Generic: QD3VL (X, Y, Z, XDATA, YDATA, ZDATA, FDATA [,…])

Specific: The specific interface names are S_QD3VL and D_QD3VL.

FORTRAN 77 Interface

Single: QD3VL(X, Y, Z, NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, FDATA, LDF,

MDF, CHECK)

Double: The double precision function name is DQD3VL.

Description

The function QD3VL interpolates a table of values, using quadratic polynomials, returning an

approximation to the tabulated function. Let (xi, yj, zk, fijk) for i = 1, …, nx, j = 1, …, ny, and

k = 1, …, nz be the tabular data. Given a point (x, y, z) at which an interpolated value is desired, we

first find the nearest interior grid point (xi, yj, zk,). A trivariate quadratic interpolant q is then

formed. Ten points are needed for this purpose. Seven points have the form

 1 1 1, , , , , , , , and , ,i j k i j k i j k i j kx y z x y z x y z x y z

The last three points are drawn from the vertices of the octant containing (x, y, z). There are four of

these vertices remaining, and we choose to exclude the vertex farthest from the center. This has

the slightly deleterious effect of not reproducing the tabular data at the eight exterior corners of the

table. The value q(x, y, z) is returned by QD3VL.

Comments

Informational errors

Type Code

4 9 The XDATA values must be strictly increasing.

4 10 The YDATA values must be strictly increasing.

4 11 The ZDATA values must be strictly increasing.

Example

In this example, the value of sin(x + y + z) at x = y = z = π/3 is approximated by using QD3VL on a

grid of size 21 × 42 × 18 equally spaced values on the cube [0, 2]
3
.

 USE IMSL_LIBRARIES

846 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 IMPLICIT NONE

 INTEGER LDF, MDF, NXDATA, NYDATA, NZDATA

 PARAMETER (NXDATA=21, NYDATA=42, NZDATA=18, LDF=NXDATA,&

 MDF=NYDATA)

!

 INTEGER I, J, K, NOUT

 REAL F, FDATA(LDF,MDF,NZDATA), FLOAT, PI, Q, &

 SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA), Z,&

 ZDATA(NZDATA)

 INTRINSIC FLOAT, SIN

! Define function

 F(X,Y,Z) = SIN(X+Y+Z)

! Set up X-grid

 DO 10 I=1, NXDATA

 XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1))

 10 CONTINUE

! Set up Y-grid

 DO 20 J=1, NYDATA

 YDATA(J) = 2.0*(FLOAT(J-1)/FLOAT(NYDATA-1))

 20 CONTINUE

! Set up Z-grid

 DO 30 K=1, NZDATA

 ZDATA(K) = 2.0*(FLOAT(K-1)/FLOAT(NZDATA-1))

 30 CONTINUE

! Evaluate function on grid

 DO 40 I=1, NXDATA

 DO 40 J=1, NYDATA

 DO 40 K=1, NZDATA

 FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K))

 40 CONTINUE

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Get value for PI and set values

! for X, Y, and Z

 PI = CONST('PI')

 X = PI/3.0

 Y = PI/3.0

 Z = PI/3.0

! Evaluate quadratic at (X,Y,Z)

 Q = QD3VL(X,Y,Z,XDATA,YDATA,ZDATA,FDATA)

! Print results

 WRITE (NOUT,'(6F11.4)') X, Y, Z, F(X,Y,Z), Q, (Q-F(X,Y,Z))

99999 FORMAT (10X, 'X', 10X, 'Y', 10X, 'Z', 5X, 'F(X,Y,Z)', 4X,&

 'QD3VL', 6X, 'ERROR')

 END

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 847

Output

 X Y Z F(X,Y,Z) QD3VL ERROR

1.0472 1.0472 1.0472 0.0000 0.0001 0.0001

QD3DR
This function evaluates the derivative of a function defined on a rectangular three-dimensional

grid using quadratic interpolation.

Function Return Value

QD3DR — Value of the appropriate derivative of the function at (X, Y, Z). (Output)

Required Arguments

IXDER — Order of the x-derivative. (Input)

IYDER — Order of the y-derivative. (Input)

IZDER — Order of the z-derivative. (Input)

X — x-coordinate of the point at which the function is to be evaluated. (Input)

Y — y-coordinate of the point at which the function is to be evaluated. (Input)

Z — z-coordinate of the point at which the function is to be evaluated. (Input)

XDATA — Array of length NXDATA containing the location of the data points in the

x-direction. (Input)

XDATA must be increasing.

YDATA — Array of length NYDATA containing the location of the data points in the

y-direction. (Input)

YDATA must be increasing.

ZDATA — Array of length NZDATA containing the location of the data points in the

z-direction. (Input)

ZDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing function values. (Input)

FDATA(I, J, K) is the value of the function at (XDATA(I), YDATA(J), ZDATA(K)).

Optional Arguments

NXDATA — Number of data points in the x-direction. (Input)

NXDATA must be at least three.

Default: NXDATA = size (XDATA,1).

848 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

NYDATA — Number of data points in the y-direction. (Input)

NYDATA must be at least three.

Default: NYDATA = size (YDATA,1).

NZDATA — Number of data points in the z-direction. (Input)

NZDATA must be at least three.

Default: NZDATA = size (ZDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the

calling program. (Input)

LDF must be at least as large as NXDATA.

Default: LDF = size (FDATA,1).

MDF — Middle (second) dimension of FDATA exactly as specified in the dimension

statement of the calling program. (Input)

MDF must be at least as large as NYDATA.

Default: MDF = size (FDATA,2).

CHECK — Logical variable that is .TRUE. if checking of XDATA, YDATA, and ZDATA is

required or .FALSE. if checking is not required. (Input)

Default: CHECK = .TRUE.

FORTRAN 90 Interface

Generic: QD3DR (IXDER, IYDER, IZDER, X, Y, Z, XDATA, YDATA, ZDATA, FDATA [,…])

Specific: The specific interface names are S_QD3DR and D_QD3DR.

FORTRAN 77 Interface

Single: QD3DR (IXDER, IYDER, IZDER, X, Y, Z, NXDATA, XDATA, NYDATA, YDATA,

NZDATA, ZDATA, FDATA, LDF, MDF, CHECK)

Double: The double precision function name is DQD3DR.

Description

The function QD3DR interpolates a table of values, using quadratic polynomials, returning an

approximation to the partial derivatives of the tabulated function. Let

(xi, yj, zk, fijk)

for i = 1, …, nx, j = 1, …, ny, and k = 1, …, nz be the tabular data. Given a point (x, y, z) at which

an interpolated value is desired, we first find the nearest interior grid point (xi, yj, zk). A trivariate

quadratic interpolant q is then formed. Ten points are needed for this purpose. Seven points have

the form

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 849

 1 1 1, , , , , , , , and , ,i j k i j k i j k i j kx y z x y z x y z x y z

The last three points are drawn from the vertices of the octant containing (x, y, z). There are four of

these vertices remaining, and we choose to exclude the vertex farthest from the center. This has

the slightly deleterious effect of not reproducing the tabular data at the eight exterior corners of the

table. The value q
(p,r,t)

(x, y, z) is returned by QD3DR, where p = IXDER, r = IYDER, and t = IZDER.

Comments

1. Informational errors

Type Code

4 9 The XDATA values must be strictly increasing.

4 10 The YDATA values must be strictly increasing.

4 11 The ZDATA values must be strictly increasing.

2. Because quadratic interpolation is used, if the order of any derivative is greater than

two, then the returned value is zero.

Example

In this example, the derivatives of sin(x + y + z) at x = y = z = π/5 are approximated by using

QD3DR on a grid of size 21 × 42 × 18 equally spaced values on the cube [0, 2]
3
.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER LDF, MDF, NXDATA, NYDATA, NZDATA

 PARAMETER (NXDATA=21, NYDATA=42, NZDATA=18, LDF=NXDATA,&

 MDF=NYDATA)

!

 INTEGER I, IXDER, IYDER, IZDER, J, K, NOUT

 REAL F, FDATA(NXDATA,NYDATA,NZDATA), FLOAT, FU,&

 FUNC, PI, Q, SIN, X, XDATA(NXDATA), Y,&

 YDATA(NYDATA), Z, ZDATA(NZDATA)

 INTRINSIC FLOAT, SIN

 EXTERNAL FUNC

! Define function

 F(X,Y,Z) = SIN(X+Y+Z)

! Set up X-grid

 DO 10 I=1, NXDATA

 XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1))

 10 CONTINUE

! Set up Y-grid

 DO 20 J=1, NYDATA

 YDATA(J) = 2.0*(FLOAT(J-1)/FLOAT(NYDATA-1))

 20 CONTINUE

! Set up Z-grid

 DO 30 K=1, NZDATA

 ZDATA(K) = 2.0*(FLOAT(K-1)/FLOAT(NZDATA-1))

 30 CONTINUE

850 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

! Evaluate function on grid

 DO 40 I=1, NXDATA

 DO 40 J=1, NYDATA

 DO 40 K=1, NZDATA

 FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K))

 40 CONTINUE

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Get value for PI and set X, Y, and Z

 PI = CONST('PI')

 X = PI/5.0

 Y = PI/5.0

 Z = PI/5.0

! Compute derivatives at (X,Y,Z)

! and print results

 DO 50 IXDER=0, 1

 DO 50 IYDER=0, 1

 DO 50 IZDER=0, 1

 Q = QD3DR(IXDER,IYDER,IZDER,X,Y,Z,XDATA,YDATA,ZDATA,FDATA)

 FU = FUNC(IXDER,IYDER,IZDER,X,Y,Z)

 WRITE (NOUT,99998) X, Y, Z, IXDER, IYDER, IZDER, FU, Q,&

 (FU-Q)

 50 CONTINUE

!

99998 FORMAT (3F7.4, 3I5, 4X, F7.4, 8X, 2F10.4)

99999 FORMAT (39X, '(IDX,IDY,IDZ)', /, 6X, 'X', 6X, 'Y', 6X,&

 'Z', 3X, 'IDX', 2X, 'IDY', 2X, 'IDZ', 2X, 'F ',&

 '(X,Y,Z)', 3X, 'QD3DR', 5X, 'ERROR')

 END

!

 REAL FUNCTION FUNC (IX, IY, IZ, X, Y, Z)

 INTEGER IX, IY, IZ

 REAL X, Y, Z

!

 REAL COS, SIN

 INTRINSIC COS, SIN

!

 IF (IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.0) THEN

! Define (0,0,0) derivative

 FUNC = SIN(X+Y+Z)

 ELSE IF (IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.1) THEN

! Define (0,0,1) derivative

 FUNC = COS(X+Y+Z)

 ELSE IF (IX.EQ.0 .AND. IY.EQ.1 .AND. IZ.EQ.0) THEN

! Define (0,1,0,) derivative

 FUNC = COS(X+Y+Z)

 ELSE IF (IX.EQ.0 .AND. IY.EQ.1 .AND. IZ.EQ.1) THEN

! Define (0,1,1) derivative

 FUNC = -SIN(X+Y+Z)

 ELSE IF (IX.EQ.1 .AND. IY.EQ.0 .AND. IZ.EQ.0) THEN

! Define (1,0,0) derivative

 FUNC = COS(X+Y+Z)

 ELSE IF (IX.EQ.1 .AND. IY.EQ.0 .AND. IZ.EQ.1) THEN

! Define (1,0,1) derivative

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 851

 FUNC = -SIN(X+Y+Z)

 ELSE IF (IX.EQ.1 .AND. IY.EQ.1 .AND. IZ.EQ.0) THEN

! Define (1,1,0) derivative

 FUNC = -SIN(X+Y+Z)

 ELSE IF (IX.EQ.1 .AND. IY.EQ.1 .AND. IZ.EQ.1) THEN

! Define (1,1,1) derivative

 FUNC = -COS(X+Y+Z)

 ELSE

 FUNC = 0.0

 END IF

 RETURN

 END

Output

 (IDX,IDY,IDZ)

 X Y Z IDX IDY IDZ F (X,Y,Z) QD3DR ERROR

0.6283 0.6283 0.6283 0 0 0 0.9511 0.9511 -0.0001

0.6283 0.6283 0.6283 0 0 1 -0.3090 -0.3080 -0.0010

0.6283 0.6283 0.6283 0 1 0 -0.3090 -0.3088 0.0002

0.6283 0.6283 0.6283 0 1 1 -0.9511 -0.9587 0.0077

0.6283 0.6283 0.6283 1 0 0 -0.3090 -0.3078 -0.0012

0.6283 0.6283 0.6283 1 0 1 -0.9511 -0.9348 -0.0162

0.6283 0.6283 0.6283 1 1 0 -0.9511 -0.9613 0.0103

0.6283 0.6283 0.6283 1 1 1 0.3090 0.0000 0.3090

SURF

Computes a smooth bivariate interpolant to scattered data that is locally a quintic polynomial in

two variables.

Required Arguments

XYDATA — A 2 by NDATA array containing the coordinates of the interpolation points.

(Input)

These points must be distinct. The x-coordinate of the I-th data point is stored in

XYDATA(1, I) and the y-coordinate of the I-th data point is stored in XYDATA(2, I).

FDATA — Array of length NDATA containing the interpolation values. (Input) FDATA(I)

contains the value at (XYDATA(1, I), XYDATA(2, I)).

XOUT — Array of length NXOUT containing an increasing sequence of points. (Input)

These points are the x-coordinates of a grid on which the interpolated surface is to be

evaluated.

852 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

YOUT — Array of length NYOUT containing an increasing sequence of points. (Input)

These points are the y-coordinates of a grid on which the interpolated surface is to be

evaluated.

SUR — Matrix of size NXOUT by NYOUT. (Output)

This matrix contains the values of the surface on the XOUT by YOUT grid, i.e. SUR(I, J)

contains the interpolated value at (XOUT(I), YOUT(J)).

Optional Arguments

NDATA — Number of data points. (Input)

NDATA must be at least four.

Default: NDATA = size (FDATA,1).

NXOUT — The number of elements in XOUT. (Input)

Default: NXOUT = size (XOUT,1).

NYOUT — The number of elements in YOUT. (Input)

Default: NYOUT = size (YOUT,1).

LDSUR — Leading dimension of SUR exactly as specified in the dimension statement of the

calling program. (Input)

LDSUR must be at least as large as NXOUT.

Default: LDSUR = size (SUR,1).

FORTRAN 90 Interface

Generic: CALL SURF (XYDATA, FDATA, XOUT, YOUT, SUR [,…])

Specific: The specific interface names are S_SURF and D_SURF.

FORTRAN 77 Interface

Single: CALL SURF (NDATA, XYDATA, FDATA, NXOUT, NYOUT, XOUT, YOUT, SUR,
LDSUR)

Double: The double precision name is DSURF.

Description

This routine is designed to compute a C
1
 interpolant to scattered data in the plane. Given the data

points

 3

1
, ,

N

i i i i
x y f in

R

SURF returns (in SUR, the user-specified grid) the values of the interpolant s. The computation of s

is as follows: First the Delaunay triangulation of the points

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 853

1

,
N

i i i
x y

is computed. On each triangle T in this triangulation, s has the form

5

, ,T m n
mn

m n
s x y c x y x y T

Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In addition, we have

s(xi, yi) = fi for i = 1, …, N

and s is continuously differentiable across the boundaries of neighboring triangles. These

conditions do not exhaust the freedom implied by the above representation. This additional

freedom is exploited in an attempt to produce an interpolant that is faithful to the global shape

properties implied by the data. For more information on this routine, we refer the reader to the

article by Akima (1978). The grid is specified by the two integer variables NXOUT, NYOUT that

represent, respectively, the number of grid points in the first (second) variable and by two real

vectors that represent, respectively, the first (second) coordinates of the grid.

Comments

1. Workspace may be explicitly provided, if desired, by use of S2RF/DS2RF. The

reference is:

CALL S2RF (NDATA, XYDATA, FDATA, NXOUT, NYOUT, XOUT, YOUT,

SUR, LDSUR, IWK, WK)

The additional arguments are as follows:

IWK — Work array of length 31 * NDATA + 2*(NXOUT * NYOUT).

WK — Work array of length 6 * NDATA.

2. Informational errors

Type Code

4 5 The data point values must be distinct.

4 6 The XOUT values must be strictly increasing.

4 7 The YOUT values must be strictly increasing.

3. This method of interpolation reproduces linear functions.

Example

In this example, the interpolant to the linear function 3 + 7x + 2y is computed from 20 data points

equally spaced on the circle of radius 3. We then print the values on a 3 × 3 grid.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

854 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 INTEGER LDSUR, NDATA, NXOUT, NYOUT

 PARAMETER (NDATA=20, NXOUT=3, NYOUT=3, LDSUR=NXOUT)

!

 INTEGER I, J, NOUT

 REAL ABS, COS, F, FDATA(NDATA), FLOAT, PI,&

 SIN, SUR(LDSUR,NYOUT), X, XOUT(NXOUT),&

 XYDATA(2,NDATA), Y, YOUT(NYOUT)

 INTRINSIC ABS, COS, FLOAT, SIN

! Define function

 F(X,Y) = 3.0 + 7.0*X + 2.0*Y

! Get value for PI

 PI = CONST('PI')

! Set up X, Y, and F data on a circle

 DO 10 I=1, NDATA

 XYDATA(1,I) = 3.0*SIN(2.0*PI*FLOAT(I-1)/FLOAT(NDATA))

 XYDATA(2,I) = 3.0*COS(2.0*PI*FLOAT(I-1)/FLOAT(NDATA))

 FDATA(I) = F(XYDATA(1,I),XYDATA(2,I))

 10 CONTINUE

! Set up XOUT and YOUT data on [0,1] by

! [0,1] grid.

 DO 20 I=1, NXOUT

 XOUT(I) = FLOAT(I-1)/FLOAT(NXOUT-1)

 20 CONTINUE

 DO 30 I=1, NXOUT

 YOUT(I) = FLOAT(I-1)/FLOAT(NYOUT-1)

 30 CONTINUE

! Interpolate scattered data

 CALL SURF (XYDATA, FDATA, XOUT, YOUT, SUR)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99998)

! Print results

 DO 40 I=1, NYOUT

 DO 40 J=1, NXOUT

 WRITE (NOUT,99999) XOUT(J), YOUT(I), SUR(J,I),&

 F(XOUT(J),YOUT(I)),&

 ABS(SUR(J,I)-F(XOUT(J),YOUT(I)))

 40 CONTINUE

99998 FORMAT (' ', 10X, 'X', 11X, 'Y', 9X, 'SURF', 6X, 'F(X,Y)', 7X,&

 'ERROR', /)

99999 FORMAT (1X, 5F12.4)

 END

Output

 X Y SURF F(X,Y) ERROR

0.0000 0.0000 3.0000 3.0000 0.0000

0.5000 0.0000 6.5000 6.5000 0.0000

1.0000 0.0000 10.0000 10.0000 0.0000

0.0000 0.5000 4.0000 4.0000 0.0000

0.5000 0.5000 7.5000 7.5000 0.0000

1.0000 0.5000 11.0000 11.0000 0.0000

0.0000 1.0000 5.0000 5.0000 0.0000

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 855

0.5000 1.0000 8.5000 8.5000 0.0000

1.0000 1.0000 12.0000 12.0000 0.0000

SURFND
Performs multidimensional interpolation and differentiation for up to 7 dimensions.

The dimension, n, of the problem is determined by the rank of FDATA, and cannot be greater than

seven. The number of gridpoints in the i-th direction, di, is determined by the corresponding

dimension for FDATA.

Function Return Value

SURFND — Interpolated value of the function.

Required Arguments

X — Array of length n containing the point at which interpolation is to be done. (Input)

An interpolant is to be calculated at the point:

(X1, X2, …, Xn)

XDATA — Array of size n by max(d1, …, dn) giving the gridpoint values for the function to

be interpolated. (Input)

The gridpoints need not be uniformly spaced. See FDATA for more details.

FDATA — n dimensional array, dimensioned d1× d2× …× dn giving the values at the

gridpoints of the function to be interpolated. (Input)

FDATA(i, j, k, …) is the value of the function at

(XDATA1,i, XDATA2,j, XDATA3,k, …)

for i =1, …, d1, j =1, …, d2, k=1, …, d3, …

Optional Arguments

NDEG — Array of length n, giving the degree of polynomial interpolation to be used in

each dimension. (Input)

NDEG(i) must be less than or equal to 15.

Default: NDEG(i) = 5, for i = 1, …, n.

NDERS — Maximum order of derivatives to be computed with respect to each variable.

(Input)

NDERS cannot be larger than max (7- n, 2). See DERIV for more details.

Default: NDERS = 0.

DERIV — n dimensional array, dimensioned (NDERS+1) × (NDERS+1) ×… containing

derivative estimates at the interpolation point. (Output)

DERIV (i, j, …) will hold an estimate of the derivative with respect to X1 i times, and

with respect to X2 j times, etc. where i = 0, …, NDERS, j = 0, …, NDERS, …. The 0-th

derivative means the function value, thus, DERIV (0, 0, …) = SURFND.

856 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

ERROR — Estimate of the error in SURFND. (Output)

FORTRAN 90 Interface

Generic: SURFND (X,XDATA,FDATA [,…])

Specific: The specific interface names are Sn_SURFND and Dn_SURFND, where ―n‖

indicates the dimension of the problem (n = 1, 2, 3, 4, 5, 6 or 7).

Description

The function SURFND interpolates a function of up to 7 variables, defined on a (possibly

nonuniform) grid. It fits a polynomial of up to degree 15 in each variable through the grid points

nearest the interpolation point. Approximations of partial derivatives are calculated, if requested.

If derivatives are desired, high precision is strongly recommended. For more details, see Krogh

(1970).

Comments

Informational errors

Type Code

3 1 NDERS is too large, it has been reset to max(7- n,2).

3 2 The interpolation point is outside the domain of the table, so

extrapolation is used.

4 3 Too many derivatives requested for the polynomial degree used.

4 4 One of the polynomial degrees requested is too large for the number

of gridlines in that direction.

Example

The 3D function f(x, y, z) = exp(x + 2 y+ 3z), defined on a 20 by 30 by 40 uniform grid, is

interpolated.

 USE SURFND_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER, PARAMETER :: N=3, ND1=20, ND2=30, ND3=40, NDERS=1

 REAL X(N),DEROUT(0:NDERS,0:NDERS,0:NDERS), &

 XDATA(N,MAX(ND1,ND2,ND3)),FDATA(ND1,ND2,ND3), &

 ERROR,XX,YY,ZZ,TRUE,RELERR,YOUT

 INTEGER NDEG(N),I,J,K,NOUT

 CHARACTER*1 ORDER(3)

 INTRINSIC EXP, MAX

! 20 by 30 by 40 uniform grid used for

! interpolation of F(x,y,z) = exp(x+2*y+3*z)

 NDEG(1) = 8

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 857

 NDEG(2) = 7

 NDEG(3) = 9

 DO I=1,ND1

 XDATA(1,I) = 0.05*(I-1)

 END DO

 DO J=1,ND2

 XDATA(2,J) = 0.03*(J-1)

 END DO

 DO K=1,ND3

 XDATA(3,K) = 0.025*(K-1)

 END DO

 DO I=1,ND1

 DO J=1,ND2

 DO K=1,ND3

 XX = XDATA(1,I)

 YY = XDATA(2,J)

 ZZ = XDATA(3,K)

 FDATA(I,J,K) = EXP(XX+2*YY+3*ZZ)

 END DO

 END DO

 END DO

! Interpolate at (0.18,0.43,0.35)

 X(1) = 0.18

 X(2) = 0.43

 X(3) = 0.35

! Call SURFND

 YOUT = SURFND(X,XDATA,FDATA,NDEG=NDEG,DERIV=DEROUT,ERROR=ERROR, &

 NDERS=NDERS)

! Output F,Fx,Fy,Fz,Fxy,Fxz,Fyz,Fxyz at

! interpolation point

 XX = X(1)

 YY = X(2)

 ZZ = X(3)

 CALL UMACH (2, NOUT)

 WRITE(NOUT, 10) YOUT,ERROR

 DO K=0,NDERS

 DO J=0,NDERS

 DO I=0,NDERS

 ORDER(1:3) = ' '

 IF (I.EQ.1) ORDER(1) = 'x'

 IF (J.EQ.1) ORDER(2) = 'y'

 IF (K.EQ.1) ORDER(3) = 'z'

 TRUE = 2**J*3**K*EXP(XX+2*YY+3*ZZ)

 RELERR = (DEROUT(I,J,K)-TRUE)/TRUE

 WRITE(NOUT, 20) ORDER,DEROUT(I,J,K),TRUE,RELERR

 END DO

 END DO

 END DO

 10 FORMAT (' EST. VALUE = ',F10.6,', EST. ERROR = ',E11.3,//, &

858 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 11X,'Computed Der.',5X,'True Der.',4X,'Rel. Err')

 20 FORMAT (2X,'F',3A1,2F15.6,E15.3)

 END

Output

EST. VALUE = 8.084915, EST. ERROR = 0.419E-05

 Computed Der. True Der. Rel. Err

 F 8.084915 8.084914 0.118E-06

 Fx 8.084907 8.084914 -0.944E-06

 F y 16.169882 16.169828 0.330E-05

 Fxy 16.171101 16.169828 0.787E-04

 F z 24.254705 24.254742 -0.149E-05

 Fx z 24.255133 24.254742 0.161E-04

 F yz 48.505203 48.509483 -0.882E-04

 Fxyz 48.464718 48.509483 -0.923E-03

RLINE
Fits a line to a set of data points using least squares.

Required Arguments

XDATA — Vector of length NOBS containing the x-values. (Input)

YDATA — Vector of length NOBS containing the y-values. (Input)

B0 — Estimated intercept of the fitted line. (Output)

B1 — Estimated slope of the fitted line. (Output)

Optional Arguments

NOBS — Number of observations. (Input)

Default: NOBS = size (XDATA,1).

STAT — Vector of length 12 containing the statistics described below. (Output)

I STAT(I)

1 Mean of XDATA

2 Mean of YDATA

3 Sample variance of XDATA

4 Sample variance of YDATA

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 859

I STAT(I)

5 Correlation

6 Estimated standard error of B0

7 Estimated standard error of B1

8 Degrees of freedom for regression

9 Sum of squares for regression

10 Degrees of freedom for error

11 Sum of squares for error

12 Number of (x, y) points containing NaN (not a number) as either

the x or y value

FORTRAN 90 Interface

Generic: CALL RLINE (XDATA, YDATA, B0, B1 [,…])

Specific: The specific interface names are S_RLINE and D_RLINE.

FORTRAN 77 Interface

Single: CALL RLINE (NOBS, XDATA, YDATA, B0, B1, STAT)

Double: The double precision name is DRLINE.

Description

Routine RLINE fits a line to a set of (x, y) data points using the method of least squares. Draper

and Smith (1981, pages 1− 69) discuss the method. The fitted model is

0 1
ˆ ˆŷ x

where 0̂ (stored in B0) is the estimated intercept and 1̂ (stored in B1) is the estimated slope. In

addition to the fit, RLINE produces some summary statistics, including the means, sample

variances, correlation, and the error (residual) sum of squares. The estimated standard errors of

0 1
ˆ ˆand are computed under the simple linear regression model. The errors in the model are

assumed to be uncorrelated and with constant variance.

If the x values are all equal, the model is degenerate. In this case, RLINE sets 1̂

to zero and 0̂ to the mean of the y values.

860 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Comments

Informational error

Type Code

4 1 Each (x, y) point contains NaN (not a number). There are no valid

data.

Example

This example fits a line to a set of data discussed by Draper and Smith (1981, Table 1.1, pages 9−

33). The response y is the amount of steam used per month (in pounds), and the independent

variable x is the average atmospheric temperature (in degrees Fahrenheit).

 USE RLINE_INT

 USE UMACH_INT

 USE WRRRL_INT

 IMPLICIT NONE

 INTEGER NOBS

 PARAMETER (NOBS=25)

!

 INTEGER NOUT

 REAL B0, B1, STAT(12), XDATA(NOBS), YDATA(NOBS)

 CHARACTER CLABEL(13)*15, RLABEL(1)*4

!

 DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7,&

 57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0,&

 74.5, 72.1, 58.1, 44.6, 33.4, 28.6/

 DATA YDATA/10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5,&

 7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09,&

 8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/

 DATA RLABEL/'NONE'/, CLABEL/' ', 'Mean of X', 'Mean of Y',&

 'Variance X', 'Variance Y', 'Corr.', 'Std. Err. B0',&

 'Std. Err. B1', 'DF Reg.', 'SS Reg.', 'DF Error',&

 'SS Error', 'Pts. with NaN'/

!

 CALL RLINE (XDATA, YDATA, B0, B1, STAT=STAT)

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) B0, B1

99999 FORMAT (' B0 = ', F7.2, ' B1 = ', F9.5)

 CALL WRRRL ('%/STAT', STAT, RLABEL, CLABEL, 1, 12, 1, &

 FMT = '(12W10.4)')

!

 END

Output

B0 = 13.62 B1 = -0.07983

 STAT

Mean of X Mean of Y Variance X Variance Y Corr. Std. Err. B0

 52.6 9.424 298.1 2.659 -0.8452 0.5815

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 861

Std. Err. B1 DF Reg. SS Reg. DF Error SS Error Pts. with NaN

0.01052 1 45.59 23 18.22 0

Figure 3- 5 Plot of the Data and the Least Squares Line

RCURV
Fits a polynomial curve using least squares.

Required Arguments

XDATA — Vector of length NOBS containing the x values. (Input)

YDATA — Vector of length NOBS containing the y values. (Input)

B — Vector of length NDEG + 1 containing the coefficients ̂ .

(Output)

The fitted polynomial is

2
0 1 2

ˆ ˆ ˆ ˆˆ k
ky x x x

Optional Arguments

NOBS — Number of observations. (Input)

Default: NOBS = size (XDATA,1).

862 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

NDEG — Degree of polynomial. (Input)

Default: NDEG = size (B,1) – 1.

SSPOLY — Vector of length NDEG + 1 containing the sequential sums of squares. (Output)

SSPOLY(1) contains the sum of squares due to the mean. For i = 1, 2, …, NDEG,

SSPOLY(i + 1) contains the sum of squares due to x
i
 adjusted for the mean, x, x

2
,…,

and x
i-1

.

STAT — Vector of length 10 containing statistics described below. (Output)

i Statistics

1 Mean of x

2 Mean of y

3 Sample variance of x

4 Sample variance of y

5 R-squared (in percent)

6 Degrees of freedom for regression

7 Regression sum of squares

8 Degrees of freedom for error

9 Error sum of squares

10 Number of data points (x, y) containing NaN (not a number) as a x or y value

FORTRAN 90 Interface

Generic: CALL RCURV (XDATA, YDATA, B [,…])

Specific: The specific interface names are S_RCURV and D_RCURV.

FORTRAN 77 Interface

Single: CALL RCURV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY, STAT)

Double: The double precision name is DRCURV.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 863

Description

Routine RCURV computes estimates of the regression coefficients in a polynomial (curvilinear)

regression model. In addition to the computation of the fit, RCURV computes some summary

statistics. Sequential sums of squares attributable to each power of the independent variable

(stored in SSPOLY) are computed. These are useful in assessing the importance of the higher order

powers in the fit. Draper and Smith (1981, pages 101− 102) and Neter and Wasserman (1974,

pages 278− 287) discuss the interpretation of the sequential sums of squares. The statistic R
2

(stored in STAT(5)) is the percentage of the sum of squares of y about its mean explained by the

polynomial curve. Specifically,

2

2 1

2

1

ˆ
100%

n

ii
n

ii

y y
R

y y

where

ˆiy

is the fitted y value at xi and

y

(stored in STAT(2)) is the mean of y. This statistic is useful in assessing the overall fit of the

curve to the data. R
2
 must be between 0% and 100%, inclusive. R

2
 = 100% indicates a perfect fit to

the data.

Routine RCURV computes estimates of the regression coefficients in a polynomial model using

orthogonal polynomials as the regressor variables. This reparameterization of the polynomial

model in terms of orthogonal polynomials has the advantage that the loss of accuracy resulting

from forming powers of the x-values is avoided. All results are returned to the user for the original

model.

The routine RCURV is based on the algorithm of Forsythe (1957). A modification to Forsythe‘s

algorithm suggested by Shampine (1975) is used for computing the polynomial coefficients. A

discussion of Forsythe‘s algorithm and Shampine‘s modification appears in Kennedy and Gentle

(1980, pages 342− 347).

Comments

1. Workspace may be explicitly provided, if desired, by use of R2URV/DR2URV. The

reference is:

CALL R2URV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY, STAT, WK,

IWK)

The additional arguments are as follows:

WK — Work vector of length 11 * NOBS + 11 * NDEG + 5 + (NDEG +
1) * (NDEG + 3).

IWK — Work vector of length NOBS.

864 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

2. Informational errors

Type Code

4 3 Each (x, y) point contains NaN (not a number). There are no valid

data.

4 7 The x values are constant. At least NDEG + 1 distinct x values are

needed to fit a NDEG polynomial.

3 4 The y values are constant. A zero order polynomial is fit. High order

coefficients are set to zero.

3 5 There are too few observations to fit the desired degree polynomial.

High order coefficients are set to zero.

3 6 A perfect fit was obtained with a polynomial of degree less than

NDEG. High order coefficients are set to zero.

3. If NDEG is greater than 10, the accuracy of the results may be questionable.

Example

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pages 279− 285).

The data set contains the response variable y measuring coffee sales (in hundred gallons) and the

number of self-service coffee dispensers. Responses for fourteen similar cafeterias are in the data

set.

 USE RCURV_INT

 USE WRRRL_INT

 USE WRRRN_INT

 IMPLICIT NONE

 INTEGER NDEG, NOBS

 PARAMETER (NDEG=2, NOBS=14)

!

 REAL B(NDEG+1), SSPOLY(NDEG+1), STAT(10), XDATA(NOBS),&

 YDATA(NOBS)

 CHARACTER CLABEL(11)*15, RLABEL(1)*4

!

 DATA RLABEL/'NONE'/, CLABEL/' ', 'Mean of X', 'Mean of Y',&

 'Variance X', 'Variance Y', 'R-squared',&

 'DF Reg.', 'SS Reg.', 'DF Error', 'SS Error',&

 'Pts. with NaN'/

 DATA XDATA/0., 0., 1., 1., 2., 2., 4., 4., 5., 5., 6., 6., 7.,&

 7./

 DATA YDATA/508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,&

 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4/

!

 CALL RCURV (XDATA, YDATA, B, SSPOLY=SSPOLY, STAT=STAT)

!

 CALL WRRRN ('B', B, 1, NDEG+1, 1)

 CALL WRRRN ('SSPOLY', SSPOLY, 1, NDEG+1, 1)

 CALL WRRRL ('%/STAT', STAT, RLABEL, CLABEL, 1, 10, 1, &

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 865

 FMT='(2W10.4)')

 END

Output

 B

 1 2 3

503.3 78.9 -4.0

 SSPOLY

 1 2 3

7077152.0 220644.2 4387.7

 STAT

Mean of X Mean of Y Variance X Variance Y R-squared DF Reg.

 3.571 711.0 6.418 17364.8 99.69 2

 SS Reg. DF Error SS Error Pts. with NaN

225031.9 11 710.5 0

Figure 3- 6 Plot of Data and Second Degree Polynomial Fit

FNLSQ
Computes a least-squares approximation with user-supplied basis functions.

866 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Required Arguments

F — User-supplied function to evaluate basis functions. The form is F(K, X),

where

K – Number of the basis function. (Input)

K may be equal to 1, 2, …, NBASIS.

X – Argument for evaluation of the K-th basis function. (Input)

F – The function value. (Output)

F must be declared EXTERNAL in the calling program. The data FDATA is approximated

by A(1) * F(1, X) + A(2) * F(2, X) +…+ A(NBASIS) * F(NBASIS, X) if INTCEP = 0 and

is approximated by A(1) + A(2) * F(1, X) +…+ A(NBASIS + 1) * F(NBASIS, X) if

INTCEP = 1.

XDATA — Array of length NDATA containing the abscissas of the data points. (Input)

FDATA — Array of length NDATA containing the ordinates of the data points. (Input)

A — Array of length INTCEP + NBASIS containing the coefficients of the approximation.

(Output)

If INTCEP = 1, A(1) contains the intercept. A(INTCEP + I) contains the coefficient of

the I-th basis function.

SSE — Sum of squares of the errors. (Output)

Optional Arguments

INTCEP — Intercept option. (Input)

Default: INTCEP = 0.

INTCEP Action

0 No intercept is automatically included in the model.

1 An intercept is automatically included in the model.

NBASIS — Number of basis functions. (Input)

Default: NBASIS = size (A,1)

NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

IWT — Weighting option. (Input)

Default: IWT = 0.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 867

IWT Action

0 Weights of one are assumed.

1 Weights are supplied in WEIGHT.

WEIGHT — Array of length NDATA containing the weights. (Input if IWT = 1)

If IWT = 0, WEIGHT is not referenced and may be dimensioned of length one.

FORTRAN 90 Interface

Generic: CALL FNLSQ (F, XDATA, FDATA, A, SSE [,…])

Specific: The specific interface names are S_FNLSQ and D_FNLSQ.

FORTRAN 77 Interface

Single: CALL FNLSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA, IWT, WEIGHT, A,
SSE)

Double: The double precision name is DFNLSQ.

Description

The routine FNLSQ computes a best least-squares approximation to given univariate data of the

form

1

,
N

i i i
x f

by M basis functions

1

M

j
j

F

(where M = NBASIS). In particular, if INTCEP = 0, this routine returns the error sum of squares

SSE and the coefficients a which minimize

2

1 1

N M

i i j j i

i j

w f a F x

where w = WEIGHT, N = NDATA, x = XDATA, and, f = FDATA.

If INTCEP = 1, then an intercept is placed in the model; and the coefficients a, returned by FNLSQ,

minimize the error sum of squares as indicated below.

2

1 1

1 1

N M

i i j j i

i j

w f a a F x

868 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

That is, the first element of the vector a is now the coefficient of the function that is identically 1

and the coefficients of the Fj‘s are now aj+1.

One additional parameter in the calling sequence for FNLSQ is IWT. If IWT is set to 0, then wi = 1 is

assumed. If IWT is set to 1, then the user must supply the weights.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2LSQ/DF2LSQ. The

reference is:

CALL F2LSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA, IWT,

WEIGHT, A, SSE, WK)

The additional argument is

WK — Work vector of length (INTCEP + NBASIS)**2 + 4 * (INTCEP +

NBASIS) + IWT + 1. On output, the first (INTCEP + NBASIS)**2

elements of WK contain the R matrix from a QR decomposition of the

matrix containing a column of ones (if INTCEP = 1) and the evaluated

basis functions in columns INTCEP + 1 through INTCEP + NBASIS.

2. Informational errors

Type Code

3 1 Linear dependence of the basis functions exists. One or more

components of A are set to zero.

3 2 Linear dependence of the constant function and basis functions

exists. One or more components of A are set to zero.

4 1 Negative weight encountered.

Example

In this example, we fit the following two functions (indexed by δ)

1 + sin x + 7 sin 3x + δɛ

where ɛ is random uniform deviate over the range [−1, 1], and δ is 0 for the first function and 1

for the second. These functions are evaluated at 90 equally spaced points on the interval [0, 6]. We

use 4 basis functions, sin kx for k = 1, …, 4, with and without the intercept.

 USE FNLSQ_INT

 USE RNSET_INT

 USE UMACH_INT

 USE RNUNF_INT

 IMPLICIT NONE

 INTEGER NBASIS, NDATA

 PARAMETER (NBASIS=4, NDATA=90)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 869

!

 INTEGER I, INTCEP, NOUT

 REAL A(NBASIS+1), F, FDATA(NDATA), FLOAT, G, RNOISE,&

 SIN, SSE, X, XDATA(NDATA)

 INTRINSIC FLOAT, SIN

 EXTERNAL F

!

 G(X) = 1.0 + SIN(X) + 7.0*SIN(3.0*X)

! Set random number seed

 CALL RNSET (1234579)

! Set up data values

 DO 10 I=1, NDATA

 XDATA(I) = 6.0*(FLOAT(I-1)/FLOAT(NDATA-1))

 FDATA(I) = G(XDATA(I))

 10 CONTINUE

! Compute least squares fit with no

! intercept

 CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, &

 NBASIS=NBASIS)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99996)

! Write output

 WRITE (NOUT,99999) SSE, (A(I),I=1,NBASIS)

!

 INTCEP = 1

! Compute least squares fit with

! intercept

 CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, &

 NBASIS=NBASIS)

! Write output

 WRITE (NOUT,99998) SSE, A(1), (A(I),I=2,NBASIS+1)

! Introduce noise

 DO 20 I=1, NDATA

 RNOISE = RNUNF()

 RNOISE = 2.0*RNOISE - 1.0

 FDATA(I) = FDATA(I) + RNOISE

 20 CONTINUE

 INTCEP = 0

! Compute least squares fit with no

! intercept

 CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, &

 NBASIS=NBASIS)

! Write heading

 WRITE (NOUT,99997)

! Write output

 WRITE (NOUT,99999) SSE, (A(I),I=1,NBASIS)

!

 INTCEP = 1

! Compute least squares fit with

! intercept

 CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, &

 NBASIS=NBASIS)

! Write output

 WRITE (NOUT,99998) SSE, A(1), (A(I),I=2,NBASIS+1)

870 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

!

99996 FORMAT (//, ' Without error introduced we have :', /,&

 ' SSE Intercept Coefficients ', /)

99997 FORMAT (//, ' With error introduced we have :', /, ' SSE '&

 , ' Intercept Coefficients ', /)

99998 FORMAT (1X, F8.4, 5X, F9.4, 5X, 4F9.4, /)

99999 FORMAT (1X, F8.4, 14X, 5X, 4F9.4, /)

 END

 REAL FUNCTION F (K, X)

 INTEGER K

 REAL X

!

 REAL SIN

 INTRINSIC SIN

!

 F = SIN(K*X)

 RETURN

 END

Output

Without error introduced we have :

SSE Intercept Coefficients

89.8776 1.0101 0.0199 7.0291 0.0374

 0.0000 1.0000 1.0000 0.0000 7.0000 0.0000

With error introduced we have :

SSE Intercept Coefficients

112.4662 0.9963 -0.0675 6.9825 0.0133

 30.9831 0.9522 0.9867 -0.0864 6.9548 -0.0223

BSLSQ
Computes the least-squares spline approximation, and return the B-spline coefficients.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input)

FDATA — Array of length NDATA containing the data point ordinates. (Input)

KORDER — Order of the spline. (Input)

KORDER must be less than or equal to NDATA.

XKNOT — Array of length NCOEF + KORDER containing the knot sequence. (Input)

XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

NCOEF cannot be greater than NDATA.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 871

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Output)

Optional Arguments

NDATA — Number of data points. (Input)

Default: NDATA = size(XDATA, 1)

WEIGHT — Array of length NDATA containing the weights. (Input)

Default: WEIGHT = 1.0.

FORTRAN 90 Interface

Generic: CALL BSLSQ (XDATA, FDATA, KORDER, XKNOT, NCOEF, BSCOEF
[,…])

Specific: The specific interface names are S_BSLSQ and D_BSLSQ.

FORTRAN 77 Interface

Single: CALL BSLSQ (NDATA, XDATA, FDATA, WEIGHT, KORDER, XKNOT, NCOEF,
BSCOEF)

Double: The double precision name is DBSLSQ.

Description

The routine BSLSQ is based on the routine L2APPR by de Boor (1978, page 255). The IMSL

routine BSLSQ computes a weighted discrete L2 approximation from a spline subspace to a given

data set (xi, fi) for i = 1, …, N (where N = NDATA). In other words, it finds B-spline coefficients,

a = BSCOEF, such that

2

1 1

N m

i j j i i

i j

f a B x w

is a minimum, where m = NCOEF and Bj denotes the j-th B-spline for the given order, KORDER, and

knot sequence, XKNOT. This linear least squares problem is solved by computing and solving the

normal equations. While the normal equations can sometimes cause numerical difficulties, their

use here should not cause a problem because the B-spline basis generally leads to well-conditioned

banded matrices.

The choice of weights depends on the problem. In some cases, there is a natural choice for the

weights based on the relative importance of the data points. To approximate a continuous function

(if the location of the data points can be chosen), then the use of Gauss quadrature weights and

points is reasonable. This follows because BSLSQ is minimizing an approximation to the integral

2
F s dx

872 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

The Gauss quadrature weights and points can be obtained using the IMSL routine GQRUL (see

Chapter 4, Integration and Differentiation).

Comments

1. Workspace may be explicitly provided, if desired, by use of B2LSQ/DB2LSQ. The

reference is:

CALL B2LSQ (NDATA, XDATA, FDATA, WEIGHT, KORDER, XKNOT,

NCOEF, BSCOEF, WK1, WK2, WK3, WK4, IWK)

The additional arguments are as follows:

WK1 — Work array of length (3 + NCOEF) * KORDER.

WK2 — Work array of length NDATA.

WK3 — Work array of length NDATA.

WK4 — Work array of length NDATA.

IWK — Work array of length NDATA.

2. Informational errors

Type Code

4 5 Multiplicity of the knots cannot exceed the order of the spline.

4 6 The knots must be nondecreasing.

4 7 All weights must be greater than zero.

4 8 The smallest element of the data point array must be greater than or

equal to the KORDth knot.

4 9 The largest element of the data point array must be less than or equal

to the (NCOEF + 1)st knot.

3. The B-spline representation can be evaluated using BSVAL, and its derivative can be

evaluated using BSDER.

Example

In this example, we try to recover a quadratic polynomial using a quadratic spline with one interior

knot from two different data sets. The first data set is generated by evaluating the quadratic at 50

equally spaced points in the interval (0, 1) and then adding uniformly distributed noise to the data.

The second data set includes the first data set, and, additionally, the values at 0 and at 1 with no

noise added. Since the first and last data points are uncontaminated by noise, we have chosen

weights equal to 10
5
 for these two points in this second problem. The quadratic, the first

approximation, and the second approximation are then evaluated at 11 equally spaced points. This

example illustrates the use of the weights to enforce interpolation at certain of the data points.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 873

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER KORDER, NCOEF

 PARAMETER (KORDER=3, NCOEF=4)

!

 INTEGER I, NDATA, NOUT

 REAL ABS, BSCOF1(NCOEF), BSCOF2(NCOEF), F,&

 FDATA1(50), FDATA2(52), FLOAT, RNOISE, S1,&

 S2, WEIGHT(52), X, XDATA1(50), XDATA2(52),&

 XKNOT(KORDER+NCOEF), XT, YT

 INTRINSIC ABS, FLOAT

!

 DATA WEIGHT/52*1.0/

! Define function

 F(X) = 8.0*X*(1.0-X)

! Set random number seed

 CALL RNSET (12345679)

 NDATA = 50

! Set up interior knots

 DO 10 I=1, NCOEF - KORDER + 2

 XKNOT(I+KORDER-1) = FLOAT(I-1)/FLOAT(NCOEF-KORDER+1)

 10 CONTINUE

! Stack knots

 DO 20 I=1, KORDER - 1

 XKNOT(I) = XKNOT(KORDER)

 XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1)

 20 CONTINUE

! Set up data points excluding

! the endpoints 0 and 1.

! The function values have noise

! introduced.

 DO 30 I=1, NDATA

 XDATA1(I) = FLOAT(I)/51.0

 RNOISE = RNUNF()

 RNOISE = RNOISE - 0.5

 FDATA1(I) = F(XDATA1(I)) + RNOISE

 30 CONTINUE

! Compute least squares B-spline

! representation.

 CALL BSLSQ (XDATA1, FDATA1, KORDER, XKNOT, NCOEF, BSCOF1)

! Now use same XDATA values but with

! the endpoints included. These

! points will have large weights.

 NDATA = 52

 CALL SCOPY (50, XDATA1, 1, XDATA2(2:), 1)

 CALL SCOPY (50, FDATA1, 1, FDATA2(2:), 1)

!

 WEIGHT(1) = 1.0E5

 XDATA2(1) = 0.0

 FDATA2(1) = F(XDATA2(1))

 WEIGHT(NDATA) = 1.0E5

 XDATA2(NDATA) = 1.0

 FDATA2(NDATA) = F(XDATA2(NDATA))

! Compute least squares B-spline

! representation.

874 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 CALL BSLSQ (XDATA2, FDATA2, KORDER, XKNOT, NCOEF, BSCOF2, &

 WEIGHT=WEIGHT)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99998)

! Print the two interpolants

! at 11 points.

 DO 40 I=1, 11

 XT = FLOAT(I-1)/10.0

 YT = F(XT)

! Evaluate splines

 S1 = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOF1)

 S2 = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOF2)

 WRITE (NOUT,99999) XT, YT, S1, S2, (S1-YT), (S2-YT)

 40 CONTINUE

!

99998 FORMAT (7X, 'X', 9X, 'F(X)', 6X, 'S1(X)', 5X, 'S2(X)', 7X,&

 'F(X)-S1(X)', 7X, 'F(X)-S2(X)')

99999 FORMAT (' ', 4F10.4, 4X, F10.4, 7X, F10.4)

 END

Output

X F(X) S1(X) S2(X) F(X)-S1(X) F(X)-S2(X)

0.0000 0.0000 0.0515 0.0000 0.0515 0.0000

0.1000 0.7200 0.7594 0.7490 0.0394 0.0290

0.2000 1.2800 1.3142 1.3277 0.0342 0.0477

0.3000 1.6800 1.7158 1.7362 0.0358 0.0562

0.4000 1.9200 1.9641 1.9744 0.0441 0.0544

0.5000 2.0000 2.0593 2.0423 0.0593 0.0423

0.6000 1.9200 1.9842 1.9468 0.0642 0.0268

0.7000 1.6800 1.7220 1.6948 0.0420 0.0148

0.8000 1.2800 1.2726 1.2863 -0.0074 0.0063

0.9000 0.7200 0.6360 0.7214 -0.0840 0.0014

1.0000 0.0000 -0.1878 0.0000 -0.1878 0.0000

BSVLS
Computes the variable knot B-spline least squares approximation to given data.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input)

FDATA — Array of length NDATA containing the data point ordinates. (Input)

KORDER — Order of the spline. (Input)

KORDER must be less than or equal to NDATA.

NCOEF — Number of B-spline coefficients. (Input)

NCOEF must be less than or equal to NDATA.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 875

XGUESS — Array of length NCOEF + KORDER containing the initial guess of knots. (Input)

XGUESS must be nondecreasing.

XKNOT — Array of length NCOEF + KORDER containing the (nondecreasing) knot sequence.

(Output)

BSCOEF — Array of length NCOEF containing the B-spline representation. (Output)

SSQ — The square root of the sum of the squares of the error. (Output)

Optonal Arguments

NDATA — Number of data points. (Input)

NDATA must be at least 2.

Default: NDATA = size(XDATA, 1)

WEIGHT — Array of length NDATA containing the weights. (Input)

Default: WEIGHT = 1.0.

FORTRAN 90 Interface

Generic: CALL BSVLS (NDATA, XDATA, FDATA, WEIGHT, KORDER, NCOEF, XGUESS,

XKNOT, BSCOEF, SSQ)

Specific: The specific interface names are S_BSVLS and D_BSVLS.

FORTRAN 77 Interface

Single: CALL BSVLS (XDATA, FDATA, KORDER, NCOEF, XGUESS, XKNOT, BSCOEF,
SSQ [,…])

Double: The double precision name is DBSVLS.

Description

The routine BSVLS attempts to find the best placement of knots that will minimize the leastsquares

error to given data by a spline of order k = KORDER with N = NCOEF coefficients. The user

provides the order k of the spline and the number of coefficients N. For this problem to make

sense, it is necessary that N > k. We then attempt to find the minimum of the functional

2

, ,

1 1

,
M N

i i j j k j

i j

F a w f a B x

 t t

The user must provide the weights w = WEIGHT, the data xi = XDATA and fi = FDATA, and

M = NDATA. The minimum is taken over all admissible knot sequences t.

876 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

The technique employed in BSVLS uses the fact that for a fixed knot sequence t the minimization

in a is a linear least-squares problem that can be solved by calling the IMSL routine BSLSQ. Thus,

we can think of our objective function F as a function of just t by setting

 min ,
a

G F at t

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the new objective

function G. In addition to this local method, there is a global heuristic built into the algorithm that

will be useful if the data arise from a smooth function. This heuristic is based on the routine

NEWNOT of de Boor (1978, pages 184 and 258− 261).

The user must input an initial guess, t
g
 = XGUESS, for the knot sequence. This guess must be a

valid knot sequence for the splines of order k with

1 1 , 1, ,g g g g
i Nk N kx i M t t t t

with t
g
 nondecreasing, and

1, ,gg
i i k i N t t

The routine BSVLS returns the B-spline representation of the best fit found by the algorithm as

well as the square root of the sum of squares error in SSQ. If this answer is unsatisfactory, you may

reinitialize BSVLS with the return from BSVLS to see if an improvement will occur. We have found

that this option does not usually (substantially) improve the result. In regard to execution speed,

this routine can be several orders of magnitude slower than one call to the least-squares routine

BSLSQ.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2VLS/DB2VLS. The

reference is:

CALL B2VLS (NDATA, XDATA, FDATA, WEIGHT, KORDER, NCOEF,

XGUESS, XKNOT, BSCOEF, SSQ, IWK, WK)

The additional arguments are as follows:

IWK — Work array of length NDATA.

WK — Work array of length NCOEF * (6 + 2 * KORDER) + KORDER * (7 −

KORDER) +

3 * NDATA + 3.

2. Informational errors

Type Code

3 12 The knots found to be optimal are stacked more than KORDER. This

indicates fewer knots will produce the same error sum of squares.

The knots have been separated slightly.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 877

4 9 The multiplicity of the knots in XGUESS cannot exceed the order of

the spline.

4 10 XGUESS must be nondecreasing.

Example

In this example, we try to fit the function |x − .33| evaluated at 100 equally spaced points on [0,

1]. We first use quadratic splines with 2 interior knots initially at .2 and .8. The eventual error

should be zero since the function is a quadratic spline with two knots stacked at .33. As a second

example, we try to fit the same data with cubic splines with three interior knots initially located at

.1, .2, and, .5. Again, the theoretical error is zero when the three knots are stacked at .33.

We include a graph of the initial least-squares fit using the IMSL routine BSLSQ for the above

quadratic spline example with knots at .2 and .8. This graph overlays the graph of the spline

computed by BSVLS, which is indistinguishable from the data.

 USE BSVLS_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER KORD1, KORD2, NCOEF1, NCOEF2, NDATA

 PARAMETER (KORD1=3, KORD2=4, NCOEF1=5, NCOEF2=7, NDATA=100)

!

 INTEGER I, NOUT

 REAL ABS, BSCOEF(NCOEF2), F, FDATA(NDATA), FLOAT, SSQ,&

 WEIGHT(NDATA), X, XDATA(NDATA), XGUES1(NCOEF1+KORD1),&

 XGUES2(KORD2+NCOEF2), XKNOT(NCOEF2+KORD2)

 INTRINSIC ABS, FLOAT

!

 DATA XGUES1/3*0.0, .2, .8, 3*1.0001/

 DATA XGUES2/4*0.0, .1, .2, .5, 4*1.0001/

 DATA WEIGHT/NDATA*.01/

! Define function

 F(X) = ABS(X-.33)

! Set up data

 DO 10 I=1, NDATA

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA)

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Compute least squares B-spline

! representation with KORD1, NCOEF1,

! and XGUES1.

 CALL BSVLS (XDATA, FDATA, KORD1, NCOEF1, XGUES1,&

 XKNOT, BSCOEF, SSQ, WEIGHT=WEIGHT)

! Get output unit number

 CALL UMACH (2, NOUT)

! Print heading

 WRITE (NOUT,99998) 'quadratic'

! Print SSQ and the knots

 WRITE (NOUT,99999) SSQ, (XKNOT(I),I=1,KORD1+NCOEF1)

! Compute least squares B-spline

! representation with KORD2, NCOEF2,

! and XGUES2.

 CALL BSVLS (XDATA, FDATA, KORD2, NCOEF2, XGUES2,&

 XKNOT, BSCOEF, SSQ, WEIGHT=WEIGHT)

878 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

! Print SSQ and the knots

 WRITE (NOUT,99998) 'cubic'

 WRITE (NOUT,99999) SSQ, (XKNOT(I),I=1,KORD2+NCOEF2)

!

99998 FORMAT (' Piecewise ', A, /)

99999 FORMAT (' Square root of the sum of squares : ', F9.4, /,&

 ' Knot sequence : ', /, 1X, 11(F9.4,/,1X))

 END

Output

Piecewise quadratic

Square root of the sum of squares : 0.0008

Knot sequence :

 0.0000

 0.0000

 0.0000

 0.3137

 0.3464

 1.0001

 1.0001

 1.0001

Piecewise cubic

Square root of the sum of squares : 0.0005

Knot sequence :

 0.0000

 0.0000

 0.0000

 0.0000

 0.3167

 0.3273

 0.3464

 1.0001

 1.0001

 1.0001

 1.0001

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 879

Figure 3- 7 BSVLS vs. BSLSQ

CONFT

Computes the least-squares constrained spline approximation, returning the B-spline coefficients.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input)

FDATA — Array of size NDATA containing the values to be approximated. (Input)

FDATA(I) contains the value at XDATA(I).

XVAL — Array of length NXVAL containing the abscissas at which the fit is to be constrained.

(Input)

NHARD — Number of entries of XVAL involved in the ‗hard‘ constraints. (Input)

Note: (0 ≤ NHARD ≤ NXVAL). Setting NHARD to zero always results in a fit, while

setting NHARD to NXVAL forces all constraints to be met. The ‗hard‘ constraints must be

880 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

satisfied or else the routine signals failure. The ‗soft‘ constraints need not be satisfied,

but there will be an attempt to satisfy the ‗soft‘ constraints. The constraints must be

ordered in terms of priority with the most important constraints first. Thus, all of the

‗hard‘ constraints must preceed the ‗soft‘ constraints. If infeasibility is detected among

the soft constraints, we satisfy (in order) as many of the soft constraints as possible.

IDER — Array of length NXVAL containing the derivative value of the spline that is to be

constrained. (Input)

If we want to constrain the integral of the spline over the closed interval (c, d), then we

set IDER(I) = IDER(I + 1) = − 1 and XVAL(I) = c and XVAL(I + 1) = d. For

consistency, we insist that ITYPE(I) = ITYPE(I + 1) .GE. 0 and c .LE. d. Note that

every entry in IDER must be at least − 1.

ITYPE — Array of length NXVAL indicating the types of general constraints. (Input)

ITYPE(I) I-th Constraint

1 BL(I) =

2 BU I

3 BL I

4 BL I BU I

1 1 BL I

1 2 BU I

1 3 BL I

1 4 BL I BU I

10 periodic end conditions

99 disregard this constraint

i

i

i

i

d
i

d
i

d
i

d
i

d

i c

d

i c

d

i c

d

i c

f x

f x

f x

f x

d f t dt

d f t dt

d f t dt

d f t dt

In order to set two point constraints, we must have ITYPE(I) = ITYPE(I + 1) and ITYPE(I)

must be negative.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 881

1

1

1

1

1

1

1

1

ITYPE I I th Contraint

1 BL I

2 BU I

3 BL I

4 BL I BU I

di
i

i i

i i

i i

d
i i

d d
i i

d d
i i

d d
i i

f x f x

f x f x

f x f x

f x f x

BL — Array of length NXVAL containing the lower limit of the general constraints, if there is

no lower limit on the I-th constraint, then BL(I) is not referenced. (Input)

BU — Array of length NXVAL containing the upper limit of the general constraints, if there is

no upper limit on the I-th constraint, then BU(I) is not referenced; if there is no range

constraint, BL and BU can share the same storage locations. (Input)

If the I-th constraint is an equality constraint, BU(I) is not referenced.

KORDER — Order of the spline. (Input)

XKNOT — Array of length NCOEF + KORDER containing the knot sequence. (Input)

The entries of XKNOT must be nondecreasing.

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Output)

Optional Arguments

NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

WEIGHT — Array of length NDATA containing the weights. (Input)

Default: WEIGHT = 1.0.

NXVAL — Number of points in the vector XVAL. (Input)

Default: NXVAL = size (XVAL,1).

NCOEF — Number of B-spline coefficients. (Input)

Default: NCOEF = size (BSCOEF,1).

FORTRAN 90 Interface

Generic: CALL CONFT (XDATA, FDATA, XVAL, NHARD, IDER, ITYPE, BL, BU, KORDER,

XKNOT, BSCOEF [,…])

Specific: The specific interface names are S_CONFT and D_CONFT.

882 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL CONFT (NDATA, XDATA, FDATA, WEIGHT, NXVAL, XVAL, NHARD, IDER,

ITYPE, BL, BU, KORDER, XKNOT, NCOEF, BSCOEF)

Double: The double precision name is DCONFT.

Description

The routine CONFT produces a constrained, weighted least-squares fit to data from a spline

subspace. Constraints involving one point, two points, or integrals over an interval are allowed.

The types of constraints supported by the routine are of four types.

1

1

1or

or

or periodic end conditions

p

p p

p

p

j

p p

j j

p p

y

y

E f f y

f y f y

f t dt

An interval, Ip, (which may be a point, a finite interval , or semi-infinite interval) is associated

with each of these constraints.

The input for this routine consists of several items, first, the data set (xi, fi) for i = 1, …, N (where

N = NDATA), that is the data which is to be fit. Second, we have the weights to be used in the least

squares fit (w = WEIGHT). The vector XVAL of length NXVAL contains the abscissas of the points

involved in specifying the constraints. The algorithm tries to satisfy all the constraints, but if the

constraints are inconsistent then it will drop constraints, in the reverse order specified, until either

a consistent set of constraints is found or the ―hard‖ constraints are determined to be inconsistent

(the ―hard‖ constraints are those involving XVAL(1), …, XVAL(NHARD)). Thus, the algorithm

satisfies as many constraints as possible in the order specified by the user. In the case when

constraints are dropped, the user will receive a message explaining how many constraints had to

be dropped to obtain the fit. The next several arguments are related to the type of constraint and

the constraint interval. The last four arguments determine the spline solution. The user chooses the

spline subspace (KORDER, XKNOT, and NCOEF), and the routine returns the B-spline coefficients in

BSCOEF.

Let nf denote the number of feasible constraints as described above. Then, the routine solves the

problem.

2

1 1

1

subject to 1, ,

N m

i j j i i

i j

m

p j j p f

j

f a B x w

E a B I p n

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 883

This linearly constrained least-squares problem is treated as a quadratic program and is solved by

invoking the IMSL routine QPROG (see Chapter 8, Optimization).

The choice of weights depends on the data uncertainty in the problem. In some cases, there is a

natural choice for the weights based on the estimates of errors in the data points.

Determining feasibility of linear constraints is a numerically sensitive task. If you encounter

difficulties, a quick fix would be to widen the constraint intervals Ip.

Comments

1. Workspace may be explicitly provided, if desired, by use of C2NFT/DC2NFT. The

reference is:

CALL C2NFT (NDATA, XDATA, FDATA, WEIGHT, NXVAL, XVAL,

NHARD, IDER, ITYPE, BL, BU, KORDER, XKNOT, NCOEF,

BSCOEF, H, G, A, RHS, WK, IPERM, IWK)

The additional arguments are as follows:

H — Work array of size NCOEF by NCOEF. Upon output, H contains the

Hessian matrix of the objective function used in the call to QPROG (see

Chapter 8, Optimization).

G — Work array of size NCOEF. Upon output, G contains the coefficients of

the linear term used in the call to QPROG.

A — Work array of size (2 * NXVAL + KORDER) by (NCOEF + 1). Upon output,

A contains the constraint matrix used in the call QPROG. The last

column of A is used to keep record of the original order of the

constraints.

RHS — Work array of size 2 * NXVAL + KORDER . Upon output, RHS contains

the right hand side of the constraint matrix A used in the call to QPROG.

WK — Work array of size (KORDER + 1) * (2 * KORDER + 1) + (3 * NCOEF *

NCOEF + 13 * NCOEF)/2 + (2 * NXVAL + KORDER +30)*(2*NXVAL +

KORDER) + NDATA + 1.

IPERM — Work array of size NXVAL. Upon output, IPERM contains the

permutaion of the original constraints used to generate the matrix A.

IWK — Work array of size NDATA + 30 * (2 * NXVAL + KORDER) + 4 *

NCOEF.

2. Informational errors

Type Code

3 11 Soft constraints had to be removed in order to get a fit.

4 12 Multiplicity of the knots cannot exceed the order of the spline.

884 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

4 13 The knots must be nondecreasing.

4 14 The smallest element of the data point array must be greater than or

equal to the KORD-th knot.

4 15 The largest element of the data point array must be less than or equal

to the (NCOEF + 1)st knot.

4 16 All weights must be greater than zero.

4 17 The hard constraints could not be met.

4 18 The abscissas of the constrained points must lie within knot interval.

4 19 The upperbound must be greater than or equal to the lowerbound for

a range constaint.

4 20 The upper limit of integration must be greater than the lower limit of

integration for constraints involving the integral of the

approximation.

Example 1

This is a simple application of CONFT. We generate data from the function

sin
2 2

x x

contaminated with random noise and fit it with cubic splines. The function is increasing so we

would hope that our least-squares fit would also be increasing. This is not the case for the

unconstrained least squares fit generated by BSLSQ. We then force the derivative to be greater than

0 at NXVAL = 15 equally spaced points and call CONFT. The resulting curve is monotone. We print

the error for the two fits averaged over 100 equally spaced points.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER KORDER, NCOEF, NDATA, NXVAL

 PARAMETER (KORDER=4, NCOEF=8, NDATA=15, NXVAL=15)

!

 INTEGER I, IDER(NXVAL), ITYPE(NXVAL), NHARD, NOUT

 REAL ABS, BL(NXVAL), BSCLSQ(NDATA), BSCNFT(NDATA), &

 BU(NXVAL), ERRLSQ, ERRNFT, F1, FDATA(NDATA), FLOAT,&

 GRDSIZ, SIN, WEIGHT(NDATA), X, XDATA(NDATA),&

 XKNOT(KORDER+NDATA), XVAL(NXVAL)

 INTRINSIC ABS, FLOAT, SIN

!

 F1(X) = .5*X + SIN(.5*X)

! Initialize random number generator

! and get output unit number.

 CALL RNSET (234579)

 CALL UMACH (2, NOUT)

! Use default weights of one.

!

! Compute original XDATA and FDATA

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 885

! with random noise.

 GRDSIZ = 10.0

 DO 10 I=1, NDATA

 XDATA(I) = GRDSIZ*((FLOAT(I-1)/FLOAT(NDATA-1)))

 FDATA(I) = RNUNF()

 FDATA(I) = F1(XDATA(I)) + (FDATA(I)-.5)

 10 CONTINUE

! Compute knots

 DO 20 I=1, NCOEF - KORDER + 2

 XKNOT(I+KORDER-1) = GRDSIZ*((FLOAT(I-1)/FLOAT(NCOEF-KORDER+1))&

)

 20 CONTINUE

 DO 30 I=1, KORDER - 1

 XKNOT(I) = XKNOT(KORDER)

 XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1)

 30 CONTINUE

!

! Compute BSLSQ fit.

 CALL BSLSQ (XDATA, FDATA, KORDER, XKNOT, NCOEF, BSCLSQ)

! Construct the constraints for

! CONFT.

 DO 40 I=1, NXVAL

 XVAL(I) = GRDSIZ*FLOAT(I-1)/FLOAT(NXVAL-1)

 ITYPE(I) = 3

 IDER(I) = 1

 BL(I) = 0.0

 40 CONTINUE

! Call CONFT

 NHARD = 0

 CALL CONFT (XDATA, FDATA, XVAL, NHARD, IDER, ITYPE, BL, BU, KORDER,&

 XKNOT, BSCNFT, NCOEF=NCOEF)

! Compute the average error

! of 100 points in the interval.

 ERRLSQ = 0.0

 ERRNFT = 0.0

 DO 50 I=1, 100

 X = GRDSIZ*FLOAT(I-1)/99.0

 ERRNFT = ERRNFT + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCNFT)&

)

 ERRLSQ = ERRLSQ + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCLSQ)&

)

 50 CONTINUE

! Print results

 WRITE (NOUT,99998) ERRLSQ/100.0

 WRITE (NOUT,99999) ERRNFT/100.0

!

99998 FORMAT (' Average error with BSLSQ fit: ', F8.5)

99999 FORMAT (' Average error with CONFT fit: ', F8.5)

 END

886 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Output

Average error with BSLSQ fit: 0.20250

Average error with CONFT fit: 0.14334

Figure 3- 8 CONFT vs. BSLSQ Forcing Monotonicity

Additional Examples

Example 2

We now try to recover the function

4

1

1 x

from noisy data. We first try the unconstrained least-squares fit using BSLSQ. Finding that fit

somewhat unsatisfactory, we apply several constraints using CONFT. First, notice that the

unconstrained fit oscillates through the true function at both ends of the interval. This is common

for flat data. To remove this oscillation, we constrain the cubic spline to have zero second

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 887

derivative at the first and last four knots. This forces the cubic spline to reduce to a linear

polynomial on the first and last three knot intervals. In addition, we constrain the fit (which we

will call s) as follows:

7

7

7 0

2.3

7 7

s

s x dx

s s

Notice that the last constraint was generated using the periodic option (requiring only the zeroeth

derivative to be periodic). We print the error for the two fits averaged over 100 equally spaced

points.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER KORDER, NCOEF, NDATA, NXVAL

 PARAMETER (KORDER=4, NCOEF=13, NDATA=51, NXVAL=12)

!

 INTEGER I, IDER(NXVAL), ITYPE(NXVAL), NHARPT, NOUT

 REAL ABS, BL(NXVAL), BSCLSQ(NDATA), BSCNFT(NDATA),&

 BU(NXVAL), ERRLSQ, ERRNFT, F1, FDATA(NDATA), FLOAT,&

 GRDSIZ, WEIGHT(NDATA), X, XDATA(NDATA),&

 XKNOT(KORDER+NDATA), XVAL(NXVAL)

 INTRINSIC ABS, FLOAT

!

 F1(X) = 1.0/(1.0+X**4)

! Initialize random number generator

! and get output unit number.

 CALL UMACH (2, NOUT)

 CALL RNSET (234579)

! Use deafult weights of one.

!

! Compute original XDATA and FDATA

! with random noise.

 GRDSIZ = 14.0

 DO 10 I=1, NDATA

 XDATA(I) = GRDSIZ*((FLOAT(I-1)/FLOAT(NDATA-1))) - GRDSIZ/2.0

 FDATA(I) = RNUNF()

 FDATA(I) = F1(XDATA(I)) + 0.125*(FDATA(I)-.5)

 10 CONTINUE

! Compute KNOTS

 DO 20 I=1, NCOEF - KORDER + 2

 XKNOT(I+KORDER-1) = GRDSIZ*((FLOAT(I-1)/FLOAT(NCOEF-KORDER+1))&

) - GRDSIZ/2.0

 20 CONTINUE

 DO 30 I=1, KORDER - 1

 XKNOT(I) = XKNOT(KORDER)

 XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1)

 30 CONTINUE

! Compute BSLSQ fit

 CALL BSLSQ (XDATA, FDATA, KORDER, XKNOT, NCOEF, BSCLSQ)

! Construct the constraints for

! CONFT

 DO 40 I=1, 4

888 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 XVAL(I) = XKNOT(KORDER+I-1)

 XVAL(I+4) = XKNOT(NCOEF-3+I)

 ITYPE(I) = 1

 ITYPE(I+4) = 1

 IDER(I) = 2

 IDER(I+4) = 2

 BL(I) = 0.0

 BL(I+4) = 0.0

 40 CONTINUE

!

 XVAL(9) = -7.0

 ITYPE(9) = 3

 IDER(9) = 0

 BL(9) = 0.0

!

 XVAL(10) = -7.0

 ITYPE(10) = 2

 IDER(10) = -1

 BU(10) = 2.3

!

 XVAL(11) = 7.0

 ITYPE(11) = 2

 IDER(11) = -1

 BU(11) = 2.3

!

 XVAL(12) = -7.0

 ITYPE(12) = 10

 IDER(12) = 0

! Call CONFT

 CALL CONFT (XDATA, FDATA, XVAL, NHARPT, IDER, ITYPE, BL, BU,&

 KORDER, XKNOT, BSCNFT, NCOEF=NCOEF)

! Compute the average error

! of 100 points in the interval.

 ERRLSQ = 0.0

 ERRNFT = 0.0

 DO 50 I=1, 100

 X = GRDSIZ*FLOAT(I-1)/99.0 - GRDSIZ/2.0

 ERRNFT = ERRNFT + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCNFT)&

)

 ERRLSQ = ERRLSQ + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCLSQ)&

)

 50 CONTINUE

! Print results

 WRITE (NOUT,99998) ERRLSQ/100.0

 WRITE (NOUT,99999) ERRNFT/100.0

!

99998 FORMAT (' Average error with BSLSQ fit: ', F8.5)

99999 FORMAT (' Average error with CONFT fit: ', F8.5)

 END

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 889

Output

Average error with BSLSQ fit: 0.01783

Average error with CONFT fit: 0.01339

Figure 3- 9 CONFT vs. BSLSQ Approximating 1/(1 + x
4
)

BSLS2
Computes a two-dimensional tensor-product spline approximant using least squares, returning the

tensor-product B-spline coefficients.

Required Arguments

XDATA — Array of length NXDATA containing the data points in the X-direction. (Input)

XDATA must be nondecreasing.

YDATA — Array of length NYDATA containing the data points in the Y-direction. (Input)

YDATA must be nondecreasing.

FDATA — Array of size NXDATA by NYDATA containing the values on the X − Y grid to be

interpolated. (Input)

FDATA(I, J) contains the value at (XDATA(I), YDATA(I)).

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

890 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

XKNOT — Array of length KXORD + NXCOEF containing the knots in the X-direction. (Input)

XKNOT must be nondecreasing.

YKNOT — Array of length KYORD + NYCOEF containing the knots in the Y-direction. (Input)

YKNOT must be nondecreasing.

BSCOEF — Array of length NXCOEF * NYCOEF that contains the tensor product B-spline

coefficients. (Output)

BSCOEF is treated internally as an array of size NXCOEF by NYCOEF.

Optional Arguments

NXDATA — Number of data points in the X-direction. (Input)

Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the Y-direction. (Input)

Default: NYDATA = size (YDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of

calling program. (Input)

Default: LDF = size (FDATA,1).

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

Default: NXCOEF = size (XKNOT,1) – KXORD.

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

Default: NYCOEF = size (YKNOT,1) – KYORD.

XWEIGH — Array of length NXDATA containing the positive weights of XDATA. (Input)

Default: XWEIGH = 1.0.

YWEIGH — Array of length NYDATA containing the positive weights of YDATA. (Input)

Default: YWEIGH = 1.0.

FORTRAN 90 Interface

Generic: CALL BSLS2 (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, YKNOT,
BSCOEF [,…])

Specific: The specific interface names are S_BSLS2 and D_BSLS2.

FORTRAN 77 Interface

Single: CALL BSLS2 (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, KXORD, KYORD,

XKNOT, YKNOT, NXCOEF, NYCOEF, XWEIGH, YWEIGH, BSCOEF)

Double: The double precision name is DBSLS2.

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 891

Description

The routine BSLS2 computes the coefficients of a tensor-product spline least-squares

approximation to weighted tensor-product data. The input for this subroutine consists of data

vectors to specify the tensor-product grid for the data, two vectors with the weights, the values of

the surface on the grid, and the specification for the tensor-product spline. The grid is specified by

the two vectors x = XDATA and y = YDATA of length n = NXDATA and m = NYDATA, respectively. A

two-dimensional array f = FDATA contains the data values that are to be fit. The two vectors

wx = XWEIGH and wy = YWEIGH contain the weights for the weighted least-squares problem. The

information for the approximating tensor-product spline must also be provided. This information

is contained in kx = KXORD, tx = XKNOT, and N = NXCOEF for the spline in the first variable, and in

ky = KYORD , ty = YKNOT and M = NYCOEF for the spline in the second variable. The coefficients of

the resulting tensor-product spline are returned in c = BSCOEF, which is an N * M array. The

procedure computes coefficients by solving the normal equations in tensor-product form as

discussed

in de Boor (1978, Chapter 17). The interested reader might also want to study the paper by E.

Grosse (1980).

The final result produces coefficients c minimizing

2

1 1 1 1

,
n m N M

x y kl kl i j ij

i j k l

w i w j c B x y f

where the function Bkl is the tensor-product of two B-splines of order kx and ky. Specifically, we

have

 , , , ,,
x x y ykl k k l kB x y B x B y t t

The spline

1 1

N M

kl kl

k l

c B

can be evaluated using BS2VL and its partial derivatives can be evaluated using BS2DR.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2LS2/DB2LS2. The

reference is:

CALL B2LS2 (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,

KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, XWEIGH,

YWEIGH, BSCOEF, WK)

The additional argument is:

WK — Work array of length (NXCOEF + 1) * NYDATA + KXORD * NXCOEF +

KYORD * NYCOEF + 3 * MAX(KXORD, KYORD).

2. Informational errors

892 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Type Code

3 14 There may be less than one digit of accuracy in the least squares fit.

Try using higher precision if possible.

4 5 Multiplicity of the knots cannot exceed the order of the spline.

4 6 The knots must be nondecreasing.

4 7 All weights must be greater than zero.

4 9 The data point abscissae must be nondecreasing.

4 10 The smallest element of the data point array must be greater than or

equal to the K_ORDth knot.

4 11 The largest element of the data point array must be less than or equal

to the (N_COEF + 1)st knot.

Example

The data for this example arise from the function e
x
 sin(x + y) + ɛ on the rectangle [0, 3] × [0, 5].

Here, ɛ is a uniform random variable with range [−1, 1]. We sample this function on a 100 × 50

grid and then try to recover it by using cubic splines in the x variable and quadratic splines in the y

variable. We print out the values of the function e
x
 sin(x + y) on a 3 × 5 grid and compare these

values with the values of the tensor-product spline that was computed using the IMSL routine

BSLS2.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER KXORD, KYORD, LDF, NXCOEF, NXDATA, NXVEC, NYCOEF,&

 NYDATA, NYVEC

 PARAMETER (KXORD=4, KYORD=3, NXCOEF=15, NXDATA=100, NXVEC=4,&

 NYCOEF=7, NYDATA=50, NYVEC=6, LDF=NXDATA)

!

 INTEGER I, J, NOUT

 REAL BSCOEF(NXCOEF,NYCOEF), EXP, F, FDATA(NXDATA,NYDATA),&

 FLOAT, RNOISE, SIN, VALUE(NXVEC,NYVEC), X,&

 XDATA(NXDATA), XKNOT(NXCOEF+KXORD), XVEC(NXVEC),&

 XWEIGH(NXDATA), Y, YDATA(NYDATA),&

 YKNOT(NYCOEF+KYORD), YVEC(NYVEC), YWEIGH(NYDATA)

 INTRINSIC EXP, FLOAT, SIN

! Define function

 F(X,Y) = EXP(X)*SIN(X+Y)

! Set random number seed

 CALL RNSET (1234579)

! Set up X knot sequence.

 DO 10 I=1, NXCOEF - KXORD + 2

 XKNOT(I+KXORD-1) = 3.0*(FLOAT(I-1)/FLOAT(NXCOEF-KXORD+1))

 10 CONTINUE

 XKNOT(NXCOEF+1) = XKNOT(NXCOEF+1) + 0.001

! Stack knots.

 DO 20 I=1, KXORD - 1

 XKNOT(I) = XKNOT(KXORD)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 893

 XKNOT(I+NXCOEF+1) = XKNOT(NXCOEF+1)

 20 CONTINUE

! Set up Y knot sequence.

 DO 30 I=1, NYCOEF - KYORD + 2

 YKNOT(I+KYORD-1) = 5.0*(FLOAT(I-1)/FLOAT(NYCOEF-KYORD+1))

 30 CONTINUE

 YKNOT(NYCOEF+1) = YKNOT(NYCOEF+1) + 0.001

! Stack knots.

 DO 40 I=1, KYORD - 1

 YKNOT(I) = YKNOT(KYORD)

 YKNOT(I+NYCOEF+1) = YKNOT(NYCOEF+1)

 40 CONTINUE

! Set up X-grid.

 DO 50 I=1, NXDATA

 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NXDATA-1))

 50 CONTINUE

! Set up Y-grid.

 DO 60 I=1, NYDATA

 YDATA(I) = 5.0*(FLOAT(I-1)/FLOAT(NYDATA-1))

 60 CONTINUE

! Evaluate function on grid and

! introduce random noise in [1,-1].

 DO 70 I=1, NYDATA

 DO 70 J=1, NXDATA

 RNOISE = RNUNF()

 RNOISE = 2.0*RNOISE - 1.0

 FDATA(J,I) = F(XDATA(J),YDATA(I)) + RNOISE

 70 CONTINUE

! Use default weights equal to 1.

!

! Compute least squares approximation.

 CALL BSLS2 (XDATA, YDATA, FDATA, KXORD, KYORD, &

 XKNOT, YKNOT, BSCOEF)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Print interpolated values

! on [0,3] x [0,5].

 DO 80 I=1, NXVEC

 XVEC(I) = FLOAT(I-1)

 80 CONTINUE

 DO 90 I=1, NYVEC

 YVEC(I) = FLOAT(I-1)

 90 CONTINUE

! Evaluate spline

 CALL BS2GD (0, 0, XVEC, YVEC, KXORD, KYORD, XKNOT,&

 YKNOT, BSCOEF, VALUE)

 DO 110 I=1, NXVEC

 DO 100 J=1, NYVEC

 WRITE (NOUT,'(5F15.4)') XVEC(I), YVEC(J),&

 F(XVEC(I),YVEC(J)), VALUE(I,J),&

 (F(XVEC(I),YVEC(J))-VALUE(I,J))

 100 CONTINUE

 110 CONTINUE

99999 FORMAT (13X, 'X', 14X, 'Y', 10X, 'F(X,Y)', 9X, 'S(X,Y)', 10X,&

 'Error')

894 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 END

Output

 X Y F(X,Y) S(X,Y) Error

0.0000 0.0000 0.0000 0.2782 -0.2782

0.0000 1.0000 0.8415 0.7762 0.0653

0.0000 2.0000 0.9093 0.8203 0.0890

0.0000 3.0000 0.1411 0.1391 0.0020

0.0000 4.0000 -0.7568 -0.5705 -0.1863

0.0000 5.0000 -0.9589 -1.0290 0.0701

1.0000 0.0000 2.2874 2.2678 0.0196

1.0000 1.0000 2.4717 2.4490 0.0227

1.0000 2.0000 0.3836 0.4947 -0.1111

1.0000 3.0000 -2.0572 -2.0378 -0.0195

1.0000 4.0000 -2.6066 -2.6218 0.0151

1.0000 5.0000 -0.7595 -0.7274 -0.0321

2.0000 0.0000 6.7188 6.6923 0.0265

2.0000 1.0000 1.0427 0.8492 0.1935

2.0000 2.0000 -5.5921 -5.5885 -0.0035

2.0000 3.0000 -7.0855 -7.0955 0.0099

2.0000 4.0000 -2.0646 -2.1588 0.0942

2.0000 5.0000 4.8545 4.7339 0.1206

3.0000 0.0000 2.8345 2.5971 0.2373

3.0000 1.0000 -15.2008 -15.1079 -0.0929

3.0000 2.0000 -19.2605 -19.1698 -0.0907

3.0000 3.0000 -5.6122 -5.5820 -0.0302

3.0000 4.0000 13.1959 12.6659 0.5300

3.0000 5.0000 19.8718 20.5170 -0.6452

BSLS3
Computes a three-dimensional tensor-product spline approximant using least squares, returning

the tensor-product B-spline coefficients.

Required Arguments

XDATA — Array of length NXDATA containing the data points in the x-direction. (Input)

XDATA must be nondecreasing.

YDATA — Array of length NYDATA containing the data points in the y-direction. (Input)

YDATA must be nondecreasing.

ZDATA — Array of length NZDATA containing the data points in the z-direction. (Input)

ZDATA must be nondecreasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing the values to be

interpolated. (Input)

FDATA(I, J, K) contains the value at (XDATA(I), YDATA(J), ZDATA(K)).

KXORD — Order of the spline in the x-direction. (Input)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 895

KYORD — Order of the spline in the y-direction. (Input)

KZORD — Order of the spline in the z-direction. (Input)

XKNOT — Array of length KXORD + NXCOEF containing the knots in the x-direction. (Input)

XKNOT must be nondecreasing.

YKNOT — Array of length KYORD + NYCOEF containing the knots in the y-direction. (Input)

YKNOT must be nondecreasing.

ZKNOT — Array of length KZORD + NZCOEF containing the knots in the z-direction. (Input)

ZKNOT must be nondecreasing.

BSCOEF — Array of length NXCOEF*NYCOEF*NZCOEF that contains the tensor product

B-spline coefficients. (Output)

Optional Arguments

NXDATA — Number of data points in the x-direction. (Input)

NXDATA must be greater than or equal to NXCOEF.

Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the y-direction. (Input)

NYDATA must be greater than or equal to NYCOEF.

Default: NYDATA = size (YDATA,1).

NZDATA — Number of data points in the z-direction. (Input)

NZDATA must be greater than or equal to NZCOEF.

Default: NZDATA = size (ZDATA,1).

LDFDAT — Leading dimension of FDATA exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFDAT = size (FDATA,1).

MDFDAT — Second dimension of FDATA exactly as specified in the dimension statement of

the calling program. (Input)

Default: MDFDAT = size (FDATA,2).

NXCOEF — Number of B-spline coefficients in the x-direction. (Input)

Default: NXCOEF = size (XKNOT,1) – KXORD.

NYCOEF — Number of B-spline coefficients in the y-direction. (Input)

Default: NYCOEF = size (YKNOT,1) – KYORD.

NZCOEF — Number of B-spline coefficients in the z-direction. (Input)

Default: NZCOEF = size (ZKNOT,1) – KZORD.

XWEIGH — Array of length NXDATA containing the positive weights of XDATA. (Input)

Default: XWEIGH = 1.0.

896 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

YWEIGH — Array of length NYDATA containing the positive weights of YDATA. (Input)

Default: YWEIGH = 1.0.

ZWEIGH — Array of length NZDATA containing the positive weights of ZDATA. (Input)

Default: ZWEIGH = 1.0.

FORTRAN 90 Interface

Generic: CALL BSLS3 (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT,

YKNOT, ZKNOT, BSCOEF [,…])

Specific: The specific interface names are S_BSLS3 and D_BSLS3.

FORTRAN 77 Interface

Single: CALL BSLS3 (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, FDATA,

LDFDAT, MDFDAT, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF,

NYCOEF, NZCOEF, XWEIGH, YWEIGH, ZWEIGH, BSCOEF)

Double: The double precision name is DBSLS3.

Description

The routine BSLS3 computes the coefficients of a tensor-product spline least-squares

approximation to weighted tensor-product data. The input for this subroutine consists of data

vectors to specify the tensor-product grid for the data, three vectors with the weights, the values of

the surface on the grid, and the specification for the tensor-product spline. The grid is specified by

the three vectors x = XDATA, y = YDATA, and z = ZDATA of length k = NXDATA, l = NYDATA , and

m = NYDATA, respectively. A three-dimensional array f = FDATA contains the data values which are

to be fit. The three vectors wx = XWEIGH, wy = YWEIGH, and wz = ZWEIGH contain the weights for

the weighted least-squares problem. The information for the approximating tensor-product spline

must also be provided. This information is contained in kx = KXORD, tx = XKNOT, and K = NXCOEF

for the spline in the first variable, in ky = KYORD, ty = YKNOT and L = NYCOEF for the spline in the

second variable, and in kz = KZORD, tz = ZKNOT and M = NZCOEF for the spline in the third

variable.

The coefficients of the resulting tensor product spline are returned in c = BSCOEF, which is an

K × L × M array. The procedure computes coefficients by solving the normal equations in tensor-

product form as discussed in de Boor (1978, Chapter 17). The interested reader might also want to

study the paper by E. Grosse (1980).

The final result produces coefficients c minimizing

2

1 1 1 1 1

, ,
k l m K L M

x y z stu stu i j p ijp

i l j p s t u

w i w j w p c B x y z f

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 897

where the function Bstu is the tensor-product of three B-splines of order kx, ky, and kz. Specifically,

we have

 , , , , , ,, ,
x x y y z zstu s k t k u kB x y z B x B y B z t t t

The spline

1 1 1

K L M

stu stu

s t u

c B

can be evaluated at one point using BS3VL and its partial derivatives can be evaluated using

BS3DR. If the values on a grid are desired then we recommend BS3GD.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2LS3/DB2LS3. The

reference is:

CALL B2LS3 (NXDATA, XDATA, NYDATA, NZDATA, ZDATA, YDATA,

FDATA, LDFDAT, KXORD, KYORD, KZORD, XKNOT, YKNOT,

ZKNOT, NXCOEF, NYCOEF, NZCOEF, XWEIGH, YWEIGH,

ZWEIGH, BSCOEF, WK)

The additional argument is:

WK — Work array of length NYCOEF * (NZDATA + KYORD + NZCOEF) +

NZDATA * (1 + NYDATA) + NXCOEF * (KXORD + NYDATA * NZDATA) +

KZORD * NZCOEF + 3 * MAX0(KXORD, KYORD, KZORD).

2. Informational errors

Type Code

3 13 There may be less than one digit of accuracy in the least squares fit.

Try using higher precision if possible.

4 7 Multiplicity of knots cannot exceed the order of the spline.

4 8 The knots must be nondecreasing.

4 9 All weights must be greater than zero.

4 10 The data point abscissae must be nondecreasing.

4 11 The smallest element of the data point array must be greater than or

equal to the K_ORDth knot.

4 12 The largest element of the data point array must be less than or equal

to the (N_COEF + 1)st knot.

Example

The data for this example arise from the function e
(y - z)

 sin(x + y) + ɛ on the rectangle

[0, 3] × [0, 2] × [0, 1]. Here, ɛ is a uniform random variable with range [−.5, .5]. We sample this

898 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

function on a 4 × 3 × 2 grid and then try to recover it by using tensor-product cubic splines in all

variables. We print out the values of the function e
(y - z)

 sin(x + y) on a 4 × 3 × 2 grid and compare

these values with the values of the tensor-product spline that was computed using the IMSL

routine BSLS3.

 USE BSLS3_INT

 USE RNSET_INT

 USE RNUNF_INT

 USE UMACH_INT

 USE BS3GD_INT

 IMPLICIT NONE

 INTEGER KXORD, KYORD, KZORD, LDFDAT, MDFDAT, NXCOEF, NXDATA,&

 NXVAL, NYCOEF, NYDATA, NYVAL, NZCOEF, NZDATA, NZVAL

 PARAMETER (KXORD=4, KYORD=4, KZORD=4, NXCOEF=8, NXDATA=15,&

 NXVAL=4, NYCOEF=8, NYDATA=15, NYVAL=3, NZCOEF=8,&

 NZDATA=15, NZVAL=2, LDFDAT=NXDATA, MDFDAT=NYDATA)

!

 INTEGER I, J, K, NOUT

 REAL BSCOEF(NXCOEF,NYCOEF,NZCOEF), EXP, F,&

 FDATA(NXDATA,NYDATA,NZDATA), FLOAT, RNOISE,&

 SIN, SPXYZ(NXVAL,NYVAL,NZVAL), X, XDATA(NXDATA),&

 XKNOT(NXCOEF+KXORD), XVAL(NXVAL), XWEIGH(NXDATA), Y,&

 YDATA(NYDATA), YKNOT(NYCOEF+KYORD), YVAL(NYVAL),&

 YWEIGH(NYDATA), Z, ZDATA(NZDATA),&

 ZKNOT(NZCOEF+KZORD), ZVAL(NZVAL), ZWEIGH(NZDATA)

 INTRINSIC EXP, FLOAT, SIN

! Define a function

 F(X,Y,Z) = EXP(Y-Z)*SIN(X+Y)

!

 CALL RNSET (1234579)

 CALL UMACH (2, NOUT)

! Set up knot sequences

! X-knots

 DO 10 I=1, NXCOEF - KXORD + 2

 XKNOT(I+KXORD-1) = 3.0*(FLOAT(I-1)/FLOAT(NXCOEF-KXORD+1))

 10 CONTINUE

 DO 20 I=1, KXORD - 1

 XKNOT(I) = XKNOT(KXORD)

 XKNOT(I+NXCOEF+1) = XKNOT(NXCOEF+1)

 20 CONTINUE

! Y-knots

 DO 30 I=1, NYCOEF - KYORD + 2

 YKNOT(I+KYORD-1) = 2.0*(FLOAT(I-1)/FLOAT(NYCOEF-KYORD+1))

 30 CONTINUE

 DO 40 I=1, KYORD - 1

 YKNOT(I) = YKNOT(KYORD)

 YKNOT(I+NYCOEF+1) = YKNOT(NYCOEF+1)

 40 CONTINUE

! Z-knots

 DO 50 I=1, NZCOEF - KZORD + 2

 ZKNOT(I+KZORD-1) = 1.0*(FLOAT(I-1)/FLOAT(NZCOEF-KZORD+1))

 50 CONTINUE

 DO 60 I=1, KZORD - 1

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 899

 ZKNOT(I) = ZKNOT(KZORD)

 ZKNOT(I+NZCOEF+1) = ZKNOT(NZCOEF+1)

 60 CONTINUE

! Set up X-grid.

 DO 70 I=1, NXDATA

 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NXDATA-1))

 70 CONTINUE

! Set up Y-grid.

 DO 80 I=1, NYDATA

 YDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NYDATA-1))

 80 CONTINUE

! Set up Z-grid

 DO 90 I=1, NZDATA

 ZDATA(I) = 1.0*(FLOAT(I-1)/FLOAT(NZDATA-1))

 90 CONTINUE

! Evaluate the function on the grid

! and add noise.

 DO 100 I=1, NXDATA

 DO 100 J=1, NYDATA

 DO 100 K=1, NZDATA

 RNOISE = RNUNF()

 RNOISE = RNOISE - 0.5

 FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K)) + RNOISE

 100 CONTINUE

! Use default weights equal to 1.0

!

! Compute least-squares

 CALL BSLS3 (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT, &

 YKNOT, ZKNOT, BSCOEF)

! Set up grid for evaluation.

 DO 110 I=1, NXVAL

 XVAL(I) = FLOAT(I-1)

 110 CONTINUE

 DO 120 I=1, NYVAL

 YVAL(I) = FLOAT(I-1)

 120 CONTINUE

 DO 130 I=1, NZVAL

 ZVAL(I) = FLOAT(I-1)

 130 CONTINUE

! Evaluate on the grid.

 CALL BS3GD (0, 0, 0, XVAL, YVAL, ZVAL, KXORD, KYORD, KZORD, XKNOT, &

 YKNOT, ZKNOT, BSCOEF, SPXYZ)

! Print results.

 WRITE (NOUT,99998)

 DO 140 I=1, NXVAL

 DO 140 J=1, NYVAL

 DO 140 K=1, NZVAL

 WRITE (NOUT,99999) XVAL(I), YVAL(J), ZVAL(K),&

 F(XVAL(I),YVAL(J),ZVAL(K)),&

 SPXYZ(I,J,K), F(XVAL(I),YVAL(J),ZVAL(K)&

) - SPXYZ(I,J,K)

 140 CONTINUE

99998 FORMAT (8X, 'X', 9X, 'Y', 9X, 'Z', 6X, 'F(X,Y,Z)', 3X,&

 'S(X,Y,Z)', 4X, 'Error')

99999 FORMAT (' ', 3F10.3, 3F11.4)

 END

900 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Output

 X Y Z F(X,Y,Z) S(X,Y,Z) Error

0.000 0.000 0.000 0.0000 0.1987 -0.1987

0.000 0.000 1.000 0.0000 0.1447 -0.1447

0.000 1.000 0.000 2.2874 2.2854 0.0019

0.000 1.000 1.000 0.8415 1.0557 -0.2142

0.000 2.000 0.000 6.7188 6.4704 0.2484

0.000 2.000 1.000 2.4717 2.2054 0.2664

1.000 0.000 0.000 0.8415 0.8779 -0.0365

1.000 0.000 1.000 0.3096 0.2571 0.0524

1.000 1.000 0.000 2.4717 2.4015 0.0703

1.000 1.000 1.000 0.9093 0.8995 0.0098

1.000 2.000 0.000 1.0427 1.1330 -0.0902

1.000 2.000 1.000 0.3836 0.4951 -0.1115

2.000 0.000 0.000 0.9093 0.8269 0.0824

2.000 0.000 1.000 0.3345 0.3258 0.0087

2.000 1.000 0.000 0.3836 0.3564 0.0272

2.000 1.000 1.000 0.1411 0.1905 -0.0494

2.000 2.000 0.000 -5.5921 -5.5362 -0.0559

2.000 2.000 1.000 -2.0572 -1.9659 -0.0913

3.000 0.000 0.000 0.1411 0.4841 -0.3430

3.000 0.000 1.000 0.0519 -0.4257 0.4776

3.000 1.000 0.000 -2.0572 -1.9710 -0.0862

3.000 1.000 1.000 -0.7568 -0.8479 0.0911

3.000 2.000 0.000 -7.0855 -7.0957 0.0101

3.000 2.000 1.000 -2.6066 -2.1650 -0.4416

CSSED
Smooths one-dimensional data by error detection.

Required Arguments

XDATA — Array of length NDATA containing the abscissas of the data points. (Input)

FDATA — Array of length NDATA containing the ordinates (function values) of the data

points. (Input)

DIS — Proportion of the distance the ordinate in error is moved to its interpolating curve.

(Input)

It must be in the range 0.0 to 1.0. A suggested value for DIS is one.

SC — Stopping criterion. (Input)

SC should be greater than or equal to zero. A suggested value for SC is zero.

MAXIT — Maximum number of iterations allowed. (Input)

SDATA — Array of length NDATA containing the smoothed data. (Output)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 901

Optional Arguments

NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface

Generic: CALL CSSED (XDATA, FDATA, DIS, SC, MAXIT, SDATA [,…])

Specific: The specific interface names are S_CSSED and D_CSSED.

FORTRAN 77 Interface

Single: CALL CSSED (NDATA, XDATA, FDATA, DIS, SC, MAXIT, SDATA)

Double: The double precision name is DCSSED.

Description

The routine CSSED is designed to smooth a data set that is mildly contaminated with isolated

errors. In general, the routine will not work well if more than 25% of the data points are in error.

The routine CSSED is based on an algorithm of Guerra and Tapia (1974).

Setting NDATA = n, FDATA = f, SDATA = s and XDATA = x, the algorithm proceeds as follows.

Although the user need not input an ordered XDATA sequence, we will assume that x is increasing

for simplicity. The algorithm first sorts the XDATA values into an increasing sequence and then

continues. A cubic spline interpolant is computed for each of the 6-point data sets (initially setting

s = f)

(xj, sj) j = i − 3, …, i + 3 j ≠ i,

where i = 4, …, n − 3 using CSAKM. For each i the interpolant, which we will call Si, is compared

with the current value of si, and a ‗point energy‘ is computed as

pei = Si(xi) − si

Setting sc = SC, the algorithm terminates either if MAXIT iterations have taken place or if

 3 3 / 6 4, , 3i i ipe sc x x i n

If the above inequality is violated for any i, then we update the i-th element of s by setting

si = si + d(pei), where d = DIS. Note that neither the first three nor the last three data points are

changed. Thus, if these points are inaccurate, care must be taken to interpret the results.

The choice of the parameters d, sc and MAXIT are crucial to the successful usage of this

subroutine. If the user has specific information about the extent of the contamination, then he

should choose the parameters as follows: d = 1, sc = 0 and MAXIT to be the number of data points

in error. On the other hand, if no such specific information is available, then choose d = .5,

MAXIT ≤2n, and

902 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 1

max min
.5

n

s s
sc

x x

In any case, we would encourage the user to experiment with these values.

Comments

1. Workspace may be explicitly provided, if desired, by use of C2SED/DC2SED. The

reference is:

CALL C2SED (NDATA, XDATA, FDATA, DIS, SC, MAXIT, DATA, WK,

IWK)

The additional arguments are as follows:

WK — Work array of length 4 * NDATA + 30.

IWK — Work array of length 2 * NDATA.

2. Informational error

Type Code

3 1 The maximum number of iterations allowed has been reached.

3. The arrays FDATA and SDATA may the the same.

Example

We take 91 uniform samples from the function 5 + (5 + t
2
 sin t)/t on the interval [1, 10]. Then, we

contaminate 10 of the samples and try to recover the original function values.

 USE CSSED_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NDATA

 PARAMETER (NDATA=91)

!

 INTEGER I, MAXIT, NOUT, ISB(10)

 REAL DIS, F, FDATA(91), SC, SDATA(91), SIN, X, XDATA(91),&

 RNOISE(10)

 INTRINSIC SIN

!

 DATA ISB/6, 17, 26, 34, 42, 49, 56, 62, 75, 83/

 DATA RNOISE/2.5, -3.0, -2.0, 2.5, 3.0, -2.0, -2.5, 2.0, -2.0, 3.0/

!

 F(X) = (X*X*SIN(X)+5.0)/X + 5.0

! EX. #1; No specific information

! available

 DIS = 0.5

 SC = 0.56

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 903

 MAXIT = 182

! Set values for XDATA and FDATA

 XDATA(1) = 1.0

 FDATA(1) = F(XDATA(1))

 DO 10 I=2, NDATA

 XDATA(I) = XDATA(I-1) + .1

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Contaminate the data

 DO 20 I=1, 10

 FDATA(ISB(I)) = FDATA(ISB(I)) + RNOISE(I)

 20 CONTINUE

! Smooth data

 CALL CSSED (XDATA, FDATA, DIS, SC, MAXIT, SDATA)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99997)

! Write data

 DO 30 I=1, 10

 WRITE (NOUT,99999) F(XDATA(ISB(I))), FDATA(ISB(I)),&

 SDATA(ISB(I))

 30 CONTINUE

! EX. #2; Specific information

! available

 DIS = 1.0

 SC = 0.0

 MAXIT = 10

! A warning message is produced

! because the maximum number of

! iterations is reached.

!

! Smooth data

 CALL CSSED (XDATA, FDATA, DIS, SC, MAXIT, SDATA)

! Write heading

 WRITE (NOUT,99998)

! Write data

 DO 40 I=1, 10

 WRITE (NOUT,99999) F(XDATA(ISB(I))), FDATA(ISB(I)),&

 SDATA(ISB(I))

 40 CONTINUE

!

99997 FORMAT (' Case A - No specific information available', /,&

 ' F(X) F(X)+NOISE SDATA(X)', /)

99998 FORMAT (' Case B - Specific information available', /,&

 ' F(X) F(X)+NOISE SDATA(X)', /)

99999 FORMAT (' ', F7.3, 8X, F7.3, 11X, F7.3)

 END

Output

Case A - No specific information available

 F(X) F(X)+NOISE SDATA(X)

 9.830 12.330 9.870

 8.263 5.263 8.215

 5.201 3.201 5.168

904 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 2.223 4.723 2.264

 1.259 4.259 1.308

 3.167 1.167 3.138

 7.167 4.667 7.131

10.880 12.880 10.909

12.774 10.774 12.708

 7.594 10.594 7.639

 *** WARNING ERROR 1 from CSSED. Maximum number of iterations limit MAXIT

 *** =10 exceeded. The best answer found is returned.

Case B - Specific information available

 F(X) F(X)+NOISE SDATA(X)

 9.830 12.330 9.831

 8.263 5.263 8.262

 5.201 3.201 5.199

 2.223 4.723 2.225

 1.259 4.259 1.261

 3.167 1.167 3.170

 7.167 4.667 7.170

10.880 12.880 10.878

12.774 10.774 12.770

 7.594 10.594 7.592

CSSMH
Computes a smooth cubic spline approximation to noisy data.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input)

XDATA must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

SMPAR — A nonnegative number which controls the smoothing. (Input)

The spline function S returned is such that the sum from I = 1 to NDATA of

((S(XDATA(I))FDATA(I)) / WEIGHT(I))**2 is less than or equal to SMPAR. It is

recommended that SMPAR lie in the confidence interval of this sum, i.e.,

NDATA − SQRT(2 * NDATA).LE. SMPAR.LE. NDATA + SQRT(2 * NDATA).

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic

representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.

(Output)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 905

Optional Arguments

NDATA — Number of data points. (Input)

NDATA must be at least 2.

Default: NDATA = size (XDATA,1).

WEIGHT — Array of length NDATA containing estimates of the standard deviations of

FDATA. (Input)

All elements of WEIGHT must be positive.

Default: WEIGHT = 1.0.

FORTRAN 90 Interface

Generic: CALL CSSMH (XDATA, FDATA, SMPAR, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSSMH and D_CSSMH.

FORTRAN 77 Interface

Single: CALL CSSMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR, BREAK, CSCOEF)

Double: The double precision name is DCSSMH.

Description

The routine CSSMH is designed to produce a C
2
 cubic spline approximation to a data set in which

the function values are noisy. This spline is called a smoothing spline. It is a natural cubic spline

with knots at all the data abscissas x = XDATA, but it does not interpolate the data (xi, fi). The

smoothing spline S is the unique C
2
 function which minimizes

2b

a
S x dx

subject to the constraint

2

1

N
i i

ii

S x f

w

where w = WEIGHT, σ = SMPAR is the smoothing parameter, and N = NDATA.

Recommended values for σ depend on the weights w. If an estimate for the standard deviation of

the error in the value fi is available, then wi should be set to this value and the smoothing parameter

σ should be chosen in the confidence interval corresponding to the left side of the above

inequality. That is,

2 2N N N N

The routine CSSMH is based on an algorithm of Reinsch (1967). This algorithm is also discussed in

de Boor (1978, pages 235− 243).

906 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of C2SMH/DC2SMH. The

reference is:

CALL C2SMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR, BREAK,

CSCOEF, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 8 * NDATA + 5.

IWK — Work array of length NDATA.

2. Informational errors

Type Code

3 1 The maximum number of iterations has been reached. The best

approximation is returned.

4 3 All weights must be greater than zero.

3. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using

CSDER.

Example

In this example, function values are contaminated by adding a small ―random‖ amount to the

correct values. The routine CSSMH is used to approximate the original, uncontaminated data.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER NDATA

 PARAMETER (NDATA=300)

!

 INTEGER I, NOUT

 REAL BREAK(NDATA), CSCOEF(4,NDATA), ERROR, F,&

 FDATA(NDATA), FLOAT, FVAL, SDEV, SMPAR, SQRT,&

 SVAL, WEIGHT(NDATA), X, XDATA(NDATA), XT, RN

 INTRINSIC FLOAT, SQRT

!

 F(X) = 1.0/(.1+(3.0*(X-1.0))**4)

! Set up a grid

 DO 10 I=1, NDATA

 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1))

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Set the random number seed

 CALL RNSET (1234579)

! Contaminate the data

 DO 20 I=1, NDATA

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 907

 RN = RNUNF()

 FDATA(I) = FDATA(I) + 2.0*RN - 1.0

 20 CONTINUE

! Set the WEIGHT vector

 SDEV = 1.0/SQRT(3.0)

 CALL SSET (NDATA, SDEV, WEIGHT, 1)

 SMPAR = NDATA

! Smooth the data

 CALL CSSMH (XDATA, FDATA, SMPAR, BREAK, CSCOEF, WEIGHT=WEIGHT)

! Get output unit number

 CALL UMACH (2, NOUT)

! Write heading

 WRITE (NOUT,99999)

! Print 10 values of the function.

 DO 30 I=1, 10

 XT = 90.0*(FLOAT(I-1)/FLOAT(NDATA-1))

! Evaluate the spline

 SVAL = CSVAL(XT,BREAK,CSCOEF)

 FVAL = F(XT)

 ERROR = SVAL - FVAL

 WRITE (NOUT,'(4F15.4)') XT, FVAL, SVAL, ERROR

 30 CONTINUE

!

99999 FORMAT (12X, 'X', 9X, 'Function', 7X, 'Smoothed', 10X,&

 'Error')

 END

Output

 X Function Smoothed Error

 0.0000 0.0123 0.1118 0.0995

 0.3010 0.0514 0.0646 0.0131

 0.6020 0.4690 0.2972 -0.1718

 0.9030 9.3312 8.7022 -0.6289

 1.2040 4.1611 4.7887 0.6276

 1.5050 0.1863 0.2718 0.0856

 1.8060 0.0292 0.1408 0.1116

 2.1070 0.0082 0.0826 0.0743

 2.4080 0.0031 0.0076 0.0045

 2.7090 0.0014 -0.1789 -0.1803

CSSCV
Computes a smooth cubic spline approximation to noisy data using cross-validation to estimate the

smoothing parameter.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input) XDATA must

be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

IEQUAL — A flag alerting the subroutine that the data is equally spaced. (Input)

908 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic

representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.

(Output)

Optional Arguments

NDATA — Number of data points. (Input)

NDATA must be at least 3.

Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface

Generic: CALL CSSCV (XDATA, FDATA, IEQUAL, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSSCV and D_CSSCV.

FORTRAN 77 Interface

Single: CALL CSSCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF)

Double: The double precision name is DCSSCV.

Description

The routine CSSCV is designed to produce a C
2
 cubic spline approximation to a data set in which

the function values are noisy. This spline is called a smoothing spline. It is a natural cubic spline

with knots at all the data abscissas x = XDATA, but it does not interpolate the data (xi, fi). The

smoothing spline Ss is the unique C
2
 function that minimizes

2b

a
S x dx

subject to the constraint

2

1

N

i i

i

S x f

where σ is the smoothing parameter and N = NDATA. The reader should consult Reinsch (1967) for

more information concerning smoothing splines. The IMSL subroutine CSSMH solves the above

problem when the user provides the smoothing parameter σ. This routine attempts to find the

‗optimal‘ smoothing parameter using the statistical technique known as cross-validation. This

means that (in a very rough sense) one chooses the value of σ so that the smoothing spline (Ss)

best approximates the value of the data at xi, if it is computed using all the data except the i-th; this

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 909

is true for all i = 1, …, N. For more information on this topic, we refer the reader to Craven and

Wahba (1979).

Comments

1. Workspace may be explicitly provided, if desired, by use of C2SCV/DC2SCV. The

reference is:

CALL C2SCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF,

WK, SDWK, IPVT)

The additional arguments are as follows:

WK — Work array of length 7 * (NDATA + 2).

SDWK — Work array of length 2 * NDATA.

IPVT — Work array of length NDATA.

2. Informational error

Type Code

4 2 Points in the data point abscissas array, XDATA, must be distinct.

Example

In this example, function values are computed and are contaminated by adding a small ―random‖

amount. The routine CSSCV is used to try to reproduce the original, uncontaminated data.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER NDATA

 PARAMETER (NDATA=300)

!

 INTEGER I, IEQUAL, NOUT

 REAL BREAK(NDATA), CSCOEF(4,NDATA), ERROR, F,&

 FDATA(NDATA), FLOAT, FVAL, SVAL, X,&

 XDATA(NDATA), XT, RN

 INTRINSIC FLOAT

!

 F(X) = 1.0/(.1+(3.0*(X-1.0))**4)

!

 CALL UMACH (2, NOUT)

! Set up a grid

 DO 10 I=1, NDATA

 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1))

 FDATA(I) = F(XDATA(I))

 10 CONTINUE

! Introduce noise on [-.5,.5]

! Contaminate the data

 CALL RNSET (1234579)

 DO 20 I=1, NDATA

910 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

 RN = RNUNF ()

 FDATA(I) = FDATA(I) + 2.0*RN - 1.0

 20 CONTINUE

!

! Set IEQUAL=1 for equally spaced data

 IEQUAL = 1

! Smooth data

 CALL CSSCV (XDATA, FDATA, IEQUAL, BREAK, CSCOEF)

! Print results

 WRITE (NOUT,99999)

 DO 30 I=1, 10

 XT = 90.0*(FLOAT(I-1)/FLOAT(NDATA-1))

 SVAL = CSVAL(XT,BREAK,CSCOEF)

 FVAL = F(XT)

 ERROR = SVAL - FVAL

 WRITE (NOUT,'(4F15.4)') XT, FVAL, SVAL, ERROR

 30 CONTINUE

99999 FORMAT (12X, 'X', 9X, 'Function', 7X, 'Smoothed', 10X,&

 'Error')

 END

Output

 X Function Smoothed Error

 0.0000 0.0123 0.2528 0.2405

 0.3010 0.0514 0.1054 0.0540

 0.6020 0.4690 0.3117 -0.1572

 0.9030 9.3312 8.9461 -0.3850

 1.2040 4.1611 4.6847 0.5235

 1.5050 0.1863 0.3819 0.1956

 1.8060 0.0292 0.1168 0.0877

 2.1070 0.0082 0.0658 0.0575

 2.4080 0.0031 0.0395 0.0364

 2.7090 0.0014 -0.2155 -0.2169

RATCH

Computes a rational weighted Chebyshev approximation to a continuous function on an interval.

Required Arguments

F — User-supplied FUNCTION to be approximated. The form is F(X), where

 X – Independent variable. (Input)

F – The function value. (Output)

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 911

 F must be declared EXTERNAL in the calling program.

PHI — User-supplied FUNCTION to supply the variable transformation which must be

continuous and monotonic. The form is PHI(X), where

X – Independent variable. (Input)

PHI – The function value. (Output)

PHI must be declared EXTERNAL in the calling program.

WEIGHT — User-supplied FUNCTION to scale the maximum error. It must be continuous

and nonvanishing on the closed interval (A, B). The form is WEIGHT(X), where

 X – Independent variable. (Input)

WEIGHT – The function value. (Output)

 WEIGHT must be declared EXTERNAL in the calling program.

A — Lower end of the interval on which the approximation is desired. (Input)

B — Upper end of the interval on which the approximation is desired. (Input)

P — Vector of length N + 1 containing the coefficients of the numerator polynomial.

(Output)

Q — Vector of length M + 1 containing the coefficients of the denominator polynomial.

(Output)

ERROR — Min-max error of approximation. (Output)

Optional Arguments

N — The degree of the numerator. (Input)

Default: N = size (P,1) – 1.

M — The degree of the denominator. (Input)

Default: M = size (Q,1) – 1.

FORTRAN 90 Interface

Generic: CALL RATCH (F, PHI, WEIGHT, A, B, P, Q, ERROR [,…])

Specific: The specific interface names are S_RATCH and D_RATCH.

FORTRAN 77 Interface

Single: CALL RATCH (F, PHI, WEIGHT, A, B, N, M, P, Q, ERROR)

912 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

Double: The double precision name is DRATCH.

Description

The routine RATCH is designed to compute the best weighted L∞ (Chebyshev) approximant to a

given function. Specifically, given a weight function w = WEIGHT, a monotone function ɸ = PHI,

and a function f to be approximated on the interval [a, b], the subroutine RATCH returns the

coefficients (in P and Q) for a rational approximation to f on [a, b]. The user must supply the

degree of the numerator N and the degree of the denominator M of the rational function

N
MR

The goal is to produce coefficients which minimize the expression

1 1

1
1 1

1
,

max:

N i
ii

M iN
iiM

x a b

P x
f x

Q xf R

w w x

Notice that setting ɸ(x) = x yields ordinary rational approximation. A typical use of the function ɸ

occurs when one wants to approximate an even function on a symmetric interval, say [−a, a]

using ordinary rational functions. In this case, it is known that the answer must be an even

function. Hence, one can set ɸ(x) = x
2
, only approximate on [0, a], and decrease by one half the

degrees in the numerator and denominator.

The algorithm implemented in this subroutine is designed for fast execution. It assumes that the

best approximant has precisely N + M + 2 equi-oscillations. That is, that there exist N + M + 2

points t1 < … < tN+M+2 satisfying

 1

N
M

i i

f R
e e

w

 t t

Such points are called alternants. Unfortunately, there are many instances in which the best

rational approximant to the given function has either fewer alternants or more alternants. In this

case, it is not expected that this subroutine will perform well. For more information on rational

Chebyshev approximation, the reader can consult Cheney (1966). The subroutine is based on work

of Cody, Fraser, and Hart (1968).

Comments

1. Workspace may be explicitly provided, if desired, by use of R2TCH/DR2TCH. The

reference is:

CALL R2TCH (F, PHI, WEIGHT, A, B, N, M, P, Q, ERROR,

ITMAX, IWK, WK)

The additional arguments are as follows:

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation 913

ITMAX — Maximum number of iterations. (Input)

The default value is 20.

IWK — Workspace vector of length (N + M + 2). (Workspace)

WK — Workspace vector of length (N + M + 8) * (N + M + 2). (Workspace)

2. Informational errors

Type Code

3 1 The maximum number of iterations has been reached. The routine

R2TCH may be called directly to set a larger value for ITMAX.

3 2 The error was reduced as far as numerically possible. A good

approximation is returned in P and Q, but this does not necessarily

give the Chebyshev approximation.

4 3 The linear system that defines P and Q was found to be

algorithmically singular. This indicates the possibility of a

degenerate approximation.

4 4 A sequence of critical points that was not monotonic generated. This

indicates the possibility of a degenerate approximation.

4 5 The value of the error curve at some critical point is too large. This

indicates the possibility of poles in the rational function.

4 6 The weight function cannot be zero on the closed interval (A, B).

Example

In this example, we compute the best rational approximation to the gamma function, Γ, on the

interval [2, 3] with weight function w = 1 and N = M = 2. We display the maximum error and the

coefficients. This problem is taken from the paper of Cody, Fraser, and Hart (1968). We compute

in double precision due to the conditioning of this problem.

 USE RATCH_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER M, N

 PARAMETER (M=2, N=2)

!

 INTEGER NOUT

 DOUBLE PRECISION A, B, ERROR, F, P(N+1), PHI, Q(M+1), WEIGHT

 EXTERNAL F, PHI, WEIGHT

!

 A = 2.0D0

 B = 3.0D0

! Compute double precision rational

! approximation

 CALL RATCH (F, PHI, WEIGHT, A, B, P, Q, ERROR)

! Get output unit number

 CALL UMACH (2, NOUT)

914 Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY

! Print P, Q and min-max error

 WRITE (NOUT,'(1X,A)') 'In double precision we have:'

 WRITE (NOUT,99999) 'P = ', P

 WRITE (NOUT,99999) 'Q = ', Q

 WRITE (NOUT,99999) 'ERROR = ', ERROR

99999 FORMAT (' ', A, 5X, 3F20.12, /)

 END

! ---

!

 DOUBLE PRECISION FUNCTION F (X)

 DOUBLE PRECISION X

!

 DOUBLE PRECISION DGAMMA

 EXTERNAL DGAMMA

!

 F = DGAMMA(X)

 RETURN

 END

! ---

!

 DOUBLE PRECISION FUNCTION PHI (X)

 DOUBLE PRECISION X

!

 PHI = X

 RETURN

 END

! ---

!

 DOUBLE PRECISION FUNCTION WEIGHT (X)

 DOUBLE PRECISION X

!

 DOUBLE PRECISION DGAMMA

 EXTERNAL DGAMMA

!

 WEIGHT = DGAMMA(X)

 RETURN

 END

Output

In double precision we have:

P = 1.265583562487 -0.650585004466 0.197868699191

Q = 1.000000000000 -0.064342721236 -0.028851461855

ERROR = -0.000026934190

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 915

Chapter 4: Integration and
Differentiation

Routines

4.1. Univariate Quadrature
Adaptive general-purpose endpoint singularities................ QDAGS 918
Adaptive general purpose ... QDAG 922
Adaptive general-purpose points of singularity QDAGP 925
Adaptive general-purpose with a possible internal or
endpoint singularity ... QDAG1D 929
Adaptive general-purpose infinite interval QDAGI 935
Adaptive weighted oscillatory (trigonometric) QDAWO 938
Adaptive weighted Fourier (trigonometric)QDAWF 942
Adaptive weighted algebraic endpoint singularities QDAWS 946
Adaptive weighted Cauchy principal value QDAWC 949
Nonadaptive general purpose ... QDNG 953

4.2. Multidimensional Quadrature
Two-dimensional quadrature (iterated integral) TWODQ 955
Two-dimensional quadrature with a possible
internal or endpoint singularity .. QDAG2D 960
Three-dimensional quadrature with a possible
internal or endpoint singularity .. QDAG3D 966
Adaptive N-dimensional quadrature
over a hyper-rectangle ...QAND 973
Integrates a function over a hyperrectangle using a
quasi-Monte Carlo method .. QMC 976

4.3. Gauss Rules and Three-term Recurrences
Gauss quadrature rule for classical weights GQRUL 979
Gauss quadrature rule from recurrence coefficients GQRCF 983
Recurrence coefficients for classical weightsRECCF 986
Recurrence coefficients from quadrature rule RECQR 988
Fejer quadrature rule ... FQRUL 991

4.4. Differentiation
Approximation to first, second, or third derivative DERIV 995

916 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

Usage Notes

Univariate Quadrature

The first ten routines described in this chapter are designed to compute approximations to integrals

of the form

b

a
f x w x dx

The weight function w is used to incorporate known singularities (either algebraic or logarithmic),

to incorporate oscillations, or to indicate that a Cauchy principal value is desired. For general

purpose integration, we recommend the use of QDAGS (even if no endpoint singularities are

present). If more efficiency is desired, then the use of QDAG (or QDAG*) should be considered.

These routines are organized as follows:

 w = 1

− QDAGS

− QDAG

− QDAGP

− QDAG1D

− QDAGI

− QDNG

 w(x) = sin ωx or w(x) = cos ωx

− QDAWO (for a finite interval)

− QDAWF (for an infinite interval)

 w(x) = (x − a)
α
 (b − x)

β
 ln(x − a) ln(b −x), where the ln factors are optional

− QDAWS

 w(x) = 1/(x −c) Cauchy principal value

− QDAWC

The calling sequences for these routines are very similar. The function to be integrated is always

F; the lower and upper limits are, respectively, A and B. The requested absolute error ɛ is ERRABS,

while the requested relative error ρ is ERRREL. These quadrature routines return two numbers of

interest, namely, RESULT and ERREST, which are the approximate integral R and the error estimate

E, respectively. These numbers are related as follows:

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 917

 max ,
b b

a a
f x w x dx R E f x w x dx

The requested absolute and relative errors must be interpreted as ‗tuning knobs.‘ The actual errors

may be much larger than these values indicate if the sampling of the integrand function misses a

peak. Coarse sampling of the integration interval occurs with larger values of ERRABS or ERRREL.

We recommend experimenting with these values, starting with small positive values and then

increasing them until the required accuracy is obtained.

One situation that occasionally arises in univariate quadrature concerns the approximation of

integrals when only tabular data are given. The routines described above do not directly address

this question. However, the standard method for handling this problem is first to interpolate the

data and then to integrate the interpolant. This can be accomplished by using the IMSL spline

interpolation routines described in Chapter 3, ―Interpolation and Approximation‖, with one of the

integration routines CSINT, BSINT, or PPITG.

Multivariate Quadrature

Four routines are described in this chapter that are of use in approximating certain multivariate

integrals. In particular, the routine TWODQ and QDAG2D return an approximation to an iterated two-

dimensional integral of the form

,

b h x

a g x
f x y dy dx

while QDAG3D returns an approximation to an iterated three-dimensional integral of the form

 ,

,
, ,

b h x q x y

a g x p x y
f x y z dz dy dx

The fourth routine QAND returns an approximation to the integral of a function of n variables over

a hyper-rectangle

1

1
1 1, ,

n

n

b b

n na a
f x x dx dx

If one has two- or three-dimensional tensor-product tabular data, use the IMSL spline interpolation

routines BS2IN or BS3IN, followed by the IMSL spline integration routines BS2IG and BS3IG

that are described in Chapter 3, Interpolation and Approximation.

Gauss Rules and Three-term Recurrences

The routines described in this section deal with the constellation of problems encountered in

Gauss quadrature. These problems arise when quadrature formulas, which integrate polynomials

of the highest degree possible, are computed. Once a member of a family of seven weight

functions is specified, the routine GQRUL produces the points {xi} and weights {wi} for i = 1, …, N

that satisfy

1

N
b

i ia
i

f x w x dx f x w

918 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

for all functions f that are polynomials of degree less than 2N. The weight functions w may be

selected from the following table:

2

2

2

1 1,1 Legendre

1/ 1- 1,1 Chebyshev 1st kind

1 1,1 Chebyshev 2nd kind

, Hermite

1 1 1,1 Jacobi

0, Generalized Laguerre

1/ cosh Hyperbolic cosine

x

x

w x

x

x

e

x x

e x

x

NameInterval

Where permissible, GQRUL will also compute Gauss-Radau and Gauss-Lobatto quadrature rules.

The routine RECCF produces the three-term recurrence relation for the monic orthogonal

polynomials with respect to the above weight functions.

Another routine, GQRCF, produces the Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule

from the three-term recurrence relation. This means Gauss rules for general weight functions may

be obtained if the three-term recursion for the orthogonal polynomials is known. The routine

RECQR is an inverse to GQRCF in the sense that it produces the recurrence coefficients given the

Gauss quadrature formula.

The last routine described in this section, FQRUL, generates the Fejér quadrature rules for the

following family of weights:

1

1/

ln

ln

w x

w x x

w x b x x a

w x b x x a x a

w x b x x a b x

Numerical Differentiation

We provide one routine, DERIV, for numerical differentiation. This routine provides an estimate

for the first, second, or third derivative of a user-supplied function.

QDAGS
Integrates a function (which may have endpoint singularities).

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 919

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is

F(X), where

X −Independent variable. (Input)

F − The function value. (Output)

 F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

RESULT — Estimate of the integral from A to B of F. (Output)

Optional Required Arguments

ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface

Generic: CALL QDAGS (F, A, B, RESULT [,…])

Specific: The specific interface names are S_QDAGS and D_QDAGS.

FORTRAN 77 Interface

Single: CALL QDAGS (F, A, B, ERRABS, ERRREL, RESULT, ERREST)

Double: The double precision name is DQDAGS.

Description

The routine QDAGS is a general-purpose integrator that uses a globally adaptive scheme to reduce

the absolute error. It subdivides the interval [A, B] and uses a 21-point Gauss-Kronrod rule to

estimate the integral over each subinterval. The error for each subinterval is estimated by

comparison with the 10-point Gauss quadrature rule. This routine is designed to handle functions

with endpoint singularities. However, the performance on functions, which are well-behaved at the

endpoints, is quite good also. In addition to the general strategy described in QDAG, this routine

uses an extrapolation procedure known as the ɛ-algorithm. The routine QDAGS is an

implementation of the routine QAGS, which is fully documented by Piessens et al. (1983). Should

920 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

QDAGS fail to produce acceptable results, then either IMSL routines QDAG or QDAG* may be

appropriate. These routines are documented in this chapter.

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2AGS/DQ2AGS. The

reference is

CALL Q2AGS (F, A, B, ERRABS, ERRREL, RESULT, ERREST, MAXSUB,

NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, IORD)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)

A value of 500 is used by QDAGS.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.

(Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.

(Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals

over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values

in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)

Let k be

NSUBIN if NSUBIN ≤ (MAXSUB/2 + 2);

MAXSUB + 1 − NSUBIN otherwise.

The first k locations contain pointers to the error estimates over the subintervals

such that ELIST(IORD(1)), …, ELIST(IORD(k)) form a decreasing sequence.

2. Informational errors

Type Code

4 1 The maximum number of subintervals allowed has been reached.

3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.

3 3 A degradation in precision has been detected.

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 921

3 4 Roundoff error in the extrapolation table, preventing the requested

tolerance from being achieved, has been detected.

4 5 Integral is probably divergent or slowly convergent.

3. If EXACT is the exact value, QDAGS attempts to find RESULT such that

|EXACT − RESULT| ≤ max(ERRABS, ERRREL * |EXACT|). To specify only a relative

error, set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to

zero.

Example

The value of

1 1/ 2

0
ln 4x x dx

is estimated. The values of the actual and estimated error are machine dependent.

 USE QDAGS_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NOUT

 REAL A, ABS, B, ERRABS, ERREST, ERROR, ERRREL, EXACT, F, &

 RESULT

 INTRINSIC ABS

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration

 A = 0.0

 B = 1.0

! Set error tolerances

 ERRABS = 0.0

 CALL QDAGS (F, A, B, RESULT, ERRABS=ERRABS, ERREST=ERREST)

! Print results

 EXACT = -4.0

 ERROR = ABS(RESULT-EXACT)

 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, &

 ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3)

 END

!

 REAL FUNCTION F (X)

 REAL X

 REAL ALOG, SQRT

 INTRINSIC ALOG, SQRT

 F = ALOG(X)/SQRT(X)

 RETURN

 END

922 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

Output

Computed = -4.000 Exact = -4.000

Error estimate = 1.519E-04 Error = 2.098E-05

QDAG
Integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules.

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is

F(X), where

X − Independent variable. (Input)

F − The function value. (Output)

 F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

RESULT — Estimate of the integral from A to B of F. (Output)

Optional Arguments

ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

IRULE — Choice of quadrature rule. (Input)

Default: IRULE = 2.

The Gauss-Kronrod rule is used with the following points:

IRULE Points

1 7-15

2 10-21

3 15-31

4 20-41

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 923

IRULE Points

5 25-51

6 30-61

 IRULE = 2 is recommended for most functions. If the function has a peak singularity,

use IRULE = 1. If the function is oscillatory, use IRULE = 6.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface

Generic: CALL QDAG (F, A, B, RESULT [,…])

Specific: The specific interface names are S_QDAG and D_QDAG.

FORTRAN 77 Interface

Single: CALL QDAG (F, A, B, ERRABS, ERRREL, IRULE, RESULT, ERREST)

Double: The double precision name is DQDAG.

Description

The routine QDAG is a general-purpose integrator that uses a globally adaptive scheme in order to

reduce the absolute error. It subdivides the interval [A, B] and uses a (2k + 1)-point Gauss-Kronrod

rule to estimate the integral over each subinterval. The error for each subinterval is estimated by

comparison with the k-point Gauss quadrature rule. The subinterval with the largest estimated

error is then bisected and the same procedure is applied to both halves. The bisection process is

continued until either the error criterion is satisfied, roundoff error is detected, the subintervals

become too small, or the maximum number of subintervals allowed is reached. The routine QDAG

is based on the subroutine QAG by Piessens et al. (1983).

Should QDAG fail to produce acceptable results, then one of the IMSL routines QDAG* may be

appropriate. These routines are documented in this chapter.

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2AG/DQ2AG. The

reference is:

CALL Q2AG (F, A, B, ERRABS, ERRREL, IRULE, RESULT, ERREST,

MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST,

IORD)

The additional arguments are as follows:

924 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

MAXSUB — Number of subintervals allowed. (Input)

A value of 500 is used by QDAG.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left

endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right

endpoints. (Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN

integrals over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the

NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)

Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 −

NSUBIN otherwise. The first K locations contain pointers to the error

estimates over the corresponding subintervals, such that

ELIST(IORD(1)), …, ELIST(IORD(K)) form a decreasing sequence.

2. Informational errors

Type Code

4 1 The maximum number of subintervals allowed has been reached.

3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.

3 3 A degradation in precision has been detected.

3. If EXACT is the exact value, QDAG attempts to find RESULT such that

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set

ERRREL to zero.

Example

The value of

2 2

0
1xxe dx e

is estimated. Since the integrand is not oscillatory, IRULE = 1 is used. The values of the actual and

estimated error are machine dependent.

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 925

 USE QDAG_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER IRULE, NOUT

 REAL A, ABS, B, ERRABS, ERREST, ERROR, EXACT, EXP, &

 F, RESULT

 INTRINSIC ABS, EXP

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration

 A = 0.0

 B = 2.0

! Set error tolerances

 ERRABS = 0.0

! Parameter for non-oscillatory

! function

 IRULE = 1

 CALL QDAG (F, A, B, RESULT, ERRABS=ERRABS, IRULE=IRULE, ERREST=ERREST)

! Print results

 EXACT = 1.0 + EXP(2.0)

 ERROR = ABS(RESULT-EXACT)

 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, &

 ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3)

 END

!

 REAL FUNCTION F (X)

 REAL X

 REAL EXP

 INTRINSIC EXP

 F = X*EXP(X)

 RETURN

 END

Output

Computed = 8.389 Exact = 8.389

Error estimate = 5.000E-05 Error = 9.537E-07

QDAGP
Integrates a function with singularity points given.

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is

F(X), where

X − Independent variable. (Input)

926 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

F − The function value. (Output)

 F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

POINTS — Array of length NPTS containing breakpoints in the range of integration. (Input)

Usually these are points where the integrand has singularities.

RESULT — Estimate of the integral from A to B of F. (Output)

Optional Arguments

NPTS — Number of break points given. (Input)

Default: NPTS = size (POINTS,1).

ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface

Generic: CALL QDAGP (F, A, B, POINTS, RESULT [,…])

Specific: The specific interface names are S_QDAGP and D_QDAGP.

FORTRAN 77 Interface

Single: CALL QDAGP (F, A, B, NPTS, POINTS, ERRABS, ERRREL, RESULT, ERREST)

Double: The double precision name is DQDAGP.

Description

The routine QDAGP uses a globally adaptive scheme in order to reduce the absolute error. It

initially subdivides the interval [A, B] into NPTS + 1 user-supplied subintervals and uses a 21-point

Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each subinterval is

estimated by comparison with the 10-point Gauss quadrature rule. This routine is designed to

handle endpoint as well as interior singularities. In addition to the general strategy described in the

IMSL routine QDAG, this routine employs an extrapolation procedure known as the ɛ-algorithm.

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 927

The routine QDAGP is an implementation of the subroutine QAGP, which is fully documented by

Piessens et al. (1983).

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2AGP/DQ2AGP. The

reference is:

CALL Q2AGP (F, A, B, NPTS, POINTS, ERRABS, ERRREL, RESULT,

ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST,

ELIST, IORD, LEVEL, WK, IWK)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)

A value of 450 is used by QDAGP.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left

endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right

endpoints. (Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN

integrals over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the

NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)

Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 −

NSUBIN otherwise. The first K locations contain pointers to the error

estimates over the subintervals, such that ELIST(IORD(1)), …,

ELIST(IORD(K)) form a decreasing sequence.

LEVEL — Array of length MAXSUB, containing the subdivision levels of the

subinterval. (Output)

That is, if (AA, BB) is a subinterval of (P1, P2) where P1 as well as P2

is a user-provided break point or integration limit, then (AA, BB) has

level L if

ABS(BB − AA) = ABS(P2 − P1) * 2**(−L).

WK — Work array of length NPTS + 2.

IWK — Work array of length NPTS + 2.

928 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

2. Informational errors

Type Code

4 1 The maximum number of subintervals allowed has been reached.

3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.

3 3 A degradation in precision has been detected.

3 4 Roundoff error in the extrapolation table, preventing the requested

tolerance from being achieved, has been detected.

4 5 Integral is probably divergent or slowly convergent.

3. If EXACT is the exact value, QDAGP attempts to find RESULT such that

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set

ERRREL to zero.

Example

The value of

3 3 2 2

0

77
ln 1 2 61ln 2 ln 7 27

4
x x x dx

is estimated. The values of the actual and estimated error are machine dependent. Note that this

subroutine never evaluates the user-supplied function at the user-supplied breakpoints.

 USE QDAGP_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NOUT, NPTS

 REAL A, ABS, ALOG, B, ERRABS, ERREST, ERROR, ERRREL, &

 EXACT, F, POINTS(2), RESULT, SQRT

 INTRINSIC ABS, ALOG, SQRT

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration

 A = 0.0

 B = 3.0

! Set error tolerances

 ERRABS = 0.0

 ERRREL = 0.01

! Set singularity parameters

 NPTS = 2

 POINTS(1) = 1.0

 POINTS(2) = SQRT(2.0)

 CALL QDAGP (F, A, B, POINTS, RESULT, ERRABS=ERRABS, ERRREL=ERRREL, &

 ERREST=ERREST)

! Print results

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 929

 EXACT = 61.0*ALOG(2.0) + 77.0/4.0*ALOG(7.0) - 27.0

 ERROR = ABS(RESULT-EXACT)

 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, &

 ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3)

!

 END

!

 REAL FUNCTION F (X)

 REAL X

 REAL ABS, ALOG

 INTRINSIC ABS, ALOG

 F = X**3*ALOG(ABS((X*X-1.0)*(X*X-2.0)))

 RETURN

 END

Output

Computed = 52.741 Exact = 52.741

Error estimate = 5.062E-01 Error = 6.104E-04

QDAG1D
Integrates a function with a possible internal or endpoint singularity.

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is F(X [,…]), where

Function Return Value

F — The function value. (Output)

Required Arguments

X — Independent variable. (Input)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional information to/from the user-supplied function. For a detailed

description of this argument see FCN_DATA below.

F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. The relative values of A and B are interpreted properly. Thus

if one exchanges A and B, the sign of the answer is changed. When the integrand is

positive, the sign of the result is the same as the sign of B – A. (Input)

930 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

RESULT — Estimate of the integral from A to B of F. (Output)

Optional Arguments

ERRABS — Absolute error tolerance. See Comment 1 for a discussion on the error

tolerances. (Input)

Default: ERRABS = 0.0.

ERRFRAC — A fraction expressing the (number of correct digits of accuracy

desired)/(number of digits of achievable precision). See Comment 1 for a discussion on

the error tolerances. (Input)

Default: ERRFRAC = 0.75.

ERRREL —The error tolerance relative to the value of the integral. See Comment 1 for a

discussion on the error tolerances. (Input)

Default: ERRREL = 0.0.

ERRPOST — An a posteriori estimate of the absolute value of the error committed while

evaluating the integrand. This value may be computed during the evaluation of the

integrand. When this optional argument is used, FCN_DATA must also be used as

FCN_DATA%RDATA(1) will be used to pass the newly calculated value of ERRPOST

back from the evaluator, F. In this case, the user should not use FCN_DATA%RDATA(1)

for passing other data. (Input)

Default: ERRPOST = 0.0.

ERRPRIOR— An a priori estimate of the absolute value of the relative error expected to be

committed while evaluating the integrand. Changes to this value are not detected

during evaluation of the integral. (Input)

Default: ERRPRIOR = 1.19e-7 for single precision and 2.22d-16 for double precision.

MAXFCN —The maximum number of function values to use to compute the integral.

(Input)

Default: The number of function values is not bounded.

SINGULARITY —The real part of the abscissa of a singularity or discontinuity in the

integrand. If this option is used, SINGULARITY_TYPE must also be used. (Input)

Default: It is assumed that there is no singularity in the integrand so SINGULARITY is

not set. It is an error to set SINGULARITY without also setting SINGULARITY_TYPE.

SINGULARITY_TYPE—A signed integer specifying the type of singularity which occurs in

the integrand. If the singularity has a leading term of the form xα

where α is not an

integer, if α is ―large‖ or has the form α = (2n-1)/2 where n is a nonnegative integer, or

the singularity is well outside the interval, set SINGULARITY_TYPE to a positive

integer. Otherwise, set SINGULARITY_TYPE to a negative integer. (Input)

Default: It is assumed that there is no singularity in the integrand so

SINGULARITY_TYPE is not set. It is an error to set SINGULARITY_TYPE without also

setting SINGULARITY.

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 931

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional

information to/from the user-supplied function. The derived type,

s _fcn_data, is defined as:

type s_fcn_data

 real(kind(1e0)), pointer, dimension(:) :: rdata

 integer, pointer, dimension(:) :: idata

end type

in module mp_types. The double precision counterpart to s_fcn_data is named

d_fcn_data. The user must include a use mp_types statement in the calling

program to define this derived type. Note that if this optional argument is used then this

argument must also be used in the user-supplied function. (Input/Output)

NEVAL — Number of function evaluations used to calculate the integral. (Output)

ERREST — An estimate of the upper bound of the magnitude of the difference between

RESULT and the true value of the integral. (Output)

ISTATUS — A status flag indicating the error criteria which was satisfied on exit.

ISTATUS = -1 indicates normal termination with either the absolute or relative error

tolerance criteria satisfied.

ISTATUS = -2 indicates normal termination with neither the absolute nor the relative

error tolerance criteria satisfied, but the error tolerance based on the locally achievable

precision is satisfied.

ISTATUS = -3 indicates normal termination with none of the error tolerance criteria

satisfied.

ISTATUS = any value other than the above indicates abnormal termination due to an

error condition. (Output)

FORTRAN 90 Interface

Generic: CALL QDAG1D (F,A, B, RESULT [,…])

Specific: The specific interface names are S_QDAG1D and D_QDAG1D.

Description

QDAG1D is based on the JPL Library routine SINT1. The integral is estimated using quadrature

formulae due to T. N. L. Patterson (1968). Patterson described a family of formulae in which the

k
th

formula used all the integrand values used in the k-1
st
 formula, and added 2

k-1
new integrand

values in an optimal way. The first formula is the midpoint rule, the second is the three point

Gauss formula, and the third is the seven point Kronrod formula. Formulae of this family of higher

degree had not previously been described. This program uses formulae up to k = 8.

An error estimate is obtained by comparing the values of the integral estimated by two adjacent

formulae, examining differences up to the fifteenth order, integrating round-off error, integrating

error declared to have been committed during computation of the integrand, integrating a first

order estimate of the effect round-off error in the abscissa has on integrand values, and including

932 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

errors in the limits. The latter four methods are also used to derive a bound on the achievable

precision.

If the integral over an interval cannot be estimated with sufficient accuracy, the interval is

subdivided. The difference table is used to discover whether the integral is difficult to compute

because the integrand is too complex or has singular behavior. In the former case, the estimated

error, requested error tolerance, and difference table are used to choose a step size.

In the latter case, the difference table is used in a search algorithm to find the abscissa of the

singular behavior. If the singular behavior is discovered on the end of an interval, a change of

independent variable is applied to reduce the strength of the singularity.

The program also uses the difference table to detect nonintegrable singularities, jump

discontinuities, and computational noise.

Comments

1. The user provides the absolute error tolerance through optional argument ERRABS.

Optional argument ERRFRAC represents the ratio of the (number of correct digits of

accuracy desired) to (number of digits of achievable precision). Optional argument

ERRREL represents the error tolerance relative to the value of the integral. The internal

value for ERRFRAC is bounded between .5 and 1. By default, ERRABS and ERRREL are

set to 0.0 and ERRFRAC is set to .75. These default values usually provide all the

accuracy that can be obtained efficiently.

The error tolerance relative to the value of the integral is applied globally (over the

entire region of integration) rather than locally (one step at a time). This policy

provides true control of error relative to the value of the integral when the integrand is

not sign definite, as well as when the integrand is sign definite. To apply the criterion

of error tolerance relative to the value of the integral, the value of the integral over the

entire region, estimated without refinement of the region, is used to derive an absolute

error tolerance that may be applied locally. If the preliminary estimate of the value of

the integral is significantly in error, and the least restrictive error tolerance is relative to

the value of the integral, the cost of computing the integral will be larger than the cost

of computing the integral to the same degree of accuracy using appropriate values of

either of the other tolerance criteria. The preliminary estimate of the integral may be

significantly in error if the integrand is not sign definite or has large variation.

2. Optional arguments SINGULARITY and SINGULARITY_TYPE provide the user with a

means to give the routine information about the location and type of any known

singularity of the integrand. When an integrand appears to have singular behavior at the

end of the interval, a transformation of the variable of integration is applied to reduce

the strength of the singularity. When an integrand appears to have singular behavior

inside the interval, the abscissa of the singularity is determined as precisely as

necessary, depending on the error tolerance, and the interval is subdivided. The

discovery of singular behavior and determination of the abscissa of singular behavior

are expensive. If the user knows of the existence of a singularity, the efficiency of

computation of the integral may be improved by requesting an immediate

transformation of the independent variable or subdivision of the interval. It is

recommended that the user select these optional arguments for all singularities, even

those outside [A, B]. If the singularity has a leading term of the form x
α

where α is not

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 933

an integer, if α is ―large‖ or has the form

α = (2n-1)/2 where n is a nonnegative integer, or the singularity is well outside the

interval, set SINGULARITY_TYPE to a positive value. Otherwise, set

SINGULARITY_TYPE to a negative value. The meaning of ―large‖ depends on the rest

of the integrand and the length of the interval. For the typical case, a value of about 2 is

considered ―large‖. For a singularity of the form x
α

log x use the above rule, even if α

is an integer. For other types of singularities make a reasonable guess based on the

above. If several similar integrals are to be computed, some experimentation may be

useful.

 When SINGULARITY_TYPE is positive, a transformation of the form

T = TA + (X – TA)
2
/ (TB – TA) is applied, where TA is the abscissa of the singularity

and TB is the end of the interval. If TA is outside the interval, TB will be the end of the

interval farthest from TA. If TA is inside the interval, the interval will immediately be

subdivided at TA, and both parts will be separately integrated with TB equal to each

end of the original interval, respectively. When SINGULARITY_TYPE is negative, a

transformation of the form T = TA + (X – TA)
4
/ (TB – TA)

3
 is applied, with TA and TB

as above.

 If the integrand has singularities at more than one abscissa within the region, or more

than one pole near the real axis such that the real parts are within the region of

integration, then the interval should be subdivided at the abscissa of the singularities or

the real parts of the poles, and the integrals should be computed as separate problems,

with the results summed.

Example 1

The value of

1 1/ 2

0
ln 4x x dx

is estimated. Note that the optional arguments SINGULARITY and SINGULARITY_TYPE are used.

 USE QDAG1D_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NOUT, SINGULARITY_TYPE

 REAL A, B, ERREST, F, RESULT, SINGULARITY

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration

 A = 0.0

 B = 1.0

! Set singularity value and type

 SINGULARITY = 0.0

 SINGULARITY_TYPE = -1

934 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

 CALL QDAG1D (F, A, B, RESULT, SINGULARITY=SINGULARITY, &

 SINGULARITY_TYPE=SINGULARITY_TYPE, ERREST=ERREST)

! Print the results

 WRITE(NOUT,*)'Result = ', RESULT

 WRITE(NOUT,9999) ERREST

 9999 FORMAT('Error Estimate = ', 1PE9.1)

 END

 REAL FUNCTION F (X)

 REAL X

 REAL ALOG, SQRT

 INTRINSIC ALOG, SQRT

 F = ALOG(X)/SQRT(X)

 RETURN

 END

Output

Result = -4.0

Error Estimate = 6.0E-07

Example 2

The value of

2

1
2 6x kx dx

is estimated. Note that the optional argument FCN_DATA is used to set the value of k = 2 in the

user-supplied function, F.

 USE QDAG1D_INT

 USE UMACH_INT

 USE MP_TYPES

 IMPLICIT NONE

! Declare variables

 INTEGER NOUT

 REAL A, B, ERREST, F, RESULT

 REAL, TARGET :: RDATA(1)

 TYPE (S_FCN_DATA) USER_DATA

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration

 A = 1.0

 B = 2.0

! Set IPARAM

 RDATA(1) = 2.0

 USER_DATA%RDATA=>RDATA

 CALL QDAG1D (F, A, B, RESULT, FCN_DATA=USER_DATA, ERREST=ERREST)

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 935

! Print the results

 WRITE(NOUT,*)'Result = ', RESULT

 WRITE(NOUT,9999) ERREST

 9999 FORMAT('Error Estimate = ', 1PE9.1)

 END

 REAL FUNCTION F (X, FCN_DATA)

 USE MP_TYPES

 TYPE (S_FCN_DATA) FCN_DATA

 REAL X

 F = 2.0 * X + FCN_DATA%RDATA(1) * X

 RETURN

 END

Output

Result = 6.0

Error Estimate = 1.2E-06

QDAGI
Integrates a function over an infinite or semi-infinite interval.

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is

F(X), where

X − Independent variable. (Input)

F − The function value. (Output)

 F must be declared EXTERNAL in the calling program.

BOUND — Finite bound of the integration range. (Input)

Ignored if INTERV = 2.

INTERV — Flag indicating integration interval. (Input)

INTERV Interval

−1 (−∞, BOUND)

1 (BOUND, + ∞)

2 (−∞, + ∞)

RESULT — Estimate of the integral from A to B of F. (Output)

936 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

Optional Arguments

ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface

Generic: CALL QDAGI (F, BOUND, INTERV, RESULT [,…])

Specific: The specific interface names are S_QDAGI and D_QDAGI.

FORTRAN 77 Interface

Single: CALL QDAGI (F, BOUND, INTERV, ERRABS, ERRREL, RESULT, ERREST)

Double: The double precision name is DQDAGI.

Description

The routine QDAGI uses a globally adaptive scheme in an attempt to reduce the absolute error. It

initially transforms an infinite or semi-infinite interval into the finite interval [0, 1]. Then, QDAGI

uses a 21-point Gauss-Kronrod rule to estimate the integral and the error. It bisects any interval

with an unacceptable error estimate and continues this process until termination. This routine is

designed to handle endpoint singularities. In addition to the general strategy described in QDAG,

this subroutine employs an extrapolation procedure known as the ɛ-algorithm. The routine QDAGI

is an implementation of the subroutine QAGI, which is fully documented by Piessens et al. (1983).

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2AGI/DQ2AGI. The

reference is

CALL Q2AGI (F, BOUND, INTERV, ERRABS, ERRREL, RESULT,

ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST,

ELIST, IORD)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)

A value of 500 is used by QDAGI.

NEVAL — Number of evaluations of F. (Output)

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 937

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left

endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right

endpoints. (Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN

integrals over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the

NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)

Let K be NSUBIN if NSUBIN .LE.(MAXSUB/2 + 2), MAXSUB +

1 − NSUBIN otherwise. The first K locations contain pointers to the

error estimates over the subintervals, such that ELIST(IORD(1)),

…, ELIST(IORD(K)) form a decreasing sequence.

2. Informational errors

Type Code

4 1 The maximum number of subintervals allowed has been reached.

3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.

3 3 A degradation in precision has been detected.

3 4 Roundoff error in the extrapolation table, preventing the requested

tolerance from being achieved, has been detected.

4 5 Integral is divergent or slowly convergent.

3. If EXACT is the exact value, QDAGI attempts to find RESULT such that

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set

ERRREL to zero.

4. Since QDAGI makes a transformation of the original interval into the finite interval

[0,1] the resulting function values can be extremely small and the resulting function

might have ―spikes‖. In some cases QDAGI ―overlooks‖ these spikes. The user can try

adjusting the absolute and relative error tolerances to remedy this or, alternatively, try

using IMSL routine QDAG1D.

Example

The value of

938 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

20

ln ln 10

201 10

x
dx

x

is estimated. The values of the actual and estimated error are machine dependent. Note that we

have requested an absolute error of 0 and a relative error of .001. The effect of these requests, as

documented in Comment 3 above, is to ignore the absolute error requirement.

 USE QDAGI_INT

 USE UMACH_INT

 USE CONST_INT

 IMPLICIT NONE

 INTEGER INTERV, NOUT

 REAL ABS, ALOG, BOUND, ERRABS, ERREST, ERROR, &

 ERRREL, EXACT, F, PI, RESULT

 INTRINSIC ABS, ALOG

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration

 BOUND = 0.0

 INTERV = 1

! Set error tolerances

 ERRABS = 0.0

 CALL QDAGI (F, BOUND, INTERV, RESULT, ERRABS=ERRABS, &

 ERREST=ERREST)

! Print results

 PI = CONST('PI')

 EXACT = -PI*ALOG(10.)/20.

 ERROR = ABS(RESULT-EXACT)

 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3//' Error ', &

 'estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3)

 END

!

 REAL FUNCTION F (X)

 REAL X

 REAL ALOG

 INTRINSIC ALOG

 F = ALOG(X)/(1.+(10.*X)**2)

 RETURN

 END

Output

Computed = -0.362 Exact = -0.362

Error estimate = 2.652E-06 Error = 5.960E-08

QDAWO
Integrates a function containing a sine or a cosine.

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 939

Required Arguments

F — User-supplied function to be integrated. The form is

F(X), where

X − Independent variable. (Input)

F − The function value. (Output)

 F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

IWEIGH — Type of weight function used. (Input)

IWEIGH Weight

1 COS(OMEGA * X)

2 SIN(OMEGA * X)

OMEGA — Parameter in the weight function. (Input)

RESULT — Estimate of the integral from A to B of F * WEIGHT. (Output)

Optional Arguments

ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface

Generic: CALL QDAWO (F, A, B, IWEIGH, OMEGA, RESULT [,…])

Specific: The specific interface names are S_QDAWO and D_QDAWO.

FORTRAN 77 Interface

Single: CALL QDAWO (F, A, B, IWEIGH, OMEGA, ERRABS, ERRREL, RESULT, ERREST)

Double: The double precision name is DQDAWO.

940 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

Description

The routine QDAWO uses a globally adaptive scheme in an attempt to reduce the absolute error.

This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) is

either cos ωx or sin ωx. Depending on the length of the subinterval in relation to the size of ω,

either a modified Clenshaw-Curtis procedure or a Gauss-Kronrod 7/15 rule is employed to

approximate the integral on a subinterval. In addition to the general strategy described for the

IMSL routine QDAG, this subroutine uses an extrapolation procedure known as the ɛ-algorithm.

The routine QDAWO is an implementation of the subroutine QAWO, which is fully documented by

Piessens et al. (1983).

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2AWO/DQ2AWO. The

reference is:

CALL Q2AWO (F, A, B, IWEIGH, OMEGA, ERRABS, ERRREL,

RESULT, ERREST, MAXSUB, MAXCBY, NEVAL, NSUBIN, ALIST,

BLIST, RLIST, ELIST, IORD, NNLOG, WK)

The additional arguments are as follows:

MAXSUB — Maximum number of subintervals allowed. (Input)

A value of 390 is used by QDAWO.

MAXCBY — Upper bound on the number of Chebyshev moments which can

be stored. That is, for the intervals of lengths ABS(B − A) *

2**(−L), L = 0, 1, …, MAXCBY − 2, MAXCBY.GE.1. The

routine QDAWO uses 21. (Input)

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left

endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right

endpoints. (Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN

integrals over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the

NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. Let K be NSUBIN if NSUBIN.LE.

(MAXSUB/2 + 2), MAXSUB + 1 − NSUBIN otherwise. The first K

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 941

locations contain pointers to the error estimates over the subintervals,

such that ELIST(IORD(1)), …, ELIST(IORD(K)) form a

decreasing sequence. (Output)

NNLOG — Array of length MAXSUB containing the subdivision levels of the

subintervals, i.e. NNLOG(I) = L means that the subinterval numbered I

is of length ABS(B − A) * (1− L). (Output)

WK — Array of length 25 * MAXCBY. (Workspace)

2. Informational errors

Type Code

4 1 The maximum number of subintervals allowed has been reached.

3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.

3 3 A degradation in precision has been detected.

3 4 Roundoff error in the extrapolation table, preventing the requested

tolerances from being achieved, has been detected.

 4 5 Integral is probably divergent or slowly convergent.

3. If EXACT is the exact value, QDAWO attempts to find RESULT such that

ABS(EXACT − RESULT) .LE. MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set

ERRREL to zero.

Example

The value of

1

0
ln sin 10x x dx

is estimated. The values of the actual and estimated error are machine dependent. Notice that the

log function is coded to protect for the singularity at zero.

 USE QDAWO_INT

 USE UMACH_INT

 USE CONST_INT

 IMPLICIT NONE

 INTEGER IWEIGH, NOUT

 REAL A, ABS, B, ERRABS, ERREST, ERROR, &

 EXACT, F, OMEGA, PI, RESULT

 INTRINSIC ABS

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration

942 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

 A = 0.0

 B = 1.0

! Weight function = sin(10.*pi*x)

 IWEIGH = 2

 PI = CONST('PI')

 OMEGA = 10.*PI

! Set error tolerances

 ERRABS = 0.0

 CALL QDAWO (F, A, B, IWEIGH, OMEGA, RESULT, ERRABS=ERRABS, &

 ERREST=ERREST)

! Print results

 EXACT = -0.1281316

 ERROR = ABS(RESULT-EXACT)

 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, &

 ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3)

 END

!

 REAL FUNCTION F (X)

 REAL X

 REAL ALOG

 INTRINSIC ALOG

 IF (X .EQ. 0.) THEN

 F = 0.0

 ELSE

 F = ALOG(X)

 END IF

 RETURN

 END

Output

Computed = -0.128 Exact = -0.128

Error estimate = 7.504E-05 Error = 5.260E-06

QDAWF
Computes a Fourier integral.

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is

F(X), where

X − Independent variable. (Input)

F − The function value. (Output)

 F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 943

IWEIGH — Type of weight function used. (Input)

IWEIGH Weight

1 COS(OMEGA * X)

2 SIN(OMEGA * X)

OMEGA — Parameter in the weight function. (Input)

RESULT — Estimate of the integral from A to infinity of F * WEIGHT. (Output)

Optional Arguments

ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

Default: ERREST = 1.e-3 for single precision and 1.d-8 for double precision.

FORTRAN 90 Interface

Generic: CALL QDAWF (F, A, IWEIGH, OMEGA, RESULT [,…])

Specific: The specific interface names are S_QDAWF and D_QDAWF.

FORTRAN 77 Interface

Single: CALL QDAWF (F, A, IWEIGH, OMEGA, ERRABS, RESULT, ERREST)

Double: The double precision name is DQDAWF.

Description

The routine QDAWF uses a globally adaptive scheme in an attempt to reduce the absolute error.

This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) is

either cos ωx or sin ωx. The integration interval is always semi-infinite of the form [A, ∞]. These

Fourier integrals are approximated by repeated calls to the IMSL routine QDAWO followed by

extrapolation. The routine QDAWF is an implementation of the subroutine QAWF, which is fully

documented by Piessens et al. (1983).

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2AWF/DQ2AWF. The

reference is:

CALL Q2AWF (F, A, IWEIGH, OMEGA, ERRABS, RESULT, ERREST,

MAXCYL, MAXSUB, MAXCBY, NEVAL, NCYCLE, RSLIST,

ERLIST, IERLST, NSUBIN, WK, IWK)

944 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

The additional arguments are as follows:

MAXSUB — Maximum number of subintervals allowed. (Input)

A value of 365 is used by QDAWF.

MAXCYL — Maximum number of cycles allowed. (Input)

MAXCYL must be at least 3. QDAWF uses 50.

MAXCBY — Maximum number of Chebyshev moments allowed. (Input)

QDAWF uses 21.

NEVAL — Number of evaluations of F. (Output)

NCYCLE — Number of cycles used. (Output)

RSLIST — Array of length MAXCYL containing the contributions to the

integral over the interval (A + (k − 1) * C, A + k * C), for k = 1, …,

NCYCLE. (Output)

C = (2 * INT(ABS(OMEGA)) + 1) * PI/ABS(OMEGA).

ERLIST — Array of length MAXCYL containing the error estimates for the

intervals defined in RSLIST. (Output)

IERLST — Array of length MAXCYL containing error flags for the intervals

defined in RSLIST. (Output)

IERLST(K) Meaning

IERLST(K) Meaning

1

The maximum number of subdivisions

(MAXSUB) has been achieved on the k-th

cycle.

2

Roundoff error prevents the desired

accuracy from being achieved on the k-th
cycle.

3
Extremely bad integrand behavior occurs at

some points of the k-th cycle.

4

Integration procedure does not converge (to

the desired accuracy) due to roundoff in the

extrapolation procedure on the k-th cycle. It

is assumed that the result on this interval is
the best that can be obtained.

5
Integral over the k-th cycle is divergent or

slowly convergent.

NSUBIN — Number of subintervals generated. (Output)

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 945

WK — Work array of length 4 * MAXSUB + 25 * MAXCBY.

IWK — Work array of length 2 * MAXSUB.

2. Informational errors

Type Code

3 1 Bad integrand behavior occurred in one or more cycles.

4 2 Maximum number of cycles allowed has been reached.

3 3 Extrapolation table constructed for convergence acceleration of the

series formed by the integral contributions of the cycles does not

converge to the requested accuracy.

3. If EXACT is the exact value, QDAWF attempts to find RESULT such that

ABS(EXACT − RESULT) .LE. ERRABS.

Example

The value of

 1/ 2

0
cos / 2 1x x dx

is estimated. The values of the actual and estimated error are machine dependent. Notice that F is

coded to protect for the singularity at zero.

 USE QDAWF_INT

 USE UMACH_INT

 USE CONST_INT

 IMPLICIT NONE

 INTEGER IWEIGH, NOUT

 REAL A, ABS, ERRABS, ERREST, ERROR, EXACT, F, &

 OMEGA, PI, RESULT

 INTRINSIC ABS

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

! Set lower limit of integration

 A = 0.0

! Select weight W(X) = COS(PI*X/2)

 IWEIGH = 1

 PI = CONST('PI')

 OMEGA = PI/2.0

! Set error tolerance

 CALL QDAWF (F, A, IWEIGH, OMEGA, RESULT, ERREST=ERREST)

! Print results

 EXACT = 1.0

 ERROR = ABS(RESULT-EXACT)

 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, &

 ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3)

 END

946 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

!

 REAL FUNCTION F (X)

 REAL X

 REAL SQRT

 INTRINSIC SQRT

 IF (X .GT. 0.0) THEN

 F = 1.0/SQRT(X)

 ELSE

 F = 0.0

 END IF

 RETURN

 END

Output

Computed = 1.000 Exact = 1.000

Error estimate = 6.267E-04 Error = 2.205E-06

QDAWS
Integrates a function with algebraic-logarithmic singularities.

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is

F(X), where

X − Independent variable. (Input)

F − The function value. (Output)

 F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

B must be greater than A

IWEIGH — Type of weight function used. (Input)

IWEIGH Weight

1 (X − A)**ALPHA * (B − X)**BETAW

2 (X − A)**ALPHA * (B − X)**BETAW * LOG(X − A)

3 (X − A)**ALPHA * (B − X)**BETAW * LOG(B − X)

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 947

4 (X − A)**ALPHA * (B − X)**BETAW * LOG (X− A) * LOG (B − X)

ALPHA — Parameter in the weight function. (Input)

ALPHA must be greater than −1.0.

BETAW — Parameter in the weight function. (Input)

BETAW must be greater than −1.0.

RESULT — Estimate of the integral from A to B of F * WEIGHT. (Output)

Optional Arguments

ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface

Generic: CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETAW, RESULT[,…])

Specific: The specific interface names are S_QDAWS and D_QDAWS.

FORTRAN 77 Interface

Single: CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETAW, ERRABS, ERRREL, RESULT,
ERREST)

Double: The double precision name is DQDAWS.

Description

The routine QDAWS uses a globally adaptive scheme in an attempt to reduce the absolute error.

This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) is a

weight function described above. A combination of modified Clenshaw-Curtis and Gauss-Kronrod

formulas is employed. In addition to the general strategy described for the IMSL routine QDAG,

this routine uses an extrapolation procedure known as the ɛ-algorithm. The routine QDAWS is an

implementation of the routine QAWS, which is fully documented by Piessens et al. (1983).

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2AWS/DQ2AWS. The

reference is

948 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

CALL Q2AWS (F, A, B, IWEIGH, ALPHA, BETAW, ERRABS, ERRREL,

RESULT, ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST,

RLIST, ELIST, IORD)

The additional arguments are as follows:

MAXSUB — Maximum number of subintervals allowed. (Input)

A value of 500 is used by QDAWS.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left

endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right

endpoints. (Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN

integrals over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the

NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. Let k be NSUBIN if NSUBIN.LE.

(MAXSUB/2 + 2), MAXSUB + 1 − NSUBIN otherwise. The first k

locations contain pointers to the error estimates over the subintervals,

such that ELIST(IORD(1)), …, ELIST(IORD(k)) form a decreasing

sequence. (Output)

2. Informational errors

Type Code

4 1 The maximum number of subintervals allowed has been reached.

3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.

3 3 A degradation in precision has been detected.

3. If EXACT is the exact value, QDAWS attempts to find RESULT such that

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set

ERRREL to zero.

Example

The value of

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 949

 1/ 21

0

3ln 2 4
1 1 ln

9
x x x x dx

is estimated. The values of the actual and estimated error are machine dependent.

 USE QDAWS_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER IWEIGH, NOUT

 REAL A, ABS, ALOG, ALPHA, B, BETAW, ERRABS, ERREST, ERROR, &

 EXACT, F, RESULT

 INTRINSIC ABS, ALOG

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration

 A = 0.0

 B = 1.0

! Select weight

 ALPHA = 1.0

 BETAW = 0.5

 IWEIGH = 2

! Set error tolerances

 ERRABS = 0.0

 CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETAW, RESULT, &

 ERRABS=ERRABS, ERREST=ERREST)

! Print results

 EXACT = (3.*ALOG(2.)-4.)/9.

 ERROR = ABS(RESULT-EXACT)

 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, &

 ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3)

 END

!

 REAL FUNCTION F (X)

 REAL X

 REAL SQRT

 INTRINSIC SQRT

 F = SQRT(1.0+X)

 RETURN

 END

Output

Computed = -0.213 Exact = -0.213

Error estimate = 1.261E-08 Error = 2.980E-08

QDAWC
Integrates a function f(x)/(x-c) in the Cauchy principal value sense.

950 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is

F(X), where

X − Independent variable. (Input)

F − The function value. (Output)

 F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

C — Singular point. (Input)

C must not equal A or B.

RESULT — Estimate of the integral from A to B of F(X)/(X − C). (Output)

Optional Arguments

ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)

Default: ERREL =1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface

Generic: CALL QDAWC (F, A, B, C, RESULT [,…])

Specific: The specific interface names are S_QDAWC and D_QDAWC.

FORTRAN 77 Interface

Single: CALL QDAWC (F, A, B, C, ERRABS, ERRREL, RESULT, ERREST)

Double: The double precision name is DQDAWC.

Description

The routine QDAWC uses a globally adaptive scheme in an attempt to reduce the absolute error.

This routine computes integrals whose integrands have the special form w(x) f(x), where

w(x) = 1/(x − c). If c lies in the interval of integration, then the integral is interpreted as a Cauchy

principal value. A combination of modified Clenshaw-Curtis and Gauss-Kronrod formulas are

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 951

employed. In addition to the general strategy described for the IMSL routine QDAG, this routine

uses an extrapolation procedure known as the ɛ-algorithm. The routine QDAWC is an

implementation of the subroutine QAWC, which is fully documented by Piessens et al. (1983).

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2AWC/DQ2AWC. The

reference is:

CALL Q2AWC (F, A, B, C, ERRABS, ERRREL, RESULT, ERREST,

MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST,

IORD)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)

A value of 500 is used by QDAWC.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left

endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right

endpoints. (Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN

integrals over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the

NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)

Let k be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 −

NSUBIN otherwise. The first k locations contain pointers to the error

estimates over the subintervals, such that ELIST(IORD(1)), …,

ELIST(IORD(k)) form a decreasing sequence.

2. Informational errors

Type Code

4 1 The maximum number of subintervals allowed has been reached.

3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.

3 3 A degradation in precision has been detected.

952 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

3. If EXACT is the exact value, QDAWC attempts to find RESULT such that

ABS(EXACT − RESULT) .LE. MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set

ERRREL to zero.

Example

The Cauchy principal value of

 5

31

ln 125/ 6311

185 6
dx

x x

is estimated. The values of the actual and estimated error are machine dependent.

 USE QDAWC_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NOUT

 REAL A, ABS, ALOG, B, C, ERRABS, ERREST, ERROR, EXACT, &

 F, RESULT

 INTRINSIC ABS, ALOG

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration and C

 A = -1.0

 B = 5.0

 C = 0.0

! Set error tolerances

 ERRABS = 0.0

 CALL QDAWC (F, A, B, C, RESULT, ERRABS=ERRABS, ERREST=ERREST)

! Print results

 EXACT = ALOG(125./631.)/18.

 ERROR = 2*ABS(RESULT-EXACT)

 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, &

 ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3)

 END

!

 REAL FUNCTION F (X)

 REAL X

 F = 1.0/(5.*X**3+6.0)

 RETURN

 END

Output

Computed = -0.090 Exact = -0.090

Error estimate = 2.022E-06 Error = 2.980E-08

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 953

QDNG
Integrates a smooth function using a nonadaptive rule.

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is

F(X), where

X – Independent variable. (Input)

F – The function value. (Output)

 F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

RESULT — Estimate of the integral from A to B of F. (Output)

Optional Arguments

ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface

Generic: CALL QDNG (F, A, B, RESULT [,…])

Specific: The specific interface names are S_QDNG and D_QDNG.

FORTRAN 77 Interface

Single: CALL QDNG (F, A, B, ERRABS, ERRREL, RESULT, ERREST)

Double: The double precision name is DQDNG.

Description

The routine QDNG is designed to integrate smooth functions. This routine implements a

nonadaptive quadrature procedure based on nested Paterson rules of order 10, 21, 43, and 87.

These rules are positive quadrature rules with degree of accuracy 19, 31, 64, and 130, respectively.

The routine QDNG applies these rules successively, estimating the error, until either the error

954 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

estimate satisfies the user-supplied constraints or the last rule is applied. The routine QDNG is based

on the routine QNG by Piessens et al. (1983).

This routine is not very robust, but for certain smooth functions it can be efficient. If QDNG should

not perform well, we recommend the use of the IMSL routine QDAGS.

Comments

1. Informational error

Type Code

4 1 The maximum number of steps allowed have been taken. The

integral is too difficult for QDNG.

2. If EXACT is the exact value, QDNG attempts to find RESULT such that

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set

ERRREL to zero.

3. This routine is designed for efficiency, not robustness. If the above error is

encountered, try QDAGS.

Example

The value of

2 2

0
1xxe dx e

is estimated. The values of the actual and estimated error are machine dependent.

 USE QDNG_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NOUT

 REAL A, ABS, B, ERRABS, ERREST, ERROR, EXACT, EXP, &

 F, RESULT

 INTRINSIC ABS, EXP

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration

 A = 0.0

 B = 2.0

! Set error tolerances

 ERRABS = 0.0

 CALL QDNG (F, A, B, RESULT, ERRABS=ERRABS, ERREST=ERREST)

! Print results

 EXACT = 1.0 + EXP(2.0)

 ERROR = ABS(RESULT-EXACT)

 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 955

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, &

 ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3)

 END

!

 REAL FUNCTION F (X)

 REAL X

 REAL EXP

 INTRINSIC EXP

 F = X*EXP(X)

 RETURN

 END

Output

Computed = 8.389 Exact = 8.389

Error estimate = 5.000E-05 Error = 9.537E-07

TWODQ
Computes a two-dimensional iterated integral.

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is

F(X,Y), where

X – First argument of F. (Input)

Y – Second argument of F. (Input)

F – The function value. (Output)

 F must be declared EXTERNAL in the calling program.

A — Lower limit of outer integral. (Input)

B — Upper limit of outer integral. (Input)

G — User-supplied FUNCTION to evaluate the lower limits of the inner integral. The form is

G(X), where

X – Only argument of G. (Input)

G – The function value. (Output)

 G must be declared EXTERNAL in the calling program.

H — User-supplied FUNCTION to evaluate the upper limits of the inner integral. The form is

H(X), where

X – Only argument of H. (Input)

H – The func`tion value. (Output)

956 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

 H must be declared EXTERNAL in the calling program.

RESULT — Estimate of the integral from A to B of F. (Output)

Optional Arguments

ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

IRULE --- Choice of quadrature rule. (Input)

Default: IRULE = 2.

The Gauss-Kronrod rule is used with the following points:

IRULE Points

1 7-15

2 10-21

3 15-31

4 20-41

5 25-51

6 30-61

If the function has a peak singularity, use IRULE = 1. If the function is oscillatory, use

IRULE = 6.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface

Generic: CALL TWODQ (F, A, B, G, H, RESULT [,…])

Specific: The specific interface names are S_TWODQ and D_TWODQ.

FORTRAN 77 Interface

Single: CALL TWODQ (F, A, B, G, H, ERRABS, ERRREL, IRULE, RESULT, ERREST)

Double: The double precision name is DTWODQ.

Description

The routine TWODQ approximates the two-dimensional iterated integral

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 957

,

b h x

a g x
f x y dy dx

with the approximation returned in RESULT. An estimate of the error is returned in ERREST. The

approximation is achieved by iterated calls to QDAG. Thus, this algorithm will share many of the

characteristics of the routine QDAG. As in QDAG, several options are available. The absolute and

relative error must be specified, and in addition, the Gauss-Kronrod pair must be specified

(IRULE). The lower-numbered rules are used for less smooth integrands while the higher-order

rules are more efficient for smooth (oscillatory) integrands.

Comments

1. Workspace may be explicitly provided, if desired, by use of T2ODQ/DT2ODQ. The

reference is:

CALL T2ODQ (F, A, B, G, H, ERRABS, ERRREL, IRULE, RESULT,

ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST,

ELIST, IORD, WK, IWK)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)

A value of 250 is used by TWODQ.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated in the outer integral. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left

endpoints for the outer integral. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right

endpoints for the outer integral. (Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN

integrals over the intervals defined by ALIST, BLIST, pertaining only

to the outer integral. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the

NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)

Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 −

NSUBIN otherwise. Then the first K locations contain pointers to the

error estimates over the corresponding subintervals, such that

ELIST(IORD(1)), …, ELIST(IORD(K)) form a decreasing sequence.

WK — Work array of length 4 * MAXSUB, needed to evaluate the inner

integral.

958 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

IWK — Work array of length MAXSUB, needed to evaluate the inner integral.

2. Informational errors

Type Code

4 1 The maximum number of subintervals allowed has been reached.

3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.

3 3 A degradation in precision has been detected.

3. If EXACT is the exact value, TWODQ attempts to find RESULT such that

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set

ERRREL to zero.

Example 1

In this example, we approximate the integral

1 3 2

0 1
cosy x y dy dx

The value of the error estimate is machine dependent.

 USE TWODQ_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER IRULE, NOUT

 REAL A, B, ERRABS, ERREST, ERRREL, F, G, H, RESULT

 EXTERNAL F, G, H

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration

 A = 0.0

 B = 1.0

! Set error tolerances

 ERRABS = 0.0

 ERRREL = 0.01

! Parameter for oscillatory function

 IRULE = 6

 CALL TWODQ (F, A, B, G, H, RESULT, ERRABS, ERRREL, IRULE, ERREST)

! Print results

 WRITE (NOUT,99999) RESULT, ERREST

99999 FORMAT (‘ Result =‘, F8.3, 13X, ‘ Error estimate = ‘, 1PE9.3)

 END

!

 REAL FUNCTION F (X, Y)

 REAL X, Y

 REAL COS

 INTRINSIC COS

 F = Y*COS(X+Y*Y)

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 959

 RETURN

 END

!

 REAL FUNCTION G (X)

 REAL X

 G = 1.0

 RETURN

 END

!

 REAL FUNCTION H (X)

 REAL X

 H = 3.0

 RETURN

 END

Output

Result = -0.514 Error estimate = 3.065E-06

Additional Examples

Example 2

We modify the above example by assuming that the limits for the inner integral depend on x and,

in particular, are g(x) = −2x and h(x) = 5x. The integral now becomes

1 5 2

0 2
cos

x

x
y x y dy dx

The value of the error estimate is machine dependent.

 USE TWODQ_INT

 USE UMACH_INT

! Declare F, G, H

 INTEGER IRULE, NOUT

 REAL A, B, ERRABS, ERREST, ERRREL, F, G, H, RESULT

 EXTERNAL F, G, H

!

 CALL UMACH (2, NOUT)

! Set limits of integration

 A = 0.0

 B = 1.0

! Set error tolerances

 ERRABS = 0.001

 ERRREL = 0.0

! Parameter for oscillatory function

 IRULE = 6

 CALL TWODQ (F, A, B, G, H, RESULT, ERRABS, ERRREL, IRULE, ERREST)

! Print results

 WRITE (NOUT,99999) RESULT, ERREST

99999 FORMAT (‘ Computed =‘, F8.3, 13X, ‘ Error estimate = ‘, 1PE9.3)

 END

 REAL FUNCTION F (X, Y)

 REAL X, Y

!

 REAL COS

960 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

 INTRINSIC COS

!

 F = Y*COS(X+Y*Y)

 RETURN

 END

 REAL FUNCTION G (X)

 REAL X

!

 G = -2.0*X

 RETURN

 END

 REAL FUNCTION H (X)

 REAL X

!

 H = 5.0*X

 RETURN

 END

Output

Computed = -0.083 Error estimate = 2.095E-06

QDAG2D
Integrates a function of two variables with a possible internal or end point singularity.

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is F(X, Y [,]), where

Function Return Value

F — The function value. (Output)

Required Arguments

X — Independent variable. (Input)

Y — Independent variable. (Input)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional information to/from the user-supplied function. For a detailed

description of this argument see FCN_DATA below.

 F must be declared EXTERNAL in the calling program.

A — Lower limit of integration for outer dimension. (Input)

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 961

B — Upper limit of integration. The relative values of A and B are interpreted properly. Thus

if one exchanges A and B, the sign of the answer is changed. When the integrand is

positive, the sign of the result is the same as the sign of B – A. (Input)

G — User-supplied FUNCTION to compute the lower limit of integration for the inner

dimension. The form is G(X [,]), where

Function Return Value

G — The function value. (Output)

Required Arguments

X — Independent variable. (Input)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional information to/from the user-supplied function. For a detailed

description of this argument see FCN_DATA below.

 G must be declared EXTERNAL in the calling program.

H — User-supplied FUNCTION to compute the upper limit of integration for the inner

dimension. The form is H(X [,]), where

Function Return Value

H — The function value. (Output)

Required Arguments

X — Independent variable. (Input)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional information to/from the user-supplied function. For a detailed

description of this argument see FCN_DATA below.

 H must be declared EXTERNAL in the calling program.

RESULT — Estimate of the integral from A to B of the integral from G(X) to H(X) of G(X,Y).

(Output)

Optional Arguments

ERRABS — Absolute error tolerance. See Comment 1 for a discussion of the error

tolerances. (Input)

Default: ERRABS = 0.0.

962 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

ERRFRAC — A fraction expressing the (number of correct digits of accuracy

desired)/(number of digits of achievable precision). See Comment 1 for a discussion of

the error tolerances. (Input)

Default: ERRFRAC = 0.75.

ERRREL— Relative error tolerance. See Comment 1 for a discussion of the error tolerances.

(Input)

Default: ERRABS = 0.0.

ERRPOST — An a posteriori estimate of the absolute value of the error committed while

evaluating the integrand. This value may be computed during the evaluation of the

integrand. When this optional argument is used, FCN_DATA must also be used as

FCN_DATA%RDATA(1) will be used to pass the newly calculated value of ERRPOST

back from the evaluator, F. In this case, the user should not use FCN_DATA%RDATA(1)

for passing other data. (Input)

Default: ERRPOST = 0.0.

ERRPRIOR— An a priori estimate of the absolute value of the relative error expected to be

committed while evaluating the integrand. Changes to this value are not detected

during evaluation of the integral. (Input)

Default: ERRPRIOR = 1.19e-7 for single precision and 2.22d-16 for double precision.

MAXFCN — The maximum number of function values to use to compute the integral.

(Input)

Default: The number of function values is not bounded.

SINGULARITY — The real part of the abscissa of a singularity or discontinuity in the

innermost integrand. If this option is used, SINGULARITY_TYPE must also be used.

(Input)

Default: It is assumed that there is no singularity in the innermost integrand so

SINGULARITY is not set. It is an error to set SINGULARITY without also setting

SINGULARITY_TYPE.

SINGULARITY_TYPE— A signed integer specifying the type of singularity which occurs in

the innermost integrand. If the singularity has a leading term of the form xα

where α is

not an integer, if α is ―large‖ or has the form α = (2n-1)/2 where n is a nonnegative

integer, or the singularity is well outside the interval, set SINGULARITY_TYPE to a

positive integer. Otherwise, set SINGULARITY_TYPE to a negative integer. (Input)

Default: It is assumed that there is no singularity in the innermost integrand so

SINGULARITY_TYPE is not set. It is an error to set SINGULARITY_TYPE without also

setting SINGULARITY.

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional

information to/from the user-supplied function. The derived type, s_fcn_data, is

defined as:

type s_fcn_data

 real(kind(1e0)), pointer, dimension(:) :: rdata

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 963

 integer, pointer, dimension(:) :: idata

end type

in module mp_types. The double precision counterpart to s_fcn_data is named

d_fcn_data. The user must include a use mp_types statement in the calling

program to define this derived type. (Input/Output)

NEVAL — Number of function evaluations used to calculate the integral. (Output)

ERREST — An estimate of the upper bound of the magnitude of the difference between

RESULT and the true value of the integral. (Output)

ISTATUS — A status flag indicating the error criteria which was satisfied on exit.

ISTATUS = -1 indicates normal termination with either the absolute or relative error

tolerance criteria satisfied.

ISTATUS = -2 indicates normal termination with neither the absolute nor the relative

error tolerance criteria satisfied, but the error tolerance based on the locally achievable

precision is satisfied.

ISTATUS = -3 indicates normal termination with none of the error tolerance criteria

satisfied.

ISTATUS = any value other than the above indicates abnormal termination due to an

error condition. (Output)

FORTRAN 90 Interface

Generic: CALL QDAG2D (F, A, B, G, H, RESULT [,…])

Specific: The specific interface names are S_QDAG2D and D_QDAG2D.

Description

QDAG2D, based on the JPL Library routine SINTM, approximates an iterated two-dimensional

integral of the form

()

()
,

b h x

a g x
f x y dy dx

The integral over two dimensions is computed by repeated integration over one dimension. The

integration over one dimension is estimated using quadrature formulae due to T. N. L. Patterson

(1968). Patterson described a family of formulae in which the k
th

formula used all the integrand

values used in the k-1
st
 formula, and added 2

k-1
new integrand values in an optimal way. The first

formula is the midpoint rule, the second is the three point Gauss formula, and the third is the seven

point Kronrod formula. Formulae of this family of higher degree had not previously been

described. This program uses formulae up to k = 8.

An error estimate is obtained by comparing the values of the integral estimated by two adjacent

formulae, examining differences up to the fifteenth order, integrating round-off error, integrating

error declared to have been committed during computation of the integrand, integrating a first

order estimate of the effect round-off error in the abscissa has on integrand values, and including

errors in the limits. The latter four methods are also used to derive a bound on the achievable

precision.

964 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

If the integral over an interval cannot be estimated with sufficient accuracy, the interval is

subdivided. The difference table is used to discover whether the integral is difficult to compute

because the integrand is too complex or has singular behavior. In the former case, the estimated

error, requested error tolerance, and difference table are used to choose a step size.

In the latter case, the difference table is used in a search algorithm to find the abscissa of the

singular behavior. If the singular behavior is discovered on the end of an interval, a change of

independent variable is applied to reduce the strength of the singularity.

The program also uses the difference table to detect nonintegrable singularities, jump

discontinuities, and computational noise.

Comments

1. The user provides the absolute error tolerance through optional argument ERRABS.

Optional argument ERRFRAC represents the ratio of the (number of correct digits of

accuracy desired) to (number of digits of achievable precision). The internal value for

ERRFRAC is bounded between .5 and 1.The error tolerance relative to the value of the

integral is specified via optional argument ERRREL. By default, ERRABS and ERRREL

are set to 0.0 and ERRFRAC is set to .75. These default values usually provide all the

accuracy that can be obtained efficiently.

The error tolerance relative to the value of the integral is applied globally (over the

entire region of integration) rather than locally (one step at a time). This policy

provides true control of error relative to the value of the integral when the integrand is

not sign definite, as well as when the integrand is sign definite. To apply the criterion

of error tolerance relative to the value of the integral, the value of the integral over the

entire region, estimated without refinement of the region, is used to derive an absolute

error tolerance that may be applied locally. If the preliminary estimate of the value of

the integral is significantly in error, and the least restrictive error tolerance is relative to

the value of the integral, the cost of computing the integral will be larger than the cost

of computing the integral to the same degree of accuracy using appropriate values of

either of the other tolerance criteria. The preliminary estimate of the integral may be

significantly in error if the integrand is not sign definite or has large variation.

2. Optional arguments SINGULARITY and SINGULARITY_TYPE provide the user with a

means to give the routine information about the location and type of any known

singularity of the innermost integrand. When an integrand appears to have singular

behavior at the end of the interval, a transformation of the variable of integration is

applied to reduce the strength of the singularity. When an integrand appears to have

singular behavior inside the interval, the abscissa of the singularity is determined as

precisely as necessary, depending on the error tolerance, and the interval is subdivided.

The discovery of singular behavior and determination of the abscissa of singular

behavior are expensive. If the user knows of the existence of a singularity, the

efficiency of computation of the integral may be improved by requesting an immediate

transformation of the independent variable or subdivision of the interval. It is

recommended that the user select these optional arguments for all singularities, even

those outside [A, B]. If the singularity has a leading term of the form x
α

where α is not

an integer, if α is ―large‖ or has the form α = (2n-1)/2 where n is a nonnegative

integer, or the singularity is well outside the interval, set SINGULARITY_TYPE to a

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 965

positive value. Otherwise, set SINGULARITY_TYPE to a negative value. The meaning

of ―large‖ depends on the rest of the integrand and the length of the interval. For the

typical case, a value of about 2 is considered ―large‖. For a singularity of the form x
α

log x use the above rule, even if α is an integer. For other types of singularities make a

reasonable guess based on the above. If several similar integrals are to be computed,

some experimentation may be useful.

When SINGULARITY_TYPE is positive, a transformation of the form

T = TA + (X – TA)
2
/ (TB – TA) is applied, where TA is the abscissa of the singularity

and TB is the end of the interval. If TA is outside the interval, TB will be the end of the

interval farthest from TA. If TA is inside the interval, the interval will immediately be

subdivided at TA, and both parts will be separately integrated with TB equal to each

end of the original interval, respectively. When SINGULARITY_TYPE is negative, a

transformation of the form T = TA + (X – TA)
4
/ (TB – TA)

3
 is applied, with TA and TB

as above.

If the integrand has singularities at more than one abscissa within the region, or more

than one pole near the real axis such that the real parts are within the region of

integration, then the interval should be subdivided at the abscissa of the singularities or

the real parts of the poles, and the integrals should be computed as separate problems,

with the results summed.

Example

The value of

1 3 2

0 1
cosy x y dy dx

is estimated.

 USE QDAG2D_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NOUT

 REAL A, B, ERREST, F, G, H, RESULT

 EXTERNAL F, G, H

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration

 A = 0.0

 B = 1.0

! Set singularity value and type

 CALL QDAG2D (F, A, B, G, H, RESULT, ERREST=ERREST)

! Print the results

 WRITE(NOUT,*)'Result = ', RESULT

 WRITE(NOUT,9999) ERREST

 9999 FORMAT('Error Estimate = ', 1PE9.1)

966 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

 END

 REAL FUNCTION F (X, Y)

 REAL X, Y

 REAL COS

 INTRINSIC COS

 F = Y*COS(X+Y*Y)

 RETURN

 END

 REAL FUNCTION G (X)

 REAL X

 G = 1.0

 RETURN

 END

 REAL FUNCTION H (X)

 REAL X

 H = 3.0

 RETURN

 END

Output

RESULT = -0.51425

Error Estimate = 5.3-06

QDAG3D
Integrates a function of three variables with a possible internal or endpoint singularity.

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is F(X, Y, Z [,]), where

Function Return Value

F — The function value. (Output)

Required Arguments

X — Independent variable. (Input)

Y — Independent variable. (Input)

Z — Independent variable. (Input)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional information to/from the user-supplied function. For a detailed

description of this argument see FCN_DATA below.

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 967

 F must be declared EXTERNAL in the calling program.

A — Lower limit of integration for outer dimension. (Input)

B — Upper limit of integration for outer dimension. The relative values of A and B are

interpreted properly. Thus if one exchanges A and B, the sign of the answer is changed.

When the integrand is positive, the sign of the result is the same as the sign of B – A.

(Input)

G — User-supplied FUNCTION to compute the lower limit of integration for the middle

dimension. The form is G(X [,]), where

Function Return Value

G — The function value. (Output)

Required Arguments

X — Independent variable. (Input)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional information to/from the user-supplied function. For a detailed

description of this argument see FCN_DATA below.

 G must be declared EXTERNAL in the calling program.

H — User-supplied FUNCTION to compute the upper limit of integration for the middle

dimension. The form is H(X [,]), where

Function Return Value

H — The function value. (Output)

Required Arguments

X — Independent variable. (Input)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional information to/from the user-supplied function. For a detailed

description of this argument see FCN_DATA below.

 H must be declared EXTERNAL in the calling program

P — User-supplied FUNCTION to compute the lower limit of integration for the inner

dimension. The form is P(X, Y [,]), where

Function Return Value

P — The function value. (Output)

968 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

Required Arguments

X — Independent variable. (Input)

Y — Independent variable. (Input)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional information to/from the user-supplied function. For a detailed

description of this argument see FCN_DATA below.

 P must be declared EXTERNAL in the calling program.

Q — User-supplied FUNCTION to compute the upper limit of integration for the inner

dimension. The form is Q(X, Y [,]), where

Function Return Value

Q — The function value. (Output)

Required Arguments

X — Independent variable. (Input)

Y — Independent variable. (Input)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional information to/from the user-supplied function. For a detailed

description of this argument see FCN_DATA below.

 Q must be declared EXTERNAL in the calling program

RESULT — Estimate of the integral from A to B of the integral from G(X) to H(X) of the

integral from P(X,Y) to Q(X,Y) of F(X,Y,Z). (Output)

Optional Arguments

ERRABS — Absolute error tolerance. See Comment 1 for a discussion of the error

tolerances. (Input)

Default: ERRABS = 0.0.

ERRFRAC — A fraction expressing the (number of correct digits of accuracy

desired)/(number of digits of achievable precision). See Comment 1 for a discussion of

the error tolerances. (Input)

Default: ERRFRAC = 0.75.

ERRREL — The error tolerance relative to the value of the integral. See Comment 1 for a

discussion of the error tolerances. (Input)

Default: ERRREL = 0.0.

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 969

ERRPOST — An a posteriori estimate of the absolute value of the error committed while

evaluating the integrand. This value may be computed during the evaluation of the

integrand. When this optional argument is used, FCN_DATA must also be used as

FCN_DATA%RDATA(1) will be used to pass the newly calculated value of ERRPOST

back from the evaluator, F. In this case, the user should not use FCN_DATA%RDATA(1)

for passing other data. (Input)

Default: ERRPOST = 0.0.

ERRPRIOR— An a priori estimate of the absolute value of the relative error expected to be

committed while evaluating the integrand. Changes to this value are not detected

during evaluation of the integral. (Input)

Default: ERRPRIOR = 1.19e-7 for single precision and 2.22d-16 for double precision.

MAXFCN — The maximum number of function values to use to compute the integral.

(Input)

Default: The number of function values is not bounded.

SINGULARITY — The real part of the abscissa of a singularity or discontinuity in the

innermost integrand. If this option is used, SINGULARITY_TYPE must also be used.

(Input)

Default: It is assumed that there is no singularity in the innermost integrand so

SINGULARITY is not set. It is an error to set SINGULARITY without also setting

SINGULARITY_TYPE.

SINGULARITY_TYPE— A signed integer specifying the type of singularity which occurs in

the innermost integrand. If the singularity has a leading term of the form xα

where α is

not an integer, if α is ―large‖ or has the form α = (2n-1)/2 where n is a nonnegative

integer, or the singularity is well outside the interval, set SINGULARITY_TYPE to a

positive integer. Otherwise, set SINGULARITY_TYPE to a negative integer. (Input)

Default: It is assumed that there is no singularity in the innermost integrand so

SINGULARITY_TYPE is not set. It is an error to set SINGULARITY_TYPE without also

setting SINGULARITY.

 FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional

information to/from the user-supplied function. The derived type, s_fcn_data, is

defined as:

type s_fcn_data

 real(kind(1e0)), pointer, dimension(:) :: rdata

 integer, pointer, dimension(:) :: idata

end type

in module mp_types. The double precision counterpart to s_fcn_data is named

d_fcn_data. The user must include a use mp_types statement in the calling

program to define this derived type. (Input/Output)

NEVAL — Number of function evaluations used to calculate the integral. (Output)

970 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

ERREST — An estimate of the upper bound of the magnitude of the difference between

RESULT and the true value of the integral. (Output)

ISTATUS — A status flag indicating the error criteria which was satisfied on exit.

ISTATUS = -1 indicates normal termination with either the absolute or relative error

tolerance criteria satisfied.

ISTATUS = -2 indicates normal termination with neither the absolute nor the relative

error tolerance criteria satisfied, but the error tolerance based on the locally achievable

precision is satisfied.

ISTATUS = -3 indicates normal termination with none of the error tolerance criteria

satisfied.

ISTATUS = any value other than the above indicates abnormal termination due to an

error condition. (Output)

FORTRAN 90 Interface

Generic: CALL QDAG3D (F, A, B, G, H, P, Q, RESULT [,…])

Specific: The specific interface names are S_QDAG3D and D_QDAG3D.

Description

QDAG3D, based on the JPL Library routine SINTM, approximates an iterated three-dimensional

integral of the form

 () ,

() ,
, ,

b h x q x y

a g x p x y
f x y z dz dy dx

The integral over three dimensions is computed by repeated integration over one dimension. The

integration over one dimension is estimated using quadrature formulae due to T. N. L. Patterson

(1968). Patterson described a family of formulae in which the k
th

formula used all the integrand

values used in the k-1
st
 formula, and added 2

k-1
new integrand values in an optimal way. The first

formula is the midpoint rule, the second is the three point Gauss formula, and the third is the seven

point Kronrod formula. Formulae of this family of higher degree had not previously been

described. This program uses formulae up to k = 8.

An error estimate is obtained by comparing the values of the integral estimated by two adjacent

formulae, examining differences up to the fifteenth order, integrating round-off error, integrating

error declared to have been committed during computation of the integrand, integrating a first

order estimate of the effect round-off error in the abscissa has on integrand values, and including

errors in the limits. The latter four methods are also used to derive a bound on the achievable

precision.

If the integral over an interval cannot be estimated with sufficient accuracy, the interval is

subdivided. The difference table is used to discover whether the integral is difficult to compute

because the integrand is too complex or has singular behavior. In the former case, the estimated

error, requested error tolerance, and difference table are used to choose a step size.

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 971

In the latter case, the difference table is used in a search algorithm to find the abscissa of the

singular behavior. If the singular behavior is discovered on the end of an interval, a change of

independent variable is applied to reduce the strength of the singularity.

The program also uses the difference table to detect nonintegrable singularities, jump

discontinuities, and computational noise.

Comments

1. The user provides the absolute error tolerance through optional argument ERRABS.

Optional argument ERRFRAC represents the ratio of the (number of correct digits of

accuracy desired) to (number of digits of achievable precision). Optional argument

ERRREL represents the error tolerance relative to the value of the integral. The internal

value for ERRFRAC is bounded between .5 and 1. By default, ERRABS and ERRREL are

set to 0.0 and ERRFRAC is set to .75. These default values usually provide all the

accuracy that can be obtained efficiently.

The error tolerance relative to the value of the integral is applied globally (over the

entire region of integration) rather than locally (one step at a time). This policy

provides true control of error relative to the value of the integral when the integrand is

not sign definite, as well as when the integrand is sign definite. To apply the criterion

of error tolerance relative to the value of the integral, the value of the integral over the

entire region, estimated without refinement of the region, is used to derive an absolute

error tolerance that may be applied locally. If the preliminary estimate of the value of

the integral is significantly in error, and the least restrictive error tolerance is relative to

the value of the integral, the cost of computing the integral will be larger than the cost

of computing the integral to the same degree of accuracy using appropriate values of

either of the other tolerance criteria. The preliminary estimate of the integral may be

significantly in error if the integrand is not sign definite or has large variation.

2. Optional arguments SINGULARITY and SINGULARITY_TYPE provide the user with a

means to give the routine information about the location and type of any known

singularity of the innermost integrand. When an integrand appears to have singular

behavior at the end of the interval, a transformation of the variable of integration is

applied to reduce the strength of the singularity. When an integrand appears to have

singular behavior inside the interval, the abscissa of the singularity is determined as

precisely as necessary, depending on the error tolerance, and the interval is subdivided.

The discovery of singular behavior and determination of the abscissa of singular

behavior are expensive. If the user knows of the existence of a singularity, the

efficiency of computation of the integral may be improved by requesting an immediate

transformation of the independent variable or subdivision of the interval. It is

recommended that the user select these optional arguments for all singularities, even

those outside [A, B]. If the singularity has a leading term of the form x
α

where α is not

an integer, if α is ―large‖ or has the form α = (2n-1)/2 where n is a nonnegative

integer, or the singularity is well outside the interval, set SINGULARITY_TYPE to a

positive value. Otherwise, set SINGULARITY_TYPE to a negative value. The meaning

of ―large‖ depends on the rest of the integrand and the length of the interval. For the

typical case, a value of about 2 is considered ―large‖. For a singularity of the form x
α

log x use the above rule, even if α is an integer. For other types of singularities make a

reasonable guess based on the above. If several similar integrals are to be computed,

972 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

some experimentation may be useful.

When SINGULARITY_TYPE is positive, a transformation of the form

T = TA + (X – TA)
2
/ (TB – TA) is applied, where TA is the abscissa of the singularity

and TB is the end of the interval. If TA is outside the interval, TB will be the end of the

interval farthest from TA. If TA is inside the interval, the interval will immediately be

subdivided at TA, and both parts will be separately integrated with TB equal to each

end of the original interval, respectively. When SINGULARITY_TYPE is negative, a

transformation of the form T = TA + (X – TA)
4
/ (TB – TA)

3
 is applied, with TA and TB

as above.

If the integrand has singularities at more than one abscissa within the region, or more

than one pole near the real axis such that the real parts are within the region of

integration, then the interval should be subdivided at the abscissa of the singularities or

the real parts of the poles, and the integrals should be computed as separate problems,

with the results summed.

Example

The value of

1 1 1

0 0 0
1.0 2

x x y
x y z dz dy dx

is estimated.

 USE QDAG3D_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NOUT

 REAL A, B, ERREST, F, G, H, P, Q, RESULT

 EXTERNAL F, G, H, P, Q

! Get output unit number

 CALL UMACH (2, NOUT)

! Set limits of integration

 A = 0.0

 B = 1.0

! Set singularity value and type

 CALL QDAG3D (F, A, B, G, H, P, Q, RESULT, &

 ERREST=ERREST)

! Print the results

 WRITE(NOUT,*) 'Result = ', RESULT

 WRITE(NOUT,9999) ERREST

 9999 FORMAT('Error Estimate = ', 1PE9.1)

 END

 REAL FUNCTION F (X, Y, Z)

 REAL X, Y, Z

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 973

 F = 1.0 + X + Y + 2.0*Z

 RETURN

 END

 REAL FUNCTION G (X)

 REAL X

 G = 0.0

 RETURN

 END

 REAL FUNCTION H (X)

 REAL X

 H = 1.0 - X

 RETURN

 END

 REAL FUNCTION P (X, Y)

 REAL X, Y

 P = 0.0

 RETURN

 END

 REAL FUNCTION Q (X, Y)

 REAL X, Y

 Q = 1.0 – X - Y

 RETURN

 END

Output

RESULT = 0.333333

Error Estimate = 1.9E-07

QAND
Integrates a function on a hyper-rectangle.

Required Arguments

F — User-supplied FUNCTION to be integrated. The form is

F(N, X), where

N – The dimension of the hyper-rectangle. (Input)

X – The independent variable of dimension N. (Input)

F – The value of the integrand at X. (Output)

 F must be declared EXTERNAL in the calling program.

N — The dimension of the hyper-rectangle. (Input)

N must be less than or equal to 20.

974 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

A — Vector of length N. (Input)

Lower limits of integration.

B — Vector of length N. (Input)

Upper limits of integration.

RESULT — Estimate of the integral from A to B of F. (Output)

The integral of F is approximated over the N-dimensional hyper-rectangle

A.LE.X.LE.B.

Optional Arguments

ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

MAXFCN — Approximate maximum number of function evaluations to be permitted.

(Input)

MAXFCN cannot be greater than 256N or IMACH(5) if N is greater than 3.

Default: MAXFCN = 32**N.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface

Generic: CALL QAND (F, N, A, B, RESULT [,…])

Specific: The specific interface names are S_QAND and D_QAND.

FORTRAN 77 Interface

Single: CALL QAND (F, N, A, B, ERRABS, ERRREL, MAXFCN, RESULT, ERREST)

Double: The double precision name is DQAND.

Description

The routine QAND approximates the n-dimensional iterated integral

1

1
1 1, ,

n

n

b b

n na a
f x x dx dx

with the approximation returned in RESULT. An estimate of the error is returned in ERREST. The

approximation is achieved by iterated applications of product Gauss formulas. The integral is first

estimated by a two-point tensor product formula in each direction. Then for i = 1, …, n the routine

calculates a new estimate by doubling the number of points in the i-th direction, but halving the

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 975

number immediately afterwards if the new estimate does not change appreciably. This process is

repeated until either one complete sweep results in no increase in the number of sample points in

any dimension, or the number of Gauss points in one direction exceeds 256, or the number of

function evaluations needed to complete a sweep would exceed MAXFCN.

Comments

1. Informational errors

Type Code

3 1 MAXFCN was set greater than 256
N
.

4 2 The maximum number of function evaluations has been reached, and

convergence has not been attained.

2. If EXACT is the exact value, QAND attempts to find RESULT such that

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set

ERRREL to zero.

Example

In this example, we approximate the integral of

 2 2 2
1 2 3x x x

e

on an expanding cube. The values of the error estimates are machine dependent. The exact integral

over

3 3/ 2is R

 USE QAND_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER I, J, MAXFCN, N, NOUT

 REAL A(3), B(3), CNST, ERRABS, ERREST, ERRREL, F, RESULT

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

!

 N = 3

 MAXFCN = 100000

! Set error tolerances

 ERRABS = 0.0001

 ERRREL = 0.001

!

 DO 20 I=1, 6

 CNST = I/2.0

! Set limits of integration

! As CNST approaches infinity, the

! answer approaches PI**1.5

 DO 10 J=1, 3

976 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

 A(J) = -CNST

 B(J) = CNST

 10 CONTINUE

 CALL QAND (F, N, A, B, RESULT, ERRABS, ERRREL, MAXFCN, ERREST)

 WRITE (NOUT,99999) CNST, RESULT, ERREST

 20 CONTINUE

99999 FORMAT (1X, 'For CNST = ', F4.1, ', result = ', F7.3, ' with ', &

 'error estimate ', 1PE10.3)

 END

!

 REAL FUNCTION F (N, X)

 INTEGER N

 REAL X(N)

 REAL EXP

 INTRINSIC EXP

 F = EXP(-(X(1)*X(1)+X(2)*X(2)+X(3)*X(3)))

 RETURN

 END

Output

For CNST = 0.5, result = 0.785 with error estimate 3.934E-06

For CNST = 1.0, result = 3.332 with error estimate 2.100E-03

For CNST = 1.5, result = 5.021 with error estimate 1.192E-05

For CNST = 2.0, result = 5.491 with error estimate 2.413E-04

For CNST = 2.5, result = 5.561 with error estimate 4.232E-03

For CNST = 3.0, result = 5.568 with error estimate 2.580E-04

QMC
Integrates a function over a hyper rectangle using a quasi-Monte Carlo method.

Required Arguments

FCN — User-supplied FUNCTION to be integrated. The form is FCN(X), where

X − The independent variable. (Input)

FCN − The value of the integrand at X. (Output)

FCN must be declared EXTERNAL in the calling program.

A — Vector containing lower limits of integration. (Input)

B — Vector containing upper limits of integration. (Input)

RESULT — The value of

1

1
1 1, ,

n

n

b b

n na a
f x x dx dx

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 977

is returned, where n is the dimension of X. If no value can be computed, then NaN is

returned. (Output)

Optional Arguments

ERRABS — Absolute accuracy desired. (Input)

Default: 1.0e-2.

ERRREL — Relative accuracy desired. (Input)

Default: 1.0e-2.

ERREST — Estimate of the absolute value of the error. (Output)

MAXEVALS — Number of evaluations allowed. (Input)

Default: No limit.

BASE — The base of the Faure sequence. (Input)

Default: The smallest prime number greater than or equal to the number of dimensions

(length of a and b).

SKIP — The number of points to be skipped at the beginning of the Faure sequence. (Input)

Default:
/ 2 1m

base , where log logBm / base and B is the largest

representable integer.

FORTRAN 90 Interface

Generic: CALL QMC (FCN, A, B, RESULT [,…])

Specific: The specific interface names are S_QMC and D_QMC.

Description

Integration of functions over hyper rectangle by direct methods, such as QAND, is practical only for

fairly low dimensional hypercubes. This is because the amount of work required increases

exponentially as the dimension increases.

An alternative to direct methods is QMC, in which the integral is evaluated as the value of the

function averaged over a sequence of randomly chosen points. Under mild assumptions on the

function, this method will converge like

1/ k

 where k is the number of points at which the function is evaluated.

It is possible to improve on the performance of QMC by carefully choosing the points at which the

function is to be evaluated. Randomly distributed points tend to be non-uniformly distributed. The

alternative to a sequence of random points is a low-discrepancy sequence. A low-discrepancy

sequence is one that is highly uniform.

978 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

This function is based on the low-discrepancy Faure sequence as computed by FAURE_NEXT, see

Stat Library, Chapter 18, Random Number Generation.

Example

This example evaluates the n-dimensional integral

1

1 1

0 0
1 1

1 1
1 1

3 2

nin
i

j n

i j

x dx dx

with n=10.

 use qmc_int

 implicit none

 integer, parameter :: ndim=10

 real(kind(1d0)) :: a(ndim)

 real(kind(1d0)) :: b(ndim)

 real(kind(1d0)) :: result

 integer :: I

 external fcn

 a = 0.d0

 b = 1.d0

 call qmc(fcn, a, b, result)

 write (*,*) 'result = ', result

 end

 real(kind(1d0)) function fcn(x)

 implicit none

 real(kind(1d0)), dimension(:) :: x

 integer :: i, j

 real(kind(1d0)) :: prod, sum, sign

 sign = -1.d0

 sum = 0.d0

 do i=1, size(x)

 prod = 1.d0

 prod = product(x(1:i))

 sum = sum + (sign * prod)

 sign = -sign

 end do

 fcn = sum

 end function fcn

Output

 result = -0.3334789

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 979

GQRUL
Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various classical weight

functions.

Required Arguments

N — Number of quadrature points. (Input)

QX — Array of length N containing quadrature points. (Output)

QW — Array of length N containing quadrature weights. (Output)

Optional Arguments

IWEIGH — Index of the weight function. (Input)

Default: IWEIGH = 1.

2

2

2

1 1 1, 1 Legendre

2 1/ 1 1, 1 Chebyshev 1st kind

3 1 1, 1 Chebyshev 2nd kind

4 , Hermite

5 1 1 1, 1 Jacobi

6 0, Generalized Laguerre

7 1/ cosh , COSH

X

X

X

X

e

X X

e X

X

Interval NameIWEIGH WT X

ALPHA — Parameter used in the weight function with some values of IWEIGH, otherwise it

is ignored. (Input)

Default: ALPHA = 2.0.

BETAW — Parameter used in the weight function with some values of IWEIGH, otherwise it

is ignored. (Input)

Default: BETAW = 2.0.

NFIX — Number of fixed quadrature points. (Input)

NFIX = 0, 1 or 2. For the usual Gauss quadrature rules, NFIX = 0.

Default: NFIX = 0.

QXFIX — Array of length NFIX (ignored if NFIX = 0) containing the preset quadrature

point(s). (Input)

980 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL GQRUL (N, QX, QW [,…])

Specific: The specific interface names are S_GQRUL and D_GQRUL.

FORTRAN 77 Interface

Single: CALL GQRUL (N, IWEIGH, ALPHA, BETAW, NFIX, QXFIX, QX, QW)

Double: The double precision name is DGQRUL.

Description

The routine GQRUL produces the points and weights for the Gauss, Gauss-Radau, or Gauss-Lobatto

quadrature formulas for some of the most popular weights. In fact, it is slightly more general than

this suggests because the extra one or two points that may be specified do not have to lie at the

endpoints of the interval. This routine is a modification of the subroutine GAUSSQUADRULE (Golub

and Welsch 1969).

In the simple case when NFIX = 0, the routine returns points in x = QX and weights in w = QW so

that

1

N
b

i ia
i

f x w x dx f x w

for all functions f that are polynomials of degree less than 2N.

If NFIX = 1, then one of the above xi equals the first component of QXFIX. Similarly, if NFIX = 2,

then two of the components of x will equal the first two components of QXFIX. In general, the

accuracy of the above quadrature formula degrades when NFIX increases. The quadrature rule will

integrate all functions f that are polynomials of degree less than 2N − NFIX.

Comments

1. Workspace may be explicitly provided, if desired, by use of G2RUL/DG2RUL. The

reference is

CALL G2RUL (N, IWEIGH, ALPHA, BETAW, NFIX, QXFIX, QX, QW,

WK)

The additional argument is

WK — Work array of length N.

2. If IWEIGH specifies the weight WT(X) and the interval (a, b), then approximately

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 981

1

*
N

b

a
I

F X WT X dX F QX I QW I

 *

3. Gaussian quadrature is always the method of choice when the function F(X) behaves

like a polynomial. Gaussian quadrature is also useful on infinite intervals (with

appropriate weight functions), because other techniques often fail.

4. The weight function 1/cosh(X) behaves like a polynomial near zero and like e
|X|

 far

from zero.

Example 1

In this example, we obtain the classical Gauss-Legendre quadrature formula, which is accurate for

polynomials of degree less than 2N, and apply this when N = 6 to the function x
8
 on the interval

[−1, 1]. This quadrature rule is accurate for polynomials of degree less than 12.

 USE GQRUL_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=6)

 INTEGER I, NOUT

 REAL ANSWER, QW(N), QX(N), SUM

! Get output unit number

 CALL UMACH (2, NOUT)

!

! Get points and weights from GQRUL

 CALL GQRUL (N, QX, QW)

! Write results from GQRUL

 WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N)

99998 FORMAT (6(6X,'QX(',I1,') = ',F8.4,7X,'QW(',I1,') = ',F8.5,/))

! Evaluate the integral from these

! points and weights

 SUM = 0.0

 DO 10 I=1, N

 SUM = SUM + QX(I)**8*QW(I)

 10 CONTINUE

 ANSWER = SUM

 WRITE (NOUT,99999) ANSWER

99999 FORMAT (/, ' The quadrature result making use of these ', &

 'points and weights is ', 1PE10.4, '.')

 END

Output

QX(1) = -0.9325 QW(1) = 0.17132

QX(2) = -0.6612 QW(2) = 0.36076

QX(3) = -0.2386 QW(3) = 0.46791

QX(4) = 0.2386 QW(4) = 0.46791

QX(5) = 0.6612 QW(5) = 0.36076

QX(6) = 0.9325 QW(6) = 0.17132

982 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

The quadrature result making use of these points and weights is 2.2222E-01.

Additional Examples

Example 2

We modify Example 1 by requiring that both endpoints be included in the quadrature formulas and

again apply the new formulas to the function x
8
 on the interval [−1, 1]. This quadrature rule is

accurate for polynomials of degree less than 10.

 USE GQRUL_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=6)

 INTEGER I, IWEIGH, NFIX, NOUT

 REAL ALPHA, ANSWER, BETAW, QW(N), QX(N), QXFIX(2), SUM

! Get output unit number

 CALL UMACH (2, NOUT)

!

 IWEIGH = 1

 ALPHA = 0.0

 BETAW = 0.0

 NFIX = 2

 QXFIX(1) = -1.0

 QXFIX(2) = 1.0

! Get points and weights from GQRUL

 CALL GQRUL (N, QX, QW, ALPHA=ALPHA, BETAW=BETAW, NFIX=NFIX, &

 QXFIX=QXFIX)

! Write results from GQRUL

 WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N)

99998 FORMAT (6(6X,'QX(',I1,') = ',F8.4,7X,'QW(',I1,') = ',F8.5,/))

! Evaluate the integral from these

! points and weights

 SUM = 0.0

 DO 10 I=1, N

 SUM = SUM + QX(I)**8*QW(I)

 10 CONTINUE

 ANSWER = SUM

 WRITE (NOUT,99999) ANSWER

99999 FORMAT (/, ' The quadrature result making use of these ', &

 'points and weights is ', 1PE10.4, '.')

 END

Output

QX(1) = -1.0000 QW(1) = 0.06667

QX(2) = -0.7651 QW(2) = 0.37847

QX(3) = -0.2852 QW(3) = 0.55486

QX(4) = 0.2852 QW(4) = 0.55486

QX(5) = 0.7651 QW(5) = 0.37847

QX(6) = 1.0000 QW(6) = 0.06667

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 983

The quadrature result making use of these points and weights is 2.2222E-01.

GQRCF
Computes a Gauss, Gauss-Radau or Gauss-Lobatto quadra ture rule given the recurrence

coefficients for the monic polynomials orthogonal with respect to the weight function.

Required Arguments

N — Number of quadrature points. (Input)

B — Array of length N containing the recurrence coefficients. (Input)

See Comments for definitions.

C — Array of length N containing the recurrence coefficients. (Input)

See Comments for definitions.

QX — Array of length N containing quadrature points. (Output)

QW — Array of length N containing quadrature weights. (Output)

Optional Arguments

NFIX — Number of fixed quadrature points. (Input)

NFIX = 0, 1 or 2. For the usual Gauss quadrature rules NFIX = 0.

Default: NFIX = 0.

QXFIX — Array of length NFIX (ignored if NFIX = 0) containing the preset quadrature

point(s). (Input)

FORTRAN 90 Interface

Generic: CALL GQRCF (N, B, C, QX, QW [,…])

Specific: The specific interface names are S_GQRCF and D_GQRCF.

FORTRAN 77 Interface

Single: CALL GQRCF (N, B, C, NFIX, QXFIX, QX, QW)

Double: The double precision name is DGQRCF.

Description

The routine GQRCF produces the points and weights for the Gauss, Gauss-Radau, or Gauss-Lobatto

quadrature formulas given the three-term recurrence relation for the orthogonal polynomials. In

particular, it is assumed that the orthogonal polynomials are monic, and hence, the three-term

recursion may be written as

984 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

 1 2 for =1, ,i i i i ip x x b p x c p x i N

where p0 = 1 and p-1 = 0. It is obvious from this representation that the degree of pi is i and that pi

is monic. In order for the recurrence to give rise to a sequence of orthogonal polynomials (with

respect to a nonnegative measure), it is necessary and sufficient that ci > 0. This routine is a

modification of the subroutine GAUSSQUADRULE (Golub and Welsch 1969). In the simple case

when NFIX = 0, the routine returns points in x = QX and weights in w = QW so that

1

N
b

i ia
i

f x w x dx f x w

for all functions f that are polynomials of degree less than 2N. Here, w is any weight function for

which the above recurrence produces the orthogonal polynomials pi on the interval [a, b] and w is

normalized by

 1

b

a
w x dx c

If NFIX = 1, then one of the above xi equals the first component of QXFIX. Similarly, if NFIX = 2,

then two of the components of x will equal the first two components of QXFIX. In general, the

accuracy of the above quadrature formula degrades when NFIX increases. The quadrature rule will

integrate all functions f that are polynomials of degree less than 2N − NFIX.

Comments

1. Workspace may be explicitly provided, if desired, by use of G2RCF/DG2RCF. The

reference is:

CALL G2RCF (N, B, C, NFIX, QXFIX, QX, QW, WK)

The additional argument is:

WK — Work array of length N.

2. Informational error

Type Code

4 1 No convergence in 100 iterations.

3. The recurrence coefficients B(I) and C(I) define the monic polynomials via the relation

P(I) = (X − B(I + 1)) * P(I − 1) − C(I + 1) * P(I − 2). C(1) contains the zero-th

moment

()WT X dX

 of the weight function. Each element of C must be greater than zero.

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 985

4. If WT(X) is the weight specified by the coefficients and the interval is (a, b), then

approximately

1

* *
N

b

a
I

F X WT X dX F QX I QW I

5. Gaussian quadrature is always the method of choice when the function F(X) behaves

like a polynomial. Gaussian quadrature is also useful on infinite intervals (with

appropriate weight functions) because other techniques often fail.

Example

We compute the Gauss quadrature rule (with N = 6) for the Chebyshev weight, (1 + x
2
) (-

1/2), from

the recurrence coefficients. These coefficients are obtained by a call to the IMSL routine RECCF.

 USE GQRCF_INT

 USE UMACH_INT

 USE RECCF_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=6)

 INTEGER I, NFIX, NOUT

 REAL B(N), C(N), QW(N), QX(N), QXFIX(2)

! Get output unit number

 CALL UMACH (2, NOUT)

! Recursion coefficients will come from

! routine RECCF.

! The call to RECCF finds recurrence

! coefficients for Chebyshev

! polynomials of the 1st kind.

 CALL RECCF (N, B, C)

!

! The call to GQRCF will compute the

! quadrature rule from the recurrence

! coefficients determined above.

 CALL GQRCF (N, B, C, QX, QW)

 WRITE (NOUT,99999) (I,QX(I),I,QW(I),I=1,N)

99999 FORMAT (6(6X,'QX(',I1,') = ',F8.4,7X,'QW(',I1,') = ',F8.5,/))

!

 END

Output

QX(1) = -0.9325 QW(1) = 0.17132

QX(2) = -0.6612 QW(2) = 0.36076

QX(3) = -0.2386 QW(3) = 0.46791

QX(4) = 0.2386 QW(4) = 0.46791

QX(5) = 0.6612 QW(5) = 0.36076

QX(6) = 0.9325 QW(6) = 0.17132

986 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

RECCF
Computes recurrence coefficients for various monic polynomials.

Required Arguments

N — Number of recurrence coefficients. (Input)

B — Array of length N containing recurrence coefficients. (Output)

C — Array of length N containing recurrence coefficients. (Output)

Optional Arguments

IWEIGH — Index of the weight function. (Input)

Default: IWEIGH = 1.

2

2

2

1 1 1, 1 Legendre

2 1/ 1 1, 1 Chebyshev 1st kind

3 1 1, 1 Chebyshev 2nd kind

4 , Hermite

5 1 1 1, 1 Jacobi

6 0, Generalized Laguerre

7 1/ cosh , COSH

X

X

X

X

e

X X

e X

X

Interval NameIWEIGH WT X

ALPHA — Parameter used in the weight function with some values of IWEIGH, otherwise it

is ignored. (Input)

Default: ALPHA=1.0.

BETAW — Parameter used in the weight function with some values of IWEIGH, otherwise it

is ignored. (Input)

Default: BETAW=1.0.

FORTRAN 90 Interface

Generic: CALL RECCF (N, B, C [,…])

Specific: The specific interface names are S_RECCF and D_RECCF.

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 987

FORTRAN 77 Interface

Single: CALL RECCF (N, IWEIGH, ALPHA, BETAW, B, C)

Double: The double precision name is DRECCF.

Description

The routine RECCF produces the recurrence coefficients for the orthogonal polynomials for some

of the most important weights. It is assumed that the orthogonal polynomials are monic; hence, the

three-term recursion may be written as

 1 2 for =1, , i i i i ip x x b p x c p x i N

where p0 = 1 and p-1 = 0. It is obvious from this representation that the degree of pi is i and that pi

is monic. In order for the recurrence to give rise to a sequence of orthogonal polynomials (with

respect to a nonnegative measure), it is necessary and sufficient that ci > 0.

Comments

The recurrence coefficients B(I) and C(I) define the monic polynomials via the relation

P(I) = (X − B(I + 1)) * P(I − 1) − C(I + 1) * P(I − 2). The zero-th moment

 ()WT X dX

of the weight function is returned in C(1).

Example

Here, we obtain the well-known recurrence relations for the first six monic Legendre polynomials,

Chebyshev polynomials of the first kind, and Laguerre polynomials.

 USE RECCF_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=6)

 INTEGER I, IWEIGH, NOUT

 REAL ALPHA, B(N), C(N), BETAW

! Get output unit number

 CALL UMACH (2, NOUT)

!

 CALL RECCF (N, B, C)

 WRITE (NOUT,99996)

 WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N)

!

 IWEIGH = 2

 CALL RECCF (N, B, C, IWEIGH=IWEIGH)

 WRITE (NOUT,99997)

 WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N)

!

988 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

 IWEIGH = 6

 ALPHA = 0.0

 BETAW = 0.0

 CALL RECCF (N, B, C, IWEIGH=IWEIGH, ALPHA=ALPHA)

 WRITE (NOUT,99998)

 WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N)

!

99996 FORMAT (1X, 'Legendre')

99997 FORMAT (/, 1X, 'Chebyshev, first kind')

99998 FORMAT (/, 1X, 'Laguerre')

99999 FORMAT (6(6X,'B(',I1,') = ',F8.4,7X,'C(',I1,') = ',F8.5,/))

 END

Output

Legendre

B(1) = 0.0000 C(1) = 2.00000

B(2) = 0.0000 C(2) = 0.33333

B(3) = 0.0000 C(3) = 0.26667

B(4) = 0.0000 C(4) = 0.25714

B(5) = 0.0000 C(5) = 0.25397

B(6) = 0.0000 C(6) = 0.25253

Chebyshev, first kind

B(1) = 0.0000 C(1) = 3.14159

B(2) = 0.0000 C(2) = 0.50000

B(3) = 0.0000 C(3) = 0.25000

B(4) = 0.0000 C(4) = 0.25000

B(5) = 0.0000 C(5) = 0.25000

B(6) = 0.0000 C(6) = 0.25000

Laguerre

B(1) = 1.0000 C(1) = 1.00000

B(2) = 3.0000 C(2) = 1.00000

B(3) = 5.0000 C(3) = 4.00000

B(4) = 7.0000 C(4) = 9.00000

B(5) = 9.0000 C(5) = 16.00000

B(6) = 11.0000 C(6) = 25.00000

RECQR
Computes recurrence coefficients for monic polynomials given a quadrature rule.

Required Arguments

QX — Array of length N containing the quadrature points. (Input)

QW — Array of length N containing the quadrature weights. (Input)

B — Array of length NTERM containing recurrence coefficients. (Output)

C — Array of length NTERM containing recurrence coefficients. (Output)

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 989

Optional Arguments

N — Number of quadrature points. (Input)

Default: N = size (QX,1).

NTERM — Number of recurrence coefficients. (Input)

NTERM must be less than or equal to N.

Default: NTERM = size (B,1).

FORTRAN 90 Interface

Generic: CALL RECQR (QX, QW, B, C [,…])

Specific: The specific interface names are S_RECQR and D_RECQR.

FORTRAN 77 Interface

Single: CALL RECQR (N, QX, QW, NTERM, B, C)

Double: The double precision name is DRECQR.

Description

The routine RECQR produces the recurrence coefficients for the orthogonal polynomials given the

points and weights for the Gauss quadrature formula. It is assumed that the orthogonal

polynomials are monic; hence the three-term recursion may be written

 1 2 for =1, , i i i i ip x x b p x c p x i N

where p0 = 1 and p-1 = 0. It is obvious from this representation that the degree of pi is i and that pi

is monic. In order for the recurrence to give rise to a sequence of orthogonal polynomials (with

respect to a nonnegative measure), it is necessary and sufficient that ci > 0.

This routine is an inverse routine to GQRCF. Given the recurrence coefficients, the routine GQRCF

produces the corresponding Gauss quadrature formula, whereas the routine RECQR produces the

recurrence coefficients given the quadrature formula.

Comments

1. Workspace may be explicitly provided, if desired, by use of R2CQR/DR2CQR. The

reference is:

CALL R2CQR (N, QX, QW, NTERM, B, C, WK)

The additional argument is:

WK — Work array of length 2 * N.

2. The recurrence coefficients B(I) and C(I) define the monic polynomials via the relation

P(I) = (X − B(I + 1)) * P(I − 1) − C(I + 1) * P(I − 2). The zero-th moment

990 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

 ()WT X dX

 of the weight function is returned in C(1).

Example

To illustrate the use of RECQR, we will input a simple choice of recurrence coefficients, call GQRCF

for the quadrature formula, put this information into RECQR, and recover the recurrence

coefficients.

 USE RECQR_INT

 USE UMACH_INT

 USE GQRCF_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=5)

 INTEGER I, J, NFIX, NOUT, NTERM

 REAL B(N), C(N), FLOAT, QW(N), QX(N), QXFIX(2)

 INTRINSIC FLOAT

! Get output unit number

 CALL UMACH (2, NOUT)

 NFIX = 0

! Set arrays B and C of recurrence

! coefficients

 DO 10 J=1, N

 B(J) = FLOAT(J)

 C(J) = FLOAT(J)/2.0

 10 CONTINUE

 WRITE (NOUT,99995)

99995 FORMAT (1X, 'Original recurrence coefficients')

 WRITE (NOUT,99996) (I,B(I),I,C(I),I=1,N)

99996 FORMAT (5(6X,'B(',I1,') = ',F8.4,7X,'C(',I1,') = ',F8.5,/))

!

! The call to GQRCF will compute the

! quadrature rule from the recurrence

! coefficients given above.

!

 CALL GQRCF (N, B, C, QX, QW)

 WRITE (NOUT,99997)

99997 FORMAT (/, 1X, 'Quadrature rule from the recurrence coefficients' &

)

 WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N)

99998 FORMAT (5(6X,'QX(',I1,') = ',F8.4,7X,'QW(',I1,') = ',F8.5,/))

!

! Call RECQR to recover the original

! recurrence coefficients

 NTERM = N

 CALL RECQR (QX, QW, B, C)

 WRITE (NOUT,99999)

99999 FORMAT (/, 1X, 'Recurrence coefficients determined by RECQR')

 WRITE (NOUT,99996) (I,B(I),I,C(I),I=1,N)

!

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 991

 END

Output

Original recurrence coefficients

B(1) = 1.0000 C(1) = 0.50000

B(2) = 2.0000 C(2) = 1.00000

B(3) = 3.0000 C(3) = 1.50000

B(4) = 4.0000 C(4) = 2.00000

B(5) = 5.0000 C(5) = 2.50000

Quadrature rule from the recurrence coefficients

QX(1) = 0.1525 QW(1) = 0.25328

QX(2) = 1.4237 QW(2) = 0.17172

QX(3) = 2.7211 QW(3) = 0.06698

QX(4) = 4.2856 QW(4) = 0.00790

QX(5) = 6.4171 QW(5) = 0.00012

Recurrence coefficients determined by RECQR

B(1) = 1.0000 C(1) = 0.50000

B(2) = 2.0000 C(2) = 1.00000

B(3) = 3.0000 C(3) = 1.50000

B(4) = 4.0000 C(4) = 2.00000

B(5) = 5.0000 C(5) = 2.50000

FQRUL
Computes a Fejér quadrature rule with various classical weight functions.

Required Arguments

N — Number of quadrature points. (Input)

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

B must be greater than A.

QX — Array of length N containing quadrature points. (Output)

QW — Array of length N containing quadrature weights. (Output)

Optional Arguments

IWEIGH — Index of the weight function. (Input)

Default: IWEIGH = 1.

 IWEIGH WT(X)

 1 1

 2 1/(X − ALPHA)

992 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

 3 (B − X)
α

(X − A)β

 4 (B − X)
 α

(X − A)β

log(X − A)

 5 (B − X)
α
(X – A)βlog(B − X)

ALPHA — Parameter used in the weight function (except if IWEIGH = 1, it is ignored).

(Input)

If IWEIGH = 2, then it must satisfy A.LT.ALPHA.LT.B. If IWEIGH = 3, 4, or 5, then

ALPHA must be greater than −1.

Default: ALPHA= 0.0.

BETAW — Parameter used in the weight function (ignored if IWEIGH = 1 or 2). (Input)

BETAW must be greater than −1.0.

Default: BETAW= 0.0.

FORTRAN 90 Interface

Generic: CALL FQRUL (N, A, B, QX, QW [,…])

Specific: The specific interface names are S_FQRUL and D_FQRUL.

FORTRAN 77 Interface

Single: CALL FQRUL (N, A, B, IWEIGH, ALPHA, BETAW, QX, QW)

Double: The double precision name is DFQRUL.

Description

The routine FQRUL produces the weights and points for the Fejér quadrature rule. Since this

computation is based on a quarter-wave cosine transform, the computations are most efficient

when N, the number of points, is a product of small primes. These quadrature formulas may be an

intermediate step in a more complicated situation, see for instance Gautschi and Milovanofic

(1985).

The Fejér quadrature rules are based on polynomial interpolation. First, choose classical abscissas

(in our case, the Gauss points for the Chebyshev weight function (1 − x
2
)-1/2

), then derive the

quadrature rule for a different weight. In order to keep the presentation simple, we will describe

the case where the interval of integration is [−1, 1] even though FQRUL allows rescaling to an

arbitrary interval [a, b].

We are looking for quadrature rules of the form

1

:
N

j j

j

Q f w f x

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 993

where the

1{ }N
j jx

are the zeros of the N-th Chebyshev polynomial (of the first kind) TN (x) = cos(N arccos x). The

weights in the quadrature rule Q are chosen so that, for all polynomials p of degree less than N,

1

1
1

N

j j

j

Q p w p x p x w x dx

for some weight function w. In FQRUL, the user has the option of choosing w from five families of

functions with various algebraic and logarithmic endpoint singularities.

These Fejér rules are important because they can be computed using specialized FFT quarter-wave

transform routines. This means that rules with a large number of abscissas may be computed

efficiently. If we insert Tl for p in the above formula, we obtain

1

1
1

N

l j l j l

j

Q T w T x T x w x dx

for l = 0, …, N − 1. This is a system of linear equations for the unknown weights wj that can be

simplified by noting that

 2 1
cos 1, ,

2
j

j
x j N

N

and hence,

1

1
1

1

2 1
cos

2

N

l j l j

j

N

j

j

T x w x dx w T x

l j
w

N

The last expression is the cosine quarter-wave forward transform for the sequence

1{ }N
j jw

that is implemented in Chapter 6, Transforms under the name QCOSF. More importantly, QCOSF

has an inverse QCOSB. It follows that if the integrals on the left in the last expression can be

computed, then the Fejér rule can be derived efficiently for highly composite integers N utilizing

QCOSB. For more information on this topic, consult Davis and Rabinowitz (1984, pages 84−86)

and Gautschi (1968, page 259).

Comments

1. Workspace may be explicitly provided, if desired, by use of F2RUL/DF2RUL. The

reference is:

994 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

CALL F2RUL (N, A, B, IWEIGH, ALPHA, BETAW, QX, QW, WK)

The additional argument is:

WK — Work array of length 3 * N + 15.

2. If IWEIGH specifies the weight WT(X) and the interval (A, B), then approximately

1

* *
N

B

A
I

F X WT X dX F QX I QW I

3. The routine FQRUL uses an fft, so it is most efficient when N is the product of small

primes.

Example

Here, we obtain the Fejér quadrature rules using 10, 100, and 200 points. With these rules, we get

successively better approximations to the integral

1 2

0

1
sin 41

41
x x dx

 USE FQRUL_INT

 USE UMACH_INT

 USE CONST_INT

 IMPLICIT NONE

 INTEGER NMAX

 PARAMETER (NMAX=200)

 INTEGER I, K, N, NOUT

 REAL A, ANSWER, B, F, QW(NMAX), &

 QX(NMAX), SIN, SUM, X, PI, ERROR

 INTRINSIC SIN, ABS

!

 F(X) = X*SIN(41.0*PI*X**2)

! Get output unit number

 CALL UMACH (2, NOUT)

!

 PI = CONST('PI')

 DO 20 K=1, 3

 IF (K .EQ. 1) N = 10

 IF (K .EQ. 2) N = 100

 IF (K .EQ. 3) N = 200

 A = 0.0

 B = 1.0

! Get points and weights from FQRUL

 CALL FQRUL (N, A, B, QX, QW)

! Evaluate the integral from these

! points and weights

 SUM = 0.0

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 995

 DO 10 I=1, N

 SUM = SUM + F(QX(I))*QW(I)

 10 CONTINUE

 ANSWER = SUM

 ERROR = ABS(ANSWER - 1.0/(41.0*PI))

 WRITE (NOUT,99999) N, ANSWER, ERROR

 20 CONTINUE

!

99999 FORMAT (/, 1X, 'When N = ', I3, ', the quadrature result making ' &

 , 'use of these points ', /, ' and weights is ', 1PE11.4, &

 ', with error ', 1PE9.2, '.')

 END

Output

When N = 10, the quadrature result making use of these points and weights

is -1.6523E-01, with error 1.73E-01.

When N = 100, the quadrature result making use of these points and weights

is 7.7637E-03, with error 2.79E-08.

When N = 200, the quadrature result making use of these points and weights

is 7.7636E-03, with error 1.40E-08.

DERIV
This function computes the first, second or third derivative of a user-supplied function.

Function Return Value

DERIV — Estimate of the first (KORDER = 1), second (KORDER = 2) or third (KORDER = 3)

derivative of FCN at X. (Output)

Required Arguments

FCN — User-supplied FUNCTION whose derivative at X will be computed. The form is

FCN(X), where

X – Independent variable. (Input)

FCN – The function value. (Output)

 FCN must be declared EXTERNAL in the calling program.

X — Point at which the derivative is to be evaluated. (Input)

Optional Arguments

KORDER — Order of the derivative desired (1, 2 or 3). (Input)

Default: KORDER = 1.

996 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

BGSTEP — Beginning value used to compute the size of the interval used in computing the

derivative. (Input)

The interval used is the closed interval (X − 4 * BGSTEP, X + 4 * BGSTEP). BGSTEP

must be positive.

Default: BGSTEP = .01.

TOL — Relative error desired in the derivative estimate. (Input)

Default: TOL = 1.e-2 for single precision and 1.d-4 for double precision.

FORTRAN 90 Interface

Generic: DERIV (FCN, X [,…])

Specific: The specific interface names are S_DERIV and D_DERIV.

FORTRAN 77 Interface

Single: DERIV (FCN, KORDER, X, BGSTEP, TOL)

Double: The double precision function name is DDERIV.

Description

DERIV produces an estimate to the first, second, or third derivative of a function. The estimate

originates from first computing a spline interpolant to the input function using values within the

interval (X − 4.0 * BGSTEP, X + 4.0 * BGSTEP), then differentiating the spline at X.

Comments

1. Informational errors

Type Code

3 2 Roundoff error became dominant before estimates converged.

Increase precision and/or increase BGSTEP.

4 1 Unable to achieve desired tolerance in derivative estimation.

Increase precision, increase TOL and/or change BGSTEP. If this error

continues, the function may not have a derivative at X.

2. Convergence is assumed when

2
D2 D1 TOL

3

 for two successive derivative estimates D1 and D2.

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation 997

3. The initial step size, BGSTEP, must be chosen small enough that FCN is defined and

reasonably smooth in the interval (X − 4 * BGSTEP, X + 4 * BGSTEP), yet large enough

to avoid roundoff problems.

Example 1

In this example, we obtain the approximate first derivative of the function

f(x) = −2 sin(3x/2)

at the point x = 2.

 USE DERIV_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER KORDER, NCOUNT, NOUT

 REAL BGSTEP, DERV, TOL, X

 EXTERNAL FCN

! Get output unit number

 CALL UMACH (2, NOUT)

!

 X = 2.0

 BGSTEP = 0.2

 NCOUNT = 1

 DERV = DERIV(FCN,X, BGSTEP=BGSTEP)

 WRITE (NOUT,99999) DERV

99999 FORMAT (/, 1X, 'First derivative of FCN is ', 1PE10.3)

 END

!

 REAL FUNCTION FCN (X)

 REAL X

 REAL SIN

 INTRINSIC SIN

 FCN = -2.0*SIN(1.5*X)

 RETURN

 END

Output

First derivative of FCN is 2.970E+00

Additional Example

Example 2

In this example, we attempt to approximate in single precision the third derivative of the function

f(x) = 2x
4
 + 3x

at the point x = 0.75. Although the function is well-behaved near x = 0.75, finding derivatives is

often computationally difficult on 32-bit machines. The difficulty is overcome in double precision.

 USE IMSL_LIBRARIES

998 Chapter 4: Integration and Differentiation IMSL MATH LIBRARY

 IMPLICIT NONE

 INTEGER KORDER, NOUT

 REAL BGSTEP, DERV, X, TOL

 DOUBLE PRECISION DBGSTE, DDERV, DFCN, DTOL, DX

 EXTERNAL DFCN, FCN

! Get output unit number

 CALL UMACH (2, NOUT)

! Turn off stopping due to error

! condition

 CALL ERSET (0, -1, 0)

!

 X = 0.75

 BGSTEP = 0.1

 KORDER = 3

! In single precision, on a 32-bit

! machine, the following attempt

! produces an error message

 DERV = DERIV(FCN, X, KORDER, BGSTEP,TOL)

! In double precision, we get good

! results

 DX = 0.75D0

 DBGSTE = 0.1D0

 DTOL = 0.01D0

 KORDER = 3

 DDERV = DERIV(DFCN, DX,KORDER, DBGSTE, DTOL)

 WRITE (NOUT,99999) DDERV

99999 FORMAT (/, 1X, 'The third derivative of DFCN is ', 1PD10.4)

 END

!

 REAL FUNCTION FCN (X)

 REAL X

 FCN = 2.0*X**4 + 3.0*X

 RETURN

 END

!

 DOUBLE PRECISION FUNCTION DFCN (X)

 DOUBLE PRECISION X

 DFCN = 2.0D0*X**4 + 3.0D0*X

 RETURN

 END

Output

*** FATAL ERROR 1 from DERIV. Unable to achieve desired tolerance.

*** Increase precision, increase TOL = 1.000000E-02 and/or change

*** BGSTEP = 1.000000E-01. If this error continues the function

*** may not have a derivative at X = 7.500000E-01

The third derivative of DFCN is 3.6000D+01

IMSL MATH LIBRARY Chapter 5: Differential Equations 999

Chapter 5: Differential Equations

Routines

5.1 First-Order Ordinary Differential Equations

5.1.1 Solution of the Initial-Value Problem for ODEs
Runge-Kutta method ... IVPRK 1003
Runge-Kutta method, various ordersIVMRK 1011
Adams or Gear method .. IVPAG 1021

5.1.2 Solution of the Boundary-Value Problem for ODEs
Finite-difference method .. BVPFD 1037
Multiple-shooting method .. BVPMS 1050

5.1.3 Solution of the Differential-Algebraic Systems
Solves a first order differential-algebraic system
of equations ... DAESL 1057

5.1.4 First-and-Second-Order Ordinary Differential Equations

5.1.5 Solution of the Initial-Value Problem for ODEs
Solves an initial-value problem for a system of ODEs
using a variable order Adams method IVOAM 1072

5.2 Partial Differential Equations

5.2.1 Solution of Systems of PDEs in One Dimension
Method of lines with Variable Griddings PDE_1D_MG 1081
Method of lines with a Hermite cubic basis MMOLCH 1115
Solves a generalized Feynman-Kac equation on a
finite interval using Hermite quintic splines FEYNMAN_KAC 1128
Computes the value of a Hermite quintic spline or the
value of one of its derivatives ... HQSVAL 1185

5.2.2 Solution of a PDE in Two and Three Dimensions
Two-dimensional fast Poisson solver FPS2H 1188
Three-dimensional fast Poisson solver FPS3H 1194

5.3. Sturm-Liouville Problems
Eigenvalues, eigenfunctions,
and spectral density functions .. SLEIG 1201
Indices of eigenvalues ... SLCNT 1213

1000 Chapter 5: Differential Equations IMSL MATH LIBRARY

Usage Notes

A differential equation is an equation involving one or more dependent variables (called yi or ui),

their derivatives, and one or more independent variables (called t, x, and y). Users will typically

need to relabel their own model variables so that they correspond to the variables used in the

solvers described here. A differential equation with one independent variable is called an ordinary

differential equation (ODE). A system of equations involving derivatives in one independent

variable and other dependent variables is called a differential-algebraic system. A differential

equation with more than one independent variable is called a partial differential equation (PDE).

The order of a differential equation is the highest order of any of the derivatives in the equation.

Some of the routines in this chapter require the user to reduce higher-order problems to systems of

first-order differential equations.

Ordinary Differential Equations

It is convenient to use the vector notation below. We denote the number of equations as the value

N. The problem statement is abbreviated by writing it as a system of first-order ODEs

 1 1, , , , , , , ,
T T

N Ny t y t y t f t y f t y f t y

The problem becomes

 ,

dy t
y f t y

dt

with initial values y (t0). Values of y(t) for t > t0 or t < t0are required. The routines IVPRK, IVMRK,

and IVPAG, solve the IVP for systems of ODEs of the form yʹ = f (t, y) with y(t = t0) specified.

Here, f is a user supplied function that must be evaluated at any set of values (t, y1, …, yN);

i = 1, …, N. The routines IVPAG, and DAESL, will also solve implicit systems of the form Ayʹ = f

(t, y) where A is a user supplied matrix. For IVPAG, the matrix A must be nonsingular.

The system yʹ = f (t, y) is said to be stiff if some of the eigenvalues of the Jacobian matrix

{ fi yj} have large, negative real parts. This is often the case for differential equations

representing the behavior of physical systems such as chemical reactions proceeding to

equilibrium where subspecies effectively complete their reaction in different epochs. An alternate

model concerns discharging capacitors such that different parts of the system have widely varying

decay rates (or time constants). This definition of stiffness, based on the eigenvalues of the

Jacobian matrix, is not satisfactory. Users typically identify stiff systems by the fact that numerical

differential equation solvers such as IVPRK, are inefficient, or else they fail. The most common

inefficiency is that a large number of evaluations of the functions fi are required. In such cases, use

routine IVPAG, or DAESL. For more about stiff systems, see Gear (1971, Chapter 11) or Shampine

and Gear (1979).

In the boundary value problem (BVP) for ODEs, constraints on the dependent variables are given

at the endpoints of the interval of interest, [a, b]. The routines BVPFD and BVPMS solve the BVP

for systems of the form yʹ (t) = f (t, y), subject to the conditions

IMSL MATH LIBRARY Chapter 5: Differential Equations 1001

hi(y1(a), …, yN(a), y1 (b), …, yN(b)) = 0 i = 1, …, N

Here, f and h = [h1 , …, hN]
T
 are user-supplied functions.

IVOAM solves systems of ordinary differential equations of order one, order two, or mixed order

one and two.

Differential-algebraic Equations

Frequently, it is not possible or not convenient to express the model of a dynamical system as a set

of ODEs. Rather, an implicit equation is available in the form

 1, , , , , , 0 1, ,i N Ng t y y y y i N

The gi are user-supplied functions. The system is abbreviated as

 1, , , , , , , , 0
T

Ng t y y g t y y g t y y

With initial value y(t0). Any system of ODEs can be trivially written as a differential-algebraic

system by defining

 , , ,g t y y f t y y

The routine DAESL solves differential-algebraic systems of index 1 or index 0. For a definition of

index of a differential-algebraic system, see (Brenan et al. 1989). Also, see Gear and Petzold

(1984) for an outline of the computing methods used.

Partial Differential Equations

The routine MMOLCH solves the IVP problem for systems of the form

22
1 1

1 2 2
, , , , , , , , , ,i N N

i N

u u uu u
f x t u u

t x x x x

subject to the boundary conditions

1 1 1

2 2 2

i i ii
i

i i ii
i

u
u a a t

x

u
u b b t

x

and subject to the initial conditions

ui(x, t = t0) = gi(x)

for i = 1, , N. Here, fi, gi,

 and,
i i i

j j j t
are user-supplied, j = 1, 2.

The routines FPS2H and FPS3H solve Laplace‘s, Poisson‘s, or Helmholtz‘s equation in two or

three dimensions. FPS2H uses a fast Poisson method to solve a PDE of the form

1002 Chapter 5: Differential Equations IMSL MATH LIBRARY

2 2

2 2
,

u u
cu f x y

x y

over a rectangle, subject to boundary conditions on each of the four sides. The scalar constant c

and the function f are user specified. FPS3H solves the three-dimensional analogue of this

problem.

NOTE: Users wishing to solve more general PDE‘s, in more general 2-d and 3-d regions, are

referred to Visual Numerics‘ affiliated product PDE2D (www.vni.com/pde2d).

Summary

The following table summarizes the types of problems handled by the routines in this chapter.

With the exception of FPS2H and FPS3H, the routines can handle more than one differential

equation.

Problem Consideration Routine

Ayʹ= f(t, y)

y(t0) = y0

A is a general, symmetric

positive definite, band or

symmetric positive definite

band matrix.

IVPAG

 Stiff or expensive to evaluate

f (t, y), banded Jacobian or

finely spaced output needed.

IVPAG

yʹ = f(t, y),

y (t0) = y0

High accuracy needed and not

stiff. (Uses Adams methods)

IVPAG

 Moderate accuracy needed and

not stiff.

IVPRK

yʹ = f(t, y)

h(y(a), y(b)) = 0

BVP solver using finite

differences

BVPFD

 BVP solver using multiple

shooting

BVPMS

g(t, y, yʹ) = 0

y(t0), yʹ(t0) given

Stiff, differential-algebraic

solver for systems of index 1 or

0.

Note: DAESL uses the user-

supplied yʹ(t0) only as an initial

guess to help it find the correct

initial yʹ(t0) to get started.

DAESL

http://www.vni.com/pde2d

IMSL MATH LIBRARY Chapter 5: Differential Equations 1003

Problem Consideration Routine

ut = f(x, t, u, ux, uxx)

α1u(a) + β1 ux(a) = γ1 (t)

α2 u(b) + β2 ux(b) = γ2(t)

Method of lines using cubic

Hermites and ODEs.

MMOLCH

uxx + uyy + cu = f(x, y) on a

rectangle, given u or un on each

edge.

Fast Poisson solver FPS2H

uxx + uyy + uzz + cu = f(x, y, z) on

a box, given u or un on each

face.

Fast Poisson solver FPS3H

,

1 2

1 2

0
1 2

pu qu ru

u a pu a

u a pu a

u b pu b

Sturm-Liouville problems SLEIG

IVPRK
Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner

fifth-order and sixth-order method.

Required Arguments

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal re-entry

3 Final call to release workspace

4 Return because of interrupt 1

5 Return because of interrupt 2 with step accepted

6 Return because of interrupt 2 with step rejected

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this

value is used for all but the last call that is made with IDO = 3. This final call is used to

release workspace, which was automatically allocated by the initial call with IDO = 1.

1004 Chapter 5: Differential Equations IMSL MATH LIBRARY

No integration is performed on this final call. See Comment 3 for a description of the

other interrupts.

FCN — User-supplied subroutine to evaluate functions. The usage is

CALL FCN(N, T, Y, YPRIME), where

N – Number of equations. (Input)

T – Independent variable, t. (Input)

Y – Array of size N containing the dependent variable values, y. (Input)

YPRIME – Array of size N containing the values of the vector yʹ evaluated at (t,

y). (Output)

 FCN must be declared EXTERNAL in the calling program.

T — Independent variable. (Input/Output)

On input, T contains the initial value. On output, T is replaced by TEND unless error

conditions have occurred. See IDO for details.

TEND — Value of t where the solution is required. (Input)

The value TEND may be less than the initial value of t.

Y — Array of size NEQ of dependent variables. (Input/Output)

On input, Y contains the initial values. On output, Y contains the approximate solution.

Optional Arguments

NEQ — Number of differential equations. (Input)

Default: NEQ = size (Y,1).

TOL — Tolerance for error control. (Input)

An attempt is made to control the norm of the local error such that the global error is

proportional to TOL.

Default: TOL = machine precision.

PARAM — A floating-point array of size 50 containing optional parameters. (Input/ Output)

If a parameter is zero, then a default value is used. These default values are given

below. Parameters that concern values of step size are applied in the direction of

integration. The following parameters may be set by the user:

 PARAM Meaning

1 HINIT Initial value of the step size. Default: 10.0 * MAX (AMACH (1),

AMACH(4) * MAX(ABS(TEND), ABS(T)))

2 HMIN Minimum value of the step size. Default: 0.0

3 HMAX Maximum value of the step size. Default: 2.0

IMSL MATH LIBRARY Chapter 5: Differential Equations 1005

4 MXSTEP Maximum number of steps allowed. Default: 500

5 MXFCN Maximum number of function evaluations allowed. Default:

No enforced limit.

6 Not used.

7 INTRP1 If nonzero, then return with IDO = 4 before each step. See

Comment 3. Default: 0.

8 INTRP2 If nonzero, then return with IDO = 5 after every successful

step and with IDO = 6 after every unsuccessful step. See

Comment 3. Default: 0.

9 SCALE A measure of the scale of the problem, such as an

approximation to the average value of a norm of the Jacobian

matrix along the solution. Default: 1.0

10 INORM Switch determining error norm. In the following, ei is the

absolute value of an estimate of the error in yi(t).

Default: 0.0 − min(absolute error, relative error) = max(ei/wi);

i = 1, …, NEQ, where wi = max(|yi(t)|, 1.0).

1 − absolute error = max(ei), i = 1 …, NEQ.

2− max(ei/wi), i = 1 …, NEQ where wi = max(|yi (t)|, FLOOR),

and FLOOR is PARAM(11).

3 − Scaled Euclidean norm defined as

where wi = max(|yi (t)|, 1.0). Other definitions of YMAX can be

specified by the user, as explained in Comment 1.

11 FLOOR Used in the norm computation associated with parameter

INORM. Default: 1.0.

12-30 Not used.

The following entries in PARAM are set by the program.

 PARAM Meaning

31 HTRIAL Current trial step size.

32 HMINC Computed minimum step size allowed.

33 HMAXC Computed maximum step size allowed.

34 NSTEP Number of steps taken.

35 NFCN Number of function evaluations used.

36-50 Not used.

FORTRAN 90 Interface

Generic: CALL IVPRK (IDO, FCN, T, TEND, Y [,…])

Specific: The specific interface names are S_IVPRK and D_IVPRK.

1006 Chapter 5: Differential Equations IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL IVPRK (IDO, NEQ, FCN, T, TEND, TOL, PARAM, Y)

Double: The double precision name is DIVPRK.

Description

Routine IVPRK finds an approximation to the solution of a system of first-order differential

equations of the form y0 = f (t, y) with given initial data. The routine attempts to keep the global

error proportional to a user-specified tolerance. This routine is efficient for nonstiff systems where

the derivative evaluations are not expensive.

The routine IVPRK is based on a code designed by Hull, Enright and Jackson (1976, 1977). It uses

Runge-Kutta formulas of order five and six developed by J. H. Verner.

Comments

1. Workspace may be explicitly provided, if desired, by use of I2PRK/DI2PRK. The

reference is:

CALL I2PRK (IDO, NEQ, FCN, T, TEND, TOL, PARAM, Y, VNORM,

WK)

The additional arguments are as follows:

2 2

1
/

NEQ

i ii
e w

 YMAX

VNORM — A Fortran subroutine to compute the norm of the error.

(Input)

The routine may be provided by the user, or the IMSL routine

I3PRK/DI3PRK may be used. In either case, the name must be declared

in a Fortran EXTERNAL statement. If usage of the IMSL routine is

intended, then the name I3PRK/DI3PRK should be used. The usage of

the error norm routine is CALL VNORM (N, V, Y, YMAX, ENORM),

where

Arg Definition

N Number of equations. (Input).

V
Array of size N containing the vector

whose norm is to be computed. (Input)

Y
Array of size N containing the values of

the dependent variable. (Input)

YMAX
Array of size N containing the maximum

values of |y(t)|. (Input).

ENORM Norm of the vector V. (Output).

IMSL MATH LIBRARY Chapter 5: Differential Equations 1007

VNORM must be declared EXTERNAL in the calling program.

WK — Work array of size 10N using the working precision. The contents of WK

must not be changed from the first call with IDO = 1 until after the final

call with IDO = 3.

2. Informational errors

Type Code

4 1 Cannot satisfy error condition. The value of TOL may be too small.

4 2 Too many function evaluations needed.

4 3 Too many steps needed. The problem may be stiff.

3. If PARAM(7) is nonzero, the subroutine returns with IDO = 4 and will resume

calculation at the point of interruption if re-entered with IDO = 4. If PARAM(8) is

nonzero, the subroutine will interrupt the calculations immediately after it decides

whether or not to accept the result of the most recent trial step. The values used are

IDO = 5 if the routine plans to accept, or IDO = 6 if it plans to reject the step. The

values of IDO may be changed by the user (by changing IDO from 6 to 5) in order to

force acceptance of a step that would otherwise be rejected. Some parameters the user

might want to examine after return from an interrupt are IDO, HTRIAL, NSTEP, NFCN,

T, and Y. The array Y contains the newly computed trial value for y(t), accepted or not.

Example 1

Consider a predator-prey problem with rabbits and foxes. Let r be the density of rabbits and let

f be the density of foxes. In the absence of any predator-prey interaction, the rabbits would

increase at a rate proportional to their number, and the foxes would die of starvation at a rate

proportional to their number. Mathematically,

r ʹ = 2r

f ʹ = − f

The rate at which the rabbits are eaten by the foxes is 2r f, and the rate at which the foxes increase,

because they are eating the rabbits, is r f. So, the model to be solved is

r ʹ = 2r − 2r f

f ʹ = − f + r f

The initial conditions are r(0) = 1 and f(0) = 3 over the interval 0 ≤ t ≤ 10.

In the program Y(1) = r and Y(2) = f. Note that the parameter vector PARAM is first set to zero with

IMSL routine SSET (Chapter 9, Basic Matrix/Vector Operations). Then, absolute error control is

selected by setting PARAM(10) = 1.0.

The last call to IVPRK with IDO = 3 deallocates IMSL workspace allocated on the first call to

IVPRK. It is not necessary to release the workspace in this example because the program ends after

solving a single problem. The call to release workspace is made as a model of what would be

needed if the program included further calls to IMSL routines.

1008 Chapter 5: Differential Equations IMSL MATH LIBRARY

 USE IVPRK_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER MXPARM, N

 PARAMETER (MXPARM=50, N=2)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER IDO, ISTEP, NOUT

 REAL PARAM(MXPARM), T, TEND, TOL, Y(N)

! SPECIFICATIONS FOR SUBROUTINES

 EXTERNAL FCN

!

 CALL UMACH (2, NOUT)

! Set initial conditions

 T = 0.0

 Y(1) = 1.0

 Y(2) = 3.0

! Set error tolerance

 TOL = 0.0005

! Set PARAM to default

 PARAM = 0.E0

! Select absolute error control

 PARAM(10) = 1.0

! Print header

 WRITE (NOUT,99999)

 IDO = 1

 ISTEP = 0

 10 CONTINUE

 ISTEP = ISTEP + 1

 TEND = ISTEP

 CALL IVPRK (IDO, FCN, T, TEND, Y, TOL=TOL, PARAM=PARAM)

 IF (ISTEP .LE. 10) THEN

 WRITE (NOUT,'(I6,3F12.3)') ISTEP, T, Y

! Final call to release workspace

 IF (ISTEP .EQ. 10) IDO = 3

 GO TO 10

 END IF

99999 FORMAT (4X, 'ISTEP', 5X, 'Time', 9X, 'Y1', 11X, 'Y2')

 END

 SUBROUTINE FCN (N, T, Y, YPRIME)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER N

 REAL T, Y(N), YPRIME(N)

!

 YPRIME(1) = 2.0*Y(1) - 2.0*Y(1)*Y(2)

 YPRIME(2) = -Y(2) + Y(1)*Y(2)

 RETURN

 END

Output

 ISTEP Time Y1 Y2

 1 1.000 0.078 1.465

 2 2.000 0.085 0.578

IMSL MATH LIBRARY Chapter 5: Differential Equations 1009

 3 3.000 0.292 0.250

 4 4.000 1.449 0.187

 5 5.000 4.046 1.444

 6 6.000 0.176 2.256

 7 7.000 0.066 0.908

 8 8.000 0.148 0.367

 9 9.000 0.655 0.188

10 10.000 3.157 0.352

Additional Examples

Example 2

This is a mildly stiff problem (F2) from the test set of Enright and Pryce (1987). It is included here

because it illustrates the inefficiency of requiring more function evaluations with a nonstiff solver,

for a requested accuracy, than would be required using a stiff solver. Also, see IVPAG Example 2,

where the problem is solved using a BDF method. The number of function evaluations may vary,

depending on the accuracy and other arithmetic characteristics of the computer. The test problem

has n = 2 equations:

1 1 1 2 1 2

2 2 2 3 2 1

1

2

1

2

3

1

0 1

0 0

294

3

0.01020408

240

y y y y k y

y k y k y y

y

y

k

k

k

tend

 USE IVPRK_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER MXPARM, N

 PARAMETER (MXPARM=50, N=2)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER IDO, ISTEP, NOUT

 REAL PARAM(MXPARM), T, TEND, TOL, Y(N)

! SPECIFICATIONS FOR SUBROUTINES

! SPECIFICATIONS FOR FUNCTIONS

 EXTERNAL FCN

!

 CALL UMACH (2, NOUT)

! Set initial conditions

 T = 0.0

 Y(1) = 1.0

 Y(2) = 0.0

! Set error tolerance

 TOL = 0.001

! Set PARAM to default

1010 Chapter 5: Differential Equations IMSL MATH LIBRARY

 PARAM = 0.0E0

! Select absolute error control

 PARAM(10) = 1.0

! Print header

 WRITE (NOUT,99998)

 IDO = 1

 ISTEP = 0

 10 CONTINUE

 ISTEP = ISTEP + 24

 TEND = ISTEP

 CALL IVPRK (IDO, FCN, T, TEND, Y, TOL=TOL, PARAM=PARAM)

 IF (ISTEP .LE. 240) THEN

 WRITE (NOUT,'(I6,3F12.3)') ISTEP/24, T, Y

! Final call to release workspace

 IF (ISTEP .EQ. 240) IDO = 3

 GO TO 10

 END IF

! Show number of function calls.

 WRITE (NOUT,99999) PARAM(35)

99998 FORMAT (4X, 'ISTEP', 5X, 'Time', 9X, 'Y1', 11X, 'Y2')

99999 FORMAT (4X, 'Number of fcn calls with IVPRK =', F6.0)

 END

 SUBROUTINE FCN (N, T, Y, YPRIME)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER N

 REAL T, Y(N), YPRIME(N)

! SPECIFICATIONS FOR DATA VARIABLES

 REAL AK1, AK2, AK3

!

 DATA AK1, AK2, AK3/294.0E0, 3.0E0, 0.01020408E0/

!

 YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2)

 YPRIME(2) = -AK2*Y(2) + AK3*(1.0E0-Y(2))*Y(1)

 RETURN

 END

Output

ISTEP Time Y1 Y2

 1 24.000 0.688 0.002

 2 48.000 0.634 0.002

 3 72.000 0.589 0.002

 4 96.000 0.549 0.002

 5 120.000 0.514 0.002

 6 144.000 0.484 0.002

 7 168.000 0.457 0.002

 8 192.000 0.433 0.001

 9 216.000 0.411 0.001

10 240.000 0.391 0.001

Number of fcn calls with IVPRK = 2153.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1011

IVMRK

Solves an initial-value problem yʹ = f(t, y) for ordinary differential equations using Runge-Kutta

pairs of various orders.

Required Arguments

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal re-entry

3 Final call to release workspace

4 Return after a step

5 Return for function evaluation (reverse communication)

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this

value is used for all but the last call that is made with IDO = 3. This final call is used to

release workspace, which was automatically allocated by the initial call with IDO = 1.

FCN — User-supplied subroutine to evaluate functions. The usage is

CALL FCN (N, T, Y, YPRIME), where

N — Number of equations. (Input)

T — Independent variable. (Input)

Y — Array of size N containing the dependent variable values, y. (Input)

YPRIME — Array of size N containing the values of the vector yʹ evaluated at

(t, y). (Output)

 FCN must be declared EXTERNAL in the calling program.

T — Independent variable. (Input/Output)

On input, T contains the initial value. On output, T is replaced by TEND unless error

conditions have occurred.

TEND — Value of t where the solution is required. (Input)

The value of TEND may be less than the initial value of t.

Y — Array of size N of dependent variables. (Input/Output)

On input, Y contains the initial values. On output, Y contains the approximate solution.

YPRIME — Array of size N containing the values of the vector y' evaluated at (t, y).

(Output)

Optional Arguments

N — Number of differential equations. (Input)

Default: N= size (Y,1).

1012 Chapter 5: Differential Equations IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME [,…])

Specific: The specific interface names are S_IVMRK and D_IVMRK.

FORTRAN 77 Interface

Single: CALL IVMRK (IDO, N, FCN, T, TEND, Y, YPRIME)

Double: The double precision name is DIVMRK.

Description

Routine IVMRK finds an approximation to the solution of a system of first-order differential

equations of the form yʹ = f(t, y) with given initial data. Relative local error is controlled according

to a user-supplied tolerance. For added efficiency, three Runge-Kutta formula pairs, of orders 3, 5,

and 8, are available.

Optionally, the values of the vector yʹ can be passed to IVMRK by reverse communication,

avoiding the user-supplied subroutine FCN. Reverse communication is especially useful in

applications that have complicated algorithmic requirement for the evaluations of f(t, y). Another

option allows assessment of the global error in the integration.

The routine IVMRK is based on the codes contained in RKSUITE, developed by R. W. Brankin, I.

Gladwell, and L. F. Shampine (1991).

Comments

1. Workspace may be explicitly provided, if desired, by use of I2MRK/DI2MRK. The

reference is:

CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES,

PARAM, YMAX, RMSERR, WORK, IWORK)

The additional arguments are as follows:

TOL — Tolerance for error control. (Input)

THRES — Array of size N. (Input)

THRES(I) is a threshold for solution component Y(I). It is chosen so that the

value of Y(L) is not important when Y(L) is smaller in magnitude than

THRES(L). THRES(L) must be greater than or equal to sqrt(amach(4)).

PARAM — A floating-point array of size 50 containing optional parameters.

(Input/Output)

If a parameter is zero, then a default value is used. These default values are

given below. The following parameters must be set by the user:

IMSL MATH LIBRARY Chapter 5: Differential Equations 1013

PARAM Definition

1 HINIT Initial value of the step size. Must be chosen such

that 0.01 ≥ HINIT ≥ 10.0 amach(4). Default:

automatic selection of stepsize

2 METHOD 1 - use the (2, 3) pair

2 - use the (4, 5) pair

3 - use the (7, 8) pair.

Default: METHOD = 1 if 1.e-2 ≥ tol > 1.e-4

METHOD = 2 if 1.e-4 ≥ tol > 1.e-6

METHOD = 3 if 1.e-6 ≥ tol

3 ERREST ERREST = 1 attempts to assess the true error, the

difference between the numerical solution and the true

solution. The cost of this is roughly twice the cost of the

integration itself with METHOD = 2 or METHOD = 3, and

three times with METHOD = 1.

Default: ERREST = 0.

4 INTRP If nonzero, then return the IDO = 4 before each

step. See Comment 3.

Default: 0.

5 RCSTAT If nonzero, then reverse communication is used to

get derivative information. See Comment 4.

Default: 0.

6 - 30 Not used.

The following entries are set by the program:

31 HTRIAL Current trial step size.

32 NSTEP Number of steps taken.

33 NFCN Number of function evaluations.

34 ERRMAX The maximum approximate weighted true error

taken over all solution components and all steps

from T

35 TERRMX First value of the independent variable where an

YMAX Array of size N, where YMAX(L) is the largest value of ABS(Y(L))

computed at any step in the integration so far.

RMSERR — Array of size N where RMSERR(L) approximates the RMS average of the

true error of the numerical solution for the L-th solution component,

L = 1,..., N. The average is taken over all steps from T through the current

integration point. RMSERR is accessed and set only if PARAM(3) = 1.

WORK — Floating point work array of size 39N using the working precision. The

contents of WORK must not be changed from the first call with IDO = 1 until after

the final call with IDO = 3.

1014 Chapter 5: Differential Equations IMSL MATH LIBRARY

IWORK — Length of array work. (Input)

2. Informational errors

Type Code

4 1 It does not appear possible to achieve the accuracy specified by TOL

and THRES(*) using the current precision and METHOD. A larger

value for METHOD, if possible, will permit greater accuracy with this

precision. The integration must be restarted.

4 2 The global error assessment may not be reliable beyond the current

integration point T. This may occur because either too little or too

much accuracy has been requested or because f(t, y) is not smooth

enough for values of t just past TEND and current values of the

solution y. This return does not mean that you cannot integrate past

TEND, rather that you cannot do it with PARAM(3) = 1.

3 If PARAM(4) is nonzero, the subroutine returns with IDO = 4 and will resume

calculation at the point of interruption if re-entered with IDO = 4. Some parameters the

user might want to examine are IDO, HTRIAL, NSTEP, NFCN, T, and Y. The array Y

contains the newly computed trial value for y(t), accepted or not.

4 If PARAM(5) is nonzero, the subroutine will return with IDO = 5. At this time, evaluate

the derivatives at T, place the result in YPRIME, and call IVMRK again. The dummy

function I40RK/DI40RK may be used in place of FCN.

Example 1

This example integrates the small system (A.2.B2) from the test set of Enright and Pryce (1987):

1 1 2

2 1 2 3

3 2 3

1

2

3

2

0 2

0 0

0 1

y y y

y y y y

y y y

y

y

y

 USE IVMRK_INT

 USE WRRRN_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=3)

! Specifications for local variables

 INTEGER IDO

 REAL T, TEND, Y(N), YPRIME(N)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1015

 EXTERNAL FCN

! Set initial conditions

 T = 0.0

 TEND = 20.0

 Y(1) = 2.0

 Y(2) = 0.0

 Y(3) = 1.0

 IDO = 1

 CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME)

!

! Final call to release workspace

 IDO = 3

 CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME)

!

 CALL WRRRN ('Y', Y)

 END

!

 SUBROUTINE FCN (N, T, Y, YPRIME)

! Specifications for arguments

 INTEGER N

 REAL T, Y(*), YPRIME(*)

!

 YPRIME(1) = -Y(1) + Y(2)

 YPRIME(2) = Y(1) - 2.0*Y(2) + Y(3)

 YPRIME(3) = Y(2) - Y(3)

 RETURN

 END

Output

 Y

1 1.000

2 1.000

3 1.000

Additional Examples

Example 2

This problem is the same mildly stiff problem (A.1.F2) from the test set of Enright and Pryce as

Example 2 for IVPRK.

1 1 1 2 1 2

2 2 2 3 2 1

1

2

1

2

3

1

0 1

0 0

294

3

0.01020408

240

y y y y k y

y k y k y y

y

y

k

k

k

tend

1016 Chapter 5: Differential Equations IMSL MATH LIBRARY

Although not a stiff solver, one notes the greater efficiency of IVMRK over IVPRK, in terms of

derivative evaluations. Reverse communication is also used in this example. Users will find this

feature particularly helpful if their derivative evaluation scheme is difficult to isolate in a separate

subroutine.

 USE I2MRK_INT

 USE UMACH_INT

 USE AMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=2)

! Specifications for local variables

 INTEGER IDO, ISTEP, LWORK, NOUT

 REAL PARAM(50), PREC, RMSERR(N), T, TEND, THRES(N), TOL, &

 WORK(1000), Y(N), YMAX(N), YPRIME(N)

 REAL AK1, AK2, AK3

 SAVE AK1, AK2, AK3

! Specifications for intrinsics

 INTRINSIC SQRT

 REAL SQRT

! Specifications for subroutines

 EXTERNAL I40RK

! Specifications for functions

!

 DATA AK1, AK2, AK3/294.0, 3.0, 0.01020408/

!

 CALL UMACH (2, NOUT)

! Set initial conditions

 T = 0.0

 Y(1) = 1.0

 Y(2) = 0.0

! Set tolerance for error control,

! threshold vector and parameter

! vector

 TOL = .001

 PREC = AMACH(4)

 THRES = SQRT (PREC)

 PARAM = 0.0E0

 LWORK = 1000

! Turn on derivative evaluation by

! reverse communication

 PARAM(5) = 1

 IDO = 1

 ISTEP = 24

! Print header

 WRITE (NOUT,99998)

 10 CONTINUE

 TEND = ISTEP

 CALL I2MRK (IDO, N, I40RK, T, TEND, Y, YPRIME, TOL, THRES, PARAM,&

 YMAX, RMSERR, WORK, LWORK)

 IF (IDO .EQ. 5) THEN

! Evaluate derivatives

!

IMSL MATH LIBRARY Chapter 5: Differential Equations 1017

 YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2)

 YPRIME(2) = -AK2*Y(2) + AK3*(1.0-Y(2))*Y(1)

 GO TO 10

 ELSE IF (ISTEP .LE. 240) THEN

!

! Integrate to 10 equally spaced points

!

 WRITE (NOUT,'(I6,3F12.3)') ISTEP/24, T, Y

 IF (ISTEP .EQ. 240) IDO = 3

 ISTEP = ISTEP + 24

 GO TO 10

 END IF

! Show number of derivative evaluations

!

 WRITE (NOUT,99999) PARAM(33)

99998 FORMAT (3X, 'ISTEP', 5X, 'TIME', 9X, 'Y1', 10X, 'Y2')

99999 FORMAT (/, 4X, 'NUMBER OF DERIVATIVE EVALUATIONS WITH IVMRK =', &

 F6.0)

 END

! DUMMY FUNCTION TO TAKE THE PLACE OF DERIVATIVE EVALUATOR

 SUBROUTINE I40RK (N, T, Y, YPRIME)

 INTEGER N

 REAL T, y(*), YPRIME(*)

 RETURN

 END

Output

ISTEP TIME Y1 Y2

1 24.000 0.688 0.002

2 48.000 0.634 0.002

3 72.000 0.589 0.002

4 96.000 0.549 0.002

5 120.000 0.514 0.002

6 144.000 0.484 0.002

7 168.000 0.457 0.002

8 192.000 0.433 0.001

9 216.000 0.411 0.001

10 240.000 0.391 0.001

NUMBER OF DERIVATIVE EVALUATIONS WITH IVMRK = 1375.

Example 3

This example demonstrates how exceptions may be handled. The problem is from Enright and

Pryce (A.2.F1), and has discontinuities. We choose this problem to force a failure in the global

error estimation scheme, which requires some smoothness in y. We also request an initial relative

error tolerance which happens to be unsuitably small in this precision.

If the integration fails because of problems in global error assessment, the assessment option is

turned off, and the integration is restarted. If the integration fails because the requested accuracy is

not achievable, the tolerance is increased, and global error assessment is requested. The reason

error assessment is turned on is that prior assessment failures may have been due more in part to

an overly stringent tolerance than lack of smoothness in the derivatives.

1018 Chapter 5: Differential Equations IMSL MATH LIBRARY

When the integration is successful, the example prints the final relative error tolerance, and

indicates whether or not global error estimation was possible.

1 2

2 2
2 1

2
2 2

2 1

1

2

2 1, even

2 1, odd

0 0

0 0

0.1

largest integer

y y

ay a y x
y

ay a y x

y

y

a

x x

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=2)

! Specifications for local variables

 INTEGER IDO, LWORK, NOUT

 REAL PARAM(50), PREC, RMSERR(N), T, TEND, THRES(N), TOL,&

 WORK(100), Y(N), YMAX(N), YPRIME(N)

!

! Specifications for intrinsics

 INTRINSIC SQRT

 REAL SQRT

! Specifications for subroutines

!

!

! Specifications for functions

 EXTERNAL FCN

!

!

 CALL UMACH (2, NOUT)

! Turn off stopping for FATAL errors

 CALL ERSET (4, -1, 0)

! Initialize input, turn on global

! error assessment

 LWORK = 100

 PREC = AMACH(4)

 TOL = SQRT(PREC)

 PARAM = 0.0E01

 THRES = TOL

 TEND = 20.0E0

 PARAM(3) = 1

!

 10 CONTINUE

! Set initial values

 T = 0.0E0

 Y(1) = 0.0E0

IMSL MATH LIBRARY Chapter 5: Differential Equations 1019

 Y(2) = 0.0E0

 IDO = 1

 CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM,&

 YMAX, RMSERR, WORK, LWORK)

 IF (IERCD() .EQ. 32) THEN

! Unable to achieve requested

! accuracy, so increase tolerance.

! Activate global error assessment

 TOL = 10.0*TOL

 PARAM(3) = 1

 WRITE (NOUT,99995) TOL

 GO TO 10

 ELSE IF (IERCD() .EQ. 34) THEN

! Global error assessment has failed,

! cannot continue from this point,

! so restart integration

 WRITE (NOUT,99996)

 PARAM(3) = 0

 GO TO 10

 END IF

!

! Final call to release workspace

 IDO = 3

 CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM,&

 YMAX, RMSERR, WORK, LWORK)

!

! Summarize status

 WRITE (NOUT,99997) TOL

 IF (PARAM(3) .EQ. 1) THEN

 WRITE (NOUT,99998)

 ELSE

 WRITE (NOUT,99999)

 END IF

 CALL WRRRN ('Y', Y)

!

99995 FORMAT (/, 'CHANGING TOLERANCE TO ', E9.3, ' AND RESTARTING ...'&

 , /, 'ALSO (RE)ENABLING GLOBAL ERROR ASSESSMENT', /)

99996 FORMAT (/, 'DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ...'&

 , /)

99997 FORMAT (/, 72('-'), //, 'SOLUTION OBTAINED WITH TOLERANCE = ',&

 E9.3)

99998 FORMAT ('GLOBAL ERROR ASSESSMENT IS AVAILABLE')

99999 FORMAT ('GLOBAL ERROR ASSESSMENT IS NOT AVAILABLE')

!

 END

!

 SUBROUTINE FCN (N, T, Y, YPRIME)

 USE CONST_INT

! Specifications for arguments

 INTEGER N

 REAL T, Y(*), YPRIME(*)

! Specifications for local variables

 REAL A

 REAL PI

 LOGICAL FIRST

 SAVE FIRST, PI

! Specifications for intrinsics

1020 Chapter 5: Differential Equations IMSL MATH LIBRARY

 INTRINSIC INT, MOD

 INTEGER INT, MOD

! Specifications for functions

!

 DATA FIRST/.TRUE./

!

 IF (FIRST) THEN

 PI = CONST('PI')

 FIRST = .FALSE.

 END IF

!

 A = 0.1E0

 YPRIME(1) = Y(2)

 IF (MOD(INT(T),2) .EQ. 0) THEN

 YPRIME(2) = 2.0E0*A*Y(2) - (PI*PI+A*A)*Y(1) + 1.0E0

 ELSE

 YPRIME(2) = 2.0E0*A*Y(2) - (PI*PI+A*A)*Y(1) - 1.0E0

 END IF

 RETURN

 END

Output

 *** FATAL ERROR 34 from i2mrk. The global error assessment may not

 *** be reliable for T past 9.994749E-01. The integration is

 *** being terminated.

DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ...

 *** FATAL ERROR 32 from i2mrk. In order to satisfy the error

 *** requirement I6MRK would have to use a step size of

 *** 3.647129E- 06 at TNOW = 9.999932E-01. This is too small

 *** for the current precision.

CHANGING TOLERANCE TO 0.345E-02 AND RESTARTING ...

ALSO (RE)ENABLING GLOBAL ERROR ASSESSMENT

 *** FATAL ERROR 34 from i2mrk. The global error assessment may

 *** not be reliable for T past 9.986024E-01. The integration

 *** is being terminated.

DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ...

--

SOLUTION OBTAINED WITH TOLERANCE = 0.345E-02

GLOBAL ERROR ASSESSMENT IS NOT AVAILABLE

 Y

 1 -12.30

IMSL MATH LIBRARY Chapter 5: Differential Equations 1021

 2 0.95

IVPAG

Solves an initial-value problem for ordinary differential equations using either Adams-Moulton‘s

or Gear‘s BDF method.

Required Arguments

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal re-entry

3 Final call to release workspace

4 Return because of interrupt 1

5 Return because of interrupt 2 with step accepted

6 Return because of interrupt 2 with step rejected

7 Return for new value of matrix A.

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this

value is then used for all but the last call that is made with IDO = 3. This final call is

only used to release workspace, which was automatically allocated by the initial call

with IDO = 1. See Comment 5 for a description of the interrupts.

 When IDO = 7, the matrix A at t must be recomputed and IVPAG/DIVPAG called again.

No other argument (including IDO) should be changed. This value of IDO is returned

only if PARAM(19) = 2.

FCN — User-supplied subroutine to evaluate functions. The usage is

CALL FCN (N, T, Y, YPRIME), where

N – Number of equations. (Input)

T – Independent variable, t. (Input)

Y – Array of size N containing the dependent variable values, y. (Input)

1022 Chapter 5: Differential Equations IMSL MATH LIBRARY

YPRIME – Array of size N containing the values of the vector yʹ evaluated at (t,

y). (Output)

See Comment 3.

 FCN must be declared EXTERNAL in the calling program.

FCNJ — User-supplied subroutine to compute the Jacobian. The usage is

CALL FCNJ (N, T, Y, DYPDY) where

N – Number of equations. (Input)

T – Independent variable, t. (Input)

Y – Array of size N containing the dependent variable values, y(t). (Input)

DYPDY – An array, with data structure and type determined by PARAM(14) =

MTYPE, containing the required partial derivatives ∂fi∕∂yj. (Output)

 These derivatives are to be evaluated at the current values of (t, y). When the Jacobian

is dense, MTYPE = 0 or = 2, the leading dimension of DYPDY has the value N. When the

Jacobian matrix is banded, MTYPE = 1, and the leading dimension of DYPDY has the

value 2 * NLC + NUC + 1. If the matrix is banded positive definite symmetric,

MTYPE = 3, and the leading dimension of DYPDY has the value NUC + 1.

 FCNJ must be declared EXTERNAL in the calling program. If PARAM(19) = IATYPE is

nonzero, then FCNJ should compute the Jacobian of the righthand side of the equation

Ayʹ = f(t, y). The subroutine FCNJ is used only if PARAM(13) = MITER = 1.

T — Independent variable, t. (Input/Output)

On input, T contains the initial independent variable value. On output, T is replaced by

TEND unless error or other normal conditions arise. See IDO for details.

TEND — Value of t = tend where the solution is required. (Input)

The value tend may be less than the initial value of t.

Y — Array of size NEQ of dependent variables, y(t). (Input/Output)

On input, Y contains the initial values, y(t0). On output, Y contains the approximate

solution, y(t).

Optional Arguments

NEQ— Number of differential equations. (Input)

Default: NEQ = size (Y,1)

A — Matrix structure used when the system is implicit. (Input)

The matrix A is referenced only if PARAM(19) = IATYPE is nonzero. Its data structure is

determined by PARAM(14) = MTYPE. The matrix A must be nonsingular and MITER

must be 1 or 2. See Comment 3.

TOL — Tolerance for error control. (Input)

An attempt is made to control the norm of the local error such that the global error is

IMSL MATH LIBRARY Chapter 5: Differential Equations 1023

proportional to TOL.

Default: TOL = .001

PARAM — A floating-point array of size 50 containing optional parameters. (Input/Output)

If a parameter is zero, then the default value is used. These default values are given

below. Parameters that concern values of the step size are applied in the direction of

integration. The following parameters may be set by the user:

 PARAM Meaning

1 HINIT Initial value of the step size H. Always nonnegative.

Default: 0.001|tend − t0|.

2 HMIN Minimum value of the step size H. Default: 0.0.

3 HMAX Maximum value of the step size H. Default: No limit,

beyond the machine scale, is imposed on the step size.

4 MXSTEP Maximum number of steps allowed. Default: 500.

5 MXFCN Maximum number of function evaluations allowed. Default:

No enforced limit.

6 MAXORD Maximum order of the method. Default: If Adams-Moulton

method is used, then 12. If Gear‘s or BDF method is used,

then 5. The defaults are the maximum values allowed.

7 INTRP1 If this value is set nonzero, the subroutine will return before

every step with IDO = 4. See Comment 5. Default: 0.

8 INTRP2 If this value is nonzero, the subroutine will return after

every successful step with IDO = 5 and return with IDO = 6

after every unsuccessful step. See Comment 5. Default: 0

9 SCALE A measure of the scale of the problem, such as an

approximation to the average value of a norm of the

Jacobian along the solution. Default: 1.0

10 INORM Switch determining error norm. In the following, ei is the

absolute value of an estimate of the error in yi(t).

Default: 0.

0 — min(absolute error, relative error) = max(eiwi); i = 1,

…, N, where wi = max(|yi(t)|, 1.0).

1 — absolute error = max(ei), i = 1 …, NEQ.

2 — max(ei / wi), i = 1 …, N where wi = max(|yi(t)|, FLOOR),

and FLOOR is the value PARAM(11).

3 — Scaled Euclidean norm defined as

2 2

1
YMAX /

NEQ

i ii
e w

where wi = max(|yi(t)|, 1.0). Other definitions of YMAX can

be specified by the user, as explained in Comment 1.

1024 Chapter 5: Differential Equations IMSL MATH LIBRARY

11 FLOOR Used in the norm computation associated the parameter

INORM. Default: 1.0.

12 METH Integration method indicator.

1 = METH selects the Adams-Moulton method.

2 = METH selects Gear‘s BDF method.

Default: 1.

13 MITER Nonlinear solver method indicator.

Note: If the problem is stiff and a chord or modified

Newton method is most efficient, use MITER = 1 or = 2.

0 = MITER selects functional iteration. The value IATYPE

must be set to zero with this option.

1 = MITER selects a chord method with a user-provided

Jacobian.

2 = MITER selects a chord method with a divided-difference

Jacobian.

3 = MITER selects a chord method with the Jacobian

replaced by a diagonal matrix based on a directional

derivative. The value IATYPE must be set to zero with this

option.

Default: 0.

14 MTYPE Matrix type for A (if used) and the Jacobian (if MITER = 1

or = 2). When both are used, A and the Jacobian must be of

the same type.

0 = MTYPE selects full matrices.

1 = MTYPE selects banded matrices.

2 = MTYPE selects symmetric positive definite matrices.

3 = MTYPE selects banded symmetric positive definite

matrices.

Default: 0.

15 NLC Number of lower codiagonals, used if MTYPE = 1.

Default: 0.

16 NUC Number of upper codiagonals, used if MTYPE = 1 or MTYPE

= 3.

Default: 0.

17 Not used.

18 EPSJ Relative tolerance used in computing divided difference

Jacobians.

Default: SQRT(AMACH(4)) .

IMSL MATH LIBRARY Chapter 5: Differential Equations 1025

19 IATYPE Type of the matrix A.

0 = IATYPE implies A is not used (the system is explicit).

1 = IATYPE if A is a constant matrix.

2 = IATYPE if A depends on t.

Default: 0.

20 LDA Leading dimension of array A exactly as specified in the

dimension statement in the calling program. Used if

IATYPE is not zero.

Default:

N if MTYPE = 0 or = 2

NUC + NLC + 1 if MTYPE = 1

NUC + 1 if MTYPE = 3

21−30
 Not used.

The following entries in the array PARAM are set by the program:

 PARAM Meaning

31 HTRIAL Current trial step size.

32 HMINC Computed minimum step size.

33 HMAXC Computed maximum step size.

34 NSTEP Number of steps taken.

35 NFCN Number of function evaluations used.

36 NJE Number of Jacobian evaluations.

37−50
 Not used.

FORTRAN 90 Interface

Generic: CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y [,…])

Specific: The specific interface names are S_IVPAG and D_IVPAG.

FORTRAN 77 Interface

Single: CALL IVPAG (IDO, NEQ, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y)

Double: The double precision name is DIVPAG.

Description

The routine IVPAG solves a system of first-order ordinary differential equations of the form

yʹ = f (t, y) or Ayʹ = f (t, y) with initial conditions where A is a square nonsingular matrix of order

N. Two classes of implicit linear multistep methods are available. The first is the implicit Adams-

Moulton method (up to order twelve); the second uses the backward differentiation formulas BDF

1026 Chapter 5: Differential Equations IMSL MATH LIBRARY

(up to order five). The BDF method is often called Gear‘s stiff method. In both cases, because

basic formulas are implicit, a system of nonlinear equations must be solved at each step. The

deriviative matrix in this system has the form L = A + ηJ where η is a small number computed by

IVPAG and J is the Jacobian. When it is used, this matrix is computed in the user-supplied routine

FCNJ or else it is approximated by divided differences as a default. Using defaults, A is the

identity matrix. The data structure for the matrix L may be identified to be real general, real

banded, symmetric positive definite, or banded symmetric positive definite. The default structure

for L is real general.

Comments

1. Workspace and a user-supplied error norm subroutine may be explicitly provided, if

desired, by use of I2PAG/DI2PAG. The reference is:

CALL I2PAG (IDO, NEQ, FCN, FCNJ, A, T, TEND, TOL, PARAM,

Y, YTEMP, YMAX, ERROR, SAVE1, SAVE2, PW, IPVT, VNORM)

 None of the additional array arguments should be changed from the first call with

IDO = 1 until after the final call with IDO = 3. The additional arguments are as follows:

YTEMP — Array of size NMETH. (Workspace)

YMAX — Array of size NEQ containing the maximum Y-values computed so far.

(Output)

ERROR — Array of size NEQ containing error estimates for each component of Y.

(Output)

SAVE1 — Array of size NEQ. (Workspace)

SAVE2 — Array of size NEQ. (Workspace)

PW — Array of size NPW. (Workspace)

IPVT — Array of size NEQ. (Workspace)

VNORM — A Fortran subroutine to compute the norm of the error. (Input)

The routine may be provided by the user, or the IMSL routine I3PRK/DI3PRK

may be used. In either case, the name must be declared in a Fortran EXTERNAL

statement. If usage of the IMSL routine is intended, then the name

I3PRK/DI3PRK should be specified. The usage of the error norm routine is

CALL VNORM (NEQ, V, Y, YMAX, ENORM) where

Arg Definition

NEQ Number of equations. (Input).

V
Array of size N containing the vector

whose norm is to be computed. (Input)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1027

Arg Definition

Y
Array of size N containing the values of

the dependent variable. (Input)

YMAX
Array of size N containing the maximum

values of |y(t)|. (Input).

ENORM Norm of the vector V. (Output).

VNORM must be declared EXTERNAL in the calling program.

2. Informational errors

Type Code

4 1 After some initial success, the integration was halted by repeated

error-test failures.

4 2 The maximum number of function evaluations have been used.

4 3 The maximum number of steps allowed have been used. The

problem may be stiff.

4 4 On the next step T + H will equal T. Either TOL is too small, or the

problem is stiff.

Note: If the Adams-Moulton method is the one used in the

integration, then users can switch to the BDF methods. If the BDF

methods are being used, then these comments are gratuitous and

indicate that the problem is too stiff for this combination of method

and value of TOL.

4 5 After some initial success, the integration was halted by a test on

TOL.

4 6 Integration was halted after failing to pass the error test even after

dividing the initial step size by a factor of 1.0E + 10. The value TOL

may be too small.

4 7 Integration was halted after failing to achieve corrector convergence

even after dividing the initial step size by a factor of 1.0E + 10. The

value TOL may be too small.

4 8 IATYPE is nonzero and the input matrix A multiplying yʹ is singular.

3. Both explicit systems, of the form yʹ = f (t, y), and implicit systems, Ayʹ = f (t, y), can

be solved. If the system is explicit, then PARAM(19) = 0; and the matrix A is not

referenced. If the system is implicit, then PARAM(14) determines the data structure of

the array A. If PARAM(19) = 1, then A is assumed to be a constant matrix. The value of A

used on the first call (with IDO = 1) is saved until after a call with IDO = 3. The value

of A must not be changed between these calls.

If PARAM(19) = 2, then the matrix is assumed to be a function of t.

4. If MTYPE is greater than zero, then MITER must equal 1 or 2.

1028 Chapter 5: Differential Equations IMSL MATH LIBRARY

5. If PARAM(7) is nonzero, the subroutine returns with IDO= 4 and will resume calculation

at the point of interruption if re-entered with IDO = 4. If PARAM(8) is nonzero, the

subroutine will interrupt immediately after decides to accept the result of the most

recent trial step. The value IDO = 5 is returned if the routine plans to accept, or IDO = 6

if it plans to reject. The value IDO may be changed by the user (by changing IDO from

6 to 5) to force acceptance of a step that would otherwise be rejected. Relevant

parameters to observe after return from an interrupt are IDO, HTRIAL, NSTEP, NFCN,

NJE, T and Y. The array Y contains the newly computed trial value y(t).

Example 1

Euler‘s equation for the motion of a rigid body not subject to external forces is

1 2 3 1

2 1 3 2

3 1 2 3

0 0

0 1

0.51 0 1

y y y y

y y y y

y y y y

Its solution is, in terms of Jacobi elliptic functions, y (t) = sn(t; k), y2 (t) = cn(t; k), y3 (t) = dn(t; k)

where k
2
 = 0.51. The Adams-Moulton method of IVPAG is used to solve this system, since this is

the default. All parameters are set to defaults.

The last call to IVPAG with IDO = 3 releases IMSL workspace that was reserved on the first call to

IVPAG. It is not necessary to release the workspace in this example because the program ends after

solving a single problem. The call to release workspace is made as a model of what would be

needed if the program included further calls to IMSL routines.

Because PARAM(13) = MITER = 0, functional iteration is used and so subroutine FCNJ is never

called. It is included only because the calling sequence for IVPAG requires it.

 USE IVPAG_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N, NPARAM

 PARAMETER (N=3, NPARAM=50)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER IDO, IEND, NOUT

 REAL A(1,1), T, TEND, TOL, Y(N)

! SPECIFICATIONS FOR SUBROUTINES

! SPECIFICATIONS FOR FUNCTIONS

 EXTERNAL FCN, FCNJ

! Initialize

!

 IDO = 1

 T = 0.0

 Y(1) = 0.0

 Y(2) = 1.0

 Y(3) = 1.0

 TOL = 1.0E-6

! Write title

 CALL UMACH (2, NOUT)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1029

 WRITE (NOUT,99998)

! Integrate ODE

 IEND = 0

 10 CONTINUE

 IEND = IEND + 1

 TEND = IEND

! The array a(*,*) is not used.

 CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL)

 IF (IEND .LE. 10) THEN

 WRITE (NOUT,99999) T, Y

! Finish up

 IF (IEND .EQ. 10) IDO = 3

 GO TO 10

 END IF

99998 FORMAT (11X, 'T', 14X, 'Y(1)', 11X, 'Y(2)', 11X, 'Y(3)')

99999 FORMAT (4F15.5)

 END

!

 SUBROUTINE FCN (N, X, Y, YPRIME)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER N

 REAL X, Y(N), YPRIME(N)

!

 YPRIME(1) = Y(2)*Y(3)

 YPRIME(2) = -Y(1)*Y(3)

 YPRIME(3) = -0.51*Y(1)*Y(2)

 RETURN

 END

!

 SUBROUTINE FCNJ (N, X, Y, DYPDY)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER N

 REAL X, Y(N), DYPDY(N,*)

! This subroutine is never called

 RETURN

 END

Output

 T Y(1) Y(2) Y(3)

 1.00000 0.80220 0.59705 0.81963

 2.00000 0.99537 -0.09615 0.70336

 3.00000 0.64141 -0.76720 0.88892

 4.00000 -0.26961 -0.96296 0.98129

 5.00000 -0.91173 -0.41079 0.75899

 6.00000 -0.95751 0.28841 0.72967

 7.00000 -0.42877 0.90342 0.95197

 8.00000 0.51092 0.85963 0.93106

 9.00000 0.97567 0.21926 0.71730

10.00000 0.87790 -0.47884 0.77906

1030 Chapter 5: Differential Equations IMSL MATH LIBRARY

Additional Examples

Example 2

The BDF method of IVPAG is used to solve Example 2 of IVPRK. We set PARAM(12) = 2 to

designate the BDF method. A chord or modified Newton method, with the Jacobian computed by

divided differences, is used to solve the nonlinear equations. Thus, we set PARAM(13) = 2. The

number of evaluations of yʹ is printed after the last output point, showing the efficiency gained

when using a stiff solver compared to using IVPRK on this problem. The number of evaluations

may vary, depending on the accuracy and other arithmetic characteristics of the computer.

 USE IVPAG_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER MXPARM, N

 PARAMETER (MXPARM=50, N=2)

! SPECIFICATIONS FOR PARAMETERS

 INTEGER MABSE, MBDF, MSOLVE

 PARAMETER (MABSE=1, MBDF=2, MSOLVE=2)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER IDO, ISTEP, NOUT

 REAL A(1,1), PARAM(MXPARM), T, TEND, TOL, Y(N)

! SPECIFICATIONS FOR SUBROUTINES

! SPECIFICATIONS FOR FUNCTIONS

 EXTERNAL FCN, FCNJ

!

 CALL UMACH (2, NOUT)

! Set initial conditions

 T = 0.0

 Y(1) = 1.0

 Y(2) = 0.0

! Set error tolerance

 TOL = 0.001

! Set PARAM to defaults

 PARAM = 0.0E0

!

 PARAM(10) = MABSE

! Select BDF method

 PARAM(12) = MBDF

! Select chord method and

! a divided difference Jacobian.

 PARAM(13) = MSOLVE

! Print header

 WRITE (NOUT,99998)

 IDO = 1

 ISTEP = 0

 10 CONTINUE

 ISTEP = ISTEP + 24

 TEND = ISTEP

! The array a(*,*) is not used.

 CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL, &

 PARAM=PARAM)

 IF (ISTEP .LE. 240) THEN

IMSL MATH LIBRARY Chapter 5: Differential Equations 1031

 WRITE (NOUT,'(I6,3F12.3)') ISTEP/24, T, Y

! Final call to release workspace

 IF (ISTEP .EQ. 240) IDO = 3

 GO TO 10

 END IF

! Show number of function calls.

 WRITE (NOUT,99999) PARAM(35)

99998 FORMAT (4X, 'ISTEP', 5X, 'Time', 9X, 'Y1', 11X, 'Y2')

99999 FORMAT (4X, 'Number of fcn calls with IVPAG =', F6.0)

 END

 SUBROUTINE FCN (N, T, Y, YPRIME)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER N

 REAL T, Y(N), YPRIME(N)

! SPECIFICATIONS FOR SAVE VARIABLES

 REAL AK1, AK2, AK3

 SAVE AK1, AK2, AK3

!

 DATA AK1, AK2, AK3/294.0E0, 3.0E0, 0.01020408E0/

!

 YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2)

 YPRIME(2) = -AK2*Y(2) + AK3*(1.0E0-Y(2))*Y(1)

 RETURN

 END

 SUBROUTINE FCNJ (N, T, Y, DYPDY)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER N

 REAL T, Y(N), DYPDY(N,*)

!

 RETURN

 END

Output

ISTEP Time Y1 Y2

 1 24.000 0.689 0.002

 2 48.000 0.636 0.002

 3 72.000 0.590 0.002

 4 96.000 0.550 0.002

 5 120.000 0.515 0.002

 6 144.000 0.485 0.002

 7 168.000 0.458 0.002

 8 192.000 0.434 0.001

 9 216.000 0.412 0.001

10 240.000 0.392 0.001

Number of fcn calls with IVPAG = 73.

Example 3

The BDF method of IVPAG is used to solve the so-called Robertson problem:

1032 Chapter 5: Differential Equations IMSL MATH LIBRARY

1 1 1 2 2 3 1

2 1 3 2

2
3 3 2 3

4 7
1 2 3

0 1

0 0

0 0

0.04, 10 , 3 10 0 10

y c y c y y y

y y y y

y c y y

c c c t

Output is obtained after each unit of the independent variable. A user-provided subroutine for the

Jacobian matrix is used. An absolute error tolerance of 10-5
 is required.

 USE IVPAG_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER MXPARM, N

 PARAMETER (MXPARM=50, N=3)

! SPECIFICATIONS FOR PARAMETERS

 INTEGER MABSE, MBDF, MSOLVE

 PARAMETER (MABSE=1, MBDF=2, MSOLVE=1)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER IDO, ISTEP, NOUT

 REAL A(1,1), PARAM(MXPARM), T, TEND, TOL, Y(N)

! SPECIFICATIONS FOR SUBROUTINES

! SPECIFICATIONS FOR FUNCTIONS

 EXTERNAL FCN, FCNJ

!

 CALL UMACH (2, NOUT)

! Set initial conditions

 T = 0.0

 Y(1) = 1.0

 Y(2) = 0.0

 Y(3) = 0.0

! Set error tolerance

 TOL = 1.0E-5

! Set PARAM to defaults

 PARAM = 0.0E0

! Select absolute error control

 PARAM(10) = MABSE

! Select BDF method

 PARAM(12) = MBDF

! Select chord method and

! a user-provided Jacobian.

 PARAM(13) = MSOLVE

! Print header

 WRITE (NOUT,99998)

 IDO = 1

 ISTEP = 0

 10 CONTINUE

 ISTEP = ISTEP + 1

 TEND = ISTEP

! The array a(*,*) is not used.

 CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL, PARAM=PARAM)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1033

 IF (ISTEP .LE. 10) THEN

 WRITE (NOUT,'(I6,F12.2,3F13.5)') ISTEP, T, Y

! Final call to release workspace

 IF (ISTEP .EQ. 10) IDO = 3

 GO TO 10

 END IF

99998 FORMAT (4X, 'ISTEP', 5X, 'Time', 9X, 'Y1', 11X, 'Y2', 11X, &

 'Y3')

 END

 SUBROUTINE FCN (N, T, Y, YPRIME)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER N

 REAL T, Y(N), YPRIME(N)

! SPECIFICATIONS FOR SAVE VARIABLES

 REAL C1, C2, C3

 SAVE C1, C2, C3

!

 DATA C1, C2, C3/0.04E0, 1.0E4, 3.0E7/

!

 YPRIME(1) = -C1*Y(1) + C2*Y(2)*Y(3)

 YPRIME(3) = C3*Y(2)**2

 YPRIME(2) = -YPRIME(1) - YPRIME(3)

 RETURN

 END

 SUBROUTINE FCNJ (N, T, Y, DYPDY)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER N

 REAL T, Y(N), DYPDY(N,*)

! SPECIFICATIONS FOR SAVE VARIABLES

 REAL C1, C2, C3

 SAVE C1, C2, C3

! SPECIFICATIONS FOR SUBROUTINES

 EXTERNAL SSET

!

 DATA C1, C2, C3/0.04E0, 1.0E4, 3.0E7/

! Clear array to zero

 CALL SSET (N**2, 0.0, DYPDY, 1)

! Compute partials

 DYPDY(1,1) = -C1

 DYPDY(1,2) = C2*Y(3)

 DYPDY(1,3) = C2*Y(2)

 DYPDY(3,2) = 2.0*C3*Y(2)

 DYPDY(2,1) = -DYPDY(1,1)

 DYPDY(2,2) = -DYPDY(1,2) - DYPDY(3,2)

 DYPDY(2,3) = -DYPDY(1,3)

 RETURN

 END

Output

 ISTEP Time Y1 Y2 Y3

 1 1.00 0.96647 0.00003 0.03350

 2 2.00 0.94164 0.00003 0.05834

 3 3.00 0.92191 0.00002 0.07806

 4 4.00 0.90555 0.00002 0.09443

 5 5.00 0.89153 0.00002 0.10845

 6 6.00 0.87928 0.00002 0.12070

1034 Chapter 5: Differential Equations IMSL MATH LIBRARY

 7 7.00 0.86838 0.00002 0.13160

 8 8.00 0.85855 0.00002 0.14143

 9 9.00 0.84959 0.00002 0.15039

10 10.00 0.84136 0.00002 0.15862

Example 4

Solve the partial differential equation

2

2

t u u
e

t x

with the initial condition

u(t = 0, x) = sin x

and the boundary conditions

u(t, x = 0) = u(t, x = π) = 0

on the square [0, 1] × [0, π], using the method of lines with a piecewise-linear Galerkin

discretization. The exact solution is u(t, x) = exp(1 − e
t
) sin x. The interval [0, π] is divided into

equal intervals by choosing breakpoints xk = kπ/(N + 1) for k = 0, …, N + 1. The unknown

function u(t, x) is approximated by

1

N

k kk
c t x

where ɸk (x) is the piecewiselinear function that equals 1 at xk and is zero at all of the other

breakpoints. We approximate the partial differential equation by a system of N ordinary

differential equations, A dc/dt = Rc where A and R are matrices of order N. The matrix A is given

by

0

2 / 3 if

/ 6 if 1

0 otherwise

t

t t
ij i j

e h i j

A e x x dx e h i j

where h = 1/(N + 1) is the mesh spacing. The matrix R is given by

 " ' '
j0 0

2 / if

1/ if 1

0 otherwise

ij i j i

h i j

R x x dx x x dx h i j

The integrals involving

IMSL MATH LIBRARY Chapter 5: Differential Equations 1035

i

are assigned the values of the integrals on the right-hand side, by using the boundary values and

integration by parts. Because this system may be stiff, Gear‘s BDF method is used.

In the following program, the array Y(1:N) corresponds to the vector of coefficients, c. Note that Y

contains N + 2 elements; Y(0) and Y(N + 1) are used to store the boundary values. The matrix A

depends on t so we set PARAM(19) = 2 and evaluate A when IVPAG returns with IDO = 7. The

subroutine FCN computes the vector Rc, and the subroutine FCNJ computes R. The matrices A and

R are stored as band-symmetric positive-definite structures having one upper co-diagonal.

 USE IVPAG_INT

 USE CONST_INT

 USE WRRRN_INT

 USE SSET_INT

 IMPLICIT NONE

 INTEGER LDA, N, NPARAM, NUC

 PARAMETER (N=9, NPARAM=50, NUC=1, LDA=NUC+1)

! SPECIFICATIONS FOR PARAMETERS

 INTEGER NSTEP

 PARAMETER (NSTEP=4)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I, IATYPE, IDO, IMETH, INORM, ISTEP, MITER, MTYPE

 REAL A(LDA,N), C, HINIT, PARAM(NPARAM), PI, T, TEND, TMAX, &

 TOL, XPOINT(0:N+1), Y(0:N+1)

 CHARACTER TITLE*10

! SPECIFICATIONS FOR COMMON /COMHX/

 COMMON /COMHX/ HX

 REAL HX

! SPECIFICATIONS FOR INTRINSICS

 INTRINSIC EXP, REAL, SIN

 REAL EXP, REAL, SIN

! SPECIFICATIONS FOR SUBROUTINES

! SPECIFICATIONS FOR FUNCTIONS

 EXTERNAL FCN, FCNJ

! Initialize PARAM

 HINIT = 1.0E-3

 INORM = 1

 IMETH = 2

 MITER = 1

 MTYPE = 3

 IATYPE = 2

 PARAM = 0.0E0

 PARAM(1) = HINIT

 PARAM(10) = INORM921

 PARAM(12) = IMETH

 PARAM(13) = MITER

 PARAM(14) = MTYPE

 PARAM(16) = NUC

 PARAM(19) = IATYPE

! Initialize other arguments

 PI = CONST('PI')

 HX = PI/REAL(N+1)

 CALL SSET (N-1, HX/6., A(1:,2), LDA)

1036 Chapter 5: Differential Equations IMSL MATH LIBRARY

 CALL SSET (N, 2.*HX/3., A(2:,1), LDA)

 DO 10 I=0, N + 1

 XPOINT(I) = I*HX

 Y(I) = SIN(XPOINT(I))

 10 CONTINUE

 TOL = 1.0E-6

 T = 0.0

 TMAX = 1.0

! Integrate ODE

 IDO = 1

 ISTEP = 0

 20 CONTINUE

 ISTEP = ISTEP + 1

 TEND = TMAX*REAL(ISTEP)/REAL(NSTEP)

 30 CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y(1:), NEQ=N, A=A, &

 TOL=TOL, PARAM=PARAM)

! Set matrix A

 IF (IDO .EQ. 7) THEN

 C = EXP(-T)

 CALL SSET (N-1, C*HX/6., A(1:,2), LDA)

 CALL SSET (N, 2.*C*HX/3., A(2:,1), LDA)

 GO TO 30

 END IF

 IF (ISTEP .LE. NSTEP) THEN

! Print solution

 WRITE (TITLE,'(A,F5.3,A)') 'U(T=', T, ')'

 CALL WRRRN (TITLE, Y, 1, N+2, 1)

! Final call to release workspace

 IF (ISTEP .EQ. NSTEP) IDO = 3

 GO TO 20

 END IF

 END

!

 SUBROUTINE FCN (N, T, Y, YPRIME)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER N

 REAL T, Y(*), YPRIME(N)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I

! SPECIFICATIONS FOR COMMON /COMHX/

 COMMON /COMHX/ HX

 REAL HX

! SPECIFICATIONS FOR SUBROUTINES

 EXTERNAL SSCAL

!

 YPRIME(1) = -2.0*Y(1) + Y(2)

 DO 10 I=2, N - 1

 YPRIME(I) = -2.0*Y(I) + Y(I-1) + Y(I+1)

 10 CONTINUE

 YPRIME(N) = -2.0*Y(N) + Y(N-1)

 CALL SSCAL (N, 1.0/HX, YPRIME, 1)

 RETURN

 END

!

 SUBROUTINE FCNJ (N, T, Y, DYPDY)

! SPECIFICATIONS FOR ARGUMENTS

IMSL MATH LIBRARY Chapter 5: Differential Equations 1037

 INTEGER N

 REAL T, Y(*), DYPDY(2,*)

! SPECIFICATIONS FOR COMMON /COMHX/

 COMMON /COMHX/ HX

 REAL HX

! SPECIFICATIONS FOR SUBROUTINES

 EXTERNAL SSET

!

 CALL SSET (N-1, 1.0/HX, DYPDY(1,2), 2)

 CALL SSET (N, -2.0/HX, DYPDY(2,1), 2)

 RETURN

 END

Output

 U(T=0.250)

 1 2 3 4 5 6 7 8

0.0000 0.2321 0.4414 0.6076 0.7142 0.7510 0.7142 0.6076

 9 10 11

0.4414 0.2321 0.0000

 U(T=0.500)

 1 2 3 4 5 6 7 8

0.0000 0.1607 0.3056 0.4206 0.4945 0.5199 0.4945 0.4206

 9 10 11

0.3056 0.1607 0.0000

 U(T=0.750)

 1 2 3 4 5 6 7 8

0.0000 0.1002 0.1906 0.2623 0.3084 0.3243 0.3084 0.2623

 9 10 11

0.1906 0.1002 0.0000

 U(T=1.000)

 1 2 3 4 5 6 7 8

0.0000 0.0546 0.1039 0.1431 0.1682 0.1768 0.1682 0.1431

 9 10 11

0.1039 0.0546 0.0000

BVPFD
Solves a (parameterized) system of differential equations with boundary conditions at two points,

using a variable order, variable step size finite difference method with deferred corrections.

1038 Chapter 5: Differential Equations IMSL MATH LIBRARY

Required Arguments

FCNEQN — User-supplied subroutine to evaluate derivatives. The usage is

CALL FCNEQN (N, T, Y, P, DYDT), where

N – Number of differential equations. (Input)

T – Independent variable, t. (Input)

Y – Array of size N containing the dependent variable values, y(t). (Input)

P – Continuation parameter, p. (Input)

See Comment 3.

DYDT – Array of size N containing the derivatives yʹ (t). (Output)

 The name FCNEQN must be declared EXTERNAL in the calling program.

FCNJAC — User-supplied subroutine to evaluate the Jacobian. The usage is

CALL FCNJAC (N, T, Y, P, DYPDY), where

N – Number of differential equations. (Input)

T – Independent variable, t. (Input)

Y – Array of size N containing the dependent variable values. (Input)

P – Continuation parameter, p. (Input)

See Comments 3.

DYPDY – N by N array containing the partial derivatives ai, j = ∂ fi ∕ ∂ yj

evaluated at (t, y). The values ai,j are returned in DYPDY(i, j). (Output)

 The name FCNJAC must be declared EXTERNAL in the calling program.

FCNBC — User-supplied subroutine to evaluate the boundary conditions. The usage is

CALL FCNBC (N, YLEFT, YRIGHT, P, H), where

N – Number of differential equations. (Input)

YLEFT – Array of size N containing the values of the dependent variable at the

left endpoint. (Input)

YRIGHT – Array of size N containing the values of the dependent variable at the

right endpoint. (Input)

P – Continuation parameter, p. (Input)

See Comment 3.

H – Array of size N containing the boundary condition residuals. (Output)

The boundary conditions are defined by hi = 0; for i = 1, …, N. The left

endpoint conditions must be defined first, then, the conditions involving

both endpoints, and finally the right endpoint conditions.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1039

 The name FCNBC must be declared EXTERNAL in the calling program.

FCNPEQ — User-supplied subroutine to evaluate the derivative of yʹ with respect to the

parameter p. The usage is

CALL FCNPEQ (N, T, Y, P, DYPDP), where

N – Number of differential equations. (Input)

T – Dependent variable, t. (Input)

Y – Array of size N containing the dependent variable values. (Input)

P – Continuation parameter, p. (Input)

See Comment 3.

DYPDP – Array of size N containing the derivative of yʹ evaluated at (t, y).

(Output)

 The name FCNPEQ must be declared EXTERNAL in the calling program.

FCNPBC — User-supplied subroutine to evaluate the derivative of the boundary

conditions with respect to the parameter p. The usage is

CALL FCNPBC (N, YLEFT, YRIGHT, P, H), where

N – Number of differential equations. (Input)

YLEFT – Array of size N containing the values of the dependent variable at the

left endpoint. (Input)

YRIGHT – Array of size N containing the values of the dependent variable at the

right endpoint. (Input)

P – Continuation parameter, p. (Input)

See Comment 3.

H – Array of size N containing the derivative of fi with respect to p. (Output)

 The name FCNPBC must be declared EXTERNAL in the calling program.

NLEFT — Number of initial conditions. (Input)

The value NLEFT must be greater than or equal to zero and less than N.

NCUPBC — Number of coupled boundary conditions. (Input)

The value NLEFT + NCUPBC must be greater than zero and less than or equal to N.

TLEFT — The left endpoint. (Input)

TRIGHT — The right endpoint. (Input)

PISTEP — Initial increment size for p. (Input)

If this value is zero, continuation will not be used in this problem. The routines FCNPEQ

and FCNPBC will not be called.

1040 Chapter 5: Differential Equations IMSL MATH LIBRARY

TOL — Relative error control parameter. (Input)

The computations stop when ABS(ERROR(J, I))/MAX(ABS(Y(J, I)), 1.0).LT.TOL for all

J = 1, …, N and I = 1, …, NGRID. Here, ERROR(J, I) is the estimated error in Y(J, I).

TINIT — Array of size NINIT containing the initial grid points. (Input)

YINIT — Array of size N by NINIT containing an initial guess for the values of Y at the

points in TINIT. (Input)

LINEAR — Logical .TRUE. if the differential equations and the boundary conditions are

linear. (Input)

MXGRID — Maximum number of grid points allowed. (Input)

NFINAL — Number of final grid points, including the endpoints. (Output)

TFINAL — Array of size MXGRID containing the final grid points. (Output)

Only the first NFINAL points are significant.

YFINAL — Array of size N by MXGRID containing the values of Y at the points in TFINAL.

(Output)

ERREST — Array of size N. (Output)

ERREST(J) is the estimated error in Y(J).

Optional Arguments

N — Number of differential equations. (Input)

Default: N = size (YINIT,1).

NINIT — Number of initial grid points, including the endpoints. (Input)

It must be at least 4.

Default: NINIT = size (TINIT,1).

LDYINI — Leading dimension of YINIT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDYINI = size (YINIT,1).

PRINT — Logical .TRUE. if intermediate output is to be printed. (Input)

Default: PRINT = .FALSE.

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDYFIN = size (YFINAL,1).

IMSL MATH LIBRARY Chapter 5: Differential Equations 1041

FORTRAN 90 Interface

Generic: CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, NLEFT, NCUPBC,

TLEFT, TRIGHT, PISTEP, TOL, TINIT, YINIT, LINEAR, MXGRID, NFINAL,

TFINAL, YFINAL, ERREST [,…])

Specific: The specific interface names are S_BVPFD and D_BVPFD.

FORTRAN 77 Interface

Single: CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, N, NLEFT, NCUPBC,

TLEFT, TRIGHT, PISTEP, TOL, NINIT, TINIT, YINIT, LDYINI, LINEAR, PRINT,

MXGRID, NFINAL, TFINAL, YFINAL, LDYFIN, ERREST)

Double: The double precision name is DBVPFD.

Description

The routine BVPFD is based on the subprogram PASVA3 by M. Lentini and V. Pereyra (see Pereyra

1978). The basic discretization is the trapezoidal rule over a nonuniform mesh. This mesh is

chosen adaptively, to make the local error approximately the same size everywhere. Higher-order

discretizations are obtained by deferred corrections. Global error estimates are produced to control

the computation. The resulting nonlinear algebraic system is solved by Newton‘s method with step

control. The linearized system of equations is solved by a special form of Gauss elimination that

preserves the sparseness.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2PFD/DB2PFD. The

reference is:

CALL B2PFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, N,

NLEFT, NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, NINIT,

TINIT, YINIT, LDYINI, LINEAR, PRINT, MXGRID, NFINAL,

TFINAL, YFINAL, LDYFIN, ERREST, RWORK, IWORK)

The additional arguments are as follows:

RWORK — Floating-point work array of size N(3N * MXGRID + 4N + 1)
+ MXGRID * (7N + 2).

IWORK — Integer work array of size 2N * MXGRID + N + MXGRID.

2. Informational errors

Type Code

4 1 More than MXGRID grid points are needed to solve the problem.

4 2 Newton‘s method diverged.

3 3 Newton‘s method reached roundoff error level.

1042 Chapter 5: Differential Equations IMSL MATH LIBRARY

3. If the value of PISTEP is greater than zero, then the routine BVPFD assumes that the

user has embedded the problem into a one-parameter family of problems:

yʹ = yʹ(t, y, p)

h(ytleft, ytright, p) = 0

 such that for p = 0 the problem is simple. For p = 1, the original problem is recovered.

The routine BVPFD automatically attempts to increment from p = 0 to p = 1. The value

PISTEP is the beginning increment used in this continuation. The increment will

usually be changed by routine BVPFD, but an arbitrary minimum of 0.01 is imposed.

4. The vectors TINIT and TFINAL may be the same.

5. The arrays YINIT and YFINAL may be the same.

Example 1

This example solves the third-order linear equation

2 siny y y y t

subject to the boundary conditions y(0) = y(2π) and yʹ(0) = yʹ(2π) = 1. (Its solution is y = sin t.)

To use BVPFD, the problem is reduced to a system of first-order equations by defining

y1 = y, y2= yʹ and y3 = y″. The resulting system is

1 2 2

2 3 1 1

3 3 2 1 2

0 1 0

0 2 0

2 sin 2 1 0

y y y

y y y y

y y y y t y

Note that there is one boundary condition at the left endpoint t = 0 and one boundary condition

coupling the left and right endpoints. The final boundary condition is at the right endpoint. The

total number of boundary conditions must be the same as the number of equations (in this case 3).

Note that since the parameter p is not used in the call to BVPFD, the routines FCNPEQ and FCNPBC

are not needed. Therefore, in the call to BVPFD, FCNEQN and FCNBC were used in place of FCNPEQ

and FCNPBC.

 USE BVPFD_INT

 USE UMACH_INT

 USE CONST_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR PARAMETERS

 INTEGER LDYFIN, LDYINI, MXGRID, NEQNS, NINIT

 PARAMETER (MXGRID=45, NEQNS=3, NINIT=10, LDYFIN=NEQNS, &

 LDYINI=NEQNS)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I, J, NCUPBC, NFINAL, NLEFT, NOUT

 REAL ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TINIT(NINIT), &

IMSL MATH LIBRARY Chapter 5: Differential Equations 1043

 TLEFT, TOL, TRIGHT, YFINAL(LDYFIN,MXGRID), &

 YINIT(LDYINI,NINIT)

 LOGICAL LINEAR, PRINT

! SPECIFICATIONS FOR INTRINSICS

 INTRINSIC FLOAT

 REAL FLOAT

! SPECIFICATIONS FOR SUBROUTINES

! SPECIFICATIONS FOR FUNCTIONS

 EXTERNAL FCNBC, FCNEQN, FCNJAC

! Set parameters

 NLEFT = 1

 NCUPBC = 1

 TOL = .001

 TLEFT = 0.0

 TRIGHT = CONST('PI')

 TRIGHT = 2.0*TRIGHT

 PISTEP = 0.0

 PRINT = .FALSE.

 LINEAR = .TRUE.

! Define TINIT

 DO 10 I=1, NINIT

 TINIT(I) = TLEFT + (I-1)*(TRIGHT-TLEFT)/FLOAT(NINIT-1)

 10 CONTINUE

! Set YINIT to zero

 YINIT = 0.0E0

! Solve problem

 CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNEQN, FCNBC, NLEFT, &

 NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT, &

 YINIT, LINEAR, MXGRID, NFINAL, &

 TFINAL, YFINAL, ERREST)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99997)

 WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1, &

 NFINAL)

 WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS)

99997 FORMAT (4X, 'I', 7X, 'T', 14X, 'Y1', 13X, 'Y2', 13X, 'Y3')

99998 FORMAT (I5, 1P4E15.6)

99999 FORMAT (' Error estimates', 4X, 1P3E15.6)

 END

 SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDX)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL T, P, Y(NEQNS), DYDX(NEQNS)

! SPECIFICATIONS FOR INTRINSICS

 INTRINSIC SIN

 REAL SIN

! Define PDE

 DYDX(1) = Y(2)

 DYDX(2) = Y(3)

 DYDX(3) = 2.0*Y(3) - Y(2) + Y(1) + SIN(T)

 RETURN

 END

 SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS)

1044 Chapter 5: Differential Equations IMSL MATH LIBRARY

! Define d(DYDX)/dY

 DYPDY(1,1) = 0.0

 DYPDY(1,2) = 1.0

 DYPDY(1,3) = 0.0

 DYPDY(2,1) = 0.0

 DYPDY(2,2) = 0.0

 DYPDY(2,3) = 1.0

 DYPDY(3,1) = 1.0

 DYPDY(3,2) = -1.0

 DYPDY(3,3) = 2.0

 RETURN

 END

 SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS)

! Define boundary conditions

 F(1) = YLEFT(2) - 1.0

 F(2) = YLEFT(1) - YRIGHT(1)

 F(3) = YRIGHT(2) - 1.0

 RETURN

 END

Output

 I T Y1 Y2 Y3

 1 0.000000E+00 -1.123191E-04 1.000000E+00 6.242319E-05

 2 3.490659E-01 3.419107E-01 9.397087E-01 -3.419580E-01

 3 6.981317E-01 6.426908E-01 7.660918E-01 -6.427230E-01

 4 1.396263E+00 9.847531E-01 1.737333E-01 -9.847453E-01

 5 2.094395E+00 8.660529E-01 -4.998747E-01 -8.660057E-01

 6 2.792527E+00 3.421830E-01 -9.395474E-01 -3.420648E-01

 7 3.490659E+00 -3.417234E-01 -9.396111E-01 3.418948E-01

 8 4.188790E+00 -8.656880E-01 -5.000588E-01 8.658733E-01

 9 4.886922E+00 -9.845794E-01 1.734571E-01 9.847518E-01

10 5.585054E+00 -6.427721E-01 7.658258E-01 6.429526E-01

11 5.934120E+00 -3.420819E-01 9.395434E-01 3.423986E-01

12 6.283185E+00 -1.123186E-04 1.000000E+00 6.743190E-04

Error estimates 2.840430E-04 1.792939E-04 5.588399E-04

Additional Examples

Example 2

In this example, the following nonlinear problem is solved:

y″ − y
3
 + (1 + sin

2
t) sin t = 0

with y(0) = y(π) = 0. Its solution is y = sin t. As in Example 1, this equation is reduced to a system

of first-order differential equations by defining y1 = y and y2= yʹ. The resulting system is

IMSL MATH LIBRARY Chapter 5: Differential Equations 1045

1 2 1

3 2
2 1 1

0 0

1 sin sin 0

y y y

y y t t y

In this problem, there is one boundary condition at the left endpoint and one at the right endpoint;

there are no coupled boundary conditions.

Note that since the parameter p is not used, in the call to BVPFD the routines FCNPEQ and FCNPBC

are not needed. Therefore, in the call to BVPFD, FCNEQN and FCNBC were used in place of FCNPEQ

and FCNPBC.

 USE BVPFD_INT

 USE UMACH_INT

 USE CONST_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR PARAMETERS

 INTEGER LDYFIN, LDYINI, MXGRID, NEQNS, NINIT

 PARAMETER (MXGRID=45, NEQNS=2, NINIT=12, LDYFIN=NEQNS, &

 LDYINI=NEQNS)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I, J, NCUPBC, NFINAL, NLEFT, NOUT

 REAL ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TINIT(NINIT), &

 TLEFT, TOL, TRIGHT, YFINAL(LDYFIN,MXGRID), &

 YINIT(LDYINI,NINIT)

 LOGICAL LINEAR, PRINT

! SPECIFICATIONS FOR INTRINSICS

 INTRINSIC FLOAT

 REAL FLOAT

! SPECIFICATIONS FOR FUNCTIONS

 EXTERNAL FCNBC, FCNEQN, FCNJAC

! Set parameters

 NLEFT = 1

 NCUPBC = 0

 TOL = .001

 TLEFT = 0.0

 TRIGHT = CONST('PI')

 PISTEP = 0.0

 PRINT = .FALSE.

 LINEAR = .FALSE.

! Define TINIT and YINIT

 DO 10 I=1, NINIT

 TINIT(I) = TLEFT + (I-1)*(TRIGHT-TLEFT)/FLOAT(NINIT-1)

 YINIT(1,I) = 0.4*(TINIT(I)-TLEFT)*(TRIGHT-TINIT(I))

 YINIT(2,I) = 0.4*(TLEFT-TINIT(I)+TRIGHT-TINIT(I))

 10 CONTINUE

! Solve problem

 CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNEQN, FCNBC, NLEFT, &

 NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT, &

 YINIT, LINEAR, MXGRID, NFINAL, &

 TFINAL, YFINAL, ERREST)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99997)

 WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1, &

1046 Chapter 5: Differential Equations IMSL MATH LIBRARY

 NFINAL)

 WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS)

99997 FORMAT (4X, 'I', 7X, 'T', 14X, 'Y1', 13X, 'Y2')

99998 FORMAT (I5, 1P3E15.6)

99999 FORMAT (' Error estimates', 4X, 1P2E15.6)

 END

 SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDT)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL T, P, Y(NEQNS), DYDT(NEQNS)

! SPECIFICATIONS FOR INTRINSICS

 INTRINSIC SIN

 REAL SIN

! Define PDE

 DYDT(1) = Y(2)

 DYDT(2) = Y(1)**3 - SIN(T)*(1.0+SIN(T)**2)

 RETURN

 END

 SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS)

! Define d(DYDT)/dY

 DYPDY(1,1) = 0.0

 DYPDY(1,2) = 1.0

 DYPDY(2,1) = 3.0*Y(1)**2

 DYPDY(2,2) = 0.0

 RETURN

 END

 SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS)

! Define boundary conditions

 F(1) = YLEFT(1)

 F(2) = YRIGHT(1)

 RETURN

 END

Output

 I T Y1 Y2

 1 0.000000E+00 0.000000E+00 9.999277E-01

 2 2.855994E-01 2.817682E-01 9.594315E-01

 3 5.711987E-01 5.406458E-01 8.412407E-01

 4 8.567980E-01 7.557380E-01 6.548904E-01

 5 1.142397E+00 9.096186E-01 4.154530E-01

 6 1.427997E+00 9.898143E-01 1.423307E-01

 7 1.713596E+00 9.898143E-01 -1.423307E-01

 8 1.999195E+00 9.096185E-01 -4.154530E-01

 9 2.284795E+00 7.557380E-01 -6.548903E-01

10 2.570394E+00 5.406460E-01 -8.412405E-01

11 2.855994E+00 2.817683E-01 -9.594313E-01

12 3.141593E+00 0.000000E+00 -9.999274E-01

Error estimates 3.906105E-05 7.124186E-05

IMSL MATH LIBRARY Chapter 5: Differential Equations 1047

Example 3

In this example, the following nonlinear problem is solved:

2 /3 8
3 40 1 1

9 2 2
y y t t

with y(0) = y(1) = π/2. As in the previous examples, this equation is reduced to a system of first-

order differential equations by defining y1 = y and y2 = yʹ. The resulting system is

1 2 1

2 / 3 8
3

2 1 1

0 / 2

40 1 1
1 / 2

9 2 2

y y y

y y t t y

The problem is embedded in a family of problems by introducing the parameter p and by changing

the second differential equation to

2/3 8
3

2 1

40 1 1

9 2 2
y py t t

At p = 0, the problem is linear; and at p = 1, the original problem is recovered. The derivatives

 ∂yʹ/∂p must now be specified in the subroutine FCNPEQ. The derivatives ∂f/∂p are zero in

FCNPBC.

 USE BVPFD_INT

 USE UMACH_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR PARAMETERS

 INTEGER LDYFIN, LDYINI, MXGRID, NEQNS, NINIT

 PARAMETER (MXGRID=45, NEQNS=2, NINIT=5, LDYFIN=NEQNS, &

 LDYINI=NEQNS)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER NCUPBC, NFINAL, NLEFT, NOUT

 REAL ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TLEFT, TOL, &

 XRIGHT, YFINAL(LDYFIN,MXGRID)

 LOGICAL LINEAR, PRINT

! SPECIFICATIONS FOR SAVE VARIABLES

 INTEGER I, J

 REAL TINIT(NINIT), YINIT(LDYINI,NINIT)

 SAVE I, J, TINIT, YINIT

! SPECIFICATIONS FOR FUNCTIONS

 EXTERNAL FCNBC, FCNEQN, FCNJAC, FCNPBC, FCNPEQ

!

 DATA TINIT/0.0, 0.4, 0.5, 0.6, 1.0/

 DATA ((YINIT(I,J),J=1,NINIT),I=1,NEQNS)/0.15749, 0.00215, 0.0, &

 0.00215, 0.15749, -0.83995, -0.05745, 0.0, 0.05745, 0.83995/

! Set parameters

 NLEFT = 1

 NCUPBC = 0

 TOL = .001

 TLEFT = 0.0

1048 Chapter 5: Differential Equations IMSL MATH LIBRARY

 XRIGHT = 1.0

 PISTEP = 0.1

 PRINT = .FALSE.

 LINEAR = .FALSE.

!

 CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, NLEFT, &

 NCUPBC, TLEFT, XRIGHT, PISTEP, TOL, TINIT, &

 YINIT, LINEAR, MXGRID, NFINAL,TFINAL, YFINAL, ERREST)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99997)

 WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1, &

 NFINAL)

 WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS)

99997 FORMAT (4X, 'I', 7X, 'T', 14X, 'Y1', 13X, 'Y2')

99998 FORMAT (I5, 1P3E15.6)

99999 FORMAT (' Error estimates', 4X, 1P2E15.6)

 END

 SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDT)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL T, P, Y(NEQNS), DYDT(NEQNS)

! Define PDE

 DYDT(1) = Y(2)

 DYDT(2) = P*Y(1)**3 + 40./9.*((T-0.5)**2)**(1./3.) - (T-0.5)**8

 RETURN

 END

 SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS)

! Define d(DYDT)/dY

 DYPDY(1,1) = 0.0

 DYPDY(1,2) = 1.0

 DYPDY(2,1) = P*3.*Y(1)**2

 DYPDY(2,2) = 0.0

 RETURN

 END

 SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)

 USE CONST_INT

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS)

! SPECIFICATIONS FOR LOCAL VARIABLES

 REAL PI

! Define boundary conditions

 PI = CONST('PI')

 F(1) = YLEFT(1) - PI/2.0

 F(2) = YRIGHT(1) - PI/2.0

 RETURN

 END

 SUBROUTINE FCNPEQ (NEQNS, T, Y, P, DYPDP)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL T, P, Y(NEQNS), DYPDP(NEQNS)

! Define d(DYDT)/dP

IMSL MATH LIBRARY Chapter 5: Differential Equations 1049

 DYPDP(1) = 0.0

 DYPDP(2) = Y(1)**3

 RETURN

 END

 SUBROUTINE FCNPBC (NEQNS, YLEFT, YRIGHT, P, DFDP)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), DFDP(NEQNS)

! SPECIFICATIONS FOR SUBROUTINES

 EXTERNAL SSET

! Define dF/dP

 CALL SSET (NEQNS, 0.0, DFDP, 1)

 RETURN

 END

Output

 I T Y1 Y2

 1 0.000000E+00 1.570796E+00 -1.949336E+00

 2 4.444445E-02 1.490495E+00 -1.669567E+00

 3 8.888889E-02 1.421951E+00 -1.419465E+00

 4 1.333333E-01 1.363953E+00 -1.194307E+00

 5 2.000000E-01 1.294526E+00 -8.958461E-01

 6 2.666667E-01 1.243628E+00 -6.373191E-01

 7 3.333334E-01 1.208785E+00 -4.135206E-01

 8 4.000000E-01 1.187783E+00 -2.219351E-01

 9 4.250000E-01 1.183038E+00 -1.584200E-01

10 4.500000E-01 1.179822E+00 -9.973146E-02

11 4.625000E-01 1.178748E+00 -7.233893E-02

12 4.750000E-01 1.178007E+00 -4.638248E-02

13 4.812500E-01 1.177756E+00 -3.399763E-02

14 4.875000E-01 1.177582E+00 -2.205547E-02

15 4.937500E-01 1.177480E+00 -1.061177E-02

16 5.000000E-01 1.177447E+00 -1.479182E-07

17 5.062500E-01 1.177480E+00 1.061153E-02

18 5.125000E-01 1.177582E+00 2.205518E-02

19 5.187500E-01 1.177756E+00 3.399727E-02

20 5.250000E-01 1.178007E+00 4.638219E-02

21 5.375000E-01 1.178748E+00 7.233876E-02

22 5.500000E-01 1.179822E+00 9.973124E-02

23 5.750000E-01 1.183038E+00 1.584199E-01

24 6.000000E-01 1.187783E+00 2.219350E-01

25 6.666667E-01 1.208786E+00 4.135205E-01

26 7.333333E-01 1.243628E+00 6.373190E-01

27 8.000000E-01 1.294526E+00 8.958461E-01

28 8.666667E-01 1.363953E+00 1.194307E+00

29 9.111111E-01 1.421951E+00 1.419465E+00

30 9.555556E-01 1.490495E+00 1.669566E+00

31 1.000000E+00 1.570796E+00 1.949336E+00

Error estimates 3.448358E-06 5.549869E-05

1050 Chapter 5: Differential Equations IMSL MATH LIBRARY

BVPMS

Solves a (parameterized) system of differential equations with boundary conditions at two points,

using a multiple-shooting method.

Required Arguments

FCNEQN — User-supplied subroutine to evaluate derivatives. The usage is

CALL FCNEQN (NEQNS, T, Y, P, DYDT), where

NEQNS – Number of equations. (Input)

T – Independent variable, t. (Input)

Y – Array of length NEQNS containing the dependent variable. (Input)

P – Continuation parameter used in solving highly nonlinear problems. (Input)

See Comment 4.

DYDT – Array of length NEQNS containing yʹ at T. (Output)

 The name FCNEQN must be declared EXTERNAL in the calling program.

FCNJAC — User-supplied subroutine to evaluate the Jacobian. The usage is

CALL FCNJAC (NEQNS, T, Y, P, DYPDY), where

NEQNS – Number of equations. (Input)

T – Independent variable. (Input)

Y – Array of length NEQNS containing the dependent variable. (Input)

P – Continuation parameter used in solving highly nonlinear problems. (Input)

See Comment 4.

DYPDY – Array of size NEQNS by NEQNS containing the Jacobian. (Output)

The entry DYPDY(i, j) contains the partial derivative ∂ fi∕∂ yj evaluated at

(t, y).

 The name FCNJAC must be declared EXTERNAL in the calling program.

FCNBC — User-supplied subroutine to evaluate the boundary conditions. The usage is

CALL FCNBC (NEQNS, YLEFT, YRIGHT, P, H), where

NEQNS – Number of equations. (Input)

YLEFT – Array of length NEQNS containing the values of Y at TLEFT. (Input)

YRIGHT – Array of length NEQNS containing the values of Y at TRIGHT. (Input)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1051

P – Continuation parameter used in solving highly nonlinear problems. (Input)

See Comment 4.

H – Array of length NEQNS containing the boundary function values. (Output)

The computed solution satisfies (within BTOL) the conditions hi = 0, i = 1,

…, NEQNS.

 The name FCNBC must be declared EXTERNAL in the calling program.

TLEFT — The left endpoint. (Input)

TRIGHT — The right endpoint. (Input)

NMAX — Maximum number of shooting points to be allowed. (Input)

If NINIT is nonzero, then NMAX must equal NINIT. It must be at least 2.

NFINAL — Number of final shooting points, including the endpoints. (Output)

TFINAL — Vector of length NMAX containing the final shooting points. (Output)

Only the first NFINAL points are significant.

YFINAL — Array of size NEQNS by NMAX containing the values of Y at the points in TFINAL.

(Output)

Optional Arguments

NEQNS — Number of differential equations. (Input)

DTOL — Differential equation error tolerance. (Input)

An attempt is made to control the local error in such a way that the global error is

proportional to DTOL.

Default: DTOL = 1.0e-4.

BTOL — Boundary condition error tolerance. (Input)

The computed solution satisfies the boundary conditions, within BTOL tolerance.

Default: BTOL = 1.0e-4.

MAXIT — Maximum number of Newton iterations allowed. (Input)

Iteration stops if convergence is achieved sooner. Suggested values are MAXIT = 2 for

linear problems and MAXIT = 9 for nonlinear problems.

Default: MAXIT = 9.

NINIT — Number of shooting points supplied by the user. (Input)

It may be 0. A suggested value for the number of shooting points is 10.

Default: NINIT = 0.

TINIT — Vector of length NINIT containing the shooting points supplied by the user.

(Input)

If NINIT = 0, then TINIT is not referenced and the routine chooses all of the shooting

points. This automatic selection of shooting points may be expensive and should only

1052 Chapter 5: Differential Equations IMSL MATH LIBRARY

be used for linear problems. If NINIT is nonzero, then the points must be an increasing

sequence with TINIT(1) = TLEFT and TINIT(NINIT) = TRIGHT. By default, TINIT is

not used.

YINIT — Array of size NEQNS by NINIT containing an initial guess for the values of Y at the

points in TINIT. (Input)

YINIT is not referenced if NINIT = 0. By default, YINIT is not used.

LDYINI — Leading dimension of YINIT exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDYINI = size (YINIT ,1).

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDYFIN = size (YFINAL,1).

FORTRAN 90 Interface

Generic: CALL BVPMS (FCNEQN, FCNJAC, FCNBC, TLEFT, TRIGHT, NMAX, NFINAL,

TFINAL, YFINAL [,…])

Specific: The specific interface names are S_BVPMS and D_BVPMS.

FORTRAN 77 Interface

Single: CALL BVPMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT, DTOL, BTOL,

MAXIT, NINIT, TINIT, YINIT, LDYINI, NMAX, NFINAL, TFINAL, YFINAL,
LDYFIN)

Double: The double precision name is DBVPMS.

Description

Define N = NEQNS, M = NFINAL, ta = TLEFT and tb = TRIGHT. The routine BVPMS uses a multiple-

shooting technique to solve the differential equation system yʹ = f (t, y) with boundary conditions

of the form

hk(y1 (ta), …, yN (ta), y1 (tb), …, yN (tb)) = 0 for k = 1, …, N

A modified version of IVPRK is used to compute the initial-value problem at each ―shot.‖ If there

are M shooting points (including the endpoints ta and tb), then a system of NM simultaneous

nonlinear equations must be solved. Newton‘s method is used to solve this system, which has a

Jacobian matrix with a ―periodic band‖ structure. Evaluation of the NM functions and the

NM × NM (almost banded) Jacobian for one iteration of Newton‘s method is accomplished in one

pass from ta to tb of the modified IVPRK, operating on a system of N(N + 1) differential equations.

For most problems, the total amount of work should not be highly dependent on M. Multiple

shooting avoids many of the serious ill-conditioning problems that plague simple shooting

methods. For more details on the algorithm, see Sewell (1982).

IMSL MATH LIBRARY Chapter 5: Differential Equations 1053

The boundary functions should be scaled so that all components hk are of comparable magnitude

since the absolute error in each is controlled.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2PMS/DB2PMS. The

reference is:

CALL B2PMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT,

DTOL, BTOL, MAXIT, NINIT, TINIT, YINIT, LDYINI, NMAX,

NFINAL, TFINAL, YFINAL, LDYFIN, WORK, IWK)

The additional arguments are as follows:

WORK — Work array of length NEQNS * (NEQNS + 1)(NMAX + 12) +
NEQNS + 30.

IWK — Work array of length NEQNS.

2. Informational errors

Type Code

1 5 Convergence has been achieved; but to get acceptably accurate

approximations to y(t), it is often necessary to start an initial-value

solver, for example IVPRK, at the nearest TFINAL(i) point to t with t

≥ TFINAL (i). The vectors YFINAL(j, i), j = 1, …, NEQNS are used as

the initial values.

4 1 The initial-value integrator failed. Relax the tolerance DTOL or see

Comment 3.

4 2 More than NMAX shooting points are needed for stability.

4 3 Newton‘s iteration did not converge in MAXIT iterations. If the

problem is linear, do an extra iteration. If this error still occurs,

check that the routine FCNJAC is giving the correct derivatives. If

this does not fix the problem, see Comment 3.

4 4 Linear-equation solver failed. The problem may not have a unique

solution, or the problem may be highly nonlinear. In the latter case,

see Comment 3.

3. Many linear problems will be successfully solved using program-selected shooting

points. Nonlinear problems may require user effort and input data. If the routine fails,

then increase NMAX or parameterize the problem. With many shooting points the

program essentially uses a finite-difference method, which has less trouble with

nonlinearities than shooting methods. After a certain point, however, increasing the

number of points will no longer help convergence. To parameterize the problem, see

Comment 4.

4. If the problem to be solved is highly nonlinear, then to obtain convergence it may be

necessary to embed the problem into a one-parameter family of boundary value

1054 Chapter 5: Differential Equations IMSL MATH LIBRARY

problems, yʹ = f(t, y, p), h(y(ta, tb, p)) = 0 such that for p = 0, the problem is simple,

e.g., linear; and for p = 1, the stated problem is solved. The routine BVPMS/DBVPMS

automatically moves the parameter from p = 0 toward p = 1.

5. This routine is not recommended for stiff systems of differential equations.

Example

The differential equations that model an elastic beam are (see Washizu 1968, pages 142−143):

 2
0

0

0

2 0

0

xx

xx

x x

x

x

NM
M L

EI

EIW M

EA U W N

N

/

where U is the axial displacement, W is the transverse displacement, N is the axial force, M is the

bending moment, E is the elastic modulus, I is the moment of inertia, A0
 is the cross-sectional

area, and L(x) is the transverse load.

Assume we have a clamped cylindrical beam of radius 0.1in, a length of 10in, and an elastic

modulus E = 10.6 × 10
6
 lb/in

2
. Then, I = 0.784 × 10-4

, and A0= π10-2
 in

2
, and the boundary

conditions are U = W = Wx= 0 at each end. If we let y1= U, y2 = N/EA0, y3 = W, y4 = Wx,

y5= M/EI , and y6 = Mx/EI, then the above nonlinear equations can be written as a system of six

first-order equations.

2
4

1 2

2

3 4

4 5

5 6

0 2 5
6

2

0

y
y y

y

y y

y y

y y

xy y
y

LA

I EI

The boundary conditions are y1 = y3 = y4 = 0 at x = 0 and at x = 10. The loading function is

L(x) = −2, if 3 ≤ x ≤ 7, and is zero elsewhere.

The material parameters, A0 = A0, I = AI, and E, are passed to the evaluation subprograms using

the common block PARAM.

 USE BVPMS_INT

 USE UMACH_INT

 IMPLICIT NONE

IMSL MATH LIBRARY Chapter 5: Differential Equations 1055

 INTEGER LDY, NEQNS, NMAX

 PARAMETER (NEQNS=6, NMAX=21, LDY=NEQNS)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I, MAXIT, NFINAL, NINIT, NOUT

 REAL TOL, X(NMAX), XLEFT, XRIGHT, Y(LDY,NMAX)

! SPECIFICATIONS FOR COMMON /PARAM/

 COMMON /PARAM/ A0, A1, E

 REAL A0, A1, E

! SPECIFICATIONS FOR INTRINSICS

 INTRINSIC REAL

 REAL REAL

! SPECIFICATIONS FOR SUBROUTINES

 EXTERNAL FCNBC, FCNEQN, FCNJAC

! Set material parameters

 A0 = 3.14E-2

 A1 = 0.784E-4

 E = 10.6E6

! Set parameters for BVPMS

 XLEFT = 0.0

 XRIGHT = 10.0

 MAXIT = 19

 NINIT = NMAX

 Y = 0.0E0

! Define the shooting points

 DO 10 I=1, NINIT

 X(I) = XLEFT + REAL(I-1)/REAL(NINIT-1)*(XRIGHT-XLEFT)

 10 CONTINUE

! Solve problem

 CALL BVPMS (FCNEQN, FCNJAC, FCNBC, XLEFT, XRIGHT, NMAX, NFINAL, &

 X, Y, MAXIT=MAXIT, NINIT=NINIT, TINIT=X, YINIT=Y)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,'(26X,A/12X,A,10X,A,7X,A)') 'Displacement', &

 'X', 'Axial', 'Transvers'// &

 'e'

 WRITE (NOUT,'(F15.1,1P2E15.3)') (X(I),Y(1,I),Y(3,I),I=1,NFINAL)

 END

 SUBROUTINE FCNEQN (NEQNS, X, Y, P, DYDX)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL X, P, Y(NEQNS), DYDX(NEQNS)

! SPECIFICATIONS FOR LOCAL VARIABLES

 REAL FORCE

! SPECIFICATIONS FOR COMMON /PARAM/

 COMMON /PARAM/ A0, A1, E

 REAL A0, A1, E

! Define derivatives

 FORCE = 0.0

 IF (X.GT.3.0 .AND. X.LT.7.0) FORCE = -2.0

 DYDX(1) = Y(2) - P*0.5*Y(4)**2

 DYDX(2) = 0.0

 DYDX(3) = Y(4)

 DYDX(4) = -Y(5)

 DYDX(5) = Y(6)

 DYDX(6) = P*A0*Y(2)*Y(5)/A1 - FORCE/E/A1

 RETURN

1056 Chapter 5: Differential Equations IMSL MATH LIBRARY

 END

 SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS)

! SPECIFICATIONS FOR COMMON /PARAM/

 COMMON /PARAM/ A0, A1, E

 REAL A0, A1, E

! Define boundary conditions

 F(1) = YLEFT(1)

 F(2) = YLEFT(3)

 F(3) = YLEFT(4)

 F(4) = YRIGHT(1)

 F(5) = YRIGHT(3)

 F(6) = YRIGHT(4)

 RETURN

 END

 SUBROUTINE FCNJAC (NEQNS, X, Y, P, DYPDY)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER NEQNS

 REAL X, P, Y(NEQNS), DYPDY(NEQNS,NEQNS)

! SPECIFICATIONS FOR COMMON /PARAM/

 COMMON /PARAM/ A0, A1, E

 REAL A0, A1, E

! SPECIFICATIONS FOR SUBROUTINES

! Define partials, d(DYDX)/dY

 DYPDY = 0.0E0

 DYPDY(1,2) = 1.0

 DYPDY(1,4) = -P*Y(4)

 DYPDY(3,4) = 1.0

 DYPDY(4,5) = -1.0

 DYPDY(5,6) = 1.0

 DYPDY(6,2) = P*Y(5)*A0/A1

 DYPDY(6,5) = P*Y(2)*A0/A1

 RETURN

 END

Output

 Displacement

 X Axial Transverse

 0.0 1.631E-11 -8.677E-10

 5.0 1.914E-05 -1.273E-03

 10.0 2.839E-05 -4.697E-03

 15.0 2.461E-05 -9.688E-03

 20.0 1.008E-05 -1.567E-02

 25.0 -9.550E-06 -2.206E-02

 30.0 -2.721E-05 -2.830E-02

 35.0 -3.644E-05 -3.382E-02

 40.0 -3.379E-05 -3.811E-02

 45.0 -2.016E-05 -4.083E-02

 50.0 -4.414E-08 -4.176E-02

 55.0 2.006E-05 -4.082E-02

 60.0 3.366E-05 -3.810E-02

 65.0 3.627E-05 -3.380E-02

IMSL MATH LIBRARY Chapter 5: Differential Equations 1057

 70.0 2.702E-05 -2.828E-02

 75.0 9.378E-06 -2.205E-02

 80.0 -1.021E-05 -1.565E-02

 85.0 -2.468E-05 -9.679E-03

 90.0 -2.842E-05 -4.692E-03

 95.0 -1.914E-05 -1.271E-03

100.0 0.000E+00 0.000E+00

DAESL

Solves a first order differential-algebraic system of equations, g(t, y, yʹ) = 0, with optional

additional constraints and user-defined linear system solver.

Note: DAESL replaces deprecated routine DASPG.

Required Arguments

T — Independent variable, t. (Input/Output)

Set T to the starting value t0 at the first step. On output, T is set to the value to which

the integration has advanced. Normally, this new value is TEND.

TEND — Final value of the independent variable. (Input)

Update this value when re-entering after output with IDO = 2.

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal re-entry after obtaining output

3 Release workspace, last call

 The user sets IDO = 1 on the first call at T = t0. The routine then sets IDO =2, and this

value is used for all but the last entry, which is made with IDO = 3.

Y — Array of size NEQ containing the dependent variable values, y. (Input/Output)

On input, Y must contain initial values. On output, Y contains the computed solution at

TEND.

YPRIME — Array of size NEQ containing derivative values, yʹ. (Input/Output)

This array must contain initial values, but they need not be such that g(t, y, yʹ) = 0 at

 t= t0. See the description of parameter IYPR for more information.

LinkedDocuments/daspg.pdf

1058 Chapter 5: Differential Equations IMSL MATH LIBRARY

GCN — User-supplied subroutine to evaluate g(t, y, yʹ), and any constraints. Also partial

derivative evaluations and optionally linear solving steps occur here. The equations

g(t, y, yʹ) = 0 consist of NEQ differential-algebraic equations of the form.

1 1(, , , , , ,) (, , ') 0, 1, ,i NEQ NEQ i NEQF t y y y y F t y y i

The routine GCN is also used to evaluate the NCON additional algebraic constraints

1 ,(, , ,) (,) 0, 1, , 0i NEQ i NCON NCONG t y y G t y i

The usage is CALL GCN (T, Y, YPRIME, DELTA, D, LDD, IRES [,…]) where

Required Arguments

T — Integration variable t. (Input)

Y — Array of NEQ dependent variables, y. (Input)

YPRIME — Array of NEQ derivative values, yʹ. (Input)

DELTA — Output array of length MAX(NEQ, NCON) containing residuals. See

parameter IRES for definition. (Input/Output)

D — Output array dimensioned D(LDD,NEQ), containing partial derivatives. See

parameter IRES for definition. (Input/Output)

LDD — Leading dimension of D. (Input)

IRES — Flag indicating what is to be calculated in the user routine, GCN.

(Input/Output)

Note: IRES is input only, except when IRES = 6. It is input/output when

IRES = 6. For a detailed description see the table below.

The code calls GCN with IRES = 0, 1, 2, 3, 4, 5, 6, or 7, defined as follows:

IRES
Value

Explanation

0 Do initializations, if any are required.

1 Compute DELTA(i) = (, , ')iF t y y , the i-th residual, for i=1,…,NEQ.

2 (Required only if IUJAC=1 and MATSTR = 0 or 1).

Compute D(i, j) =
(, , ')i

j

F t y y

y

, the partial derivative matrix. These

are derivatives of iF with respect to jy , for i =1,…, NEQ and

 j = 1,…,NEQ.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1059

IRES
Value

Explanation

3 (Required only if IUJAC =1 and MATSTR = 0 or 1).

Compute D(i, j) =
(, , ')i

j

F t y y

y

, the partial derivative of

iF with

respect to jy , for i =1,…,NEQ and j =1,…,NEQ.

4 (Required only if IYPR=2).

Compute DELTA(i) =

(, , ')iF t y y

t

 , the partial derivative of iF

with respect to t , for i =1,…,NEQ.

5 (Required only if NCON > 0).

Compute DELTA(i) = (,)iG t y , the i-th residual in the additional

constraints, for i =1,…,NCON, and D(i, j) =
(,)i

j

G t y

y

, the partial

derivative of
iG with respect to jy for i =1,…,NCON and j =1,…,

NEQ.

6 (Required only if ISOLVE = 1.)

If MATSTR = 2, the user must compute the matrix '

F F
A cj

y y

 ,

where cj = DELTA (1), and save this matrix in any user-defined

format. This is for later use when

IRES = 7. The matrix may also be factored in this step, if desired.

The array D is not referenced if MATSTR = 2.

If MATSTR = 0 or 1, the A matrix will already be defined and passed

to GCN in the array D, which will be in full matrix format if

MATSTR = 0, and band matrix format, if MATSTR = 1.

The user may factor D in this step, if desired.

Note: For MATSTR = 0, 1, or 2, the user must set IRES = 0 to signal

that A is nonsingular. If A is nearly singular, leave IRES = 6. This

results in using a smaller step-size internally.

7 (Required only if ISOLVE = 1.) The user must solve Ax b , where

b is passed to GCN in the vector DELTA, and x is returned in DELTA.

If MATSTR = 2, A is the matrix which was computed and saved at the

call with IRES = 6; if MATSTR = 0 or 1, A is passed to GCN in the

array D. In either case, the A matrix will remain factored if the user

factored it when IRES = 6.

Optional Arguments

1060 Chapter 5: Differential Equations IMSL MATH LIBRARY

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional integer or floating point information to or from the user-supplied

subroutine. For a description of this argument see FCN_DATA below.

(Input/Output)

 GCN must be declared EXTERNAL in the calling program.

Optional Arguments

NEQ — Number of dependent variables, and number of differential/algebraic equations, not

counting any additional constraints. (Input)

Default: NEQ = size (Y).

NCON — Number of additional constraints. (Input)

Default: NCON = 0.

IUJAC — Jacobian calculation option. (Input)

Value Description

0 Calculates using finite difference

approximations.

1 User supplies the Jacobian matrices of

partial derivatives of , 1, , ,iF i NEQ

in the subroutine GCN, when IRES = 2

and 3.

 Default: IUJAC = 0 for MATSTR = 0 or 1.

 IUJAC = 1 for MATSTR = 2.

IYPR — Initial yʹ calculation method. (Input)

Value Description

0 The initial input values of YPRIME are

already consistent with the input values

of Y. That is g(t, y, yʹ) = 0 at t = t0. Any

constraints must be satisfied at t = t0.

1 Consistent values of YPRIME are

calculated by Petzold‘s original DASSL

algorithm.

2 Consistent values of YPRIME are

calculated using a new algorithm

[Hanson and Krogh, 2008], which is

generally more robust but requires that

IUJAC= 1 and ISOLVE = 0, and

additional derivatives corresponding to

IMSL MATH LIBRARY Chapter 5: Differential Equations 1061

Value Description

IRES= 4 are to be calculated in GCN.

 Default: IYPR = 1.

MATSTR — Parameter specifying the Jacobian matrix structure (Input)

Set to:

Value Description

0 The Jacobian matrices (whether IUJAC = 0 or 1) are to

be stored in full storage mode.

1 The Jacobian matrices are to be stored in band storage

mode. In this case, if IUJAC= 1, the partial derivative

matrices have their entries for row i and column j,

stored as array elements D(i- j + MU+1, j). This occurs

when IRES= 2 or 3 in GCN.

2 A user-defined matrix structure is used (see the

documentation for IRES = 6 or 7 for more details). If

MATSTR = 2, ISOLVE and IUJAC are set to 1 internally.

 Default: MATSTR = 0.

ISOLVE — Solve method. (Input)

Value Description

0 DAESL solves the linear systems.

1 The user wishes to solve the linear system in

routine GCN. See parameter GCN for details.

 Default: ISOLVE = 0 for MATSTR = 0 or 1.

 ISOLVE = 1 for MATSTR = 2.

ML — Number of non-zero diagonals below the main diagonal in the Jacobian matrices when

band storage mode is used. (Input)

ML is ignored if MATSTR ≠ 1.

Default: ML = NEQ-1.

MU — Number of non-zero diagonals above the main diagonal in the Jacobian matrices when

band storage mode is used. (Input)

MU is ignored if MATSTR ≠ 1.

Default: MU = NEQ-1.

RTOL — Relative error tolerance for solver. (Input)

The program attempts to maintain a local error in Y(i) less than

RTOL*│Y(i)│ + ATOL(i).

Default: RTOL = , where is machine precision.

1062 Chapter 5: Differential Equations IMSL MATH LIBRARY

ATOL — Array of size NEQ containing absolute error tolerances. (Input)

See description of RTOL.

Default: ATOL(i) = 0.

H0 — Initial stepsize used by the solver. (Input)

If H0 = 0, the routine defines the initial stepsize.

Default: H0 = 0.

HMAX — Maximum stepsize used by the solver. (Input)

If HMAX=0, the routine defines the maximum stepsize.

Default: HMAX = 0.

MAXORD — Maximum order of the backward difference formulas used. (Input).

1 MAXORD 5.

Default: MAXORD = 5.

MAXSTEPS — Maximum number of steps taken from T to TEND. (Input).

Default: MAXSTEPS = 500.

TSTOP — Integration limit point. (Input)

For efficiency reasons, the code sometimes integrates past TEND and interpolates a

solution at TEND. If a value for TSTOP is specified, the code will never integrate past

T=TSTOP.

Default: No TSTOP value is specified.

FMAG — Order-of-magnitude estimate. (Input)

FMAG is used as an order-of-magnitude estimate of the magnitude of the functions Fi

(see description of GCN), for convergence testing, if IYPR=2. FMAG is ignored if

IYPR=0 or 1.

Default: FMAG = 1.

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional

information to/from the user-supplied subroutine. (Input/Output)

The derived type, s_fcn_data, is defined as:

type s_fcn_data

 real(kind(1e0)), pointer, dimension(:) :: rdata

 integer, pointer, dimension(:) :: idata

end type

 in module mp_types. The double precision counterpart to s_fcn_data is named

d_fcn_data. The user must include a use mp_types statement in the calling

program to define this derived type.

 Note that if this optional argument is present then FCN_DATA must also be defined as

an optional argument in the user-supplied subroutine.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1063

FORTRAN 90 Interface

Generic: CALL DAESL (T, TEND, IDO, Y, YPRIME, GCN [,…])

Specific: The specific interface names are S_DAESL and D_DAESL.

Description

Routine DAESL finds an approximation to the solution of a system of differential-algebraic

equations , , 0g t y y with given initial data for y and y . The routine uses BDF formulas,

which are appropriate for stiff systems. DAESL is based on the code DASSL designed by Linda

Petzold [1982], and has been modified by Hanson and Krogh [2008] Solving Constrained

Differential-Algebraic Systems Using Projections to allow the inclusion of additional constraints,

including conservation principles, after each time step. The modified code also provides a more

robust algorithm to calculate initial y values consistent with the given initial y values. This

occurs when the initial y are not known.

A differential-algebraic system of equations is said to have ―index 0‖ if the Jacobian matrix of

partial derivatives of the
iF with respect to the jy is nonsingular. Thus it is possible to solve for

all the initial values of jy and put the system in the form of a standard ODE system. If it is

possible to reduce the system to a system of index 0 by taking first derivatives of some of the

equations, the system has index 1, otherwise the index is greater than 1. See Brenan [1989] for a

definition of index. DAESL can generally only solve systems of index 0 or 1; other systems will

usually have to be reduced to such a form through differentiation.

Examples

Example 1 – Method of Lines PDE Problem

This example solves the partial differential equation
t xxU U U , with initial condition

 ,0 1U x x , and boundary conditions 0, tU t e , 1, 2 tU t e which has exact

solution , 1 tU x t x e . If we approximate the
xxU term using finite differences, where

 1ix i h , and 1/ 1h n , we get:

 1 , tU x t e

 2

1 1, , 2 , , / , , 2 , 1i i i i iU x t U x t U x t U x t h U x t i n

 , 2 t

nU x t e

If Yi(t) = U(xi,t), the first and last equations are algebraic and the others are differential equations,

so this is a system of differential-algebraic equations. The system has index=1, since it could be

transformed into an ODE system by differentiating the first and last equations. Note that the

Jacobian matrices are banded (tridiagonal), with ML = MU = 1. We use this and specify the option

http://www.vni.com/company/whitepapers/SolvingConstrainedDifferentialAlgebraicSystems.pdf
http://www.vni.com/company/whitepapers/SolvingConstrainedDifferentialAlgebraicSystems.pdf

1064 Chapter 5: Differential Equations IMSL MATH LIBRARY

for dealing with banded matrices in DAESL. The parameter h and the number of equations is

passed to the evaluation routine, GCN, with the optional argument USER_DATA.

Link to example source (daesl_ex1.f90)

 USE DAESL_INT

 USE MP_TYPES

 IMPLICIT NONE

! NEQ = Number of equations

 INTEGER, PARAMETER :: NEQ=101

 REAL T, Y(NEQ), YPRIME(NEQ), TEND, X, TRUE, HX, ERRMAX

 INTEGER NOUT, IDO, I, NSTEPS

 REAL, TARGET :: RPARAM(1)

 INTEGER, TARGET :: IPARAM(1)

 TYPE (S_FCN_DATA) USER_DATA

 EXTERNAL GCN

! Pass NEQ, HX to GCN

 HX = 1.0 / (NEQ-1)

 IPARAM(1) = NEQ

 RPARAM(1) = HX

 USER_DATA%RDATA=>RPARAM

 USER_DATA%IDATA=>IPARAM

! Initial values for y, initial guesses for y'

 DO I = 1, NEQ

 X = (I-1) * HX

 Y(I) = 1 + X

 END DO

 YPRIME = 0.0

 NSTEPS = 10

! Always set IDO=1 on first call

 IDO = 1

 DO I = 1, NSTEPS

! Output solution at T=0.1,0.2,...,1.0

 T = 0.1 * (I-1)

 TEND = 0.1 * I

! Set IDO = 3 on last call

 IF (I == NSTEPS) IDO = 3

! User-supplied Jacobian matrix (IUJAC=1)

! Banded Jacobian (MATSTR=1)

 CALL DAESL (T, TEND, IDO, Y, YPRIME, GCN, IYPR=1, IUJAC=1, &

 MATSTR=1, ML=1, MU=1, RTOL=1.0E-4, FCN_DATA=USER_DATA)

 END DO

 ERRMAX = 0.0

 DO I = 1, NEQ

 X = (I-1) * HX

 TRUE = (1+X) * EXP(T)

 ERRMAX = MAX(ERRMAX, ABS(Y(I) - TRUE))

 END DO

LinkedDocuments/daesl_ex1.f90

IMSL MATH LIBRARY Chapter 5: Differential Equations 1065

 CALL UMACH(2, NOUT)

 WRITE (NOUT, *) ' Max Error at T=1 is ', ERRMAX

 END

 SUBROUTINE GCN (T, Y, YPRIME, DELTA, D, LDD, IRES, FCN_DATA)

 USE MP_TYPES

 IMPLICIT NONE

 REAL T, Y(*), YPRIME(*), DELTA(*), D(LDD,*), HX

 INTEGER IRES, LDD, I, J, NEQ, MU

 TYPE (S_FCN_DATA), OPTIONAL, INTENT(INOUT) :: FCN_DATA

 NEQ = FCN_DATA%IDATA(1)

 HX = FCN_DATA%RDATA(1)

 MU = 1

 SELECT CASE (IRES)

! F_I defined here

 CASE(1)

 DELTA(1) = Y(1) - EXP(T)

 DO I = 2, NEQ-1

 DELTA(I) = -YPRIME(I) + (Y(I+1) - 2.0 * Y(I) + Y(I-1)) &

 / HX**2 + Y(I)

 END DO

 DELTA(NEQ) = Y(NEQ) - 2.0 * EXP(T)

! D(I-J+MU+1,J) = D(F_I)/D(Y_J)

! in band storage mode

 CASE(2)

 D(MU+1,1) = 1.0

 DO I = 2, NEQ-1

 J = I-1

 D(I-J+MU+1, J) = 1.0 / HX**2

 J = I

 D(I-J+MU+1, J) = -2.0 / HX**2 + 1.0

 J = I+1

 D(I-J+MU+1, J) = 1.0 / HX**2

 END DO

 D(MU+1, NEQ) = 1.0

! D(I-J+MU+1,J) = D(F_I)/D(YPRIME_J)

 CASE(3)

 DO I = 2, NEQ-1

 D(MU+1, I) = -1.0

 END DO

 END SELECT

 END

Output

 Max Error at T=1 is 5.6743621E-5

1066 Chapter 5: Differential Equations IMSL MATH LIBRARY

Example 2 – Pendulum Problem

The first-order equations of motion of a point-mass m suspended on a massless wire of length L

under the influence of gravity, mg, and wire tension, λ , in Cartesian coordinates (p,q) are

2 2 2
0

p u

q v

mu p

mv q mg

p q L

The problem above has an index number equal to 3, thus it cannot be solved with DAESL directly.

Unfortunately, the fact that the index is greater than 1 is not obvious, but an attempt to solve it will

generally produce an error message stating the corrector equation did not converge, or if IYPR=2

an error message stating that the index appears to be greater than 1 should be issued. The user

then differentiates the last equation, which after replacing pʹ by u and qʹ by v, gives pu+qv=0.

This system still has index=2 (again not obvious, the user discovers this by unsuccessfully trying

to solve the new system) and the last equation must be differentiated again, to finally (after

appropriate substitutions) give the equation of total energy balance:

2 2 2
0()m u v mgq L

With initial conditions and appropriate definitions of the dependent variables, the system becomes:

1

2

3

4

5

0 , 0 0 0 0 0p L q u v

y p

y q

y u

y v

y

1 3 1

2 4 2

3 1 5 3

4 2 5 4

2 2 2
5 3 4 2 5

0

0

0

0

0

F y y

F y y

F y y my

F y y mg my

F m y y mgy L y

The initial conditions correspond to the pendulum starting in a horizontal position.

Since we have replaced the original constraint,
2 2 2

1 0G p q L , which requires that the

pendulum length be L, by differentiating it twice, this constraint is no longer explicitly enforced,

and if we try to solve the above system alone (ie, with NCON=0), the pendulum length drifts

IMSL MATH LIBRARY Chapter 5: Differential Equations 1067

substantially from L at larger times. DAESL therefore allows the user to add additional constraints,

to be re-enforced after each time step, so we add this original constraint, as well as the

intermediate constraint 2 0G pu qv . Using these two supplementary constraints,

(NCON=2), the pendulum length is constant.

Link to example source (daesl_ex2.f90)

 USE DAESL_INT

 USE MP_TYPES

 IMPLICIT NONE

! NEQ = Number of equations

! NCON = Number of extra constraints

 INTEGER, PARAMETER :: NEQ=5, NCON = 2

 REAL, PARAMETER :: MASS=1.0, LENGTH=1.1, GRAVITY=9.806650

 REAL T, Y(NEQ), YPRIME(NEQ), TEND, ATOL(NEQ), TOL, LEN

 INTEGER NOUT, IDO, I, NSTEPS

 REAL, TARGET :: RPARAM(3)

 TYPE (S_FCN_DATA) USER_DATA

 EXTERNAL GCN

! Pass Mass, Pendulum length and G as parameters

 RPARAM(1) = MASS

 RPARAM(2) = LENGTH

 RPARAM(3) = GRAVITY

 USER_DATA%RDATA=>RPARAM

! Initial values for y, guesses for initial y'

 Y = 0.0

 Y(1) = LENGTH

 YPRIME = 0.0

 TOL = 1.0E-5

 ATOL = TOL

 CALL UMACH(2, NOUT)

 WRITE (NOUT, 5)

 NSTEPS = 5

! Always set IDO=1 on first call

 IDO = 1

 DO I = 1, NSTEPS

! Output solution at T=10,20,30,40,50

 T = 10.0 * (I-1)

 TEND = 10.0 * I

! Set IDO = 3 on last call

 IF (I.EQ.NSTEPS) IDO = 3

! User-supplied Jacobian matrix (IUJAC=1)

! Use new algorithm to get compatible y'

 CALL DAESL (T, TEND, IDO, Y, YPRIME, GCN, NCON=NCON, RTOL=TOL, &

 ATOL=ATOL, IYPR=2, IUJAC=1, MAXSTEPS=50000, &

 FCN_DATA=USER_DATA)

LinkedDocuments/daesl_ex2.f90

1068 Chapter 5: Differential Equations IMSL MATH LIBRARY

! LEN = pendulum length (should be constant)

 LEN = SQRT(Y(1)**2 + Y(2)**2)

 WRITE (NOUT, 10) T, Y(1), Y(2), LEN

 END DO

 5 FORMAT (8X,'T',14X,'Y(1)',11X,'Y(2)',11X,'Length',/)

 10 FORMAT (4F15.7)

 END

 SUBROUTINE GCN (T, Y, YPRIME, DELTA, D, LDD, IRES, FCN_DATA)

 USE MP_TYPES

 IMPLICIT NONE

! Simple swinging pendulum problem

 REAL T, Y(*), YPRIME(*), DELTA(*), D(LDD,*), MASS, &

 LENGTH, GRAVITY, MG, LSQ

 INTEGER IRES, LDD

 TYPE (S_FCN_DATA), OPTIONAL, INTENT(INOUT) :: FCN_DATA

 MASS = FCN_DATA%RDATA(1)

 LENGTH = FCN_DATA%RDATA(2)

 GRAVITY = FCN_DATA%RDATA(3)

 MG = MASS * GRAVITY

 LSQ = LENGTH**2

 SELECT CASE (IRES)

! F_I defined here

 CASE(1)

 DELTA(1) = Y(3) - YPRIME(1)

 DELTA(2) = Y(4) - YPRIME(2)

 DELTA(3) = -Y(1) * Y(5) - MASS * YPRIME(3)

 DELTA(4) = -Y(2) * Y(5) - MASS * YPRIME(4) - MG

 DELTA(5) = MASS * (Y(3)**2 + Y(4)**2) - MG * Y(2) - LSQ * Y(5)

! D(I,J) = D(F_I)/D(Y_J)

 CASE(2)

 D(1, 3) = 1.0

 D(2, 4) = 1.0

 D(3, 1) = -Y(5)

 D(3, 5) = -Y(1)

 D(4, 2) = -Y(5)

 D(4, 5) = -Y(2)

 D(5, 2) = -MG

 D(5, 3) = MASS * 2.0 * Y(3)

 D(5, 4) = MASS * 2.0 * Y(4)

 D(5, 5) = -LSQ

! D(I,J) = D(F_I)/D(YPRIME_J)

 CASE(3)

 D(1, 1)= -1.0

 D(2, 2)= -1.0

 D(3, 3)= -MASS

 D(4, 4)= -MASS

IMSL MATH LIBRARY Chapter 5: Differential Equations 1069

! DELTA(I) = D(F_I)/DT

 CASE(4)

 DELTA(1:5) = 0.0

! DELTA(I) = G_I

! D(I,J) = D(G_I)/D(Y_J)

 CASE(5)

 DELTA(1) = Y(1)**2 + Y(2)**2 - LSQ

 DELTA(2) = Y(1) * Y(3) + Y(2) * Y(4)

 D(1, 1) = 2.0 * Y(1)

 D(1, 2) = 2.0 * Y(2)

 D(1, 3) = 0.0

 D(1, 4) = 0.0

 D(1, 5) = 0.0

 D(2, 1) = Y(3)

 D(2, 2) = Y(4)

 D(2, 3) = Y(1)

 D(2, 4) = Y(2)

 D(2, 5) = 0.0

 END SELECT

 END

Output

 T Y(1) Y(2) Length

 10.0000000 1.0998126 -0.0203017 1.0999999

 20.0000000 1.0970103 -0.0810476 1.1000000

 30.0000000 1.0850314 -0.1808525 1.1000004

 40.0000000 1.0535675 -0.3162208 1.1000000

 50.0000000 0.9896186 -0.4802662 1.1000003

Example 3 – User Solves Linear System

Consider the system of ordinary differential equations, yʹ = By, where B is the bi-diagonal matrix

with (-1, -1/2, -1/3, ..., -1/(n-1), 0) on the main diagonal and with 1‘s along the first sub-diagonal.

The initial condition is y(0) = (1,0,0,...,0)T, and since yʹ (0) = By(0) = (-1,1,0,...,0) T, yʹ (0) is also

known for this problem.

Since B T v = 0, where vi = 1/(i-1)!, v is an eigenvector of B T corresponding to the eigenvalue 0.

Thus

 0
T

T T T T Tv y By v y B v y v y v y

so v T y(t) is constant. Since it has the value v T y(0) = v1 = 1 at t = 0, the constraint

v T y(t) = 1 is satisfied for all t. This constraint is imposed in this example.

This example also illustrates how the user can solve his/her own linear systems (MATSTR=2).

Normally, when IRES= 6, the matrix

g g
A cj

y y

1070 Chapter 5: Differential Equations IMSL MATH LIBRARY

is computed, saved and possibly factored, using a sparse matrix factorization routine of the user‘s

choice. Then when IRES=7, the system Ax = DELTA is solved, using the matrix B saved and

factored earlier, and the solution is returned in DELTA. In this case, B is just a bidiagonal matrix,

so there is no need to save or factor A when IRES = 6, since a bi-diagonal system can be solved

directly using forward substitution, when IRES = 7.

Link to example source (daesl_ex3.f90)

 USE DAESL_INT

 USE MP_TYPES

 IMPLICIT NONE

! NEQ = Number of equations

 INTEGER, PARAMETER :: NEQ=100

 REAL T, Y(NEQ), YPRIME(NEQ), TEND, ATOL(NEQ), CON

 INTEGER NOUT, IDO, I, NSTEPS

 REAL, TARGET :: RPARAM(NEQ)

 INTEGER, TARGET :: IPARAM(1)

 TYPE (S_FCN_DATA) USER_DATA

 EXTERNAL GCN

! Pass NEQ and A^T eigenvector V to GCN

 IPARAM(1) = NEQ

 RPARAM(1) = 1.0

 DO I = 2, NEQ

 RPARAM(I) = RPARAM(I-1) / FLOAT(I-1)

 END DO

 USER_DATA%RDATA=>RPARAM

 USER_DATA%IDATA=>IPARAM

! Initial values for y, y'

 Y = 0.0

 Y(1) = 1.0

 YPRIME = 0.0

 YPRIME(1) = -1.0

 YPRIME(2) = 1.0

 ATOL = 1.0E-4

 NSTEPS = 10

! Always set IDO=1 on first call

 IDO = 1

 DO I = 1, NSTEPS

! Output solution at T=1,2,...,10

 T = I-1

 TEND = I

! Set IDO = 3 on last call

 IF (I == NSTEPS) IDO = 3

! User-defined Jacobian matrix structure (MATSTR=2)

 CALL DAESL (T, TEND, IDO, Y, YPRIME, GCN, IYPR=0, MATSTR=2, &

 NCON=1, ATOL=ATOL, FCN_DATA=USER_DATA)

 END DO

! Check if solution satisfies constraint

LinkedDocuments/daesl_ex3.f90

IMSL MATH LIBRARY Chapter 5: Differential Equations 1071

 CON = 0.0

 DO I = 1, NEQ

 CON = CON + RPARAM(I) * Y(I)

 END DO

 CALL UMACH(2, NOUT)

 WRITE (NOUT, *) ' V dot Y =', CON

 END

 SUBROUTINE GCN (T, Y, YPRIME, DELTA, D, LDD, IRES, FCN_DATA)

 USE MP_TYPES

 IMPLICIT NONE

 REAL T, Y(*), YPRIME(*), DELTA(*), D(LDD,*), CON, CJ

 INTEGER IRES, LDD, I, NEQ

 SAVE CJ

 TYPE (S_FCN_DATA), OPTIONAL, INTENT(INOUT) :: FCN_DATA

 NEQ = FCN_DATA%IDATA(1)

 SELECT CASE (IRES)

! F_I defined here

 CASE(1)

 DELTA(1) = YPRIME(1) + Y(1)

 DO I = 2, NEQ-1

 DELTA(I) = YPRIME(I) - Y(I-1) + Y(I) / FLOAT(I)

 END DO

 DELTA(NEQ) = YPRIME(NEQ) - Y(NEQ-1)

! Constraint is V dot Y = 1

 CASE(5)

 CON = -1.0

 DO I = 1, NEQ

 CON = CON + FCN_DATA%RDATA(I) * Y(I)

 D(1,I) = FCN_DATA%RDATA(I)

 END DO

 DELTA(1) = CON

! Normally, compute matrix A = dF/dY + CJ*dF/dY'

! = -B + CJ*I here. Only CJ needs to be saved

! in this case, however, since B is bidiagonal,

! so A*x=DELTA can be solved (IRES=7) without

! saving or factoring B.

 CASE(6)

 CJ = DELTA(1)

! If CJ > 0 not close to zero, A is nonsingular,

! so set IRES = 0.

 IF (CJ >= 1.0E-4) IRES = 0

! Solve A*x=DELTA and return x in DELTA.

 CASE(7)

 DELTA(1) = DELTA(1) / (1.0 + CJ)

 DO I = 2, NEQ-1

 DELTA(I) = (DELTA(I) + DELTA(I-1)) / (1.0 / FLOAT(I) + CJ)

 END DO

 DELTA(NEQ) = (DELTA(NEQ) + DELTA(NEQ-1)) / CJ

1072 Chapter 5: Differential Equations IMSL MATH LIBRARY

 END SELECT

 END

Output

 V dot Y = 1.0

DASPG

Deprecated Routine: DASPG is a deprecated routine and has been replaced with DAESL. Click

here to view the DASPG documentation.

IVOAM
Solves an initial-value problem for a system of ordinary differential equations of order one or two

using a variable order Adams method.

Required Arguments

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

 1 Initial entry input value.

 2 Normal re-entry input value. On output, if IDO = 2 then the integration is

finished. If the integrator is called with a new value for TEND, the integration

continues. If the integrator is called with TEND unchanged, an error message is

issued.

 3 Input value to use on final call to release workspace.

>3 Output value that indicates that a fatal error has occurred.

 The initial call is made with IDO = 1. The routine then sets IDO = 2, and this value is

used for all but the last call that is made with IDO = 3. This final call is only used to

release workspace which was automatically allocated by the initial call with IDO = 1.

FCN — User-supplied subroutine to evaluate functions.

The usage is CALL FCN (IDO, T, Y, HIDRVS[, …]), where

Required Arguments

IDO — Flag indicating the state of the computation. (Input)

This flag corresponds to the IDO argument described above. If FCN has

complicated subexpressions, which depend only weakly or not at all on Y

LinkedDocuments/daspg.pdf

IMSL MATH LIBRARY Chapter 5: Differential Equations 1073

then these subexpressions need only be computed when IDO = 1 and their

values then reused when IDO = 2.

T — Independent variable, t. (Input)

Y — Array of length k containing the dependent variable values, y, and first

derivatives, if any. k will be the sum of the orders of the equations in the

system of equations to solve. (Input)

HIDRVS — Array of length n = NEQ, where n is the number of equations in the

system to solve, containing the values of the highest order derivatives

evaluated at (t, y). (Output)

 IVOAM uses size(HIDRVS) to set the default value of NEQ unless the

optional argument NEQ is used.

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional integer or floating point information to or from the user-supplied

subroutine. (Input/Output)

 For a detailed description of this argument see FCN_DATA below.

 FCN must be declared EXTERNAL in the calling program.

T — Independent variable, t. (Input/Output)

On input, T contains the initial independent variable value. On output, T is replaced by

TEND unless error conditions arise. See IDO for details. (Input/Output)

TEND — Value of t = tend where the solution is required. (Input)

Y — Array of length k containing the dependent variables, y(t), and first derivatives, if any.

(Input/Output)

k will be the sum of the orders of the equations in the system of equations to solve. On

input, Y contains the initial values, y(t0) and y’(t0) (if needed). On output, Y contains

the approximate solution, y(t). For example, for a system of first order equations, Y(i) is

the i-th dependent variable. For a system of second order equations, Y(2i-1) is the i-th

dependent variable and Y(2i) is the derivative of the i-th dependent variable. For

systems of equations in which one or more equations is of order 2, optional argument

KORDER must be used to denote the order of each equation so that the derivatives in Y

can be identified. By default it is assumed that all equations are of order 1 and Y

contains only dependent variables.

HIDRVS — Array of length n = NEQ, where n is the number of equations in the system to

solve, containing the highest order derivatives at the point Y. (Output)

IVOAM uses size(HIDRVS) to set the default value of NEQ unless the optional

argument NEQ is used.

1074 Chapter 5: Differential Equations IMSL MATH LIBRARY

Optional Arguments

NEQ — Number of differential equations in the system of equations to solve. (Input)

Default: NEQ = size (HIDRVS).

KORDER — An array of length NEQ specifying the orders of the equations in the system of

equations to solve. The elements of KORDER can be 1 or 2. KORDER must be used with

argument Y to define systems of mixed or higher order. (Input)

Default: KORDER = (1,1,1,...,1).

EQNERR — An array of length NEQ specifying the error tolerance for each equation.

(Input)

Let e(i) be the error tolerance for equation i. Then

Value Explanation

e(i) > 0 Implies an absolute error tolerance of e(i) is to be used for

equation i.

e(i) = 0 implies no error checking is to be performed for equation i.

e(i) < 0 Implies a relative error test is to be performed for equation

i. In this case, the base error tolerance used will be |e(i)|

and the relative error factor used will be (15/16 * |e(i)|).

Thus the actual absolute error tolerance used will be |e(i)| *

((15/16 * |e(i)|).

 Default: An absolute error tolerance of 1.E-5 is used for single precision and 1.D-10

for double precision for all equations.

HINC — Factor used for increasing the stepsize. (Input)

One should set HINC such that 9/8 <= HINC <= 4.

Default: HINC = 2.0.

HDEC — Factor used for decreasing the stepsize. (Input)

One should set HDEC such that 1/4 <= HDEC <= 7/8.

Default: HDEC = 0.5.

HMIN — Absolute value of the minimum stepsize permitted. (Input)

Default: HMIN = 10.0/amach(2) for single precision and 10.0/dmach(2) for double

precision.

HMAX — Absolute value of the maximum stepsize permitted. (Input)

Default: HMAX = amach(2) for single precision and dmach(2) for double precision.

FCN_DATA – A derived type, s_fcn_data, which may be used to pass additional

information to/from the user-supplied subroutine. (Input/Output)

The derived type, s_fcn_data, is defined as:

IMSL MATH LIBRARY Chapter 5: Differential Equations 1075

type s_fcn_data

 real(kind(1e0)), pointer, dimension(:) :: rdata

 integer, pointer, dimension(:) :: idata

end type

in module mp_types. The double precision counterpart to s_fcn_data is named

d_fcn_data. The user must include a use mp_types statement in the calling

program to define this derived type.

Note that if this optional argument is present then FCN_DATA must also be defined as

an optional argument in the user-supplied subroutine.

Fortran 90 Interface

Generic: CALL IVOAM (IDO, FCN, T, TEND, Y, HIDRVS [,…])

Specific: The specific interface names are S_IVOAM and D_IVOAM.

Description

Routine IVOAM is based on the JPL Library routine SIVA. IVOAM uses a variable order Adams

method to solve the initial value problem

1 2

0

, , , ,
, 1, 2, ,

i
i NEQ

i i

dy
f t y y y

dt i NEQ

y t

or more generally

 0 0, , , 1, 2, , ,id
i iz f t y y t i NEQ

where y is the vector

 1
11

1 1 21, , , , , , ,
NEQdd

NEQz z z z z

 k
iz is the

thk derivative of iz with respect to t , id is the order of the
thi differential

equation, and is a vector with the same dimension as y .

Note that the systems of equations solved by IVOAM can be of order one, order two, or mixed order

one and two.

Comments

Informational errors

Type Code

1076 Chapter 5: Differential Equations IMSL MATH LIBRARY

3 1 The requested error tolerance is too small.

3 2 The stepsize has been reduced too rapidly. The integrator is going

to do a restart.

Example 1

In this example a system of two equations of order two is solved.

3

2 2 2
1 1 1 2/Y Y Y Y

3

2 2 2
2 2 1 2/Y Y Y Y

The initial conditions are

 1 1 2 20 1.0, 0 0.0, 0 0.0, 0 1.0Y Y Y Y

Since the system is of order two, optional argument KORDER must be used to specify the orders of

the equations. Also, because the system is of order two, Y(1) contains the first dependent variable,

Y(2) contains the derivative of the first dependent variable, Y(3) contains the second dependent

variable, and Y(4) contains the derivative of the second dependent variable.

 USE IVOAM_INT

 USE UMACH_INT

 USE CONST_INT

 IMPLICIT NONE

 INTEGER IDO, IEND, NOUT, KORDER(2)

 REAL T, TEND, Y(4), HIDRVS(2), DELTA

 EXTERNAL FCN

! Initialize

 IDO = 1

 T = 0.0

 Y(1) = 1.0

 Y(2) = 0.0

 Y(3) = 0.0

 Y(4) = 1.0

 KORDER = 2

! Write title

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99997)

! Integrate ODE

 IEND = 0

 DELTA = CONST('PI')

 DELTA = 2.0*DELTA

 DO

 IEND = IEND + 1

 TEND = T + DELTA

IMSL MATH LIBRARY Chapter 5: Differential Equations 1077

 IF(TEND .GT. 20.0) TEND = 20.0

 CALL IVOAM (IDO, FCN, T, TEND, Y, HIDRVS, KORDER=KORDER)

 IF (IEND .LE. 4) THEN

 WRITE (NOUT,99998) T, Y(1), Y(2), HIDRVS(1)

 WRITE (NOUT,99999) Y(3), Y(4), HIDRVS(2)

! Finish up

 IF (IEND .EQ. 4) IDO = 3

 CYCLE

 END IF

 EXIT

 END DO

99997 FORMAT (11X, 'T', 12X, 'Y1/Y2', 9X, 'Y1P/Y2P', 7X, 'Y1PP/Y2PP')

99998 FORMAT (4F15.4)

99999 FORMAT (15X, 3F15.4)

 END

 SUBROUTINE FCN (IDO, T, Y, HIDRVS)

 INTEGER IDO

 REAL T, Y(*), HIDRVS(*)

 REAL TP

 TP = Y(1)*Y(1) + Y(3)*Y(3)

 TP = 1.0E0/(TP*SQRT(TP))

 HIDRVS(1) = -Y(1)*TP

 HIDRVS(2) = -Y(3)*TP

 RETURN

 END

Output

 T Y1/Y2 Y1P/Y2P Y1PP/Y2PP

 6.2832 1.0000 -0.0000 -1.0000

 0.0000 1.0000 0.0000

 12.5664 1.0000 -0.0000 -1.0000

 0.0000 1.0000 -0.0000

 18.8496 1.0000 -0.0000 -1.0000

 0.0000 1.0000 -0.0000

 20.0000 0.4081 -0.9129 -0.4081

 0.9129 0.4081 -0.9129

Example 2

This contrived example illustrates how to use IVOAM to solve a system of equations of mixed

order.

The height, y(t), of an object of mass m above the surface of the Earth can be modelled using

Newton's second law as:

my mg ky

or

 /y g k m y (1)

1078 Chapter 5: Differential Equations IMSL MATH LIBRARY

where -mg is the downward force of gravity and -ky' is the force due to air resistance, in a

direction opposing the velocity. If the object is a meteor, the mass, m, and air resistance, k, will

decrease as the meteor burns up in the atmosphere. The mass is proportional to r
3
 (r=radius) and

the air resistance, presumably dependent on the surface area, may be assumed to be proportional to

r
2
, so that k/m = k0/r. The rate at which the meteor's radius decreases as it burns up may depend on

r, on the velocity y', and, since the density of the atmosphere depends on y, on y itself. However,

we will construct a very simple model where the rate is just proportional to the square of the

velocity,

2

0r c y (2)

We solve (1) and (2), with k0 = 0.005, c0 = 10
-8

, g = 9.8 and initial conditions y(0) = 100,000

meters, y'(0) = -1000 meters/second, r(0) = 1 meter.

 USE IVOAM_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER IDO, IEND, NOUT, KORDER(2)

 REAL T, TEND, Y(3), HIDRVS(2), DELTA, EQNERR(2)

 EXTERNAL FCN

! Initialize

 IDO = 1

 T = 0.0

 Y(1) = 100000.0

 Y(2) = -1000.0

 Y(3) = 1.0

 KORDER(1) = 2

 KORDER(2) = 1

 EQNERR = .003

! Write title

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99997)

! Integrate ODE

 IEND = 0

 DELTA = 10.0

 DO

 IEND = IEND + 1

 TEND = T + DELTA

 IF(TEND .GT. 50.0) TEND = 50.0

 CALL IVOAM (IDO, FCN, T, TEND, Y, HIDRVS, &

 KORDER=KORDER, EQNERR=EQNERR)

 IF (IEND .LE. 5) THEN

 WRITE (NOUT,99998) T, Y(1), Y(2), HIDRVS(1)

 WRITE (NOUT,99999) Y(3), HIDRVS(2)

! Finish up

 IF (IEND .EQ. 5) IDO = 3

 CYCLE

 END IF

 EXIT

 END DO

99997 FORMAT (11X, 'T', 10X, 'Y1/Y2', 11X, 'Y1P', 11X, 'Y1PP/Y2PP')

99998 FORMAT (4F15.4)

99999 FORMAT (2(15X, F15.4))

IMSL MATH LIBRARY Chapter 5: Differential Equations 1079

 END

 SUBROUTINE FCN (IDO, T, Y, HIDRVS)

 INTEGER IDO

 REAL T, Y(*), HIDRVS(*)

 HIDRVS(1) = -9.8 - .005/Y(3)*Y(2)

 HIDRVS(2) = -1.0E-8 * Y(2)*Y(2)

 RETURN

 END

Output

 T Y1/Y2 Y1P Y1PP/Y2PP

 10.0000 89773.0391 -1044.0096 -3.9701

 0.8954 -0.0109

 20.0000 79150.9844 -1078.6334 -2.9083

 0.7826 -0.0116

 30.0000 68240.9453 -1101.0380 -1.5031

 0.6635 -0.0121

 40.0000 57184.9062 -1106.9635 0.4253

 0.5413 -0.0121

 50.0000 46178.1367 -1089.8292 3.1700

 0.4201 -0.0119

1080 Chapter 5: Differential Equations IMSL MATH LIBRARY

Introduction to Subroutine PDE_1D_MG
The section describes an algorithm and a corresponding integrator subroutine PDE_1D_MG for

solving a system of partial differential equations

 0, , , ,t L R

u
u f u x t x x x t t

t

Equation 1

This software is a one-dimensional solver. It requires initial and boundary conditions in addition

to values of tu . The integration method is noteworthy due to the maintenance of grid lines in the

space variable, x. Details for choosing new grid lines are given in Blom and Zegeling, (1994).

The class of problems solved with PDE_1D_MG is expressed by equations:

,

1

, 0

, , , , , , , , , ,

1, , , , 0,1,2

kNPDE
m m

j k x j x j x

k

L R

u
C x t u u x x R x t u u Q x t u u

t x

j NPDE x x x t t m

Equation 2

The vector

,
T

NPDEu u u

is the solution. The integer value NPDE ≥1 is the number of differential equations. The

functions Rj and Qj can be regarded, in special cases, as flux and source terms. The functions

u C R Qj k j j, ,, and

are expected to be continuous. Allowed values

m=0, m-1, and m=2

are for problems in Cartesian, cylindrical or polar, and spherical coordinates. In the two cases

m > 0 , the interval

x xL R,

must not contain x = 0 as an interior point.

The boundary conditions have the master equation form

 , , , , , , , ,

at and , 1,...,

j j x j x

L R

x t R x t u u x t u u

x x x x j NPDE

Equation 3

In the boundary conditions the

IMSL MATH LIBRARY Chapter 5: Differential Equations 1081

 j j and

are continuous functions of their arguments. In the two cases m > 0 and an endpoint occurs at 0,

the finite value of the solution at x = 0 must be ensured. This requires the specification of the

solution at x = 0, or implies that

0
L

j x x
R

 or

R j
x xR

 0
.

The initial values satisfy

 0 0, , ,L Ru x t u x x x x
,

where u0 is a piece-wise continuous vector function of x with NPDE components.

The user must pose the problem so that mathematical definitions are known for the functions

, 0, , , , andk j j j j jC R Q u
.

These functions are provided to the routine PDE_1D_MG in the form of three subroutines.

Optionally, this information can be provided by reverse communication. These forms of the

interface are explained below and illustrated with examples. Users may turn directly to the

examples if they are comfortable with the description of the algorithm.

PDE_1D_MG

Invokes a module, with the statement USE PDE_1D_MG, near the second line of the program unit.

The integrator is provided with single or double precision arithmetic, and a generic named

interface is provided. We do not recommend using 32-bit floating point arithmetic here. The

routine is called within the following loop, and is entered with each value of IDO. The loop

continues until a value of IDO results in an exit.

IDO=1

DO

 CASE(IDO == 1) {Do required initialization steps}

 CASE(IDO == 2) {Save solution, update T0 and TOUT }

 IF{Finished with integration} IDO=3

 CASE(IDO == 3) EXIT {Normal}

 CASE(IDO == 4) EXIT {Due to errors}

1082 Chapter 5: Differential Equations IMSL MATH LIBRARY

 CASE(IDO == 5) {Evaluate initial data}

 CASE(IDO == 6) {Evaluate differential equations}

 CASE(IDO == 7) {Evaluate boundary conditions}

 CASE(IDO == 8) {Prepare to solve banded system}

 CASE(IDO == 9) {Solve banded system}

 CALL PDE_1D_MG (T0, TOUT, IDO, U, &
 initial_conditions,&

 pde_system_definition,&

 boundary_conditions, IOPT)

END DO

The arguments to PDE_1D_MG are required or optional.

Required Arguments

T0—(Input/Output)

This is the value of the independent variable t where the integration of ut begins. It is

set to the value TOUT on return.

TOUT—(Input)

This is the value of the independent variable t where the integration of ut ends. Note:

Values of T0 < TOUT imply integration in the forward direction, while values of

T0 > TOUT imply integration in the backward direction. Either direction is permitted.

IDO—(Input/Output)

This in an integer flag that directs program control and user action. Its value is used

for initialization, termination, and for directing user response during reverse

communication:

IDO—(Input/Output)

This in an integer flag that directs program control and user action. Its value is used

for initialization, termination, and for directing user response during reverse

communication:

IDO=1 This value is assigned by the user for the start of a new problem. Internally it

causes allocated storage to be reallocated, conforming to the problem size.

Various initialization steps are performed.

IDO=2 This value is assigned by the routine when the integrator has successfully

reached the end point, TOUT.

IDO=3 This value is assigned by the user at the end of a problem. The routine is called

by the user with this value. Internally it causes termination steps to be

performed.

IDO=4 This value is assigned by the integrator when a type FATAL or TERMINAL error

condition has occurred, and error processing is set NOT to STOP for these

IMSL MATH LIBRARY Chapter 5: Differential Equations 1083

types of errors. It is not necessary to make a final call to the integrator with

IDO=3 in this case.

Values of IDO = 5,6,7,8,9 are reserved for applications that provide problem

information or linear algebra computations using reverse communication. When

problem information is provided using reverse communication, the differential

equations, boundary conditions and initial data must all be given. The absence

of optional subroutine names in the calling sequence directs the routine to use

reverse communication. In the module PDE_1D_MG_INT, scalars and arrays for

evaluating results are named below. The names are preceded by the prefix

―s_pde_1d_mg_‖ or ―d_pde_1d_mg_‖, depending on the precision. We use

the prefix ―?_pde_1d_mg_‖, for the appropriate choice.

IDO=5 This value is assigned by the integrator, requesting data for the initial

conditions. Following this evaluation the integrator is re-entered.

 (Optional) Update the grid of values in array locations U(NPDE +1, j) j = 2, ,

N. This grid is returned to the user equally spaced, but can be updated as

desired, provided the values are increasing.

 (Required) Provide initial values for all components of the system at the grid of

values U(NPDE +1, j) j = 1, , N. If the optional step of updating the initial

grid is performed, then the initial values are evaluated at the updated grid.

IDO=6 This value is assigned by the integrator, requesting data for the differential

equations. Following this evaluation the integrator is re-entered. Evaluate the

terms of the system of Equation 2. A default value of m 0 is assumed, but this

can be changed to one of the other choices m1 2 or . Use the optional

argument IOPT(:) for that purpose. Put the values in the arrays as indicated1.

,

?_ _1 _ _

?_ _1 _ _

?_ _1 _ _ ()

?_ _1 _ _

?_ _1 _ _ (,) : , , ,

?_ _1 _ _ : , , ,

?_ _1 _ _ : , , ,

, 1,...,

j

j
j
x

j k x

j x

j x

x pde d mg x

t pde d mg t

u pde d mg u j

u
u pde d mg dudx j

x

pde d mg c j k C x t u u

pde d mg r j r x t u u

pde d mg q j q x t u u

j k NPDE

1 The assign-to equality,
a b:

, used here and below, is read ―the expression b is evaluated and

then assigned to the location a .‖

1084 Chapter 5: Differential Equations IMSL MATH LIBRARY

 If any of the functions cannot be evaluated, set pde_1d_mg_ires=3.

Otherwise do not change its value.

IDO=7 This value is assigned by the integrator, requesting data for the boundary

conditions, as expressed in Equation 3. Following the evaluation the integrator

is re-entered.

?_ _1 _ _

?_ _1 _ _

?_ _1 _ _ ()

?_ _1 _ _

?_ _1 _ _ : , , ,

?_ _1 _ _ : , , ,

1,...,

j

j
j
x

j x

j x

x pde d mg x

t pde d mg t

u pde d mg u j

u
u pde d mg dudx j

x

pde d mg beta j x t u u

pde d mg gamma j x t u u

j NPDE

 The value x{xL, xR}, and the logical flag pde_1d_mg_LEFT=.TRUE. for x =

xL. It has the value pde_1d_mg_LEFT=.FALSE. for x = xR. If any of the

functions cannot be evaluated, set pde_1d_mg_ires=3. Otherwise do not

change its value.

IDO=8 This value is assigned by the integrator, requesting the calling program to

prepare for solving a banded linear system of algebraic equations. This value

will occur only when the option for ―reverse communication solving‖ is set in

the array IOPT(:), with option PDE_1D_MG_REV_COMM_FACTOR_SOLVE. The

matrix data for this system is in Band Storage Mode, described in the section:

Reference Material for the IMSL Fortran Numerical Libraries.

PDE_1D_MG_IBAND Half band-width of linear system

PDE_1D_MG_LDA The value 3*PDE_1D_MG_IBAND+1, with NEQ

= (NPDE+1)N

?_PDE_1D_MG_A Array of size PDE_1D_MG_LDA by NEQ holding

the problem matrix in Band Storage Mode

PDE_1D_MG_PANIC_FLAG Integer set to a non-zero value only if the linear

system is detected as singular

IDO=9 This value is assigned by the integrator , requesting the calling program to

solve a linear system with the matrix defined as noted with IDO=8.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1085

?_PDE_1D_MG_RHS Array of size NEQ holding the linear system

problem right-hand side

PDE_1D_MG_PANIC_FLAG Integer set to a non-zero value only if the linear

system is singular

?_PDE_1D_MG_SOL Array of size NEQ to receive the solution, after

the solving step

U(1:NPDE+1,1:N)—(Input/Output)

This assumed-shape array specifies Input information about the problem size and

boundaries. The dimension of the problem is obtained from NPDE +1 = size(U,1). The

number of grid points is obtained by N = size(U,2). Limits for the variable x are

assigned as input in array locations, U(NPDE +1, 1) = xL, U(NPDE +1, N) =xR. It is

not required to define U(NPDE +1, j), j=2, , N-1. At completion, the array

U(1:NPDE,1:N)contains the approximate solution value Ui(xj(TOUT),TOUT) in

location U(I,J). The grid value xj(TOUT) is in location U(NPDE+1,J). Normally the

grid values are equally spaced as the integration starts. Variable spaced grid values can

be provided by defining them as Output from the subroutine initial_conditions

or during reverse communication, IDO=5.

Optional Arguments

initial_conditions—(Input)

The name of an external subroutine, written by the user, when using forward

communication. If this argument is not used, then reverse communication is used to

provide the problem information. The routine gives the initial values for the system at

the starting independent variable value T0. This routine can also provide a non-

uniform grid at the initial value.

SUBROUTINE initial_conditions (NPDE,N,U)

 Integer NPDE,N

 REAL(kind(T0)) U(:,)

END SUBROUTINE

(Optional) Update the grid of values in array locations

U NPDE j j N(,), ,..., 1 2 1. This grid is input equally spaced, but can be

updated as desired, provided the values are increasing.

(Required) Provide initial values U j j N(:,), ,...,1 for all components of the system

at the grid of values U NPDE j j N(,), ,..., 1 1 . If the optional step of

updating the initial grid is performed, then the initial values are evaluated at

the updated grid.

pde_system_definition—(Input)

The name of an external subroutine, written by the user, when using forward

communication. It gives the differential equation, as expressed in Equation 2.

1086 Chapter 5: Differential Equations IMSL MATH LIBRARY

SUBROUTINE pde_system_definition&

 (t, x, NPDE, u, dudx, c, q, r, IRES)

 Integer NPDE, IRES

 REAL(kind(T0)) t, x, u(:), dudx(:)

 REAL(kind(T0)) c(:,:), q(:), r(:)

END SUBROUTINE

 Evaluate the terms of the system of . A default value of m 0 is assumed, but this can

be changed to one of the other choices m1 2 or . Use the optional argument

IOPT(:) for that purpose. Put the values in the arrays as indicated.

,, : , , ,

: , , ,

: , , ,

, 1,...,

j

j
j
x

j k x

j x

j x

u u j

u
u dudx j

x

c j k C x t u u

r j r x t u u

q j q x t u u

j k NPDE

 If any of the functions cannot be evaluated, set IRES=3. Otherwise do not change its

value.

boundary_conditions—(Input)

The name of an external subroutine, written by the user when using forward

communication. It gives the boundary conditions, as expressed in Equation 2.

SUBROUTINE BOUNDARY_CONDITIONS(T,BETA,GAMMA,U,DUDX,NPDE,LEFT,IRES)

 real(kind(1d0)),intent(in)::t

 real(kind(1d0)),intent(out),dimension(:)::BETA, GAMMA

 real(kind(1d0)),intent(in),dimension(:)::U,DUDX

 integer,intent(in)::NPDE

 logical,intent(in)::LEFT

 integer,intent(out)::IRES

END SUBROUTINE

IMSL MATH LIBRARY Chapter 5: Differential Equations 1087

: , , ,

: , , ,

1,...,

j

j
j
x

j x

j x

u u j

u
u dudx j

x

beta j x t u u

gamma j x t u u

j NPDE

 The value ,L Rx x x , and the logical flag LEFT=.TRUE. for x xL . The flag has

the value LEFT=.FALSE. for x xR .

IOPT—(Input)

Derived type array s_options or d_options, used for passing optional data to

PDE_1D_MG. See the section Optional Data in the Introduction for an explanation of

the derived type and its use. It is necessary to invoke a module, with the statement USE

ERROR_OPTION_PACKET, near the second line of the program unit. Examples 2-8 use

this optional argument. The choices are as follows:

Packaged Options for PDE_1D_MG

Option Prefix = ? Option Name Option Value

S_, d_ PDE_1D_MG_CART_COORDINATES 1

S_, d_ PDE_1D_MG_CYL_COORDINATES 2

S_, d_ PDE_1D_MG_SPH_COORDINATES 3

S_, d_ PDE_1D_MG_TIME_SMOOTHING 4

S_, d_ PDE_1D_MG_SPATIAL_SMOOTHING 5

S_, d_ PDE_1D_MG_MONITOR_REGULARIZING 6

S_, d_ PDE_1D_MG_RELATIVE_TOLERANCE 7

S_, d_ PDE_1D_MG_ABSOLUTE_TOLERANCE 8

S_, d_ PDE_1D_MG_MAX_BDF_ORDER 9

S_, d_ PDE_1D_MG_REV_COMM_FACTOR_SOLVE 10

s_, d_ PDE_1D_MG_NO_NULLIFY_STACK 11

IOPT(IO) = PDE_1D_MG_CART_COORDINATES

Use the value m 0 in Equation 2. This is the default.

IOPT(IO) = PDE_1D_MG_CYL_COORDINATES

Use the value m1 in Equation 2. The default value is m 0.

IOPT(IO) = PDE_1D_MG_SPH_COORDINATES

Use the value m 2 in Equation 2. The default value is m 0.

1088 Chapter 5: Differential Equations IMSL MATH LIBRARY

IOPT(IO) =

?_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,TAU)

This option resets the value of the parameter 0, described above.

The default value is 0.

IOPT(IO) =

?_OPTIONS(PDE_1D_MG_SPATIAL_SMOOTHING,KAP)

This option resets the value of the parameter 0, described above.

The default value is 2 .

IOPT(IO) =

?_OPTIONS(PDE_1D_MG_MONITOR_REGULARIZING,ALPH)

This option resets the value of the parameter 0 , described above.

The default value is 0 01. .

IOPT(IO) = ?_OPTIONS

(PDE_1D_MG_RELATIVE_TOLERANCE,RTOL)

This option resets the value of the relative accuracy parameter used in DASPG.

The default value is RTOL=1E-2 for single precision and RTOL=1D-4 for double

precision.

IOPT(IO) = ?_OPTIONS

(PDE_1D_MG_ABSOLUTE_TOLERANCE,ATOL)

This option resets the value of the absolute accuracy parameter used in DASPG. The

default value is ATOL=1E-2 for single precision and

ATOL=1D-4 for double precision.

IOPT(IO) = PDE_1D_MG_MAX_BDF_ORDER

IOPT(IO+1) = MAXBDF

Reset the maximum order for the BDF formulas used in DASPG. The default value is

MAXBDF=2. The new value can be any integer between 1 and 5. Some problems will

benefit by making this change. We used the default value due to the fact that DASPG

may cycle on its selection of order and step-size with orders higher than value 2.

IOPT(IO) = PDE_1D_MG_REV_COMM_FACTOR_SOLVE

The calling program unit will solve the banded linear systems required in the stiff

differential-algebraic equation integrator. Values of IDO=8, 9 will occur only when

this optional value is used.

IOPT(IO) = PDE_1D_MG_NO_NULLIFY_STACK

To maintain an efficient interface, the routine PDE_1D_MG collapses the subroutine call

stack with CALL_E1PSH(―NULLIFY_STACK‖). This implies that the overhead of

maintaining the stack will be eliminated, which may be important with reverse

communication. It does not eliminate error processing. However, precise information

of which routines have errors will not be displayed. To see the full call chain, this

option should be used. Following completion of the integration, stacking is turned

back on with CALL_E1POP(―NULLIFY_STACK‖).

IMSL MATH LIBRARY Chapter 5: Differential Equations 1089

FORTRAN 90 Interface

Generic: CALL PDE_1D_MG (T0, TOUT, IDO, [,…])

Specific: The specific interface names are S_PDE_1D_MG and D_PDE_1D_MG.

Description

The equation

u f u x t x x x t tt L R (, ,), , 0,

is approximated at N time-dependent grid values

 0 1L i i N Rx x x t x t x x
.

Using the total differential

du

dt
u u

dx

dt
t x

 transforms the differential equation to

 , ,x t

du dx
u u f u x t

dt dt

.

Using central divided differences for the factor ux leads to the system of ordinary differential

equations in implicit form

1 1

0
1 1

, , 1, ,
i ii i

i
i i

U UdU dx
F t t i N

dt x x dt

.

The terms Ui, Fi respectively represent the approximate solution to the partial differential equation

and the value of f(u,x,t) at the point (x,t) = (xi,(t),t). The truncation error is second-order in the

space variable, x. The above ordinary differential equations are underdetermined, so additional

equations are added for the variation of the time-dependent grid points. It is necessary to discuss

these equations, since they contain parameters that can be adjusted by the user. Often it will be

necessary to modify these parameters to solve a difficult problem. For this purpose the following

quantities are defined2:

1

1

1 1

1 0 1

,

1 2 , 0

,

i i i i i

i i i i i

N N

x x x n x

n n n n i N

n n n n

2 The three-tiered equal sign, used here and below, is read ―a b or a and b are exactly the same

object or value.‖

1090 Chapter 5: Differential Equations IMSL MATH LIBRARY

The values ni are the so-called point concentration of the grid, and 0 denotes a spatial

smoothing parameter. Now the grid points are defined implicitly so that

1 1
1

1

,1

i
i i

i i

d d

dt dt i N
M M

,

where τ ≥ 1 is a time-smoothing parameter. Choosing τ very large results in a fixed grid.

Increasing the value of τ from its default avoids the error condition where grid lines cross. The

divisors are

2

12 1

2
1

j j
NPDE

ii

i

j i

U U
M NPDE

x

.

The value κ determines the level of clustering or spatial smoothing of the grid points. Decreasing

κ from its default decrease the amount of spatial smoothing. The parameters Mi approximate arc

length and help determine the shape of the grid or xi-distribution. The parameter τ prevents the

grid movement from adjusting immediately to new values of the Mi, thereby avoiding oscillations

in the grid that cause large relative errors. This is important when applied to solutions with steep

gradients.

The discrete form of the differential equation and the smoothing equations are combined to yield

the implicit system of differential equations. κ

1 1
1 1 1

() ,

, , , , , , , ,
T

NPDE NPDE
j j j

dY
A Y L Y

dt

Y U U x U U x

This is frequently a stiff differential-algebraic system. It is solved using the integrator DASPG and

its subroutines, including D2SPG. These are documented in this chapter. Note that DASPG is

restricted to use within PDE_1D_MG until the routine exits with the flag IDO = 3. If DASPG is

needed during the evaluations of the differential equations or boundary conditions, use of a second

processor and inter-process communication is required. The only options for DASPG set by

PDE_1D_MG are the Maximum BDF Order, and the absolute and relative error values, ATOL and

RTOL. Users may set other options using the Options Manager. This is described in routine

DASPG and generally in Chapter 11 of this manual.

Remarks on the Examples

Due to its importance and the complexity of its interface, this subroutine is presented with several

examples. Many of the program features are exercised. The problems complete without any

change to the optional arguments, except where these changes are required to describe or to solve

the problem.

In many applications the solution to a PDE is used as an auxiliary variable, perhaps as part of a

larger design or simulation process. The truncation error of the approximate solution is

commensurate with piece-wise linear interpolation on the grid of values, at each output point. To

IMSL MATH LIBRARY Chapter 5: Differential Equations 1091

show that the solution is reasonable, a graphical display is revealing and helpful. We have not

provided graphical output as part of our documentation, but users may already have the Visual

Numerics, Inc. product, PV-WAVE, not included with Fortran Numerical Library. Examples 1-8

write results in files ―PDE_ex0?.out‖ that can be visualized with PV-WAVE. We provide a

script of commands, ―pde_1d_mg_plot.pro‖, for viewing the solutions (see example below).

The grid of values and each consecutive solution component is displayed in separate plotting

windows. The script and data files written by examples 1-8 on a SUN-SPARC system are in the

directory for Fortran Numerical Library examples. When inside PV-WAVE, execute the

command line ―pde_1d_mg_plot,filename=‘PDE_ex0?.out‘‖ to view the output of a

particular example.

Code for PV-WAVE Plotting (Examples Directory)

PRO PDE_1d_mg_plot, FILENAME = filename, PAUSE = pause

;

 if keyword_set(FILENAME) then file = filename else file = "res.dat"

 if keyword_set(PAUSE) then twait = pause else twait = .1

;

; Define floating point variables that will be read

; from the first line of the data file.

 xl = 0D0

 xr = 0D0

 t0 = 0D0

 tlast = 0D0

;

; Open the data file and read in the problem parameters.

 openr, lun, filename, /get_lun

 readf, lun, npde, np, nt, xl, xr, t0, tlast

; Define the arrays for the solutions and grid.

 u = dblarr(nt, npde, np)

 g = dblarr(nt, np)

 times = dblarr(nt)

;

; Define a temporary array for reading in the data.

 tmp = dblarr(np)

 t_tmp = 0D0

;

; Read in the data.

 for i = 0, nt-1 do begin ; For each step in time

 readf, lun, t_tmp

 times(i) = t_tmp

 for k = 0, npde-1 do begin ; For each PDE:

 rmf, lun, tmp

 u(i,k,*) = tmp ; Read in the components.

 end

 rmf, lun, tmp

 g(i,*) = tmp ; Read in the grid.

 end

;

; Close the data file and free the unit.

 close, lun

 free_lun, lun

;

1092 Chapter 5: Differential Equations IMSL MATH LIBRARY

; We now have all of the solutions and grids.

;

; Delete any window that is currently open.

 while (!d.window NE -1) do WDELETE

;

; Open two windows for plotting the solutions

; and grid.

 window, 0, xsize = 550, ysize = 420

 window, 1, xsize = 550, ysize = 420

;

; Plot the grid.

 wset, 0

 plot, [xl, xr], [t0, tlast], /nodata, ystyle = 1, $

 title = "Grid Points", xtitle = "X", ytitle = "Time"

 for i = 0, np-1 do begin

 oplot, g(*, i), times, psym = -1

 end

;

; Plot the solution(s):

 wset, 1

 for k = 0, npde-1 do begin

 umin = min(u(*,k,*))

 umax = max(u(*,k,*))

 for i = 0, nt-1 do begin

 title = strcompress("U_"+string(k+1), /remove_all)+ $

 " at time "+string(times(i))

 plot, g(i, *), u(i,k,*), ystyle = 1, $

 title = title, xtitle = "X", $

 ytitle = strcompress("U_"+string(k+1), /remove_all), $

 xr = [xl, xr], yr = [umin, umax], $

 psym = -4

 wait, twait

 end

 end

end

Example 1 - Electrodynamics Model

This example is from Blom and Zegeling (1994). The system is

()

(),

where () (/ 3) (2 / 3)

0 1,0 4

0 and 0at 0

1 and 0at 1

0.143, 0.1743, 17.19

t xx

t xx

x

x

u pu g u v

v pv g u v

g z exp z exp z

x t

u v x

u v x

p

IMSL MATH LIBRARY Chapter 5: Differential Equations 1093

We make the connection between the model problem statement and the example:

2

1 2

1 2 1

0, ,

(),

x x

C I

m R pu R pv

Q g u v Q Q

The boundary conditions are

1 2 1 2

1 2 1 2

1, 0, 0, , at 0

0, 1, 1, 0, at 1

L

R

v x x

u x x

Rationale: Example 1

This is a non-linear problem with sharply changing conditions near t 0. The default settings of

integration parameters allow the problem to be solved. The use of PDE_1D_MG with forward

communication requires three subroutines provided by the user to describe the initial conditions,

differential equations, and boundary conditions.

 program PDE_EX1

! Electrodynamics Model:

 USE PDE_1d_mg_int

 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDE=2, N=51, NFRAMES=5

 INTEGER I, IDO

! Define array space for the solution.

 real(kind(1d0)) U(NPDE+1,N), T0, TOUT

 real(kind(1d0)) :: ZERO=0D0, ONE=1D0, &

 DELTA_T=10D0, TEND=4D0

 EXTERNAL IC_01, PDE_01, BC_01

! Start loop to integrate and write solution values.

 IDO=1

 DO

 SELECT CASE (IDO)

! Define values that determine limits.

 CASE (1)

 T0=ZERO

 TOUT=1D-3

 U(NPDE+1,1)=ZERO;U(NPDE+1,N)=ONE

 OPEN(FILE='PDE_ex01.out',UNIT=7)

 WRITE(7, "(3I5, 4F10.5)") NPDE, N, NFRAMES,&

 U(NPDE+1,1), U(NPDE+1,N), T0, TEND

! Update to the next output point.

! Write solution and check for final point.

 CASE (2)

 WRITE(7,"(F10.5)")TOUT

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

 T0=TOUT;TOUT=TOUT*DELTA_T

1094 Chapter 5: Differential Equations IMSL MATH LIBRARY

 IF(T0 >= TEND) IDO=3

 TOUT=MIN(TOUT, TEND)

! All completed. Solver is shut down.

 CASE (3)

 CLOSE(UNIT=7)

 EXIT

 END SELECT

! Forward communication is used for the problem data.

 CALL PDE_1D_MG (T0, TOUT, IDO, U,&

 initial_conditions= IC_01,&

 PDE_system_definition= PDE_01,&

 boundary_conditions= BC_01)

 END DO

 END

 SUBROUTINE IC_01(NPDE, NPTS, U)

! This is the initial data for Example 1.

 IMPLICIT NONE

 INTEGER NPDE, NPTS

 REAL(KIND(1D0)) U(NPDE+1,NPTS)

 U(1,:)=1D0;U(2,:)=0D0

 END SUBROUTINE

 SUBROUTINE PDE_01(T, X, NPDE, U, DUDX, C, Q, R, IRES)

! This is the differential equation for Example 1.

 IMPLICIT NONE

 INTEGER NPDE, IRES

 REAL(KIND(1D0)) T, X, U(NPDE), DUDX(NPDE),&

 C(NPDE,NPDE), Q(NPDE), R(NPDE)

 REAL(KIND(1D0)) :: EPS=0.143D0, P=0.1743D0,&

 ETA=17.19D0, Z, TWO=2D0, THREE=3D0

 C=0D0;C(1,1)=1D0;C(2,2)=1D0

 R=P*DUDX;R(1)=R(1)*EPS

 Z=ETA*(U(1)-U(2))/THREE

 Q(1)=EXP(Z)-EXP(-TWO*Z)

 Q(2)=-Q(1)

 END SUBROUTINE

 SUBROUTINE BC_01(T, BTA, GAMA, U, DUDX, NPDE, LEFT, IRES)

! These are the boundary conditions for Example 1.

 IMPLICIT NONE

 INTEGER NPDE, IRES

 LOGICAL LEFT

 REAL(KIND(1D0)) T, BTA(NPDE), GAMA(NPDE),&

 U(NPDE), DUDX(NPDE)

 IF(LEFT) THEN

 BTA(1)=1D0;BTA(2)=0D0

 GAMA(1)=0D0;GAMA(2)=U(2)

 ELSE

IMSL MATH LIBRARY Chapter 5: Differential Equations 1095

 BTA(1)=0D0;BTA(2)=1D0

 GAMA(1)=U(1)-1D0;GAMA(2)=0D0

 END IF

 END SUBROUTINE

Additional Examples

Example 2 - Inviscid Flow on a Plate

This example is a first order system from Pennington and Berzins, (1994). The equations are

, implying that

0, 0, 0, , , 1, 0

, 0 1, , 0 0, 0

t x

t x xx

x t x xx

R

u v

uu vu w

w u uu vu u

u t v t u t u x t t

u x v x x

Following elimination of w , there remain NPDE 2 differential equations. The variable t is not

time, but a second space variable. The integration goes from t 0 to t 5 . It is necessary to

truncate the variable x at a finite value, say x xRmax 25. In terms of the integrator, the system

is defined by letting m 0 and

 01 0
, ,

0

v
C C R Qjk

u vuu x x

The boundary conditions are satisfied by

 20
0, ,at

1
0, ,at

L

R
x

u exp t
x x

v

u
x x

v

We use N 10 51 61 grid points and output the solution at steps of t 01. .

Rationale: Example 2

This is a non-linear boundary layer problem with sharply changing conditions near t 0. The

problem statement was modified so that boundary conditions are continuous near t 0. Without

this change the underlying integration software, DASPG, cannot solve the problem. The

continuous blending function 20u exp t is arbitrary and artfully chosen. This is a

mathematical change to the problem, required because of the stated discontinuity at t 0. Reverse

communication is used for the problem data. No additional user-written subroutines are required

when using reverse communication. We also have chosen 10 of the initial grid points to be

concentrated near xL 0 , anticipating rapid change in the solution near that point. Optional

changes are made to use a pure absolute error tolerance and non-zero time-smoothing.

1096 Chapter 5: Differential Equations IMSL MATH LIBRARY

 program PDE_1D_MG_EX02

! Inviscid Flow Over a Plate

 USE PDE_1d_mg_int

 USE ERROR_OPTION_PACKET

 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDE=2, N1=10, N2=51, N=N1+N2

 INTEGER I, IDO, NFRAMES

! Define array space for the solution.

 real(kind(1d0)) U(NPDE+1,N), T0, TOUT, DX1, DX2, DIF

 real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-1,&

 TEND=5D0, XMAX=25D0

 real(kind(1d0)) :: U0=1D0, U1=0D0, TDELTA=1D-1, TOL=1D-2

 TYPE(D_OPTIONS) IOPT(3)

! Start loop to integrate and record solution values.

 IDO=1

 DO

 SELECT CASE (IDO)

! Define values that determine limits and options.

 CASE (1)

 T0=ZERO

 TOUT=DELTA_T

 U(NPDE+1,1)=ZERO;U(NPDE+1,N)=XMAX

 OPEN(FILE='PDE_ex02.out',UNIT=7)

 NFRAMES=NINT((TEND+DELTA_T)/DELTA_T)

 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&

 U(NPDE+1,1), U(NPDE+1,N), T0, TEND

 DX1=XMAX/N2;DX2=DX1/N1

 IOPT(1)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO)

 IOPT(2)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,TOL)

 IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D-3)

! Update to the next output point.

! Write solution and check for final point.

 CASE (2)

 T0=TOUT

 IF(T0 <= TEND) THEN

 WRITE(7,"(F10.5)")TOUT

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

 TOUT=MIN(TOUT+DELTA_T,TEND)

 IF(T0 == TEND)IDO=3

 END IF

! All completed. Solver is shut down.

 CASE (3)

 CLOSE(UNIT=7)

 EXIT

! Define initial data values.

 CASE (5)

 U(:NPDE,:)=ZERO;U(1,:)=ONE

 DO I=1,N1

IMSL MATH LIBRARY Chapter 5: Differential Equations 1097

 U(NPDE+1,I)=(I-1)*DX2

 END DO

 DO I=N1+1,N

 U(NPDE+1,I)=(I-N1)*DX1

 END DO

 WRITE(7,"(F10.5)")T0

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

! Define differential equations.

 CASE (6)

 D_PDE_1D_MG_C=ZERO

 D_PDE_1D_MG_C(1,1)=ONE

 D_PDE_1D_MG_C(2,1)=D_PDE_1D_MG_U(1)

 D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_U(2)

 D_PDE_1D_MG_R(2)= D_PDE_1D_MG_DUDX(1)

 D_PDE_1D_MG_Q(1)= ZERO

 D_PDE_1D_MG_Q(2)= &

 D_PDE_1D_MG_U(2)*D_PDE_1D_MG_DUDX(1)

! Define boundary conditions.

 CASE (7)

 D_PDE_1D_MG_BETA=ZERO

 IF(PDE_1D_MG_LEFT) THEN

 DIF=EXP(-20D0*D_PDE_1D_MG_T)

! Blend the left boundary value down to zero.

 D_PDE_1D_MG_GAMMA=(/D_PDE_1D_MG_U(1)-DIF,D_PDE_1D_MG_U(2)/)

 ELSE

 D_PDE_1D_MG_GAMMA=(/D_PDE_1D_MG_U(1)-

ONE,D_PDE_1D_MG_DUDX(2)/)

 END IF

 END SELECT

! Reverse communication is used for the problem data.

 CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)

 END DO

 end program

1098 Chapter 5: Differential Equations IMSL MATH LIBRARY

Example 3 - Population Dynamics

This example is from Pennington and Berzins (1994). The system is

0

0

2

2

, 0 , 0

,

,0
2

0, , , , , where

, , and
1

g

4 2 2

1 1 1 2 2 1

t x L R

a

a

u u I t u x x a x t

I t u x t dx

exp x
u x

exp a

u t g b x I t u x t dx t

xy exp x
b x y

y

z,t

z exp a exp t

exp a a exp a exp a exp t

This is a notable problem because it involves the unknown

,

1

exp x
u x t

exp a exp t

across the entire domain. The software can solve the problem by introducing two dependent

algebraic equations:

1

0

2

0

() , ,

() ,

a

a

v t u x t dx

v t x exp x u x t dx

This leads to the modified system

1

1 2

2

1

, 0 , 0

1,
0,

1

t xu u v u x a t

g t v v
u t

v

IMSL MATH LIBRARY Chapter 5: Differential Equations 1099

In the interface to the evaluation of the differential equation and boundary conditions, it is

necessary to evaluate the integrals, which are computed with the values of ,u x t on the grid.

The integrals are approximated using the trapezoid rule, commensurate with the truncation error in

the integrator.

Rationale: Example 3

This is a non-linear integro-differential problem involving non-local conditions for the differential

equation and boundary conditions. Access to evaluation of these conditions is provided using

reverse communication. It is not possible to solve this problem with forward communication,

given the current subroutine interface. Optional changes are made to use an absolute error

tolerance and non-zero time-smoothing. The time-smoothing value 1 prevents grid lines from

crossing.

 program PDE_1D_MG_EX03

! Population Dynamics Model.

 USE PDE_1d_mg_int

 USE ERROR_OPTION_PACKET

 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDE=1, N=101

 INTEGER IDO, I, NFRAMES

! Define array space for the solution.

 real(kind(1d0)) U(NPDE+1,N), MID(N-1), T0, TOUT, V_1, V_2

 real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, ONE=1D0,&

 TWO=2D0, FOUR=4D0, DELTA_T=1D-1,TEND=5D0, A=5D0

 TYPE(D_OPTIONS) IOPT(3)

! Start loop to integrate and record solution values.

 IDO=1

 DO

 SELECT CASE (IDO)

! Define values that determine limits.

 CASE (1)

 T0=ZERO

 TOUT=DELTA_T

 U(NPDE+1,1)=ZERO;U(NPDE+1,N)=A

 OPEN(FILE='PDE_ex03.out',UNIT=7)

 NFRAMES=NINT((TEND+DELTA_T)/DELTA_T)

 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&

 U(NPDE+1,1), U(NPDE+1,N), T0, TEND

 IOPT(1)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO)

 IOPT(2)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2)

 IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D0)

! Update to the next output point.

! Write solution and check for final point.

 CASE (2)

 T0=TOUT

 IF(T0 <= TEND) THEN

 WRITE(7,"(F10.5)")TOUT

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

 TOUT=MIN(TOUT+DELTA_T,TEND)

 IF(T0 == TEND)IDO=3

 END IF

! All completed. Solver is shut down.

1100 Chapter 5: Differential Equations IMSL MATH LIBRARY

 CASE (3)

 CLOSE(UNIT=7)

 EXIT

! Define initial data values.

 CASE (5)

 U(1,:)=EXP(-U(2,:))/(TWO-EXP(-A))

 WRITE(7,"(F10.5)")T0

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

! Define differential equations.

 CASE (6)

 D_PDE_1D_MG_C(1,1)=ONE

 D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_U(1)

! Evaluate the approximate integral, for this t.

 V_1=HALF*SUM((U(1,1:N-1)+U(1,2:N))*&

 (U(2,2:N) - U(2,1:N-1)))

 D_PDE_1D_MG_Q(1)=V_1*D_PDE_1D_MG_U(1)

! Define boundary conditions.

 CASE (7)

 IF(PDE_1D_MG_LEFT) THEN

! Evaluate the approximate integral, for this t.

! A second integral is needed at the edge.

 V_1=HALF*SUM((U(1,1:N-1)+U(1,2:N))*&

 (U(2,2:N) - U(2,1:N-1)))

 MID=HALF*(U(2,2:N)+U(2,1:N-1))

 V_2=HALF*SUM(MID*EXP(-MID)*&

 (U(1,1:N-1)+U(1,2:N))*(U(2,2:N)-U(2,1:N-1)))

 D_PDE_1D_MG_BETA=ZERO

D_PDE_1D_MG_GAMMA=G(ONE,D_PDE_1D_MG_T)*V_1*V_2/(V_1+ONE)**2-&

 D_PDE_1D_MG_U

 ELSE

 D_PDE_1D_MG_BETA=ZERO

 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX(1)

 END IF

 END SELECT

! Reverse communication is used for the problem data.

 CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)

 END DO

CONTAINS

 FUNCTION G(z,t)

 IMPLICIT NONE

 REAL(KIND(1d0)) Z, T, G

 G=FOUR*Z*(TWO-TWO*EXP(-A)+EXP(-T))**2

 G=G/((ONE-EXP(-A))*(ONE-(ONE+TWO*A)*&

 EXP(-TWO*A))*(1-EXP(-A)+EXP(-T)))

 END FUNCTION

 end program

IMSL MATH LIBRARY Chapter 5: Differential Equations 1101

Example 4 - A Model in Cylindrical Coordinates

This example is from Blom and Zegeling (1994). The system models a reactor-diffusion problem:

1

4

1

0, 0, 1, 0, 0

,0 0,0 1

10 , 1, 0.1

r
z

r

rT T
T r exp

r T

T z T z z

T r r

The axial direction z is treated as a time coordinate. The radius r is treated as the single space

variable.

Rationale: Example 4

This is a non-linear problem in cylindrical coordinates. Our example illustrates assigning m1 in

Equation 2. We provide an optional argument that resets this value from its default, m 0 .

Reverse communication is used to interface with the problem data.

 program PDE_1D_MG_EX04

! Reactor-Diffusion problem in cylindrical coordinates.

 USE pde_1d_mg_int

 USE error_option_packet

 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDE=1, N=41

 INTEGER IDO, I, NFRAMES

! Define array space for the solution.

 real(kind(1d0)) T(NPDE+1,N), Z0, ZOUT

 real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_Z=1D-1,&

 ZEND=1D0, ZMAX=1D0, BTA=1D-4, GAMA=1D0, EPS=1D-1

 TYPE(D_OPTIONS) IOPT(1)

! Start loop to integrate and record solution values.

 IDO=1

 DO

 SELECT CASE (IDO)

! Define values that determine limits.

 CASE (1)

 Z0=ZERO

 ZOUT=DELTA_Z

 T(NPDE+1,1)=ZERO;T(NPDE+1,N)=ZMAX

 OPEN(FILE='PDE_ex04.out',UNIT=7)

 NFRAMES=NINT((ZEND+DELTA_Z)/DELTA_Z)

 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&

 T(NPDE+1,1), T(NPDE+1,N), Z0, ZEND

 IOPT(1)=PDE_1D_MG_CYL_COORDINATES

! Update to the next output point.

! Write solution and check for final point.

 CASE (2)

 IF(Z0 <= ZEND) THEN

 WRITE(7,"(F10.5)")ZOUT

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")T(I,:)

 END DO

1102 Chapter 5: Differential Equations IMSL MATH LIBRARY

 ZOUT=MIN(ZOUT+DELTA_Z,ZEND)

 IF(Z0 == ZEND)IDO=3

 END IF

! All completed. Solver is shut down.

 CASE (3)

 CLOSE(UNIT=7)

 EXIT

! Define initial data values.

 CASE (5)

 T(1,:)=ZERO

 WRITE(7,"(F10.5)")Z0

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")T(I,:)

 END DO

! Define differential equations.

 CASE (6)

 D_PDE_1D_MG_C(1,1)=ONE

 D_PDE_1D_MG_R(1)=BTA*D_PDE_1D_MG_DUDX(1)

 D_PDE_1D_MG_Q(1)= -GAMA*EXP(D_PDE_1D_MG_U(1)/&

 (ONE+EPS*D_PDE_1D_MG_U(1)))

! Define boundary conditions.

 CASE (7)

 IF(PDE_1D_MG_LEFT) THEN

 D_PDE_1D_MG_BETA=ONE; D_PDE_1D_MG_GAMMA=ZERO

 ELSE

 D_PDE_1D_MG_BETA=ZERO; D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U(1)

 END IF

 END SELECT

! Reverse communication is used for the problem data.

! The optional derived type changes the internal model

! to use cylindrical coordinates.

 CALL PDE_1D_MG (Z0, ZOUT, IDO, T, IOPT=IOPT)

 END DO

 end program

Example 5 - A Flame Propagation Model

This example is presented more fully in Verwer, et al., (1989). The system is a normalized

problem relating mass density ,u x t and temperature ,v x t :

IMSL MATH LIBRARY Chapter 5: Differential Equations 1103

6

4

3 4

,

where / , 4, 3.52 10

0 1, 0 t 0.006

,0 1, ,0 0.2

0, 0

0, , 1, where

1.2, for 2 10 ,and

= 0.2 + 5 10 , for 0 2 10

t xx

t xx

x x

x

u u uf v

v v uf v

f z exp z

x

u x v x

u v x

u v b t x

b t t

t t

Rationale: Example 5

This is a non-linear problem. The example shows the model steps for replacing the banded solver

in the software with one of the user‘s choice. Reverse communication is used for the interface to

the problem data and the linear solver. Following the computation of the matrix factorization in

DL2CRB, we declare the system to be singular when the reciprocal of the condition number is

smaller than the working precision. This choice is not suitable for all problems. Attention must

be given to detecting a singularity when this option is used.

 program PDE_1D_MG_EX05

! Flame propagation model

 USE pde_1d_mg_int

 USE ERROR_OPTION_PACKET

 USE Numerical_Libraries, ONLY :&

 dl2crb, dlfsrb

 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDE=2, N=40, NEQ=(NPDE+1)*N

 INTEGER I, IDO, NFRAMES, IPVT(NEQ)

! Define array space for the solution.

 real(kind(1d0)) U(NPDE+1,N), T0, TOUT

! Define work space for the banded solver.

 real(kind(1d0)) WORK(NEQ), RCOND

 real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-4,&

 TEND=6D-3, XMAX=1D0, BTA=4D0, GAMA=3.52D6

 TYPE(D_OPTIONS) IOPT(1)

! Start loop to integrate and record solution values.

 IDO=1

 DO

 SELECT CASE (IDO)

! Define values that determine limits.

 CASE (1)

 T0=ZERO

 TOUT=DELTA_T

 U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX

 OPEN(FILE='PDE_ex05.out',UNIT=7)

1104 Chapter 5: Differential Equations IMSL MATH LIBRARY

 NFRAMES=NINT((TEND+DELTA_T)/DELTA_T)

 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&

 U(NPDE+1,1), U(NPDE+1,N), T0, TEND

 IOPT(1)=PDE_1D_MG_REV_COMM_FACTOR_SOLVE

! Update to the next output point.

! Write solution and check for final point.

 CASE (2)

 T0=TOUT

 IF(T0 <= TEND) THEN

 WRITE(7,"(F10.5)")TOUT

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

 TOUT=MIN(TOUT+DELTA_T,TEND)

 IF(T0 == TEND)IDO=3

 END IF

! All completed. Solver is shut down.

 CASE (3)

 CLOSE(UNIT=7)

 EXIT

! Define initial data values.

 CASE (5)

 U(1,:)=ONE; U(2,:)=2D-1

 WRITE(7,"(F10.5)")T0

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

! Define differential equations.

 CASE (6)

 D_PDE_1D_MG_C=ZERO

 D_PDE_1D_MG_C(1,1)=ONE; D_PDE_1D_MG_C(2,2)=ONE

 D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX

 D_PDE_1D_MG_Q(1)= D_PDE_1D_MG_U(1)*F(D_PDE_1D_MG_U(2))

 D_PDE_1D_MG_Q(2)= -D_PDE_1D_MG_Q(1)

! Define boundary conditions.

 CASE (7)

 IF(PDE_1D_MG_LEFT) THEN

 D_PDE_1D_MG_BETA=ZERO;D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX

 ELSE

 D_PDE_1D_MG_BETA(1)=ONE

 D_PDE_1D_MG_GAMMA(1)=ZERO

 D_PDE_1D_MG_BETA(2)=ZERO

 IF(D_PDE_1D_MG_T >= 2D-4) THEN

 D_PDE_1D_MG_GAMMA(2)=12D-1

 ELSE

 D_PDE_1D_MG_GAMMA(2)=2D-1+5D3*D_PDE_1D_MG_T

 END IF

 D_PDE_1D_MG_GAMMA(2)=D_PDE_1D_MG_GAMMA(2)-&

 D_PDE_1D_MG_U(2)

 END IF

 CASE(8)

! Factor the banded matrix. This is the same solver used

IMSL MATH LIBRARY Chapter 5: Differential Equations 1105

! internally but that is not required. A user can substitute

! one of their own.

 call dl2crb (neq, d_pde_1d_mg_a, pde_1d_mg_lda, &

 pde_1d_mg_iband, pde_1d_mg_iband, d_pde_1d_mg_a, &

 pde_1d_mg_lda, ipvt, rcond, work)

 IF(rcond <= EPSILON(ONE)) pde_1d_mg_panic_flag = 1

 CASE(9)

! Solve using the factored banded matrix.

 call dlfsrb(neq, d_pde_1d_mg_a, pde_1d_mg_lda, &

 pde_1d_mg_iband, pde_1d_mg_iband, ipvt, &

 d_pde_1d_mg_rhs, 1, d_pde_1d_mg_sol)

 END SELECT

! Reverse communication is used for the problem data.

 CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)

 END DO

CONTAINS

 FUNCTION F(Z)

 IMPLICIT NONE

 REAL(KIND(1D0)) Z, F

 F=GAMA*EXP(-BTA/Z)

 END FUNCTION

 end program

Example 6 - A ‘Hot Spot’ Model

This example is presented more fully in Verwer, et al., (1989). The system is a normalized

problem relating the temperature ,u x t , of a reactant in a chemical system. The formula for

 h z is equivalent to their example.

,

where 1 1/ 1 ,

1, 20, 5

0 1,0 0.29

,0 1

0, 0

1, 1

t xx

x

u u h u

R
h z a z exp z

a

a R

x t

u x

u x

u x

Rationale: Example 6

This is a non-linear problem. The output shows a case where a rapidly changing front, or hot-spot,

develops after a considerable way into the integration. This causes rapid change to the grid. An

option sets the maximum order BDF formula from its default value of 2 to the theoretical stable

maximum value of 5.

 USE pde_1d_mg_int

 USE error_option_packet

 IMPLICIT NONE

1106 Chapter 5: Differential Equations IMSL MATH LIBRARY

 INTEGER, PARAMETER :: NPDE=1, N=80

 INTEGER I, IDO, NFRAMES

! Define array space for the solution.

 real(kind(1d0)) U(NPDE+1,N), T0, TOUT

 real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-2,&

 TEND=29D-2, XMAX=1D0, A=1D0, DELTA=2D1, R=5D0

 TYPE(D_OPTIONS) IOPT(2)

! Start loop to integrate and record solution values.

 IDO=1

 DO

 SELECT CASE (IDO)

! Define values that determine limits.

 CASE (1)

 T0=ZERO

 TOUT=DELTA_T

 U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX

 OPEN(FILE='PDE_ex06.out',UNIT=7)

 NFRAMES=(TEND+DELTA_T)/DELTA_T

 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&

 U(NPDE+1,1), U(NPDE+1,N), T0, TEND

! Illustrate allowing the BDF order to increase

! to its maximum allowed value.

 IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER

 IOPT(2)=5

! Update to the next output point.

! Write solution and check for final point.

 CASE (2)

 T0=TOUT

 IF(T0 <= TEND) THEN

 WRITE(7,"(F10.5)")TOUT

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

 TOUT=MIN(TOUT+DELTA_T,TEND)

 IF(T0 == TEND)IDO=3

 END IF

! All completed. Solver is shut down.

 CASE (3)

 CLOSE(UNIT=7)

 EXIT

! Define initial data values.

 CASE (5)

 U(1,:)=ONE

 WRITE(7,"(F10.5)")T0

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

! Define differential equations.

 CASE (6)

 D_PDE_1D_MG_C=ONE

 D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX

 D_PDE_1D_MG_Q= - H(D_PDE_1D_MG_U(1))

IMSL MATH LIBRARY Chapter 5: Differential Equations 1107

! Define boundary conditions.

 CASE (7)

 IF(PDE_1D_MG_LEFT) THEN

 D_PDE_1D_MG_BETA=ZERO

 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX

 ELSE

 D_PDE_1D_MG_BETA=ZERO

 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U(1)-ONE

 END IF

 END SELECT

! Reverse communication is used for the problem data.

 CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)

 END DO

CONTAINS

 FUNCTION H(Z)

 real(kind(1d0)) Z, H

 H=(R/(A*DELTA))*(ONE+A-Z)*EXP(-DELTA*(ONE/Z-ONE))

 END FUNCTION

 end program

Example 7 - Traveling Waves

This example is presented more fully in Verwer, et al., (1989). The system is a normalized

problem relating the interaction of two waves, ,u x t and ,v x t moving in opposite

directions. The waves meet and reduce in amplitude, due to the non-linear terms in the equation.

Then they separate and travel onward, with reduced amplitude.

100 ,

100 ,

0.5 0.5,0 0.5

,0 0.5 1 10 , 0.3, 0.1 ,and

0,otherwise,

,0 0.5 1 10 0.1,0.3 ,and

0,otherwise,

0 at both ends, t 0

t x

t x

u u uv

v v uv

x t

u x cos x x

v x cos x x

u v

Rationale: Example 7

This is a non-linear system of first order equations.

 program PDE_1D_MG_EX07

! Traveling Waves

 USE pde_1d_mg_int

 USE error_option_packet

 IMPLICIT NONE

1108 Chapter 5: Differential Equations IMSL MATH LIBRARY

 INTEGER, PARAMETER :: NPDE=2, N=50

 INTEGER I, IDO, NFRAMES

! Define array space for the solution.

 real(kind(1d0)) U(NPDE+1,N), TEMP(N), T0, TOUT

 real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, &

 ONE=1D0, DELTA_T=5D-2,TEND=5D-1, PI

 TYPE(D_OPTIONS) IOPT(5)

! Start loop to integrate and record solution values.

 IDO=1

 DO

 SELECT CASE (IDO)

! Define values that determine limits.

 CASE (1)

 T0=ZERO

 TOUT=DELTA_T

 U(NPDE+1,1)=-HALF; U(NPDE+1,N)=HALF

 OPEN(FILE='PDE_ex07.out',UNIT=7)

 NFRAMES=(TEND+DELTA_T)/DELTA_T

 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&

 U(NPDE+1,1), U(NPDE+1,N), T0, TEND

 IOPT(1)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D-3)

 IOPT(2)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO)

 IOPT(3)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-3)

 IOPT(4)=PDE_1D_MG_MAX_BDF_ORDER

 IOPT(5)=3

! Update to the next output point.

! Write solution and check for final point.

 CASE (2)

 T0=TOUT

 IF(T0 <= TEND) THEN

 WRITE(7,"(F10.5)")TOUT

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

 TOUT=MIN(TOUT+DELTA_T,TEND)

 IF(T0 == TEND)IDO=3

 END IF

! All completed. Solver is shut down.

 CASE (3)

 CLOSE(UNIT=7)

 EXIT

! Define initial data values.

 CASE (5)

 TEMP=U(3,:)

 U(1,:)=PULSE(TEMP); U(2,:)=U(1,:)

 WHERE (TEMP < -3D-1 .or. TEMP > -1D-1) U(1,:)=ZERO

 WHERE (TEMP < 1D-1 .or. TEMP > 3D-1) U(2,:)=ZERO

 WRITE(7,"(F10.5)")T0

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

IMSL MATH LIBRARY Chapter 5: Differential Equations 1109

! Define differential equations.

 CASE (6)

 D_PDE_1D_MG_C=ZERO

 D_PDE_1D_MG_C(1,1)=ONE; D_PDE_1D_MG_C(2,2)=ONE

 D_PDE_1D_MG_R=D_PDE_1D_MG_U

 D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_R(1)

 D_PDE_1D_MG_Q(1)= 100D0*D_PDE_1D_MG_U(1)*D_PDE_1D_MG_U(2)

 D_PDE_1D_MG_Q(2)= D_PDE_1D_MG_Q(1)

! Define boundary conditions.

 CASE (7)

 D_PDE_1D_MG_BETA=ZERO;D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U

 END SELECT

! Reverse communication is used for the problem data.

 CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)

 END DO

CONTAINS

 FUNCTION PULSE(Z)

 real(kind(1d0)) Z(:), PULSE(SIZE(Z))

 PI=ACOS(-ONE)

 PULSE=HALF*(ONE+COS(10D0*PI*Z))

 END FUNCTION

 end program

Example 8 - Black-Scholes

The value of a European ―call option,‖ ,c s t , with exercise price e and expiration date T ,

satisfies the ―asset-or-nothing payoff ‖ , , ; 0,c s T s s e s e . Prior to expiration

 ,c s t is estimated by the Black-Scholes differential equation

2 2

2 2 2 0
2 2

t ss s t s s
s

c s c rsc rc c s c r sc rc

.

The parameters in the model are the risk-free interest rate, r , and the stock volatility, . The

boundary conditions are 0, 0c t and , 1,sc s t s . This development is described

in Wilmott, et al. (1995), pages 41-57. There are explicit solutions for this equation based on the

Normal Curve of Probability. The normal curve, and the solution itself, can be efficiently

computed with the IMSL function ANORDF, IMSL (1994), page 186. With numerical

integrationthe equation itself or the payoff can be readily changed to include other formulas,

 ,c s T , and corresponding boundary conditions. We use

e r T t s sL R 100 008 025 004 0 1502, . , . , . , , and .

1110 Chapter 5: Differential Equations IMSL MATH LIBRARY

Rationale: Example 8

This is a linear problem but with initial conditions that are discontinuous. It is necessary to use a

positive time-smoothing value to prevent grid lines from crossing. We have used an absolute

tolerance of 10 3 . In $US, this is one-tenth of a cent.

 program PDE_1D_MG_EX08

! Black-Scholes call price

 USE pde_1d_mg_int

 USE error_option_packet

 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDE=1, N=100

 INTEGER I, IDO, NFRAMES

! Define array space for the solution.

 real(kind(1d0)) U(NPDE+1,N), T0, TOUT, SIGSQ, XVAL

 real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, ONE=1D0, &

 DELTA_T=25D-3, TEND=25D-2, XMAX=150, SIGMA=2D-1, &

 R=8D-2, E=100D0

 TYPE(D_OPTIONS) IOPT(5)

! Start loop to integrate and record solution values.

 IDO=1

 DO

 SELECT CASE (IDO)

! Define values that determine limits.

 CASE (1)

 T0=ZERO

 TOUT=DELTA_T

 U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX

 OPEN(FILE='PDE_ex08.out',UNIT=7)

 NFRAMES=NINT((TEND+DELTA_T)/DELTA_T)

 WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&

 U(NPDE+1,1), U(NPDE+1,N), T0, TEND

 SIGSQ=SIGMA**2

! Illustrate allowing the BDF order to increase

! to its maximum allowed value.

 IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER

 IOPT(2)=5

 IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,5D-3)

 IOPT(4)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO)

 IOPT(5)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2)

! Update to the next output point.

! Write solution and check for final point.

 CASE (2)

 T0=TOUT

 IF(T0 <= TEND) THEN

 WRITE(7,"(F10.5)")TOUT

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

 TOUT=MIN(TOUT+DELTA_T,TEND)

 IF(T0 == TEND)IDO=3

 END IF

IMSL MATH LIBRARY Chapter 5: Differential Equations 1111

! All completed. Solver is shut down.

 CASE (3)

 CLOSE(UNIT=7)

 EXIT

! Define initial data values.

 CASE (5)

 U(1,:)=MAX(U(NPDE+1,:)-E,ZERO) ! Vanilla European Call

 U(1,:)=U(NPDE+1,:) ! Asset-or-nothing Call

 WHERE(U(1,:) <= E) U(1,:)=ZERO ! on these two lines

 WRITE(7,"(F10.5)")T0

 DO I=1,NPDE+1

 WRITE(7,"(4E15.5)")U(I,:)

 END DO

! Define differential equations.

 CASE (6)

 XVAL=D_PDE_1D_MG_X

 D_PDE_1D_MG_C=ONE

 D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX*XVAL**2*SIGSQ*HALF

 D_PDE_1D_MG_Q=-(R-SIGSQ)*XVAL*D_PDE_1D_MG_DUDX+R*D_PDE_1D_MG_U

! Define boundary conditions.

 CASE (7)

 IF(PDE_1D_MG_LEFT) THEN

 D_PDE_1D_MG_BETA=ZERO

 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U

 ELSE

 D_PDE_1D_MG_BETA=ZERO

 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX(1)-ONE

 END IF

 END SELECT

! Reverse communication is used for the problem data.

 CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)

 END DO

 end program

Example 9 - Electrodynamics, Parameters Studied with MPI

For a detailed description of MPI Requirements see ―Dense Matrix Parallelism Using MPI‖ in

Chapter 10 of this manual.

This example, described above in Example 1, is from Blom and Zegeling (1994). The system

parameters , ,p and , are varied, using uniform random numbers. The intervals studied are

01 02 01 02 10 20. . , . . , p and . Using N 21 grid values and other program options,

the elapsed time, parameter values, and the value
1, 4

,
x t

v x t

 are sent to the root node. This

information is written on a file. The final summary includes the minimum value of

1112 Chapter 5: Differential Equations IMSL MATH LIBRARY

1, 4

,
x t

v x t
 ,

and the maximum and average time per integration, per node.

Rationale: Example 9

This is a non-linear simulation problem. Using at least two integrating processors and MPI allows

more values of the parameters to be studied in a given time than with a single processor. This

code is valuable as a study guide when an application needs to estimate timing and other output

parameters. The simulation time is controlled at the root node. An integration is started, after

receiving results, within the first SIM_TIME seconds. The elapsed time will be longer than

SIM_TIME by the slowest processor‘s time for its last integration.

 program PDE_1D_MG_EX09

! Electrodynamics Model, parameter study.

 USE PDE_1d_mg_int

 USE MPI_SETUP_INT

 USE RAND_INT

 USE SHOW_INT

 IMPLICIT NONE

 INCLUDE "mpif.h"

 INTEGER, PARAMETER :: NPDE=2, N=21

 INTEGER I, IDO, IERROR, CONTINUE, STATUS(MPI_STATUS_SIZE)

 INTEGER, ALLOCATABLE :: COUNTS(:)

! Define array space for the solution.

 real(kind(1d0)) :: U(NPDE+1,N), T0, TOUT

 real(kind(1d0)) :: ZERO=0D0, ONE=1D0,DELTA_T=10D0, TEND=4D0

! SIM_TIME is the number of seconds to run the simulation.

 real(kind(1d0)) :: EPS, P, ETA, Z, TWO=2D0, THREE=3D0, SIM_TIME=60D0

 real(kind(1d0)) :: TIMES, TIMEE, TIMEL, TIME, TIME_SIM, V_MIN, &

 DATA(5)

 real(kind(1d0)), ALLOCATABLE :: AV_TIME(:), MAX_TIME(:)

 TYPE(D_OPTIONS) IOPT(4), SHOW_IOPT(2)

 TYPE(S_OPTIONS) SHOW_INTOPT(2)

 MP_NPROCS=MP_SETUP(1)

 MPI_NODE_PRIORITY=(/(I-1,I=1,MP_NPROCS)/)

! If NP_NPROCS=1, the program stops. Change

! MPI_ROOT_WORKS=.TRUE. if MP_NPROCS=1.

 MPI_ROOT_WORKS=.FALSE.

 IF(.NOT. MPI_ROOT_WORKS .and. MP_NPROCS == 1) STOP

 ALLOCATE(AV_TIME(MP_NPROCS), MAX_TIME(MP_NPROCS), COUNTS(MP_NPROCS))

! Get time start for simulation timing.

 TIME=MPI_WTIME()

 IF(MP_RANK == 0) OPEN(FILE='PDE_ex09.out',UNIT=7)

 SIMULATE: DO

! Pick random parameter values.

 EPS=1D-1*(ONE+rand(EPS))

 P=1D-1*(ONE+rand(P))

 ETA=10D0*(ONE+rand(ETA))

! Start loop to integrate and communicate solution times.

 IDO=1

! Get time start for each new problem.

 DO

IMSL MATH LIBRARY Chapter 5: Differential Equations 1113

 IF(.NOT. MPI_ROOT_WORKS .and. MP_RANK == 0) EXIT

 SELECT CASE (IDO)

! Define values that determine limits.

 CASE (1)

 T0=ZERO

 TOUT=1D-3

 U(NPDE+1,1)=ZERO;U(NPDE+1,N)=ONE

 IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER

 IOPT(2)=5

 IOPT(3)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,1D-2)

 IOPT(4)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2)

 TIMES=MPI_WTIME()

! Update to the next output point.

! Write solution and check for final point.

 CASE (2)

 T0=TOUT;TOUT=TOUT*DELTA_T

 IF(T0 >= TEND) IDO=3

 TOUT=MIN(TOUT, TEND)

! All completed. Solver is shut down.

 CASE (3)

 TIMEE=MPI_WTIME()

 EXIT

! Define initial data values.

 CASE (5)

 U(1,:)=1D0;U(2,:)=0D0

! Define differential equations.

 CASE (6)

D_PDE_1D_MG_C=0D0;D_PDE_1D_MG_C(1,1)=1D0;D_PDE_1D_MG_C(2,2)=1D0

 D_PDE_1D_MG_R=P*D_PDE_1D_MG_DUDX

D_PDE_1D_MG_R(1)=D_PDE_1D_MG_R(1)*EPS

 Z=ETA*(D_PDE_1D_MG_U(1)-D_PDE_1D_MG_U(2))/THREE

 D_PDE_1D_MG_Q(1)=EXP(Z)-EXP(-TWO*Z)

 D_PDE_1D_MG_Q(2)=-D_PDE_1D_MG_Q(1)

! Define boundary conditions.

 CASE (7)

 IF(PDE_1D_MG_LEFT) THEN

 D_PDE_1D_MG_BETA(1)=1D0;D_PDE_1D_MG_BETA(2)=0D0

D_PDE_1D_MG_GAMMA(1)=0D0;D_PDE_1D_MG_GAMMA(2)=D_PDE_1D_MG_U(2)

 ELSE

 D_PDE_1D_MG_BETA(1)=0D0;D_PDE_1D_MG_BETA(2)=1D0

 D_PDE_1D_MG_GAMMA(1)=D_PDE_1D_MG_U(1)- &

 1D0;D_PDE_1D_MG_GAMMA(2)=0D0

 END IF

 END SELECT

! Reverse communication is used for the problem data.

 CALL PDE_1D_MG (T0, TOUT, IDO, U)

 END DO

 TIMEL=TIMEE-TIMES

 DATA=(/EPS, P, ETA, U(2,N), TIMEL/)

 IF(MP_RANK > 0) THEN

! Send parameters and time to the root.

 CALL MPI_SEND(DATA, 5, MPI_DOUBLE_PRECISION,0, MP_RANK, &

 MP_LIBRARY_WORLD, IERROR)

! Receive back a "go/stop" flag.

1114 Chapter 5: Differential Equations IMSL MATH LIBRARY

 CALL MPI_RECV(CONTINUE, 1, MPI_INTEGER, 0, MPI_ANY_TAG, &

 MP_LIBRARY_WORLD, STATUS, IERROR)

! If root notes that time is up, it sends node a quit flag.

 IF(CONTINUE == 0) EXIT SIMULATE

 ELSE

! If root is working, record its result and then stand ready

! for other nodes to send.

 IF(MPI_ROOT_WORKS) WRITE(7,*) MP_RANK, DATA

! If all nodes have reported, then quit.

 IF(COUNT(MPI_NODE_PRIORITY >= 0) == 0) EXIT SIMULATE

! See if time is up. Some nodes still must report.

 IF(MPI_WTIME()-TIME >= SIM_TIME) THEN

 CONTINUE=0

 ELSE

 CONTINUE=1

 END IF

! Root receives simulation data and finds which node sent it.

 IF(MP_NPROCS > 1) THEN

 CALL MPI_RECV(DATA, 5, MPI_DOUBLE_PRECISION, &

 MPI_ANY_SOURCE, MPI_ANY_TAG, MP_LIBRARY_WORLD, &

 STATUS, IERROR)

 WRITE(7,*) STATUS(MPI_SOURCE), DATA

! If time at the root has elapsed, nodes receive signal to stop.

! Send the reporting node the "go/stop" flag.

! Mark if a node has been stopped.

 CALL MPI_SEND(CONTINUE, 1, MPI_INTEGER, &

 STATUS(MPI_SOURCE), &0, MP_LIBRARY_WORLD, IERROR)

 IF (CONTINUE == 0) MPI_NODE_PRIORITY(STATUS(MPI_SOURCE)+1)&

 =- MPI_NODE_PRIORITY(STATUS(MPI_SOURCE)+1)-1

 END IF

 IF (CONTINUE == 0) MPI_NODE_PRIORITY(1)=-1

 END IF

 END DO SIMULATE

 IF(MP_RANK == 0) THEN

 ENDFILE(UNIT=7);REWIND(UNIT=7)

! Read the data. Find extremes and averages.

 MAX_TIME=ZERO;AV_TIME=ZERO;COUNTS=0;V_MIN=HUGE(ONE)

 DO

 READ(7,*, END=10) I, DATA

 COUNTS(I+1)=COUNTS(I+1)+1

 AV_TIME(I+1)=AV_TIME(I+1)+DATA(5)

 IF(MAX_TIME(I+1) < DATA(5)) MAX_TIME(I+1)=DATA(5)

 V_MIN=MIN(V_MIN, DATA(4))

 END DO

10 CONTINUE

 CLOSE(UNIT=7)

! Set printing Index to match node numbering.

 SHOW_IOPT(1)= SHOW_STARTING_INDEX_IS

 SHOW_IOPT(2)=0

 SHOW_INTOPT(1)=SHOW_STARTING_INDEX_IS

 SHOW_INTOPT(2)=0

 CALL SHOW(MAX_TIME,"Maximum Integration Time, per

process:",IOPT=SHOW_IOPT)

 AV_TIME=AV_TIME/MAX(1,COUNTS)

 CALL SHOW(AV_TIME,"Average Integration Time, per

process:",IOPT=SHOW_IOPT)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1115

 CALL SHOW(COUNTS,"Number of Integrations",IOPT=SHOW_INTOPT)

 WRITE(*,"(1x,A,F6.3)") "Minimum value for v(x,t),at x=1,t=4:

",V_MIN

 END IF

 MP_NPROCS=MP_SETUP("Final")

 end program

MMOLCH

Solves a system of partial differential equations of the form ut = f(x, t, u, ux, uxx) using the method

of lines. The solution is represented with cubic Hermite polynomials.

Note: .MMOLCH replaces deprecated routine MOLCH.

Required Arguments

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal reentry

3 Final call, release workspace

Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this

value is then used for all but the last call that is made with IDO = 3.

FCNUT — User-supplied subroutine to evaluate the function ut. The usage is CALL

FCNUT (NPDES, X, T, U, UX, UXX, UT[,…]) where

Required Arguments

NPDES — Number of equations. (Input)

X — Space variable, x. (Input)

T — Time variable, t. (Input)

U — Array of length NPDES containing the dependent variable values,

u. (Input)

UX — Array of length NPDES containing the first derivatives ux. (Input)

UXX — Array of length NPDES containing the second derivative uxx. (Input)

LinkedDocuments/molch.pdf

1116 Chapter 5: Differential Equations IMSL MATH LIBRARY

UT — Array of length NPDES containing the computed derivatives, ut.

(Output)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional integer or floating point information to or from the user-supplied

subroutine. For a detailed description of this argument see FCN_DATA

below. (Input/Output)

FCNUT must be declared EXTERNAL in the calling program.

FCNBC — User-supplied subroutine to evaluate the boundary conditions. The boundary

conditions accepted by MMOLCH are αk uk + βk ux =γk (t). Users must supply the values

αk and βk, and functions γk (t). The usage is CALL FCNBC (NPDES, X, T, ALPHA, BETA,

GAMMA[,…]), where

Required Arguments

NPDES – Number of equations. (Input)

X — Space variable, x. This value directs which boundary condition to

compute. (Input)

T — Time variable, t. (Input)

ALPHA — Array of length NPDES containing the αk values. (Output)

BETA — Array of length NPDES containing the βk values. (Output)

GAMMA — Array of length NPDES containing the values of γk (t). (Output)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional integer or floating point information to or from the user-supplied

subroutine. For a detailed description of this argument see FCN_DATA

below. (Input/Output)

FCNBC must be declared EXTERNAL in the calling program.

T — Independent variable, t. (Input/Output)

On input, T supplies the initial time, t0. On output, T is set to the value to which the

integration has been updated. Normally, this new value is TEND.

TEND — Value of t = tend at which the solution is desired. (Input)

XBREAK — Array of length NX containing the break points for the cubic Hermite splines

used in the x discretization. (Input)

The points in the array XBREAK must be strictly increasing. The values XBREAK(1) and

XBREAK(NX) are the endpoints of the interval.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1117

Y — Array of size NPDES by NX containing the solution. (Input/Output)

The array Y contains the solution as Y(k, i) = uk(x, t) at x = XBREAK(i). On input, Y

contains the initial values. On output, Y contains the computed solution.

The user can optionally supply the derivative values, ux(x, t0). The user allocates twice

the space for Y to pass this information. The optional derivative information is input as

 0, ,ku
k i x t

x

 Y NX

at x = XBREAK(i). The array Y contains the optional derivative values as output:

 , ,ku
k i x tend

x

 Y NX

at x = XBREAK(i). To signal that this information is provided, set INPDER = 1.

Optional Arguments

NPDES — Number of differential equations. (Input)

Default: NPDES = size (Y,1).

NX — Number of mesh points or lines. (Input)

Default: NX = size (XBREAK,1).

TOL — Differential equation error tolerance. (Input)

An attempt is made to control the local error in such a way that the global error is

proportional to TOL.

Default: TOL = 100. * machine precision.

HINIT — Initial step size in the t integration. (Input)

This value must be nonnegative. If HINIT is zero, an initial step size of 0.001|tend t0|

will be arbitrarily used. The step will be applied in the direction of integration.

Default: HINIT = 0.0.

INPDER — Set INPDER = 1 if the user is supplying the derivative values, ux(x, t0), in the

array Y. (Input)

Default: INPDER = 0.

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional

information to/from the user-supplied function. (Input/Output)

The derived type, s_fcn_data, is defined as:

type s_fcn_data

 real(kind(1e0)), pointer, dimension(:) :: rdata

 integer, pointer, dimension(:) :: idata

end type

1118 Chapter 5: Differential Equations IMSL MATH LIBRARY

in module mp_types. The double precision counterpart to s_fcn_data is named

d_fcn_data. The user must include a use mp_types statement in the calling

program to define this derived type.

FORTRAN 90 Interface

Generic: CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y [,…])

Specific: The specific interface names are S_MMOLCH and D_MMOLCH.

Description

Let M = NPDES, N = NX and xi = XBREAK(I). The routine MMOLCH uses the method of lines to solve

the partial differential equation system

2 2
1 1

1 2 2
, , , , , , ,k M M

k M

u u u u u
f x t u u

t x x x x

with the initial conditions

 0atk ku u x t t

and the boundary conditions

1()at and at k
k k k k N

u
u t x x x x

x

for k = 1, …, M.

Cubic Hermite polynomials are used in the x variable approximation so that the trial solution is

expanded in the series

 , ,

1

ˆ ,
N

k i k i i k i

i

bu x t a t x t x

where ɸi(x) and Ψi(x) are the standard basis functions for the cubic Hermite polynomials with the

knots x1 < x2 < … < xN. These are piecewise cubic polynomials with continuous first derivatives.

At the breakpoints, they satisfy

0

0

i l il i l

i i
l l il

x x

d d
x x

dx dx

According to the collocation method, the coefficients of the approximation are obtained so that the

trial solution satisfies the differential equations at the two Gaussian points in each subinterval,

IMSL MATH LIBRARY Chapter 5: Differential Equations 1119

2 1 1

2 1

3 3

6

3 3

6

j j j j

j j j j

p x x x

p x x x

for j = 1, …, N. The collocation approximation to the differential equation is

, ,

1

1 1ˆ ˆ ˆ ˆ, , , , , , , ,

N
i k i k

i j i j

i

k j j M j j M jxx xx

da db
p p

dt dt

f p t u p u p u p u p

for k = 1, …, M and j = 1, …, 2(N − 1).

This is a system of 2M(N − 1) ordinary differential equations in 2M N unknown coefficient

functions, ai, k and bi, k. This system can be written in the matrix−vector form as ,
dc

A F t c
dt

with c(t0) = c0 where c is a vector of coefficients of length 2M N and c0 holds the initial values of

the coefficients. The last 2M equations are obtained from the boundary conditions.

If αk = βk = 0, it is assumed that no boundary condition is desired for the k-th unknown at the left

endpoint. A similar comment holds for the right endpoint. Thus, collocation is done at the

endpoint. This is generally a useful feature for systems of first-order partial differential equations.

The input/output array Y contains the values of the ai,k. The initial values of the bi,k are obtained by

using the IMSL cubic spline routine CSINT (see Chapter 3, Interpolation and Approximation) to

construct functions

 0ˆ ,ku x t

such that

 0 ,ˆ ,k i i ku x t a

The IMSL routine CSDER, (see Chapter 3, Interpolation and Approximation), is used to

approximate the values

 0 ,

ˆ
,k

i i k

du
x t b

dx

If INPDER = 1, the user should provide the initial values of bi,k.

The order of matrix A is 2M N and its maximum bandwidth is 6M 1. The band structure of the

Jacobian of F with respect to c is the same as the band structure of A. This system is solved using

a modified version of IVPAG. Numerical Jacobians are used exclusively. The algorithm is

unchanged. Gear‘s BDF method is used as the default because the system is typically stiff. For

more details, see Sewell (1982).

1120 Chapter 5: Differential Equations IMSL MATH LIBRARY

We now present three examples of PDEs that illustrate how users can interface their problems

with IMSL PDE solving software. The examples are small and not indicative of the complexities

that most practitioners will face in their applications. A set of seven sample application problems,

some of them with more than one equation, is given in Sincovec and Madsen (1975). Two further

examples are given in Madsen and Sincovec (1979).

Comments

Informational errors

Type Code

4 1 After some initial success, the integration was halted by repeated

error test failures.

4 2 On the next step, X + H will equal X. Either TOL is too small or the

problem is stiff.

4 3 After some initial success, the integration was halted by a test on

TOL.

4 4 Integration was halted after failing to pass the error test even after

reducing the step size by a factor of 1.0E + 10. TOL may be too

small.

4 5 Integration was halted after failing to achieve corrector convergence

even after reducing the step size by a factor of 1.0E + 10. TOL may

be too small.

Example 1

The normalized linear diffusion PDE, ut = uxx, 0 x 1, t > 0, is solved. The initial values are

u(x, 0) = u0 = 1. There is a ―zero-flux‖ boundary condition at x = 1, namely ux(1, t) = 0,

(t > 0). The boundary value of u(0, t) is abruptly changed from u0 to the value 0, for t > 0.

When the boundary conditions are discontinuous, or incompatible with the initial conditions such

as in this example, it may be important to use double precision.

 USE MMOLCH_INT

 USE WRRRN_INT

 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDES=1, NX=8

 INTEGER :: I, IDO, J, NSTEP

 REAL :: HINIT, T, TEND, TOL

 REAL :: XBREAK(NX), Y(NPDES,NX), U0

 CHARACTER :: TITLE*19

 EXTERNAL FCNBC, FCNUT

! SET BREAKPOINTS AND INITIAL CONDITIONS

 U0 = 1.0

 DO I=1,NX

 XBREAK(I) = FLOAT(I-1)/FLOAT(NX-1)

 Y(1,I) = U0

IMSL MATH LIBRARY Chapter 5: Differential Equations 1121

 END DO

! SET PARAMETERS FOR MMOLCH

 TOL = 10.e-4

 HINIT = 0.01*TOL

 T = 0.0

 IDO = 1

 NSTEP = 10

 DO J=1,NSTEP

 TEND = FLOAT(J)/FLOAT(NSTEP)

! SOLVE THE PROBLEM

 CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, TOL=TOL, &

 HINIT=HINIT)

! PRINT RESULTS

 WRITE (TITLE,'(A,F4.2)') 'Solution at T =', TEND

 CALL WRRRN (TITLE, Y)

 END DO

! LAST CALL, TO RELEASE WORKSPACE

 IDO = 3

 CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, TOL=TOL, &

 HINIT=HINIT)

 STOP

 END

 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)

 INTEGER NPDES

 REAL X, T, U(*), UX(*), UXX(*), UT(*)

! DEFINE THE PDE

 UT(1) = UXX(1)

 RETURN

 END

 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAM)

 INTEGER NPDES

 REAL X, T, ALPHA(*), BTA(*), GAM(*)

! DEFINE THE BOUNDARY CONDITIONS

 IF (X .EQ. 0.0) THEN

! THESE ARE FOR X=0

 ALPHA(1) = 1.0

 BTA(1) = 0.0

 GAM(1) = 0.0

 ELSE

! THESE ARE FOR X=1

 ALPHA(1) = 0.0

 BTA(1) = 1.0

 GAM(1) = 0.0

 END IF

 RETURN

 END

Output

 Solution at T =0.10

 1 2 3 4 5 6 7 8

 0.0000 0.2507 0.4771 0.6617 0.7972 0.8857 0.9341 0.9493

1122 Chapter 5: Differential Equations IMSL MATH LIBRARY

 Solution at T =0.20

 1 2 3 4 5 6 7 8

 0.0000 0.1762 0.3424 0.4893 0.6100 0.6992 0.7538 0.7721

 Solution at T =0.30

 1 2 3 4 5 6 7 8

 0.0000 0.1356 0.2642 0.3793 0.4751 0.5471 0.5916 0.6067

 Solution at T =0.40

 1 2 3 4 5 6 7 8

 0.0000 0.1057 0.2060 0.2960 0.3711 0.4276 0.4626 0.4745

 Solution at T =0.50

 1 2 3 4 5 6 7 8

 0.0000 0.0825 0.1610 0.2313 0.2900 0.3341 0.3616 0.3708

 Solution at T =0.60

 1 2 3 4 5 6 7 8

 0.0000 0.0645 0.1258 0.1808 0.2267 0.2612 0.2826 0.2899

 Solution at T =0.70

 1 2 3 4 5 6 7 8

 0.0000 0.0504 0.0983 0.1413 0.1772 0.2041 0.2209 0.2266

 Solution at T =0.80

 1 2 3 4 5 6 7 8

 0.0000 0.0394 0.0769 0.1105 0.1385 0.1597 0.1728 0.1772

 Solution at T =0.90

 1 2 3 4 5 6 7 8

 0.0000 0.0309 0.0602 0.0865 0.1084 0.1249 0.1352 0.1387

 Solution at T =1.00

 1 2 3 4 5 6 7 8

 0.0000 0.0242 0.0471 0.0677 0.0849 0.0979 0.1059 0.1086

Additonal Examples

Example 2

In this example, using MMOLCH, we solve the linear normalized diffusion PDE ut = uxx but with an

optional usage that provides values of the derivatives, ux, of the initial data. Due to errors in the

numerical derivatives computed by spline interpolation, more precise derivative values are

required when the initial data is u(x, 0) = 1 + cos[(2n 1)x], n > 1. The boundary conditions are

―zero flux‖ conditions ux(0, t) = ux(1, t) = 0 for t > 0.

 USE MMOLCH_INT

 USE CONST_INT

 USE WRRRN_INT

 USE PGOPT_INT

 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDES=1, NX=10

IMSL MATH LIBRARY Chapter 5: Differential Equations 1123

 INTEGER :: I, IDO, J, NSTEP, N, IPAGE

 REAL :: HINIT, T, TEND, TOL, XBREAK(NX)

 REAL :: Y(NPDES,2*NX), PI, ARG1

 CHARACTER :: TITLE*36

 EXTERNAL FCNBC, FCNUT

 REAL FLOAT

 N = 5

 PI = CONST('pi')

 DO I=1,NX

 XBREAK(I) = FLOAT(I-1)/FLOAT(NX-1)

 ARG1 = (2.*N-1)*PI

! SET FUNCTION VALUES

 Y(1,I) = 1. + COS(ARG1*XBREAK(I))

! SET FIRST DERIVATIVE VALUES

 Y(1,I+NX) = -ARG1*SIN(ARG1*XBREAK(I))

 END DO

! SET PARAMETERS FOR MMOLCH

 TOL = 10.0e-4

 HINIT = 0.01*TOL

! OUTPUT AT STEPS OF 0.001

 TEND = 0.

 T = 0.0

 IDO = 1

 NSTEP = 10

 DO J=1,NSTEP

 TEND = TEND + 0.001

! SOLVE THE PROBLEM

 CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, NPDES=NPDES, &

 NX=NX, HINIT=HINIT, TOL=TOL, INPDER=1)

! PRINT RESULTS

 IPAGE = 70

 CALL PGOPT(-1, IPAGE)

 WRITE (TITLE,'(A,F5.3)') 'Solution and derivatives at T =', T

 CALL WRRRN (TITLE, Y)

 END DO

! LAST CALL, TO RELEASE WORKSPACE

 IDO = 3

 CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, NPDES=NPDES, &

 NX=NX, HINIT=HINIT, TOL=TOL, INPDER=1)

 END

 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)

 INTEGER NPDES

 REAL X, T, U(*), UX(*), UXX(*), UT(*)

! DEFINE THE PDE

 UT(1) = UXX(1)

 RETURN

 END

 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAM)

 INTEGER NPDES

 REAL X, T, ALPHA(*), BTA(*), GAM(*)

! DEFINE THE BOUNDARY CONDITIONS

1124 Chapter 5: Differential Equations IMSL MATH LIBRARY

 ALPHA(1) = 0.0

 BTA(1) = 1.0

 GAM(1) = 0.0

 RETURN

 END

Output

 Solution and derivatives at T =0.001

 1 2 3 4 5 6 7 8 9

 1.482 0.518 1.482 0.518 1.482 0.518 1.482 0.518 1.482

 10 11 12 13 14 15 16 17 18

 0.518 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000

 19 20

 -0.000 -0.000

 Solution and derivatives at T =0.002

 1 2 3 4 5 6 7 8 9

 1.235 0.765 1.235 0.765 1.235 0.765 1.235 0.765 1.235

 10 11 12 13 14 15 16 17 18

 0.765 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000

 19 20

 -0.000 0.000

 Solution and derivatives at T =0.003

 1 2 3 4 5 6 7 8 9

 1.114 0.886 1.114 0.886 1.114 0.886 1.114 0.886 1.114

 10 11 12 13 14 15 16 17 18

 0.886 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000

 19 20

 -0.000 -0.000

 Solution and derivatives at T =0.004

 1 2 3 4 5 6 7 8 9

 1.055 0.945 1.055 0.945 1.055 0.945 1.055 0.945 1.055

 10 11 12 13 14 15 16 17 18

 0.945 0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 0.000

 19 20

 -0.000 -0.000

 Solution and derivatives at T =0.005

 1 2 3 4 5 6 7 8 9

 1.027 0.973 1.027 0.973 1.027 0.973 1.027 0.973 1.027

 10 11 12 13 14 15 16 17 18

 0.973 0.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 0.000

IMSL MATH LIBRARY Chapter 5: Differential Equations 1125

 19 20

 -0.000 -0.000

 Solution and derivatives at T =0.006

 1 2 3 4 5 6 7 8 9

 1.013 0.987 1.013 0.987 1.013 0.987 1.013 0.987 1.013

 10 11 12 13 14 15 16 17 18

 0.987 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 0.000

 19 20

 -0.000 -0.000

 Solution and derivatives at T =0.007

 1 2 3 4 5 6 7 8 9

 1.006 0.994 1.006 0.994 1.006 0.994 1.006 0.994 1.006

 10 11 12 13 14 15 16 17 18

 0.994 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000

 19 20

 -0.000 -0.000

 Solution and derivatives at T =0.008

 1 2 3 4 5 6 7 8 9

 1.003 0.997 1.003 0.997 1.003 0.997 1.003 0.997 1.003

 10 11 12 13 14 15 16 17 18

 0.997 0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000

 19 20

 -0.000 -0.000

 Solution and derivatives at T =0.009

 1 2 3 4 5 6 7 8 9

 1.002 0.998 1.002 0.998 1.002 0.998 1.002 0.998 1.002

 10 11 12 13 14 15 16 17 18

 0.998 0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 -0.000

 19 20

 -0.000 0.000

 Solution and derivatives at T =0.010

 1 2 3 4 5 6 7 8 9

 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999 1.001

 10 11 12 13 14 15 16 17 18

 0.999 0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 -0.000

 19 20

 -0.000 -0.000

1126 Chapter 5: Differential Equations IMSL MATH LIBRARY

Example 3

In this example, we consider the linear normalized hyperbolic PDE, utt = uxx, the ―vibrating string‖

equation. This naturally leads to a system of first order PDEs. Define a new dependent variable

ut = v. Then, vt = uxx is the second equation in the system. We take as initial data u(x, 0) = sin(x)

and ut(x, 0) = v(x, 0) = 0. The ends of the string are fixed so u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0.

The exact solution to this problem is u(x, t) = sin(x) cos(t). Residuals are computed at the output

values of t for 0 < t 2. Output is obtained at 200 steps in increments of 0.01.

Even though the sample code MMOLCH gives satisfactory results for this PDE, users should be

aware that for nonlinear problems, ―shocks‖ can develop in the solution. The appearance of

shocks may cause the code to fail in unpredictable ways. See Courant and Hilbert (1962), pages

488-490, for an introductory discussion of shocks in hyperbolic systems.

 USE MMOLCH_INT

 USE UMACH_INT

 USE CONST_INT

 IMPLICIT NONE

 INTEGER, PARAMETER :: NPDES=2, NX=10

 INTEGER :: I, IDO, J, NOUT, NSTEP

 REAL :: HINIT, T, TEND, TOL, XBREAK(NX)

 REAL :: Y(NPDES,2*NX), PI, ERROR, ERRU

 CHARACTER :: TITLE*36

 EXTERNAL FCNBC, FCNUT

 REAL FLOAT

 CALL UMACH (2,NOUT)

! SET BREAKPOINTS AND INITIAL CONDITIONS

 PI = CONST('pi')

 DO I=1,NX

 XBREAK(I) = FLOAT(I-1)/FLOAT(NX-1)

! SET FUNCTION VALUES

 Y(1,I) = SIN(PI*XBREAK(I))

 Y(2,I) = 0.

! SET FIRST DERIVATIVE VALUES

 Y(1,I+NX) = PI*COS(PI*XBREAK(I))

 Y(2,I+NX) = 0.

 END DO

! SET PARAMETERS FOR MMOLCH

 TOL = 10.0e-4

 HINIT = 0.01*TOL

! OUTPUT AT STEPS OF 0.01

 TEND = 0.

 T = 0.0

 IDO = 1

 NSTEP = 200

 DO J=1,NSTEP

 TEND = TEND + 0.01

! SOLVE THE PROBLEM

 CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, &

 HINIT=HINIT, TOL=TOL, INPDER=1)

! COMPUTE MAXIMUM ERROR

IMSL MATH LIBRARY Chapter 5: Differential Equations 1127

 ERRU = 0.0

 DO I=1,NX

 ERROR = Y(1,I) - SIN(PI*XBREAK(I))*COS(PI*TEND)

 ERRU = AMAX1(ERRU,ABS(ERROR))

 END DO

 END DO

! PRINT ERROR

 WRITE (NOUT, *) ' Maximum error in u(x,t): ', ERRU

! LAST CALL, TO RELEASE WORKSPACE

 IDO = 3

 CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, &

 HINIT=HINIT, TOL=TOL, INPDER=1)

 END

 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)

 INTEGER NPDES

 REAL X, T, U(*), UX(*), UXX(*), UT(*)

! DEFINE THE PDEs

 UT(1) = U(2)

 UT(2) = UXX(1)

 RETURN

 END

 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAM)

 INTEGER NPDES

 REAL X, T, ALPHA(*), BTA(*), GAM(*)

! DEFINE THE BOUNDARY CONDITIONS

 ALPHA(1) = 1.0

 BTA(1) = 0.0

 GAM(1) = 0.0

 ALPHA(2) = 1.0

 BTA(2) = 0.0

 GAM(2) = 0.0

 RETURN

 END

1128 Chapter 5: Differential Equations IMSL MATH LIBRARY

Output

 Maximum error in u(x,t): 5.49525E-3

MOLCH

Deprecated Routine: MOLCH is a deprecated routine and has been replaced with MMOLCH.

Click here to view the MOLCH documentation.

FEYNMAN_KAC

Solves the generalized Feynman-Kac PDE on a rectangular grid using a finite element Galerkin

method. Initial and boundary conditions are provided. The solution is represented by a series of C
2

Hermite quintic splines.

Required Arguments

XGRID — Rank-1 array containing the set of breakpoints that define the end points for the

Hermite quintic splines. (Input)

Let m = size(XGRID). The points in XGRID must be in strictly increasing order, and m

 2.

TGRID — Rank-1 array containing the set of time points (in time-remaining units) at which

an approximate solution is computed. (Input)

Let n = size(TGRID). The points in TGRID must be strictly positive and in strictly

increasing order and n ≥ 1.

NLBC — The number of left boundary conditions. (Input)

1≤ NLBC ≤ 3.

NRBC — The number of right boundary conditions. (Input)

1≤ NRBC ≤ 3.

FKCOEF — User-supplied FUNCTION to evaluate the coefficients , , and of the

Feynman-Kac PDE. The usage is FKCOEF (X, TX, IFLAG[,…]), where

Function Return Value

FKCOEF — Value of the coefficient function. Which value is computed

depends on the input value for IFLAG, see description of IFLAG.

LinkedDocuments/molch.pdf

IMSL MATH LIBRARY Chapter 5: Differential Equations 1129

Required Arguments

X — Point in the x-space at which the coefficient is to be evaluated. (Input)

TX — Time point at which the coefficient is to be evaluated. (Input)

IFLAG — Flag related to the coefficient that has to be computed

(Input/Output).

On entry, IFLAG indicates which coefficient is to be computed. The

following table shows which value has to be returned by FKCOEF for all

possible values of IFLAG:

IFLAG Computed coefficient

1

(,)x t

x

2

3

4

 One indicates when a coefficient does not depend on t by setting IFLAG =

0 after the coefficient is defined. If there is time dependence, the value of

IFLAG should not be changed. This action will usually yield a more

efficient algorithm because some finite element matrices do not have to be

reassembled for each t value.

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional integer or floating point information to or from the user-supplied

function. For a detailed description of this argument see FCN_DATA below.

(Input/Output)

 FKCOEF must be declared EXTERNAL in the calling program.

FKINITCOND — User-supplied FUNCTION to evaluate the initial condition function ()p x

in the Feynman-Kac PDE. The usage is FKINITCOND (X[,…]), where

Function Return Value

FKINITCOND — Value of the initial condition function ()p x .

Required Arguments

X — Point in the x-space at which the initial condition is to be evaluated.

(Input)

1130 Chapter 5: Differential Equations IMSL MATH LIBRARY

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional integer or floating point information to or from the user-supplied

function. For a detailed description of this argument see FCN_DATA below.

(Input/Output)

 FKINITCOND must be declared EXTERNAL in the calling program.

FKBC — User-supplied subroutine to evaluate the coefficients for the left and right

boundary conditions the Feynman-Kac PDE must satisfy. There are NLBC conditions

specified at the left end,
min

x , and NRBC conditions at the right end,
max

x . The

boundary conditions can be vectors of dimension 1, 2 or 3 and are defined by

min max
(,) (,) (,) (,), or

x xx
a x t f b x t f c x t f d x t x x x x

 The usage is FKBC (TX, IFLAG, BCCOEFS[,…]) where

Required Arguments

TX — Time point at which the coefficients are to be evaluated. (Input)

IFLAG — Flag related to the boundary conditions that have to be computed

(Input/Output).

On input, IFLAG indicates whether the coefficients for the left or right

boundary conditions have to be computed:

IFLAG Computed boundary conditions

1 Left end, x = xmin

2 Right end, x = xmax

If there is no time dependence for one of the boundaries then set IFLAG = 0

after the array BCCOEFS is defined for either end point. This can avoid

unneeded continued computation of the finite element matrices.

BCCOEFS — Array of size 3 × 4 containing the coefficients of the left or right

boundary conditions in its first NLBC or NRBC rows, respectively. (Output)

The coefficients for minx are stored row-wise according to the following

matrix-scheme:

1 min 1 min 1 min 1 min

min min min min

, , , , , , ,

, , , , , , ,

a x t b x t c x t d x t

a x t b x t c x t d x t

 NLBC NLBC NLBC NLBC

The coefficients for maxx are stored similarly.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1131

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional integer or floating point information to or from the user-supplied

subroutine. For a detailed description of this argument see FCN_DATA

below. (Input/Output)

 FKBC must be declared EXTERNAL in the calling program.

Y — Array of size (3*m) by (n+1) containing the coefficients of the Hermite representation of

the approximate solution for the Feynman-Kac PDE at time points (in time-remaining

units) 0, TGRID(1), …, TGRID(n). (Output)

For ,t TGRID(j) j= 1,…,n , the coefficients are stored in columns 1,…,n of array Y

and the approximate solution is given by

 3* (), m xf x t Y(i,j) ii=1 .

 The coefficients of the representation for the initial data are given in column 0 of array

Y and are defined by

3* ()() m xp x Y(i,0) ii=1 .

 The starting coefficients Y(i,0), i =1, ,m are estimated using least-squares.

 After the integrations, use Y(:,0) and Y(:,j) as input argument COEFFS to

function HQSVAL to obtain an array of values for f(x, t) or its partials ,,f f fx xx xxx at

time points t=0 and t=TGRID(j), j=1,…,n, respectively.

 The expressions for the basis functions ()i x are represented piece-wise and can be

found in Hanson, R. (2008) ―Integrating Feynman-Kac Equations Using Hermite

Quintic Finite Elements‖.

YPRIME — Array of size (3*m) by (n + 1) containing the first derivatives of the coefficients

of the Hermite representation of the approximate solution for the Feynman-Kac PDE at

time points (in time-remaining units) 0, TGRID(1), …, TGRID(n). (Output)

For t 0 and , nt TGRID(j) j= 1,…, , the derivatives of the coefficients are stored

in column 0 and columns 1 to n of array YPRIME, respectively. The columns in

YPRIME represent

 3* (), m xtf x t YPRIME(i,0) ii=1 for
, nt TGRID(j) j=1,…,

,

 and

 3* (), m xtf x t YPRIME(i,0) ii=1 for t 0 .

http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf
http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf

1132 Chapter 5: Differential Equations IMSL MATH LIBRARY

 After the integrations, use YPRIME(:,j) as input argument COEFFS to function

HQSVAL to obtain an array of values for the partials , , ,f f f ft tx txx txxx at time points

t = TGRID(j), j = 1,…,n, and YPRIME(:,0) for the partials at t = 0.

Optional Arguments

FKINIT — User-supplied subroutine that allows for adjustment of initial data or as an

opportunity for output during the integration steps.

 The usage is CALL FKINIT (XGRID, TGRID, TX, YPRIME, Y, ATOL,

RTOL[,…]) where

Required Arguments

XGRID — Array of size m containing the set of breakpoints that define the end

points for the Hermite quintic splines. (Input)

TGRID — Array of size n containing the set of time points (in time-remaining

units) at which an approximate solution is computed. (Input)

TX — Time point for the evaluation. (Input)

Possible values are 0 (the initial or ―terminal‖ time point) and all values in

array TGRID.

YPRIME — Array of length 3*m containing the derivatives of the Hermite

quintic spline coefficients at time point TX. (Input)

Y — Array of length 3* m containing the Hermite quintic spline coefficients at

time point TX. (Input/Output)

For the initial time point TX=0 this array can be used to reset the Hermite

quintic spline coefficients to user defined values. For all other values of

TX array Y is an input array.

ATOL — Array of length 3* m containing absolute error tolerances used in the

integration routine that determines the Hermite quintic spline coefficients

and its derivatives. (Input/Output)

RTOL — Array of length 3*m containing relative error tolerances used in the

integration routine that determines the Hermite quintic spline coefficients

and its derivatives. (Input/Output)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional integer or floating point information to or from the user-supplied

function. For a detailed description of this argument see FCN_DATA below.

(Input/Output)

 FKINIT must be declared EXTERNAL in the calling program.

FKFORCE — User-supplied subroutine that computes local contributions

IMSL MATH LIBRARY Chapter 5: Differential Equations 1133

1 ˆ: (, ,) ()
i

i

x
i

t
x

f x t x dx

 and

1 (, ,) ˆ ˆ: () ()
i

i

i
x

Tt

x

f x t
x x dx

y f

.

 The usage is CALL FKFORCE (I, T, WIDTH, Y, XLOCAL, QW, U, PHI, DPHI[,,…]) where

Required Arguments

I — Index related to the integration interval (XGRID(I), XGRID(I+1)).

(Input)

T — Time point at which the local contributions are computed. (Input)

WIDTH — Width of the integration interval I, WIDTH= XGRID(I+1)-

XGRID(I). (Input)

Y — Array of length 3*m containing the coefficients of the Hermite quintic

spline representing the solution of the Feynman-Kac PDE at time point T.

(Input)

For each

[,], , () / , 1, ,
1 1

x x x h x x z x x h i mi i i i ii i

-1

,

the approximate solution is locally defined by

(,) () (1) ()
0 1 0 1

2 2
 (1) () (1).

1 1 2 1 2

f x t f b z f b z h f b zi i ii

h f b z h f b z h f b zi i i ii i

Here, the functions (), (), ()
0 1 2

b z b z b z are basis polynomials of order 5 and

: (,), : (,), : (,)f f x t f f x t f f x tx xxi i i i i i

.

The values

3 2 3 1 3, , , 1, ,i i i i iy f y f y f i mi

,

are stored as successive triplets in array Y.

XLOCAL — Array containing the Gauss-Legendre points translated and

normalized to the interval [XGRID(I),XGRID(I+1)]. (Input)

The size of the array is equal to the degree of the Gauss-Legendre

polynomials used for constructing the finite element matrices.

QW — Array containing the Gauss-Legendre weights. (Input)

The size of the array is equal to the degree of the Gauss-Legendre

polynomials used for constructing the finite element matrices.

U — Array of size size(XLOCAL) × 12 containing the basis function values that

define ˆ ()x at the Gauss-Legendre points XLOCAL. (Input)

Let

1134 Chapter 5: Differential Equations IMSL MATH LIBRARY

[,], : , () : () /
1 1

x x x h x x z x x x hI I I I II I

 .

Using the local approximation in the I-th interval, defined by

3

3 32
(,) ()I k I kk

f x t y x

,

and setting

:
,

u
j k

 U(j,k)

,
:x j XLOCAL(j)

 and
() :z x zj j

,

vector 1 6
ˆ ˆ ˆ() ((), , ())j j jx x x is defined as

3 2 3 3

2 2
0 1 2 0 1 2

,1 ,2 ,3 ,7 ,8 ,9 .

ˆ () : ((), , ())

: ((), (), (), (1), (1), (1))

: (, , , , ,)

j I j I j

T
j I j I j j I j I j

j j j j j j

T
x x x

b z h b z h b z b z h b z h b z

T
u u u u u u

PHI — Array of size 6 containing a Gauss-Legendre approximation for the local

contribution ˆ: (, ,) ()I

t f x t x dx
XGRID(I+1)

XGRID(I)
, where t T and

3 2 3 3
ˆ() : ((), , ())

T

I Ix x x
. (Output)

Setting NDEG:=SIZE(XLOCAL) and :jx XLOCAL(j), array PHI

contains elements

PHI(i) = WIDTH 1
ˆ() () (, ,)j i j jj x f x t

NDEG
QW

for i= 1,…, 6.

DPHI — Array of size 6×6, a Gauss-Legendre approximation for the Jacobian of

the local contribution
I

t at time point t = T,

(, ,)
ˆ ˆ() ():

I
Tt f x t

x x dx
y f

XGRID(I+1)

XGRID(I)

. (Output)

The approximation to this symmetric matrix is stored row-wise, i.e.

DPHI(i,j) = WIDTH

,

ˆ ˆ() ()
1

x t

x xi jk k k f

XLOCAL(k)

NDEG
QW(k)

T

or i, j = 1,…,6.

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional integer or floating point information to or from the user-supplied

IMSL MATH LIBRARY Chapter 5: Differential Equations 1135

subroutine. For a detailed description of this argument see FCN_DATA

below. (Input/Output)

 FKFORCE must be declared EXTERNAL in the calling program.

 If subroutine FKFORCE is not used as an optional argument then it is assumed that the

forcing term in the Feynman-Kac equation is identically zero.

ATOL — Array of non-negative values containing absolute error tolerances used in the

computation of each column of solution array Y via integration routine DASPH. (Input)

The size of array ATOL can be 1 or 3×m. In the first case, ATOL(1:1) is applied to all

solution components, in the latter each component of ATOL is assigned to the

corresponding solution component allowing for individual control of the error

tolerances. At least one entry in arrays ATOL or RTOL must be greater than 0.

Default: ATOL(1:1) = 1.0e-3 for single and 1.0d-5 for double precision.

RTOL — Array of non-negative values containing relative error tolerances used in the

computation of each column of solution array Y via integration routine DASPH. (Input)

The size of array RTOL can be 1 or 3×m. In the first case, RTOL(1:1) is applied to all

solution components, in the latter each component of RTOL is assigned to the

corresponding solution component allowing for individual control of the error

tolerances. At least one entry in arrays ATOL or RTOL must be greater than 0.

Default: RTOL(1:1) = 1.0e-3 for single and 1.0d-5 for double precision.

NDEG — Degree of the Gauss-Legendre formulas used for constructing the finite element

matrices. (Input)

NDEG ≥ 6.

Default: NDEG = 6.

RINITSTEPSIZE — Starting step size for the integration. (Input)

RINITSTEPSIZE must be strictly negative since the integration is internally done from

T = 0 to T = TGRID(n) in a negative direction.

Default: Program defined initial stepsize.

MAXBDFORDER — Maximum order of the backward differentiation formulas (BDF) used

in the integrator DASPH. (Input)

1 ≤ MAXBDFORDER ≤ 5.

Default: MAXBDFORDER = 5.

RMAXSTEPSIZE — Maximum step size the integrator may take. (Input)

RMAXSTEPSIZE must be strictly positive.

Default: RMAXSTEPSIZE = AMACH(2), the largest possible machine number.

MAXIT — Maximum number of internal integration steps between two consecutive time

points in TGRID. (Input)

MAXIT must be strictly positive.

Default: MAXIT = 500000.

1136 Chapter 5: Differential Equations IMSL MATH LIBRARY

IMETHSTEPCTRL — Indicates which step control algorithm is used in the integration.

(Input)

If IMETHSTEPCTRL = 0, then the step control method of Söderlind is used. If

IMETHSTEPCTRL =1, then the method used by the original Petzold code SASSL is

used.

IMETHSTEPCTRL Method used

0 Method of Söderlind..

1 Method from Petzold code SASSL.

Default: IMETHSTEPCTRL = 0.

TBARRIER — Time barrier past which the integration routine DASPH will not go during

integration. (Input)

TBARRIER ≥ TGRID(n).

Default: TBARRIER = TGRID(n).

ISTATE — Array of size 5 whose entries flag the state of computation for the matrices and

vectors required in the integration. (Output)

For each entry, a zero indicates that no computation has been done or that there is a

time dependence. A one indicates that the entry has been computed and there is no time

dependence.

The ISTATE entries are as follows:

I ISTATE(I)

1 State of computation of Mass matrix, M.

2 State of computation of Stiffness matrix, N.

3 State of computation of Bending matrix, R.

4 State of computation of Weighted mass matrix, K.

5 State of computation of initial data.

NVAL — Array of size 3 summarizing the number of evaluations required during the

integration. (Output)

I NVAL(I)

1
Number of residual function evaluations

of the DAE used in the model.

2
Number of factorizations of the differential

matrix associated with solving the DAE.

3
Number of linear system solve steps using

the differential matrix.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1137

ITDEPEND — Logical array of size 7 indicating time dependence of the coefficients,

boundary conditions and forcing term in the Feynman-Kac equation. (Output)

If ITDEPEND(I)=.FALSE. then argument I is not time dependent, if ITDEPEND(I)

=.TRUE. then argument I is time dependent.

I ITDEPEND(I)

1 Time dependence of .

2 Time dependence of .

3 Time dependence of .

4 Time dependence of .

5 Time dependence of left boundary conditions.

6 Time dependence of right boundary conditions.

7 Time dependence of .

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional

information to/from the user-supplied function. (Input/Output)

The derived type, s_fcn_data, is defined as:

type s_fcn_data

 real(kind(1e0)), pointer, dimension(:) :: rdata

 integer, pointer, dimension(:) :: idata

end type

 in module mp_types. The double precision counterpart to s_fcn_data is named

d_fcn_data. The user must include a use mp_types statement in the calling

program to define this derived type.

 Note that if user-supplied data are required in one of the user-defined functions or

subroutines available for routine FEYNMAN_KAC then these data must be defined via

FCN_DATA.

FORTRAN 90 Interface

Generic: CALL FEYNMAN_KAC (XGRID, TGRID, NLBC, NRBC, FKCOEF, FKINITCOND,

FKBC, Y, YPRIME [,…])

Specific: The specific interface names are S_FEYNMAN_KAC and D_FEYNMAN_KAC.

Description

The generalized Feynman-Kac differential equation has the form

2
(,)

(,) (,) (, ,)
2

x t
f x t f f x t f f x tx xxt

,

1138 Chapter 5: Differential Equations IMSL MATH LIBRARY

where the initial data satisfies

(,) ()f x T p x
.

The derivatives are ,
f f

f
t xt x

f

 etc.

FEYNMAN_KAC uses a finite element Galerkin method over the rectangle3

min max[,] [,]x x T T

in (,)x t to compute the approximate solution. The interval
min max[,]x x is decomposed with a

grid

min 1 2 max() ()mx x x x x
.

On each subinterval the solution is represented by

(,) () (1) ()
0 1 0 1

2 2
 (1) () (1).

1 1 2 1 2

f x t f b z f b z h f b zi i ii

h f b z h f b z h f b zi i i ii i

The values
1 1 1, , , , ,i i i i i if f f f f f

 are time-dependent coefficients associated with each interval.

The basis functions
0 1 2, ,b b b are given for

1 1 [0,1][,], : , () : () /i i i i i i ix x x h x x z x x x h ,

by

0

1

2

5 4 3 3 2
() 6 15 10 1 (1) (6 3 1)

5 4 3 3
() 3 8 6 (1) (3 1)

1 15 4 3 2 3 2
() (3 3) (1)

2 2

b z z z z z z z

b z z z z z z z z

b z z z z z z z

The Galerkin principle is then applied. Using the provided initial and boundary conditions leads to

an index 1 differential-algebraic equation (DAE) for the time-dependent coefficients

3 2 3 1 3: : :, , , 1, ,i i i i i iy f y f y f i m
.

This system is integrated using the variable order, variable step algorithm DASPH. Solution values

and their time derivatives are returned at a grid preceding time T, expressed in units of time

remaining.

More mathematical details are found in Hanson, R. (2008) ―Integrating Feynman-Kac Equations

Using Hermite Quintic Finite Elements‖.

3SuperLU is used to support the sparse matrix operations used by FEYNMAN_KAC. SuperLU is

well-tested. Distributed and threaded versions are available but these are not used in our software.

SuperLU was developed by James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S.

Li, and Joseph W. H. Liu. The authors do not support the package in the context used in the IMSL

Libraries.

http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf
http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf

IMSL MATH LIBRARY Chapter 5: Differential Equations 1139

Examples

Example 1 – A Diffusion Model For Call Options

In Beckers (1980) there is a model for a Stochastic Differential Equation of option pricing. The

idea is a ―constant elasticity of variance diffusion (or CEV) class‖

/ 2 , 0 2dS Sdt S dW

The Black-Scholes model is the limiting case 2 . A numerical solution of this diffusion

model yields the price of a call option. Various values of the strike price K , time values, and

power coefficient are used to evaluate the option price at values of the underlying price. The

sets of parameters in the computation are:

1. power {2.0,1.0,0.0}

2. strike price {15.0,20.0,25.0}K

3. volatility {0.2,0.3,0.4}

4. times until expiration {1/12, 4 /12, 7 /12}

5. underlying prices {19.0, 20.0, 21.0}

6. interest rate 0.05r

7. min max0, 60x x

8. 121, 3 363nx n nx

With this model the Feynman-Kac differential equation is defined by identifying:

:x S

 / 2 / 2 1
, : ;

2

a
x t x x

x

 , :x t rx

 , :x t r

 , , 0f x t

The payoff function is the ―vanilla option‖, max(, 0)p x x K .

Link to example source (feynman_kac_ex1.f90)

! Compute Constant Elasticity of Variance Model for Vanilla Call

 use feynman_kac_int

 use hqsval_int

 use mp_types

 use umach_int

 implicit none

LinkedDocuments/feynman_kac_ex1.f90

1140 Chapter 5: Differential Equations IMSL MATH LIBRARY

! The set of strike prices

 real(kind(1e0)) :: ks(3)=(/15.0e0,20.0e0,25.0e0/)

! The set of sigma values

 real(kind(1e0)) :: sigma(3) = (/0.2e0, 0.3e0, 0.4e0/)

! The set of model diffusion powers

 real(kind(1e0)) :: alpha(3) = (/2.0e0,1.0e0,0.0e0/)

! Time values for the options

 integer, parameter :: nt = 3

 real(kind(1e0)) :: time(nt)=(/1.e0/12., 4.e0/12., 7.e0/12./)

! Values of the underlying where evaluation are made

 integer, parameter :: nv = 3, nlbc = 3, nrbc = 3

 real(kind(1e0)) :: xs(nv) = (/19.0e0,20.0e0,21.0e0/)

! Value of the interest rate and continuous dividend

 real(kind(1e0)) :: r = 0.05e0, dividend = 0.0e0

! Values of the min and max underlying values modeled

 real(kind(1e0)) :: x_min = 0.0e0, x_max = 60.0e0

! Define parameters for the integration step.

 integer, parameter :: nx = 121, nint = nx-1, n = 3*nx

 real(kind(1e0)) :: xgrid(nx), y(n,0:nt), yprime(n,0:nt),&

 dx, f(nv,nt)

 type(s_fcn_data) fcn_data

 integer :: nout

 real(kind(1e0)), external :: fkcoef, fkinitcond

 external fkbc

 integer :: i,i1,i2,i3,j

! Allocate space inside the derived type for holding

! data values. These are for the evaluation routines.

 allocate(fcn_data % rdata (6))

! Define an equally-spaced grid of points for the underlying price

 dx = (x_max-x_min)/real(nint)

 xgrid(1) = x_min

 xgrid(nx) = x_max

 do i = 2,nx-1

 xgrid(i) = xgrid(i-1) + dx

 end do

 call umach(2, nout)

 write(nout,'(T05,A)') "Constant Elasticity of Variance Model "//&

 "for Vanilla Call"

 write(nout,'(T10,"Interest Rate ", F7.3, T38,"Continuous '//&

 'Dividend ", F7.3)') r, dividend

 write(nout,'(T10,"Minimum and Maximum Prices of Underlying ",'//&

 '2F7.2)') x_min, x_max

 write(nout,'(T10,"Number of equally spaced spline knots ",I4,'//&

 '/T10,"Number of unknowns ",I4)')&

 nx-1,n

 write(nout,'(/T10,"Time in Years Prior to Expiration ",2X,'//&

 '3F7.4)') time

 write(nout,'(T10,"Option valued at Underlying Prices ",'//&

 '3F7.2)') xs

 do i1 = 1,3 ! Loop over power

 do i2=1,3 ! Loop over volatility

IMSL MATH LIBRARY Chapter 5: Differential Equations 1141

 do i3=1,3 ! Loop over strike price

! Pass data through into evaluation routines.

 fcn_data % rdata =&

 (/ks(i3),x_max,sigma(i2),alpha(i1),r,dividend/)

 call feynman_kac (xgrid, time, nlbc, nrbc, fkcoef,&

 fkinitcond, fkbc, y, yprime,&

 FCN_DATA = fcn_data)

! Evaluate solution at vector of points XS(:), at each time value

! prior to expiration.

 do i=1,nt

 f(:,i) = hqsval (xs, xgrid, y(:,i))

 end do

 write(nout,'(/T05,"Strike=",F5.2," Sigma=", F5.2,'//&

 '" Alpha=", F5.2,/(T25," Call Option Values ",'//&

 'X,3F7.4))') ks(I3),sigma(I2),&

 alpha(i1),(f(i,:),i=1,nv)

 end do !i3 - Strike price loop

 end do !i2 - Sigma loop

 end do !i1 - Alpha loop

 end

! These functions and routines define the coefficients, payoff

! and boundary conditions.

 function fkcoef (X, TX, iflag, fcn_data)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: X, TX

 integer, intent(inout) :: iflag

 type(s_fcn_data), optional :: fcn_data

 real(kind(1e0)) :: fkcoef

 real(kind(1e0)) :: sigma, interest_rate, alpha, dividend,&

 zero = 0.0e0, half = 0.5e0

 sigma = fcn_data % rdata(3)

 alpha = fcn_data % rdata(4)

 interest_rate = fcn_data % rdata(5)

 dividend = fcn_data % rdata(6)

 select case (iflag)

 case (1)

! The coefficient derivative d(sigma)/dx

 fkcoef = half*alpha*sigma*x**(alpha*half-1.0e0)

! The coefficient sigma(x)

 case (2)

 fkcoef = sigma*x**(alpha*half)

 case (3)

! The coefficient mu(x)

 fkcoef = (interest_rate - dividend) * x

 case (4)

! The coefficient kappa(x)

 fkcoef = interest_rate

 end select

! Note that there is no time dependence

 iflag = 0

 return

 end function fkcoef

 function fkinitcond(x, fcn_data)

1142 Chapter 5: Differential Equations IMSL MATH LIBRARY

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: x

 type (s_fcn_data), optional :: fcn_data

 real(kind(1e0)) :: fkinitcond

 real(kind(1e0)) :: zero = 0.0e0

 real(kind(1e0)) :: strike_price

 strike_price = fcn_data % rdata(1)

! The payoff function

 fkinitcond = max(x - strike_price, zero)

 return

 end function fkinitcond

 subroutine fkbc (tx, iflag, bccoefs, fcn_data)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: tx

 integer, intent(inout) :: iflag

 real(kind(1e0)), dimension(:,:), intent(out) :: bccoefs

 type (s_fcn_data), optional :: fcn_data

 real(kind(1e0)) :: x_max, df, interest_rate, strike_price

 strike_price = fcn_data % rdata(1)

 x_max = fcn_data % rdata(2)

 interest_rate = fcn_data % rdata(5)

 select case (iflag)

 case (1)

 bccoefs(1,1:4) = (/1.0e0, 0.0e0, 0.0e0, 0.0e0/)

 bccoefs(2,1:4) = (/0.0e0, 1.0e0, 0.0e0, 0.0e0/)

 bccoefs(3,1:4) = (/0.0e0, 0.0e0, 1.0e0, 0.0e0/)

! Note no time dependence at left end

 iflag = 0

 case (2)

 df = exp(interest_rate * tx)

 bccoefs(1,1:4) = (/1.0e0, 0.0e0, 0.0e0,&

 x_max - df*strike_price/)

 bccoefs(2,1:4) = (/0.0e0, 1.0e0, 0.0e0, 1.0e0/)

 bccoefs(3,1:4) = (/0.0e0, 0.0e0, 1.0e0, 0.0e0/)

 end select

 end subroutine fkbc

Output
 Constant Elasticity of Variance Model for Vanilla Call

 Interest Rate 0.050 Continuous Dividend 0.000

 Minimum and Maximum Prices of Underlying 0.00 60.00

 Number of equally spaced spline knots 120

 Number of unknowns 363

 Time in Years Prior to Expiration 0.0833 0.3333 0.5833

 Option valued at Underlying Prices 19.00 20.00 21.00

 Strike=15.00 Sigma= 0.20 Alpha= 2.00

 Call Option Values 4.0624 4.2575 4.4730

 Call Option Values 5.0624 5.2506 5.4490

IMSL MATH LIBRARY Chapter 5: Differential Equations 1143

 Call Option Values 6.0624 6.2486 6.4385

 Strike=20.00 Sigma= 0.20 Alpha= 2.00

 Call Option Values 0.1310 0.5955 0.9699

 Call Option Values 0.5018 1.0887 1.5101

 Call Option Values 1.1977 1.7483 2.1752

 Strike=25.00 Sigma= 0.20 Alpha= 2.00

 Call Option Values 0.0000 0.0112 0.0745

 Call Option Values 0.0000 0.0372 0.1621

 Call Option Values 0.0007 0.1027 0.3141

 Strike=15.00 Sigma= 0.30 Alpha= 2.00

 Call Option Values 4.0637 4.3398 4.6622

 Call Option Values 5.0626 5.2944 5.5786

 Call Option Values 6.0624 6.2708 6.5240

 Strike=20.00 Sigma= 0.30 Alpha= 2.00

 Call Option Values 0.3109 1.0276 1.5494

 Call Option Values 0.7326 1.5424 2.1017

 Call Option Values 1.3765 2.1690 2.7379

 Strike=25.00 Sigma= 0.30 Alpha= 2.00

 Call Option Values 0.0006 0.1112 0.3543

 Call Option Values 0.0038 0.2169 0.5548

 Call Option Values 0.0184 0.3857 0.8222

 Strike=15.00 Sigma= 0.40 Alpha= 2.00

 Call Option Values 4.0755 4.5138 4.9675

 Call Option Values 5.0662 5.4201 5.8326

 Call Option Values 6.0634 6.3579 6.7301

 Strike=20.00 Sigma= 0.40 Alpha= 2.00

 Call Option Values 0.5115 1.4640 2.1273

 Call Option Values 0.9621 1.9951 2.6929

 Call Option Values 1.5814 2.6105 3.3216

 Strike=25.00 Sigma= 0.40 Alpha= 2.00

 Call Option Values 0.0083 0.3286 0.7790

 Call Option Values 0.0285 0.5167 1.0657

 Call Option Values 0.0813 0.7687 1.4103

 Strike=15.00 Sigma= 0.20 Alpha= 1.00

 Call Option Values 4.0624 4.2479 4.4311

 Call Option Values 5.0624 5.2479 5.4311

 Call Option Values 6.0624 6.2479 6.4311

 Strike=20.00 Sigma= 0.20 Alpha= 1.00

 Call Option Values 0.0000 0.0218 0.1045

 Call Option Values 0.1498 0.4109 0.6485

 Call Option Values 1.0832 1.3314 1.5773

 Strike=25.00 Sigma= 0.20 Alpha= 1.00

 Call Option Values 0.0000 0.0000 0.0000

 Call Option Values 0.0000 0.0000 0.0000

 Call Option Values 0.0000 0.0000 0.0000

1144 Chapter 5: Differential Equations IMSL MATH LIBRARY

 Strike=15.00 Sigma= 0.30 Alpha= 1.00

 Call Option Values 4.0624 4.2477 4.4309

 Call Option Values 5.0624 5.2477 5.4309

 Call Option Values 6.0624 6.2477 6.4309

 Strike=20.00 Sigma= 0.30 Alpha= 1.00

 Call Option Values 0.0011 0.0781 0.2201

 Call Option Values 0.1994 0.5000 0.7543

 Call Option Values 1.0835 1.3443 1.6023

 Strike=25.00 Sigma= 0.30 Alpha= 1.00

 Call Option Values 0.0000 0.0000 0.0000

 Call Option Values 0.0000 0.0000 0.0000

 Call Option Values 0.0000 0.0000 0.0005

 Strike=15.00 Sigma= 0.40 Alpha= 1.00

 Call Option Values 4.0624 4.2479 4.4312

 Call Option Values 5.0624 5.2479 5.4312

 Call Option Values 6.0624 6.2479 6.4312

 Strike=20.00 Sigma= 0.40 Alpha= 1.00

 Call Option Values 0.0076 0.1563 0.3452

 Call Option Values 0.2495 0.5907 0.8706

 Call Option Values 1.0868 1.3779 1.6571

 Strike=25.00 Sigma= 0.40 Alpha= 1.00

 Call Option Values 0.0000 0.0000 0.0001

 Call Option Values 0.0000 0.0000 0.0008

 Call Option Values 0.0000 0.0003 0.0063

 Strike=15.00 Sigma= 0.20 Alpha= 0.00

 Call Option Values 4.0626 4.2479 4.4311

 Call Option Values 5.0623 5.2480 5.4311

 Call Option Values 6.0624 6.2480 6.4312

 Strike=20.00 Sigma= 0.20 Alpha= 0.00

 Call Option Values 0.0001 0.0001 0.0002

 Call Option Values 0.0816 0.3316 0.5748

 Call Option Values 1.0818 1.3308 1.5748

 Strike=25.00 Sigma= 0.20 Alpha= 0.00

 Call Option Values 0.0000 0.0000 0.0000

 Call Option Values 0.0000 0.0000 0.0000

 Call Option Values 0.0000 0.0000 0.0000

 Strike=15.00 Sigma= 0.30 Alpha= 0.00

 Call Option Values 4.0625 4.2479 4.4312

 Call Option Values 5.0623 5.2479 5.4312

 Call Option Values 6.0624 6.2479 6.4312

 Strike=20.00 Sigma= 0.30 Alpha= 0.00

 Call Option Values 0.0000 0.0000 0.0029

 Call Option Values 0.0894 0.3326 0.5753

 Call Option Values 1.0826 1.3306 1.5749

 Strike=25.00 Sigma= 0.30 Alpha= 0.00

IMSL MATH LIBRARY Chapter 5: Differential Equations 1145

 Call Option Values 0.0000 0.0000 0.0000

 Call Option Values 0.0000 0.0000 0.0000

 Call Option Values 0.0000 0.0000 0.0000

 Strike=15.00 Sigma= 0.40 Alpha= 0.00

 Call Option Values 4.0624 4.2479 4.4312

 Call Option Values 5.0623 5.2479 5.4312

 Call Option Values 6.0624 6.2479 6.4312

 Strike=20.00 Sigma= 0.40 Alpha= 0.00

 Call Option Values 0.0000 0.0002 0.0113

 Call Option Values 0.0985 0.3383 0.5781

 Call Option Values 1.0830 1.3306 1.5749

 Strike=25.00 Sigma= 0.40 Alpha= 0.00

 Call Option Values 0.0000 0.0000 0.0000

 Call Option Values 0.0000 0.0000 0.0000

 Call Option Values 0.0000 0.0000 0.0000

Example 2 – American Option vs. European Option On a Vanilla Put

The value of the American Option on a Vanilla Put can be no smaller than its European

counterpart. That is due to the American Option providing the opportunity to exercise at any time

prior to expiration. This example compares this difference – or premium value of the American

Option – at two time values using the Black-Scholes model. The example is based on Wilmott et

al. (1996, p. 176), and uses the non-linear forcing or weighting term described in Hanson, R.

(2008), ―Integrating Feynman-Kac Equations Using Hermite Quintic Finite Elements‖, for

evaluating the price of the American Option. A call to the subroutine fkinit_put sets the initial

conditions. One breakpoint is set exactly at the strike price.

The sets of parameters in the computation are:

1. Strike price {10.0}K

2. Volatility {0.4}

3. Times until expiration {1/ 4,1/ 2}

4. Interest rate 0.1r

5. min max0.0, 30.0x x

6. 121, 3 363nx n nx

The payoff function is the ―vanilla option‖, max(, 0)p x K x .

Link to example source (feynman_kac_ex2.f90)

! Compute American Option Premium for Vanilla Put

 use feynman_kac_int

 use hqsval_int

 use mp_types

 use umach_int

 implicit none

! The strike price

http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf
LinkedDocuments/feynman_kac_ex2.f90

1146 Chapter 5: Differential Equations IMSL MATH LIBRARY

 real(kind(1e0)) :: ks = 10.0e0

! The sigma value

 real(kind(1e0)) :: sigma = 0.4e0

! Time values for the options

 integer, parameter :: nt = 2

 real(kind(1e0)) :: time(nt)=(/0.25e0, 0.5e0/)

! Values of the underlying where evaluations are made

 integer, parameter :: nv = 9

 integer, parameter :: nlbc = 2, nrbc = 3, ndeg = 6

 integer :: i

 real(kind(1e0)) :: xs(nv) = (/((i-1)*2.0e0,i=1,nv)/)

! Value of the interest rate and continuous dividend

 real(kind(1e0)) :: r = 0.1e0, dividend = 0.0e0

! Values of the min and max underlying values modeled

 real(kind(1e0)) :: x_min = 0.0e0, x_max = 30.0e0

 real(kind(1e0)) :: atol(1), rtol(1)

! Define parameters for the integration step.

 integer, parameter :: nx = 121, nint = nx-1, n = 3*nx

 real(kind(1e0)) :: xgrid(nx), ye(n,0:nt), yeprime(n,0:nt),&

 ya(n,0:nt), yaprime(n,0:nt),&

 dx, fe(nv,nt), fa(nv,nt)

 type(s_fcn_data) fcn_data

 integer :: nout

 real(kind(1e0)), external :: fkcoef_put, fkinitcond_put

 external fkbc_put, fkinit_put, fkforce_put

 call umach(2, nout)

! Allocate space inside the derived type for holding

! data values. These are for the evaluation routines.

 allocate(fcn_data % rdata (6), fcn_data % idata (1))

! Define an equally-spaced grid of points for the underlying price

 dx = (x_max-x_min)/real(nint)

 xgrid(1) = x_min

 xgrid(nx) = x_max

 do i=2,nx-1

 xgrid(i) = xgrid(i-1) + dx

 end do

! Place a breakpoint at the strike price.

 do i = 1,nx

 if (xgrid(i) > ks) then

 xgrid(i-1) = ks

 exit

 end if

 end do

! Request less accuracy than the default values provide.

 atol(1) = 0.5e-2

 rtol(1) = 0.5e-2

 fcn_data % rdata = (/ks,x_max,sigma,r,dividend,atol(1)/)

 fcn_data % idata = (/ndeg/)

! Compute European then American Put Option Values.

 call feynman_kac (xgrid, time, nlbc, nrbc, fkcoef_put,&

IMSL MATH LIBRARY Chapter 5: Differential Equations 1147

 fkinitcond_put, fkbc_put, ye, yeprime,&

 FKINIT=fkinit_put, ATOL=atol,RTOL=rtol,&

 FCN_DATA = fcn_data)

 call feynman_kac (xgrid, time, nlbc, nrbc, fkcoef_put,&

 fkinitcond_put, fkbc_put, ya, yaprime,&

 FKINIT=fkinit_put, ATOL=atol, RTOL=rtol,&

 FKFORCE=fkforce_put, FCN_DATA = fcn_data)

! Evaluate solutions at vector of points XS(:), at each time value

! prior to expiration.

 do i=1,nt

 fe(:,i) = hqsval (xs, xgrid, ye(:,I))

 fa(:,I) = hqsval (xs, xgrid, ya(:,I))

 end do

 write(nout,'(T05,A,/,T05,A)')&

 "American Option Premium for Vanilla Put, 3 and 6 Months "//&

 "Prior to", "Expiry"

 write(nout,'(T08,"Number of equally spaced spline knots ",I4,'//&

 '/T08,"Number of unknowns ",I4)') nx,n

 write(nout,'(T08,"Strike= ",F5.2,", Sigma=", F5.2,", Interest'//&

 ' Rate=",F5.2,/T08,"Underlying", T26,"European",'//&

 'T42,"American",/(T10,5F8.4))') ks,sigma,r,&

 (xs(i), fe(i,1:nt), fa(i,1:nt),i=1,nv)

 end

! These routines define the coefficients, payoff, boundary

! conditions, forcing term and initial conditions for American and

! European Options.

 function fkcoef_put(x, tx, iflag, fcn_data)

 use mp_types

 implicit none

 integer, intent(inout) :: iflag

 real(kind(1e0)), intent(in) :: x, tx

 type(s_fcn_data), optional :: fcn_data

 real(kind(1e0)) :: fkcoef_put

 real(kind(1e0)) :: sigma, strike_price, interest_rate, &

 dividend, zero=0.e0

 sigma = fcn_data % rdata(3)

 interest_rate = fcn_data % rdata(4)

 dividend = fcn_data % rdata(5)

 select case (iflag)

 case (1)

! The coefficient derivative d(sigma)/dx

 fkcoef_put = sigma

! The coefficient sigma(x)

 case (2)

 fkcoef_put = sigma*x

 case (3)

! The coefficient mu(x)

 fkcoef_put = (interest_rate - dividend)*x

 case (4)

! The coefficient kappa(x)

 fkcoef_put = interest_rate

 end select

! Note that there is no time dependence

 iflag = 0

 return

1148 Chapter 5: Differential Equations IMSL MATH LIBRARY

 end function fkcoef_put

 function fkinitcond_put(x, fcn_data)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: x

 type (s_fcn_data), optional :: fcn_data

 real(kind(1e0)) :: fkinitcond_put

 real(kind(1e0)) :: zero = 0.0e0

 real(kind(1e0)) :: strike_price

 strike_price = fcn_data % rdata(1)

! The payoff function

 fkinitcond_put = max(strike_price - x, zero)

 return

 end function fkinitcond_put

 subroutine fkbc_put (tx, iflag, bccoefs, fcn_data)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: tx

 integer, intent(inout) :: iflag

 real(kind(1e0)), dimension(:,:), intent(out) :: bccoefs

 type (s_fcn_data), optional :: fcn_data

 select case (iflag)

 case (1)

 bccoefs(1,1:4) = ((/0.0e0, 1.0e0, 0.0e0, -1.0e0/))

 bccoefs(2,1:4) = ((/0.0e0, 0.0e0, 1.0e0, 0.0e0/))

 case (2)

 bccoefs(1,1:4) = ((/1.0e0, 0.0e0, 0.0e0, 0.0e0/))

 bccoefs(2,1:4) = ((/0.0e0, 1.0e0, 0.0e0, 0.0e0/))

 bccoefs(3,1:4) = ((/0.0e0, 0.0e0, 1.0e0, 0.0e0/))

 end select

! Note no time dependence

 iflag = 0

 end subroutine fkbc_put

 subroutine fkforce_put (interval, t, hx, y, xlocal, qw, u,&

 phi, dphi, fcn_data)

 use mp_types

 implicit none

 integer, parameter :: local = 6

 integer :: i, j, l, ndeg

 integer, intent(in) :: interval

 real(kind(1e0)), intent(in) :: y(:), t, hx, qw(:),&

 xlocal(:), u(:,:)

 real(kind(1e0)), intent(out) :: phi(:), dphi(:,:)

 type (s_fcn_data), optional :: fcn_data

 real(kind(1e0)) :: yl(local), bf(local)

 real(kind(1e0)) :: value, strike_price, interest_rate,&

 zero=0.0e0, one=1.0e0, rt, mu

 yl = y(3*interval-2:3*interval+3)

 phi = zero

IMSL MATH LIBRARY Chapter 5: Differential Equations 1149

 value = fcn_data % rdata(6)

 strike_price = fcn_data % rdata(1)

 interest_rate = fcn_data % rdata(4)

 ndeg = fcn_data % idata(1)

 mu = 2

! This is the local definition of the forcing term

 do j=1,local

 do l=1,ndeg

 bf(1:3) = u(l,1:3)

 bf(4:6) = u(l,7:9)

 rt = dot_product(yl,bf)

 rt = value/(rt + value - (strike_price - xlocal(l)))

 phi(j) = phi(j) + qw(l) * bf(j) * rt**mu

 end do

 end do

 phi = -phi*hx*interest_rate*strike_price

! This is the local derivative matrix for the forcing term

 dphi = zero

 do j =1,local

 do i = 1,local

 do l=1,ndeg

 bf(1:3) = u(l,1:3)

 bf(4:6) = u(l,7:9)

 rt = dot_product(yl,bf)

 rt = one/(rt + value - (strike_price - xlocal(l)))

 dphi(i,j) = dphi(i,j) + qw(l) * bf(I) * bf(j) *&

 rt**(mu+1)

 end do

 end do

 end do

 dphi = mu*dphi*hx*value**mu*interest_rate*strike_price

 return

 end subroutine fkforce_put

 subroutine fkinit_put(xgrid,tgrid,t,yprime,y,atol,rtol,&

 fcn_data)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: xgrid(:), tgrid(:), t,&

 yprime(:)

 real(kind(1e0)), intent(inout) :: y(:), atol(:), rtol(:)

 type (s_fcn_data), optional :: fcn_data

 integer :: i

 if (t == 0.0e0) then

! Set initial data precisely. The strike price is a breakpoint.

! Average the derivative limit values from either side.

 do i=1,size(xgrid)

 if (xgrid(i) < fcn_data % rdata(1)) then

 y(3*i-2) = fcn_data % rdata(1) - xgrid(i)

 y(3*i-1) = -1.0e0

 y(3*i)= 0.0e0

 else if (xgrid(i) == fcn_data % rdata(1)) then

1150 Chapter 5: Differential Equations IMSL MATH LIBRARY

 y(3*i-2) = 0.0e0

 y(3*i-1) = -0.5e0

 y(3*i) = 0.0e0

 else

 y(3*i-2) = 0.0e0

 y(3*i-1) = 0.0e0

 y(3*i) = 0.0e0

 end if

 end do

 end if

 end subroutine fkinit_put

Output
 American Option Premium for Vanilla Put, 3 and 6 Months Prior to

 Expiry

 Number of equally spaced spline knots 121

 Number of unknowns 363

 Strike= 10.00, Sigma= 0.40, Interest Rate= 0.10

 Underlying European American

 0.0000 9.7536 9.5137 10.0000 10.0000

 2.0000 7.7536 7.5138 8.0000 8.0000

 4.0000 5.7537 5.5156 6.0000 6.0000

 6.0000 3.7614 3.5680 4.0000 4.0000

 8.0000 1.9064 1.9162 2.0214 2.0909

 10.0000 0.6516 0.8540 0.6767 0.9034

 12.0000 0.1625 0.3365 0.1675 0.3515

 14.0000 0.0369 0.1266 0.0374 0.1322

 16.0000 0.0088 0.0481 0.0086 0.0504

Example 3 – European Option With Two Payoff Strategies

This example evaluates the price of a European Option using two payoff strategies: Cash-or-

Nothing and Vertical Spread. In the first case the payoff function is

0,

,

x K
p x

B x K

 .

The value B is regarded as the bet on the asset price, see Wilmott et al. (1995, p. 39-40). The

second case has the payoff function

 1 2 2 1max() max(),p x x K x K K K

Both problems use the same boundary conditions. Each case requires a separate integration of the

Black-Scholes differential equation, but only the payoff function evaluation differs in each case.

The sets of parameters in the computation are:

1. Strike and bet prices K1={10.0}, K2 = {15.0}, and B = {2.0}

2. Volatility = {0.4}.

3. Times until expiration = {1/4, 1/2}.

4. Interest rate r = 0.1.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1151

5. xmin = 0, xmax = 30.

6. nx =121, n = 3 nx = 363.

Link to example source (feynman_kac_ex3.f90)

! Compute European Option Premium for a Cash-or-Nothing

! and a Vertical Spread Call.

 use feynman_kac_int

 use hqsval_int

 use mp_types

 use umach_int

 implicit none

! The strike price

 real(kind(1e0)) :: ks1 = 10.0e0

! The spread value

 real(kind(1e0)) :: ks2 = 15.0e0

! The Bet for the Cash-or-Nothing Call

 real(kind(1e0)) :: bet = 2.0e0

! The sigma value

 real(kind(1e0)) :: sigma = 0.4e0

! Time values for the options

 integer, parameter :: nt = 2

 real(kind(1e0)) :: time(nt)=(/0.25e0, 0.5e0/)

! Values of the underlying where evaluation are made

 integer, parameter :: nv = 12, nlbc = 3, nrbc = 3

 integer :: i

 real(kind(1e0)) :: xs(nv) = (/(2+(I-1)*2.0e0,I=1,NV)/)

! Value of the interest rate and continuous dividend -

 real(kind(1e0)) :: r = 0.1e0, dividend = 0.0e0

! Values of the min and max underlying values modeled -

 real(kind(1e0)) :: x_min = 0.0e0, x_max = 30.0e0

! Define parameters for the integration step.

 integer, parameter :: nx = 61, nint = nx-1, n=3*nx

 real(kind(1e0)) :: xgrid(nx), yb(n,0:nt), ybprime(n,0:nt),&

 yv(n,0:nt), yvprime(n,0:nt),&

 dx, fb(nv,nt), fv(nv,nt)

 type(s_fcn_data) fcn_data

 integer :: nout

 real(kind(1e0)), external :: fkcoef_call, fkinitcond_call

 external fkbc_call

 call umach(2, nout)

! Allocate space inside the derived type for holding

! data values. These are for the evaluation routines.

 allocate(fcn_data % rdata (7), fcn_data % idata (1))

! Define an equally-spaced grid of points for the underlying price

 dx = (x_max-x_min)/real(nint)

 xgrid(1) = x_min

 xgrid(nx) = x_max

 do i = 2,nx-1

 xgrid(i) = xgrid(i-1) + dx

 end do

 fcn_data % rdata = (/ks1,bet,ks2,x_max,sigma,r,dividend/)

LinkedDocuments/feynman_kac_ex3.f90

1152 Chapter 5: Differential Equations IMSL MATH LIBRARY

! Flag the difference in payoff functions -

! 1 for the Bet, 2 for the Vertical Spread

 fcn_data % idata(1) = 1

 call feynman_kac (xgrid, time, nlbc, nrbc, fkcoef_call,&

 fkinitcond_call, fkbc_call, yb, ybprime,&

 FCN_DATA = fcn_data)

 fcn_data % idata(1) = 2

 call feynman_kac (Xgrid, time, nlbc, nrbc, fkcoef_call,&

 fkinitcond_call, fkbc_call, yv, yvprime,&

 FCN_DATA = fcn_data)

! Evaluate solutions at vector of points XS(:), at each time value

! prior to expiration.

 do i=1,nt

 fb(:,i) = hqsval (xs, xgrid, yb(:,I))

 fv(:,i) = hqsval (xs, xgrid, yv(:,I))

 end do

 write(nout,'(T05,A)') "European Option Value for A Bet",&

 " and a Vertical Spread, 3 and 6 Months "//&

 "Prior to Expiry"

 write(nout,'(T08,"Number of equally spaced spline knots "'//&

 ',I4,/T08,"Number of unknowns ",I4)') NX,N

 write(nout,'(T08,"Strike = ",F5.2,", Sigma =", F5.2,'//&

 '", Interest Rate =",F5.2,'//&

 '/T08,"Bet = ",F5.2,", Spread Value = ", F5.2/'//&

 '/T10,"Underlying", T32,"A Bet", T40,"Vertical Spread",'//&

 '/(T10,5F9.4))') ks1, sigma, r, bet, ks2, &

 (xs(i), fb(i,1:nt), fv(i,1:nt),i=1,nv)

 end

! These routines define the coefficients, payoff, boundary

! conditions and forcing term for American and European Options.

 function fkcoef_call (x, tx, iflag, fcn_data) result(value)

 use mp_types

 implicit none

 integer, intent(inout) :: iflag

 real(kind(1e0)), intent(in) :: x, tx

 type(s_fcn_data), optional :: fcn_data

 real(kind(1e0)) :: value

 real(kind(1e0)) :: sigma, interest_rate, dividend

! Data passed through using allocated components

! of the derived type s_fcn_data

 sigma = fcn_data % rdata(5)

 interest_rate = fcn_data % rdata(6)

 dividend = fcn_data % rdata(7)

 select case (iflag)

 case (1)

! The coefficient derivative d(sigma)/dx

 value = sigma

! The coefficient sigma(x)

 case (2)

 value = sigma * x

IMSL MATH LIBRARY Chapter 5: Differential Equations 1153

 case (3)

! The coefficient mu(x)

 value = (interest_rate - dividend) * x

 case (4)

! The coefficient kappa(x)

 value = interest_rate

 end select

! Note that there is no time dependence

 iflag = 0

 return

 end function fkcoef_call

 function fkinitcond_call(x, fcn_data) result(value)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: x

 type(s_fcn_data), optional :: fcn_data

 real(kind(1e0)) :: value

 real(kind(1e0)) :: strike_price, spread, bet

 real(kind(1e0)), parameter :: zero = 0.0e0

 strike_price = fcn_data % rdata(1)

 bet = fcn_data % rdata(2)

 spread = fcn_data % rdata(3)

! The payoff function - Use flag passed to decide which

 select case (fcn_data % idata(1))

 case(1)

! After reaching the strike price the payoff jumps

! from zero to the bet value.

 value = zero

 if (x > strike_price) value = bet

 case(2)

! Function is zero up to strike price.

! Then linear between strike price and spread.

! Then has constant value Spread-Strike Price after

! the value Spread.

 value = max(x-strike_price, zero) - max(x-spread, zero)

 end select

 return

 end function fkinitcond_call

 subroutine fkbc_call (TX, iflag, bccoefs, fcn_data)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: tx

 integer, intent(inout) :: iflag

 real(kind(1e0)), dimension(:,:), intent(out) :: bccoefs

 type(s_fcn_data), optional :: fcn_data

 real(kind(1e0)) :: strike_price, spread, bet,&

 interest_rate, df

 strike_price = fcn_data % rdata(1)

 bet = fcn_data % rdata(2)

1154 Chapter 5: Differential Equations IMSL MATH LIBRARY

 spread = fcn_data % rdata(3)

 interest_rate = fcn_data % rdata(6)

 select case (iflag)

 case (1)

 bccoefs(1,1:4) = ((/1.0e0, 0.0e0, 0.0e0, 0.0e0/))

 bccoefs(2,1:4) = ((/0.0e0, 1.0e0, 0.0e0, 0.0e0/))

 bccoefs(3,1:4) = ((/0.0e0, 0.0e0, 1.0e0, 0.0e0/))

 case (2)

! This is the discount factor using the risk-free

! interest rate

 df = exp(interest_rate * tx)

! Use flag passed to decide on boundary condition -

 select case (fcn_data % idata(1))

 case(1)

 bccoefs(1,1:4) = (/1.0e0, 0.0e0, 0.0e0, bet*df/)

 case(2)

 bccoefs(1,1:4) = (/1.0e0, 0.0e0, 0.0e0,&

 (spread-strike_price)*df/)

 end select

 bccoefs(2,1:4) = (/0.0e0, 1.0e0, 0.0e0, 0.0e0/)

 bccoefs(3,1:4) = (/0.0e0, 0.0e0, 1.0e0, 0.0e0/)

 return

 end select

! Note no time dependence in case (1) for iflag

 iflag = 0

 end subroutine fkbc_call

Output
 European Option Value for A Bet

 and a Vertical Spread, 3 and 6 Months Prior to Expiry

 Number of equally spaced spline knots 61

 Number of unknowns 183

 Strike= 10.00, Sigma= 0.40, Interest Rate= 0.10

 Bet = 2.00, Spread Value = 15.00

 Underlying A Bet Vertical Spread

 2.0000 0.0000 0.0000 0.0000 0.0000

 4.0000 0.0000 0.0014 0.0000 0.0006

 6.0000 0.0110 0.0723 0.0039 0.0447

 8.0000 0.2691 0.4302 0.1478 0.3832

 10.0000 0.9948 0.9781 0.8909 1.1926

 12.0000 1.6094 1.4290 2.1911 2.2273

 14.0000 1.8655 1.6922 3.4254 3.1553

 16.0000 1.9338 1.8175 4.2263 3.8264

 18.0000 1.9476 1.8700 4.6264 4.2492

 20.0000 1.9501 1.8904 4.7911 4.4921

 22.0000 1.9505 1.8979 4.8497 4.6231

 24.0000 1.9506 1.9007 4.8685 4.6909

Example 4 – Convertible Bonds

This example evaluates the price of a convertible bond. Here, convertibility means that the bond

may, at any time of the holder‘s choosing, be converted to a multiple of the specified asset. Thus a

convertible bond with price x returns an amount K at time T unless the owner has converted the

IMSL MATH LIBRARY Chapter 5: Differential Equations 1155

bond to , 1,x units of the asset at some time prior toT . This definition, the differential

equation and boundary conditions are given in Chapter 18 of Wilmott et al. (1996). Using a

constant interest rate and volatility factor, the parameters and boundary conditions are:

1. Bond face value {1}K , conversion factor 1.125

2. Volatility {0.25}

3. Times until expiration {1/ 2,1}

4. Interest rate 0.1r , dividend 0.02D

5. min max0, 4x x

6. 61, 3 183nx n nx

7. Boundary conditions max max0, exp(()), ,f t K r T t f x t x

8. Terminal data , max(,)f x T K x

9. Constraint for bond holder ,f x t x

Note that the error tolerance is set to a pure absolute error of value
3

10

. The free boundary

constraint ,f x t x is achieved by use of a non-linear forcing term in the subroutine

fkforce_cbond. The terminal conditions are provided with the user subroutine fkinit_cbond.

Link to example source (feynman_kac_ex4.f90)

! Compute value of a Convertible Bond

 use feynman_kac_int

 use hqsval_int

 use mp_types

 use umach_int

 implicit none

! The face value

 real(kind(1e0)) :: ks = 1.0e0

! The sigma or volatility value

 real(kind(1e0)) :: sigma = 0.25e0

! Time values for the options

 integer, parameter :: nt = 2

 real(kind(1e0)) :: time(nt)=(/0.5e0, 1.0e0/)

! Values of the underlying where evaluation are made

 integer, parameter :: nv = 13

 integer, parameter :: nlbc = 3, nrbc = 3, ndeg = 6

 integer :: i

 real(kind(1e0)) :: xs(nv) = (/((i-1)*0.25e0,i=1,nv)/)

! Value of the interest rate, continuous dividend and factor

 real(kind(1e0)) :: r = 0.1e0, dividend = 0.02e0,&

LinkedDocuments/feynman_kac_ex4.f90

1156 Chapter 5: Differential Equations IMSL MATH LIBRARY

 factor =1.125e0

! Values of the min and max underlying values modeled

 real(kind(1e0)) :: x_min = 0.0e0, x_max = 4.0e0

! Define parameters for the integration step.

 integer, parameter :: nx = 61, nint = nx-1, n = 3*nx

 real(kind(1e0)) :: xgrid(nx), y(n,0:nt), yprime(n,0:nt),&

 dx, f(nv,0:nt)

! Relative and absolute error tolerances

 real(kind(1e0)) :: atol(1), rtol(1)

 type(s_fcn_data) fcn_data

 real(kind(1e0)), external :: fkcoef_cbond, fkinitcond_cbond

 external fkbc_cbond, fkforce_cbond, fkinit_cbond

 integer :: nout

 call umach(2,nout)

! Allocate space inside the derived type for holding

! data values. These are for the evaluation routines.

 allocate(fcn_data % rdata (7), fcn_data % idata (1))

! Define an equally-spaced grid of points for the underlying price

 dx = (x_max - x_min)/real(nint)

 xgrid(1) = x_min

 xgrid(nx) = x_max

 do i=2,nx-1

 xgrid(i) = xgrid(i-1) + dx

 end do

! Use a pure absolute error tolerance for the integration

! The default values require too much integation time.

 atol(1) = 1.0e-3

 rtol(1) = 0.0e0

! Pass the data for evaluation

 fcn_data % rdata = (/ks,x_max,sigma,r,dividend,factor,&

 atol(1)/)

 fcn_data % idata = (/ndeg/)

! Compute value of convertible bond

 call feynman_kac (xgrid, time, nlbc, nrbc, fkcoef_cbond,&

 fkinitcond_cbond, fkbc_cbond, y, yprime,&

 ATOL=atol, RTOL=rtol, FKINIT = fkinit_cbond,&

 FKFORCE = fkforce_cbond, FCN_DATA = fcn_data)

! Evaluate and display solutions at vector of points XS(:), at each

! time value prior to expiration.

 do i=0,nt

 f(:,i) = hqsval (xs, xgrid, y(:,i))

 end do

 write(nout,'(T05,A)')&

 "Convertible Bond Value, 0+, 6 and 12 Months Prior to Expiry"

 write(nout,'(T08,"Number of equally spaced spline knots ",I4,'//&

 '/T08,"Number of unknowns ",I4)') NX,N

IMSL MATH LIBRARY Chapter 5: Differential Equations 1157

 write(nout,'(T08,"Strike = ",F5.2,", Sigma =", F5.2,/'//&

 'T08,"Interest Rate =",F5.2,", Dividend =",F5.2,'//&

 '", Factor = ",F5.3,//T08,"Underlying", T26,"Bond Value",'//&

 '/(T10,4F8.4))') ks,sigma,r,dividend,factor,&

 (xs(i), f(i,0:nt),i=1,nv)

 end

! These routines define the coefficients, payoff, boundary

! conditions and forcing term.

 function fkcoef_cbond(x, tx, iflag, fcn_data) result(value)

 use mp_types

 implicit none

 integer, intent(inout) :: iflag

 real(kind(1e0)), intent(in) :: x, tx

 type(s_fcn_data), optional :: fcn_data

 real(kind(1e0)) :: value

 real(kind(1e0)) :: sigma, interest_rate, &

 dividend, zero = 0.e0

 sigma = fcn_data % rdata(3)

 interest_rate = fcn_data % rdata(4)

 dividend = fcn_data % rdata(5)

 select case (iflag)

 case (1)

! The coefficient derivative d(sigma)/dx

 value = sigma

! The coefficient sigma(x)

 case (2)

 value = sigma * x

 case (3)

! The coefficient mu(x)

 value = (interest_rate - dividend) * x

 case (4)

! The coefficient kappa(x)

 value = interest_rate

 end select

! Note that there is no time dependence

 iflag = 0

 return

 end function fkcoef_cbond

 function fkinitcond_cbond(x, fcn_data) result(value)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: x

 type (s_fcn_data), optional :: fcn_data

 real(kind(1e0)) :: value

 real(kind(1e0)) :: strike_price, factor

 strike_price = fcn_data % rdata(1)

 factor = fcn_data % rdata(6)

 value = max(factor * x, strike_price)

 return

1158 Chapter 5: Differential Equations IMSL MATH LIBRARY

 end function fkinitcond_cbond

 subroutine fkbc_cbond (tx, iflag, bccoefs, fcn_data)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: tx

 integer, intent(inout) :: iflag

 real(kind(1e0)), dimension(:,:), intent(out) :: bccoefs

 type(s_fcn_data), optional :: fcn_data

 real(kind(1e0)) :: interest_rate, strike_price, dp,&

 factor, x_max

 select case (iflag)

 case (1)

 strike_price = fcn_data % rdata(1)

 interest_rate = fcn_data % rdata(4)

 dp = strike_price * exp(tx*interest_rate)

 bccoefs(1,1:4) = (/1.0e0, 0.0e0, 0.0e0, dp/)

 bccoefs(2,1:4) = (/0.0e0, 1.0e0, 0.0e0, 0.0e0/)

 bccoefs(3,1:4) = (/0.0e0, 0.0e0, 1.0e0, 0.0e0/)

 return

 case (2)

 x_max = fcn_data % rdata(2)

 factor = fcn_data % rdata(6)

 bccoefs(1,1:4) = (/1.0e0, 0.0e0, 0.0e0, factor * x_max/)

 bccoefs(2,1:4) = (/0.0e0, 1.0e0, 0.0e0, factor/)

 bccoefs(3,1:4) = (/0.0e0, 0.0e0, 1.0e0, 0.0e0/)

 end select

! Note no time dependence

 iflag = 0

 return

 end subroutine fkbc_cbond

 subroutine fkforce_cbond (interval, t, hx, y, xlocal, qw, u,&

 phi, dphi, fcn_data)

 use mp_types

 implicit none

 integer :: i, j, l

 integer, parameter :: local = 6

 integer, intent(in) :: interval

 real(kind(1.e0)), intent(in) :: y(:), t, hx, qw(:),xlocal(:),&

 u(:,:)

 real(kind(1.e0)), intent(out) :: phi(:), dphi(:,:)

 integer :: ndeg

 real(kind(1.e0)) :: yl(local), bf(local)

 real(kind(1.e0)) :: value, strike_price, interest_rate,&

 zero = 0.0e0, one = 1.0e0, rt, mu, factor

 type(s_fcn_data), optional :: fcn_data

 yl = y(3*interval-2:3*interval+3)

 phi = zero

 dphi = zero

 value = fcn_data % rdata(7)

 strike_price = fcn_data % rdata(1)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1159

 interest_rate = fcn_data % rdata(4)

 factor = fcn_data % rdata(6)

 ndeg = fcn_data % idata(1)

 mu = 2

! This is the local definition of the forcing term

! It "forces" the constraint f >= factor*x.

 do j=1,local

 do l = 1,ndeg

 bf(1:3) = u(l,1:3)

 bf(4:6) = u(l,7:9)

 rt = dot_product(yl,bf)

 rt = value/(rt + value - factor * xlocal(l))

 phi(j) = phi(j) + qw(l) * bf(j) * rt**mu

 end do

 end do

 phi = -phi * hx * factor * strike_price

! This is the local derivative matrix for the forcing term -

 do j=1,local

 do i = 1,local

 do l=1,ndeg

 bf(1:3) = u(L,1:3)

 bf(4:6) = u(L,7:9)

 rt = dot_product(yl,bf)

 rt = one/(rt + value - factor * xlocal(l))

 dphi(i,j) = dphi(i,j) + qw(l) * bf(i) * bf(j)&

 * (value * rt)**mu * rt

 end do

 end do

 end do

 dphi = -mu * dphi * hx * factor * strike_price

 return

 end subroutine fkforce_cbond

 subroutine fkinit_cbond(xgrid,tgrid,t,yprime,y,atol,rtol,&

 fcn_data)

 use mp_types

 implicit none

 real(kind(1e0)), intent(inout) :: y(:), atol(:), rtol(:)

 real(kind(1e0)), intent(in) :: xgrid(:), tgrid(:), yprime(:),&

 t

 type(s_fcn_data), optional :: fcn_data

 integer :: i

 if (t == 0.0e0) then

! Set initial data precisely.

 do i=1,size(Xgrid)

 if (xgrid(i)*fcn_data % rdata(6) <&

 fcn_data % rdata(1)) then

 y(3*i-2) = fcn_data % rdata(1)

 y(3*i-1) = 0.0e0

 y(3*i) = 0.0e0

 else

 y(3*i-2) = xgrid(i) * fcn_data % rdata(6)

 y(3*i-1) = fcn_data % rdata(6)

 y(3*i) = 0.0e0

 end if

 end do

1160 Chapter 5: Differential Equations IMSL MATH LIBRARY

 end if

 end subroutine fkinit_cbond

Output

 Convertible Bond Value, 0+, 6 and 12 Months Prior to Expiry

 Number of equally spaced spline knots 61

 Number of unknowns 183

 Strike= 1.00, Sigma= 0.25

 Interest Rate= 0.10, Dividend= 0.02, Factor= 1.125

 Underlying Bond Value

 0.0000 1.0000 0.9512 0.9048

 0.2500 1.0000 0.9512 0.9049

 0.5000 1.0000 0.9513 0.9065

 0.7500 1.0000 0.9737 0.9605

 1.0000 1.1250 1.1416 1.1464

 1.2500 1.4062 1.4117 1.4121

 1.5000 1.6875 1.6922 1.6922

 1.7500 1.9688 1.9731 1.9731

 2.0000 2.2500 2.2540 2.2540

 2.2500 2.5312 2.5349 2.5349

 2.5000 2.8125 2.8160 2.8160

 2.7500 3.0938 3.0970 3.0970

 3.0000 3.3750 3.3781 3.3781

Example 5 – A Non-Standard American Option

This example illustrates a method for evaluating a certain ―Bermudan Style‖ or non-standard

American option. These options are American Style options restricted to certain dates where the

option may be exercised. Since this agreement gives the holder more opportunity than a European

option, it is worth more. But since the holder can only exercise at certain times it is worth no

more than the American style option value that can be exercised at any time. Our solution method

uses the same model and data as in Example 2, but allows exercise at weekly intervals. Thus we

integrate, for half a year, over each weekly interval using a European style Black-Scholes model,

but with initial data at each new week taken from the corresponding values of the American style

option.

Link to example source (feynman_kac_ex5.f90)

! Compute Bermudan-Style Option Premium for Vanilla Put

 use feynman_kac_int

 use hqsval_int

 use mp_types

 use umach_int

 implicit none

 integer :: nout

! The strike price

 real(kind(1e0)) :: ks = 10.0e0

! The sigma value

 real(kind(1e0)) :: sigma = 0.4e0

! Program working stores

 real(kind(1e0)) :: week

LinkedDocuments/feynman_kac_ex5.f90

IMSL MATH LIBRARY Chapter 5: Differential Equations 1161

! Time values for the options

 integer, parameter :: nt = 26

 integer, parameter :: ndeg = 6

 real(kind(1e0)) :: time(nt), time_end = 0.5e0

! Values of the underlying where evaluation are made

 integer, parameter :: nv = 9, nlbc = 2, nrbc = 3

 integer :: i

 real(kind(1e0)) :: xs(nv) = (/((i-1)*2.0e0,i=1,nv)/)

! Value of the interest rate and continuous dividend

 real(kind(1e0)) :: r = 0.1e0, dividend = 0.0e0

! Values of the min and max underlying values modeled

 real(kind(1e0)) :: x_min = 0.0e0, x_max = 30.0e0

! Define parameters for the integration step.

 integer, parameter :: nx = 61, nint = nx-1, n = 3*nx

 real(kind(1e0)) :: xgrid(nx), yb(n,0:nt), ybprime(n,0:nt),&

 ya(n,0:nt), yaprime(n,0:nt),&

 ytemp(n,0:1), ytempprime(n,0:1),&

 dx, fb(nv,nt), fa(nv,nt)

 real(kind(1e0)) :: atol

 type(s_fcn_data) fcn_data_amer, fcn_data_berm

 real(kind(1e0)), external :: fkcoef_put, fkinitcond_put

 external fkbc_put, fkforce_put, fkinit_amer_put, fkinit_berm_put

 call umach(2, nout)

! Allocate space inside the derived type for holding

! data values. These are for the evaluation routines.

 allocate(fcn_data_amer % rdata (6), fcn_data_amer % idata (1))

! Define an equally-spaced grid of points for the underlying price

 dx = (x_max-x_min)/real(nint)

 xgrid(1) = x_min

 xgrid(nx)= x_max

 do i=2,nx-1

 xgrid(i) = xgrid(i-1) + dx

 end do

! Place a breakpoint at the strike price.

 do i=1,nx

 if (xgrid(i) > ks) then

 xgrid(i-1) = ks

 exit

 end if

 end do

! Compute time values where American option is computed

 week = time_end/real(nt,kind(week))

 time(1) = week

 do i=2,nt-1

 time(i) = time(i-1) + week

 end do

 time(nt) = time_end

 atol = 1.0e-3

 fcn_data_amer % rdata = (/ks,x_max,sigma,r,dividend,atol/)

 fcn_data_amer % idata = (/ndeg/)

! Compute American Put Option Values at the weekly grid.

1162 Chapter 5: Differential Equations IMSL MATH LIBRARY

 call feynman_kac (xgrid, time, nlbc, nrbc, fkcoef_put,&

 fkinitcond_put, fkbc_put, ya, yaprime,&

 FKINIT = fkinit_amer_put,&

 FKFORCE = fkforce_put,&

 FCN_DATA = fcn_data_amer)

! Integrate once again over the weekly grid, using the American

! Option values as initial data for a piece-wise European option

!integration.

! Allocate space to hold coefficient data and initial values.

 allocate(fcn_data_berm % rdata(5+n))

 fcn_data_berm % rdata(1:5) = fcn_data_amer % rdata(1:5)

! Copy initial data so the payoff value is the same for

! American and Bermudan option values.

 yb(1:n,0) = ya(1:n,0)

 ybprime(1:n,0) = ya(1:n,0)

 do i=0,nt-1

! Move American Option values into place as initial conditions,

! but now integrating with European style over each period of

! the weekly grid.

 fcn_data_berm % rdata(6:) = ya(1:n,i)

 if (i .eq. 0) then

 call feynman_kac (xgrid, (/time(1)/), nlbc, nrbc,&

 fkcoef_put, fkinitcond_put, fkbc_put,&

 ytemp(:,0:1), ytempprime(:,0:1),&

 FKINIT = fkinit_berm_put,&

 FCN_DATA = fcn_data_berm)

 else

 call feynman_kac (xgrid, (/time(i+1)-time(i)/),&

 nlbc, nrbc, fkcoef_put,&

 fkinitcond_put, fkbc_put,&

 ytemp(:,0:1), ytempprime(:,0:1),&

 FKINIT = fkinit_berm_put,&

 FCN_DATA = fcn_data_berm)

 end if

! Record values of the Bermudan option at the end of each integration.

 yb(1:n,i+1) = ytemp(1:n,1)

 ybprime(1:n,i+1) = ytempprime(1:n,1)

 end do

! Evaluate solutions at vector of points XS(:), at each time value

! prior to expiration.

 do i=1,nt

 fa(:,i) = hqsval (xs, xgrid, ya(:,i))

 fb(:,i) = hqsval (xs, xgrid, yb(:,i))

 end do

 write(nout,'(T05,A)')&

 "American Option Premium for Vanilla Put, 6 Months "//&

 "Prior to Expiry"

 write(nout,'(T05,A)')&

 "Exercise Opportunities At Weekly Intervals"

 write(nout,'(T08,"Number of equally spaced spline knots ",'//&

 'I4,/T08,"Number of unknowns ",I4)') nx, n

 write(nout,'(T08,"Strike = ",F5.2,", Sigma =", F5.2,'//&

 '", Interest Rate =",F5.2,//T08,"Underlying",'//&

IMSL MATH LIBRARY Chapter 5: Differential Equations 1163

 'T20,"Bermudan Style", T42,"American",'//&

 '/(T10,F8.4, T26, F8.4, T42, F8.4))')&

 KS,SIGMA,R,&

 (xs(i), fb(i,nt:nt), fa(i,nt:nt),i=1,nv)

 end

! These subprograms set the coefficients, payoff, boundary

! conditions and forcing term for American and European Options.

 function fkcoef_put(x, tx, iflag, fcn_data_amer)&

 result(value)

 use mp_types

 implicit none

 integer, intent(inout) :: iflag

 real(kind(1e0)), intent(in) :: x, tx

 type(s_fcn_data), optional :: fcn_data_amer

 real(kind(1e0)) :: value

 real(kind(1e0)) :: sigma, interest_rate, dividend, zero=0.0e0

 sigma = fcn_data_amer % rdata(3)

 interest_rate = fcn_data_amer % rdata(4)

 dividend = fcn_data_amer % rdata(5)

 select case (iflag)

 case (1)

! The coefficient derivative d(sigma)/dx

 value = sigma

! The coefficient sigma(x)

 case (2)

 value = sigma * x

 case (3)

! The coefficient mu(x)

 value = (interest_rate - dividend) * x

 case (4)

! The coefficient kappa(x)

 value = interest_rate

 end select

! Note that there is no time dependence

 iflag = 0

 return

 end function fkcoef_put

 function fkinitcond_put(x, fcn_data_amer) result(value)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: x

 type (s_fcn_data), optional :: fcn_data_amer

 real(kind(1e0)) :: value

 real(kind(1e0)) :: strike_price, zero = 0.0e0

 strike_price = fcn_data_amer % rdata(1)

! The payoff function

 value = max(strike_price - x, zero)

 return

 end function fkinitcond_put

1164 Chapter 5: Differential Equations IMSL MATH LIBRARY

 subroutine fkbc_put (tx, iflag, bccoefs, fcn_data)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: tx

 integer, intent(inout) :: iflag

 real(kind(1e0)), dimension(:,:), intent(out) :: bccoefs

 type (s_fcn_data), optional :: fcn_data

 select case (iflag)

 case (1)

 bccoefs(1,1:4) = ((/0.0e0, 1.0e0, 0.0e0, -1.0e0/))

 bccoefs(2,1:4) = ((/0.0e0, 0.0e0, 1.0e0, 0.0e0/))

 case (2)

 bccoefs(1,1:4) = ((/1.0e0, 0.0e0, 0.0e0, 0.0e0/))

 bccoefs(2,1:4) = ((/0.0e0, 1.0e0, 0.0e0, 0.0e0/))

 bccoefs(3,1:4) = ((/0.0e0, 0.0e0, 1.0e0, 0.0e0/))

 end select

! Note no time dependence

 iflag = 0

 end subroutine fkbc_put

 subroutine fkforce_put (interval, t, hx, y, xlocal, qw, u,&

 phi, dphi, fcn_data_amer)

 use mp_types

 implicit none

 integer, parameter :: local = 6

 integer :: i, j, l, ndeg

 integer, intent(in) :: interval

 real(kind(1.e0)), intent(in) :: y(:), t, hx, qw(:),&

 xlocal(:), u(:,:)

 real(kind(1.e0)), intent(out) :: phi(:), dphi(:,:)

 type (s_fcn_data), optional :: fcn_data_amer

 real(kind(1.e0)) :: yl(local), bf(local)

 real(kind(1.e0)) :: value, strike_price, interest_rate,&

 zero = 0.e0, one = 1.e0, rt, mu

 yl = y(3*interval-2:3*interval+3)

 phi = zero

 value = fcn_data_amer % rdata(6)

 strike_price = fcn_data_amer % rdata(1)

 interest_rate = fcn_data_amer % rdata(4)

 ndeg = fcn_data_amer % idata(1)

 mu = 2

! This is the local definition of the forcing term

 do j=1,local

 do l=1,ndeg

 bf(1:3) = U(L,1:3)

 bf(4:6) = U(L,7:9)

 rt = dot_product(YL,BF)

 rt = value/(rt + value-(strike_price-xlocal(l)))

 phi(j) = phi(j) + qw(l) * bf(j) * rt**mu

 end do

 end do

 phi = -phi * hx * interest_rate * strike_price

IMSL MATH LIBRARY Chapter 5: Differential Equations 1165

! This is the local derivative matrix for the forcing term

 dphi = zero

 do j=1,local

 do i = 1,local

 do l=1,ndeg

 bf(1:3) = u(L,1:3)

 bf(4:6) = u(L,7:9)

 rt = dot_product(yl,bf)

 rt = one/(rt + value - (strike_price - xlocal(l)))

 dphi(i,j) = dphi(i,j) + qw(l) * bf(i) * bf(j) *&

 rt**(mu+1)

 end do

 end do

 end do

 dphi = mu * dphi * hx * value**mu * interest_rate *&

 strike_price

 end subroutine fkforce_put

 subroutine fkinit_amer_put(xgrid,tgrid,t,yprime,y,atol,rtol,&

 fcn_data_amer)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: xgrid(:), tgrid(:), t,&

 yprime(:)

 real(kind(1e0)), intent(inout) :: y(:), atol(:), rtol(:)

 type(s_fcn_data), optional :: fcn_data_amer

 integer :: i

 if (t == 0.0e0) then

! Set initial data precisely. The strike price is a breakpoint.

! Average the derivative limit values from either side.

 do i=1,size(xgrid)

 if (xgrid(i) < fcn_data_amer % rdata(1)) then

 y(3*i-2) = fcn_data_amer % rdata(1) - xgrid(i)

 y(3*i-1) = -1.0e0

 y(3*i) = 0.0e0

 else if (xgrid(i) == fcn_data_amer % rdata(1)) then

 y(3*i-2) = 0.0e0

 y(3*i-1) = -0.5e0

 y(3*i) = 0.0e0

 else

 y(3*i-2) = 0.0e0

 y(3*i-1) = 0.0e0

 y(3*i) = 0.0e0

 end if

 end do

 end if

 end subroutine fkinit_amer_put

 subroutine fkinit_berm_put(xgrid,tgrid,t,yprime,y,atol,rtol,&

 fcn_data_berm)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: xgrid(:), tgrid(:), t,&

 yprime(:)

1166 Chapter 5: Differential Equations IMSL MATH LIBRARY

 real(kind(1e0)), intent(inout) :: y(:), atol(:), rtol(:)

 type(s_fcn_data), optional :: fcn_data_berm

 integer :: i

 if (t == 0.0e0) then

! Set initial data for each week at the previously computed

! American Option values. These coefficients are passed

! in the derived type fcn_data_berm.

 do i=1,size(xgrid)

 y(3*i-2) = fcn_data_berm % rdata(3+3*i)

 y(3*i-1) = fcn_data_berm % rdata(4+3*i)

 y(3*i) = fcn_data_berm % rdata(5+3*i)

 end do

 end if

 end subroutine fkinit_berm_put

Output

 American Option Premium for Vanilla Put, 6 Months Prior to Expiry

 Exercise Opportunities At Weekly Intervals

 Number of equally spaced spline knots 61

 Number of unknowns 183

 Strike= 10.00, Sigma= 0.40, Interest Rate= 0.10

 Underlying Bermudan Style American

 0.0000 9.9808 10.0000

 2.0000 7.9808 8.0000

 4.0000 5.9808 6.0000

 6.0000 3.9808 4.0000

 8.0000 2.0924 2.0926

 10.0000 0.9139 0.9138

 12.0000 0.3570 0.3569

 14.0000 0.1309 0.1309

 16.0000 0.0468 0.0469

Example 6 – Oxygen Diffusion Problem

Our previous examples are from the field of financial engineering. A final example is a physical

model. The Oxygen Diffusion Problem is summarized in Crank [4], p. 10-20, 261-262. We

present the numerical treatment of the transformed one-dimensional system

21
1, 0 , 0, 1 , 0 1,

2

(,1) ,0 0, 0.

t xx

x

f f x s t f x x x

f t f t t

A slight difference from the Crank development is that we have reflected the time

variable t t to match our form of the Feynman-Kac equation. We have a free boundary

problem because the interface s t is implicit. This interface is implicitly defined by solving the

variational relation 1 0, 0t xxf f f f . The first factor is zero for 0 x s t and

the second factor is zero for 1s t x . We list the Feynman-Kac equation coefficients,

forcing term and boundary conditions, followed by comments.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1167

 , 2; 0x t
x

 , 0x t

 , 0x t

21

1
2

p x x

 , , 1 , , 2f x t ATOL
f

20, exp(/)

1, (1,) 0, 0

x

x

f t t

f t f t t

The forcing term has the property of being almost the value 1 when the solution is larger than

the factor . As the solution 0f , the forcing term is almost the value zero. These properties

combine to approximately achieve the variational relation that defines the free boundary. Note

that the arc of the free boundary is not explicitly available with this numerical method. We have

used ,ATOL the requested absolute error tolerance for the numerical integration.

The boundary condition , 0 0, 0,
x

f t t is discontinuous as 0t , since the initial data

yields 0, 0 1
x

f . For the numerical integration we have chosen a boundary value function that

starts with the value 1 at 0t and rapidly blends to the value zero as the integration proceeds in

the negative direction. It is necessary to give the integrator the opportunity to severely limit the

step size near 0t to achieve continuity during the blending.

In the example code, values of 0,f t are checked against published values for certain values of

t . Also checked are values of 0, () 0f s t at published values of the free boundary, for the

same values of t .

Link to example source (feynman_kac_ex6.f90)

! Integrate Oxygen Diffusion Model found in the book

! Crank, John. Free and Moving Boundary Problems,

! Oxford Univ. Press, (1984), p. 19-20 and p. 261-262.

 use feynman_kac_int

 use hqsval_int

 use mp_types

 use norm_int

 use umach_int

 implicit none

 integer :: nout

 real(kind(1e0)), allocatable :: xgrid(:), tgrid(:), y(:,:),&

 yprime(:,:), f(:,:), s(:)

 real(kind(1e0)) :: dx, x_min, x_max, zero=0.0e0, one=1.0e0

LinkedDocuments/feynman_kac_ex6.f90

1168 Chapter 5: Differential Equations IMSL MATH LIBRARY

 real(kind(1e0)) :: atol(1), rtol(1)

 type(s_fcn_data) :: fk_ox2

 integer :: i, nint, n, nunit, ntimes = 8

 integer, parameter :: ndeg = 6, nlbc = 1, nrbc = 2

 real(kind(1e0)), external :: fkcoef_ox2, fkinitcond_ox2

 external fkbc_ox2, fkforce_ox2

 call umach(2,nout)

! Define number of equally spaced intervals for elements

 nint = 100

! Allocate the space needed for the integration process

 n = 3*(nint+1)

 allocate(xgrid(nint+1), y(n,0:ntimes), yprime(n,0:ntimes),&

 tgrid(ntimes), f(1,ntimes), s(ntimes))

! Allocate space inside the derived type for holding

! data values. These are for the evaluation routines.

 allocate(fk_ox2 % rdata (1), fk_ox2 % idata (1))

 atol(1) = 0.5e-2

 rtol(1) = 0.5e-2

 fk_ox2 % rdata(1) = atol(1)

 fk_ox2 % idata(1) = ndeg

! Define interval endpoints

 x_min = zero

 x_max = one

! Define interval widths

 dx = (x_max-x_min)/real(nint)

 xgrid(1) = x_min

 xgrid(nint+1) = x_max

! Define grid points of interval

 do i=2,nint

 xgrid(i) = xgrid(i-1) + dx

 end do

! Define time integration output points

! These correspond to published values in Crank's book, p. 261-262

 tgrid = (/0.04e0,0.06e0,0.10e0,0.12e0,0.14e0,&

 0.16e0,0.18e0,0.185e0/)

 call feynman_kac (xgrid, tgrid, nlbc, nrbc, fkcoef_ox2,&

 fkinitcond_ox2, fkbc_ox2, y, yprime,&

 ATOL = atol, RTOL = rtol,&

 FKFORCE = fkforce_ox2, FCN_DATA = fk_ox2)

! Summarize output at the left end

 do i=1,ntimes

 f(:,i)= hqsval ((/zero/), xgrid, y(:,i))

 end do

! Check differences of evaluation and published left end values

 f(1,:) = f(1,:) - (/2.743e-01, 2.236e-01, 1.432e-01,&

 1.091e-01, 7.786e-02, 4.883e-02, 2.179e-02, 1.534e-02/)

 write(nout,*) "Oxygen Depletion Model, from Crank's "//&

 "Book, p. 261-262,"

 write(nout,*) "'Free and Moving Boundary Value Problems'"

 if (norm(f(1,:)) < ntimes * atol(1)) then

 write(nout,*) "FEYNMAN_KAC Example 6 - Fixed Sealed "//&

IMSL MATH LIBRARY Chapter 5: Differential Equations 1169

 "Surface Values are correct"

 else

 write(nout,*) "FEYNMAN_KAC Example 6 - does not agree with"//&

 " published left end values"

 end if

! Define known position of free boundary at the time points

 s = (/0.9992e0,0.9918e0,0.9350e0,0.8792e0,&

 0.7989e0,0.6834e0,0.5011e0,0.4334e0/)

! Evaluate and verify solution is small near free boundary -

 do i=1,ntimes

 f(:,i) = hqsval ((/s(i)/), xgrid, y(:,i))

 end do

 if (norm(f(1,:)) < ntimes * atol(1)) then

 write(nout,*) "FEYNMAN_KAC Example 6 - Free Boundary "//&

 "Position Values are correct"

 else

 write(nout,*) "FEYNMAN_KAC Example 6 - does not agree "//&

 "with published free boundary values"

 end if

 end

 function fkcoef_ox2 (x, tx, iflag, fk_ox2) result(value)

 use mp_types

 implicit none

! Coefficient valuation routine for the Oxygen Diffusion

! Model found in Crank's book, p. 20

! Input/Ouput variables

 integer, intent(inout) :: iflag

 real(kind(1e0)), intent(in) :: x, tx

 type(s_fcn_data), optional :: fk_ox2

 real(kind(1e0)) :: value

! Local variables

 real(kind(1e0)) :: zero = 0.0e0, two = 2.0e0

 select case (iflag)

 case (1) ! Factor DSigma/Dx(x,t)

 value = zero

 case (2) ! Factor Sigma(x,t)

 value = sqrt(two)

 case (3) ! Factor Mu (x,t)

 value = zero

 case (4) ! Factor Kappa (x,t)

 value = zero

 end select

! Signal no dependence on tx=t=time for any coefficient.

 iflag = 0

 return

 end function fkcoef_ox2

 function fkinitcond_ox2(x, fk_ox2) result(value)

 use mp_types

 implicit none

 real(kind(1e0)), intent(in) :: x

 type (s_fcn_data), optional :: fk_ox2

1170 Chapter 5: Differential Equations IMSL MATH LIBRARY

 real(kind(1e0)) :: value

 real(kind(1e0)) :: half = 0.5e0, one = 1.0e0

 value = half * (one - x)**2

 return

 end function fkinitcond_ox2

 subroutine fkbc_ox2 (tx, iflag, bccoefs, fk_ox2)

 use mp_types

 implicit none

! Evaluation routine for Oxygen Diffusion Model

! boundary conditions.

! Input/Ouput variables

 real(kind(1e0)), intent(in) :: tx

 integer, intent(inout) :: iflag

 real(kind(1e0)), dimension(:,:), intent(out) :: bccoefs

 type (s_fcn_data), optional :: fk_ox2

! Local variables

 real(kind(1e0)) :: zero = 0.0e0, one = 1.0e0, atol

 atol = fk_ox2 % rdata(1)

 select case (iflag)

 case (1) ! Left Boundary Condition, at X_min=0

! There is a rapid blending of the boundary condition to achieve

! a zero derivative value at the left end.

! The initial data has the derivative with value one.

! This boundary condition essentially abruptly changes that

! derivative value to zero.

! Returning iflag=1 signals time dependence. This is important

! for this problem.

 bccoefs(1,1:4) = (/0.0e0, one, 0.0e0, exp(tx/atol**2)/)

 return

 case (2) ! Right Boundary Condition, at X_max=1

 bccoefs(1,1:4) = (/one, 0.0e0, 0.0e0, 0.0e0/)

 bccoefs(2,1:4) = (/0.0e0, one, 0.0e0, 0.0e0/)

 end select

 iflag = 0 ! Signal no dependence on tx=time.

 end subroutine fkbc_ox2

 subroutine fkforce_ox2 (interval, t, hx, y, xlocal, qw, u,&

 phi, dphi, fk_ox2)

! Evaluation routine for Oxygen Diffusion model forcing function.

 use mp_types

 implicit none

 integer, parameter :: local = 6

 integer :: i, j, l, mu, ndeg

 integer, intent(in) :: interval

 real(kind(1e0)), intent(in) :: y(:), t, hx, qw(:),&

 xlocal(:), u(:,:)

 real(kind(1e0)), intent(out) :: phi(:), dphi(:,:)

 type (s_fcn_data), optional :: fk_ox2

 real(kind(1e0)) :: yl(local), bf(local)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1171

 real(kind(1e0)) :: value, zero = 0.0e0, one = 1.0e0, rt

 yl = y(3*interval-2:3*interval+3)

 phi = zero

 value = fk_ox2 % rdata(1)

 ndeg = fk_ox2 % idata(1)

 mu = 2

 do j=1,local

 do l=1,ndeg

 bf(1:3) = u(l,1:3)

 bf(4:6) = u(l,7:9)

 rt = dot_product(yl,bf)

 rt = one - (value/(rt + value))**mu

 phi(j) = phi(j) + qw(l) * bf(j) * RT

 end do

 end do

 phi = phi * hx

! This is the local derivative matrix for the forcing term -

 dphi = zero

 do j=1,local

 do i = 1,local

 do l=1,ndeg

 bf(1:3) = u(l,1:3)

 bf(4:6) = u(l,7:9)

 rt = dot_product(yl,bf)

 rt = one/(rt + value)

 dphi(i,j) = dphi(i,j) + qw(l) * bf(i) * bf(j) *&

 rt**(mu+1)

 end do

 end do

 end do

 dphi = mu * dphi * hx * value**mu

 return

 end subroutine fkforce_ox2

Output

Oxygen Depletion Model, from Crank's Book, p. 261-262,

'Free and Moving Boundary Value Problems'

FEYNMAN_KAC Example 6 - Fixed Sealed Surface Values are correct

FEYNMAN_KAC Example 6 - Free Boundary Position Values are correct

Example 7 – Calculating the Greeks

In this example, routine FEYNMAN_KAC is used to solve for the Greeks, i.e. various derivatives of

Feynman-Kac (FK) solutions applicable to the pricing of options and related financial derivatives.

In order to illustrate and verify these calculations, the Greeks are calculated by two methods. The

first method involves the FK solution to the diffusion model for call options given in Example 1

for the Black-Scholes (BS) case, i.e. 2 . The second method calculates the Greeks using the

closed-form BS evaluations which can be found at http://en.wikipedia.org/wiki/The_Greeks.

This example calculates FK and BS solutions (,)V S t to the BS problem and the following

Greeks:

http://en.wikipedia.org/wiki/The_Greeks

1172 Chapter 5: Differential Equations IMSL MATH LIBRARY

 Delta =
V

S

 is the first derivative of the Value, (,)V S t , of a portfolio of derivative security derived from

underlying instrument with respect to the underlying instrument‘s price S;

 Gamma =

2

2

V

S

;

 Theta =
V

t

 is the negative first derivative of V with respect to time t;

 Charm =

2
V

S t

;

 Color =

3

2

V

S t

;

 Rho =
V

r

 is the first derivative of V with respect to the risk-free rate r;

 Vega =
V

 measures sensivity to volatility parameter of the underlying S;

 Volga =

2

2

V

;

 Vanna =

2
V

S

;

 Speed =

3

3

V

S

.

Intrinsic Greeks include derivatives involving only S and t, the intrinsic FK arguments. In the

above list, Value, Delta, Gamma, Theta, Charm, Color and Speed are all intrinsic Greeks. As is

discussed in Hanson, R. (2008) ―Integrating Feynman-Kac Equations Using Hermite Quintic

Finite Elements‖, the expansion of the FK solution function (,)V S t in terms of quintic

polynomial functions defined on S-grid subintervals and subject to continuity constraints in

derivatives 0, 1 and 2 across the boundaries of these subintervals allows Value, Delta, Gamma,

Theta, Charm and Color to be calculated directly by routines FEYNMAN_KAC and HQSVAL.

Non-intrinsic Greeks are derivatives of V involving FK parameters other than the intrinsic

arguments S and t, such as r and . Non-intrinsic Greeks in the above list include Rho, Vega,

Volga and Vanna. In order to calculate non-intrinsic Greek (parameter) derivatives or intrinsic

Greek S-derivatives beyond the second (such as Speed) or t-derivatives beyond the first, the entire

FK solution must be calculated 3 times (for a parabolic fit) or five times (for a quartic fit), at the

http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf
http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf

IMSL MATH LIBRARY Chapter 5: Differential Equations 1173

point where the derivative is to be evaluated and at nearby points located symmetrically on either

side.

Using a Taylor series expansion of ()f truncated to 1m terms (to allow an m-degree

polynomial fit of m+1 data points),

()

0

()
()

!

n
n

n

m f
f

n

 ,

we are able to derive the following parabolic (3 point) estimation of first and second derivatives
(1)

()f and
(2)

()f in terms of the three values ()f , ()f and ()f , where

frac
 and 0 < frac <<1:

(1) [1]
()

() () ()
(,)

2
f

f f f
f

 ,

2

(2) [2]

2 2
()

() () () 2 ()
(,)f

f f f f
f

 .

Similarly, the quartic (5 point) estimation of
(1)

()f and
(2)

()f in terms of (2)f ,

()f , ()f , ()f and (2)f is:

(1) [1] [1]
() (,) (, 2)

4 1

3 3
f f f

(2) [2] [2]
() (,) (, 2)

4 1

3 3
f f f

.

For our example, the quartic estimate does not appear to be significantly better than the parabolic

estimate, so we have produced only parabolic estimates by setting variable iquart to 0. The user

may try the example with the quartic estimate simply by setting iquart to 1.

As is pointed out in Integrating Feynman-Kac Equations Using Hermite Quintic Finite Elements,

the quintic polynomial expansion function used by FEYNMAN_KAC only allows for continuous

derivatives through the second derivative. While up to fifth derivatives can be calculated from the

quintic expansion (indeed function HQSVAL will allow the third derivative to be calculated by

setting optional argument IDERIV to 3, as is done in this example), the accuracy is compromised

by the inherent lack of continuity across grid points (i.e. subinterval boundaries).

The accurate second derivatives in S returned by function HQSVAL can be leveraged into a third

derivative estimate by calculating three FK second derivative solutions, the first solution for grid

and evaluation point set
(2)

{ , ()}S f S and the second and third solutions for solution grid and

evaluation point sets
(2)

{ , ()}S f S and
(2)

{ , ()}S f S , where the solution grid and

evaluation point sets are shifted up and down by . In this example, is set to
frac

S , where S

is the average value of S over the range of grid values and 0 1
frac

 . The third derivative

solution can then be obtained using the parabolic estimate

http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf

1174 Chapter 5: Differential Equations IMSL MATH LIBRARY

(3)

(2) (2) (2)

()
() () ()

2
f S

f f S f S

S

This procedure is implemented in the current example to calculate the Greek Speed. (For

comparison purposes, Speed is also calculated directly by setting the optional argument IDERIV

to 3 in the call to function HQSVAL. The output from this direct calculation is called ―Speed2‖.)

To reach better accuracy results, all computations are done in double precision.

The average and maximum relative errors (defined as the absolute value of the difference between

the BS and FK values divided by the BS value) for each of the Greeks is given at the end of the

output. (These relative error statistics are given for nine combinations of Strike Price and

volatility, but only one of the nine combinations is actually printed in the output.) Both intrinsic

and non-intrinsic Greeks have good accuracy (average relative error is in the range 0.01 –

0.00001) except for Volga, which has an average relative error of about 0.05. This is probably a

result of the fact that Volga involves differences of differences, which will more quickly erode

accuracy than calculations using only one difference to approximate a derivative. Possible ways to

improve upon the 2 to 4 significant digits of accuracy achieved in this example include increasing

FK integration accuracy by reducing the initial stepsize (via optional argument RINITSTEPSIZE),

by choosing more closely spaced S and t grid points (by adjusting FEYNMAN_KAC‘s input arrays

XGRID and TGRID) and by adjusting frac so that the central differences used to calculate the

derivatives are not too small to compromise accuracy.

Link to example source (feynman_kac_ex7.f90)

! Greeks computation

 use feynman_kac_int

 use hqsval_int

 use mp_types

 use anordf_int

 use const_int

 use umach_int

 implicit none

 real(kind(1d0)), external :: fkcoef, fkinitcond

 external fkbc

! The set of strike prices

 real(kind(1d0)) :: ks(3) = (/15.0d0,20.0d0,25.0d0/)

! The set of sigma values

 real(kind(1d0)) :: sigma(3) = (/0.2d0, 0.3d0, 0.4d0/)

! The set of model diffusion powers: alpha = 2.0 <==> Black Scholes

 real(kind(1d0)) :: alpha(3) = (/2.0d0, 1.0d0, 0.0d0/)

! Time values for the options

 integer, parameter :: nt = 3

 real(kind(1d0)) :: time(nt)=(/1.d0/12., 4.d0/12., 7.d0/12./)

! Values of the min and max underlying values modeled

 real(kind(1d0)) :: x_min = 0.0d0, x_max = 60.0d0

! Value of the interest rate and continuous dividend

 real(kind(1d0)) :: r = 0.05d0, dividend = 0.0d0

! Values of the underlying where evaluations are made

LinkedDocuments/feynman_kac_ex7.f90

IMSL MATH LIBRARY Chapter 5: Differential Equations 1175

 integer, parameter :: nv = 3

 real(kind(1d0)) :: eval_points(nv) = &

 (/19.0d0, 20.0d0, 21.0d0/)

! Define parameters for the integration step.

 integer, parameter :: nx = 121, nint = nx-1, n = 3*nx

 real(kind(1d0)) :: xgrid(nx), y(n,0:nt), yprime(n,0:nt)

 type(d_fcn_data) fcn_data

! Number of left/right boundary conditions

 integer, parameter :: nlbc = 3, nrbc = 3

! Further parameters for the integration step

 real(kind(1d0)) :: dx, dx2, pi, sqrt2pi

! used to calc derivatives

 real(kind(1d0)) :: epsfrac = .001d0

 character(len=6) :: greek_name(12) = (/&

 " Value", " Delta", " Gamma", " Theta",&

 " Charm", " Color", " Vega", " Volga",&

 " Vanna", " Rho", " Speed", "Speed2"/)

! Time values for the options

 real(kind(1d0)) :: rex(12), reavg(12)

 integer :: irect(12)

 integer :: i, i2, i3, j, ig, iquart, nout

 real(kind(1d0)) ::&

 spline_values(nv,nt,12), spline_values1(nv,nt),&

 spline_valuesp(nv,nt), spline_valuesm(nv,nt),&

 spline_valuespp(nv,nt), spline_valuesmm(nv,nt),&

 xgridp(nx), xgridm(nx),xgridpp(nx), xgridmm(nx),&

 eval_pointsp(nv), eval_pointspp(nv),&

 eval_pointsm(nv), eval_pointsmm(nv),&

 BS_values(nv,nt,12), sVo_array(nt)

 call umach(2, nout)

! Allocate space inside the derived type for holding

! data values. These are for the evaluation routines.

 allocate(fcn_data % rdata (6))

 pi = const('pi')

 sqrt2pi = sqrt(2.0 * pi)

 dx2 = epsfrac * 0.5d0 * (x_min + x_max)

! Compute Constant Elasticity of Variance Model for Vanilla Call

! Define equally-spaced grid of points for the underlying price

 dx = (x_max - x_min)/real(nint)

 xgrid(1) = x_min

 xgrid(nx) = x_max

 do i = 2,nx-1

 xgrid(i) = xgrid(i-1) + dx

 end do

 write(nout,'(T05,A)') "Constant Elasticity of Variance"//&

 " Model for Vanilla Call Option"

 write(nout,'(T10,"Interest Rate: ", F7.3, T38,'//&

 '"Continuous Dividend: ", F7.3)') r, dividend

 write(nout,'(T10,"Minimum and Maximum Prices of '//&

 ' Underlying: ", 2F7.2)') x_min, x_max

 write(nout,'(T10,"Number of equally spaced spline knots:",'//&

1176 Chapter 5: Differential Equations IMSL MATH LIBRARY

 'I4)') nx - 1

 write(nout,'(T10,"Number of unknowns: ",I4)') n

 write(nout,*)

 write(nout,'(/T10,"Time in Years Prior to Expiration: ",'//&

 '2X,3F7.4)') time

 write(nout,'(T10,"Option valued at Underlying Prices: ",'//&

 '3F7.2)') eval_points

 write(nout,*)

!

! iquart = 0 : derivatives estimated with 3-point fitted parabola

! iquart = 1 : derivatives estimated with 5-point fitted quartic

! polynomial

!

 iquart = 0

 if (iquart == 0) then

 write(nout,'(T10,"3 point (parabolic) estimate of '//&

 'parameter derivatives")')

 else

 write(nout,'(T10,"5 point (quartic) estimate of parameter'//&

 ' derivatives")')

 end if

 write(nout, '(T10,"epsfrac = ", F11.8)') epsfrac

 irect = 0

 reavg = 0.0d0

 rex = 0.0d0

! alpha: Black-Scholes

 do i2 = 1, 3

! Loop over volatility

 do i3 = 1, 3

! Loop over strike price

 call calc_Greeks(i2, i3, iquart)

 end do

 end do

 write(nout,*)

 do ig = 1, 12

 reavg(ig) = reavg(ig)/irect(ig)

 write (nout, '(" Greek: ", A6, "; avg rel err: ",'//&

 'F15.12, "; max rel err: ", F15.12)')&

 greek_name(ig), reavg(ig), rex(ig)

 end do

 contains

 subroutine calc_Greeks(volatility, strike_price, iquart)

 implicit none

 integer, intent(in) :: volatility, strike_price, iquart

 ! Local variables

 integer :: i1 = 1, j, iSderiv, gNi, l, k

 integer :: nt = 3

 real(kind(1d0)) :: x_maxp, x_maxm, x_maxpp, x_maxmm

 real(kind(1d0)) :: eps, tau, sigsqtau, sqrt_sigsqtau, sigsq

IMSL MATH LIBRARY Chapter 5: Differential Equations 1177

 real(kind(1d0)) :: d1, d2, n01pdf_d1, nu, relerr, relerrmax

 real(kind(1d0)) :: sVo, BSVo, S

 if ((volatility == 1) .and. (strike_price == 1)) then

 write(nout,*)

 write(nout,'(/T10,"Strike = ",F5.2,", Sigma =", F5.2,'//&

 '", Alpha =",F5.2,":")') ks(strike_price),&

 sigma(volatility), alpha(i1)

 write(nout,*)

 write(nout,'(T10,"years to expiration: ", 3F7.4)')&

 (time(j), j=1,3)

 write(nout,*)

 end if

 fcn_data % rdata = (/ks(strike_price), x_max,&

 sigma(volatility), alpha(i1), r, dividend/)

 call feynman_kac(xgrid, time, nlbc, nrbc, fkcoef,&

 fkinitcond, fkbc, y, yprime,&

 FCN_DATA = fcn_data)

! Compute Value, Delta, Gamma, Theta, Charm and Color

 do l = 0,2

 do i=1,NT

 spline_values(:,i,l+1) = hqsval(eval_points, xgrid,&

 y(:,i), IDERIV=l)

 spline_values(:,i,l+4) = hqsval(eval_points, xgrid,&

 yprime(:,i), IDERIV=l)

 end do

 end do

! Signs for Charm and Color must be inverted because FEYNMAN_KAC

! computes -d/dt instead of d/dt

 spline_values(:,:,5:6) = -spline_values(:,:,5:6)

! Speed2

 do i=1,nt

 spline_values(:,i,12) = hqsval(eval_points, xgrid, Y(:,i),&

 IDERIV=3)

 end do

! Compute Vega, Volga, Vanna, Rho, Speed

! l = 7 8 9 10 11

 do l = 7,11

 xgridp = xgrid

 xgridm = xgrid

 eval_pointsp = eval_points

 eval_pointsm = eval_points

 x_maxp = x_max

 x_maxm = x_max

 fcn_data % rdata(3) = sigma(volatility)

 fcn_data % rdata(5) = r

 iSderiv = 0

 if (l == 9) iSderiv = 1 ! Vanna

 if (l == 11) iSderiv = 2 ! Speed

 if (l == 10) then

 fcn_data % rdata(5) = r * (1.0 + epsfrac) ! Rho

 else if (l < 10) then

1178 Chapter 5: Differential Equations IMSL MATH LIBRARY

 fcn_data % rdata(3) = sigma(volatility) * (1.0 + epsfrac)

 end if

 if (l == 11) then

 xgridp = xgrid + dx2

 xgridm = xgrid - dx2

 eval_pointsp = eval_points + dx2

 eval_pointsm = eval_points - dx2

 x_maxp = x_max + dx2

 x_maxm = x_max - dx2

 end if

 fcn_data % rdata(2) = x_maxp

 call feynman_kac(xgridp, time, nlbc, nrbc, fkcoef,&

 fkinitcond, fkbc, y, yprime,&

 FCN_DATA = fcn_data)

 do i=1,nt

 spline_valuesp(:,i) = hqsval(eval_pointsp, xgridp,&

 y(:,i), IDERIV=iSderiv)

 end do

 if (l == 10) then

 fcn_data % rdata(5) = r * (1.0 - epsfrac) ! Rho

 else if (l < 10) then

 fcn_data % rdata(3) = sigma(volatility) *&

 (1.0 - epsfrac)

 end if

 fcn_data % rdata(2) = x_maxm

! calculate spline values for sigmaM = sigmai2-1*(1. - epsfrac) or

! rM = r*(1. - epsfrac):

 call feynman_kac(xgridm, time, nlbc, nrbc, fkcoef,&

 fkinitcond, fkbc, y, yprime,&

 FCN_DATA = fcn_data)

 do i=1,NT

 spline_valuesm(:,i) = hqsval(eval_pointsm, xgridm,&

 y(:,i), IDERIV=iSderiv)

 end do

 if (iquart == 1) then

 xgridpp = xgrid

 xgridmm = xgrid

 eval_pointspp = eval_points

 eval_pointsmm = eval_points

 x_maxpp = x_max

 x_maxmm = x_max

 if (l == 11) then ! Speed

 xgridpp = xgrid + 2.0 * dx2

 xgridmm = xgrid - 2.0 * dx2

 eval_pointspp = eval_points + 2.0 * dx2

 eval_pointsmm = eval_points - 2.0 * dx2

 x_maxpp = x_max + 2.0 * dx2

 x_maxmm = x_max - 2.0 * dx2

 end if

 fcn_data % rdata(2) = x_maxpp

 if (l == 10) then

! calculate spline values for rPP = r*(1. + 2.*epsfrac):

IMSL MATH LIBRARY Chapter 5: Differential Equations 1179

 fcn_data % rdata(5) = r * (1.0 + 2.0 * epsfrac)

 else if (l < 10) then

! calculate spline values for sigmaPP = sigma(i2)*(1. + 2.*epsfrac):

 fcn_data % rdata(3) = sigma(volatility) *&

 (1.0 + 2.0 * epsfrac)

 end if

 call feynman_kac (xgridpp, time, nlbc, nrbc, fkcoef,&

 fkinitcond, fkbc, y, yprime,&

 FCN_DATA = fcn_data)

 do i=1,nt

 spline_valuespp(:,i) = hqsval(eval_pointspp, xgridpp,&

 Y(:,i), IDERIV=iSderiv)

 end do

 fcn_data % rdata(2) = x_maxmm

! calculate spline values for sigmaMM = sigmai2-1*(1. - 2.*epsfrac)

! or rMM = r*(1. - 2.*epsfrac)

 if (l == 10) then

 fcn_data % rdata(5) = r * (1.0 - 2.0 * epsfrac)

 else if (l < 10) then

 fcn_data % rdata(3) = sigma(volatility) *&

 (1.0 - 2.0 * epsfrac)

 end if

 call feynman_kac (xgridmm, time, nlbc, nrbc, fkcoef,&

 fkinitcond, fkbc, y, yprime,&

 FCN_DATA = fcn_data)

 do i=1,nt

 spline_valuesmm(:,i) = hqsval(eval_pointsmm, xgridmm,&

 y(:,i), IDERIV=iSderiv)

 end do

 end if ! if (iquart == 1)

 if (l /= 8) then

 eps = sigma(volatility) * epsfrac

 if (l == 10) eps = r * epsfrac ! Rho

 if (l == 11) eps = dx2 ! Speed

 spline_values(:,:,l) = &

 (spline_valuesp - spline_valuesm) / (2.0 * eps)

 if (iquart /= 0) then

 spline_values1 =&

 (spline_valuespp - spline_valuesmm) /(4.0 * eps)

 spline_values(:,:,l) =&

 (4.0 * spline_values(:,:,l) - spline_values1) / 3.0

 end if

 end if

 if (l == 8) then ! Volga

 eps = sigma(volatility) * epsfrac

 spline_values(:,:,l) =&

 (spline_valuesp + spline_valuesm - 2.0 * &

 spline_values(:,:,1)) / (eps * eps)

 if (iquart /= 0) then

 spline_values1 =&

1180 Chapter 5: Differential Equations IMSL MATH LIBRARY

 (spline_valuespp + spline_valuesmm - 2.0 * &

 spline_values(:,:,1)) / (4.0 * eps * eps)

 spline_values(:,:,l) = &

 (4.0 * spline_values(:,:,l) - spline_values1) / 3.0

 end if

 end if

 end do

! Evaluate BS solution at vector eval_points,

! at each time value prior to expiration.

 do i = 1,nt

!

! Black-Scholes (BS) European call option

! value = ValBSEC(S,t) = exp(-q*tau)*S*N01CDF(d1) -

! exp(-r*tau)*K*N01CDF(d2),

! where:

! tau = time to maturity = T - t;

! q = annual dividend yield;

! r = risk free rate;

! K = strike price;

! S = stock price;

! N01CDF(x) = N(0,1)_CDF(x);

! d1 = (log(S/K) +

! (r - q + 0.5*sigma**2)*tau) /

! (sigma*sqrt(tau));

! d2 = d1 - sigma*sqrt(tau)

!

! BS option values for tau = time(i):

 tau = time(i)

 sigsqtau = (sigma(volatility)**2) * tau

 sqrt_sigsqtau = sqrt(sigsqtau)

 sigsq = sigma(volatility) * sigma(volatility)

 do j = 1, nv

! Values of the underlying price where evaluations are made:

 S = eval_points(j)

 d1 = (log(S / ks(strike_price)) + (r - dividend)&

 * tau + 0.5 * sigsqtau) / sqrt_sigsqtau

 n01pdf_d1 = exp((-0.5) * d1 * d1) / sqrt2pi

 nu = exp((-dividend) * tau) * S * n01pdf_d1 * sqrt(tau)

 d2 = d1 - sqrt_sigsqtau

 BS_values(j,i,1) = exp((-dividend) * tau) * S *&

 anordf(d1) - exp((-r) * tau) *&

 ks(strike_price) * anordf(d2)

! greek = Rho

 BS_values(j,i,10) = exp((-r) * tau) * ks(strike_price) *&

 tau * anordf(d2)

! greek = Vega

 BS_values(j,i,7) = nu

! greek = Volga

 BS_values(j,i,8) = nu * d1 * d2 / sigma(volatility)

! greek = delta

 BS_values(j,i,2) = exp((-dividend) * tau) * anordf(d1)

! greek = Vanna

 BS_values(j,i,9) = (nu / S) * (1.0 - d1 / sqrt_sigsqtau)

! greek = dgamma

IMSL MATH LIBRARY Chapter 5: Differential Equations 1181

 BS_values(j,i,3) = exp((-dividend) * tau) *&

 n01pdf_d1 /(S * sqrt_sigsqtau)

! greek = speed

 BS_values(j,i,11) = (-exp((-dividend) * tau)) *&

 n01pdf_d1 * (1.0 + d1 / sqrt_sigsqtau)&

 / (S * S * sqrt_sigsqtau)

! greek = speed

 BS_values(j,i,12) = (-exp((-dividend) * tau)) * &

 n01pdf_d1 * (1.0 + d1 / sqrt_sigsqtau) / &

 (S * S * sqrt_sigsqtau)

 d2 = d1 - sqrt_sigsqtau

! greek = theta

 BS_values(j,i,4) = exp((-dividend) * tau) * S * &

 (dividend * anordf(d1) - 0.5 * sigsq * &

 n01pdf_d1 / sqrt_sigsqtau) - r * &

 exp((-r) * tau) * ks(strike_price) * &

 anordf(d2)

! greek = charm

 BS_values(j,i,5) = exp((-dividend) * tau) * ((-dividend)&

 * anordf(d1) + n01pdf_d1 *&

 ((r - dividend) * tau - 0.5 * d2 *&

 sqrt_sigsqtau) / (tau * sqrt_sigsqtau))

! greek = color

 BS_values(j,i,6) = &

 (-exp((-dividend) * tau)) * n01pdf_d1 *&

 (2.0 * dividend * tau + 1.0 + d1 *&

 (2.0 * (r - dividend) * tau - d2 *&

 sqrt_sigsqtau) / sqrt_sigsqtau) / &

 (2.0 * S * tau * sqrt_sigsqtau)

 end do

 end do

 do l=1,12

 relerrmax = 0.0

 do i = 1,nv

 do j = 1,nt

 sVo = spline_values(i,j,l)

 BSVo = BS_values(i,j,l)

 relerr = abs((sVo - BSVo) / BSVo)

 if (relerr > relerrmax) relerrmax = relerr

 reavg(l) = reavg(l) + relerr

 irect(l) = irect(l) + 1

 end do

 end do

 if (relerrmax > rex(l)) rex(l) = relerrmax

 if ((volatility == 1) .and. (strike_price == 1)) then

 do i=1,nv

 sVo_array(1:nt) = spline_values(i,1:nt,l)

 write(nout,'("underlying price: ", F4.1,"; FK ",'//&

 'A6,": ", 3(F13.10,TR1))') eval_points(i),&

 greek_name(l),&

 (sVo_array(k), k=1,nt)

 write(nout, '(T25, "BS ", A6,": ", 3(F13.10,TR1))')&

 greek_name(l), (BS_values(i,k,l), k=1,nt)

 end do

 end if

1182 Chapter 5: Differential Equations IMSL MATH LIBRARY

 end do

 end subroutine calc_Greeks

 end

! These functions and routines define the coefficients, payoff and boundary

conditions.

 function fkcoef (x, tx, iflag, fcn_data)

 use mp_types

 implicit none

 real(kind(1d0)), intent(in) :: x, tx

 integer, intent(inout) :: iflag

 type(d_fcn_data), optional :: fcn_data

 real(kind(1d0)) :: fkcoef

 real(kind(1d0)) :: sigma, interest_rate, alpha, dividend,&

 half = 0.5d0

 sigma = fcn_data % rdata(3)

 alpha = fcn_data % rdata(4)

 interest_rate = fcn_data % rdata(5)

 dividend = fcn_data % rdata(6)

 select case (iflag)

 case (1)

! The coefficient derivative d(sigma)/dx

 fkcoef = half*alpha*sigma*x**(alpha*half-1.0d0)

! The coefficient sigma(x)

 case (2)

 fkcoef = sigma*x**(alpha*half)

 case (3)

! The coefficient mu(x)

 fkcoef = (interest_rate - dividend) * x

 case (4)

! The coefficient kappa(x)

 fkcoef = interest_rate

 end select

! Note that there is no time dependence

 iflag = 0

 return

 end function fkcoef

 function fkinitcond(x, fcn_data)

 use mp_types

 implicit none

 real(kind(1d0)), intent(in) :: x

 type (d_fcn_data), optional :: fcn_data

 real(kind(1d0)) :: fkinitcond

 real(kind(1d0)) :: zero = 0.0d0

 real(kind(1d0)) :: strike_price

 strike_price = fcn_data % rdata(1)

! The payoff function

 fkinitcond = max(x - strike_price, zero)

 return

 end function fkinitcond

 subroutine fkbc (tx, iflag, bccoefs, fcn_data)

 use mp_types

IMSL MATH LIBRARY Chapter 5: Differential Equations 1183

 implicit none

 real(kind(1d0)), intent(in) :: tx

 integer, intent(inout) :: iflag

 real(kind(1d0)), dimension(:,:), intent(out) :: bccoefs

 type (d_fcn_data), optional :: fcn_data

 real(kind(1d0)) :: x_max, df, interest_rate, strike_price

 strike_price = fcn_data % rdata(1)

 x_max = fcn_data % rdata(2)

 interest_rate = fcn_data % rdata(5)

 select case (iflag)

 case (1)

 bccoefs(1,1:4) = (/1.0d0, 0.0d0, 0.0d0, 0.0d0/)

 bccoefs(2,1:4) = (/0.0d0, 1.0d0, 0.0d0, 0.0d0/)

 bccoefs(3,1:4) = (/0.0d0, 0.0d0, 1.0d0, 0.0d0/)

! Note no time dependence at left end

 iflag = 0

 case (2)

 df = exp(interest_rate * tx)

 bccoefs(1,1:4) = (/1.0d0, 0.0d0, 0.0d0, x_max -&

 df*strike_price/)

 bccoefs(2,1:4) = (/0.0d0, 1.0d0, 0.0d0, 1.0d0/)

 bccoefs(3,1:4) = (/0.0d0, 0.0d0, 1.0d0, 0.0d0/)

 end select

 end subroutine fkbc

Output

 Constant Elasticity of Variance Model for Vanilla Call Option

 Interest Rate: 0.050 Continuous Dividend: 0.000

 Minimum and Maximum Prices of Underlying: 0.00 60.00

 Number of equally spaced spline knots: 120

 Number of unknowns: 363

 Time in Years Prior to Expiration: 0.0833 0.3333 0.5833

 Option valued at Underlying Prices: 19.00 20.00 21.00

 3 point (parabolic) estimate of parameter derivatives

 epsfrac = 0.00100000

 Strike =15.00 Sigma = 0.20 Alpha = 2.00:

 years to expiration: 0.0833 0.3333 0.5833

underlying price: 19.0; FK Value: 4.0623732450 4.2575924184 4.4733805278

 BS Value: 4.0623732509 4.2575929678 4.4733814062

underlying price: 20.0; FK Value: 5.0623700127 5.2505145764 5.4492418798

 BS Value: 5.0623700120 5.2505143129 5.4492428547

underlying price: 21.0; FK Value: 6.0623699727 6.2485587059 6.4385718831

 BS Value: 6.0623699726 6.2485585270 6.4385720688

underlying price: 19.0; FK Delta: 0.9999864098 0.9877532309 0.9652249945

 BS Delta: 0.9999863811 0.9877520034 0.9652261127

underlying price: 20.0; FK Delta: 0.9999998142 0.9964646548 0.9842482622

 BS Delta: 0.9999998151 0.9964644003 0.9842476147

underlying price: 21.0; FK Delta: 0.9999999983 0.9990831687 0.9932459040

1184 Chapter 5: Differential Equations IMSL MATH LIBRARY

 BS Delta: 0.9999999985 0.9990834124 0.9932451927

underlying price: 19.0; FK Gamma: 0.0000543456 0.0144908955 0.0264849216

 BS Gamma: 0.0000547782 0.0144911447 0.0264824761

underlying price: 20.0; FK Gamma: 0.0000008315 0.0045912854 0.0129288434

 BS Gamma: 0.0000008437 0.0045925328 0.0129280372

underlying price: 21.0; FK Gamma: 0.0000000080 0.0012817012 0.0058860348

 BS Gamma: 0.0000000077 0.0012818272 0.0058865489

underlying price: 19.0; FK Theta: -0.7472631891 -0.8301000450 -0.8845209253

 BS Theta: -0.7472638978 -0.8301108199 -0.8844992143

underlying price: 20.0; FK Theta: -0.7468881086 -0.7706770630 -0.8152217385

 BS Theta: -0.7468880640 -0.7706789470 -0.8152097697

underlying price: 21.0; FK Theta: -0.7468815742 -0.7479185416 -0.7728950748

 BS Theta: -0.7468815673 -0.7479153725 -0.7728982104

underlying price: 19.0; FK Charm: -0.0014382828 -0.0879903285 -0.0843323992

 BS Charm: -0.0014397520 -0.0879913927 -0.0843403333

underlying price: 20.0; FK Charm: -0.0000284881 -0.0364107814 -0.0547260337

 BS Charm: -0.0000285354 -0.0364209077 -0.0547074804

underlying price: 21.0; FK Charm: -0.0000003396 -0.0126436426 -0.0313343015

 BS Charm: -0.0000003190 -0.0126437838 -0.0313252716

underlying price: 19.0; FK Color: 0.0051622176 0.0685064195 0.0299871130

 BS Color: 0.0051777484 0.0684737183 0.0300398444

underlying price: 20.0; FK Color: 0.0001188761 0.0355826975 0.0274292189

 BS Color: 0.0001205713 0.0355891884 0.0274307898

underlying price: 21.0; FK Color: 0.0000015432 0.0143174420 0.0190897159

 BS Color: 0.0000015141 0.0143247729 0.0190752019

underlying price: 19.0; FK Vega: 0.0003289870 0.3487168323 1.1153520921

 BS Vega: 0.0003295819 0.3487535501 1.1153536190

underlying price: 20.0; FK Vega: 0.0000056652 0.1224632724 0.6032458218

 BS Vega: 0.0000056246 0.1224675413 0.6033084039

underlying price: 21.0; FK Vega: 0.0000000623 0.0376974472 0.3028275297

 BS Vega: 0.0000000563 0.0376857196 0.3028629419

underlying price: 19.0; FK Volga: 0.0286254576 8.3705173459 16.7944554708

 BS Volga: 0.0286064650 8.3691191978 16.8219823169

underlying price: 20.0; FK Volga: 0.0007137402 4.2505025277 12.9315441466

 BS Volga: 0.0007186004 4.2519372748 12.9612638820

underlying price: 21.0; FK Volga: 0.0000100364 1.7613083436 8.6626161799

 BS Volga: 0.0000097963 1.7617504949 8.6676581034

underlying price: 19.0; FK Vanna: -0.0012418872 -0.3391850563 -0.6388552010

 BS Vanna: -0.0012431594 -0.3391932673 -0.6387423326

underlying price: 20.0; FK Vanna: -0.0000244490 -0.1366771953 -0.3945466661

 BS Vanna: -0.0000244825 -0.1367114682 -0.3945405194

underlying price: 21.0; FK Vanna: -0.0000002904 -0.0466333335 -0.2187406645

 BS Vanna: -0.0000002726 -0.0466323413 -0.2187858632

underlying price: 19.0; FK Rho: 1.2447807022 4.8365676561 8.0884594648

 BS Rho: 1.2447806658 4.8365650322 8.0884502627

underlying price: 20.0; FK Rho: 1.2448021850 4.8929216544 8.3041708173

 BS Rho: 1.2448021908 4.8929245641 8.3041638392

underlying price: 21.0; FK Rho: 1.2448024992 4.9107294560 8.4114197621

 BS Rho: 1.2448024996 4.9107310444 8.4114199038

underlying price: 19.0; FK Speed: -0.0002124684 -0.0156265453 -0.0179534748

 BS Speed: -0.0002123854 -0.0156192867 -0.0179536520

underlying price: 20.0; FK Speed: -0.0000037247 -0.0055877024 -0.0097502607

 BS Speed: -0.0000037568 -0.0055859333 -0.0097472434

underlying price: 21.0; FK Speed: -0.0000000385 -0.0017085830 -0.0048143174

 BS Speed: -0.0000000378 -0.0017082128 -0.0048130214

underlying price: 19.0; FK Speed2: -0.0002310655 -0.0156276977 -0.0179516855

IMSL MATH LIBRARY Chapter 5: Differential Equations 1185

 BS Speed2: -0.0002123854 -0.0156192867 -0.0179536520

underlying price: 20.0; FK Speed2: -0.0000043215 -0.0055923924 -0.0097502997

 BS Speed2: -0.0000037568 -0.0055859333 -0.0097472434

underlying price: 21.0; FK Speed2: -0.0000000475 -0.0017117661 -0.0048153107

 BS Speed2: -0.0000000378 -0.0017082128 -0.0048130214

 Greek: Value; avg rel err: 0.000146171196; max rel err: 0.009030737566

 Greek: Delta; avg rel err: 0.000035817272; max rel err: 0.001158483076

 Greek: Gamma; avg rel err: 0.001088392379; max rel err: 0.044845800289

 Greek: Theta; avg rel err: 0.000054196359; max rel err: 0.001412847300

 Greek: Charm; avg rel err: 0.001213347059; max rel err: 0.064576457415

 Greek: Color; avg rel err: 0.003323954467; max rel err: 0.136355681544

 Greek: Vega; avg rel err: 0.001514753397; max rel err: 0.106255126885

 Greek: Volga; avg rel err: 0.058531380389; max rel err: 1.639564208085

 Greek: Vanna; avg rel err: 0.001061525805; max rel err: 0.065629483069

 Greek: Rho; avg rel err: 0.000146868262; max rel err: 0.009438788128

 Greek: Speed; avg rel err: 0.002065441607; max rel err: 0.073086615101

 Greek: Speed2; avg rel err: 0.008429883935; max rel err: 0.255746328973

HQSVAL
This rank-1 array function evaluates a Hermite quintic spline or one of its derivatives for an array

of input points. In particular, it computes solution values for the Feynman-Kac PDE handled by

routine FEYNMAN_KAC.

Function Return Value

HQSVAL — Rank-1 array containing the values or derivatives of the Hermite quintic spline

at the points given in array XVAL. (Output)

size = size(XVAL).

Required Arguments

XVAL — Rank-1 array containing the points at which the Hermite quintic spline is to be

evaluated. (Input)

Let NXVAL = size(XVAL). The points in XVAL must lie within the range of array

BREAK, i.e. BREAK(1) ≤ XVAL(I)≤ BREAK(NXVAL), I=1,…,NXVAL.

BREAK — Rank-1 array containing the breakpoints for the Hermite quintic spline

representation. (Input)

When applied to the output from routine FEYNMAN_KAC, array BREAK is identical to

array XGRID.

Let NBREAK = size(BREAK). NBREAK must be at least 2 and the values in BREAK

must be in strictly increasing order.

COEFFS — Rank-1 array of size 3NBREAK containing the coefficients of the Hermite

quintic spline representation. (Input)

When applied to the output arrays Y or YPRIME from routine FEYNMAN_KAC, array

COEFFS is identical to one of the columns of arrays Y or YPRIME, respectively.

1186 Chapter 5: Differential Equations IMSL MATH LIBRARY

Optional Argument

IDERIV — Order of the derivative to be evaluated. (Input)

It is required that IDERIV = 0, 1, 2 or 3. Use 0 for the function itself, 1 for the first

derivative, etc.

Default: IDERIV = 0.

FORTRAN 90 Interface

Generic: HQSVAL (XVAL, BREAK, COEFFS [,…])

Specific: The specific interface names are S_HQSVAL and D_HQSVAL.

Description

The Hermite quintic spline interpolation is done over the composite interval min max,x x , where

BREAK(I) = ix are given by min 1 2 maxmx x x x x .

The Hermite quintic spline function is constructed using three primary functions, defined by

35 4 3 2

0

35 4 3

1

35 4 3 2 2

2

6 15 10 1 1 6 3 1 ,

3 8 6 1 3 1 ,

1 1
3 3 1

2 2
.

b z z z z z z z

b z z z z z z z z

b z z z z z z z

For each

 1 1, , , / , 1, , 1,i i i i i i i ix x x h x x z x x h i m

the spline is locally defined by

3 2 0 3 1 0 3 1 1

3 2 1 3 2 3 3 2

1

2 2
 1 1 ,

i i i i

i i i i i i

H x y b z y b z h y b z

h y b z h y b z h y b z

where

3 2

3 1

3

(),

(/)() (),

2 2
(/)() (), 1, , .

i i

i i i

i i i

x

xx

y f x

y f x x f x

y f x x f x i m

are the values of a given twice continuously differentiable function f and its first two derivatives

at the breakpoints.

The approximating function ()H x is twice continuously differentiable on min max,x x , whereas

IMSL MATH LIBRARY Chapter 5: Differential Equations 1187

the third derivative is in general only continuous within the interior of the intervals 1,i ix x .

From the local representation of ()H x it follows that

3 2

3 1

3

() () ,

() () ,

() , 1, ,

i i i

i i i

i i

H x f x y

H x f x y

H x y i m

.

The spline coefficients , 1, ,3 ,iy i m are stored as successive triplets in array COEFFS. For a

given min max,w x x , function HQSVAL uses the information in COEFFS together with the

values of 0 1 2, ,b b b and its derivatives at w to compute
()

(), 0, , 3
d

H w d using the local

representation on the particular subinterval containing w .

When using arrays XGRID and Y(:,I) from routine FEYNMAN_KAC as input arrays BREAK and

COEFFS, function HQSVAL allows for computation of approximate solutions , , ,x xx xxxf f f f to

the Feynman-Kac PDE for IDERIV=0,1,2, 3, respectively. The solution values are evaluated at the

array of points (XVAL(:),TGRID(I)) for I=1,…,size(TGRID) and (XVAL(:),0) for I=0 .

Similarly, using arrays XGRID and YPRIME(:,I) allows for computation of approximate

solutions , , ,t tx txx txxxf f f f to the Feynman-Kac PDE.

Example: Exact Interpolation with Hermite Quintic Splines

Consider function
5

()f x x , a polynomial of degree 5, on the interval [1,1] with breakpoints

1 . Then, the end derivative values are

1 2 3(1) 1, (1) 5, (1) 20y f y f y f

and

4 5 6(1) 1, (1) 5, (1) 20y f y f y f
.

Since the Hermite quintic interpolates all polynomials up to degree 5 exactly, the spline

interpolation on [1,1] must agree with the exact function values up to rounding errors.

 use hqsval_int

 use umach_int

 implicit none

 integer :: i, nout

 real(kind(1e0)) :: break(2), xval(7), coeffs(6), interpolant(7)

! Define arrays

 break = (/ -1.0, 1.0 /)

 xval = (/ -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75 /)

 coeffs = (/ -1.0, 5.0, -20.0, 1.0, 5.0, 20.0 /)

! Compute interpolant

1188 Chapter 5: Differential Equations IMSL MATH LIBRARY

 interpolant = hqsval(xval, break, coeffs)

 call umach(2, nout)

! Compare interpolant with exact function.

 write(nout,'(A6,A10,A15,A10)')'x', 'F(x)', 'Interpolant', 'Error'

 write(nout,'(f8.3,f9.3,f11.3,f15.7)') (xval(i), F(xval(i)), &

 interpolant(i), abs(F(xval(i))-interpolant(i)), &

 i=1,7)

 contains

 function F(x)

 implicit none

 real(kind(1e0)) :: F, x

 F = x**5

 return

 end function F

 end

Output

 x F(x) Interpolant Error

 -0.750 -0.237 -0.237 0.0000000

 -0.500 -0.031 -0.031 0.0000000

 -0.250 -0.001 -0.001 0.0000000

 0.000 0.000 0.000 0.0000000

 0.250 0.001 0.001 0.0000000

 0.500 0.031 0.031 0.0000000

 0.750 0.237 0.237 0.0000000

FPS2H

Solves Poisson‘s or Helmholtz‘s equation on a two-dimensional rectangle using a fast Poisson

solver based on the HODIE finite-difference scheme on a uniform mesh.

Required Arguments

PRHS — User-supplied FUNCTION to evaluate the right side of the partial differential

equation. The form is PRHS(X, Y), where

 X – X-coordinate value. (Input)

 Y – Y-coordinate value. (Input)

 PRHS – Value of the right side at (X, Y). (Output)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1189

 PRHS must be declared EXTERNAL in the calling program.

BRHS — User-supplied FUNCTION to evaluate the right side of the boundary conditions. The

form is BRHS(ISIDE, X, Y), where

 ISIDE – Side number. (Input)

See IBCTY below for the definition of the side numbers.

 X – X-coordinate value. (Input)

 Y – Y-coordinate value. (Input)

 BRHS – Value of the right side of the boundary condition at (X, Y). (Output)

 BRHS must be declared EXTERNAL in the calling program.

COEFU — Value of the coefficient of U in the differential equation. (Input)

NX — Number of grid lines in the X-direction. (Input)

NX must be at least 4. See Comment 2 for further restrictions on NX.

NY — Number of grid lines in the Y-direction. (Input)

NY must be at least 4. See Comment 2 for further restrictions on NY.

AX — The value of X along the left side of the domain. (Input)

BX — The value of X along the right side of the domain. (Input)

AY — The value of Y along the bottom of the domain. (Input)

BY — The value of Y along the top of the domain. (Input)

IBCTY — Array of size 4 indicating the type of boundary condition on each side of the

domain or that the solution is periodic. (Input)

The sides are numbered 1 to 4 as follows:

Side Location

1 - Right (X = BX)

2 - Bottom (Y = AY)

3 - Left (X = AX)

4 - Top (Y = BY)

There are three boundary condition types.

1190 Chapter 5: Differential Equations IMSL MATH LIBRARY

IBCTY Boundary Condition

1 Value of U is given. (Dirichlet)

2 Value of dU/dX is given (sides 1

and/or 3). (Neumann) Value of

dU/dY is given (sides 2 and/or 4).

3 Periodic.

U — Array of size NX by NY containing the solution at the grid points. (Output)

Optional Arguments

IORDER — Order of accuracy of the finite-difference approximation. (Input)

It can be either 2 or 4. Usually, IORDER = 4 is used.

Default: IORDER = 4.

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDU = size (U,1).

FORTRAN 90 Interface

Generic: CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY, U [,…])

Specific: The specific interface names are S_FPS2H and D_FPS2H.

FORTRAN 77 Interface

Single: CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY, IORDER, U,
LDU)

Double: The double precision name is DFPS2H.

Description

Let c = COEFU, ax = AX, bx = BX, ay = AY, by = BY, nx = NX and ny = NY.

FPS2H is based on the code HFFT2D by Boisvert (1984). It solves the equation

2 2

2 2

u u
cu p

x y

on the rectangular domain (ax, bx) (ay, by) with a user-specified combination of Dirichlet

(solution prescribed), Neumann (first-derivative prescribed), or periodic boundary conditions. The

sides are numbered clockwise, starting with the right side.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1191

by

y

Side 4

Side 2

Side 3 Side 1

a y

xa bx
x

When c = 0 and only Neumann or periodic boundary conditions are prescribed, then any constant

may be added to the solution to obtain another solution to the problem. In this case, the solution of

minimum -norm is returned.

The solution is computed using either a second-or fourth-order accurate finite-difference

approximation of the continuous equation. The resulting system of linear algebraic equations is

solved using fast Fourier transform techniques. The algorithm relies upon the fact that 1nx is

highly composite (the product of small primes). For details of the algorithm, see Boisvert (1984).

If 1nx is highly composite then the execution time of FPS2H is proportional to log2n n nx y x .

If evaluations of p(x, y) are inexpensive, then the difference in running time between IORDER = 2

and IORDER = 4 is small.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2S2H/DF2S2H. The

reference is:

CALL F2S2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY,

IBCTY, IORDER, U, LDU, UWORK, WORK)

The additional arguments are as follows:

UWORK — Work array of size NX + 2 by NY + 2. If the actual

dimensions of U are large enough, then U and UWORK can be the same

array.

WORK — Work array of length (NX + 1)(NY + 1)(IORDER 2)/2 +

6(NX + NY) + NX/2 + 16.

1192 Chapter 5: Differential Equations IMSL MATH LIBRARY

2. The grid spacing is the distance between the (uniformly spaced) grid lines. It is given

by the formulas HX = (BX - AX)/(NX 1) and HY = (BY - AY)/(NY - 1). The grid

spacings in the X and Y directions must be the same, i.e., NX and NY must be such that

HX equals HY. Also, as noted above, NX and NY must both be at least 4. To increase the

speed of the fast Fourier transform, NX - 1 should be the product of small primes. Good

choices are 17, 33, and 65.

3. If COEFU is nearly equal to an eigenvalue of the Laplacian with homogeneous

boundary conditions, then the computed solution might have large errors.

Example

In this example, the equation

2 2

2 3

2 2
3 2sin 2 16 x yu u
u x y e

x y

with the boundary conditions u/y = 2 cos(x + 2y) + 3 exp(2x + 3y) on the bottom side and

u = sin(x + 2y) + exp(2x + 3y) on the other three sides. The domain is the rectangle[0, 1/4] [0,

1/2]. The output of FPS2H is a 17 33 table of U values. The quadratic interpolation routine

QD2VL is used to print a table of values.

 USE FPS2H_INT

 USE QD2VL_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NCVAL, NX, NXTABL, NY, NYTABL

 PARAMETER (NCVAL=11, NX=17, NXTABL=5, NY=33, NYTABL=5)

!

 INTEGER I, IBCTY(4), IORDER, J, NOUT

 REAL AX, AY, BRHS, BX, BY, COEFU, ERROR, FLOAT, PRHS, &

 TRUE, U(NX,NY), UTABL, X, XDATA(NX), Y, YDATA(NY)

 INTRINSIC FLOAT

 EXTERNAL BRHS, PRHS

! Set rectangle size

 AX = 0.0

 BX = 0.25

 AY = 0.0

 BY = 0.50

! Set boundary condition types

 IBCTY(1) = 1

 IBCTY(2) = 2

 IBCTY(3) = 1

 IBCTY(4) = 1

! Coefficient of U

 COEFU = 3.0

! Order of the method

 IORDER = 4

! Solve the PDE

 CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY, U)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1193

! Setup for quadratic interpolation

 DO 10 I=1, NX

 XDATA(I) = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NX-1)

 10 CONTINUE

 DO 20 J=1, NY

 YDATA(J) = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NY-1)

 20 CONTINUE

! Print the solution

 CALL UMACH (2, NOUT)

 WRITE (NOUT,'(8X,A,11X,A,11X,A,8X,A)') 'X', 'Y', 'U', 'Error'

 DO 40 J=1, NYTABL

 DO 30 I=1, NXTABL

 X = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NXTABL-1)

 Y = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NYTABL-1)

 UTABL = QD2VL(X,Y,XDATA,YDATA,U)

 TRUE = SIN(X+2.*Y) + EXP(2.*X+3.*Y)

 ERROR = TRUE - UTABL

 WRITE (NOUT,'(4F12.4)') X, Y, UTABL, ERROR

 30 CONTINUE

 40 CONTINUE

 END

!

 REAL FUNCTION PRHS (X, Y)

 REAL X, Y

!

 REAL EXP, SIN

 INTRINSIC EXP, SIN

! Define right side of the PDE

 PRHS = -2.*SIN(X+2.*Y) + 16.*EXP(2.*X+3.*Y)

 RETURN

 END

!

 REAL FUNCTION BRHS (ISIDE, X, Y)

 INTEGER ISIDE

 REAL X, Y

!

 REAL COS, EXP, SIN

 INTRINSIC COS, EXP, SIN

! Define the boundary conditions

 IF (ISIDE .EQ. 2) THEN

 BRHS = 2.*COS(X+2.*Y) + 3.*EXP(2.*X+3.*Y)

 ELSE

 BRHS = SIN(X+2.*Y) + EXP(2.*X+3.*Y)

 END IF

 RETURN

 END

Output

 X Y U Error

 0.0000 0.0000 1.0000 0.0000

 0.0625 0.0000 1.1956 0.0000

 0.1250 0.0000 1.4087 0.0000

 0.1875 0.0000 1.6414 0.0000

 0.2500 0.0000 1.8961 0.0000

 0.0000 0.1250 1.7024 0.0000

 0.0625 0.1250 1.9562 0.0000

1194 Chapter 5: Differential Equations IMSL MATH LIBRARY

 0.1250 0.1250 2.2345 0.0000

 0.1875 0.1250 2.5407 0.0000

 0.2500 0.1250 2.8783 0.0000

 0.0000 0.2500 2.5964 0.0000

 0.0625 0.2500 2.9322 0.0000

 0.1250 0.2500 3.3034 0.0000

 0.1875 0.2500 3.7148 0.0000

 0.2500 0.2500 4.1720 0.0000

 0.0000 0.3750 3.7619 0.0000

 0.0625 0.3750 4.2163 0.0000

 0.1250 0.3750 4.7226 0.0000

 0.1875 0.3750 5.2878 0.0000

 0.2500 0.3750 5.9199 0.0000

 0.0000 0.5000 5.3232 0.0000

 0.0625 0.5000 5.9520 0.0000

 0.1250 0.5000 6.6569 0.0000

 0.1875 0.5000 7.4483 0.0000

 0.2500 0.5000 8.3380 0.0000

FPS3H

Solves Poisson‘s or Helmholtz‘s equation on a three-dimensional box using a fast Poisson solver

based on the HODIE finite-difference scheme on a uniform mesh.

Required Arguments

PRHS — User-supplied FUNCTION to evaluate the right side of the partial differential

equation. The form is PRHS(X, Y, Z), where

 X – The x-coordinate value. (Input)

 Y – The y-coordinate value. (Input)

 Z – The z-coordinate value. (Input)

 PRHS – Value of the right side at (X, Y, Z). (Output)

 PRHS must be declared EXTERNAL in the calling program.

BRHS — User-supplied FUNCTION to evaluate the right side of the boundary conditions. The

form is BRHS(ISIDE, X, Y, Z), where

 ISIDE – Side number. (Input)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1195

See IBCTY for the definition of the side numbers.

 X – The x-coordinate value. (Input)

 Y – The y-coordinate value. (Input)

 Z – The z-coordinate value. (Input)

 BRHS – Value of the right side of the boundary condition at (X, Y, Z). (Output)

 BRHS must be declared EXTERNAL in the calling program.

COEFU — Value of the coefficient of U in the differential equation. (Input)

NX — Number of grid lines in the x-direction. (Input)

NX must be at least 4. See Comment 2 for further restrictions on NX.

NY — Number of grid lines in the y-direction. (Input)

NY must be at least 4. See Comment 2 for further restrictions on NY.

NZ — Number of grid lines in the y-direction. (Input)

NZ must be at least 4. See Comment 2 for further restrictions on NZ.

AX — Value of X along the left side of the domain. (Input)

BX — Value of X along the right side of the domain. (Input)

AY — Value of Y along the bottom of the domain. (Input)

BY — Value of Y along the top of the domain. (Input)

AZ — Value of Z along the front of the domain. (Input)

BZ — Value of Z along the back of the domain. (Input)

IBCTY — Array of size 6 indicating the type of boundary condition on each face of the

domain or that the solution is periodic. (Input)

The sides are numbers 1 to 6 as follows:

Side Location

1 - Right (X = BX)

2 - Bottom (Y = AY)

3 - Left (X = AX)

4 - Top (Y = BY)

1196 Chapter 5: Differential Equations IMSL MATH LIBRARY

5 - Front (Z = BZ)

6 - Back (Z = AZ)

There are three boundary condition types.

IBCTY Boundary Condition

1 Value of U is given. (Dirichlet)

2 Value of dU/dX is given (sides 1 and/or 3). (Neumann) Value of dU/dY is

 given (sides 2 and/or 4). Value of dU/dZ is given (sides 5 and/or 6).

3 Periodic.

U — Array of size NX by NY by NZ containing the solution at the grid points. (Output)

Optional Arguments

IORDER — Order of accuracy of the finite-difference approximation. (Input)

It can be either 2 or 4. Usually, IORDER = 4 is used.

Default: IORDER = 4.

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDU = size (U,1).

MDU — Middle dimension of U exactly as specified in the dimension statement of the calling

program. (Input)

Default: MDU = size (U,2).

FORTRAN 90 Interface

Generic: CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, BZ, IBCTY, U
[,…])

Specific: The specific interface names are S_FPS3H and D_FPS3H.

FORTRAN 77 Interface

Single: CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, BZ, IBCTY,

IORDER, U, LDU, MDU)

Double: The double precision name is DFPS3H.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1197

Description

Let c = COEFU, ax = AX, bx = BX, nx = NX, ay = AY, by = BY, ny = NY, az = AZ, bz = BZ, and nz = NZ.

FPS3H is based on the code HFFT3D by Boisvert (1984). It solves the equation

2 2 2

2 2 2

u u u
cu p

x y z

on the domain (ax, bx) (ay, by) (az, bz) (a box) with a user-specified combination of Dirichlet

(solution prescribed), Neumann (first derivative prescribed), or periodic boundary conditions. The

six sides are numbered as shown in the following diagram.

z

b

a

y

z

x

b

b
x

Front - 5

Top - 4

Right - 1

Bottom - 2

Left - 3

Back - 6

y

When c = 0 and only Neumann or periodic boundary conditions are prescribed, then any constant

may be added to the solution to obtain another solution to the problem. In this case, the solution of

minimum -norm is returned.

The solution is computed using either a second-or fourth-order accurate finite-difference

approximation of the continuous equation. The resulting system of linear algebraic equations is

solved using fast Fourier transform techniques. The algorithm relies upon the fact that nx 1 and

nz 1 are highly composite (the product of small primes). For details of the algorithm, see

Boisvert (1984). If nx 1 and nz 1 are highly composite, then the execution time of FPS3H is

proportional to

 2 2
2 2log logx y z x zn n n n n

If evaluations of p(x, y, z) are inexpensive, then the difference in running time between

IORDER = 2 and IORDER = 4 is small.

1198 Chapter 5: Differential Equations IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of F2S3H/DF2S3H. The

reference is:

CALL F2S3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY,

AZ, BZ, IBCTY, IORDER, U, LDU, MDU, UWORK, WORK)

The additional arguments are as follows:

UWORK — Work array of size NX + 2 by NY + 2 by NZ + 2. If the

actual dimensions of U are large enough, then U and UWORK can be the

same array.

WORK — Work array of length (NX + 1)(NY + 1)(NZ + 1)(IORDER
2)/2 + 2(NX * NY + NX * NZ + NY * NZ) + 2(NX + NY +

1) + MAX(2 * NX * NY, 2 * NX + NY + 4 * NZ + (NX +

NZ)/2 + 29)

2. The grid spacing is the distance between the (uniformly spaced) grid lines. It is given

by the formulas

HX = (BX AX)/(NX 1),

HY = (BY AY)/(NY 1), and

HZ = (BZ AZ)/(NZ 1).

The grid spacings in the X, Y and Z directions must be the same, i.e., NX, NY and NZ

must be such that HX = HY = HZ. Also, as noted above, NX, NY and NZ must all be at

least 4. To increase the speed of the Fast Fourier transform, NX 1 and NZ 1 should

be the product of small primes. Good choices for NX and NZ are 17, 33 and 65.

3. If COEFU is nearly equal to an eigenvalue of the Laplacian with homogeneous

boundary conditions, then the computed solution might have large errors.

Example

This example solves the equation

2 2 2

2 2 2
10 4 cos 3 2 12 10x zu u u

u x y z e
x y z

with the boundary conditions u/z = 2 sin(3x + y 2z) exp(x z) on the front side and

u = cos(3x + y 2z) + exp(x z) + 1 on the other five sides. The domain is the box [0, 1/4] × [0,

1/2] × [0, 1/2]. The output of FPS3H is a 9 17 17 table of U values. The quadratic interpolation

routine QD3VL is used to print a table of values.

 USE FPS3H_INT

 USE UMACH_INT

 USE QD3VL_INT

 IMPLICIT NONE

IMSL MATH LIBRARY Chapter 5: Differential Equations 1199

! SPECIFICATIONS FOR PARAMETERS

 INTEGER LDU, MDU, NX, NXTABL, NY, NYTABL, NZ, NZTABL

 PARAMETER (NX=5, NXTABL=4, NY=9, NYTABL=3, NZ=9, &

 NZTABL=3, LDU=NX, MDU=NY)

!

 INTEGER I, IBCTY(6), IORDER, J, K, NOUT

 REAL AX, AY, AZ, BRHS, BX, BY, BZ, COEFU, FLOAT, PRHS, &

 U(LDU,MDU,NZ), UTABL, X, ERROR, TRUE, &

 XDATA(NX), Y, YDATA(NY), Z, ZDATA(NZ)

 INTRINSIC COS, EXP, FLOAT

 EXTERNAL BRHS, PRHS

! Define domain

 AX = 0.0

 BX = 0.125

 AY = 0.0

 BY = 0.25

 AZ = 0.0

 BZ = 0.25

! Set boundary condition types

 IBCTY(1) = 1

 IBCTY(2) = 1

 IBCTY(3) = 1

 IBCTY(4) = 1

 IBCTY(5) = 2

 IBCTY(6) = 1

! Coefficient of U

 COEFU = 10.0

! Order of the method

 IORDER = 4

! Solve the PDE

 CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, &

 BZ, IBCTY, U)

! Set up for quadratic interpolation

 DO 10 I=1, NX

 XDATA(I) = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NX-1)

 10 CONTINUE

 DO 20 J=1, NY

 YDATA(J) = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NY-1)

 20 CONTINUE

 DO 30 K=1, NZ

 ZDATA(K) = AZ + (BZ-AZ)*FLOAT(K-1)/FLOAT(NZ-1)

 30 CONTINUE

! Print the solution

 CALL UMACH (2, NOUT)

 WRITE (NOUT,'(8X,5(A,11X))') 'X', 'Y', 'Z', 'U', 'Error'

 DO 60 K=1, NZTABL

 DO 50 J=1, NYTABL

 DO 40 I=1, NXTABL

 X = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NXTABL-1)

 Y = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NYTABL-1)

 Z = AZ + (BZ-AZ)*FLOAT(K-1)/FLOAT(NZTABL-1)

 UTABL = QD3VL(X,Y,Z,XDATA,YDATA,ZDATA,U, CHECK=.false.)

 TRUE = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0

 ERROR = UTABL - TRUE

 WRITE (NOUT,'(5F12.4)') X, Y, Z, UTABL, ERROR

 40 CONTINUE

 50 CONTINUE

1200 Chapter 5: Differential Equations IMSL MATH LIBRARY

 60 CONTINUE

 END

!

 REAL FUNCTION PRHS (X, Y, Z)

 REAL X, Y, Z

!

 REAL COS, EXP

 INTRINSIC COS, EXP

! Right side of the PDE

 PRHS = -4.0*COS(3.0*X+Y-2.0*Z) + 12*EXP(X-Z) + 10.0

 RETURN

 END

!

 REAL FUNCTION BRHS (ISIDE, X, Y, Z)

 INTEGER ISIDE

 REAL X, Y, Z

!

 REAL COS, EXP, SIN

 INTRINSIC COS, EXP, SIN

! Boundary conditions

 IF (ISIDE .EQ. 5) THEN

 BRHS = -2.0*SIN(3.0*X+Y-2.0*Z) - EXP(X-Z)

 ELSE

 BRHS = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0

 END IF

 RETURN

 END

Output

 X Y Z U Error

 0.0000 0.0000 0.0000 3.0000 0.0000

 0.0417 0.0000 0.0000 3.0348 0.0000

 0.0833 0.0000 0.0000 3.0558 0.0001

 0.1250 0.0000 0.0000 3.0637 0.0001

 0.0000 0.1250 0.0000 2.9922 0.0000

 0.0417 0.1250 0.0000 3.0115 0.0000

 0.0833 0.1250 0.0000 3.0175 0.0000

 0.1250 0.1250 0.0000 3.0107 0.0000

 0.0000 0.2500 0.0000 2.9690 0.0001

 0.0417 0.2500 0.0000 2.9731 0.0000

 0.0833 0.2500 0.0000 2.9645 0.0000

 0.1250 0.2500 0.0000 2.9440 -0.0001

 0.0000 0.0000 0.1250 2.8514 0.0000

 0.0417 0.0000 0.1250 2.9123 0.0000

 0.0833 0.0000 0.1250 2.9592 0.0000

 0.1250 0.0000 0.1250 2.9922 0.0000

 0.0000 0.1250 0.1250 2.8747 0.0000

 0.0417 0.1250 0.1250 2.9211 0.0010

 0.0833 0.1250 0.1250 2.9524 0.0010

 0.1250 0.1250 0.1250 2.9689 0.0000

 0.0000 0.2500 0.1250 2.8825 0.0000

 0.0417 0.2500 0.1250 2.9123 0.0000

 0.0833 0.2500 0.1250 2.9281 0.0000

 0.1250 0.2500 0.1250 2.9305 0.0000

IMSL MATH LIBRARY Chapter 5: Differential Equations 1201

 0.0000 0.0000 0.2500 2.6314 -0.0249

 0.0417 0.0000 0.2500 2.7420 -0.0004

 0.0833 0.0000 0.2500 2.8112 -0.0042

 0.1250 0.0000 0.2500 2.8609 -0.0138

 0.0000 0.1250 0.2500 2.7093 0.0000

 0.0417 0.1250 0.2500 2.8153 0.0344

 0.0833 0.1250 0.2500 2.8628 0.0237

 0.1250 0.1250 0.2500 2.8825 0.0000

 0.0000 0.2500 0.2500 2.7351 -0.0127

 0.0417 0.2500 0.2500 2.8030 -0.0011

 0.0833 0.2500 0.2500 2.8424 -0.0040

 0.1250 0.2500 0.2500 2.8735 -0.0012

SLEIG
Determines eigenvalues, eigenfunctions and/or spectral density functions for Sturm-Liouville

problems in the form

 () for in ,
d du

p x q x u r x u x a b
dx dx

with boundary conditions (at regular points)

1 2 1 2

1 2

 at

0 at

a u a pu a u a pu a

b u b pu b

Required Arguments

CONS — Array of size eight containing

1 1 2 2 1 2, , , , , , and a a a a b b a b

in locations CONS(1) through CONS(8), respectively. (Input)

COEFFN — User-supplied subroutine to evaluate the coefficient functions. The usage is

CALL COEFFN (X, PX, QX, RX)

X — Independent variable. (Input)

PX — The value of p(x) at X. (Output)

QX — The value of q(x) at X. (Output)

RX — The value of r(x) at X. (Output)

 COEFFN must be declared EXTERNAL in the calling program.

ENDFIN — Logical array of size two. ENDFIN(1) = .true. if the endpoint a is finite.

ENDFIN(2) = .true. if endpoint b is finite. (Input)

INDEX — Vector of size NUMEIG containing the indices of the desired eigenvalues. (Input)

1202 Chapter 5: Differential Equations IMSL MATH LIBRARY

EVAL — Array of length NUMEIG containing the computed approximations to the

eigenvalues whose indices are specified in INDEX. (Output)

Optional Arguments

NUMEIG — The number of eigenvalues desired. (Input)

Default: NUMEIG = size (INDEX,1).

TEVLAB — Absolute error tolerance for eigenvalues. (Input)

Default: TEVLAB = 10.* machine precision.

TEVLRL — Relative error tolerance for eigenvalues. (Input)

Default: TEVLRL = SQRT(machine precision).

FORTRAN 90 Interface

Generic: CALL SLEIG (CONS, COEFFN, ENDFIN, INDEX, EVAL [,…])

Specific: The specific interface names are S_SLEIG and D_SLEIG.

FORTRAN 77 Interface

Single: CALL SLEIG (CONS, COEFFN, ENDFIN, NUMEIG, INDEX, TEVLAB, TEVLRL,
EVAL)

Double: The double precision name is DSLEIG.

Description

This subroutine is designed for the calculation of eigenvalues, eigenfunctions and/or spectral

density functions for Sturm-Liouville problems in the form

 () for in ,

d du
p x q x u r x u x a b

dx dx

 (1)

with boundary conditions (at regular points)

1 2 1 2

1 2

 at

0 at

a u a pu a u a pu a

b u b pu b

We assume that

1 2 1 2 0a a a a

when aʹ1 0 and aʹ2 0. The problem is considered regular if and only if

 a and b are finite,

 p(x) and r(x) are positive in (a, b),

IMSL MATH LIBRARY Chapter 5: Differential Equations 1203

 1/p(x), q(x) and r(x) are locally integrable near the endpoints.

Otherwise the problem is called singular. The theory assumes that p, pʹ, q, and r are at least

continuous on (a, b), though a finite number of jump discontinuities can be handled by suitably

defining an input mesh.

For regular problems, there are an infinite number of eigenvalues

0 < 1 < < k, k

Each eigenvalue has an associated eigenfunction which is unique up to a constant. For singular

problems, there is a wide range in the behavior of the eigenvalues.

As presented in Pruess and Fulton (1993) the approach is to replace (1) by a new problem

 ˆˆ ˆ ˆ ˆ ˆ ˆpu qu ru

 (2)

with analogous boundary conditions

1 2 1 2

1 2

ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ 0

a u a a pu a a u a a pu a

b u b b pu b

where

ˆ ˆ ˆ, and p q r

are step function approximations to p, q, and r, respectively. Given the mesh

a = x1 < x2 < < xN+1 = b, the usual choice for the step functions uses midpoint interpolation,

i. e.,

 1ˆ ()
2

n n
n

x x
p x p p

for x in (xn, xn+1) and similarly for the other coefficient functions. This choice works well for

regular problems. Some singular problems require a more sophisticated technique to capture the

asymptotic behavior. For the midpoint interpolants, the differential equation (2) has the known

closed form solution in

(xn, xn+1)

 ˆ ˆ ˆ ˆ /n n n n n n nu x u x x x pu x x x p

with

sin / , 0

sinh / , 0

, 0

n n n

n n n n

t

t t

t

where

 ˆ /n n n nr q p

1204 Chapter 5: Differential Equations IMSL MATH LIBRARY

and

n n

Starting with,

 ˆ ˆ ˆ and u a pu a

consistent with the boundary condition,

2 2

1 1

ˆˆ

ˆˆ ˆ

u a a a

pu a a a

an algorithm is to compute for n = 1, 2, ..., N,

1

1

ˆ ˆ ˆ ˆ /

ˆ ˆ ˆ ˆ ˆ

n n n n n n n n

n n n n n n n n n

u x u x h pu x h p

pu x p u x h pu x h

which is a shooting method. For a fixed mesh we can iterate on the approximate eigenvalue until

the boundary condition at b is satisfied. This will yield an O(h
2
) approximation

ˆ
k

to some k.

The problem (2) has a step spectral function given by

 2

1
ˆ

ˆ ˆk

t
r x u x dx

where the sum is taken over k such that

ˆ
k t

and

1 2 1 2a a a a

Comments

1. Workspace may be explicitly provided, if desired, by use of S2EIG/DS2EIG. The

reference is:

CALL S2EIG (CONS, COEFFN, ENDFIN, NUMEIG, INDEX, TEVLAB,

TEVLRL, EVAL, JOB, IPRINT, TOLS, NUMX, XEF, NRHO, T,

TYPE, EF, PDEF, RHO, IFLAG, WORK, IWORK)

The additional arguments are as follows:

IMSL MATH LIBRARY Chapter 5: Differential Equations 1205

JOB — Logical array of length five. (Input)

JOB(1) = .true. if a set of eigenvalues are to be computed but not their

eigenfunctions.

JOB(2) = .true. if a set of eigenvalue and eigenfunction pairs are to be

computed.

JOB(3) = .true. if the spectral function is to be computed

over some subinterval of the essential spectrum.

JOB(4) = .true. if the normal automatic classification is overridden. If JOB(4)

= .true. then TYPE(*,*) must be entered correctly. Most users will not

want to override the classification process, but it might be appropriate

for users experimenting with problems for which the coefficient

functions do not have power-like behavior near the singular endpoints.

The classification is considered sufficiently important for spectral

density function calculations that JOB(4) is ignored with JOB(3) =

.true..

JOB(5) = .true. if mesh distribution is chosen by SLEIG. If JOB(5) = .true.

and NUMX is zero, the number of mesh points are also chosen by SLEIG.

If NUMX > 0 then NUMX mesh points will be used. If JOB(5) = .false.,

the number NUMX and distribution XEF(*) must be input by the user.

IPRINT — Control levels of internal printing. (Input)

No printing is performed if IPRINT = 0. If either JOB(1) or JOB(2) is true:

IPRINT Printed Output

1 Initial mesh (the first 51 or fewer points), eigenvalue

estimate at each level.

4 The above and at each level matching

point for eigenfunction shooting, X(*),

EF(*) and PDEF(*) values.

5 The above and at each level the brackets

for the eigenvalue search, intermediate

shooting information for the
eigenfunction and eigenfunction norm.

 If JOB(3) = .true.

IPRINT Printed Output

1 The actual (a, b) used at each iteration and the total

number of eigenvalues computed.

2 The above and switchover points to the

asymptotic formulas, and some
intermediate (t) approximations.

1206 Chapter 5: Differential Equations IMSL MATH LIBRARY

IPRINT Printed Output

1 The actual (a, b) used at each iteration and the total

number of eigenvalues computed.

3 The above and initial meshes for each

iteration, the index of the largest

eigenvalue which may be computed, and

various igenvalue and RN values.

4 The above and ̂ values at each level.

5 The above and RN add eigenvalues below

the switchover point

 If JOB(4) = .false.

IPRINT Printed Output

2 Output a description of the spectrum.

3 The above and the constants for the

Friedrichs' boundary condition(s).

5 The above and and intermediate details of

the classification calcualtion.

TOLS — Array of length 4 containing tolerances. (Input)

TOLS(1) — absolute error tolerance for eigenfunctions

TOLS(2) — relative error tolerance for eigenfunctions

TOLS(3) — absolute error tolerance for eigenfunction derivatives

TOLS(4) — relative error tolerance for eigenfunction derivatives

 The absolute tolerances must be positive.

The relative tolerances must be at least 100 *amach(4)

NUMX — Integer whose value is the number of output points where each

eigenfunction is to be evaluated (the number of entries in XEF(*)) when JOB(2)

= .true.. If JOB(5)= .false. and NUMX is greater than zero, then NUMX is the

number of points in the initial mesh used. If JOB(5) = .false., the points in

XEF(*) should be chosen with a reasonable distribution. Since the endpoints a

and b must be part of any mesh, NUMX cannot be one in this case. If JOB(5) =

.false. and JOB(3) = .true., then NUMX must be positive. On output, NUMX is set to

the number of points for eigenfunctions when input NUMX = 0, and JOB(2) or

JOB(5) = .true.. (Input/Output)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1207

XEF — Array of points on input where eigenfunction estimates are desired, if JOB(2)

= .true.. Otherwise, if JOB(5) = .false. and NUMX is greater than zero, the user‘s

initial mesh is entered. The entries must be ordered so that

a = XEF(1) < XEF(2) < < XEF(NUMX) = b. If either endpoint is infinite, the

corresponding XEF(1) or XEF(NUMX) is ignored. However, it is required that

XEF(2) be negative when ENDFIN(1) = .false., and that XEF(NUMX-1) be positive

when

ENDFIN(2) = .false.. On output, XEF(*) is changed only if JOB(2) and JOB(5) are

true. If JOB(2) = .false., this vector is not referenced. If JOB(2) = .true. and NUMX

is greater than zero on input, XEF(*) should be dimensioned at least NUMX + 16.

If JOB(2) is true and NUMX is zero on input, XEF(*) should be dimensioned at

least 31.

NRHO — The number of output values desired for the array RHO(*). NRHO is not used

if JOB(3) = .false.. (Input)

T — Real vector of size NRHO containing values where the spectral function RHO(*) is

desired. The entries must be sorted in increasing order. The existence and

location of a continuous spectrum can be determined by calling SLEIG with the

first four entries of JOB set to false and IPRINT set to 1. T(*) is not used if

JOB(3) = .false.. (Input)

TYPE — 4 by 2 logical matrix. Column 1 contains information about endpoint a and

column 2 refers to endpoint b.

TYPE(1,*) = .true. if and only if the endpoint is regular

TYPE(2,*) = .true. if and only if the endpoint is limit circle

TYPE(3,*) = .true. if and only if the endpoint is nonoscillatory for all eigenvalues

TYPE(4,*) = .true. if and only if the endpoint is oscillatory for all eigenvalues

Note: all of these values must be correctly input if JOB(4) = .true..

Otherwise, TYPE(*,*) is output. (Input/Output)

EF — Array of eigenfunction values. EF((k 1)*NUMX + i) is the estimate of u(XEF(i))

corresponding to the eigenvalue in EV(k). If JOB(2) = .false. then this vector is

not referenced. If JOB(2) = .true. and NUMX is greater than zero on entry, then

EF(*) should be dimensioned at least NUMX * NUMEIG. If JOB(2) = .true. and

NUMX is zero on input, then EF(*) should be dimensioned 31 * NUMEIG.

(Output)

PDEF — Array of eigenfunction derivative values. PDEF((k-1)*NUMX + i) is the

estimate of (puʹ) (XEF(i)) corresponding to the eigenvalue in EV(k). If JOB(2) =

.false. this vector is not referenced. If JOB(2) = .true., it must be dimensioned the

same as EF(*). (Output)

RHO — Array of size NRHO containing values for the spectral density function (t),

RHO(I) = (T(I)). This vector is not referenced if JOB(3) is false. (Output)

IFLAG — Array of size max(1, numeig) containing information about the output.

IFLAG(K) refers to the K-th eigenvalue, when JOB(1) or JOB(2) = .true..

1208 Chapter 5: Differential Equations IMSL MATH LIBRARY

Otherwise, only IFLAG(1) is used. Negative values are associated with fatal

errors, and the calculations are ceased. Positive values indicate a warning.

(Output)

IFLAG(K)

IFLAG(K) Description

-1 too many levels needed for the eigenvalue calculation;

problem seems too difficult at this tolerance. Are the

coefficient functions nonsmooth?

-2 too many levels needed for the eigenfunction

calculation; problem seems too difficult at this

tolerance. Are the eigenfunctions ill-conditioned?

-3 too many levels needed for the spectral density

calculation; problem seems too difficult at this

tolerance.

-4 the user has requested the spectral density function for

a problem which has no continuous spectrum.

-5 the user has requested the spectral density function for

a problem with both endpoints generating essential

spectrum, i.e. both endpoints either OSC or O-NO.

-6 the user has requested the spectral density function for

a problem in spectral category 2 for which a proper

normalization of the solution at the NONOSC endpoint

is not known; for example, problems with an irregular

singular point or infinite endpoint at one end and

continuous spectrum generated at the other.

-7 problems were encountered in obtaining a bracket.

-8 too small a step was used in the integration. The

TOLS(*) values may be too small for this problem.

-9 too small a step was used in the spectral density

function calculation for which the continuous spectrum

is generated by a finite endpoint.

-10 an argument to the circular trig functions is too large.

Try running the problem again with a finer initial mesh

or, for singular problems, use interval truncation.

-15 p(x) and r(x) are not positive in the interval (a, b).

-20 eigenvalues and/or eigenfunctions were requested for a

problem with an OSC singular endpoint. Interval

truncation must be used on such problems.

1 Failure in the bracketing procedure probably due to a

cluster of eigenvalues which the code cannot separate.

Calculations have continued but any eigenfunction

results are suspect. Try running the problem again with

tighter input tolerances to separate the cluster.

IMSL MATH LIBRARY Chapter 5: Differential Equations 1209

2 there is uncertainty in the classification for this

problem. Because of the limitations of floating point

arithmetic, and the nature of the finite sampling, the

routine cannot be certain about the classification

information at the requested tolerance.

3 there may be some eigenvalues embedded in the

essential spectrum. Use of IPRINT greater than zero

will provide additional output giving the location of

the approximating eigenvalues for the step function

problem. These could be extrapolated to estimate the

actual eigenvalue embedded in the essential spectrum.

4 a change of variables was made to avoid potentially

slow convergence. However, the global error estimates

may not be as reliable. Some experimentation using

different tolerances is recommended.

6 there were problems with eigenfunction convergence

in a spectral density calculation. The output (t) may

not be accurate.

WORK — Array of size MAX(1000, NUMEIG + 22) used for workspace.

IWORK — Integer array of size NUMEIG + 3 used for workspace.

Example 1

This example computes the first ten eigenvalues of the problem from Titchmarsh (1962) given by

p(x) = r(x) = 1

q(x) = x

[a, b] = [0,]

u(a) = u(b) = 0

The eigenvalues are known to be the zeros of

 3/ 2 3/ 2
1/3 1/3

2 2

3 3
f J J

For each eigenvalue k, the program prints k, k and f(k).

 USE SLEIG_INT

 USE CBJS_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I, INDEX(10), NUMEIG, NOUT

 REAL CONS(8), EVAL(10), LAMBDA, TEVLAB,&

 TEVLRL, XNU

 COMPLEX CBS1(1), CBS2(1), Z

 LOGICAL ENDFIN(2)

! SPECIFICATIONS FOR INTRINSICS

1210 Chapter 5: Differential Equations IMSL MATH LIBRARY

 INTRINSIC CMPLX, SQRT

 REAL SQRT

 COMPLEX CMPLX

! SPECIFICATIONS FOR SUBROUTINES

! SPECIFICATIONS FOR FUNCTIONS

 EXTERNAL COEFF

!

 CALL UMACH (2, NOUT)

! Define boundary conditions

 CONS(1) = 1.0

 CONS(2) = 0.0

 CONS(3) = 0.0

 CONS(4) = 0.0

 CONS(5) = 1.0

 CONS(6) = 0.0

 CONS(7) = 0.0

 CONS(8) = 0.0

!

 ENDFIN(1) = .TRUE.

 ENDFIN(2) = .FALSE.

! Compute the first 10 eigenvalues

 NUMEIG = 10

 DO 10 I=1, NUMEIG

 INDEX(I) = I - 1

 10 CONTINUE

! Set absolute and relative tolerance

!

 CALL SLEIG (CONS, COEFF, ENDFIN, INDEX, EVAL)

!

 XNU = -1.0/3.0

 WRITE(NOUT,99998)

 DO 20 I=1, NUMEIG

 LAMBDA = EVAL(I)

 Z = CMPLX(2.0/3.0*LAMBDA*SQRT(LAMBDA),0.0)

 CALL CBJS (XNU, Z, 1, CBS1)

 CALL CBJS (-XNU, Z, 1, CBS2)

 WRITE (NOUT,99999) I-1, LAMBDA, REAL(CBS1(1) + CBS2(1))

 20 CONTINUE

!

99998 FORMAT(/, 2X, 'index', 5X, 'lambda', 5X, 'f(lambda)',/)

99999 FORMAT(I5, F13.4, E15.4)

 END

!

 SUBROUTINE COEFF (X, PX, QX, RX)

! SPECIFICATIONS FOR ARGUMENTS

 REAL X, PX, QX, RX

!

 PX = 1.0

 QX = X

 RX = 1.0

 RETURN

 END

Output

IMSL MATH LIBRARY Chapter 5: Differential Equations 1211

 index lambda f(lambda)

 0 2.3381 -0.8285E-05

 1 4.0879 -0.1651E-04

 2 5.5205 0.6843E-04

 3 6.7867 -0.4523E-05

 4 7.9440 0.8952E-04

 5 9.0227 0.1123E-04

 6 10.0401 0.1031E-03

 7 11.0084 -0.7913E-04

 8 11.9361 -0.5095E-04

 9 12.8293 0.4645E-03

Additional Examples

Example 2

In this problem from Scott, Shampine and Wing (1969),

p(x) = r(x) = 1

q(x) = x
2
 + x

4

[a, b] = [,]

u(a) = u(b) = 0

the first eigenvalue and associated eigenfunction, evaluated at selected points, are computed. As a

rough check of the correctness of the results, the magnitude of the residual

 ()
d du

p x q x u r x u
dx dx

is printed. We compute a spline interpolant to uʹ and use the function CSDER to estimate the

quantity (p(x)uʹ)ʹ.

 USE S2EIG_INT

 USE CSDER_INT

 USE UMACH_INT

 USE CSAKM_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I, IFLAG(1), INDEX(1), IWORK(100), NINTV, NOUT, NRHO, &

 NUMEIG, NUMX

 REAL BRKUP(61), CONS(8), CSCFUP(4,61), EF(61), EVAL(1), &

 LAMBDA, PDEF(61), PX, QX, RESIDUAL, RHO(1), RX, T(1), &

 TEVLAB, TEVLRL, TOLS(4), WORK(3000), X, XEF(61)

 LOGICAL ENDFIN(2), JOB(5), TYPE(4,2)

! SPECIFICATIONS FOR INTRINSICS

 INTRINSIC ABS, REAL

 REAL ABS, REAL

! SPECIFICATIONS FOR SUBROUTINES

 EXTERNAL COEFF

! Define boundary conditions

 CONS(1) = 1.0

1212 Chapter 5: Differential Equations IMSL MATH LIBRARY

 CONS(2) = 0.0

 CONS(3) = 0.0

 CONS(4) = 0.0

 CONS(5) = 1.0

 CONS(6) = 0.0

 CONS(7) = 0.0

 CONS(8) = 0.0

! Compute eigenvalue and eigenfunctions

 JOB(1) = .FALSE.

 JOB(2) = .TRUE.

 JOB(3) = .FALSE.

 JOB(4) = .FALSE.

 JOB(5) = .FALSE.

!

 ENDFIN(1) = .FALSE.

 ENDFIN(2) = .FALSE.

! Compute eigenvalue with index 0

 NUMEIG = 1

 INDEX(1) = 0

!

 TEVLAB = 1.0E-3

 TEVLRL = 1.0E-3

 TOLS(1) = TEVLAB

 TOLS(2) = TEVLRL

 TOLS(3) = TEVLAB

 TOLS(4) = TEVLRL

 NRHO = 0

! Set up mesh, points at which u and

! u' will be computed

 NUMX = 61

 DO 10 I=1, NUMX

 XEF(I) = 0.05*REAL(I-31)

 10 CONTINUE

!

 CALL S2EIG (CONS, COEFF, ENDFIN, NUMEIG, INDEX, TEVLAB, TEVLRL, &

 EVAL, JOB, 0, TOLS, NUMX, XEF, NRHO, T, TYPE, EF, &

 PDEF, RHO, IFLAG, WORK, IWORK)

!

 LAMBDA = EVAL(1)

 20 CONTINUE

! Compute spline interpolant to u'

!

 CALL CSAKM (XEF, PDEF, BRKUP, CSCFUP)

 NINTV = NUMX - 1

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99997) ' lambda = ', LAMBDA

 WRITE (NOUT,99999)

! At a subset of points from the

! input mesh, compute residual =

! abs(-(u')' + q(x)u - lambda*u).

! We know p(x) = 1 and r(x) = 1.

 DO 30 I=1, 41, 2

 X = XEF(I+10)

 CALL COEFF (X, PX, QX, RX)

!

IMSL MATH LIBRARY Chapter 5: Differential Equations 1213

! Use the spline fit to u' to

! estimate u'' with CSDER

!

 RESIDUAL = ABS(-CSDER(1,X,BRKUP,CSCFUP)+QX*EF(I+10)- &

 LAMBDA*EF(I+10))

 WRITE (NOUT,99998) X, EF(I+10), PDEF(I+10), RESIDUAL

 30 CONTINUE

!

99997 FORMAT (/, A14, F10.5, /)

99998 FORMAT (5X, F4.1, 3F15.5)

99999 FORMAT (7X, 'x', 11X, 'u(x)', 10X, 'u''(x)', 9X, 'residual', /)

 END

!

 SUBROUTINE COEFF (X, PX, QX, RX)

! SPECIFICATIONS FOR ARGUMENTS

 REAL X, PX, QX, RX

!

 PX = 1.0

 QX = X*X + X*X*X*X

 RX = 1.0

 RETURN

 END

Output

 lambda = 1.39247

 x u(x) u'(x) residual

 -1.0 0.38632 0.65019 0.00189

 -0.9 0.45218 0.66372 0.00081

 -0.8 0.51837 0.65653 0.00023

 -0.7 0.58278 0.62827 0.00113

 -0.6 0.64334 0.57977 0.00183

 -0.5 0.69812 0.51283 0.00230

 -0.4 0.74537 0.42990 0.00273

 -0.3 0.78366 0.33393 0.00265

 -0.2 0.81183 0.22811 0.00273

 -0.1 0.82906 0.11570 0.00278

 0.0 0.83473 0.00000 0.00136

 0.1 0.82893 -0.11568 0.00273

 0.2 0.81170 -0.22807 0.00273

 0.3 0.78353 -0.33388 0.00267

 0.4 0.74525 -0.42983 0.00265

 0.5 0.69800 -0.51274 0.00230

 0.6 0.64324 -0.57967 0.00182

 0.7 0.58269 -0.62816 0.00113

 0.8 0.51828 -0.65641 0.00023

 0.9 0.45211 -0.66361 0.00081

 1.0 0.38626 -0.65008 0.00189

SLCNT
Calculates the indices of eigenvalues of a Sturm-Liouville problem of the form for

 () for in ,
d du

p x q x u r x u x a b
dx dx

1214 Chapter 5: Differential Equations IMSL MATH LIBRARY

with boundary conditions (at regular points)

1 2 1 2

1 2

 at

0 at

a u a pu a u a pu a

b u b pu b

in a specified subinterval of the real line, [,].

Required Arguments

ALPHA — Value of the left end point of the search interval. (Input)

BETAR — Value of the right end point of the search interval. (Input)

CONS — Array of size eight containing

1 1 2 2 1 2, , , , , , and a a a a b b a b

 in locations CONS(1) CONS(8), respectively. (Input)

COEFFN — User-supplied subroutine to evaluate the coefficient functions. The usage is

CALL COEFFN (X, PX, QX, RX)

X — Independent variable. (Input)

PX — The value of p(x) at X. (Output)

QX — The value of q(x) at X. (Output)

RX — The value of r(x) at X. (Output)

 COEFFN must be declared EXTERNAL in the calling program.

ENDFIN — Logical array of size two. ENDFIN = .true. if and only if the endpoint a is

finite. ENDFIN(2) = .true. if and only if endpoint b is finite. (Input)

IFIRST — The index of the first eigenvalue greater than . (Output)

NTOTAL — Total number of eigenvalues in the interval [,]. (Output)

FORTRAN 90 Interface

Generic: CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST, NTOTAL)

Specific: The specific interface names are S_SLCNT and D_SLCNT.

FORTRAN 77 Interface

Single: CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST, NTOTAL)

IMSL MATH LIBRARY Chapter 5: Differential Equations 1215

Double: The double precision name is DSLCNT.

Description

This subroutine computes the indices of eigenvalues, if any, in a subinterval of the real line for

Sturm-Liouville problems in the form

 () for in ,
d du

p x q x u r x u x a b
dx dx

with boundary conditions (at regular points)

1 2 1 2

1 2

 at

0 at

a u a pu a u a pu a

b u b pu b

It is intended to be used in conjunction with SLEIG. SLCNT is based on the routine INTERV from

the package SLEDGE.

Example

Consider the harmonic oscillator (Titchmarsh) defined by

 p(x) = 1

 q(x) = x
2

 r(x) = 1

 [a, b] = [,]

 u(a) = 0

 u(b) = 0

The eigenvalues of this problem are known to be

 k = 2k + 1, k = 0, 1,

Therefore in the interval [10, 16] we expect SLCNT to note three eigenvalues, with the first of

these having index five.

 USE SLCNT_INT

 USE UMACH_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER IFIRST, NOUT, NTOTAL

 REAL ALPHA, BETAR, CONS(8)

 LOGICAL ENDFIN(2)

! SPECIFICATIONS FOR SUBROUTINES

! SPECIFICATIONS FOR FUNCTIONS

 EXTERNAL COEFFN

!

 CALL UMACH (2, NOUT)

! set u(a) = 0, u(b) = 0

 CONS(1) = 1.0E0

1216 Chapter 5: Differential Equations IMSL MATH LIBRARY

 CONS(2) = 0.0E0

 CONS(3) = 0.0E0

 CONS(4) = 0.0E0

 CONS(5) = 1.0E0

 CONS(6) = 0.0E0

 CONS(7) = 0.0E0

 CONS(8) = 0.0E0

!

 ENDFIN(1) = .FALSE.

 ENDFIN(2) = .FALSE.

!

 ALPHA = 10.0

 BETAR = 16.0

!

 CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST, NTOTAL)

!

 WRITE (NOUT,99998) ALPHA, BETAR, IFIRST

 WRITE (NOUT,99999) NTOTAL

!

99998 FORMAT (/, 'Index of first eigenvalue in [', F5.2, ',', F5.2, &

 '] IS ', I2)

99999 FORMAT ('Total number of eigenvalues in this interval: ', I2)

!

 END

!

 SUBROUTINE COEFFN (X, PX, QX, RX)

! SPECIFICATIONS FOR ARGUMENTS

 REAL X, PX, QX, RX

!

 PX = 1.0E0

 QX = X*X

 RX = 1.0E0

 RETURN

 END

Output

Index of first eigenvalue in [10.00,16.00] is 5

Total number of eigenvalues in this interval: 3

IMSL MATH LIBRARY Chapter 6: Transforms 1217

Chapter 6: Transforms

Routines

6.1. Real Trigonometric FFT
Computes the Discrete Fourier Transform
of a rank-1 complex array, x. ... FAST_DFT 1220
Computes the Discrete Fourier Transform (2DFT)
of a rank-2 complex array, x .. FAST_2DFT 1227
Computes the Discrete Fourier Transform 2DFT)
of a rank-3 complex array, x .. FAST_3DFT 1233
Forward transform ..FFTRF 1236
Backward or inverse transform .. FFTRB 1240
Initialization routine for FFTR* ... FFTRI 1243

6.2. Complex Exponential FFT
Forward transform ...FFTCF 1245

Backward or inverse transform .. FFTCB 1248
Initialization routine for FFTC* ... FFTCI 1251

6.3. Real Sine and Cosine FFTs
Forward and inverse sine transformFSINT 1253
Initialization routine for FSINT .. FSINI 1255
Forward and inverse cosine transform FCOST 1257
Initialization routine for FCOST ... FCOSI 1259

6.4. Real Quarter Sine and Quarter Cosine FFTs
Forward quarter sine transform .. QSINF 1261
Backward or inverse transform ... QSINB 1263
Initialization routine for QSIN*.. QSINI 1266
Forward quarter cosine transform....................................... QCOSF 1268
Backward or inverse transform ... QCOSB 1270
Initialization routine for QCOS* .. QCOSI 1272

6.5. Two- and Three-Dimensional Complex FFTs
Forward transform .. FFT2D 1274
Backward or inverse transform ... FFT2B 1277
Forward transform .. FFT3F 1281
Backward or inverse transform ... FFT3B 1285

6.6. Convolutions and Correlations
Real convolution ... RCONV 1289

1218 Chapter 6: Transforms IMSL MATH LIBRARY

Complex convolution .. CCONV 1294
Real correlation ... RCORL 1299
Complex correlation .. CCORL 1304

6.7. Laplace Transform
Inverse Laplace transform ... INLAP 1309
Inverse Laplace transform for smooth functions SINLP 1311

Usage Notes

Fast Fourier Transforms

A Fast Fourier Transform (FFT) is simply a discrete Fourier transform that can be computed

efficiently. Basically, the straightforward method for computing the Fourier transform takes

approximately N
2
 operations where N is the number of points in the transform, while the FFT

(which computes the same values) takes approximately N log N operations. The algorithms in this

chapter are modeled on the Cooley-Tukey (1965) algorithm; hence, the computational savings

occur, not for all integers N, but for N which are highly composite. That is, N (or in certain cases

N + 1 or N 1) should be a product of small primes.

All of the FFT routines compute a discrete Fourier transform. The routines accept a vector x of

length N and return a vector

x̂

defined by

1

ˆ :
N

m n nm

n

x x

The various transforms are determined by the selection of ω. In the following table, we indicate

the selection of ω for the various transforms. This table should not be mistaken for a definition

since the precise transform definitions (at times) depend on whether N or m is even or odd.

IMSL MATH LIBRARY Chapter 6: Transforms 1219

-2 -1 1 /

2 -1 1 /

Routine

1 1 2
FFTRF cos or sin

1 1 2
FFTRB cos or sin

FFTCF exp

FFTCB exp

FSINT sin
1

1 1
FCOST cos

1

2 1
QSINF 2 sin

2

2 1
QSINB 4 sin

2

2 1 1
QCOSF 2 cos

2

QCOSB 4 co

nm

i n m N

i n m N

m n

N

m n

N

nm

N

n m

N

m n

N

n m

N

m n

N

 2n-1 1
s

2

m

N

For many of the routines listed above, there is a corresponding ―I‖ (for initialization) routine. Use

these routines only when repeatedly transforming sequences of the same length. In this situation,

the ―I‖ routine will compute the initial setup once, and then the user will call the corresponding

―2‖ routine. This can result in substantial computational savings. For more information on the

usage of these routines, the user should consult the documentation under the appropriate routine

name.

In addition to the one-dimensional transformations described above, we also provide complex two

and three-dimensional FFTs and their inverses based on calls to either FFTCF or FFTCB. If you

need a higher dimensional transform, then you should consult the example program for FFTCI,

which suggests a basic strategy one could employ.

Continuous versus Discrete Fourier Transform

There is, of course, a close connection between the discrete Fourier transform and the continuous

Fourier transform. Recall that the continuous Fourier transform is defined (Brigham, 1974) as

 2ˆ i tf F f f t e dt

We begin by making the following approximation:

1220 Chapter 6: Transforms IMSL MATH LIBRARY

/ 2 2

/ 2

2 / 2

0

2

0

ˆ

/ 2

/ 2

T i t

T

T i t T

Ti T i t

f f t e dt

f t T e dt

e f t T e dt

If we approximate the last integral using the rectangle rule with spacing h = T/N, we have

1

2

0

ˆ / 2
N

i T i kh

k

f e h e f kh T

Finally, setting ω = j/T for j = 0, …, N 1 yields

1 1

2 / 2 /

0 0

ˆ / / 2 1
N N

jij ijk N ijk N h
k

k k

f j T e h e f kh T h e f

where the vector f
h
 = (f(T/2), …, f((N 1)h T/2)). Thus, after scaling the components by

(1)
j
h, the discrete Fourier transform as computed in FFTCF (with input f

h
) is related to an

approximation of the continuous Fourier transform by the above formula. This is seen more

clearly by making a change of variables in the last sum. Set

1, 1, and h
k nn k m j f x

then, for m = 1, …, N we have

 2 1 1 /

1

ˆ ˆ1 / 1 1
N

m m i m n N
m n

n

f m T hx h e x

If the function f is expressed as a FORTRAN function routine, then the continuous Fourier

transform

f̂

can be approximated using the IMSL routine QDAWF (see Chapter 4, Integration and

Differentiation).

Inverse Laplace Transform

The last two routines described in this chapter, INLAP and SINLP, compute the inverse Laplace

transforms.

FAST_DFT
Computes the Discrete Fourier Transform (DFT) of a rank-1 complex array, x.

IMSL MATH LIBRARY Chapter 6: Transforms 1221

Required Arguments

No required arguments; pairs of optional arguments are required. These pairs are forward_in

and forward_out or inverse_in and inverse_out.

Optional Arguments

forward_in = x (Input)

Stores the input complex array of rank-1 to be transformed.

forward_out = y (Output)

Stores the output complex array of rank-1 resulting from the transform.

inverse_in = y (Input)

Stores the input complex array of rank-1 to be inverted.

inverse_out = x (Output)

Stores the output complex array of rank-1 resulting from the inverse transform.

ndata = n (Input)

Uses the sub-array of size n for the numbers.

Default value: n = size(x).

ido = ido (Input/Output)

Integer flag that directs user action. Normally, this argument is used only when the

working variables required for the transform and its inverse are saved in the calling

program unit. Computing the working variables and saving them in internal arrays

within fast_dft is the default. This initialization step is expensive.

There is a two-step process to compute the working variables just once. Example 3

illustrates this usage. The general algorithm for this usage is to enter fast_dft

with ido = 0. A return occurs thereafter with ido < 0. The optional rank-1

complex array w(:) with size(w) >= ido must be re-allocated. Then, re-enter

fast_dft. The next return from fast_dft has the output value ido = 1. The

variables required for the transform and its inverse are saved in w(:). Thereafter,

when the routine is entered with ido = 1 and for the same value of n, the contents

of w(:) will be used for the working variables. The expensive initialization step is

avoided. The optional arguments ―ido=‖ and ―work_array=‖ must be used

together.

work_array = w(:) (Output/Input)

Complex array of rank-1 used to store working variables and values between calls to

fast_dft. The value for size(w) must be at least as large as the value ido for the

value of ido < 0.

iopt = iopt(:) (Input/Output)

Derived type array with the same precision as the input array; used for passing optional

data to fast_dft. The options are as follows:

1222 Chapter 6: Transforms IMSL MATH LIBRARY

Packaged Options for FAST_DFT

Option Prefix = ? Option Name Option Value

c_, z_ fast_dft_scan_for_NaN 1

c_, z_ fast_dft_near_power_of_2 2

c_, z_ fast_dft_scale_forward 3

c_, z_ Fast_dft_scale_inverse 4

iopt(IO) = ?_options(?_fast_dft_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that
isNaN(x(i)) ==.true.

See the isNaN() function, Chapter 10.

Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_fast_dft_near_power_of_2, ?_dummy)

Nearest power of 2 ≥ n is returned as an output in iopt(IO + 1)%idummy.

iopt(IO) = ?_options(?_fast_dft_scale_forward, real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)

Complex number defined by the factor

cmplx(real_part_of_scale, imaginary_part_of_scale) is

multiplied by the forward transformed array.

Default value is 1.

iopt(IO) = ?_options(?_fast_dft_scale_inverse, real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)

Complex number defined by the factor

cmplx(real_part_of_scale, imaginary_part_of_scale) is

multiplied by the inverse transformed array.

Default value is 1.

FORTRAN 90 Interface

Generic: None

Specific: The specific interface names are S_FAST_DFT, D_FAST_DFT, C_FAST_DFT, and

Z_FAST_DFT.

Description

The fast_dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776). The

maximum computing efficiency occurs when the size of the array can be factored in the form

31 2 42 3 4 5
ii i i

n

using non-negative integer values {i1, i2, i3, i4}. There is no further restriction on n ≥ 1.

IMSL MATH LIBRARY Chapter 6: Transforms 1223

Fatal and Terminal Messages

See the messages.gls file for error messages for FAST_DFT. These error messages are numbered

651661; 701711.

Example 1: Transforming an Array of Random Complex Numbers

An array of random complex numbers is obtained. The transform of the numbers is inverted and

the final results are compared with the input array.

 use fast_dft_int

 use rand_gen_int

 implicit none

! This is Example 1 for FAST_DFT.

 integer, parameter :: n=1024

 real(kind(1e0)), parameter :: one=1e0

 real(kind(1e0)) err, y(2*n)

 complex(kind(1e0)), dimension(n) :: a, b, c

! Generate a random complex sequence.

 call rand_gen(y)

 a = cmplx(y(1:n),y(n+1:2*n),kind(one))

 c = a

! Transform and then invert the sequence back.

 call c_fast_dft(forward_in=a, &

 forward_out=b)

 call c_fast_dft(inverse_in=b, &

 inverse_out=a)

! Check that inverse(transform(sequence)) = sequence.

 err = maxval(abs(c-a))/maxval(abs(c))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for FAST_DFT is correct.'

 end if

 end

Output

Example 1 for FAST_DFT is correct.

Additional Examples

Example 2: Cyclical Data with a Linear Trend

This set of data is sampled from a function x(t) = at + b + y(t), where y(t) is a harmonic series. The

independent variable is normalized as 1≤ t ≤ 1. Thus, the data is said to have cyclical components

plus a linear trend. As a first step, the linear terms are effectively removed from the data using the

least-squares system solver LIN_SOL_LSQ, Chapter 1. Then, the residuals are transformed and

the resulting frequencies are analyzed.

1224 Chapter 6: Transforms IMSL MATH LIBRARY

 use fast_dft_int

 use lin_sol_lsq_int

 use rand_gen_int

 use sort_real_int

 implicit none

! This is Example 2 for FAST_DFT.

 integer i

 integer, parameter :: n=64, k=4

 integer ip(n)

 real(kind(1e0)), parameter :: one=1e0, two=2e0, zero=0e0

 real(kind(1e0)) delta_t, pi

 real(kind(1e0)) y(k), z(2), indx(k), t(n), temp(n)

 complex(kind(1e0)) a_trend(n,2), a, b_trend(n,1), b, c(k), f(n),&

 r(n), x(n), x_trend(2,1)

! Generate random data for linear trend and harmonic series.

 call rand_gen(z)

 a = z(1); b = z(2)

 call rand_gen(y)

! This emphasizes harmonics 2 through k+1.

 c = y + one

! Determine sampling interval.

 delta_t = two/n

 t=(/(-one+i*delta_t, i=0,n-1)/)

! Compute pi.

 pi = atan(one)*4E0

 indx=(/(i*pi,i=1,k)/)

! Make up data set as a linear trend plus harmonics.

 x = a + b*t + &

 matmul(exp(cmplx(zero,spread(t,2,k)*spread(indx,1,n),kind(one))),c)

! Define least-squares matrix data for a linear trend.

 a_trend(1:,1) = one

 a_trend(1:,2) = t

 b_trend(1:,1) = x

! Solve for a linear trend.

 call lin_sol_lsq(a_trend, b_trend, x_trend)

! Compute harmonic residuals.

 r = x - reshape(matmul(a_trend,x_trend),(/n/))

! Transform harmonic residuals.

 call c_fast_dft(forward_in=r, forward_out=f)

 ip=(/(i,i=1,n)/)

! The dominant frequencies should be 2 through k+1.

! Sort the magnitude of the transform first.

 call s_sort_real(-(abs(f)), temp, iperm=ip)

IMSL MATH LIBRARY Chapter 6: Transforms 1225

! The dominant frequencies are output in ip(1:k).

! Sort these values to compare with 2 through k+1.

 call s_sort_real(real(ip(1:k)), temp)

 ip(1:k)=(/(i,i=2,k+1)/)

! Check the results.

 if (count(int(temp(1:k)) /= ip(1:k)) == 0) then

 write (*,*) 'Example 2 for FAST_DFT is correct.'

 end if

 end

Output

Example 2 for FAST_DFT is correct.

 Example 3: Several Transforms with Initialization

In this example, the optional arguments ido and work_array are used to save working

variables in the calling program unit. This results in maximum efficiency of the transform and its

inverse since the working variables do not have to be precomputed following each entry to routine

fast_dft.

 use fast_dft_int

 use rand_gen_int

 implicit none

! This is Example 3 for FAST_DFT.

! The value of the array size for work(:) is computed in the

! routine fast_dft as a first step.

 integer, parameter :: n=64

 integer ido_value

 real(kind(1e0)) :: one=1e0

 real(kind(1e0)) err, y(2*n)

 complex(kind(1e0)), dimension(n) :: a, b, save_a

 complex(kind(1e0)), allocatable :: work(:)

! Generate a random complex array.

 call rand_gen(y)

 a = cmplx(y(1:n),y(n+1:2*n),kind(one))

 save_a = a

! Transform and then invert the sequence using the pre-computed

! working values.

 ido_value = 0

 do

 if(allocated(work)) deallocate(work)

! Allocate the space required for work(:).

 if (ido_value <= 0) allocate(work(-ido_value))

 call c_fast_dft(forward_in=a, forward_out=b, &

1226 Chapter 6: Transforms IMSL MATH LIBRARY

 ido=ido_value, work_array=work)

 if (ido_value == 1) exit

 end do

! Re-enter routine with working values available in work(:).

 call c_fast_dft(inverse_in=b, inverse_out=a, &

 ido=ido_value, work_array=work)

! Deallocate the space used for work(:).

 if (allocated(work)) deallocate(work)

! Check the results.

 err = maxval(abs(save_a-a))/maxval(abs(save_a))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 3 for FAST_DFT is correct.'

 end if

 end

Output

Example 3 for FAST_DFT is correct.

Example 4: Convolutions using Fourier Transforms

In this example we compute sums

1

0

, 0, , 1
n

k j k j

j

c a b k n

The definition implies a matrix-vector product. A direct approach requires about
2n operations

consisisting of an add and multiply. An efficient method consisting of computing the products of

the transforms of the

 ja and jb

then inverting this product, is preferable to the matrix-vector approach for large problems. The

example is also illustrated in operator_ex37, Chapter 10 using the generic function interface

FFT and IFFT.

 use fast_dft_int

 use rand_gen_int

 implicit none

! This is Example 4 for FAST_DFT.

 integer j

 integer, parameter :: n=40

 real(kind(1e0)) :: one=1e0

 real(kind(1e0)) err

IMSL MATH LIBRARY Chapter 6: Transforms 1227

 real(kind(1e0)), dimension(n) :: x, y, yy(n,n)

 complex(kind(1e0)), dimension(n) :: a, b, c, d, e, f

! Generate two random complex sequence 'a' and 'b'.

 call rand_gen(x)

 call rand_gen(y)

 a=x; b=y

! Compute the convolution 'c' of 'a' and 'b'.

! Use matrix times vector for test results.

 yy(1:,1)=y

 do j=2,n

 yy(2:,j)=yy(1:n-1,j-1)

 yy(1,j)=yy(n,j-1)

 end do

 c=matmul(yy,x)

! Transform the 'a' and 'b' sequences into 'd' and 'e'.

 call c_fast_dft(forward_in=a, &

 forward_out=d)

 call c_fast_dft(forward_in=b, &

 forward_out=e)

! Invert the product d*e.

 call c_fast_dft(inverse_in=d*e, &

 inverse_out=f)

! Check the Convolution Theorem:

! inverse(transform(a)*transform(b)) = convolution(a,b).

 err = maxval(abs(c-f))/maxval(abs(c))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 4 for FAST_DFT is correct.'

 end if

 end

Output

Example 4 for FAST_DFT is correct.

FAST_2DFT
Computes the Discrete Fourier Transform (2DFT) of a rank-2 complex array, x.

Required Arguments

No required arguments; pairs of optional arguments are required. These pairs are forward_in

and forward_out or inverse_in and inverse_out.

1228 Chapter 6: Transforms IMSL MATH LIBRARY

Optional Arguments

forward_in = x (Input)

Stores the input complex array of rank-2 to be transformed.

forward_out = y (Output)

Stores the output complex array of rank-2 resulting from the transform.

inverse_in = y (Input)

Stores the input complex array of rank-2 to be inverted.

inverse_out = x (Output)

Stores the output complex array of rank-2 resulting from the inverse transform.

mdata = m (Input)

Uses the sub-array in first dimension of size m for the numbers.

Default value: m = size(x,1).

ndata = n (Input)

Uses the sub-array in the second dimension of size n for the numbers.

Default value: n = size(x,2).

ido = ido (Input/Output)

Integer flag that directs user action. Normally, this argument is used only when the

working variables required for the transform and its inverse are saved in the calling

program unit. Computing the working variables and saving them in internal arrays

within fast_2dft is the default. This initialization step is expensive.

There is a two-step process to compute the working variables just once. Example 3

illustrates this usage. The general algorithm for this usage is to enter fast_2dft with

ido = 0. A return occurs thereafter with ido < 0. The optional rank-1 complex array w(:)

with size(w) >= ido must be re-allocated. Then, re-enter fast_2dft. The next return

from fast_2dft has the output value ido = 1. The variables required for the transform

and its inverse are saved in w(:). Thereafter, when the routine is entered with ido = 1

and for the same values of m and n, the contents of w(:) will be used for the working

variables. The expensive initialization step is avoided. The optional arguments ―ido=‖

and ―work_array=‖ must be used together.

work_array = w(:) (Output/Input)

Complex array of rank-1 used to store working variables and values between calls to

fast_2dft. The value for size(w) must be at least as large as the value ido for the

value of ido < 0.

iopt = iopt(:) (Input/Output)

Derived type array with the same precision as the input array; used for passing optional

data to fast_2dft. The options are as follows:

Packaged Options for FAST_2DFT

IMSL MATH LIBRARY Chapter 6: Transforms 1229

Packaged Options for FAST_2DFT

Option Prefix = ? Option Name Option Value

c_, z_ fast_2dft_scan_for_NaN 1

c_, z_ fast_2dft_near_power_of_2 2

c_, z_ fast_2dft_scale_forward 3

c_, z_ fast_2dft_scale_inverse 4

iopt(IO) = ?_options(?_fast_2dft_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that
isNaN(x(i,j)) ==.true.

See the isNaN() function, Chapter 10.

Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_fast_2dft_near_power_of_2, ?_dummy)

Nearest powers of 2 ≥ m and ≥ n are returned as an outputs in iopt(IO +

1)%idummy and iopt(IO + 2)%idummy.

iopt(IO) = ?_options(?_fast_2dft_scale_forward, real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)

Complex number defined by the factor

cmplx(real_part_of_scale, imaginary_part_of_scale) is

multiplied by the forward transformed array.

Default value is 1.

iopt(IO) = ?_options(?_fast_2dft_scale_inverse, real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)

Complex number defined by the factor

cmplx(real_part_of_scale, imaginary_part_of_scale) is

multiplied by the inverse transformed array.

Default value is 1.

FORTRAN 90 Interface

Generic: None

Specific: The specific interface names are S_FAST_2DFT, D_FAST_2DFT, C_FAST_2DFT,

and Z_FAST_2DFT.

Description

The fast_2dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776).

Fatal and Terminal Messages

See the messages.gls file for error messages for FAST_2DFT. These error messages are numbered

670680; 720730.

1230 Chapter 6: Transforms IMSL MATH LIBRARY

Example 1: Transforming an Array of Random Complex Numbers

An array of random complex numbers is obtained. The transform of the numbers is inverted and

the final results are compared with the input array.

 use fast_2dft_int

 use rand_int

 implicit none

! This is Example 1 for FAST_2DFT.

 integer, parameter :: n=24

 integer, parameter :: m=40

 real(kind(1e0)) :: err, one=1e0

 complex(kind(1e0)), dimension(n,m) :: a, b, c

! Generate a random complex sequence.

 a=rand(a); c=a

! Transform and then invert the transform.

 call c_fast_2dft(forward_in=a, &

 forward_out=b)

 call c_fast_2dft(inverse_in=b, &

 inverse_out=a)

! Check that inverse(transform(sequence)) = sequence.

 err = maxval(abs(c-a))/maxval(abs(c))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for FAST_2DFT is correct.'

 end if

 end

Output

Example 1 for FAST_2DFT is correct.

Additional Examples

.Example 2: Cyclical 2D Data with a Linear Trend

This set of data is sampled from a function x(s, t) = a + bs + ct + y(s, t) , where y(s, t) is an

harmonic series. The independent variables are normalized as 1 ≤ s ≤ 1 and 1 ≤ t ≤ 1. Thus, the

data is said to have cyclical components plus a linear trend. As a first step, the linear terms are

effectively removed from the data using the least-squares system solver . Then, the residuals are

transformed and the resulting frequencies are analyzed.

 use fast_2dft_int

 use lin_sol_lsq_int

 use sort_real_int

 use rand_int

 implicit none

IMSL MATH LIBRARY Chapter 6: Transforms 1231

! This is Example 2 for FAST_2DFT.

 integer i

 integer, parameter :: n=8, k=15

 integer ip(n*n), order(k)

 real(kind(1e0)), parameter :: one=1e0, two=2e0, zero=0e0

 real(kind(1e0)) delta_t

 real(kind(1e0)) rn(3), s(n), t(n), temp(n*n), new_order(k)

 complex(kind(1e0)) a, b, c, a_trend(n*n,3), b_trend(n*n,1), &

 f(n,n), r(n,n), x(n,n), x_trend(3,1)

 complex(kind(1e0)), dimension(n,n) :: g=zero, h=zero

! Generate random data for planar trend.

 rn = rand(rn)

 a = rn(1)

 b = rn(2)

 c = rn(3)

! Generate the frequency components of the harmonic series.

! Non-zero random amplitudes given on two edges of the square domain.

 g(1:,1)=rand(g(1:,1))

 g(1,1:)=rand(g(1,1:))

! Invert 'g' into the harmonic series 'h' in time domain.

 call c_fast_2dft(inverse_in=g, inverse_out=h)

! Compute sampling interval.

 delta_t = two/n

 s = (/(-one + (i-1)*delta_t, i=1,n)/)

 t = (/(-one + (i-1)*delta_t, i=1,n)/)

! Make up data set as a linear trend plus harmonics.

 x = a + b*spread(s,dim=2,ncopies=n) + &

 c*spread(t,dim=1,ncopies=n) + h

! Define least-squares matrix data for a planar trend.

 a_trend(1:,1) = one

 a_trend(1:,2) = reshape(spread(s,dim=2,ncopies=n),(/n*n/))

 a_trend(1:,3) = reshape(spread(t,dim=1,ncopies=n),(/n*n/))

 b_trend(1:,1) = reshape(x,(/n*n/))

! Solve for a linear trend.

 call lin_sol_lsq(a_trend, b_trend, x_trend)

! Compute harmonic residuals.

 r = x - reshape(matmul(a_trend,x_trend),(/n,n/))

! Transform harmonic residuals.

 call c_fast_2dft(forward_in=r, forward_out=f)

 ip = (/(i,i=1,n**2)/)

! Sort the magnitude of the transform.

 call s_sort_real(-(abs(reshape(f,(/n*n/)))), &

 temp, iperm=ip)

1232 Chapter 6: Transforms IMSL MATH LIBRARY

! The dominant frequencies are output in ip(1:k).

! Sort these values to compare with the original frequency order.

 call s_sort_real(real(ip(1:k)), new_order)

 order(1:n) = (/(i,i=1,n)/)

 order(n+1:k) = (/((i-n)*n+1,i=n+1,k)/)

! Check the results.

 if (count(order /= int(new_order)) == 0) then

 write (*,*) 'Example 2 for FAST_2DFT is correct.'

 end if

 end

Output

Example 2 for FAST_2DFT is correct.

Example 3: Several 2D Transforms with Initialization

In this example, the optional arguments ido and work_array are used to save working

variables in the calling program unit. This results in maximum efficiency of the transform and its

inverse since the working variables do not have to be precomputed following each entry to routine

fast_2dft.

 use fast_2dft_int

 implicit none

! This is Example 3 for FAST_2DFT.

 integer i, j

 integer, parameter :: n=256

 real(kind(1e0)), parameter :: one=1e0, zero=0e0

 real(kind(1e0)) r(n,n), err

 complex(kind(1e0)) a(n,n), b(n,n), c(n,n)

! The value of the array size for work(:) is computed in the

! routine fast_dft as a first step.

 integer ido_value

 complex(kind(1e0)), allocatable :: work(:)

! Fill in value one for points inside the circle with r=64.

 a = zero

 r = reshape((/(((i-n/2)**2 + (j-n/2)**2, i=1,n), &

 j=1,n)/),(/n,n/))

 where (r <= (n/4)**2) a = one

 c = a

! Transform and then invert the sequence using the pre-computed

! working values.

IMSL MATH LIBRARY Chapter 6: Transforms 1233

 ido_value = 0

 do

 if(allocated(work)) deallocate(work)

! Allocate the space required for work(:).

 if (ido_value <= 0) allocate(work(-ido_value))

! Transform the image and then invert it back.

 call c_fast_2dft(forward_in=a, &

 forward_out=b, IDO=ido_value, work_array=work)

 if (ido_value == 1) exit

 end do

 call c_fast_2dft(inverse_in=b, &

 inverse_out=a, IDO=ido_value, work_array=work)

! Deallocate the space used for work(:).

 if (allocated(work)) deallocate(work)

! Check that inverse(transform(image)) = image.

 err = maxval(abs(c-a))/maxval(abs(c))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 3 for FAST_2DFT is correct.'

 end if

 end

Output

Example 3 for FAST_2DFT is correct.

FAST_3DFT
Computes the Discrete Fourier Transform (2DFT) of a rank-3 complex array.

Required Arguments

No required arguments; pairs of optional arguments are required. These pairs are forward_in

and forward_out or inverse_in and inverse_out.

Optional Arguments

forward_in = x (Input)

Stores the input complex array of rank-3 to be transformed.

forward_out = y (Output)

Stores the output complex array of rank-3 resulting from the transform.

inverse_in = y (Input)

Stores the input complex array of rank-3 to be inverted.

inverse_out = x (Output)

Stores the output complex array of rank-3 resulting from the inverse transform.

1234 Chapter 6: Transforms IMSL MATH LIBRARY

mdata = m (Input)

Uses the sub-array in first dimension of size m for the numbers.

Default value: m = size(x,1).

ndata = n (Input)

Uses the sub-array in the second dimension of size n for the numbers.

Default value: n = size(x,2).

kdata = k (Input)

Uses the sub-array in the third dimension of size k for the numbers.

Default value: k = size(x,3).

ido = ido (Input/Output)

Integer flag that directs user action. Normally, this argument is used only when the

working variables required for the transform and its inverse are saved in the calling

program unit. Computing the working variables and saving them in internal arrays

within fast_3dft is the default. This initialization step is expensive.

There is a two-step process to compute the working variables just once. The general

algorithm for this usage is to enter fast_3dft with

ido = 0. A return occurs thereafter with ido < 0. The optional rank-1 complex array w(:)

with size(w) >= ido must be re-allocated. Then, re-enter fast_3dft. The next return

from fast_3dft has the output value ido = 1. The variables required for the transform

and its inverse are saved in w(:). Thereafter, when the routine is entered with ido = 1

and for the same values of m and n, the contents of w(:) will be used for the working

variables. The expensive initialization step is avoided. The optional arguments ―ido=‖

and ―work_array=‖ must be used together.

work_array = w(:) (Output/Input)

Complex array of rank-1 used to store working variables and values between calls to

fast_3dft. The value for size(w) must be at least as large as the value ido for the

value of ido < 0.

iopt = iopt(:) (Input/Output)

Derived type array with the same precision as the input array; used for passing optional

data to fast_3dft. The options are as follows:

Packaged Options for FAST_3DFT

Option Prefix = ? Option Name Option Value

C_, z_ fast_3dft_scan_for_NaN 1

C_, z_ fast_3dft_near_power_of_2 2

C_, z_ fast_3dft_scale_forward 3

C_, z_ fast_3dft_scale_inverse 4

iopt(IO) = ?_options(?_fast_3dft_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

IMSL MATH LIBRARY Chapter 6: Transforms 1235

isNaN(x(i,j,k)) ==.true.

See the isNaN() function, Chapter 10.

Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_fast_3dft_near_power_of_2, ?_dummy)

Nearest powers of 2 ≥ m, ≥ n, and ≥ k are returned as an outputs in

iopt(IO+1)%idummy , iopt(IO+2)%idummy and iopt(IO+3)%idummy

iopt(IO) = ?_options(?_fast_3dft_scale_forward, real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)

Complex number defined by the factor

cmplx(real_part_of_scale, imaginary_part_of_scale) is

multiplied by the forward transformed array.

Default value is 1.

iopt(IO) = ?_options(?_fast_3dft_scale_inverse, real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)

Complex number defined by the factor

cmplx(real_part_of_scale, imaginary_part_of_scale) is

multiplied by the inverse transformed array.

Default value is 1.

FORTRAN 90 Interface

Generic: None

Specific: The specific interface names are S_FAST_3DFT, D_FAST_3DFT, C_FAST_3DFT,

and Z_FAST_3DFT.

Description

The fast_3dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776).

Fatal and Terminal Messages

See the messages.gls file for error messages for FAST_3DFT. These error messages are numbered

685695; 740750.

Example: Transforming an Array of Random Complex Numbers

An array of random complex numbers is obtained. The transform of the numbers is inverted and

the final results are compared with the input array.

 use fast_3dft_int

 implicit none

! This is Example 1 for FAST_3DFT.

 integer i, j, k

1236 Chapter 6: Transforms IMSL MATH LIBRARY

 integer, parameter :: n=64

 real(kind(1e0)), parameter :: one=1e0, zero=0e0

 real(kind(1e0)) r(n,n,n), err

 complex(kind(1e0)) a(n,n,n), b(n,n,n), c(n,n,n)

! Fill in value one for points inside the sphere

! with radius=16.

 a = zero

 do i=1,n

 do j=1,n

 do k=1,n

 r(i,j,k) = (i-n/2)**2+(j-n/2)**2+(k-n/2)**2

 end do

 end do

 end do

 where (r <= (n/4)**2) a = one

 c = a

! Transform the image and then invert it back.

 call c_fast_3dft(forward_in=a, &

 forward_out=b)

 call c_fast_3dft(inverse_in=b, &

 inverse_out=a)

! Check that inverse(transform(image)) = image.

 err = maxval(abs(c-a))/maxval(abs(c))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for FAST_3DFT is correct.'

 end if

 end

Output

Example 1 for FAST_3DFT is correct.

FFTRF

Computes the Fourier coefficients of a real periodic sequence.

Required Arguments

N — Length of the sequence to be transformed. (Input)

SEQ — Array of length N containing the periodic sequence. (Input)

COEF — Array of length N containing the Fourier coefficients. (Output)

IMSL MATH LIBRARY Chapter 6: Transforms 1237

FORTRAN 90 Interface

Generic: CALL FFTRF (N, SEQ, COEF)

Specific: The specific interface names are S_FFTRF and D_FFTRF.

FORTRAN 77 Interface

Single: CALL FFTRF (N, SEQ, COEF)

Double: The double precision name is DFFTRF.

Description

The routine FFTRF computes the discrete Fourier transform of a real vector of size N. It uses the

Intel
®

 Math Kernel Library or IBM Engineering and Scientific Subroutine Library for the

computation, if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm

that is most efficient when N is a product of small prime factors. If N satisfies this condition, then

the computational effort is proportional to N log N.

Specifically, given an N-vector s = SEQ, FFTRF returns in c = COEF, if N is even:

2 2

1

2 1

1

1

1

1 1 2
cos 2, , / 2 1

1 1 2
sin 2, , / 2

N

m n

n

N

m n

n

N

n

n

m n
c s m N

N

m n
c s m N

N

c s

If N is odd, cm is defined as above for m from 2 to (N + 1)/2.

We now describe a fairly common usage of this routine. Let f be a real valued function of time.

Suppose we sample f at N equally spaced time intervals of length Δ seconds starting at time t0.

That is, we have

SEQ i:= f (t0 + (i 1)Δ) i = 1, 2, …, N

The routine FFTRF treats this sequence as if it were periodic of period N. In particular, it assumes

that f (t0) = f (t0 + NΔ). Hence, the period of the function is assumed to be T = NΔ.

Now, FFTRF accepts as input SEQ and returns as output coefficients c = COEF that satisfy the

following relation when N is odd (N even is similar):

 1 / 2 1 / 2

1 2 2 2 1

2 2

2 1 1 2 1 11
SEQ 2 cos 2 sin

N N

i n n

n n

n i n i
c c c

N N N

1238 Chapter 6: Transforms IMSL MATH LIBRARY

This formula is very revealing. It can be interpreted in the following manner. The coefficients

produced by FFTRF produce an interpolating trigonometric polynomial to the data. That is, if we

define

1 / 2 1 / 2
0 0

1 2 2 2 1

2 2

1 / 2 1 / 2
0 0

1 2 2 2 1

2 2

2 1 2 11
: 2 cos 2 sin

2 1 2 11
2 cos 2 sin

N N

n n

n n

N N

n n

n n

n t t n t t
g t c c c

N N N

n t t n t t
c c c

N T T

then, we have

f(t0+ (i 1)Δ) = g(t0 + (i 1)Δ)

Now, suppose we want to discover the dominant frequencies. One forms the vector P of length

N/2 as follows:

1 1

2 2
2 2 2 1

:

: 2, 3, , 1 / 2k k k

P c

P c c k N

These numbers correspond to the energy in the spectrum of the signal. In particular, Pk

corresponds to the energy level at frequency

1 1 1
1, 2, ,

2

k k N
k

T N

Furthermore, note that there are only (N + 1)/2 ≈ T/(2Δ) resolvable frequencies when N

observations are taken. This is related to the Nyquist phenomenon, which is induced by discrete

sampling of a continuous signal.

Similar relations hold for the case when N is even.

Finally, note that the Fourier transform hsas an (unnormalized) inverse that is implemented in

FFTRB. The routine FFTRF is based on the real FFT in FFTPACK. The package FFTPACK was

developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2TRF/DF2TRF. The

reference is:

CALL F2TRF (N, SEQ, COEF, WFFTR)

The additional argument is

WFFTR — Array of length 2N + 15 initialized by FFTRI. (Input)

The initialization depends on N.

IMSL MATH LIBRARY Chapter 6: Transforms 1239

 If the Intel
®

 Math Kernel Library or IBM Engineering and Scientific

Subroutine Library is used, WFFTR is not referenced.

2. The routine FFTRF is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTRF/FFTRB is used repeatedly with the same value of N, then call FFTRI followed

by repeated calls to F2TRF/F2TRB. This is more efficient than repeated calls to

FFTRF/FFTRB.

If the Intel
®

 Math Kernel Library or IBM Engineering and Scientific Subroutine Library is

used, parameters computed by FFTRI are not used. In this case, there is no need to call

FFTRI.

Example

In this example, a pure cosine wave is used as a data vector, and its Fourier series is recovered.

The Fourier series is a vector with all components zero except at the appropriate frequency where

it has an N.

 USE FFTRF_INT

 USE CONST_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, NOUT

 REAL COEF(N), COS, FLOAT, TWOPI, SEQ(N)

 INTRINSIC COS, FLOAT

 TWOPI = CONST('PI')

!

 TWOPI = 2.0*TWOPI

! Get output unit number

 CALL UMACH (2, NOUT)

! This loop fills out the data vector

! with a pure exponential signal

 DO 10 I=1, N

 SEQ(I) = COS(FLOAT(I-1)*TWOPI/FLOAT(N))

 10 CONTINUE

! Compute the Fourier transform of SEQ

 CALL FFTRF (N, SEQ, COEF)

! Print results

 WRITE (NOUT,99998)

99998 FORMAT (9X, 'INDEX', 5X, 'SEQ', 6X, 'COEF')

 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)

 END

Output

1240 Chapter 6: Transforms IMSL MATH LIBRARY

INDEX SEQ COEF

 1 1.00 0.00

 2 0.62 3.50

 3 -0.22 0.00

 4 -0.90 0.00

 5 -0.90 0.00

 6 -0.22 0.00

 7 0.62 0.00

FFTRB

Computes the real periodic sequence from its Fourier coefficients.

Required Arguments

N — Length of the sequence to be transformed. (Input)

COEF — Array of length N containing the Fourier coefficients. (Input)

SEQ — Array of length N containing the periodic sequence. (Output)

FORTRAN 90 Interface

Generic: CALL FFTRB (N, COEF, SEQ [,…])

Specific: The specific interface names are S_FFTRB and D_FFTRB.

FORTRAN 77 Interface

Single: CALL FFTRB (N, COEF, SEQ)

Double: The double precision name is DFFTRB.

Description

The routine FFTRB is the unnormalized inverse of the routine FFTRF. This routine computes the

discrete inverse Fourier transform of a real vector of size N. It uses the Intel
®

 Math Kernel Library

or IBM Engineering and Scientific Subroutine Library for the computation, if available.

Otherwise, the method used is a variant of the Cooley-Tukey algorithm, which is most efficient

when N is a product of small prime factors. If N satisfies this condition, then the computational

effort is proportional to N log N.

Specifically, given an N-vector c = COEF, FFTRB returns in s = SEQ, if N is even:

IMSL MATH LIBRARY Chapter 6: Transforms 1241

/ 2
1

1 2 2

2

/ 2

2 1

2

1 1 2
1 2 cos

1 1 2
2 sin

N
m

m N n

n

N

n

n

n m
s c c c

N

n m
c

N

If N is odd:

1 / 2

1 2 2

2

1 / 2

2 1

2

1 1 2
2 cos

1 1 2
2 sin

N

m n

n

N

n

n

n m
s c c

N

n m
c

N

The routine FFTRB is based on the inverse real FFT in FFTPACK. The package FFTPACK was

developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2TRB/DF2TRB. The

reference is:

CALL F2TRB (N, COEF, SEQ, WFFTR)

The additional argument is

WFFTR — Array of length 2N + 15 initialized by FFTRI. (Input)

The initialization depends on N.

 If the Intel
®

 Math Kernel Library or IBM Engineering and Scientific

Subroutine Library is used, WFFTR is not referenced.

2. The routine FFTRB is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTRF/FFTRB is used repeatedly with the same value of N, then call FFTRI followed

by repeated calls to F2TRF/F2TRB. This is more efficient than repeated calls to

FFTRF/FFTRB.

If the Intel
®

 Math Kernel Library or IBM Engineering and Scientific Subroutine Library is

used, parameters computed by FFTRI are not used. In this case, there is no need to call

FFTRI.

Example

We compute the forward real FFT followed by the inverse operation. In this example, we first

compute the Fourier transform

1242 Chapter 6: Transforms IMSL MATH LIBRARY

COEFx̂

of the vector x, where xj = (1)
j
 for j = 1 to N. This vector

x̂

is now input into FFTRB with the resulting output s = Nx, that is, sj = (1)
j
N for j = 1 to N.

 USE FFTRB_INT

 USE CONST_INT

 USE FFTRF_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, NOUT

 REAL COEF(N), FLOAT, SEQ(N), TWOPI, X(N)

 INTRINSIC FLOAT

 TWOPI = CONST('PI')

!

 TWOPI = TWOPI

! Get output unit number

 CALL UMACH (2, NOUT)

! Fill the data vector

 DO 10 I=1, N

 X(I) = FLOAT((-1)**I)

 10 CONTINUE

! Compute the forward transform of X

 CALL FFTRF (N, X, COEF)

! Print results

 WRITE (NOUT,99994)

 WRITE (NOUT,99995)

99994 FORMAT (9X, 'Result after forward transform')

99995 FORMAT (9X, 'INDEX', 5X, 'X', 8X, 'COEF')

 WRITE (NOUT,99996) (I, X(I), COEF(I), I=1,N)

99996 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)

! Compute the backward transform of

! COEF

 CALL FFTRB (N, COEF, SEQ)

! Print results

 WRITE (NOUT,99997)

 WRITE (NOUT,99998)

99997 FORMAT (/, 9X, 'Result after backward transform')

99998 FORMAT (9X, 'INDEX', 4X, 'COEF', 6X, 'SEQ')

 WRITE (NOUT,99999) (I, COEF(I), SEQ(I), I=1,N)

99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)

 END

Output

Result after forward transform

INDEX X COEF

 1 -1.00 -1.00

IMSL MATH LIBRARY Chapter 6: Transforms 1243

 2 1.00 -1.00

 3 -1.00 -0.48

 4 1.00 -1.00

 5 -1.00 -1.25

 6 1.00 -1.00

 7 -1.00 -4.38

Result after backward transform

INDEX COEF SEQ

 1 -1.00 -7.00

 2 -1.00 7.00

 3 -0.48 -7.00

 4 -1.00 7.00

 5 -1.25 -7.00

 6 -1.00 7.00

 7 -4.38 -7.00

FFTRI
Computes parameters needed by FFTRF and FFTRB.

Required Arguments

N — Length of the sequence to be transformed. (Input)

WFFTR — Array of length 2N + 15 containing parameters needed by FFTRF and FFTRB.

(Output)

FORTRAN 90 Interface

Generic: CALL FFTRI (N, WFFTR)

Specific: The specific interface names are S_FFTRI and D_FFTRI.

FORTRAN 77 Interface

Single: CALL FFTRI (N, WFFTR)

Double: The double precision name is DFFTRI.

Description

The routine FFTRI initializes the routines FFTRF and FFTRB. An efficient way to make multiple

calls for the same N to routine FFTRF or FFTRB, is to use routine FFTRI for initialization. (In this

case, replace FFTRF or FFTRB with F2TRF or F2TRB, respectively.) The routine FFTRI is based on

the routine RFFTI in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the

National Center for Atmospheric Research.

If the Intel
®

 Math Kernel Library or IBM Engineering and Scientific Subroutine Library is used,

parameters computed by FFTRI are not used. In this case, there is no need to call FFTRI.

1244 Chapter 6: Transforms IMSL MATH LIBRARY

Comments

Different WFFTR arrays are needed for different values of N.

Example

In this example, we compute three distinct real FFTs by calling FFTRI once and then calling

F2TRF three times.

 USE FFTRI_INT

 USE CONST_INT

 USE F2TRF_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, K, NOUT

 REAL COEF(N), COS, FLOAT, TWOPI, WFFTR(29), SEQ(N)

 INTRINSIC COS, FLOAT

!

 TWOPI = CONST('PI')

 TWOPI = 2* TWOPI

! Get output unit number

 CALL UMACH (2, NOUT)

! Set the work vector

 CALL FFTRI (N, WFFTR)

!

 DO 20 K=1, 3

! This loop fills out the data vector

! with a pure exponential signal

 DO 10 I=1, N

 SEQ(I) = COS(FLOAT(K*(I-1))*TWOPI/FLOAT(N))

 10 CONTINUE

! Compute the Fourier transform of SEQ

 CALL F2TRF (N, SEQ, COEF, WFFTR)

! Print results

 WRITE (NOUT,99998)

99998 FORMAT (/, 9X, 'INDEX', 5X, 'SEQ', 6X, 'COEF')

 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)

!

 20 CONTINUE

 END

Output

INDEX SEQ COEF

 1 1.00 0.00

 2 0.62 3.50

 3 -0.22 0.00

 4 -0.90 0.00

 5 -0.90 0.00

IMSL MATH LIBRARY Chapter 6: Transforms 1245

 6 -0.22 0.00

 7 0.62 0.00

INDEX SEQ COEF

 1 1.00 0.00

 2 -0.22 0.00

 3 -0.90 0.00

 4 0.62 3.50

 5 0.62 0.00

 6 -0.90 0.00

 7 -0.22 0.00

INDEX SEQ COEF

1 1.00 0.00

2 -0.90 0.00

3 0.62 0.00

4 -0.22 0.00

5 -0.22 0.00

6 0.62 3.50

7 -0.90 0.00

FFTCF

Computes the Fourier coefficients of a complex periodic sequence.

Required Arguments

N — Length of the sequence to be transformed. (Input)

SEQ — Complex array of length N containing the periodic sequence. (Input)

COEF — Complex array of length N containing the Fourier coefficients. (Output)

FORTRAN 90 Interface

Generic: CALL FFTCF (N, SEQ, COEF)

Specific: The specific interface names are S_FFTCF and D_FFTCF.

FORTRAN 77 Interface

Single: CALL FFTCF (N, SEQ, COEF)

Double: The double precision name is DFFTCF.

1246 Chapter 6: Transforms IMSL MATH LIBRARY

Description

The routine FFTCF computes the discrete complex Fourier transform of a complex vector of size

N. It uses the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and

Scientific Subroutine Library for the computation, if available. Otherwise, the method used is a

variant of the Cooley-Tukey algorithm, which is most efficient when N is a product of small prime

factors. If N satisfies this condition, then the computational effort is proportional to N log N. This

considerable savings has historically led people to refer to this algorithm as the ―fast Fourier

transform‖ or FFT.

Specifically, given an N-vector x, FFTCF returns in c = COEF

 2 1 1 /

1

N
i n m N

m n

n

c x e

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NS

Finally, note that we can invert the Fourier transform as follows:

 2 1 1 /

1

1 N
i m n N

n m

m

x c e
N

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has the

coefficients for a trigonometric interpolating polynomial to the data. An unnormalized inverse is

implemented in FFTCB. FFTCF is based on the complex FFT in FFTPACK. The package

FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2TCF/DF2TCF. The

reference is:

CALL F2TCF (N, SEQ, COEF, WFFTC, CPY)

The additional arguments are as follows:

WFFTC — Real array of length 4 * N + 15 initialized by FFTCI. The

initialization depends on N. (Input)

CPY — Real array of length 2 * N. (Workspace)

 If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM

Engineering and Scientific Subroutine Library is used, WFFTC and CPY

are not referenced.

2. The routine FFTCF is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

IMSL MATH LIBRARY Chapter 6: Transforms 1247

4. If FFTCF/FFTCB is used repeatedly with the same value of N, then call FFTCI followed

by repeated calls to F2TCF/F2TCB. This is more efficient than repeated calls to

FFTCF/FFTCB.

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and

Scientific Subroutine Library is used, parameters computed by FFTCI are not used. In this

case, there is no need to call FFTCI.

Example

In this example, we input a pure exponential data vector and recover its Fourier series, which is a

vector with all components zero except at the appropriate frequency where it has an N. Notice that

the norm of the input vector is

N

but the norm of the output vector is N.

 USE FFTCF_INT

 USE CONST_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, NOUT

 REAL TWOPI

 COMPLEX C, CEXP, COEF(N), H, SEQ(N)

 INTRINSIC CEXP

!

 C = (0.,1.)

 TWOPI = CONST('PI')

 TWOPI = 2.0 * TWOPI

! Here we compute (2*pi*i/N)*3.

 H = (TWOPI*C/N)*3.

! This loop fills out the data vector

! with a pure exponential signal of

! frequency 3.

 DO 10 I=1, N

 SEQ(I) = CEXP((I-1)*H)

 10 CONTINUE

! Compute the Fourier transform of SEQ

 CALL FFTCF (N, SEQ, COEF)

! Get output unit number and print

! results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99998)

99998 FORMAT (9X, 'INDEX', 8X, 'SEQ', 15X, 'COEF')

 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

99999 FORMAT (1X, I11, 5X,'(',F5.2,',',F5.2,')', &

 5X,'(',F5.2,',',F5.2,')')

 END

1248 Chapter 6: Transforms IMSL MATH LIBRARY

Output

INDEX SEQ COEF

 1 (1.00, 0.00) (0.00, 0.00)

 2 (-0.90, 0.43) (0.00, 0.00)

 3 (0.62,-0.78) (0.00, 0.00)

 4 (-0.22, 0.97) (7.00, 0.00)

 5 (-0.22,-0.97) (0.00, 0.00)

 6 (0.62, 0.78) (0.00, 0.00)

 7 (-0.90,-0.43) (0.00, 0.00)

FFTCB

Computes the complex periodic sequence from its Fourier coefficients.

Required Arguments

N — Length of the sequence to be transformed. (Input)

COEF — Complex array of length N containing the Fourier coefficients. (Input)

SEQ — Complex array of length N containing the periodic sequence. (Output)

FORTRAN 90 Interface

Generic: CALL FFTCB (N, COEF, SEQ)

Specific: The specific interface names are S_FFTCB and D_FFTCB.

FORTRAN 77 Interface

Single: CALL FFTCB (N, COEF, SEQ)

Double: The double precision name is DFFTCB.

Description

The routine FFTCB computes the inverse discrete complex Fourier transform of a complex vector

of size N. It uses the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering

and Scientific Subroutine Library for the computation, if available. Otherwise, the method used is

a variant of the Cooley-Tukey algorithm, which is most efficient when N is a product of small

prime factors. If N satisfies this condition, then the computational effort is proportional to N log N.

This considerable savings has historically led people to refer to this algorithm as the ―fast Fourier

transform‖ or FFT.

IMSL MATH LIBRARY Chapter 6: Transforms 1249

Specifically, given an N-vector c = COEF, FFTCB returns in s = SEQ

 2 1 1 /

1

N
i n m N

m n

n

s c e

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NS

Finally, note that we can invert the inverse Fourier transform as follows:

 2 1 1 /

1

1 N
i n m N

n m

m

c s e
N

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has the

coefficients for a trigonometric interpolating polynomial to the data. FFTCB is based on the

complex inverse FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber

at the National Center for Atmospheric Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2TCB/DF2TCB. The

reference is:

CALL F2TCB (N, COEF, SEQ, WFFTC, CPY)

The additional arguments are as follows:

WFFTC — Real array of length 4 * N + 15 initialized by FFTCI. The

initialization depends on N. (Input)

CPY — Real array of length 2 * N. (Workspace)

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and

Scientific Subroutine Library is used, WFFTC and CPY are not referenced.

2. The routine FFTCB is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTCF/FFTCB is used repeatedly with the same value of N; then call FFTCI followed

by repeated calls to F2TCF/F2TCB. This is more efficient than repeated calls to

FFTCF/FFTCB.

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and

Scientific Subroutine Library is used, parameters computed by FFTCI are not used. In this

case, there is no need to call FFTCI.

1250 Chapter 6: Transforms IMSL MATH LIBRARY

Example

In this example, we first compute the Fourier transform of the vector x, where xj = j for j = 1 to N.

Note that the norm of x is (N[N + 1][2N + 1]/6)
1/2

, and hence, the norm of the transformed vector

x̂ c

is N([N + 1][2N + 1]/6)
1/2

. The vector

x̂

is used as input into FFTCB with the resulting output s = Nx, that is, sj = jN, for j = 1 to N.

 USE FFTCB_INT

 USE FFTCF_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, NOUT

 COMPLEX CMPLX, SEQ(N), COEF(N), X(N)

 INTRINSIC CMPLX

! This loop fills out the data vector

! with X(I)=I, I=1,N

 DO 10 I=1, N

 X(I) = CMPLX(I,0)

 10 CONTINUE

! Compute the forward transform of X

 CALL FFTCF (N, X, COEF)

! Compute the backward transform of

! COEF

 CALL FFTCB (N, COEF, SEQ)

! Get output unit number

 CALL UMACH (2, NOUT)

! Print results

 WRITE (NOUT,99998)

 WRITE (NOUT,99999) (I, X(I), COEF(I), SEQ(I), I=1,N)

99998 FORMAT (5X, 'INDEX', 9X, 'INPUT', 9X, 'FORWARD TRANSFORM', 3X, &

 'BACKWARD TRANSFORM')

99999 FORMAT (1X, I7, 7X,'(',F5.2,',',F5.2,')', &

 7X,'(',F5.2,',',F5.2,')', &

 7X,'(',F5.2,',',F5.2,')')

 END

Output

INDEX INPUT FORWARD TRANSFORM BACKWARD TRANSFORM

 1 (1.00, 0.00) (28.00, 0.00) (7.00, 0.00)

 2 (2.00, 0.00) (-3.50, 7.27) (14.00, 0.00)

 3 (3.00, 0.00) (-3.50, 2.79) (21.00, 0.00)

 4 (4.00, 0.00) (-3.50, 0.80) (28.00, 0.00)

 5 (5.00, 0.00) (-3.50,-0.80) (35.00, 0.00)

IMSL MATH LIBRARY Chapter 6: Transforms 1251

 6 (6.00, 0.00) (-3.50,-2.79) (42.00, 0.00)

 7 (7.00, 0.00) (-3.50,-7.27) (49.00, 0.00)

FFTCI
Computes parameters needed by FFTCF and FFTCB.

Required Arguments

N — Length of the sequence to be transformed. (Input)

WFFTC — Array of length 4N + 15 containing parameters needed by FFTCF and FFTCB.

(Output)

FORTRAN 90 Interface

Generic: CALL FFTCI (N, WFFTC)

Specific: The specific interface names are S_FFTCI and D_FFTCI.

FORTRAN 77 Interface

Single: CALL FFTCI (N, WFFTC)

Double: The double precision name is DFFTCI.

Description

The routine FFTCI initializes the routines FFTCF and FFTCB. An efficient way to make multiple

calls for the same N to IMSL routine FFTCF or FFTCB is to use routine FFTCI for initialization. (In

this case, replace FFTCF or FFTCB with F2TCF or F2TCB, respectively.) The routine FFTCI is

based on the routine CFFTI in FFTPACK. The package FFTPACK was developed by Paul

Swarztrauber at the National Center for Atmospheric Research.

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and Scientific

Subroutine Library is used, parameters computed by FFTCI are not used. In this case, there is no

need to call FFTCI.

Comments

Different WFFTC arrays are needed for different values of N.

Example

In this example, we compute a two-dimensional complex FFT by making one call to FFTCI

followed by 2N calls to F2TCF.

 USE FFTCI_INT

 USE CONST_INT

 USE F2TCF_INT

1252 Chapter 6: Transforms IMSL MATH LIBRARY

 USE UMACH_INT

 IMPLICIT NONE

! SPECIFICATIONS FOR PARAMETERS

 INTEGER N

 PARAMETER (N=4)

!

 INTEGER I, IR, IS, J, NOUT

 REAL FLOAT, TWOPI, WFFTC(35), CPY(2*N)

 COMPLEX CEXP, CMPLX, COEF(N,N), H, SEQ(N,N), TEMP

 INTRINSIC CEXP, CMPLX, FLOAT

!

 TWOPI = CONST('PI')

 TWOPI = 2*TWOPI

 IR = 3

 IS = 1

! Here we compute e**(2*pi*i/N)

 TEMP = CMPLX(0.0,TWOPI/FLOAT(N))

 H = CEXP(TEMP)

! Fill SEQ with data

 DO 20 I=1, N

 DO 10 J=1, N

 SEQ(I,J) = H**((I-1)*(IR-1)+(J-1)*(IS-1))

 10 CONTINUE

 20 CONTINUE

! Print out SEQ

! Get output unit number

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99997)

 DO 30 I=1, N

 WRITE (NOUT,99998) (SEQ(I,J),J=1,N)

 30 CONTINUE

! Set initialization vector

 CALL FFTCI (N, WFFTC)

! Transform the columns of SEQ

 DO 40 I=1, N

 CALL F2TCF (N, SEQ(1:,I), COEF(1:,I), WFFTC, CPY)

 40 CONTINUE

! Take transpose of the result

 DO 60 I=1, N

 DO 50 J=I + 1, N

 TEMP = COEF(I,J)

 COEF(I,J) = COEF(J,I)

 COEF(J,I) = TEMP

 50 CONTINUE

 60 CONTINUE

! Transform the columns of this result

 DO 70 I=1, N

 CALL F2TCF (N, COEF(1:,I), SEQ(1:,I), WFFTC, CPY)

 70 CONTINUE

! Take transpose of the result

 DO 90 I=1, N

 DO 80 J=I + 1, N

 TEMP = SEQ(I,J)

 SEQ(I,J) = SEQ(J,I)

 SEQ(J,I) = TEMP

IMSL MATH LIBRARY Chapter 6: Transforms 1253

 80 CONTINUE

 90 CONTINUE

! Print results

 WRITE (NOUT,99999)

 DO 100 I=1, N

 WRITE (NOUT,99998) (SEQ(I,J),J=1,N)

 100 CONTINUE

!

99997 FORMAT (1X, 'The input matrix is below')

99998 FORMAT (1X, 4(' (',F5.2,',',F5.2,')'))

99999 FORMAT (/, 1X, 'Result of two-dimensional transform')

 END

Output

The input matrix is below

 (1.00, 0.00) (1.00, 0.00) (1.00, 0.00) (1.00, 0.00)

 (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00)

 (1.00, 0.00) (1.00, 0.00) (1.00, 0.00) (1.00, 0.00)

 (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00)

Result of two-dimensional transform

 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

 (16.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

FSINT
Computes the discrete Fourier sine transformation of an odd sequence.

Required Arguments

N — Length of the sequence to be transformed. It must be greater than 1. (Input)

SEQ — Array of length N containing the sequence to be transformed. (Input)

COEF — Array of length N + 1 containing the transformed sequence. (Output)

FORTRAN 90 Interface

Generic: CALL FSINT (N, SEQ, COEF)

Specific: The specific interface names are S_FSINT and D_FSINT.

FORTRAN 77 Interface

Single: CALL FSINT (N, SEQ, COEF)

Double: The double precision name is DFSINT.

1254 Chapter 6: Transforms IMSL MATH LIBRARY

Description

The routine FSINT computes the discrete Fourier sine transform of a real vector of size N. The

method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N + 1 is a

product of small prime factors. If N satisfies this condition, then the computational effort is

proportional to N log N.

Specifically, given an N-vector s = SEQ, FSINT returns in c = COEF

1

2 sin
1

N

m n

n

mn
c s

N

Finally, note that the Fourier sine transform is its own (unnormalized) inverse. The routine FSINT

is based on the sine FFT in FFTPACK. The package FFTPACK was developed by Paul

Swarztrauber at the National Center for Atmospheric Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2INT/DF2INT. The

reference is:

CALL F2INT (N, SEQ, COEF, WFSIN)

The additional argument is:

WFSIN — Array of length INT(2.5 * N + 15) initialized by FSINI. The

initialization depends on N. (Input)

2. The routine FSINT is most efficient when N + 1 is the product of small primes.

3. The routine FSINT is its own (unnormalized) inverse. Applying FSINT twice will

reproduce the original sequence multiplied by 2 * (N + 1).

4. The arrays COEF and SEQ may be the same, if SEQ is also dimensioned at least N + 1.

5. COEF (N + 1) is needed as workspace.

6. If FSINT is used repeatedly with the same value of N, then call FSINI followed by

repeated calls to F2INT. This is more efficient than repeated calls to FSINT.

Example

In this example, we input a pure sine wave as a data vector and recover its Fourier sine series,

which is a vector with all components zero except at the appropriate frequency it has an N.

 USE FSINT_INT

 USE CONST_INT

 USE UMACH_INT

 IMPLICIT NONE

IMSL MATH LIBRARY Chapter 6: Transforms 1255

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, NOUT

 REAL COEF(N+1), FLOAT, PI, SIN, SEQ(N)

 INTRINSIC FLOAT, SIN

! Get output unit number

 CALL UMACH (2, NOUT)

! Fill the data vector SEQ

! with a pure sine wave

 PI = CONST('PI')

 DO 10 I=1, N

 SEQ(I) = SIN(FLOAT(I)*PI/FLOAT(N+1))

 10 CONTINUE

! Compute the transform of SEQ

 CALL FSINT (N, SEQ, COEF)

! Print results

 WRITE (NOUT,99998)

 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

99998 FORMAT (9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF')

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)

 END

Output

INDEX SEQ COEF

 1 0.38 8.00

 2 0.71 0.00

 3 0.92 0.00

 4 1.00 0.00

 5 0.92 0.00

 6 0.71 0.00

 7 0.38 0.00

FSINI
Computes parameters needed by FSINT.

Required Arguments

N — Length of the sequence to be transformed. N must be greater than 1. (Input)

WFSIN — Array of length INT(2.5 * N + 15) containing parameters needed by FSINT.

(Output)

FORTRAN 90 Interface

Generic: CALL FSINI (N, WFSIN)

Specific: The specific interface names are S_FSINI and D_FSINI.

1256 Chapter 6: Transforms IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL FSINI (N, WFSIN)

Double: The double precision name is DFSINI.

Description

The routine FSINI initializes the routine FSINT. An efficient way to make multiple calls for the

same N to IMSL routine FSINT, is to use routine FSINI for initialization. (In this case, replace

FSINT with F2INT.) The routine FSINI is based on the routine SINTI in FFTPACK. The package

FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Comments

Different WFSIN arrays are needed for different values of N.

Example

In this example, we compute three distinct sine FFTs by calling FSINI once and then calling

F2INT three times.

 USE FSINI_INT

 USE UMACH_INT

 USE CONST_INT

 USE F2INT_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, K, NOUT

 REAL COEF(N+1), FLOAT, PI, SIN, WFSIN(32), SEQ(N)

 INTRINSIC FLOAT, SIN

! Get output unit number

 CALL UMACH (2, NOUT)

! Initialize the work vector WFSIN

 CALL FSINI (N, WFSIN)

! Different frequencies of the same

! wave will be transformed

 DO 20 K=1, 3

! Fill the data vector SEQ

! with a pure sine wave

 PI = CONST('PI')

 DO 10 I=1, N

 SEQ(I) = SIN(FLOAT(K*I)*PI/FLOAT(N+1))

 10 CONTINUE

! Compute the transform of SEQ

 CALL F2INT (N, SEQ, COEF, WFSIN)

! Print results

 WRITE (NOUT,99998)

 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

 20 CONTINUE

IMSL MATH LIBRARY Chapter 6: Transforms 1257

99998 FORMAT (/, 9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF')

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)

 END

Output

INDEX SEQ COEF

 1 0.38 8.00

 2 0.71 0.00

 3 0.92 0.00

 4 1.00 0.00

 5 0.92 0.00

 6 0.71 0.00

 7 0.38 0.00

INDEX SEQ COEF

 1 0.71 0.00

 2 1.00 8.00

 3 0.71 0.00

 4 0.00 0.00

 5 -0.71 0.00

 6 -1.00 0.00

 7 -0.71 0.00

INDEX SEQ COEF

 1 0.92 0.00

 2 0.71 0.00

 3 -0.38 8.00

 4 -1.00 0.00

 5 -0.38 0.00

 6 0.71 0.00

 7 0.92 0.00

FCOST
Computes the discrete Fourier cosine transformation of an even sequence.

Required Arguments

N — Length of the sequence to be transformed. It must be greater than 1. (Input)

SEQ — Array of length N containing the sequence to be transformed. (Input)

COEF — Array of length N containing the transformed sequence. (Output)

FORTRAN 90 Interface

Generic: CALL FCOST (N, SEQ, COEF)

Specific: The specific interface names are S_FCOST and D_FCOST.

1258 Chapter 6: Transforms IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL FCOST (N, SEQ, COEF)

Double: The double precision name is DFCOST.

Description

The routine FCOST computes the discrete Fourier cosine transform of a real vector of size N. It

uses the IBM Engineering and Scientific Subroutine Library for the computation, if available.

Otherwise, the method used is a variant of the Cooley-Tukey algorithm , which is most efficient

when N 1 is a product of small prime factors. If N satisfies this condition, then the computational

effort is proportional to N log N.

Specifically, given an N-vector s = SEQ, FCOST returns in c = COEF

1
1

1

2

1 1
2 cos 1

1

N
m

m n N

n

m n
c s s s

N

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse. Two applications

of FCOST to a vector s produces (2N 2)s. The routine FCOST is based on the cosine FFT in

FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center

for Atmospheric Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2OST/DF2OST. The

reference is:

CALL F2OST (N, SEQ, COEF, WFCOS)

The additional argument is

WFCOS — Array of length 3 * N + 15 initialized by FCOSI. The initialization

depends on N. (Input)

 If the IBM Engineering and Scientific Subroutine Library is used,

WFCOS is not referenced.

2. The routine FCOST is most efficient when N 1 is the product of small primes.

3. The routine FCOST is its own (unnormalized) inverse. Applying FCOST twice will

reproduce the original sequence multiplied by 2 * (N 1).

4. The arrays COEF and SEQ may be the same.

5. If FCOST is used repeatedly with the same value of N, then call FCOSI followed by

repeated calls to F2OST. This is more efficient than repeated calls to FCOST.

IMSL MATH LIBRARY Chapter 6: Transforms 1259

If the IBM Engineering and Scientific Subroutine Library is used, parameters computed by

FCOSI are not used. In this case, there is no need to call FCOSI.

Example

In this example, we input a pure cosine wave as a data vector and recover its Fourier cosine series,

which is a vector with all components zero except at the appropriate frequency it has an N 1.

 USE FCOST_INT

 USE CONST_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, NOUT

 REAL COEF(N), COS, FLOAT, PI, SEQ(N)

 INTRINSIC COS, FLOAT

!

 CALL UMACH (2, NOUT)

! Fill the data vector SEQ

! with a pure cosine wave

 PI = CONST('PI')

 DO 10 I=1, N

 SEQ(I) = COS(FLOAT(I-1)*PI/FLOAT(N-1))

 10 CONTINUE

! Compute the transform of SEQ

 CALL FCOST (N, SEQ, COEF)

! Print results

 WRITE (NOUT,99998)

 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

99998 FORMAT (9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF')

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)

 END

Output

INDEX SEQ COEF

 1 1.00 0.00

 2 0.87 6.00

 3 0.50 0.00

 4 0.00 0.00

 5 -0.50 0.00

 6 -0.87 0.00

 7 -1.00 0.00

FCOSI
Computes parameters needed by FCOST.

Required Arguments

N — Length of the sequence to be transformed. N must be greater than 1. (Input)

1260 Chapter 6: Transforms IMSL MATH LIBRARY

WFCOS — Array of length 3N + 15 containing parameters needed by FCOST. (Output)

FORTRAN 90 Interface

Generic: CALL FCOSI (N, WFCOS)

Specific: The specific interface names are S_FCOSI and D_FCOSI.

FORTRAN 77 Interface

Single: CALL FCOSI (N, WFCOS)

Double: The double precision name is DFCOSI.

Description

The routine FCOSI initializes the routine FCOST. An efficient way to make multiple calls for the

same N to IMSL routine FCOST is to use routine FCOSI for initialization. (In this case, replace

FCOST with F2OST.) The routine FCOSI is based on the routine COSTI in FFTPACK. The package

FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

If the IBM Engineering and Scientific Subroutine Library is used, parameters computed by FCOSI

are not used. In this case, there is no need to call FCOSI.

Comments

Different WFCOS arrays are needed for different values of N.

Example

In this example, we compute three distinct cosine FFTs by calling FCOSI once and then calling

F2OST three times.

 USE FCOSI_INT

 USE CONST_INT

 USE F2OST_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, K, NOUT

 REAL COEF(N), COS, FLOAT, PI, WFCOS(36), SEQ(N)

 INTRINSIC COS, FLOAT

! Get output unit number

 CALL UMACH (2, NOUT)

! Initialize the work vector WFCOS

 CALL FCOSI (N, WFCOS)

! Different frequencies of the same

! wave will be transformed

IMSL MATH LIBRARY Chapter 6: Transforms 1261

 PI = CONST('PI')

 DO 20 K=1, 3

! Fill the data vector SEQ

! with a pure cosine wave

 DO 10 I=1, N

 SEQ(I) = COS(FLOAT(K*(I-1))*PI/FLOAT(N-1))

 10 CONTINUE

! Compute the transform of SEQ

 CALL F2OST (N, SEQ, COEF, WFCOS)

! Print results

 WRITE (NOUT,99998)

 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

 20 CONTINUE

99998 FORMAT (/, 9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF')

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)

 END

Output

INDEX SEQ COEF

 1 1.00 0.00

 2 0.87 6.00

 3 0.50 0.00

 4 0.00 0.00

 5 -0.50 0.00

 6 -0.87 0.00

 7 -1.00 0.00

INDEX SEQ COEF

 1 1.00 0.00

 2 0.50 0.00

 3 -0.50 6.00

 4 -1.00 0.00

 5 -0.50 0.00

 6 0.50 0.00

 7 1.00 0.00

INDEX SEQ COEF

 1 1.00 0.00

 2 0.00 0.00

 3 -1.00 0.00

 4 0.00 6.00

 5 1.00 0.00

 6 0.00 0.00

 7 -1.00 0.00

QSINF
Computes the coefficients of the sine Fourier transform with only odd wave numbers.

Required Arguments

N — Length of the sequence to be transformed. (Input)

SEQ — Array of length N containing the sequence. (Input)

1262 Chapter 6: Transforms IMSL MATH LIBRARY

COEF — Array of length N containing the Fourier coefficients. (Output)

FORTRAN 90 Interface

Generic: CALL QSINF (N, SEQ, COEF)

Specific: The specific interface names are S_QSINF and D_QSINF.

FORTRAN 77 Interface

Single: CALL QSINF (N, SEQ, COEF)

Double: The double precision name is DQSINF.

Description

The routine QSINF computes the discrete Fourier quarter sine transform of a real vector of size N.

The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N is a

product of small prime factors. If N satisfies this condition, then the computational effort is

proportional to N log N.

Specifically, given an N-vector s = SEQ, QSINF returns in c = COEF

1
1

1

2 1
2 sin 1

2

N
m

m n N

n

m n
c s s

N

Finally, note that the Fourier quarter sine transform has an (unnormalized) inverse, which is

implemented in the IMSL routine QSINB. The routine QSINF is based on the quarter sine FFT in

FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center

for Atmospheric Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2INF/DQ2INF. The

reference is:

CALL Q2INF (N, SEQ, COEF, WQSIN)

The additional argument is:

WQSIN — Array of length 3 * N + 15 initialized by QSINI. The initialization

depends on N. (Input)

2. The routine QSINF is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

IMSL MATH LIBRARY Chapter 6: Transforms 1263

4. If QSINF/QSINB is used repeatedly with the same value of N, then call QSINI followed

by repeated calls to Q2INF/Q2INB. This is more efficient than repeated calls to

QSINF/QSINB.

Example

In this example, we input a pure quarter sine wave as a data vector and recover its Fourier quarter

sine series.

 USE QSINF_INT

 USE CONST_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, NOUT

 REAL COEF(N), FLOAT, PI, SIN, SEQ(N)

 INTRINSIC FLOAT, SIN

! Get output unit number

 CALL UMACH (2, NOUT)

! Fill the data vector SEQ

! with a pure sine wave

 PI = CONST('PI')

 DO 10 I=1, N

 SEQ(I) = SIN(FLOAT(I)*(PI/2.0)/FLOAT(N))

 10 CONTINUE

! Compute the transform of SEQ

 CALL QSINF (N, SEQ, COEF)

! Print results

 WRITE (NOUT,99998)

 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

99998 FORMAT (9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF')

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)

 END

Output

INDEX SEQ COEF

 1 0.22 7.00

 2 0.43 0.00

 3 0.62 0.00

 4 0.78 0.00

 5 0.90 0.00

 6 0.97 0.00

 7 1.00 0.00

QSINB
Computes a sequence from its sine Fourier coefficients with only odd wave numbers.

1264 Chapter 6: Transforms IMSL MATH LIBRARY

Required Arguments

N — Length of the sequence to be transformed. (Input)

COEF — Array of length N containing the Fourier coefficients. (Input)

SEQ — Array of length N containing the sequence. (Output)

FORTRAN 90 Interface

Generic: CALL QSINB (N, COEF, SEQ)

Specific: The specific interface names are S_QSINB and D_QSINB.

FORTRAN 77 Interface

Single: CALL QSINB (N, COEF, SEQ)

Double: The double precision name is DQSINB.

Description

The routine QSINB computes the discrete (unnormalized) inverse Fourier quarter sine transform of

a real vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is most

efficient when N is a product of small prime factors. If N satisfies this condition, then the

computational effort is proportional to N log N.

Specifically, given an N-vector c = COEF, QSINB returns in s = SEQ

1

2 1
4 sin

2

N

m n

n

n m
s c

N

Furthermore, a vector x of length N that is first transformed by QSINF and then by QSINB will be

returned by QSINB as 4Nx. The routine QSINB is based on the inverse quarter sine FFT in

FFTPACK which was developed by Paul Swarztrauber at the National Center for Atmospheric

Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2INB/DQ2INB. The

reference is:

CALL Q2INB (N, SEQ, COEF, WQSIN)

The additional argument is:

WQSIN — ray of length 3 * N + 15 initialized by QSINI. The initialization

depends on N.(Input)

IMSL MATH LIBRARY Chapter 6: Transforms 1265

2. The routine QSINB is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If QSINF/QSINB is used repeatedly with the same value of N, then call QSINI followed

by repeated calls to Q2INF/Q2INB. This is more efficient than repeated calls to

QSINF/QSINB.

Example

In this example, we first compute the quarter wave sine Fourier transform c of the vector x where

xn = n for n = 1 to N. We then compute the inverse quarter wave Fourier transform of c which is

4Nx = s.

 USE QSINB_INT

 USE QSINF_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, NOUT

 REAL FLOAT, SEQ(N), COEF(N), X(N)

 INTRINSIC FLOAT

! Get output unit number

 CALL UMACH (2, NOUT)

! Fill the data vector X

! with X(I) = I, I=1,N

 DO 10 I=1, N

 X(I) = FLOAT(I)

 10 CONTINUE

! Compute the forward transform of X

 CALL QSINF (N, X, COEF)

! Compute the backward transform of W

 CALL QSINB (N, COEF, SEQ)

!C Print results

 WRITE (NOUT,99998)

 WRITE (NOUT,99999) (X(I), COEF(I), SEQ(I), I=1,N)

99998 FORMAT (5X, 'INPUT', 5X, 'FORWARD TRANSFORM', 3X, 'BACKWARD ', &

 'TRANSFORM')

99999 FORMAT (3X, F6.2, 10X, F6.2, 15X, F6.2)

 END

Output

INPUT FORWARD TRANSFORM BACKWARD TRANSFORM

1.00 39.88 28.00

2.00 -4.58 56.00

3.00 1.77 84.00

4.00 -1.00 112.00

5.00 0.70 140.00

6.00 -0.56 168.00

7.00 0.51 196.00

1266 Chapter 6: Transforms IMSL MATH LIBRARY

QSINI
Computes parameters needed by QSINF and QSINB.

Required Arguments

N — Length of the sequence to be transformed. (Input)

WQSIN — Array of length 3N + 15 containing parameters needed by QSINF and QSINB.

(Output)

FORTRAN 90 Interface

Generic: CALL QSINI (N, WQSIN)

Specific: The specific interface names are S_QSINI and D_QSINI.

FORTRAN 77 Interface

Single: CALL QSINI (N, WQSIN)

Double: The double precision name is DQSINI.

Description

The routine QSINI initializes the routines QSINF and QSINB. An efficient way to make multiple

calls for the same N to IMSL routine QSINF or QSINB is to use routine QSINI for initialization.

(In this case, replace QSINF or QSINB with Q2INF or Q2INB, respectively.) The routine QSINI is

based on the routine SINQI in FFTPACK. The package FFTPACK was developed by Paul

Swarztrauber at the National Center for Atmospheric Research.

Comments

Different WQSIN arrays are needed for different values of N.

Example

In this example, we compute three distinct quarter sine transforms by calling QSINI once and then

calling Q2INF three times.

 USE QSINI_INT

 USE CONST_INT

 USE Q2INF_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

IMSL MATH LIBRARY Chapter 6: Transforms 1267

 INTEGER I, K, NOUT

 REAL COEF(N), FLOAT, PI, SIN, WQSIN(36), SEQ(N)

 INTRINSIC FLOAT, SIN

! Get output unit number

 CALL UMACH (2, NOUT)

! Initialize the work vector WQSIN

 CALL QSINI (N, WQSIN)

! Different frequencies of the same

! wave will be transformed

 PI = CONST('PI')

 DO 20 K=1, 3

! Fill the data vector SEQ

! with a pure sine wave

 DO 10 I=1, N

 SEQ(I) = SIN(FLOAT((2*K-1)*I)*(PI/2.0)/FLOAT(N))

 10 CONTINUE

! Compute the transform of SEQ

 CALL Q2INF (N, SEQ, COEF, WQSIN)

! Print results

 WRITE (NOUT,99998)

 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

 20 CONTINUE

99998 FORMAT (/, 9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF')

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)

 END

Output

INDEX SEQ COEF

 1 0.22 7.00

 2 0.43 0.00

 3 0.62 0.00

 4 0.78 0.00

 5 0.90 0.00

 6 0.97 0.00

 7 1.00 0.00

INDEX SEQ COEF

 1 0.62 0.00

 2 0.97 7.00

 3 0.90 0.00

 4 0.43 0.00

 5 -0.22 0.00

 6 -0.78 0.00

 7 -1.00 0.00

INDEX SEQ COEF

 1 0.90 0.00

 2 0.78 0.00

 3 -0.22 7.00

 4 -0.97 0.00

 5 -0.62 0.00

 6 0.43 0.00

 7 1.00 0.00

1268 Chapter 6: Transforms IMSL MATH LIBRARY

QCOSF
Computes the coefficients of the cosine Fourier transform with only odd wave numbers.

Required Arguments

N — Length of the sequence to be transformed. (Input)

SEQ — Array of length N containing the sequence. (Input)

COEF — Array of length N containing the Fourier coefficients. (Output)

FORTRAN 90 Interface

Generic: CALL QCOSF (N, SEQ, COEF [,…])

Specific: The specific interface names are S_QCOSF and D_QCOSF.

FORTRAN 77 Interface

Single: CALL QCOSF (N, SEQ, COEF)

Double: The double precision name is DQCOSF.

Description

The routine QCOSF computes the discrete Fourier quarter cosine transform of a real vector of size

N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N is

a product of small prime factors. If N satisfies this condition, then the computational effort is

proportional to N log N.

Specifically, given an N-vector s = SEQ, QCOSF returns in c = COEF

1

2

2 1 1
2 cos

2

N

m n

n

m n
c s s

N

Finally, note that the Fourier quarter cosine transform has an (unnormalized) inverse which is

implemented in QCOSB. The routine QCOSF is based on the quarter cosine FFT in FFTPACK. The

package FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric

Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2OSF/DQ2OSF. The

reference is:

CALL Q2OSF (N, SEQ, COEF, WQCOS)

IMSL MATH LIBRARY Chapter 6: Transforms 1269

The additional argument is:

WQCOS — Array of length 3 * N + 15 initialized by QCOSI. The initialization

depends on N. (Input)

2. The routine QCOSF is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If QCOSF/QCOSB is used repeatedly with the same value of N, then call QCOSI followed

by repeated calls to Q2OSF/Q2OSB. This is more efficient than repeated calls to

QCOSF/QCOSB.

Example

In this example, we input a pure quarter cosine wave as a data vector and recover its Fourier

quarter cosine series.

 USE QCOSF_INT

 USE CONST_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, NOUT

 REAL COEF(N), COS, FLOAT, PI, SEQ(N)

 INTRINSIC COS, FLOAT

! Get output unit number

 CALL UMACH (2, NOUT)

! Fill the data vector SEQ

! with a pure cosine wave

 PI = CONST('PI')

 DO 10 I=1, N

 SEQ(I) = COS(FLOAT(I-1)*(PI/2.0)/FLOAT(N))

 10 CONTINUE

! Compute the transform of SEQ

 Call QCOSF (N, SEQ, COEF)

! Print results

 WRITE (NOUT,99998)

 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

99998 FORMAT (9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF')

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)

 END

Output

INDEX SEQ COEF

 1 1.00 7.00

 2 0.97 0.00

 3 0.90 0.00

 4 0.78 0.00

1270 Chapter 6: Transforms IMSL MATH LIBRARY

 5 0.62 0.00

 6 0.43 0.00

 7 0.22 0.00

QCOSB
Computes a sequence from its cosine Fourier coefficients with only odd wave numbers.

Required Arguments

N — Length of the sequence to be transformed. (Input)

COEF — Array of length N containing the Fourier coefficients. (Input)

SEQ — Array of length N containing the sequence. (Output)

FORTRAN 90 Interface

Generic: CALL QCOSB (N, COEF, SEQ)

Specific: The specific interface names are S_QCOSB and D_QCOSB.

FORTRAN 77 Interface

Single: CALL QCOSB (N, COEF, SEQ)

Double: The double precision name is DQCOSB.

Description

The routine QCOSB computes the discrete (unnormalized) inverse Fourier quarter cosine transform

of a real vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is

most efficient when N is a product of small prime factors. If N satisfies this condition, then the

computational effort is proportional to N log N. Specifically, given an N-vector c = COEF, QCOSB

returns in s = SEQ

1

2 1 1
4 cos

2

N

m n

n

n m
s c

N

Furthermore, a vector x of length N that is first transformed by QCOSF and then by QCOSB will be

returned by QCOSB as 4Nx. The routine QCOSB is based on the inverse quarter cosine FFT in

FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center

for Atmospheric Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2OSB/DQ2OSB. The

reference is:

IMSL MATH LIBRARY Chapter 6: Transforms 1271

CALL Q2OSB (N, COEF, SEQ, WQCOS)

The additional argument is:

WQCOS — Array of length 3 * N + 15 initialized by QCOSI. The initialization

depends on N. (Input)

2. The routine QCOSB is most efficient when N is the product of small primes.

3. The arrays COEF and SEQ may be the same.

4. If QCOSF/QCOSB is used repeatedly with the same value of N, then call QCOSI followed

by repeated calls to Q2OSF/Q2OSB. This is more efficient than repeated calls to

QCOSF/QCOSB.

Example

In this example, we first compute the quarter wave cosine Fourier transform c of the vector x,

where xn = n for n = 1 to N. We then compute the inverse quarter wave Fourier transform of c

which is 4Nx = s.

 USE QCOSB_INT

 USE QCOSF_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, NOUT

 REAL FLOAT, SEQ(N), COEF(N), X(N)

 INTRINSIC FLOAT

! Get output unit number

 CALL UMACH (2, NOUT)

! Fill the data vector X

! with X(I) = I, I=1,N

 DO 10 I=1, N

 X(I) = FLOAT(I)

 10 CONTINUE

! Compute the forward transform of X

 CALL QCOSF (N, X, COEF)

! Compute the backward transform of

! COEF

 CALL QCOSB (N, COEF, SEQ)

! Print results

 WRITE (NOUT,99998)

 DO 20 I=1, N

 WRITE (NOUT,99999) X(I), COEF(I), SEQ(I)

 20 CONTINUE

99998 FORMAT (5X, 'INPUT', 5X, 'FORWARD TRANSFORM', 3X, 'BACKWARD ', &

 'TRANSFORM')

99999 FORMAT (3X, F6.2, 10X, F6.2, 15X, F6.2)

 END

1272 Chapter 6: Transforms IMSL MATH LIBRARY

Output

INPUT FORWARD TRANSFORM BACKWARD TRANSFORM

1.00 31.12 28.00

2.00 -27.45 56.00

3.00 10.97 84.00

4.00 -9.00 112.00

5.00 4.33 140.00

6.00 -3.36 168.00

7.00 0.40 196.00

QCOSI
Computes parameters needed by QCOSF and QCOSB.

Required Arguments

N — Length of the sequence to be transformed. (Input)

WQCOS — Array of length 3N + 15 containing parameters needed by QCOSF and QCOSB.

(Output)

FORTRAN 90 Interface

Generic: CALL QCOSI (N, WQCOS)

Specific: The specific interface names are S_QCOSI and D_QCOSI.

FORTRAN 77 Interface

Single: CALL QCOSI (N, WQCOS)

Double: The double precision name is DQCOSI.

Description

The routine QCOSI initializes the routines QCOSF and QCOSB. An efficient way to make multiple

calls for the same N to IMSL routine QCOSF or QCOSB is to use routine QCOSI for initialization.

(In this case, replace QCOSF or QCOSB with Q2OSF or Q2OSB , respectively.) The routine QCOSI is

based on the routine COSQI in FFTPACK, which was developed by Paul Swarztrauber at the

National Center for Atmospheric Research.

Comments

Different WQCOS arrays are needed for different values of N.

IMSL MATH LIBRARY Chapter 6: Transforms 1273

Example

In this example, we compute three distinct quarter cosine transforms by calling QCOSI once and

then calling Q2OSF three times.

 USE QCOSI_INT

 USE CONST_INT

 USE Q2OSF_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=7)

!

 INTEGER I, K, NOUT

 REAL COEF(N), COS, FLOAT, PI, WQCOS(36), SEQ(N)

 INTRINSIC COS, FLOAT

! Get output unit number

 CALL UMACH (2, NOUT)

! Initialize the work vector WQCOS

 CALL QCOSI (N, WQCOS)

! Different frequencies of the same

! wave will be transformed

 PI = CONST('PI')

 DO 20 K=1, 3

! Fill the data vector SEQ

! with a pure cosine wave

 DO 10 I=1, N

 SEQ(I) = COS(FLOAT((2*K-1)*(I-1))*(PI/2.0)/FLOAT(N))

 10 CONTINUE

! Compute the transform of SEQ

 CALL Q2OSF (N, SEQ, COEF, WQCOS)

! Print results

 WRITE (NOUT,99998)

 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)

 20 CONTINUE

99998 FORMAT (/, 9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF')

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)

 END

Output

INDEX SEQ COEF

 1 1.00 7.00

 2 0.97 0.00

 3 0.90 0.00

 4 0.78 0.00

 5 0.62 0.00

 6 0.43 0.00

 7 0.22 0.00

INDEX SEQ COEF

 1 1.00 0.00

 2 0.78 7.00

 3 0.22 0.00

 4 -0.43 0.00

 5 -0.90 0.00

1274 Chapter 6: Transforms IMSL MATH LIBRARY

 6 -0.97 0.00

 7 -0.62 0.00

INDEX SEQ COEF

 1 1.00 0.00

 2 0.43 0.00

 3 -0.62 7.00

 4 -0.97 0.00

 5 -0.22 0.00

 6 0.78 0.00

 7 0.90 0.00

FFT2D

Computes Fourier coefficients of a complex periodic two-dimensional array.

Required Arguments

A — NRA by NCA complex matrix containing the periodic data to be transformed. (Input)

COEF — NRA by NCA complex matrix containing the Fourier coefficients of A. (Output)

Optional Arguments

NRA — The number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — The number of columns of A. (Input)

Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDCOEF = size (COEF,1).

FORTRAN 90 Interface

Generic: CALL FFT2D (A, COEF [,…])

Specific: The specific interface names are S_FFT2D and D_FFT2D.

IMSL MATH LIBRARY Chapter 6: Transforms 1275

FORTRAN 77 Interface

Single: CALL FFT2D (NRA, NCA, A, LDA, COEF, LDCOEF)

Double: The double precision name is DFFT2D.

Description

The routine FFT2D computes the discrete complex Fourier transform of a complex two

dimensional array of size (NRA = N) (NCA = M). It uses the Intel
®

 Math Kernel Library, Sun

Performance Library or IBM Engineering and Scientific Subroutine Library for the computation,

if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm , which is

most efficient when N and M are each products of small prime factors. If N and M satisfy this

condition, then the computational effort is proportional to N M log N M. This considerable savings

has historically led people to refer to this algorithm as the ―fast Fourier transform‖ or FFT.

Specifically, given an N M array a, FFT2D returns in c = COEF

 2 1 1 / 2 1 1 /

1 1

N M
i j n N i k m M

jk nm

n m

c a e e

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NM S

Finally, note that an unnormalized inverse is implemented in FFT2B. The routine FFT2D is based

on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber

at the National Center for Atmospheric Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2T2D/DF2T2D. The

reference is:

CALL F2T2D (NRA, NCA, A, LDA, COEF, LDCOEF, WFF1, WFF2, CWK, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * NRA + 15 initialized by FFTCI. The

initialization depends on NRA. (Input)

WFF2 — Real array of length 4 * NCA + 15 initialized by FFTCI. The

initialization depends on NCA. (Input)

CWK — Complex array of length 1. (Workspace)

CPY — Real array of length 2 * MAX(NRA, NCA). (Workspace)

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and

Scientific Subroutine Library is used, WFFT1, WFF2, CWK, and CPY are not referenced.

1276 Chapter 6: Transforms IMSL MATH LIBRARY

2. The routine FFT2D is most efficient when NRA and NCA are the product of small primes.

3. The arrays COEF and A may be the same.

4. If FFT2D/FFT2B is used repeatedly, with the same values for NRA and NCA, then use

FFTCI to fill WFF1(N = NRA) and WFF2(N = NCA). Follow this with repeated calls to

F2T2D/F2T2B. This is more efficient than repeated calls to FFT2D/FFT2B.

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and

Scientific Subroutine Library is used, parameters computed by FFTCI are not used. In this

case, there is no need to call FFTCI.

Example

In this example, we compute the Fourier transform of the pure frequency input for a 5 4 array

 2 1 2/ 2 1 3/i n N i m M
nma e e

for 1 ≤ n ≤ 5 and 1 ≤ m ≤ 4 using the IMSL routine FFT2D. The result

â c

has all zeros except in the (3, 4) position.

 USE FFT2D_INT

 USE CONST_INT

 USE WRCRN_INT

 IMPLICIT NONE

 INTEGER I, IR, IS, J, NCA, NRA

 REAL FLOAT, TWOPI

 COMPLEX A(5,4), C, CEXP, CMPLX, COEF(5,4), H

 CHARACTER TITLE1*26, TITLE2*26

 INTRINSIC CEXP, CMPLX, FLOAT

!

 TITLE1 = 'The input matrix is below '

 TITLE2 = 'The output matrix is below'

 NRA = 5

 NCA = 4

 IR = 3

 IS = 4

! Fill A with initial data

 TWOPI = CONST('PI')

 TWOPI = 2.0*TWOPI

 C = CMPLX(0.0,1.0)

 H = CEXP(TWOPI*C)

 DO 10 I=1, NRA

 DO 10 J=1, NCA

 A(I,J) = CEXP(TWOPI*C*((FLOAT((I-1)*(IR-1))/FLOAT(NRA)+ &

 FLOAT((J-1)*(IS-1))/FLOAT(NCA))))

 10 CONTINUE

!

 CALL WRCRN (TITLE1, A)

IMSL MATH LIBRARY Chapter 6: Transforms 1277

!

 CALL FFT2D (A, COEF)

!

 CALL WRCRN (TITLE2, COEF)

!

 END

Output

 The input matrix is below

 1 2 3 4

1 (1.000, 0.000) (0.000,-1.000) (-1.000, 0.000) (0.000, 1.000)

2 (-0.809, 0.588) (0.588, 0.809) (0.809,-0.588) (-0.588,-0.809)

3 (0.309,-0.951) (-0.951,-0.309) (-0.309, 0.951) (0.951, 0.309)

4 (0.309, 0.951) (0.951,-0.309) (-0.309,-0.951) (-0.951, 0.309)

5 (-0.809,-0.588) (-0.588, 0.809) (0.809, 0.588) (0.588,-0.809)

 The Output matrix is below

 1 2 3 4

1 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

2 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

3 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (20.00, 0.00)

4 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

5 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

FFT2B

Computes the inverse Fourier transform of a complex periodic two-dimensional array.

Required Arguments

COEF — NRCOEF by NCCOEF complex array containing the Fourier coefficients to be

transformed. (Input)

A — NRCOEF by NCCOEF complex array containing the Inverse Fourier coefficients of COEF.

(Output)

Optional Arguments

NRCOEF — The number of rows of COEF. (Input)

Default: NRCOEF = size (COEF,1).

NCCOEF — The number of columns of COEF. (Input)

Default: NCCOEF = size (COEF,2).

1278 Chapter 6: Transforms IMSL MATH LIBRARY

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDCOEF = size (COEF,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL FFT2B (COEF, A [,…])

Specific: The specific interface names are S_FFT2B and D_FFT2B.

FORTRAN 77 Interface

Single: CALL FFT2B (NRCOEF, NCCOEF, COEF, LDCOEF, A, LDA)

Double: The double precision name is DFFT2B.

Description

The routine FFT2B computes the inverse discrete complex Fourier transform of a complex two-

dimensional array of size (NRCOEF = N) × (NCCOEF = M). It uses the Intel
®

 Math Kernel Library,

Sun Performance Library or IBM Engineering and Scientific Subroutine Library for the

computation, if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm ,

which is most efficient when N and M are both products of small prime factors. If N and M satisfy

this condition, then the computational effort is proportional to N M log N M. This considerable

savings has historically led people to refer to this algorithm as the ―fast Fourier transform‖ or FFT.

Specifically, given an N M array c = COEF, FFT2B returns in a

 2 1 1 / 2 1 1 /

1 1

N M
i j n N i k m M

jk nm

n m

a c e e

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

S NM

Finally, note that an unnormalized inverse is implemented in FFT2D. The routine FFT2B is based

on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber

at the National Center for Atmospheric Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2T2B/DF2T2B. The

reference is:

IMSL MATH LIBRARY Chapter 6: Transforms 1279

CALL F2T2B (NRCOEF, NCCOEF, A, LDA, COEF, LDCOEF, WFF1, WFF2, CWK,

CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * NRCOEF + 15 initialized by FFTCI. The

initialization depends on NRCOEF. (Input)

WFF2 — Real array of length 4 * NCCOEF + 15 initialized by FFTCI. The

initialization depends on NCCOEF. (Input)

CWK — Complex array of length 1. (Workspace)

CPY — Real array of length 2 * MAX(NRCOEF, NCCOEF). (Workspace)

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and

Scientific Subroutine Library is used, WFFT1, WFF2, CWK, and CPY are not referenced.

2. The routine FFT2B is most efficient when NRCOEF and NCCOEF are the product of

small primes.

3. The arrays COEF and A may be the same.

4. If FFT2D/FFT2B is used repeatedly, with the same values for NRCOEF and NCCOEF,

then use FFTCI to fill WFF1(N = NRCOEF) and WFF2(N = NCCOEF). Follow this with

repeated calls to F2T2D/F2T2B. This is more efficient than repeated calls to

FFT2D/FFT2B.

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and

Scientific Subroutine Library is used, parameters computed by FFTCI are not used. In this

case, there is no need to call FFTCI.

Example

In this example, we first compute the Fourier transform of the 5 4 array

 5 1nmx n m

for 1 ≤ n ≤ 5 and 1 ≤ m ≤ 4 using the IMSL routine FFT2D. The result

x̂ c

is then inverted by a call to FFT2B. Note that the result is an array a satisfying a = (5)(4)x = 20x. In

general, FFT2B is an unnormalized inverse with expansion factor N M.

 USE FFT2B_INT

 USE FFT2D_INT

 USE WRCRN_INT

 IMPLICIT NONE

 INTEGER M, N, NCA, NRA

 COMPLEX CMPLX, X(5,4), A(5,4), COEF(5,4)

1280 Chapter 6: Transforms IMSL MATH LIBRARY

 CHARACTER TITLE1*26, TITLE2*26, TITLE3*26

 INTRINSIC CMPLX

!

 TITLE1 = 'The input matrix is below '

 TITLE2 = 'After FFT2D '

 TITLE3 = 'After FFT2B '

 NRA = 5

 NCA = 4

! Fill X with initial data

 DO 20 N=1, NRA

 DO 10 M=1, NCA

 X(N,M) = CMPLX(FLOAT(N+5*M-5),0.0)

 10 CONTINUE

 20 CONTINUE

!

 CALL WRCRN (TITLE1, X)

!

 CALL FFT2D (X, COEF)

!

 CALL WRCRN (TITLE2, COEF)

!

 CALL FFT2B (COEF, A)

!

 CALL WRCRN (TITLE3, A)

!

 END

Output

 The input matrix is below

 1 2 3 4

1 (1.00, 0.00) (6.00, 0.00) (11.00, 0.00) (16.00, 0.00)

2 (2.00, 0.00) (7.00, 0.00) (12.00, 0.00) (17.00, 0.00)

3 (3.00, 0.00) (8.00, 0.00) (13.00, 0.00) (18.00, 0.00)

4 (4.00, 0.00) (9.00, 0.00) (14.00, 0.00) (19.00, 0.00)

5 (5.00, 0.00) (10.00, 0.00) (15.00, 0.00) (20.00, 0.00)

 After FFT2D

 1 2 3 4

1 (210.0, 0.0) (-50.0, 50.0) (-50.0, 0.0) (-50.0, -50.0)

2 (-10.0, 13.8) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

3 (-10.0, 3.2) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

4 (-10.0, -3.2) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

5 (-10.0, -13.8) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

 After FFT2B

 1 2 3 4

1 (20.0, 0.0) (120.0, 0.0) (220.0, 0.0) (320.0, 0.0)

2 (40.0, 0.0) (140.0, 0.0) (240.0, 0.0) (340.0, 0.0)

3 (60.0, 0.0) (160.0, 0.0) (260.0, 0.0) (360.0, 0.0)

4 (80.0, 0.0) (180.0, 0.0) (280.0, 0.0) (380.0, 0.0)

5 (100.0, 0.0) (200.0, 0.0) (300.0, 0.0) (400.0, 0.0)

IMSL MATH LIBRARY Chapter 6: Transforms 1281

FFT3F

Computes Fourier coefficients of a complex periodic three-dimensional array.

Required Arguments

A — Three-dimensional complex matrix containing the data to be transformed. (Input)

B — Three-dimensional complex matrix containing the Fourier coefficients of A. (Output)

The matrices A and B may be the same.

Optional Arguments

N1 — Limit on the first subscript of matrices A and B. (Input)

Default: N1 = size(A, 1)

N2 — Limit on the second subscript of matrices A and B. (Input)

Default: N2 = size(A, 2)

N3 — Limit on the third subscript of matrices A and B. (Input)

Default: N3 = size(A, 3)

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

MDA — Middle dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: MDA = size (A,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = size (B,1).

MDB — Middle dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: MDB = size (B,2).

FORTRAN 90 Interface

Generic: CALL FFT3F (A, B [,…])

Specific: The specific interface names are S_FFT3F and D_FFT3F.

1282 Chapter 6: Transforms IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL FFT3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB)

Double: The double precision name is DFFT3F.

Description

The routine FFT3F computes the forward discrete complex Fourier transform of a complex three-

dimensional array of size (N1 = N) (N2 = M) (N3 = L). It uses the Intel
®

 Math Kernel Library,

Sun Performance Library or IBM Engineering and Scientific Subroutine Library for the

computation, if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm ,

which is most efficient when N, M, and L are each products of small prime factors. If N, M, and L

satisfy this condition, then the computational effort is proportional to N M L log N M L. This

considerable savings has historically led people to refer to this algorithm as the ―fast Fourier

transform‖ or FFT.

Specifically, given an N M L array a, FFT3F returns in c = COEF

 2 1 1 / 2 1 1 / 2 1 1 /

1 1 1

N M L
i j n N i k m M i k l L

jkl nml

n m l

c a e e e

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NMLS

Finally, note that an unnormalized inverse is implemented in FFT3B. The routine FFT3F is based

on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber

at the National Center for Atmospheric Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2T3F/DF2T3F. The

reference is:

CALL F2T3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB, WFF1, WFF2, WFF3, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * N1 + 15 initialized by FFTCI. The

initialization depends on N1. (Input)

WFF2 — Real array of length 4 * N2 + 15 initialized by FFTCI. The

initialization depends on N2. (Input)

WFF3 — Real array of length 4 * N3 + 15 initialized by FFTCI. The

initialization depends on N3. (Input)

CPY — Real array of size 2 * MAX(N1, N2, N3). (Workspace)

IMSL MATH LIBRARY Chapter 6: Transforms 1283

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and

Scientific Subroutine Library is used, WFFT1, WFF2, WFF3, and CPY are not referenced.

2. The routine FFT3F is most efficient when N1, N2, and N3 are the product of small

primes.

3. If FFT3F/FFT3B is used repeatedly with the same values for N1, N2 and N3, then use

FFTCI to fill WFF1(N = N1), WFF2(N = N2), and WFF3(N = N3). Follow this with

repeated calls to F2T3F/F2T3B. This is more efficient than repeated calls to

FFT3F/FFT3B.

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and

Scientific Subroutine Library is used, parameters computed by FFTCI are not used. In this

case, there is no need to call FFTCI.

Example

In this example, we compute the Fourier transform of the pure frequency input for a 2 3 4

array

 2 1 1/ 2 2 1 2/3 2 1 2/ 4i n i m i l
nmla e e e

for 1 ≤ n ≤ 2, 1 ≤ m ≤ 3, and 1 ≤ l ≤ 4 using the IMSL routine FFT3F. The result

â c

has all zeros except in the (2, 3, 3) position.

 USE FFT3F_INT

 USE UMACH_INT

 USE CONST_INT

 IMPLICIT NONE

 INTEGER LDA, LDB, MDA, MDB, NDA, NDB

 PARAMETER (LDA=2, LDB=2, MDA=3, MDB=3, NDA=4, NDB=4)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I, J, K, L, M, N, N1, N2, N3, NOUT

 REAL PI

 COMPLEX A(LDA,MDA,NDA), B(LDB,MDB,NDB), C, H

! SPECIFICATIONS FOR INTRINSICS

 INTRINSIC CEXP, CMPLX

 COMPLEX CEXP, CMPLX

! SPECIFICATIONS FOR SUBROUTINES

! SPECIFICATIONS FOR FUNCTIONS

! Get output unit number

 CALL UMACH (2, NOUT)

 PI = CONST('PI')

 C = CMPLX(0.0,2.0*PI)

! Set array A

 DO 30 N=1, 2

 DO 20 M=1, 3

 DO 10 L=1, 4

 H = C*(N-1)*1/2 + C*(M-1)*2/3 + C*(L-1)*2/4

 A(N,M,L) = CEXP(H)

1284 Chapter 6: Transforms IMSL MATH LIBRARY

 10 CONTINUE

 20 CONTINUE

 30 CONTINUE

!

 CALL FFT3F (A, B)

!

 WRITE (NOUT,99996)

 DO 50 I=1, 2

 WRITE (NOUT,99998) I

 DO 40 J=1, 3

 WRITE (NOUT,99999) (A(I,J,K),K=1,4)

 40 CONTINUE

 50 CONTINUE

!

 WRITE (NOUT,99997)

 DO 70 I=1, 2

 WRITE (NOUT,99998) I

 DO 60 J=1, 3

 WRITE (NOUT,99999) (B(I,J,K),K=1,4)

 60 CONTINUE

 70 CONTINUE

!

99996 FORMAT (13X, 'The input for FFT3F is')

99997 FORMAT (/, 13X, 'The results from FFT3F are')

99998 FORMAT (/, ' Face no. ', I1)

99999 FORMAT (1X, 4('(',F6.2,',',F6.2,')',3X))

 END

Output

 The input for FFT3F is

Face no. 1

(1.00, 0.00) (-1.00, 0.00) (1.00, 0.00) (-1.00, 0.00)

(-0.50, -0.87) (0.50, 0.87) (-0.50, -0.87) (0.50, 0.87)

(-0.50, 0.87) (0.50, -0.87) (-0.50, 0.87) (0.50, -0.87)

Face no. 2

(-1.00, 0.00) (1.00, 0.00) (-1.00, 0.00) (1.00, 0.00)

(0.50, 0.87) (-0.50, -0.87) (0.50, 0.87) (-0.50, -0.87)

(0.50, -0.87) (-0.50, 0.87) (0.50, -0.87) (-0.50, 0.87)

The results from FFT3F are

Face no. 1

(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

Face no. 2

(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

(0.00, 0.00) (0.00, 0.00) (24.00, 0.00) (0.00, 0.00)

IMSL MATH LIBRARY Chapter 6: Transforms 1285

FFT3B

Computes the inverse Fourier transform of a complex periodic three-dimensional array.

Required Arguments

A — Three-dimensional complex matrix containing the data to be transformed. (Input)

B — Three-dimensional complex matrix containing the inverse Fourier coefficients of A.

(Output)

The matrices A and B may be the same.

Optional Arguments

N1 — Limit on the first subscript of matrices A and B. (Input)

Default: N1 = size (A,1).

N2 — Limit on the second subscript of matrices A and B. (Input)

Default: N2 = size (A,2).

N3 — Limit on the third subscript of matrices A and B. (Input)

Default: N3 = size (A,3).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = size (A,1).

MDA — Middle dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: MDA = size (A,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = size (B,1).

MDB — Middle dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: MDB = size (B,2).

FORTRAN 90 Interface

Generic: CALL FFT3B (A, B [,…])

Specific: The specific interface names are S_FFT3B and D_FFT3B.

1286 Chapter 6: Transforms IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL FFT3B (N1, N2, N3, A, LDA, MDA, B, LDB, MDB)

Double: The double precision name is DFFT3B.

Description

The routine FFT3B computes the inverse discrete complex Fourier transform of a complex three-

dimensional array of size (N1 = N) × (N2 = M) × (N3 = L). It uses the Intel
®

 Math Kernel Library,

Sun Performance Library or IBM Engineering and Scientific Subroutine Library for the

computation, if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm,

which is most efficient when N, M, and L are each products of small prime factors. If N, M, and L

satisfy this condition, then the computational effort is proportional to N M L log N M L. This

considerable savings has historically led people to refer to this algorithm as the ―fast Fourier

transform‖ or FFT.

Specifically, given an N M L array a, FFT3B returns in b

 2 1 1 / 2 1 1 / 2 1 1 /

1 1 1

N M L
i j n N i k m M i k l L

jkl nml

n m l

b a e e e

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NMLS

Finally, note that an unnormalized inverse is implemented in FFT3F. The routine FFT3B is based

on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber

at the National Center for Atmospheric Research.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2T3B/DF2T3B. The

reference is:

CALL F2T3B (N1, N2, N3, A, LDA, MDA, B, LDB, MDB, WFF1, WFF2, WFF3, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * N1 + 15 initialized by FFTCI. The

initialization depends on N1. (Input)

WFF2 — Real array of length 4 * N2 + 15 initialized by FFTCI. The

initialization depends on N2. (Input)

WFF3 — Real array of length 4 * N3 + 15 initialized by FFTCI. The

initialization depends on N3. (Input)

CPY — Real array of size 2 * MAX(N1, N2, N3). (Workspace)

IMSL MATH LIBRARY Chapter 6: Transforms 1287

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and

Scientific Subroutine Library is used, WFFT1, WFF2, WFF3, and CPY are not referenced.

2. The routine FFT3B is most efficient when N1, N2, and N3 are the product of small

primes.

3. If FFT3F/FFT3B is used repeatedly with the same values for N1, N2 and N3, then use

FFTCI to fill WFF1(N = N1), WFF2(N = N2), and WFF3(N = N3). Follow this with

repeated calls to F2T3F/F2T3B. This is more efficient than repeated calls to

FFT3F/FFT3B.

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and

Scientific Subroutine Library is used, parameters computed by FFTCI are not used. In this

case, there is no need to call FFTCI.

Example

In this example, we compute the Fourier transform of the 2 3 4 array

 2 1 2 3 1nmlx n m l

for 1 ≤ n ≤ 2, 1 ≤ m ≤ 3, and 1 ≤ l ≤ 4 using the IMSL routine FFT3F. The result

ˆa x

is then inverted using FFT3B. Note that the result is an array b satisfying b = 2(3)(4)x = 24x. In

general, FFT3B is an unnormalized inverse with expansion factor N M L.

 USE FFT3B_INT

 USE FFT3F_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER LDA, LDB, MDA, MDB, NDA, NDB

 PARAMETER (LDA=2, LDB=2, MDA=3, MDB=3, NDA=4, NDB=4)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I, J, K, L, M, N, N1, N2, N3, NOUT

 COMPLEX A(LDA,MDA,NDA), B(LDB,MDB,NDB), X(LDB,MDB,NDB)

! SPECIFICATIONS FOR INTRINSICS

 INTRINSIC CEXP, CMPLX

 COMPLEX CEXP, CMPLX

! SPECIFICATIONS FOR SUBROUTINES

! Get output unit number

 CALL UMACH (2, NOUT)

 N1 = 2

 N2 = 3

 N3 = 4

! Set array X

 DO 30 N=1, 2

 DO 20 M=1, 3

 DO 10 L=1, 4

 X(N,M,L) = N + 2*(M-1) + 2*3*(L-1)

 10 CONTINUE

 20 CONTINUE

 30 CONTINUE

1288 Chapter 6: Transforms IMSL MATH LIBRARY

!

 CALL FFT3F (X, A)

 CALL FFT3B (A, B)

!

 WRITE (NOUT,99996)

 DO 50 I=1, 2

 WRITE (NOUT,99998) I

 DO 40 J=1, 3

 WRITE (NOUT,99999) (X(I,J,K),K=1,4)

 40 CONTINUE

 50 CONTINUE

!

 WRITE (NOUT,99997)

 DO 70 I=1, 2

 WRITE (NOUT,99998) I

 DO 60 J=1, 3

 WRITE (NOUT,99999) (A(I,J,K),K=1,4)

 60 CONTINUE

 70 CONTINUE

!

 WRITE (NOUT, 99995)

 DO 90 I=1, 2

 WRITE (NOUT,99998) I

 DO 80 J=1, 3

 WRITE (NOUT,99999) (B(I,J,K),K=1,4)

 80 CONTINUE

 90 CONTINUE

99995 FORMAT (13X, 'The unnormalized inverse is')

99996 FORMAT (13X, 'The input for FFT3F is')

99997 FORMAT (/, 13X, 'The results from FFT3F are')

99998 FORMAT (/, ' Face no. ', I1)

99999 FORMAT (1X, 4('(',F6.2,',',F6.2,')',3X))

 END

Output

 The input for FFT3F is

Face no. 1

(1.00, 0.00) (7.00, 0.00) (13.00, 0.00) (19.00, 0.00)

(3.00, 0.00) (9.00, 0.00) (15.00, 0.00) (21.00, 0.00)

(5.00, 0.00) (11.00, 0.00) (17.00, 0.00) (23.00, 0.00)

Face no. 2

(2.00, 0.00) (8.00, 0.00) (14.00, 0.00) (20.00, 0.00)

(4.00, 0.00) (10.00, 0.00) (16.00, 0.00) (22.00, 0.00)

(6.00, 0.00) (12.00, 0.00) (18.00, 0.00) (24.00, 0.00)

The results from FFT3F are

Face no. 1

(300.00, 0.00) (-72.00, 72.00) (-72.00, 0.00) (-72.00,-72.00)

(-24.00, 13.86) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

(-24.00,-13.86) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

IMSL MATH LIBRARY Chapter 6: Transforms 1289

Face no. 2

(-12.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

The unnormalized inverse is

Face no. 1

(24.00, 0.00) (168.00, 0.00) (312.00, 0.00) (456.00, 0.00)

(72.00, 0.00) (216.00, 0.00) (360.00, 0.00) (504.00, 0.00)

(120.00, 0.00) (264.00, 0.00) (408.00, 0.00) (552.00, 0.00)

Face no. 2

(48.00, 0.00) (192.00, 0.00) (336.00, 0.00) (480.00, 0.00)

(96.00, 0.00) (240.00, 0.00) (384.00, 0.00) (528.00, 0.00)

(144.00, 0.00) (288.00, 0.00) (432.00, 0.00) (576.00, 0.00)

RCONV

Computes the convolution of two real vectors.

Required Arguments

X — Real vector of length NX. (Input)

Y — Real vector of length NY. (Input)

Z — Real vector of length NZ ontaining the convolution of X and Y. (Output)

ZHAT — Real vector of length NZ containing the discrete Fourier transform of Z. (Output)

Optional Arguments

IDO — Flag indicating the usage of RCONV. (Input)

 Default: IDO = 0.

 IDO Usage

0 If this is the only call to RCONV.

If RCONV is called multiple times in sequence with the same NX, NY, and IPAD, IDO

should be set to

1 on the first call

2 on the intermediate calls

1290 Chapter 6: Transforms IMSL MATH LIBRARY

 3 on the final call.

NX — Length of the vector X. (Input)

Default: NX = size (X,1).

NY — Length of the vector Y. (Input)

Default: NY = size (Y,1).

IPAD — IPAD should be set to zero for periodic data or to one for nonperiodic data. (Input)

Default: IPAD = 0.

NZ — Length of the vector Z. (Input/Output)

Upon input: When IPAD is zero, NZ must be at least MAX(NX, NY). When IPAD is one,

NZ must be greater than or equal to the smallest integer greater than or equal to

(NX + NY 1) of the form (2
α
) * (3

β
) * (5

γ
) where alpha, beta, and gamma are

nonnegative integers. Upon output, the value for NZ that was used by RCONV.

Default: NZ = size (Z,1).

FORTRAN 90 Interface

Generic: CALL RCONV (X, Y, Z, ZHAT [,…])

Specific: The specific interface names are S_RCONV and D_RCONV.

FORTRAN 77 Interface

Single: CALL RCONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT)

Double: The double precision name is DRCONV.

Description

The routine RCONV computes the discrete convolution of two sequences x and y. More precisely,

let nx be the length of x and ny denote the length of y. If a circular convolution is desired, then

IPAD must be set to zero. We set

nz := max{nx, ny}

and we pad out the shorter vector with zeroes. Then, we compute

1

1

zn

i i j j

j

z x y

where the index on x is interpreted as a positive number between 1 and nz, modulo nz.

The technique used to compute the zi‘s is based on the fact that the (complex discrete) Fourier

transform maps convolution into multiplication. Thus, the Fourier transform of z is given by

IMSL MATH LIBRARY Chapter 6: Transforms 1291

 ˆ ˆẑ n x n y n

where

 2 1 1 /

1

ˆ
z

z

n
i m n n

m

m

z n z e

The technique used here to compute the convolution is to take the discrete Fourier transform of x

and y, multiply the results together component-wise, and then take the inverse transform of this

product. It is very important to make sure that nz is a product of small primes if IPAD is set to zero.

If nz is a product of small primes, then the computational effort will be proportional to nz log(nz). If

IPAD is one, then a good value is chosen for nz so that the Fourier transforms are efficient and

nz ≥ nx + ny 1. This will mean that both vectors will be padded with zeroes.

We point out that no complex transforms of x or y are taken since both sequences are real, we can

take real transforms and simulate the complex transform above. This can produce a savings of a

factor of six in time as well as save space over using the complex transform.

Comments

1. Workspace may be explicitly provided, if desired, by use of R2ONV/DR2ONV. The

reference is:

CALL R2ONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT, XWK,

YWK, WK)

The additional arguments are as follows:

XWK — Real work array of length NZ.

YWK — Real work array of length NZ.

WK — Real work arrary of length 2 * NZ + 15.

2. Informational error

Type Code

 4 1 The length of the vector Z must be large enough to hold the results.

An acceptable length is returned in NZ.

Example

In this example, we compute both a periodic and a non-periodic convolution. The idea here is that

one can compute a moving average of the type found in digital filtering using this routine. The

averaging operator in this case is especially simple and is given by averaging five consecutive

points in the sequence. The periodic case tries to recover a noisy sin function by averaging five

nearby values. The nonperiodic case tries to recover the values of an exponential function

contaminated by noise. The large error for the last value printed has to do with the fact that the

convolution is averaging the zeroes in the ―pad‖ rather than function values. Notice that the signal

size is 100, but we only report the errors at ten points.

1292 Chapter 6: Transforms IMSL MATH LIBRARY

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER NFLTR, NY, A

 PARAMETER (NFLTR=5, NY=100)

!

 INTEGER I, IPAD, K, MOD, NOUT, NZ

 REAL ABS, EXP, F1, F2, FLOAT, FLTR(NFLTR), &

 FLTRER, ORIGER, SIN, TOTAL1, TOTAL2, TWOPI, X, &

 Y(NY), Z(2*(NFLTR+NY-1)), ZHAT(2*(NFLTR+NY-1))

 INTRINSIC ABS, EXP, FLOAT, MOD, SIN

! DEFINE FUNCTIONS

 F1(X) = SIN(X)

 F2(X) = EXP(X)

!

 CALL RNSET (1234579)

 CALL UMACH (2, NOUT)

 TWOPI = CONST('PI')

 TWOPI = 2.0*TWOPI

! SET UP THE FILTER

 DO 10 I=1, 5

 FLTR(I) = 0.2

 10 CONTINUE

! SET UP Y-VECTOR FOR THE PERIODIC

! CASE.

 DO 20 I=1, NY

 X = TWOPI*FLOAT(I-1)/FLOAT(NY-1)

 Y(I) = RNUNF()

 Y(I) = F1(X) + 0.5*Y(I) - 0.25

 20 CONTINUE

! CALL THE CONVOLUTION ROUTINE FOR THE

! PERIODIC CASE.

 NZ = 2*(NFLTR+NY-1)

 CALL RCONV (FLTR, Y, Z, ZHAT, IPAD=0, NZ=NZ)

! PRINT RESULTS

 WRITE (NOUT,99993)

 WRITE (NOUT,99995)

 TOTAL1 = 0.0

 TOTAL2 = 0.0

 DO 30 I=1, NY

! COMPUTE THE OFFSET FOR THE Z-VECTOR

 IF (I .GE. NY-1) THEN

 K = I - NY + 2

 ELSE

 K = I + 2

 END IF

!

 X = TWOPI*FLOAT(I-1)/FLOAT(NY-1)

 ORIGER = ABS(Y(I)-F1(X))

 FLTRER = ABS(Z(K)-F1(X))

 IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F1(X), ORIGER, &

 FLTRER

 TOTAL1 = TOTAL1 + ORIGER

 TOTAL2 = TOTAL2 + FLTRER

 30 CONTINUE

IMSL MATH LIBRARY Chapter 6: Transforms 1293

 WRITE (NOUT,99998) TOTAL1/FLOAT(NY)

 WRITE (NOUT,99999) TOTAL2/FLOAT(NY)

! SET UP Y-VECTOR FOR THE NONPERIODIC

! CASE.

 DO 40 I=1, NY

 A = FLOAT(I-1)/FLOAT(NY-1)

 Y(I) = RNUNF()

 Y(I) = F2(A) + 0.5*Y(I) - 0.25

 40 CONTINUE

! CALL THE CONVOLUTION ROUTINE FOR THE

! NONPERIODIC CASE.

 NZ = 2*(NFLTR+NY-1)

 CALL RCONV (FLTR, Y, Z, ZHAT, IPAD=1)

! PRINT RESULTS

 WRITE (NOUT,99994)

 WRITE (NOUT,99996)

 TOTAL1 = 0.0

 TOTAL2 = 0.0

 DO 50 I=1, NY

 X = FLOAT(I-1)/FLOAT(NY-1)

 ORIGER = ABS(Y(I)-F2(X))

 FLTRER = ABS(Z(I+2)-F2(X))

 IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F2(X), ORIGER, &

 FLTRER

 TOTAL1 = TOTAL1 + ORIGER

 TOTAL2 = TOTAL2 + FLTRER

 50 CONTINUE

 WRITE (NOUT,99998) TOTAL1/FLOAT(NY)

 WRITE (NOUT,99999) TOTAL2/FLOAT(NY)

99993 FORMAT (' Periodic Case')

99994 FORMAT (/,' Nonperiodic Case')

99995 FORMAT (8X, 'x', 9X, 'sin(x)', 6X, 'Original Error', 5X, &

 'Filtered Error')

99996 FORMAT (8X, 'x', 9X, 'exp(x)', 6X, 'Original Error', 5X, &

 'Filtered Error')

99997 FORMAT (1X, F10.4, F13.4, 2F18.4)

99998 FORMAT (' Average absolute error before filter:', F10.5)

99999 FORMAT (' Average absolute error after filter:', F11.5)

 END

Output

Periodic Case

 x sin(x) Original Error Filtered Error

 0.0000 0.0000 0.0811 0.0587

 0.6981 0.6428 0.0226 0.0781

 1.3963 0.9848 0.1526 0.0529

 2.0944 0.8660 0.0959 0.0125

 2.7925 0.3420 0.1747 0.0292

 3.4907 -0.3420 0.1035 0.0238

 4.1888 -0.8660 0.0402 0.0595

 4.8869 -0.9848 0.0673 0.0798

 5.5851 -0.6428 0.1044 0.0074

 6.2832 0.0000 0.0154 0.0018

 Average absolute error before filter: 0.12481

 Average absolute error after filter: 0.04778

1294 Chapter 6: Transforms IMSL MATH LIBRARY

Nonperiodic Case

 x exp(x) Original Error Filtered Error

 0.0000 1.0000 0.1476 0.3915

 0.1111 1.1175 0.0537 0.0326

 0.2222 1.2488 0.1278 0.0932

 0.3333 1.3956 0.1136 0.0987

 0.4444 1.5596 0.1617 0.0964

 0.5556 1.7429 0.0071 0.0662

 0.6667 1.9477 0.1248 0.0713

 0.7778 2.1766 0.1556 0.0158

 0.8889 2.4324 0.1529 0.0696

 1.0000 2.7183 0.2124 1.0562

 Average absolute error before filter: 0.12538

 Average absolute error after filter: 0.07764

CCONV

Computes the convolution of two complex vectors.

Required Arguments

X — Complex vector of length NX. (Input)

Y — Complex vector of length NY. (Input)

Z — Complex vector of length NZ containing the convolution of X and Y. (Output)

ZHAT — Complex vector of length NZ containing the discrete complex Fourier transform of

Z. (Output)

Optional Arguments

IDO — Flag indicating the usage of CCONV. (Input)

 Default: IDO = 0.

IDO Usage

0 If this is the only call to CCONV.

If CCONV is called multiple times in sequence with the same NX, NY, and IPAD, IDO

should be set to:

1 on the first call

2 on the intermediate calls

IMSL MATH LIBRARY Chapter 6: Transforms 1295

 3 on the final call.

NX — Length of the vector X. (Input)

Default: NX = size (X,1).

NY — Length of the vector Y. (Input)

Default: NY = size (Y,1).

IPAD — IPAD should be set to zero for periodic data or to one for nonperiodic data. (Input)

Default: IPAD =0.

NZ — Length of the vector Z. (Input/Output)

Upon input: When IPAD is zero, NZ must be at least MAX(NX, NY). When IPAD is one,

NZ must be greater than or equal to the smallest integer greater than or equal to

(NX + NY 1) of the form (2
α
) * (3

β
) * (5

γ
) where alpha, beta, and gamma are

nonnegative integers. Upon output, the value for NZ that was used by CCONV.

Default: NZ = size (Z,1).

FORTRAN 90 Interface

Generic: CALL CCONV (X, Y, Z, ZHAT [,…])

Specific: The specific interface names are S_CCONV and D_CCONV.

FORTRAN 77 Interface

Single: CALL CCONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT)

Double: The double precision name is DCCONV.

Description

The subroutine CCONV computes the discrete convolution of two complex sequences x and y. More

precisely, let nx be the length of x and ny denote the length of y. If a circular convolution is desired,

then IPAD must be set to zero. We set

nz := max{nx, ny}

and we pad out the shorter vector with zeroes. Then, we compute

1

1

zn

i i j j

j

z x y

where the index on x is interpreted as a positive number between 1 and nz, modulo nz.

The technique used to compute the zi‘s is based on the fact that the (complex discrete) Fourier

transform maps convolution into multiplication. Thus, the Fourier transform of z is given by

 ˆ ˆẑ n x n y n

1296 Chapter 6: Transforms IMSL MATH LIBRARY

where

 2 1 1 /

1

ˆ
z

z

n
i m n n

m

m

z n z e

The technique used here to compute the convolution is to take the discrete Fourier transform of x

and y, multiply the results together component-wise, and then take the inverse transform of this

product. It is very important to make sure that nz is a product of small primes if IPAD is set to zero.

If nz is a product of small primes, then the computational effort will be proportional to nz log(nz). If

IPAD is one, then a a good value is chosen for nz so that the Fourier transforms are efficient and

nz ≥ nx + ny 1. This will mean that both vectors will be padded with zeroes.

Comments

1. Workspace may be explicitly provided, if desired, by use of C2ONV/DC2ONV. The

reference is:

CALL C2ONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT, XWK, YWK,

WK)

The additional arguments are as follows:

XWK — Complex work array of length NZ.

YWK — Complex work array of length NZ.

WK — Real work array of length 6 * NZ + 15.

2. Informational error

Type Code

4 1 The length of the vector Z must be large enough to hold the results.

An acceptable length is returned in NZ.

Example

In this example, we compute both a periodic and a non-periodic convolution. The idea here is that

one can compute a moving average of the type found in digital filtering using this routine. The

averaging operator in this case is especially simple and is given by averaging five consecutive

points in the sequence. The periodic case tries to recover a noisy function f1 (x) = cos(x) + i sin(x)

by averaging five nearby values. The nonperiodic case tries to recover the values of the function f2

(x) = e
x
f1 (x) contaminated by noise. The large error for the first and last value printed has to do

with the fact that the convolution is averaging the zeroes in the ―pad‖ rather than function values.

Notice that the signal size is 100, but we only report the errors at ten points.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

IMSL MATH LIBRARY Chapter 6: Transforms 1297

 INTEGER NFLTR, NY

 PARAMETER (NFLTR=5, NY=100)

!

 INTEGER I, IPAD, K, MOD, NOUT, NZ

 REAL CABS, COS, EXP, FLOAT, FLTRER, ORIGER, &

 SIN, TOTAL1, TOTAL2, TWOPI, X, T1, T2

 COMPLEX CMPLX, F1, F2, FLTR(NFLTR), Y(NY), Z(2*(NFLTR+NY-1)), &

 ZHAT(2*(NFLTR+NY-1))

 INTRINSIC CABS, CMPLX, COS, EXP, FLOAT, MOD, SIN

! DEFINE FUNCTIONS

 F1(X) = CMPLX(COS(X),SIN(X))

 F2(X) = EXP(X)*CMPLX(COS(X),SIN(X))

!

 CALL RNSET (1234579)

 CALL UMACH (2, NOUT)

 TWOPI = CONST('PI')

 TWOPI = 2.0*TWOPI

! SET UP THE FILTER

 CALL CSET(NFLTR,(0.2,0.0),FLTR,1)

! SET UP Y-VECTOR FOR THE PERIODIC

! CASE.

 DO 20 I=1, NY

 X = TWOPI*FLOAT(I-1)/FLOAT(NY-1)

 T1 = RNUNF()

 T2 = RNUNF()

 Y(I) = F1(X) + CMPLX(0.5*T1-0.25,0.5*T2-0.25)

 20 CONTINUE

! CALL THE CONVOLUTION ROUTINE FOR THE

! PERIODIC CASE.

 NZ = 2*(NFLTR+NY-1)

 CALL CCONV (FLTR, Y, Z, ZHAT)

! PRINT RESULTS

 WRITE (NOUT,99993)

 WRITE (NOUT,99995)

 TOTAL1 = 0.0

 TOTAL2 = 0.0

 DO 30 I=1, NY

! COMPUTE THE OFFSET FOR THE Z-VECTOR

 IF (I .GE. NY-1) THEN

 K = I - NY + 2

 ELSE

 K = I + 2

 END IF

!

 X = TWOPI*FLOAT(I-1)/FLOAT(NY-1)

 ORIGER = CABS(Y(I)-F1(X))

 FLTRER = CABS(Z(K)-F1(X))

 IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F1(X), ORIGER, &

 FLTRER

 TOTAL1 = TOTAL1 + ORIGER

 TOTAL2 = TOTAL2 + FLTRER

 30 CONTINUE

 WRITE (NOUT,99998) TOTAL1/FLOAT(NY)

 WRITE (NOUT,99999) TOTAL2/FLOAT(NY)

! SET UP Y-VECTOR FOR THE NONPERIODIC

! CASE.

 DO 40 I=1, NY

1298 Chapter 6: Transforms IMSL MATH LIBRARY

 X = FLOAT(I-1)/FLOAT(NY-1)

 T1 = RNUNF()

 T2 = RNUNF()

 Y(I) = F2(X) + CMPLX(0.5*T1-0.25,0.5*T2-0.25)

 40 CONTINUE

! CALL THE CONVOLUTION ROUTINE FOR THE

! NONPERIODIC CASE.

 NZ = 2*(NFLTR+NY-1)

 CALL CCONV (FLTR, Y, Z, ZHAT, IPAD=1)

! PRINT RESULTS

 WRITE (NOUT,99994)

 WRITE (NOUT,99996)

 TOTAL1 = 0.0

 TOTAL2 = 0.0

 DO 50 I=1, NY

 X = FLOAT(I-1)/FLOAT(NY-1)

 ORIGER = CABS(Y(I)-F2(X))

 FLTRER = CABS(Z(I+2)-F2(X))

 IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F2(X), ORIGER, &

 FLTRER

 TOTAL1 = TOTAL1 + ORIGER

 TOTAL2 = TOTAL2 + FLTRER

 50 CONTINUE

 WRITE (NOUT,99998) TOTAL1/FLOAT(NY)

 WRITE (NOUT,99999) TOTAL2/FLOAT(NY)

99993 FORMAT (' Periodic Case')

99994 FORMAT (/, ' Nonperiodic Case')

99995 FORMAT (8X, 'x', 15X, 'f1(x)', 8X, 'Original Error', 5X, &

 'Filtered Error')

99996 FORMAT (8X, 'x', 15X, 'f2(x)', 8X, 'Original Error', 5X, &

 'Filtered Error')

99997 FORMAT (1X, F10.4, 5X, '(', F7.4, ',', F8.4, ')', 5X, F8.4, &

 10X, F8.4)

99998 FORMAT (' Average absolute error before filter:', F11.5)

99999 FORMAT (' Average absolute error after filter:', F12.5)

 END

Output

Periodic Case

 x f1(x) Original Error Filtered Error

 0.0000 (1.0000, 0.0000) 0.1666 0.0773

 0.6981 (0.7660, 0.6428) 0.1685 0.1399

 1.3963 (0.1736, 0.9848) 0.1756 0.0368

 2.0944 (-0.5000, 0.8660) 0.2171 0.0142

 2.7925 (-0.9397, 0.3420) 0.1147 0.0200

 3.4907 (-0.9397, -0.3420) 0.0998 0.0331

 4.1888 (-0.5000, -0.8660) 0.1137 0.0586

 4.8869 (0.1736, -0.9848) 0.2217 0.0843

 5.5851 (0.7660, -0.6428) 0.1831 0.0744

 6.2832 (1.0000, 0.0000) 0.3234 0.0893

 Average absolute error before filter: 0.19315

 Average absolute error after filter: 0.08296

Nonperiodic Case

IMSL MATH LIBRARY Chapter 6: Transforms 1299

 x f2(x) Original Error Filtered Error

 0.0000 (1.0000, 0.0000) 0.0783 0.4336

 0.1111 (1.1106, 0.1239) 0.2434 0.0477

 0.2222 (1.2181, 0.2752) 0.1819 0.0584

 0.3333 (1.3188, 0.4566) 0.0703 0.1267

 0.4444 (1.4081, 0.6706) 0.1458 0.0868

 0.5556 (1.4808, 0.9192) 0.1946 0.0930

 0.6667 (1.5307, 1.2044) 0.1458 0.0734

 0.7778 (1.5508, 1.5273) 0.1815 0.0690

 0.8889 (1.5331, 1.8885) 0.0805 0.0193

 1.0000 (1.4687, 2.2874) 0.2396 1.1708

 Average absolute error before filter: 0.18549

 Average absolute error after filter: 0.09636

RCORL

Computes the correlation of two real vectors.

Required Arguments

X — Real vector of length N. (Input)

Y — Real vector of length N. (Input)

Z — Real vector of length NZ containing the correlation of X and Y. (Output)

ZHAT — Real vector of length NZ containing the discrete Fourier transform of Z. (Output)

Optional Arguments

IDO — Flag indicating the usage of RCORL. (Input)

 Default: IDO = 0.

 IDO Usage

0 If this is the only call to RCORL.

If RCORL is called multiple times in sequence with the same NX, NY, and IPAD, IDO

should be set to:

1 on the first call

2 on the intermediate calls

3 on the final call.

1300 Chapter 6: Transforms IMSL MATH LIBRARY

N — Length of the X and Y vectors. (Input)

Default: N = size (X,1).

IPAD — IPAD should be set as follows. (Input)

Default: IPAD = 0.

IPAD Value

IPAD 0 for periodic data with X and Y different.

IPAD 1 for nonperiodic data with X and Y different.

IPAD 2 for periodic data with X and Y identical.

IPAD 3 for nonperiodic data with X and Y identical.

NZ — Length of the vector Z. (Input/Output)

Upon input: When IPAD is zero or two, NZ must be at least (2 * N 1). When IPAD is

one or three, NZ must be greater than or equal to the smallest integer greater than or

equal to (2 * N 1) of the form (2
α
) * (3

β
) * (5

γ
) where alpha, beta, and gamma are

nonnegative integers. Upon output, the value for NZ that was used by RCORL.

Default: NZ = size (Z,1).

FORTRAN 90 Interface

Generic: CALL RCORL (X, Y, Z, ZHAT [,…])

Specific: The specific interface names are S_RCORL and D_RCORL.

FORTRAN 77 Interface

Single: CALL RCORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT)

Double: The double precision name is DRCORL.

Description

The subroutine RCORL computes the discrete correlation of two sequences x and y. More precisely,

let n be the length of x and y. If a circular correlation is desired, then IPAD must be set to zero (for

x and y distinct) and two (for x = y). We set (on output)

if IPAD = 0, 2

2 3 5 2 1 if IPAD = 1, 3

z

z

n n

n n

where α, β, γ are nonnegative integers yielding the smallest number of the type 2
α
3

 β
5

γ
 satisfying

the inequality. Once nz is determined, we pad out the vectors with zeroes. Then, we compute

IMSL MATH LIBRARY Chapter 6: Transforms 1301

1

1

zn

i i j j

j

z x y

where the index on x is interpreted as a positive number between one and nz, modulo nz. Note that

this means that

zn kz

contains the correlation of x(k 1) with y as k = 0, 1, …, nz /2. Thus, if x(k 1) = y(k) for all k,

then we would expect

znz

to be the largest component of z.

The technique used to compute the zi‘s is based on the fact that the (complex discrete) Fourier

transform maps correlation into multiplication. Thus, the Fourier transform of z is given by

ˆ ˆˆ j j jz x y

where

 2 1 1 /

1

ˆ
z

z

n
i m j n

j m

m

z z e

Thus, the technique used here to compute the correlation is to take the discrete Fourier transform

of x and the conjugate of the discrete Fourier transform of y, multiply the results together

component-wise, and then take the inverse transform of this product. It is very important to make

sure that nz is a product of small primes if IPAD is set to zero or two. If nz is a product of small

primes, then the computational effort will be proportional to nz log(nz). If IPAD is one or three,

then a good value is chosen for nz so that the Fourier transforms are efficient and nz ≥ 2n 1. This

will mean that both vectors will be padded with zeroes.

We point out that no complex transforms of x or y are taken since both sequences are real, and we

can take real transforms and simulate the complex transform above. This can produce a savings of

a factor of six in time as well as save space over using the complex transform.

Comments

1. Workspace may be explicitly provided, if desired, by use of R2ORL/DR2ORL. The

reference is:

CALL R2ORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT, XWK, YWK, WK)

The additional arguments are as follows:

XWK — Real work array of length NZ.

YWK — Real work array of length NZ.

1302 Chapter 6: Transforms IMSL MATH LIBRARY

WK — Real work arrary of length 2 * NZ + 15.

2. Informational error

Type Code

4 1 The length of the vector Z must be large enough to hold the results.

An acceptable length is returned in NZ.

Example

In this example, we compute both a periodic and a non-periodic correlation between two distinct

signals x and y. In the first case we have 100 equally spaced points on the interval [0, 2π] and

f1 (x) = sin(x). We define x and y as follows

1

1

1
(2) 1, ,

1

1
(2) 1, ,

1 2

i

i

i
x f i n

n

i
y f i n

n

Note that the maximum value of z (the correlation of x with y) occurs at i = 26, which corresponds

to the offset.

The nonperiodic case uses the function f2 (x) = sin(x
2
). The two input signals are on the interval

[0, 4π].

2

2

1
(4) 1, ,

1

1
(4) 1, ,

1

i

i

i
x f i n

n

i
y f i n

n

The offset of x to y is again (roughly) 26 and this is where z has its maximum value.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=100)

!

 INTEGER I, IPAD, K, NOUT, NZ

 REAL A, F1, F2, FLOAT, PI, SIN, X(N), XNORM, &

 Y(N), YNORM, Z(4*N), ZHAT(4*N)

 INTRINSIC FLOAT, SIN

! Define functions

 F1(A) = SIN(A)

 F2(A) = SIN(A*A)

!

 CALL UMACH (2, NOUT)

 PI = CONST('pi')

! Set up the vectors for the

! periodic case.

 DO 10 I=1, N

IMSL MATH LIBRARY Chapter 6: Transforms 1303

 X(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1))

 Y(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI/2.0)

 10 CONTINUE

! Call the correlation routine for the

! periodic case.

 NZ = 2*N

 CALL RCORL (X, Y, Z, ZHAT)

! Find the element of Z with the

! largest normalized value.

 XNORM = SNRM2(N,X,1)

 YNORM = SNRM2(N,Y,1)

 DO 20 I=1, N

 Z(I) = Z(I)/(XNORM*YNORM)

 20 CONTINUE

 K = ISMAX(N,Z,1)

! Print results for the periodic

! case.

 WRITE (NOUT,99995)

 WRITE (NOUT,99994)

 WRITE (NOUT,99997)

 WRITE (NOUT,99998) K

 WRITE (NOUT,99999) K, Z(K)

! Set up the vectors for the

! nonperiodic case.

 DO 30 I=1, N

 X(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1))

 Y(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI)

 30 CONTINUE

! Call the correlation routine for the

! nonperiodic case.

 NZ = 4*N

 CALL RCORL (X, Y, Z, ZHAT, IPAD=1)

! Find the element of Z with the

! largest normalized value.

 XNORM = SNRM2(N,X,1)

 YNORM = SNRM2(N,Y,1)

 DO 40 I=1, N

 Z(I) = Z(I)/(XNORM*YNORM)

 40 CONTINUE

 K = ISMAX(N,Z,1)

! Print results for the nonperiodic

! case.

 WRITE (NOUT,99996)

 WRITE (NOUT,99994)

 WRITE (NOUT,99997)

 WRITE (NOUT,99998) K

 WRITE (NOUT,99999) K, Z(K)

99994 FORMAT (1X, 28('-'))

99995 FORMAT (' Case #1: Periodic data')

99996 FORMAT (/, ' Case #2: Nonperiodic data')

99997 FORMAT (' The element of Z with the largest normalized ')

99998 FORMAT (' value is Z(', I2, ').')

99999 FORMAT (' The normalized value of Z(', I2, ') is', F6.3)

 END

Output

1304 Chapter 6: Transforms IMSL MATH LIBRARY

Example #1: Periodic case

The element of Z with the largest normalized value is Z(26).

The normalized value of Z(26) is 1.000

Example #2: Nonperiodic case

The element of Z with the largest normalized value is Z(26).

The normalized value of Z(26) is 0.661

CCORL

Computes the correlation of two complex vectors.

Required Arguments

X — Complex vector of length N. (Input)

Y — Complex vector of length N. (Input)

Z — Complex vector of length NZ containing the correlation of X and Y. (Output)

ZHAT — Complex vector of length NZ containing the inverse discrete complex Fourier

transform of Z. (Output)

Optional Arguments

IDO — Flag indicating the usage of CCORL. (Input)

Default: IDO = 0.

IDO Usage

0 If this is the only call to CCORL.

If CCORL is called multiple times in sequence with the same NX, NY, and IPAD, IDO

should be set to:

1 on the first call

2 on the intermediate calls

3 on the final call.

IMSL MATH LIBRARY Chapter 6: Transforms 1305

N — Length of the X and Y vectors. (Input)

Default: N = size (X,1).

IPAD — IPAD should be set as follows. (Input)

IPAD = 0 for periodic data with X and Y different. IPAD = 1 for nonperiodic data with X

and Y different. IPAD = 2 for periodic data with X and Y identical. IPAD = 3 for

nonperiodic data with X and Y identical.

Default: IPAD = 0.

NZ — Length of the vector Z. (Input/Output)

Upon input: When IPAD is zero or two, NZ must be at least (2 * N 1). When IPAD is

one or three, NZ must be greater than or equal to the smallest integer greater than or

equal to (2 * N 1) of the form (2
α
) * (3

β
) * (5

γ
) where alpha, beta, and gamma are

nonnegative integers. Upon output, the value for NZ that was used by CCORL.

Default: NZ = size (Z,1).

FORTRAN 90 Interface

Generic: CALL CCORL (X, Y, Z, ZHAT [,…])

Specific: The specific interface names are S_CCORL and D_CCORL.

FORTRAN 77 Interface

Single: CALL CCORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT)

Double: The double precision name is DCCORL.

Description

The subroutine CCORL computes the discrete correlation of two complex sequences x and y. More

precisely, let n be the length of x and y. If a circular correlation is desired, then IPAD must be set

to zero (for x and y distinct) and two (for x = y). We set (on output)

if IPAD = 0, 2

2 3 5 2 1 if IPAD = 1, 3

z

z

n n

n n

where α, β, are nonnegative integers yielding the smallest number of the type 2
α
3

β
5

γ
 satisfying

the inequality. Once nz is determined, we pad out the vectors with zeroes. Then, we compute

1

1

zn

i i j j

j

z x y

where the index on x is interpreted as a positive number between one and nz, modulo nz. Note that

this means that

zn kz

1306 Chapter 6: Transforms IMSL MATH LIBRARY

contains the correlation of x(k 1) with y as k = 0, 1, …, nz /2. Thus, if x(k 1) = y(k) for all k,

then we would expect

znz

to be the largest component of ℜz.

The technique used to compute the zi‘s is based on the fact that the (complex discrete) Fourier

transform maps correlation into multiplication. Thus, the Fourier transform of z is given by

ˆ ˆˆ j j jz x y

where

 2 1 1 /

1

ˆ
z

z

n
i m j n

j m

m

z z e

Thus, the technique used here to compute the correlation is to take the discrete Fourier transform

of x and the conjugate of the discrete Fourier transform of y, multiply the results together

component-wise, and then take the inverse transform of this product. It is very important to make

sure that nz is a product of small primes if IPAD is set to zero or two. If nz is a product of small

primes, then the computational effort will be proportional to nz log(nz). If IPAD is one or three,

then a good value is chosen for nz so that the Fourier transforms are efficient and nz ≥ 2n 1. This

will mean that both vectors will be padded with zeroes.

Comments

1. Workspace may be explicitly provided, if desired, by use of C2ORL/DC2ORL. The

reference is:

CALL C2ORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT, XWK, YWK, WK)

The additional arguments are as follows:

XWK — Complex work array of length NZ.

YWK — Complex work array of length NZ.

WK — Real work arrary of length 6 * NZ + 15.

2. Informational error

Type Code

4 1 The length of the vector Z must be large enough to hold the results.

An acceptable length is returned in NZ.

IMSL MATH LIBRARY Chapter 6: Transforms 1307

Example

In this example, we compute both a periodic and a non-periodic correlation between two distinct

signals x and y. In the first case, we have 100 equally spaced points on the interval [0, 2π] and

f1 (x) = cos(x) + i sin(x). We define x and y as follows

1

1

1
(2) 1, ,

1

1
(2) 1, ,

1 2

i

i

i
x f i n

n

i
y f i n

n

Note that the maximum value of z (the correlation of x with y) occurs at i = 26, which corresponds

to the offset.

The nonperiodic case uses the function f2 (x) = cos(x
2
) + i sin(x

2
). The two input signals are on the

interval [0, 4π].

2

2

1
(4) 1, ,

1

1
(4) 1, ,

1

i

i

i
x f i n

n

i
y f i n

n

The offset of x to y is again (roughly) 26 and this is where z has its maximum value.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=100)

!

 INTEGER I, IPAD, K, NOUT, NZ

 REAL A, COS, F1, F2, FLOAT, PI, SIN, &

 XNORM, YNORM, ZREAL1(4*N)

 COMPLEX CMPLX, X(N), Y(N), Z(4*N), ZHAT(4*N)

 INTRINSIC CMPLX, COS, FLOAT, SIN

! Define functions

 F1(A) = CMPLX(COS(A),SIN(A))

 F2(A) = CMPLX(COS(A*A),SIN(A*A))

!

 CALL RNSET (1234579)

 CALL UMACH (2, NOUT)

 PI = CONST('pi')

! Set up the vectors for the

! periodic case.

 DO 10 I=1, N

 X(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1))

 Y(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI/2.0)

 10 CONTINUE

! Call the correlation routine for the

! periodic case.

 NZ = 2*N

 CALL CCORL (X, Y, Z, ZHAT, IPAD=0, NZ=NZ)

! Find the element of Z with the

! largest normalized real part.

1308 Chapter 6: Transforms IMSL MATH LIBRARY

 XNORM = SCNRM2(N,X,1)

 YNORM = SCNRM2(N,Y,1)

 DO 20 I=1, N

 ZREAL1(I) = REAL(Z(I))/(XNORM*YNORM)

 20 CONTINUE

 K = ISMAX(N,ZREAL1,1)

! Print results for the periodic

! case.

 WRITE (NOUT,99995)

 WRITE (NOUT,99994)

 WRITE (NOUT,99997)

 WRITE (NOUT,99998) K

 WRITE (NOUT,99999) K, ZREAL1(K)

! Set up the vectors for the

! nonperioddic case.

 DO 30 I=1, N

 X(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1))

 Y(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI)

 30 CONTINUE

! Call the correlation routine for the

! nonperiodic case.

 NZ = 4*N

 CALL CCORL (X, Y, Z, ZHAT, IPAD=1, NZ=NZ)

! Find the element of z with the

! largest normalized real part.

 XNORM = SCNRM2(N,X,1)

 YNORM = SCNRM2(N,Y,1)

 DO 40 I=1, N

 ZREAL1(I) = REAL(Z(I))/(XNORM*YNORM)

 40 CONTINUE

 K = ISMAX(N,ZREAL1,1)

! Print results for the nonperiodic

! case.

 WRITE (NOUT,99996)

 WRITE (NOUT,99994)

 WRITE (NOUT,99997)

 WRITE (NOUT,99998) K

 WRITE (NOUT,99999) K, ZREAL1(K)

99994 FORMAT (1X, 28('-'))

99995 FORMAT (' Case #1: periodic data')

99996 FORMAT (/, ' Case #2: nonperiodic data')

99997 FORMAT (' The element of Z with the largest normalized ')

99998 FORMAT (' real part is Z(', I2, ').')

99999 FORMAT (' The normalized value of real(Z(', I2, ')) is', F6.3)

 END

Output

Example #1: periodic case

The element of Z with the largest normalized real part is Z(26).

The normalized value of real(Z(26)) is 1.000

Example #2: nonperiodic case

IMSL MATH LIBRARY Chapter 6: Transforms 1309

The element of Z with the largest normalized real part is Z(26).

The normalized value of real(Z(26)) is 0.638

INLAP
Computes the inverse Laplace transform of a complex function.

Required Arguments

F — User-supplied FUNCTION to which the inverse Laplace transform will be computed. The

form is F(Z), where

 Z – Complex argument. (Input)

F – The complex function value. (Output)

F must be declared EXTERNAL in the calling program. F should also be declared COMPLEX.

T — Array of length N containing the points at which the inverse Laplace transform is

desired. (Input)

T(I) must be greater than zero for all I.

FINV — Array of length N whose I-th component contains the approximate value of the

Laplace transform at the point T(I). (Output)

Optional Arguments

N — Number of points at which the inverse Laplace transform is desired. (Input)

Default: N = size (T,1).

ALPHA — An estimate for the maximum of the real parts of the singularities of F. If

unknown, set ALPHA = 0. (Input)

Default: ALPHA = 0.0.

KMAX — The number of function evaluations allowed for each T(I). (Input)

Default: KMAX = 500.

RELERR — The relative accuracy desired. (Input)

Default: RELERR = 1.1920929e-5 for single precision and 2.22d-10 for double

precision.

FORTRAN 90 Interface

Generic: CALL INLAP (F, T, FINV [,…])

Specific: The specific interface names are S_INLAP and D_INLAP.

FORTRAN 77 Interface

Single: CALL INLAP (F, N, T, ALPHA, RELERR, KMAX, FINV)

1310 Chapter 6: Transforms IMSL MATH LIBRARY

Double: The double precision name is DINLAP.

Description

The routine INLAP computes the inverse Laplace transform of a complex-valued function. Recall

that if f is a function that vanishes on the negative real axis, then we can define the Laplace

transform of f by

0

: sxL f s e f x dx

It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on applying the epsilon algorithm to

the complex Fourier series obtained as a discrete approximation to the inversion integral. The

initial algorithm was proposed by K.S. Crump (1976) but was significantly improved by de Hoog

et al. (1982). Given a complex-valued transform F(s) = L[f](s), the trapezoidal rule gives the

approximation to the inverse transform

1

1
/ ()exp()

2

t

k

ik ik t
g t e T F F

T T

This is the real part of the sum of a complex power series in z = exp(i πt/T), and the algorithm

accelerates the convergence of the partial sums of this power series by using the epsilon algorithm

to compute the corresponding diagonal Pade approximants. The algorithm attempts to choose the

order of the Pade approximant to obtain the specified relative accuracy while not exceeding the

maximum number of function evaluations allowed. The parameter α is an estimate for the

maximum of the real parts of the singularities of F, and an incorrect choice of α may give false

convergence. Even in cases where the correct value of α is unknown, the algorithm will attempt to

estimate an acceptable value. Assuming satisfactory convergence, the discretization error

E := g f satisfies

 2

1

2n T

n

E e f nT t

It follows that if |f(t)| ≤ Me
βt

, then we can estimate the expression above to obtain

(for 0 ≤ t ≤ 2T)

 2
/ 1

TtE Me e

Comments

Informational errors

Type Code

4 1 The algorithm was not able to achieve the accuracy requested within

KMAX function evaluations for some T(I).

4 2 Overflow is occurring for a particular value of T.

IMSL MATH LIBRARY Chapter 6: Transforms 1311

Example

We invert the Laplace transform of the simple function (s 1)-2
 and print the computed answer,

the true solution and the difference at five different points. The correct inverse transform is xe
x
.

 USE INLAP_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER I, KMAX, N, NOUT

 REAL ALPHA, DIF(5), EXP, FINV(5), FLOAT, RELERR, T(5), &

 TRUE(5)

 COMPLEX F

 INTRINSIC EXP, FLOAT

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

!

 DO 10 I=1, 5

 T(I) = FLOAT(I) - 0.5

 10 CONTINUE

 N = 5

 ALPHA = 1.0E0

 RELERR = 5.0E-4

 CALL INLAP (F, T, FINV, ALPHA=ALPHA, RELERR=RELERR)

! Evaluate the true solution and the

! difference

 DO 20 I=1, 5

 TRUE(I) = T(I)*EXP(T(I))

 DIF(I) = TRUE(I) - FINV(I)

 20 CONTINUE

!

 WRITE (NOUT,99999) (T(I),FINV(I),TRUE(I),DIF(I),I=1,5)

99999 FORMAT (7X, 'T', 8X, 'FINV', 9X, 'TRUE', 9X, 'DIFF', /, &

 5(1X,E9.1,3X,1PE10.3,3X,1PE10.3,3X,1PE10.3,/))

 END

!

 COMPLEX FUNCTION F (S)

 COMPLEX S

 F = 1./(S-1.)**2

 RETURN

 END

Output

 T FINV TRUE DIFF

0.5E+00 8.244E-01 8.244E-01 -4.768E-06

1.5E+00 6.723E+00 6.723E+00 -3.481E-05

2.5E+00 3.046E+01 3.046E+01 -1.678E-04

3.5E+00 1.159E+02 1.159E+02 -6.027E-04

4.5E+00 4.051E+02 4.051E+02 -2.106E-03

SINLP
Computes the inverse Laplace transform of a complex function.

1312 Chapter 6: Transforms IMSL MATH LIBRARY

Required Arguments

F — User-supplied FUNCTION to which the inverse Laplace transform will be

computed. The form is F(Z), where

 Z — Complex argument. (Input)

F — The complex function value. (Output)

 F must be declared EXTERNAL in the calling program. F must also be declared

COMPLEX.

T — Vector of length N containing points at which the inverse Laplace transform is desired.

(Input)

T(I) must be greater than zero for all I.

FINV — Vector of length N whose I-th component contains the approximate value of the

inverse Laplace transform at the point T(I). (Output)

Optional Arguments

N — The number of points at which the inverse Laplace transform is desired. (Input)

Default: N = size (T,1).

SIGMA0 — An estimate for the maximum of the real parts of the singularities of F. (Input)

If unknown, set SIGMA0 = 0.0.

Default: SIGMA0 = 0.e0.

EPSTOL — The required absolute uniform pseudo accuracy for the coefficients and inverse

Laplace transform values. (Input)

Default: EPSTOL = 1.1920929e-5 for single precision and 2.22d-10 for double

precision.

ERRVEC — Vector of length eight containing diagnostic information. (Output)

All components depend on the intermediately generated Laguerre coefficients. See

Comments.

FORTRAN 90 Interface

Generic: CALL SINLP (F, T, FINV [,…])

Specific: The specific interface names are S_SINLP and D_SINLP.

FORTRAN 77 Interface

Single: CALL SINLP (F, N, T, SIGMA0, EPSTOL, ERRVEC, FINV)

Double: The double precision name is DSINLP.

IMSL MATH LIBRARY Chapter 6: Transforms 1313

Description

The routine SINLP computes the inverse Laplace transform of a complex-valued function. Recall

that if f is a function that vanishes on the negative real axis, then we can define the Laplace

transform of f by

0

: sxL f s e f x dx

It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on a modification of Weeks‘ method

(see W.T. Weeks (1966)) due to B.S. Garbow et. al. (1988). This method is suitable when f has

continuous derivatives of all orders on [0, ∞). In this situation, this routine should be used in place

of the IMSL routine INLAP. It is especially efficient when multiple function values are desired. In

particular, given a complex-valued function F(s) = L[f](s), we can expand f in a Laguerre series

whose coefficients are determined by F. This is fully described in B.S. Garbow et. al. (1988) and

Lyness and Giunta (1986).

The algorithm attempts to return approximations g(t) to f(t) satisfying

t

g t f t

e

where ε := EPSTOL and σ := SIGMA > SIGMA0. The expression on the left is called the pseudo

error. An estimate of the pseudo error is available in ERRVEC(1).

The first step in the method is to transform F to ɸ where

1 1 2

b b b
z F

z z

Then, if f is smooth, it is known that ɸ is analytic in the unit disc of the complex plane and hence

has a Taylor series expansion

0

s
s

s

z a z

which converges for all z whose absolute value is less than the radius of convergence Rc. This

number is estimated in ERRVEC(6). In ERRVEC(5), we estimate the smallest number K which

satisfies

s s

K
a

R

for all R < Rc.

The coefficients of the Taylor series for ɸ can be used to expand f in a Laguerre series

 / 2

0

t bt
s s

s

f t e a e L bt

1314 Chapter 6: Transforms IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of S2NLP/DS2NLP. The

reference is:

CALL S2NLP (F, N, T, SIGMA0, EPSTOL, ERRVEC, FINV, SIGMA,

BVALUE, MTOP, WK, IFLOVC)

The additional arguments are as follows:

SIGMA — The first parameter of the Laguerre expansion. If SIGMA is not

greater than SIGMA0, it is reset to SIGMA0 + 0.7. (Input)

BVALUE — The second parameter of the Laguerre expansion. If BVALUE is

less than 2.0 * (SIGMA SIGMA0), it is reset to 2.5 * (SIGMA

SIGMA0). (Input)

MTOP — An upper limit on the number of coefficients to be computed in the

Laguerre expansion. MTOP must be a multiple of four. Note that the

maximum number of Laplace transform evaluations is MTOP/2 + 2.

(Default: 1024.) (Input)

WK — Real work vector of length 9 * MTOP/4.

IFLOVC — Integer vector of length N, the I-th component of which contains

the overflow/underflow indicator for the computed value of FINV(I).

(Output)

See Comment 3.

2. Informational errors

Type Code

1 1 Normal termination, but with estimated error bounds slightly larger

than EPSTOL. Note, however, that the actual errors on the final

results may be smaller than EPSTOL as bounds independent of T are

pessimistic.

3 2 Normal calculation, terminated early at the roundoff error level

estimate because this estimate exceeds the required accuracy

(usually due to overly optimistic expectation by the user about

attainable accuracy).

4 3 The decay rate of the coefficients is too small. It may improve

results to use S2NLP and increase MTOP.

4 4 The decay rate of the coefficients is too small. In addition, the

roundoff error level is such that required accuracy cannot be

reached.

IMSL MATH LIBRARY Chapter 6: Transforms 1315

4 5 No error bounds are returned as the behavior of the coefficients does

not enable reasonable prediction. Results are probably wrong. Check

the value of SIGMA0. In this case, each of ERRVEC(J), J = 1, …, 5, is

set to 1.0.

3. The following are descriptions of the vectors ERRVEC and IFLOVC.

ERRVEC — Real vector of length eight.

ERRVEC(1) = Overall estimate of the pseudo error, ERRVEC(2) + ERRVEC(3) +

ERRVEC(4). Pseudo error = absolute error / exp(sigma * tvalue).

ERRVEC(2) = Estimate of the pseudo discretization error.

ERRVEC(3) = Estimate of the pseudo truncation error.

ERRVEC(4) = Estimate of the pseudo condition error on the basis of minimal

noise levels in the function values.

ERRVEC(5) = K, the coefficient of the decay function for ACOEF, the

coefficients of the Laguerre expansion.

ERRVEC(6) = R, the base of the decay function for ACOEF. Here

abs(ACOEF (J + 1)).LE.K/R**J for J.GE.MACT/2, where MACT is the

number of Laguerre coefficients actually computed.

ERRVEC(7) = ALPHA, the logarithm of the largest ACOEF.

ERRVEC(8) = BETA, the logarithm of the smallest nonzero ACOEF.

IFLOVC — Integer vector of length N containing the overflow/underflow indicators

for FINV. For each I, the value of IFLOVC(I) signifies the following.

 0 = Normal termination.

 1 = The value of the inverse Laplace transform is found to be too large to

be representable; FINV(I) is set to AMACH(6).

1 = The value of the inverse Laplace transform is found to be too small to

be representable; FINV(I) is set to 0.0.

 2 = The value of the inverse Laplace transform is estimated to be too large,

even before the series expansion, to be representable; FINV(I) is set to

AMACH(6).

2 = The value of the inverse Laplace transform is estimated to be too small,

even before the series expansion, to be representable; FINV(I) is set to

0.0.

1316 Chapter 6: Transforms IMSL MATH LIBRARY

Example

We invert the Laplace transform of the simple function (s 1)-2
 and print the computed answer,

the true solution, and the difference at five different points. The correct inverse transform is xe
x
.

 USE SINLP_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER I, NOUT

 REAL DIF(5), ERRVEC(8), EXP, FINV(5), FLOAT, RELERR, &

 SIGMA0, T(5), TRUE(5), EPSTOL

 COMPLEX F

 INTRINSIC EXP, FLOAT

 EXTERNAL F

! Get output unit number

 CALL UMACH (2, NOUT)

!

 DO 10 I=1, 5

 T(I) = FLOAT(I) - 0.5

 10 CONTINUE

 SIGMA0 = 1.0E0

 RELERR = 5.0E-4

 EPSTOL = 1.0E-4

 CALL SINLP (F, T, FINV, SIGMA0=SIGMA0, EPSTOL=RELERR)

! Evaluate the true solution and the

! difference

 DO 20 I=1, 5

 TRUE(I) = T(I)*EXP(T(I))

 DIF(I) = TRUE(I) - FINV(I)

 20 CONTINUE

!

 WRITE (NOUT,99999) (T(I),FINV(I),TRUE(I),DIF(I),I=1,5)

99999 FORMAT (7X, 'T', 8X, 'FINV', 9X, 'TRUE', 9X, 'DIFF', /, &

 5(1X,E9.1,3X,1PE10.3,3X,1PE10.3,3X,1PE10.3,/))

 END

!

 COMPLEX FUNCTION F (S)

 COMPLEX S

!

 F = 1./(S-1.)**2

 RETURN

 END

Output

 T FINV TRUE DIFF

0.5E+00 8.244E-01 8.244E-01 -2.086E-06

1.5E+00 6.723E+00 6.723E+00 -8.583E-06

2.5E+00 3.046E+01 3.046E+01 0.000E+00

3.5E+00 1.159E+02 1.159E+02 2.289E-05

4.5E+00 4.051E+02 4.051E+02 -2.136E-04

IMSL MATH LIBRARY Chapter 6: Transforms 1317

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1319

Chapter 7: Nonlinear Equations

Routines

7.1. Zeros of a Polynomial
Real coefficients using Laguerre method ZPLRC 1320
Real coefficients using Jenkins-Traub method ZPORC 1322
Complex coefficients ... ZPOCC 1324

7.2. Zero(s) of a Function
Zeros of a complex analytic function ZANLY 1325
Zero of a real univariate function ... ZUNI 1328
Zero of a real function with sign changes ZBREN 1331
Zeros of a real function .. ZREAL 1334

7.3. Root of a System of Equations
Finite-difference Jacobian ... NEQNF 1337
Analytic Jacobian ... NEQNJ 1340
Broyden’s update and Finite-difference JacobianNEQBF 1344
Factored secant update with a user-supplied Jacobian NEQBJ 1350

Usage Notes

Zeros of a Polynomial

A polynomial function of degree n can be expressed as follows:

p(z) = anz
n
 + an-1 z

n-1
 + … + a1z + a0

where an ≠ 0.

There are three routines for zeros of a polynomial. The routines ZPLRC and ZPORC find zeros of

the polynomial with real coefficients while the routine ZPOCC finds zeros of the polynomial with

complex coefficients.

The Jenkins-Traub method is used for the routines ZPORC and ZPOCC; whereas ZPLRC uses the

Laguerre method. Both methods perform well in comparison with other methods. The Jenkins-

Traub algorithm usually runs faster than the Laguerre method. Furthermore, the routine ZANLY in

the next section can also be used for the complex polynomial.

1320 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

Zero(s) of a Function

The routines ZANLY and ZREAL use Müller‘s method to find the zeros of a complex analytic

function and real zeros of a real function, respectively. The routine ZBREN finds a zero of a real

function, using an algorithm that is a combination of interpolation and bisection. This algorithm

requires the user to supply two points such that the function values at these two points have

opposite sign. For functions where it is difficult to obtain two such points, ZUNI or ZREAL can be

used.

Root of System of Equations

A system of equations can be stated as follows:

fi(x) = 0, for i = 1, 2, …, n

where x ∈ R
n
.

The routines NEQNF and NEQNJ use a modified Powell hybrid method to find a zero of a system of

nonlinear equations. The difference between these two routines is that the Jacobian is estimated by

a finite-difference method in NEQNF, whereas the user has to provide the Jacobian for NEQNJ. It is

advised that the Jacobian-checking routine, CHJAC (see Chapter 8, Optimization), be used to ensure

the accuracy of the user-supplied Jacobian.

The routines NEQBF and NEQBJ use a secant method with Broyden‘s update to find a zero of a

system of nonlinear equations. The difference between these two routines is that the Jacobian is

estimated by a finite-difference method in NEQBF; whereas the user has to provide the Jacobian for

NEQBJ. For more details, see Dennis and Schnabel (1983, Chapter 8).

ZPLRC
Finds the zeros of a polynomial with real coefficients using Laguerre‘s method.

Required Arguments

COEFF — Vector of length NDEG + 1 containing the coefficients of the polynomial in

increasing order by degree. (Input)

The polynomial is

COEFF(NDEG + 1) * Z**NDEG + COEFF(NDEG) * Z**(NDEG 1) + … + COEFF(1).

ROOT — Complex vector of length NDEG containing the zeros of the polynomial. (Output)

Optional Arguments

NDEG — Degree of the polynomial. 1 ≤ NDEG ≤ 100 (Input)

Default: NDEG = size (COEFF,1) – 1.

FORTRAN 90 Interface

Generic: CALL ZPLRC (COEFF, ROOT [,…])

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1321

Specific: The specific interface names are S_ZPLRC and D_ZPLRC.

FORTRAN 77 Interface

Single: CALL ZPLRC (NDEG, COEFF, ROOT)

Double: The double precision name is DZPLRC.

Description

Routine ZPLRC computes the n zeros of the polynomial

p(z) = anz
n
 + an-1 z

n-1
 + … + a1z + a0

where the coefficients ai for i = 0, 1, …, n are real and n is the degree of the polynomial.

The routine ZPLRC is a modification of B.T. Smith‘s routine ZERPOL (Smith 1967) that uses

Laguerre‘s method. Laguerre‘s method is cubically convergent for isolated zeros and linearly

convergent for multiple zeros. The maximum length of the step between successive iterates is

restricted so that each new iterate lies inside a region about the previous iterate known to contain a

zero of the polynomial. An iterate is accepted as a zero when the polynomial value at that iterate is

smaller than a computed bound for the rounding error in the polynomial value at that iterate. The

original polynomial is deflated after each real zero or pair of complex zeros is found. Subsequent

zeros are found using the deflated polynomial.

Comments

Informational errors

Type Code

3 1 The first several coefficients of the polynomial are equal to zero.

Several of the last roots will be set to machine infinity to compensate

for this problem.

3 2 Fewer than NDEG zeros were found. The ROOT vector will contain the

value for machine infinity in the locations that do not contain zeros.

Example

This example finds the zeros of the third-degree polynomial

p(z) = z
3
 3z

2
 + 4z 2

where z is a complex variable.

 USE ZPLRC_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NDEG

 PARAMETER (NDEG=3)

!

 REAL COEFF(NDEG+1)

1322 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

 COMPLEX ZERO(NDEG)

! Set values of COEFF

! COEFF = (-2.0 4.0 -3.0 1.0)

!

 DATA COEFF/-2.0, 4.0, -3.0, 1.0/

!

 CALL ZPLRC (COEFF, ZERO, NDEG)

!

 CALL WRCRN ('The zeros found are', ZERO, 1, NDEG, 1)

!

 END

Output

 The zeros found are

 1 2 3

(1.000, 1.000) (1.000,-1.000) (1.000, 0.000)

ZPORC
Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub three-stage

algorithm.

Required Arguments

COEFF — Vector of length NDEG + 1 containing the coefficients of the polynomial in

increasing order by degree. (Input)

The polynomial is

COEFF(NDEG + 1)*Z**NDEG + COEFF(NDEG) * Z**(NDEG 1) + … + COEFF(1).

ROOT — Complex vector of length NDEG containing the zeros of the polynomial. (Output)

Optional Arguments

NDEG — Degree of the polynomial. 1 ≤ NDEG ≤ 100 (Input)

Default: NDEG = size (COEFF,1) – 1.

FORTRAN 90 Interface

Generic: CALL ZPORC (COEFF, ROOT [,…])

Specific: The specific interface names are S_ZPORC and D_ZPORC.

FORTRAN 77 Interface

Single: CALL ZPORC (NDEG, COEFF, ROOT)

Double: The double precision name is DZPORC.

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1323

Description

Routine ZPORC computes the n zeros of the polynomial

p(z) = anz
n
 + an-1 z

n-1
 + … + a1z + a0

where the coefficients ai for i = 0, 1, …, n are real and n is the degree of the polynomial.

The routine ZPORC uses the Jenkins-Traub three-stage algorithm (Jenkins and Traub 1970; Jenkins

1975). The zeros are computed one at a time for real zeros or two at a time for complex conjugate

pairs. As the zeros are found, the real zero or quadratic factor is removed by polynomial deflation.

Comments

Informational errors

Type Code

3 1 The first several coefficients of the polynomial are equal to zero.

Several of the last roots will be set to machine infinity to compensate

for this problem.

3 2 Fewer than NDEG zeros were found. The ROOT vector will contain the

value for machine infinity in the locations that do not contain zeros.

Example

This example finds the zeros of the third-degree polynomial

p(z) = z
3
 3z

2
 + 4z 2

where z is a complex variable.

 USE ZPORC_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NDEG

 PARAMETER (NDEG=3)

!

 REAL COEFF(NDEG+1)

 COMPLEX ZERO(NDEG)

! Set values of COEFF

! COEFF = (-2.0 4.0 -3.0 1.0)

!

 DATA COEFF/-2.0, 4.0, -3.0, 1.0/

!

 CALL ZPORC (COEFF, ZERO)

!

 CALL WRCRN ('The zeros found are', ZERO, 1, NDEG, 1)

!

 END

1324 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

Output

 The zeros found are

 1 2 3

(1.000, 0.000) (1.000, 1.000) (1.000,-1.000)

ZPOCC
Finds the zeros of a polynomial with complex coefficients.

Required Arguments

COEFF — Complex vector of length NDEG + 1 containing the coefficients of the polynomial

in increasing order by degree. (Input)

The polynomial is

COEFF(NDEG + 1) * Z**NDEG + COEFF(NDEG) * Z**(NDEG 1) + … + COEFF(1).

ROOT — Complex vector of length NDEG containing the zeros of the polynomial. (Output)

Optional Arguments

NDEG — Degree of the polynomial. 1 ≤ NDEG < 50 (Input)

Default: NDEG = size (COEFF,1) – 1.

FORTRAN 90 Interface

Generic: CALL ZPOCC (COEFF, ROOT [,…])

Specific: The specific interface names are S_ZPOCC and D_ZPOCC.

FORTRAN 77 Interface

Single: CALL ZPOCC (NDEG, COEFF, ROOT)

Double: The double precision name is DZPOCC.

Description

Routine ZPOCC computes the n zeros of the polynomial

p(z) = anz
n
 + an-1z

n-1
 + … + a1z + a0

where the coefficients ai for i = 0, 1, …, n are real and n is the degree of the polynomial.

The routine ZPOCC uses the Jenkins-Traub three-stage complex algorithm (Jenkins and Traub

1970, 1972). The zeros are computed one at a time in roughly increasing order of modulus. As

each zero is found, the polynomial is deflated to one of lower degree.

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1325

Comments

Informational errors

Type Code

3 1 The first several coefficients of the polynomial are equal to zero.

Several of the last roots will be set to machine infinity to compensate

for this problem.

3 2 Fewer than NDEG zeros were found. The ROOT vector will contain the

value for machine infinity in the locations that do not contain zeros.

Example

This example finds the zeros of the third-degree polynomial

p(z) = z
3
 (3 + 6i)z

2
 (8 12i)z + 10

where z is a complex variable.

 USE ZPOCC_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NDEG

 PARAMETER (NDEG=3)

!

 COMPLEX COEFF(NDEG+1), ZERO(NDEG)

! Set values of COEFF

! COEFF = (10.0 + 0.0i)

! (-8.0 + 12.0i)

! (-3.0 - 6.0i)

! (1.0 + 0.0i)

!

 DATA COEFF/(10.0,0.0), (-8.0,12.0), (-3.0,-6.0), (1.0,0.0)/

!

 CALL ZPOCC (COEFF, ZERO)

!

 CALL WRCRN ('The zeros found are', ZERO, 1, NDEG, 1)

!

 END

Output

 The zeros found are

 1 2 3

(1.000, 1.000) (1.000, 2.000) (1.000, 3.000)

ZANLY
Finds the zeros of a univariate complex function using Müller‘s method.

1326 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

Required Arguments

F — User-supplied COMPLEX FUNCTION to compute the value of the function

of which the zeros will be found. The form is F(Z), where

Z — The complex value at which the function is evaluated. (Input)

Z should not be changed by F.

F — The computed complex function value at the point Z. (Output)

 F must be declared EXTERNAL in the calling program.

Z — A complex vector of length NKNOWN + NNEW. (Output)

Z(1), …, Z(NKNOWN) contain the known zeros. Z(NKNOWN + 1), …, Z(NKNOWN + NNEW)

contain the new zeros found by ZANLY. If ZINIT is not needed, ZINIT and Z can share

the same storage locations.

Optional Arguments

ERRABS — First stopping criterion. (Input)

Let FP(Z) = F(Z)/P where P = (Z Z(1)) * (Z Z(2)) *…* (Z Z(K 1))

and Z(1), …, Z(K 1) are previously found zeros.

If (CABS(F(Z)).LE.ERRABS.AND.CABS(FP(Z)).LE.ERRABS),

then Z is accepted as a zero.

Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision.

ERRREL — Second stopping criterion is the relative error. (Input)

A zero is accepted if the difference in two successive approximations to this zero is

within ERRREL. ERRREL must be less than 0.01; otherwise, 0.01 will be used.

Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

NKNOWN — The number of previously known zeros, if any, that must be stored in

ZINIT(1), …, ZINIT(NKNOWN) prior to entry to ZANLY. (Input)

NKNOWN must be set equal to zero if no zeros are known.

Default: NKNOWN = 0.

NNEW — The number of new zeros to be found by ZANLY. (Input)

Default: NNEW = 1.

NGUESS — The number of initial guesses provided. (Input)

These guesses must be stored in ZINIT(NKNOWN + 1), …, ZINIT(NKNOWN + NGUESS).

NGUESS must be set equal to zero if no guesses are provided.

Default: NGUESS = 0.

ITMAX — The maximum allowable number of iterations per zero. (Input)

Default: ITMAX = 100.

ZINIT — A complex vector of length NKNOWN + NNEW. (Input)

ZINIT(1), …, ZINIT(NKNOWN) must contain the known zeros. ZINIT(NKNOWN + 1), …,

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1327

ZINIT(NKNOWN + NNEW) may, on user option, contain initial guesses for the NNEW new

zeros that are to be computed. If the user does not provide an initial guess, zero is used.

INFO — An integer vector of length NKNOWN + NNEW. (Output)

INFO(J) contains the number of iterations used in finding the J-th zero when

convergence was achieved. If convergence was not obtained in ITMAX iterations,

INFO(J) will be greater than ITMAX.

FORTRAN 90 Interface

Generic: CALL ZANLY (F, Z [,…])

Specific: The specific interface names are S_ZANLY and D_ZANLY.

FORTRAN 77 Interface

Single: CALL ZANLY (F, ERRABS, ERRREL, NKNOWN, NNEW, NGUESS, ZINIT, ITMAX, Z,
INFO)

Double: The double precision name is DZANLY.

Example

This example finds the zeros of the equation f(z) = z
3
 + 5z

2
 + 9z + 45, where z is a complex

variable.

 USE ZANLY_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER INFO(3), NGUESS, NNEW

 COMPLEX F, Z(3), ZINIT(3)

 EXTERNAL F

! Set the guessed zero values in ZINIT

!

! ZINIT = (1.0+1.0i 1.0+1.0i 1.0+1.0i)

 DATA ZINIT/3*(1.0,1.0)/

! Set values for all input parameters

 NNEW = 3

 NGUESS = 3

! Find the zeros of F

 CALL ZANLY (F, Z, NNEW=NNEW, NGUESS=NGUESS, &

 ZINIT=ZINIT, INFO=INFO)

! Print results

 CALL WRCRN ('The zeros are', Z)

 END

! External complex function

 COMPLEX FUNCTION F (Z)

 COMPLEX Z

!

 F = Z**3 + 5.0*Z**2 + 9.0*Z + 45.0

1328 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

 RETURN

 END

Output

 The zeros are

 1 2 3

(0.000, 3.000) (0.000,-3.000) (-5.000, 0.000)

ZUNI
Finds a zero of a real univariate function.

Required Arguments

F — User-supplied function of which a zero will be found. The form is F(X [,…]),

where:

Function Return Value

F — The computed function value at the point X. (Output)

Required Arguments

X — The point at which the function is evaluated. (Input)

X should not be changed by F.

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional information to/from the user-supplied function. For a detailed

description of this argument see FCN_DATA below.

F must be declared EXTERNAL in the calling program.

A — See B. (Input/Output)

B — Two points at which the user-supplied function can be evaluated. (Input/Output)

On input, if F(A) and F(B) are of opposite sign, the zero will be found in the interval

[A, B]and on output B will contain the value of X at which F(X)=0. If F(A)*F(B) >0,

and A ≠ B then a search along the x number line is initiated for a point at which there is

a sign change and |B – A| will be used in setting the step size for the initial search. If

A = B on entry then the search is started as described in the description section below.

On output, B is the abscissa at which |F(x)| had the smallest value. If F(B) ≠ 0 on

output, A will contain the nearest abscissa to output B at which F(x) was evaluated and

found to have the opposite sign from F(B).

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1329

Optional Arguments

TOL— Error tolerance. (Input)

If TOL > 0.0, the zero is to be isolated to an interval of length less than TOL.

 If TOL < 0.0, an x is desired for which |F(x)| is |TOL|.

 If TOL = 0.0, the iteration continues until the zero of F(x) is isolated as accurately as

possible.

Default: TOL = 0.0.

MAXFN — The number of function evaluations. (Input/Output)

On input, MAXFN specifies an upper bound on the number of function evaluations

required for convergence. Set MAXFN to 0 if the number of function evaluations is to

be unbounded.

On output, MAXFN will contain the actual number of function evaluations used.

Default: MAXFN = 0 so the number of function evaluations is unbounded.

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional

information to/from the user-supplied function.

The derived type, s_fcn_data, is defined as:

type s_fcn_data

 real(kind(1e0)), pointer, dimension(:) :: rdata

 integer, pointer, dimension(:) :: idata

end type

in module mp_types. The double precision counterpart to s_fcn_data is named

d_fcn_data. The user must include a use mp_types statement in the calling

program to define this derived type. Note that if this optional argument is used then this

argument must also be used in the user-supplied function. (Input/Output)

FORTRAN 90 Interface

Generic: CALL ZUNI (F, A, B [,…])

Specific: The specific interface names are S_ZUNI and D_ZUNI.

Description

ZUNI is based on the JPL Library routine SZERO. The algorithm used is attributed to Dr. Fred T.

Krogh, JPL, 1972. Tests have shown ZUNI to require fewer function evaluations, on average, than

a number of other algorithms for finding a zero of a continuous function. Also, unlike ZBREN

which restricts the user to supplying points A and B such that f(A) and f(B) are opposite in sign,

ZUNI will accept any two points A and B and initiate a search on the number line for an x such that

f(x) = 0 when there is no sign difference between f(A) and f(B). In either case, B is updated with a

new value on each successive iteration. The algorithm description follows.

When f(A) × f(B) >0 at the initial point, iterates for x are generated according to the formula

x = xmin + (xmin – xmax) × , where the subscript ―min‖ is associated with the (f, x) pair that has the

1330 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

smallest value for | f |, the subscript ―max‖ is associated with the (f, x) pair that has the largest

value for | f |, and is 8 if r = fmin /(fmax – fmin) ≥ 8, else = max(/4, r), where is a count of the

number of iterations that have been taken without finding f‘s with opposite signs. If A and B have

the same value initially, then the next x is a distance 0.008 + |xmin|/4 from xmin taken toward 0.

(If A = B = 0, the next x is -.008.)

Let x1 and x2 denote the first two x values that give f values with different signs. Let α < be the

two values of x that bracket the zero as tightly as is known. Thus α = x1 or α = x2 and is the other

when computing x3. The next point, x3, is generated by treating x as the linear function q(f) that

interpolates the points (f (x1), x1) and (f (x2), x2), and then computing x3 = q(0), subject to the

condition that α + x3 – , where = 0.875 × max(TOL, machine precision). (This condition

on x3 with updated values for α and is also applied to future iterates.)

Let x4, x5, , xm denote the abscissae on the following iterations. Let a = xm, b = xm-1, and c = xm-2.

Either α or (defined as above) will coincide with a, and will frequently coincide with either b

or c. Let p(x) be the quadratic polynomial in x that passes through the values of f evaluated at a, b,

and c. Let q(f) be the quadratic polynomial in f that passes through the points (f(a), a), (f(b), b),

and f(c), c).

Let = α or , selected so that ≠ a. If the sign of f has changed in the last 4 iterations and

p′(a) × q′ (f(a)) and p′ ()) × q′ (f()) are both in the interval [1/4, 4], then x is set to q(0). (Note

that if p is replaced by f and q is replaced by x, then both poducts have the value 1.) Otherwise x is

set to a – (a-) (/(1+)), where is selected based on past behavior and is such that 0 < . If the

sign of f () does not change for an extended period, gets large.

Comments

Informational error

Type Code

4 1 The error tolerance criteria was not satisfied. B contains the abscissa

at which |F(x)| had the smallest value.

Example

This example finds a zero of the function

f(x) = x
2
 + x 2

in the interval [10.0, 0.0].

 USE ZUNI_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NOUT, MAXFN

 REAL A, B, F

 EXTERNAL F

! Set values of A, B, MAXFN

 A = -10.0

 B = 0.0

 MAXFN = 0

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1331

!

 CALL UMACH (2, NOUT)

! Find zero of F

 CALL ZUNI (F, A, B, MAXFN=MAXFN)

!

 WRITE (NOUT,99999) B, MAXFN

99999 FORMAT (' The best approximation to the zero of F is equal to', &

 F5.1, '.', /, ' The number of function evaluations', &

 ' required was ', I2, '.', //)

!

 END

!

 REAL FUNCTION F (X)

 REAL X

!

 F = X*X + X - 2.0

 RETURN

 END

Output

The best approximation to the zero of F is equal to -2.0.

The number of function evaluations required was 10.

ZBREN
Finds a zero of a real function that changes sign in a given interval.

Required Arguments

F — User-supplied FUNCTION to compute the value of the function of which a zero will be

found. The form is F(X), where

X — The point at which the function is evaluated. (Input)

X should not be changed by F.

F — The computed function value at the point X. (Output)

F must be declared EXTERNAL in the calling program.

A — See B. (Input/Output)

B — On input, the user must supply two points, A and B, such that F(A) and F(B) are opposite

in sign. (Input/Output)

On output, both A and B are altered. B will contain the best approximation to the zero of

F.

Optional Arguments

ERRABS — First stopping criterion. (Input)

A zero, B, is accepted if ABS(F(B)) is less than or equal to ERRABS. ERRABS may be set

1332 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

to zero.

Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision.

ERRREL — Second stopping criterion is the relative error. (Input)

A zero is accepted if the change between two successive approximations to this zero is

within ERRREL.

Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

MAXFN — On input, MAXFN specifies an upper bound on the number of function evaluations

required for convergence. (Input/Output)

On output, MAXFN will contain the actual number of function evaluations used.

Default: MAXFN = 100.

FORTRAN 90 Interface

Generic: CALL ZBREN (F, A, B [,…])

Specific: The specific interface names are S_ZBREN and D_ZBREN.

FORTRAN 77 Interface

Single: CALL ZBREN (F, ERRABS, ERRREL, A, B, MAXFN)

Double: The double precision name is DZBREN.

Description

The algorithm used by ZBREN is a combination of linear interpolation, inverse quadratic

interpolation, and bisection. Convergence is usually superlinear and is never much slower than the

rate for the bisection method. See Brent (1971) for a more detailed account of this algorithm.

Comments

1. Informational error

Type Code

4 1 Failure to converge in MAXFN function evaluations.

2. On exit from ZBREN without any error message, A and B satisfy the following:

 F(A)F(B) ≤ 0.0

 |F(B)| ≤ |F(A)|, and

 either |F(B)| ≤ ERRABS or

 |A B| ≤ max(|B|, 0.1) * ERRREL.

 The presence of 0.1 in the stopping criterion causes leading zeros to the right of the

decimal point to be counted as significant digits. Scaling may be required in order to

accurately determine a zero of small magnitude.

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1333

3. ZBREN is guaranteed to convergence within K function evaluations, where

K = (ln((B A)/D) + 1.0)
2
, and

,
= min max ,0.1

x

 A B

D x *ERRREL

 This is an upper bound on the number of evaluations. Rarely does the actual number of

evaluations used by ZBREN exceed

K

 D can be computed as follows:
P = AMAX1(0.1, AMIN1(|A|, |B|))

IF((A 0.1) * (B 0.1) < 0.0) P = 0.1,
D = P * ERRREL

Example

This example finds a zero of the function

f(x) = x
2
 + x 2

in the interval (10.0, 0.0).

 USE ZBREN_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 REAL ERRABS, ERRREL

!

 INTEGER NOUT, MAXFN

 REAL A, B, F

 EXTERNAL F

! Set values of A, B, ERRABS,

! ERRREL, MAXFN

 A = -10.0

 B = 0.0

 ERRABS = 0.0

 ERRREL = 0.001

 MAXFN = 100

!

 CALL UMACH (2, NOUT)

! Find zero of F

 CALL ZBREN (F, A, B, ERRABS=ERRABS, ERRREL=ERRREL, MAXFN=MAXFN)

!

 WRITE (NOUT,99999) B, MAXFN

99999 FORMAT (' The best approximation to the zero of F is equal to', &

 F5.1, '.', /, ' The number of function evaluations', &

 ' required was ', I2, '.', //)

!

 END

!

 REAL FUNCTION F (X)

1334 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

 REAL X

!

 F = X**2 + X - 2.0

 RETURN

 END

Output

The best approximation to the zero of F is equal to -2.0.

The number of function evaluations required was 12.

ZREAL
Finds the real zeros of a real function using Müller‘s method.

Required Arguments

F — User-supplied FUNCTION to compute the value of the function of which a zero will be

found. The form is

F(X), where

X – The point at which the function is evaluated. (Input)

X should not be changed by F.

F – The computed function value at the point X. (Output)

 F must be declared EXTERNAL in the calling program.

X — A vector of length NROOT. (Output)

X contains the computed zeros.

Optional Arguments

ERRABS — First stopping criterion. (Input)

A zero X(I) is accepted if ABS(F(X(I)).LT. ERRABS.

Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision.

ERRREL — Second stopping criterion is the relative error. (Input)

A zero X(I) is accepted if the relative change of two successive approximations to X(I)

is less than ERRREL.

Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

EPS — See ETA. (Input)

Default: EPS = 1.e-4 for single precision and 1.d-8 for double precision.

ETA — Spread criteria for multiple zeros. (Input)

If the zero X(I) has been computed and ABS(X(I) X(J)).LT.EPS, where X(J) is a

previously computed zero, then the computation is restarted with a guess equal to

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1335

X(I) + ETA.

Default: ETA = .01.

NROOT — The number of zeros to be found by ZREAL. (Input)

Default: NROOT = 1.

ITMAX — The maximum allowable number of iterations per zero. (Input)

Default: ITMAX = 100.

XGUESS — A vector of length NROOT. (Input)

XGUESS contains the initial guesses for the zeros.

Default: XGUESS = 0.0.

INFO — An integer vector of length NROOT. (Output)

INFO(J) contains the number of iterations used in finding the J-th zero when

convergence was achieved. If convergence was not obtained in ITMAX iterations,

INFO(J) will be greater than ITMAX.

FORTRAN 90 Interface

Generic: CALL ZREAL (F, X [,…])

Specific: The specific interface names are S_ZREAL and D_ZREAL.

FORTRAN 77 Interface

Single: CALL ZREAL (F, ERRABS, ERRREL, EPS, ETA, NROOT, ITMAX, XGUESS, X,
INFO)

Double: The double precision name is DZREAL.

Description

Routine ZREAL computes n real zeros of a real function f. Given a user-supplied function f(x) and

an n-vector of initial guesses x1, x2, …, xn, the routine uses Müller‘s method to locate n real zeros

of f, that is, n real values of x for which f(x) = 0. The routine has two convergence criteria: the first

requires that

 m
if x

be less than ERRABS; the second requires that the relative change of any two successive

approximations to an xi be less than ERRREL. Here,

m
ix

is the m-th approximation to xi. Let ERRABS be ɛ1, and ERRREL be ɛ2.The criteria may be stated

mathematically as follows:

Criterion 1:

1336 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

 1
m
if x

Criterion 2:

1

2

m m
i i

m
i

x x

x

―Convergence‖ is the satisfaction of either criterion.

Comments

1. Informational error

Type Code

3 1 Failure to converge within ITMAX iterations for at least one of the

NROOT roots.

2. Routine ZREAL always returns the last approximation for zero J in X(J). If the

convergence criterion is satisfied, then INFO(J) is less than or equal to ITMAX. If the

convergence criterion is not satisfied, then INFO(J) is set to ITMAX + 1.

3. The routine ZREAL assumes that there exist NROOT distinct real zeros for the function F

and that they can be reached from the initial guesses supplied. The routine is designed

so that convergence to any single zero cannot be obtained from two different initial

guesses.

4. Scaling the X vector in the function F may be required, if any of the zeros are known to

be less than one.

Example

This example finds the real zeros of the second-degree polynomial

f(x) = x
2
 + 2x 6

with the initial guess (4.6, 193.3).

 USE ZREAL_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NROOT

 REAL EPS, ERRABS, ERRREL

 PARAMETER (NROOT=2)

!

 INTEGER INFO(NROOT)

 REAL F, X(NROOT), XGUESS(NROOT)

 EXTERNAL F

! Set values of initial guess

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1337

! XGUESS = (4.6 -193.3)

!

 DATA XGUESS/4.6, -193.3/

!

 EPS = 1.0E-5

 ERRABS = 1.0E-5

 ERRREL = 1.0E-5

! Find the zeros

 CALL ZREAL (F, X, errabs=errabs, errrel=errrel, eps=eps, &

 nroot=nroot, xguess=xguess)

!

 CALL WRRRN ('The zeros are', X, 1, NROOT, 1)

!

 END

!

 REAL FUNCTION F (X)

 REAL X

!

 F = X*X + 2.0*X - 6.0

 RETURN

 END

Output

The zeros are

 1 2

1.646 -3.646

NEQNF
Solves a system of nonlinear equations using a modified Powell hybrid algorithm and a finite-

difference approximation to the Jacobian.

Required Arguments

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The

usage is

CALL FCN (X, F, N), where

X – The point at which the functions are evaluated. (Input)

X should not be changed by FCN.

F – The computed function values at the point X. (Output)

N — Length of X and F. (Input)

 FCN must be declared EXTERNAL in the calling program.

X — A vector of length N. (Output)

X contains the best estimate of the root found by NEQNF.

1338 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

Optional Arguments

ERRREL — Stopping criterion. (Input)

The root is accepted if the relative error between two successive approximations to this

root is less than ERRREL.

Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

N – The number of equations to be solved and the number of unknowns. (Input)

Default: N = size (X,1).

ITMAX — The maximum allowable number of iterations. (Input)

The maximum number of calls to FCN is ITMAX * (N + 1). Suggested value

ITMAX = 200.

Default: ITMAX = 200.

XGUESS — A vector of length N. (Input)

XGUESS contains the initial estimate of the root.

Default: XGUESS = 0.0.

FNORM — A scalar that has the value F(1)
2
 + … + F(N)

2
 at the point X. (Output)

FORTRAN 90 Interface

Generic: CALL NEQNF (FCN, X [,…])

Specific: The specific interface names are S_NEQNF and D_NEQNF.

FORTRAN 77 Interface

Single: CALL NEQNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM)

Double: The double precision name is DNEQNF.

Description

Routine NEQNF is based on the MINPACK subroutine HYBRD1, which uses a modification of

M.J.D. Powell‘s hybrid algorithm. This algorithm is a variation of Newton‘s method, which uses a

finite-difference approximation to the Jacobian and takes precautions to avoid large step sizes or

increasing residuals. For further description, see More et al. (1980).

Since a finite-difference method is used to estimate the Jacobian, for single precision calculation,

the Jacobian may be so incorrect that the algorithm terminates far from a root. In such cases, high

precision arithmetic is recommended. Also, whenever the exact Jacobian can be easily provided,

IMSL routine NEQNJ should be used instead.

Comments

1. Workspace may be explicitly provided, if desired, by use of N2QNF/DN2QNF. The

reference is:

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1339

CALL N2QNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM, FVEC,

FJAC, R, QTF, WK)

The additional arguments are as follows:

FVEC — A vector of length N. FVEC contains the functions evaluated at the

point X.

FJAC — An N by N matrix. FJAC contains the orthogonal matrix Q

produced by the QR factorization of the final approximate Jacobian.

R — A vector of length N * (N + 1)/2. R contains the upper triangular matrix

produced by the QR factorization of the final approximate Jacobian. R is

stored row-wise.

QTF — A vector of length N. QTF contains the vector TRANS(Q) * FVEC.

WK — A work vector of length 5 * N.

2. Informational errors

Type Code

4 1 The number of calls to FCN has exceeded ITMAX * (N + 1). A new

initial guess may be tried.

4 2 ERRREL is too small. No further improvement in the approximate

solution is possible.

4 3 The iteration has not made good progress. A new initial guess may

be tried.

Example

The following 3 3 system of nonlinear equations

1

2

21
1 1 2 3

2 2
2 1 3

2
3 3 2 2

27 0

/ 10 0

sin 2 7 0

x

x

f x x e x x

f x e x x

f x x x x

is solved with the initial guess (4.0, 4.0, 4.0).

 USE NEQNF_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER N

 PARAMETER (N=3)

!

 INTEGER K, NOUT

1340 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

 REAL FNORM, X(N), XGUESS(N)

 EXTERNAL FCN

! Set values of initial guess

! XGUESS = (4.0 4.0 4.0)

!

 DATA XGUESS/4.0, 4.0, 4.0/

!

!

 CALL UMACH (2, NOUT)

! Find the solution

 CALL NEQNF (FCN, X, xguess=xguess, fnorm=fnorm)

! Output

 WRITE (NOUT,99999) (X(K),K=1,N), FNORM

99999 FORMAT (' The solution to the system is', /, ' X = (', 3F5.1, &

 ')', /, ' with FNORM =', F5.4, //)

!

 END

! User-defined subroutine

 SUBROUTINE FCN (X, F, N)

 INTEGER N

 REAL X(N), F(N)

!

 REAL EXP, SIN

 INTRINSIC EXP, SIN

!

 F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0

 F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0

 F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0

 RETURN

 END

Output

The solution to the system is

X = (1.0 2.0 3.0)

with FNORM =.0000

NEQNJ
Solves a system of nonlinear equations using a modified Powell hybrid algorithm with a user-

supplied Jacobian.

Required Arguments

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The

usage is

CALL FCN (X, F, N), where

X – The point at which the functions are evaluated. (Input)

X should not be changed by FCN.

F – The computed function values at the point X. (Output)

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1341

N – Length of X, F. (Input)

 FCN must be declared EXTERNAL in the calling program.

LSJAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is

CALL LSJAC (N, X, FJAC), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by LSJAC.

FJAC — The computed N by N Jacobian at the point X. (Output)

 LSJAC must be declared EXTERNAL in the calling program.

X — A vector of length N. (Output)

X contains the best estimate of the root found by NEQNJ.

Optional Arguments

ERRREL — Stopping criterion. (Input)

The root is accepted if the relative error between two successive approximations to this

root is less than ERRREL.

Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision.

N — The number of equations to be solved and the number of unknowns. (Input)

Default: N = size (X,1).

ITMAX — The maximum allowable number of iterations. (Input)

Suggested value = 200.

Default: ITMAX = 200.

XGUESS — A vector of length N. (Input)

XGUESS contains the initial estimate of the root.

Default: XGUESS = 0.0.

FNORM — A scalar that has the value F(1)
2
 + … + F(N)

2
 at the point X. (Output)

FORTRAN 90 Interface

Generic: CALL NEQNJ (FCN, LSJAC, X [,…])

Specific: The specific interface names are S_NEQNJ and D_NEQNJ.

FORTRAN 77 Interface

Single: CALL NEQNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X, FNORM)

Double: The double precision name is DNEQNJ.

1342 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

Description

Routine NEQNJ is based on the MINPACK subroutine HYBRDJ, which uses a modification of

M.J.D. Powell‘s hybrid algorithm. This algorithm is a variation of Newton‘s method, which takes

precautions to avoid large step sizes or increasing residuals. For further description, see More et al.

(1980).

Comments

1. Workspace may be explicitly provided, if desired, by use of N2QNJ/DN2QNJ. The

reference is:

CALL N2QNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X,

FNORM, FVEC, FJAC, R, QTF, WK)

The additional arguments are as follows:

FVEC — A vector of length N. FVEC contains the functions evaluated at the

point X.

FJAC — An N by N matrix. FJAC contains the orthogonal matrix Q

produced by the QR factorization of the final approximate Jacobian.

R — A vector of length N * (N + 1)/2. R contains the upper triangular

matrix produced by the QR factorization of the final approximate

Jacobian. R is stored row-wise.

QTF — A vector of length N. QTF contains the vector TRANS(Q) * FVEC.

WK — A work vector of length 5 * N.

2. Informational errors

Type Code

4 1 The number of calls to FCN has exceeded ITMAX. A new initial guess

may be tried.

4 2 ERRREL is too small. No further improvement in the approximate

solution is possible.

4 3 The iteration has not made good progress. A new initial guess may

be tried.

Example

The following 3 3 system of nonlinear equations

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1343

1

2

21
1 1 2 3

2 2
2 1 3

2
3 3 2 2

27 0

/ 10 0

sin 2 7 0

x

x

f x x e x x

f x e x x

f x x x x

is solved with the initial guess (4.0, 4.0, 4.0).

 USE NEQNJ_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER N

 PARAMETER (N=3)

!

 INTEGER K, NOUT

 REAL FNORM, X(N), XGUESS(N)

 EXTERNAL FCN, LSJAC

! Set values of initial guess

! XGUESS = (4.0 4.0 4.0)

!

 DATA XGUESS/4.0, 4.0, 4.0/

!

!

 CALL UMACH (2, NOUT)

! Find the solution

 CALL NEQNJ (FCN, LSJAC, X, XGUESS=XGUESS, FNORM=FNORM)

! Output

 WRITE (NOUT,99999) (X(K),K=1,N), FNORM

99999 FORMAT (' The roots found are', /, ' X = (', 3F5.1, &

 ')', /, ' with FNORM = ',F5.4, //)

!

 END

! User-supplied subroutine

 SUBROUTINE FCN (X, F, N)

 INTEGER N

 REAL X(N), F(N)

!

 REAL EXP, SIN

 INTRINSIC EXP, SIN

!

 F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0

 F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0

 F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0

 RETURN

 END

! User-supplied subroutine to

! compute Jacobian

 SUBROUTINE LSJAC (N, X, FJAC)

 INTEGER N

 REAL X(N), FJAC(N,N)

!

 REAL COS, EXP

 INTRINSIC COS, EXP

!

1344 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

 FJAC(1,1) = 1.0 + EXP(X(1)-1.0)

 FJAC(1,2) = 2.0*(X(2)+X(3))

 FJAC(1,3) = 2.0*(X(2)+X(3))

 FJAC(2,1) = -EXP(X(2)-2.0)*(1.0/X(1)**2)

 FJAC(2,2) = EXP(X(2)-2.0)*(1.0/X(1))

 FJAC(2,3) = 2.0*X(3)

 FJAC(3,1) = 0.0

 FJAC(3,2) = COS(X(2)-2.0) + 2.0*X(2)

 FJAC(3,3) = 1.0

 RETURN

 END

Output

The roots found are

X = (1.0 2.0 3.0)

with FNORM =.0000

NEQBF

Solves a system of nonlinear equations using factored secant update with a finite-difference

approximation to the Jacobian.

Required Arguments

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The

usage is

CALL FCN (N, X, F), where

N – Length of X and F. (Input)

X – The point at which the functions are evaluated. (Input)

X should not be changed by FCN.

F – The computed function values at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = size (X,1).

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1345

XGUESS — Vector of length N containing initial guess of the root. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the distance between two points. In the absence of

other information, set all entries to 1.0. If internal scaling is desired for XSCALE, set

IPARAM (6) to 1.

Default: XSCALE = 1.0.

FSCALE — Vector of length N containing the diagonal scaling matrix for the functions.

(Input)

FSCALE is used mainly in scaling the function residuals. In the absence of other

information, set all entries to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)

Set IPARAM (1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 5. (Input/Output)

See Comment 4.

FVEC — Vector of length N containing the values of the functions at the approximate

solution. (Output)

FORTRAN 90 Interface

Generic: CALL NEQBF (FCN, X [,…])

Specific: The specific interface names are S_NEQBF and D_NEQBF.

FORTRAN 77 Interface

Single: CALL NEQBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC)

Double: The double precision name is DNEQBF.

Description

Routine NEQBF uses a secant algorithm to solve a system of nonlinear equations, i.e.,

F(x) = 0

where F : R
n
 R

n
, and x R

n
.

From a current point, the algorithm uses a double dogleg method to solve the following

subproblem approximately:

 min
2n c cs

F x J x s

R

1346 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

subject to || s ||2 ≤ c

to get a direction sc, where F(xc) and J(xc) are the function values and the approximate Jacobian

respectively evaluated at the current point xc. Then, the function values at the point xn = xc + sc are

evaluated and used to decide whether the new point xn should be accepted.

When the point xn is rejected, this routine reduces the trust region c and goes back to solve the

subproblem again. This procedure is repeated until a better point is found.

The algorithm terminates if the new point satisfies the stopping criterion. Otherwise, c is

adjusted, and the approximate Jacobian is updated by Broyden‘s formula,

 T
c c c

n c T
c c

y J s s
J J

s s

where Jn = J(xn), Jc = J(xc), and y = F (xn) F (xc). The algorithm then continues using the new

point as the current point, i.e. xc xn.

For more details, see Dennis and Schnabel (1983, Chapter 8).

Since a finite-difference method is used to estimate the initial Jacobian, for single precision

calculation, the Jacobian may be so incorrect that the algorithm terminates far from a root. In such

cases, high precision arithmetic is recommended. Also, whenever the exact Jacobian can be easily

provided, IMSL routine NEQBJ should be used instead.

Comments

1. Workspace may be explicitly provided, if desired, by use of N2QBF/DN2QBF. The

reference is:

CALL N2QBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVEC, WK, LWK)

The additional arguments are as follows:

WK — A work vector of length LWK. On output WK contains the following

information:

The third N locations contain the last step taken.

The fourth N locations contain the last Newton step.

The final N
2
 locations contain an estimate of the Jacobian at the

solution.

LWK — Length of WK, which must be at least 2 * N
2
 + 11 * N. (Input)

2. Informational errors

Type Code

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1347

3 1 The last global step failed to decrease the 2-norm of F(X)

sufficiently; either the current point is close to a root of F(X) and no

more accuracy is possible, or the secant approximation to the

Jacobian is inaccurate, or the step tolerance is too large.

3 3 The scaled distance between the last two steps is less than the step

tolerance; the current point is probably an approximate root of F(X)

(unless STEPTL is too large).

3 4 Maximum number of iterations exceeded.

3 5 Maximum number of function evaluations exceeded.

3 7 Five consecutive steps of length STEPMX have been taken; either the

2-norm of F(X) asymptotes from above to a finite value in some

direction or the maximum allowable step size STEPMX is too small.

3. The stopping criterion for NEQBF occurs when the scaled norm of the functions is less

than the scaled function tolerance (RPARAM(1)).

4. If the default parameters are desired for NEQBF, then set IPARAM(1) to zero and call

routine NEQBF. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling NEQBF:

CALL N4QBJ (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to N4QBJ will set IPARAM and RPARAM to their default values, so only

nondefault values need to be set above.

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.

Default: not used in NEQBF.

1348 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

IPARAM(6) = Internal variable scaling flag.

If IPARAM(6) = 1, then the values of XSCALE are set internally.

Default: 0.

RPARAM — Real vector of length 5.

RPARAM(1) = Scaled function tolerance.

The scaled norm of the functions is computed as

 max *i if fs
i

 where fi is the i-th component of the function vector F, and fsi is the i-th

component of FSCALE.

Default:

 where ɛ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The scaled norm of the step between two points x and y is computed as

max { }

max ,1/

i i

i i

x y

i x s

 where si is the i-th component of XSCALE.

Default: ɛ 2/3
, where ɛ is the machine precision.

RPARAM(3) = False convergence tolerance.

Default: not used in NEQBF.

RPARAM(4) = Maximum allowable step size. (STEPMX)

 Default: 1000 * max(ɛ1, ɛ2), where

2

1 1

n

i ii
s t

 ɛ2 = ||s|2, s = XSCALE, and t = XGUESS.

RPARAM(5) = Size of initial trust region.

Default: based on the initial scaled Cauchy step.

If double precision is desired, then DN4QBJ is called and RPARAM is declared

double precision.

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1349

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The following 3 3 system of nonlinear equations:

1

2

21
1 1 2 3

2 2
2 1 3

2
3 3 2 2

27 0

/ 10 0

sin 2 7 0

x

x

f x x e x x

f x e x x

f x x x x

is solved with the initial guess (4.0, 4.0, 4.0).

 USE NEQBF_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER N

 PARAMETER (N=3)

!

 INTEGER K, NOUT

 REAL X(N), XGUESS(N)

 EXTERNAL FCN

! Set values of initial guess

! XGUESS = (4.0 4.0 4.0)

!

 DATA XGUESS/3*4.0/

!

! Find the solution

 CALL NEQBF (FCN, X, XGUESS=XGUESS)

! Output

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) (X(K),K=1,N)

99999 FORMAT (' The solution to the system is', /, ' X = (', 3F8.3, &

 ')')

!

 END

! User-defined subroutine

 SUBROUTINE FCN (N, X, F)

 INTEGER N

 REAL X(N), F(N)

!

 REAL EXP, SIN

 INTRINSIC EXP, SIN

!

 F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0

 F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0

 F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0

 RETURN

 END

1350 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

Output

The solution to the system is

X = (1.000 2.000 3.000)

NEQBJ

Solves a system of nonlinear equations using factored secant update with a user-supplied Jacobian.

Required Arguments

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The

usage is

CALL FCN (N, X, F), where

N — Length of X and F. (Input)

X — The point at which the functions are evaluated. (Input)

X should not be changed by FCN.

F — The computed function values at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL

JAC (N, X, FJAC, LDFJAC), where

N — Length of X. (Input)

X — Vector of length N at which point the Jacobian is evaluated. (Input)

X should not be changed by JAC.

FJAC – The computed N by N Jacobian at the point X. (Output)

LDFJAC — Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = size (X,1).

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1351

XGUESS — Vector of length N containing initial guess of the root. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the distance between two points. In the absence of

other information, set all entries to 1.0. If internal scaling is desired for XSCALE, set

IPARAM(6) to 1.

Default: XSCALE = 1.0.

FSCALE — Vector of length N containing the diagonal scaling matrix for the functions.

(Input)

FSCALE is used mainly in scaling the function residuals. In the absence of other

information, set all entries to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)

Set IPARAM (1) to zero for default values of IPARAM and RPARAM.

See Comment 4.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 5. (Input/Output)

See Comment 4.

FVEC — Vector of length N containing the values of the functions at the approximate

solution. (Output)

FORTRAN 90 Interface

Generic: CALL NEQBJ (FCN, JAC, X [,…])

Specific: The specific interface names are S_NEQBJ and D_NEQBJ.

FORTRAN 77 Interface

Single: CALL NEQBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X,
FVEC)

Double: The double precision name is DNEQBJ.

Description

Routine NEQBJ uses a secant algorithm to solve a system of nonlinear equations, i. e.,

F (x) = 0

where F : R
n
 R

n
, and x R

n
.

From a current point, the algorithm uses a double dogleg method to solve the following

subproblem approximately:

2

min
n c c

s

F x J x s

R

1352 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

subject to ||s||2 ≤ c

to get a direction sc, where F(xc) and J(xc) are the function values and the approximate Jacobian

respectively evaluated at the current point xc. Then, the function values at the point xn = xc + sc are

evaluated and used to decide whether the new point xn should be accepted.

When the point xn is rejected, this routine reduces the trust region c and goes back to solve the

subproblem again. This procedure is repeated until a better point is found.

The algorithm terminates if the new point satisfies the stopping criterion. Otherwise, c is

adjusted, and the approximate Jacobian is updated by Broyden‘s formula,

 T
c c c

n c T
c c

y J s s
J J

s s

where Jn = J(xn), Jc = J(xc), and y = F (xn) F (xc). The algorithm then continues using the new

point as the current point, i.e. xc xn.

For more details, see Dennis and Schnabel (1983, Chapter 8).

Comments

1. Workspace may be explicitly provided, if desired, by use of N2QBJ/DN2QBJ. The

reference is:

CALL N2QBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVEC, WK, LWK)

The additional arguments are as follows:

WK — A work vector of length LWK. On output WK contains the following

information: The third N locations contain the last step taken. The

fourth N locations contain the last Newton step. The final N
2
 locations

contain an estimate of the Jacobian at the solution.

LWK — Length of WK, which must be at least 2 * N
2
 + 11 * N. (Input)

2. Informational errors

Type Code

3 1 The last global step failed to decrease the 2-norm of F(X)

sufficiently; either the current point is close to a root of F(X) and no

more accuracy is possible, or the secant approximation to the

Jacobian is inaccurate, or the step tolerance is too large.

3 3 The scaled distance between the last two steps is less than the step

tolerance; the current point is probably an approximate root of F(X)

(unless STEPTL is too large).

3 4 Maximum number of iterations exceeded.

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1353

3 5 Maximum number of function evaluations exceeded.

3 7 Five consecutive steps of length STEPMX have been taken; either the

2-norm of F(X) asymptotes from above to a finite value in some

direction or the maximum allowable stepsize STEPMX is too small.

3. The stopping criterion for NEQBJ occurs when the scaled norm of the functions is less

than the scaled function tolerance (RPARAM(1)).

4. If the default parameters are desired for NEQBJ, then set IPARAM(1) to zero and call

routine NEQBJ. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling NEQBJ:

CALL N4QBJ (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to N4QBJ will set IPARAM and RPARAM to their default values, so only

nondefault values need to be set above.

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.

Default: not used in NEQBJ.

IPARAM(6) = Internal variable scaling flag.

If IPARAM(6) = 1, then the values of XSCALE are set internally.

Default: 0.

RPARAM — Real vector of length 5.

RPARAM(1) = Scaled function tolerance.

The scaled norm of the functions is computed as

 max *i if fs
i

1354 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

 where fi is the i-th component of the function vector F, and fsi is the i-th

component of FSCALE.

Default:

 where ɛ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The scaled norm of the step between two points x and y is computed as

max { }

max ,1/

i i

i i

x y

i x s

 where si is the i-th component of XSCALE.

 Default: ɛ2/3
, where ɛ is the machine precision.

RPARAM(3) = False convergence tolerance.

Default: not used in NEQBJ.

RPARAM(4) = Maximum allowable step size. (STEPMX)

 Default: 1000 * max(ɛ1, ɛ2), where

2

1 1

n

i ii
s t

 ɛ2 = ||s||2, s = XSCALE, and t = XGUESS.

RPARAM(5) = Size of initial trust region.

Default: based on the initial scaled Cauchy step.

If double precision is desired, then DN4QBJ is called and RPARAM is declared double

precision.

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The following 3 3 system of nonlinear equations

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations 1355

1

2

21
1 1 2 3

2 2
2 1 3

2
3 3 2 2

27 0

/ 10 0

sin 2 7 0

x

x

f x x e x x

f x e x x

f x x x x

is solved with the initial guess (4.0, 4.0, 4.0).

 USE NEQBJ_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER N

 PARAMETER (N=3)

!

 INTEGER K, NOUT

 REAL X(N), XGUESS(N)

 EXTERNAL FCN, JAC

! Set values of initial guess

! XGUESS = (4.0 4.0 4.0)

!

 DATA XGUESS/3*4.0/

! Find the solution

 CALL NEQBJ (FCN, JAC, X, XGUESS=XGUESS)

! Output

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) (X(K),K=1,N)

99999 FORMAT (' The solution to the system is', /, ' X = (', 3F8.3, &

 ')')

!

 END

! User-defined subroutine

 SUBROUTINE FCN (N, X, F)

 INTEGER N

 REAL X(N), F(N)

!

 REAL EXP, SIN

 INTRINSIC EXP, SIN

!

 F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0

 F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0

 F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0

 RETURN

 END

! User-supplied subroutine to

! compute Jacobian

 SUBROUTINE JAC (N, X, FJAC, LDFJAC)

 INTEGER N, LDFJAC

 REAL X(N), FJAC(LDFJAC,N)

!

 REAL COS, EXP

 INTRINSIC COS, EXP

!

 FJAC(1,1) = 1.0 + EXP(X(1)-1.0)

 FJAC(1,2) = 2.0*(X(2)+X(3))

1356 Chapter 7: Nonlinear Equations IMSL MATH LIBRARY

 FJAC(1,3) = 2.0*(X(2)+X(3))

 FJAC(2,1) = -EXP(X(2)-2.0)*(1.0/X(1)**2)

 FJAC(2,2) = EXP(X(2)-2.0)*(1.0/X(1))

 FJAC(2,3) = 2.0*X(3)

 FJAC(3,1) = 0.0

 FJAC(3,2) = COS(X(2)-2.0) + 2.0*X(2)

 FJAC(3,3) = 1.0

 RETURN

 END

Output

The solution to the system is

X = (1.000 2.000 3.000)

IMSL MATH LIBRARY Chapter 8: Optimization 1357

Chapter 8: Optimization

Routines

8.1. Unconstrained Minimization

8.1.1 Univariate Function
Using function values only .. UVMIF 1362
Using function and first derivative values UVMID 1365
Nonsmooth function .. UVMGS 1369

8.1.2 Multivariate Function
Using finite-difference gradient ...UMINF 1372
Using analytic gradient .. UMING 1377
Using finite-difference Hessian .. UMIDH 1384
Using analytic Hessian .. UMIAH 1389
Using conjugate gradient with finite-difference gradient UMCGF 1395
Using conjugate gradient with analytic gradient UMCGG 1399
Nonsmooth function .. UMPOL 1403

8.1.3 Nonlinear Least Squares
Using finite-difference Jacobian... UNLSF 1407
Using analytic Jacobian ..UNLSJ 1413

8.2. Minimization with Simple Bounds
Using finite-difference gradient ... BCONF 1420
Using analytic gradient ... BCONG 1427
Using finite-difference Hessian ... BCODH 1434
Using analytic Hessian ... BCOAH 1441
Nonsmooth Function .. BCPOL 1448
Nonlinear least squares using finite-difference Jacobian BCLSF 1452
Nonlinear least squares using analytic Jacobian BCLSJ 1459
Nonlinear least squares problem subject to bounds............ BCNLS 1466

8.3. Linearly Constrained Minimization
Reads an MPS file containing a linear programming
problem or a quadratic programming problem READ_MPS 1475
Deallocates the space allocated for the IMSL

derived type s_MPS. .. MPS_FREE 1485

Dense linear programming ... DENSE_LP 1488
Dense linear programming .. DLPRS 1494
Sparse linear programming ... SLPRS 1497
Solves a transportation problem .. TRAN 1504

1358 Chapter 8: Optimization IMSL MATH LIBRARY

Quadratic programming .. QPROG 1506
General objective function with finite-difference gradient ... LCONF 1510
General objective function with analytic gradient LCONG 1516

8.4. Nonlinearly Constrained Minimization
Using a sequential equality constrained QP method NNLPF 1522
Using a sequential equality constrained QP method NNLPG 1528

8.5. Service Routines
Central-difference gradient ... CDGRD 1536
Forward-difference gradient .. FDGRD 1538
Forward-difference Hessian .. FDHES 1541
Forward-difference Hessian using analytic gradient GDHES 1543
Divided-finite difference Jacobian DDJAC 1546
Forward-difference Jacobian .. FDJAC 1555
Check user-supplied gradient .. CHGRD 1536
Check user-supplied Hessian ... CHHES 1561
Check user-supplied Jacobian .. CHJAC 1565
Generate starting points ... GGUES 1569

Usage Notes

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:

 min
nx

f x
R

where f : R
n
→ R is at least continuous. The routines for unconstrained minimization are grouped

into three categories: univariate functions (UV***), multivariate functions (UM***), and nonlinear

least squares (UNLS*).

For the univariate function routines, it is assumed that the function is unimodal within the

specified interval. Otherwise, only a local minimum can be expected. For further discussion on

unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate function routines UMINF and UMING, whereas

UMIDH and UMIAH use a modified Newton algorithm. The routines UMCGF and UMCGG make use of

a conjugate gradient approach, and UMPOL uses a polytope method. For more details on these

algorithms, see the documentation for the corresponding routines.

The nonlinear least squares routines use a modified Levenberg-Marquardt algorithm. If the

nonlinear least squares problem is a nonlinear data-fitting problem, then software that is designed

to deliver better statistical output may be useful; see IMSL (1991).

These routines are designed to find only a local minimum point. However, a function may have

many local minima. It is often possible to obtain a better local solution by trying different initial

points and intervals.

IMSL MATH LIBRARY Chapter 8: Optimization 1359

High precision arithmetic is recommended for the routines that use only function values. Also it is

advised that the derivative-checking routines CH*** be used to ensure the accuracy of the user-

supplied derivative evaluation subroutines.

Minimization with Simple Bounds

The minimization with simple bounds problem can be stated as follows:

 min
nx

f x
R

subject to , 1, 2, ,i i il x u for i n

where f : R
n
→ R, and all the variables are not necessarily bounded.

The routines BCO** use the same algorithms as the routines UMI**, and the routines BCLS* are

the corresponding routines of UNLS*. The only difference is that an active set strategy is used to

ensure that each variable stays within its bounds. The routine BCPOL uses a function comparison

method similar to the one used by UMPOL. Convergence for these polytope methods is not

guaranteed; therefore, these routines should be used as a last alternative.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

 min
nx

f x
R

subject to Ax b

where f : R
n
→ R, A is an m n coefficient matrix, and b is a vector of length m. If f(x) is linear,

then the problem is a linear programming problem; if f(x) is quadratic, the problem is a quadratic

programming problem.

The routine DLPRS uses an active set strategy to solve small- to medium-sized linear programming

problems. No sparsity is assumed since the coefficients are stored in full matrix form. SLPRS uses

the revised simplex method to solve large linear programming problems, which have sparse

constraints matrices. TRAN solves a transportation problem, which is a very sparse linear

programming application.

QPROG is designed to solve convex quadratic programming problems using a dual quadratic

programming algorithm. If the given Hessian is not positive definite, then QPROG modifies it to be

positive definite. In this case, output should be interpreted with care.

The routines LCONF and LCONG use an iterative method to solve the linearly constrained problem

with a general objective function. For a detailed description of the algorithm, see Powell (1988,

1989).

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

 min
nx

f x
R

1360 Chapter 8: Optimization IMSL MATH LIBRARY

1

1 1

subject to 0, 1, 2, ,

0, 1, ,

i

i

g for i m

g for i m m

x

x

where f : R
n
→ R and gi : R→ R, for i = 1, 2, …, m

The routines NNLPF and NNLPG use a sequential equality constrained quadratic programming

method. A more complete discussion of this algorithm can be found in the documentation.

Selection of Routines

The following general guidelines are provided to aid in the selection of the appropriate routine.

Unconstrained Minimization

1. For the univariate case, use UVMID when the gradient is available, and use UVMIF when

it is not. If discontinuities exist, then use UVMGS.

2. For the multivariate case, use UMCG* when storage is a problem, and use UMPOL when

the function is nonsmooth. Otherwise, use UMI** depending on the availability of the

gradient and the Hessian.

3. For least squares problems, use UNLSJ when the Jacobian is available, and use UNLSF

when it is not.

Minimization with Simple Bounds

1. Use BCONF when only function values are available. When first derivatives are

available, use either BCONG or BCODH. If first and second derivatives are available, then

use BCOAH.

2. For least squares, use BCLSF or BCLSJ depending on the availability of the Jacobian.

3. Use BCPOL for nonsmooth functions that could not be solved satisfactorily by the other

routines.

IMSL MATH LIBRARY Chapter 8: Optimization 1361

The following charts provide a quick reference to routines in this chapter:

nonsmooth

UMCGF no derivat ive large-size

least squaresno Jacobian

no derivat ive

nonsmooth

UNLSF

UVMSG

UVMIF

UMCGG

UNLSJ

UMPOL

UMINF

UMING

UMIDH

UVMID UMIAH

no first

derivat ive

no second

problem

derivative

UNCONSTRAINED

MINIMIZATION

univariate mult ivariate

smooth

1362 Chapter 8: Optimization IMSL MATH LIBRARY

UVMIF
Finds the minimum point of a smooth function of a single variable using only function

evaluations.

Required Arguments

F — User-supplied function to compute the value of the function to be minimized. The form

is

F(X), where

IMSL MATH LIBRARY Chapter 8: Optimization 1363

X – The point at which the function is evaluated. (Input)

X should not be changed by F.

F – The computed function value at the point X. (Output)

 F must be declared EXTERNAL in the calling program.

XGUESS — An initial guess of the minimum point of F. (Input)

BOUND — A positive number that limits the amount by which X may be changed from its

initial value. (Input)

X — The point at which a minimum value of F is found. (Output)

Optional Arguments

STEP — An order of magnitude estimate of the required change in X. (Input)

Default: STEP = 1.0.

XACC — The required absolute accuracy in the final value of X. (Input)

On a normal return there are points on either side of X within a distance XACC at which

F is no less than F(X).

Default: XACC = 1.e-4.

MAXFN — Maximum number of function evaluations allowed. (Input)

Default: MAXFN = 1000.

FORTRAN 90 Interface

Generic: CALL UVMIF (F, XGUESS, BOUND, X [,…])

Specific: The specific interface names are S_UVMIF and D_UVMIF.

FORTRAN 77 Interface

Single: CALL UVMIF (F, XGUESS, STEP, BOUND, XACC, MAXFN, X)

Double: The double precision name is DUVMIF.

Description

The routine UVMIF uses a safeguarded quadratic interpolation method to find a minimum point of

a univariate function. Both the code and the underlying algorithm are based on the routine ZXLSF

written by M.J.D. Powell at the University of Cambridge.

The routine UVMIF finds the least value of a univariate function, f, that is specified by the function

subroutine F. Other required data include an initial estimate of the solution, XGUESS , and a

positive number BOUND. Let x0 = XGUESS and b = BOUND, then x is restricted to the interval

[x0 − b, x0 + b]. Usually, the algorithm begins the search by moving from x0 to x = x0 + s, where

1364 Chapter 8: Optimization IMSL MATH LIBRARY

 s = STEP is also provided by the user and may be positive or negative. The first two function

evaluations indicate the direction to the minimum point, and the search strides out along this

direction until a bracket on a minimum point is found or until x reaches one of the bounds x0 ± b.

During this stage, the step length increases by a factor of between two and nine per function

evaluation; the factor depends on the position of the minimum point that is predicted by quadratic

interpolation of the three most recent function values.

When an interval containing a solution has been found, we will have three points, x1, x2, and x3,

with x1< x2 < x0 and f (x2) ≤ f (x1) and f (x2) ≤ f (x3). There are three main ingredients in the

technique for choosing the new x from these three points. They are (i) the estimate of the

minimum point that is given by quadratic interpolation of the three function values, (ii) a tolerance

parameter ɛ, that depends on the closeness of f to a quadratic, and (iii) whether x2 is near the center

of the range between x1 and x3 or is relatively close to an end of this range. In outline, the new

value of x is as near as possible to the predicted minimum point, subject to being at least ɛ from x2,

and subject to being in the longer interval between x1 and x2 or x2 and x3 when x2 is particularly

close to x1 or x3. There is some elaboration, however, when the distance between these points is

close to the required accuracy; when the distance is close to the machine precision; or when ɛ is

relatively large.

The algorithm is intended to provide fast convergence when f has a positive and continuous

second derivative at the minimum and to avoid gross inefficiencies in pathological cases, such as

f (x) = x + 1.001|x|

The algorithm can make ɛ large automatically in the pathological cases. In this case, it is usual for

a new value of x to be at the midpoint of the longer interval that is adjacent to the least calculated

function value. The midpoint strategy is used frequently when changes to f are dominated by

computer rounding errors, which will almost certainly happen if the user requests an accuracy that

is less than the square root of the machine precision. In such cases, the routine claims to have

achieved the required accuracy if it knows that there is a local minimum point within distance of

x, where = XACC, even though the rounding errors in f may cause the existence of other local

minimum points nearby. This difficulty is inevitable in minimization routines that use only

function values, so high precision arithmetic is recommended.

Comments

Informational errors

Type Code

3 1 Computer rounding errors prevent further refinement of X.

3 2 The final value of X is at a bound. The minimum is probably beyond

the bound.

4 3 The number of function evaluations has exceeded MAXFN.

Example

A minimum point of e
x
 5x is found.

IMSL MATH LIBRARY Chapter 8: Optimization 1365

 USE UVMIF_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER MAXFN, NOUT

 REAL BOUND, F, FX, STEP, X, XACC, XGUESS

 EXTERNAL F

! Initialize variables

 XGUESS = 0.0

 XACC = 0.001

 BOUND = 100.0

 STEP = 0.1

 MAXFN = 50

!

! Find minimum for F = EXP(X) - 5X

 CALL UVMIF (F, XGUESS, BOUND, X, STEP=STEP, XACC=XACC, MAXFN=MAXFN)

 FX = F(X)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, FX

!

99999 FORMAT (‘ The minimum is at ‘, 7X, F7.3, //, ‘ The function ‘ &

 , ‘value is ‘, F7.3)

!

 END

! Real function: F = EXP(X) - 5.0*X

 REAL FUNCTION F (X)

 REAL X

!

 REAL EXP

 INTRINSIC EXP

!

 F = EXP(X) - 5.0E0*X

!

 RETURN

 END

Output

The minimum is at 1.609

The function value is -3.047

UVMID
Finds the minimum point of a smooth function of a single variable using both function evaluations

and first derivative evaluations.

Required Arguments

F — User-supplied function to define the function to be minimized. The form is

F(X), where

X — The point at which the function is to be evaluated. (Input)

1366 Chapter 8: Optimization IMSL MATH LIBRARY

F — The computed value of the function at X. (Output)

 F must be declared EXTERNAL in the calling program.

G — User-supplied function to compute the derivative of the function. The form is

G(X), where

X — The point at which the derivative is to be computed. (Input)

G — The computed value of the derivative at X. (Output)

 G must be declared EXTERNAL in the calling program.

A — A is the lower endpoint of the interval in which the minimum point of F is to be located.

(Input)

B — B is the upper endpoint of the interval in which the minimum point of F is to be located.

(Input)

X — The point at which a minimum value of F is found. (Output)

Optional Arguments

XGUESS — An initial guess of the minimum point of F. (Input)

Default: XGUESS = (a + b) / 2.0.

ERRREL — The required relative accuracy in the final value of X. (Input)

This is the first stopping criterion. On a normal return, the solution X is in an interval

that contains a local minimum and is less than or equal to MAX(1.0, ABS(X)) * ERRREL.

When the given ERRREL is less than machine epsilon, SQRT(machine epsilon) is used

as ERRREL.

Default: ERRREL = 1.e-4.

GTOL — The derivative tolerance used to decide if the current point is a local minimum.

(Input)

This is the second stopping criterion. X is returned as a solution when GX is less than or

equal to GTOL. GTOL should be nonnegative, otherwise zero would be used.

Default: GTOL = 1.e-4.

MAXFN — Maximum number of function evaluations allowed. (Input)

Default: MAXFN = 1000.

FX — The function value at point X. (Output)

GX — The derivative value at point X. (Output)

FORTRAN 90 Interface

Generic: CALL UVMID (F, G, A, B, X [,…])

IMSL MATH LIBRARY Chapter 8: Optimization 1367

Specific: The specific interface names are S_UVMID and D_UVMID.

FORTRAN 77 Interface

Single: CALL UVMID (F, G, XGUESS, ERRREL, GTOL, MAXFN, A, B, X, FX, GX)

Double: The double precision name is DUVMID.

Description

The routine UVMID uses a descent method with either the secant method or cubic interpolation to

find a minimum point of a univariate function. It starts with an initial guess and two endpoints. If

any of the three points is a local minimum point and has least function value, the routine

terminates with a solution. Otherwise, the point with least function value will be used as the

starting point.

From the starting point, say xc, the function value fc = f (xc), the derivative value gc = g(xc), and a

new point xn defined by xn = xc gc are computed. The function fn = f(xn), and the derivative

gn = g(xn) are then evaluated. If either fn ≥ fc or gn has the opposite sign of gc, then there exists a

minimum point between xc and xn; and an initial interval is obtained. Otherwise, since xc is kept as

the point that has lowest function value, an interchange between xn and xc is performed. The secant

method is then used to get a new point

()n c
s c c

n c

g g
x x g

x x

Let xn ← xs and repeat this process until an interval containing a minimum is found or one of the

convergence criteria is satisfied. The convergence criteria are as follows:

Criterion 1:

c n cx x

Criterion 2:

c gg

where ɛc = max{1.0, |xc|}ɛ, ɛ is a relative error tolerance and ɛg is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new point.

Function and derivative are then evaluated at that point; and accordingly, a smaller interval that

contains a minimum point is chosen. A safeguarded method is used to ensure that the interval

reduces by at least a fraction of the previous interval. Another cubic interpolation is then

performed, and this procedure is repeated until one of the stopping criteria is met.

Comments

Informational errors

Type Code

3 1 The final value of X is at the lower bound. The minimum is probably

beyond the bound.

1368 Chapter 8: Optimization IMSL MATH LIBRARY

3 2 The final value of X is at the upper bound. The minimum is probably

beyond the bound.

4 3 The maximum number of function evaluations has been exceeded.

Example

A minimum point of e
x
 5x is found.

 USE UVMID_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER MAXFN, NOUT

 REAL A, B, ERRREL, F, FX, G, GTOL, GX, X, XGUESS, FTOL

 EXTERNAL F, G

! Initialize variables

 XGUESS = 0.0

! Set ERRREL to zero in order

! to use SQRT(machine epsilon)

! as relative error

 ERRREL = 0.0

 GTOL = 0.0

 A = -10.0

 B = 10.0

 MAXFN = 50

!

! Find minimum for F = EXP(X) - 5X

 CALL UVMID (F, G, A, B, X, XGUESS=XGUESS, ERRREL=ERRREL, &

 GTOL=FTOL, MAXFN=MAXFN, FX=FX, GX=GX)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, FX, GX

!

99999 FORMAT (' The minimum is at ', 7X, F7.3, //, ' The function ' &

 , 'value is ', F7.3, //, ' The derivative is ', F7.3)

!

 END

! Real function: F = EXP(X) - 5.0*X

 REAL FUNCTION F (X)

 REAL X

!

 REAL EXP

 INTRINSIC EXP

!

 F = EXP(X) - 5.0E0*X

!

 RETURN

 END

!

 REAL FUNCTION G (X)

 REAL X

!

 REAL EXP

IMSL MATH LIBRARY Chapter 8: Optimization 1369

 INTRINSIC EXP

!

 G = EXP(X) - 5.0E0

 RETURN

 END

Output

The minimum is at 1.609

The function value is -3.047

The derivative is -0.001

UVMGS
Finds the minimum point of a nonsmooth function of a single variable.

Required Arguments

F — User-supplied function to compute the value of the function to be minimized. The form

is

F(X), where

X – The point at which the function is evaluated. (Input)

X should not be changed by F.

F – The computed function value at the point X. (Output)

 F must be declared EXTERNAL in the calling program.

A — On input, A is the lower endpoint of the interval in which the minimum of F is to be

located. On output, A is the lower endpoint of the interval in which the minimum of F

is located. (Input/Output)

B — On input, B is the upper endpoint of the interval in which the maximum of F is to be

located. On output, B is the upper endpoint of the interval in which the minimum of F

is located. (Input/Output)

XMIN — The approximate minimum point of the function F on the original interval (A, B).

(Output)

Optional Arguments

TOL — The allowable length of the final subinterval containing the minimum point. (Input)

Default: TOL = 1.e-4.

FORTRAN 90 Interface

Generic: CALL UVMGS (F, A, B, XMIN [,…])

1370 Chapter 8: Optimization IMSL MATH LIBRARY

Specific: The specific interface names are S_UVMGS and D_UVMGS.

FORTRAN 77 Interface

Single: CALL UVMGS (F, A, B, TOL, XMIN)

Double: The double precision name is DUVMGS.

Description

The routine UVMGS uses the golden section search technique to compute to the desired accuracy

the independent variable value that minimizes a unimodal function of one independent variable,

where a known finite interval contains the minimum.

Let τ = TOL. The number of iterations required to compute the minimizing value to accuracy τ is

the greatest integer less than or equal to

ln /
1

ln 1

b a

c

where a and b define the interval and

 3 5 / 2c

The first two test points are v1 and v2 that are defined as

v1 = a + c(b a), and v2 = b c(b a)

If f(v1) < f(v2), then the minimizing value is in the interval (a, v2). In this case, b ← v2, v2 ← v1 ,

and v1 ← a + c(b a). If f(v1) ≥ f(v2), the minimizing value is in (v1, b). In this case, a ← v1,

 v1 ← v2, and v2← b c(b a).

The algorithm continues in an analogous manner where only one new test point is computed at

each step. This process continues until the desired accuracy τ is achieved. XMIN is set to the point

producing the minimum value for the current iteration.

Mathematically, the algorithm always produces the minimizing value to the desired accuracy;

however, numerical problems may be encountered. If f is too flat in part of the region of interest,

the function may appear to be constant to the computer in that region. Error code 2 indicates that

this problem has occurred. The user may rectify the problem by relaxing the requirement on τ,

modifying (scaling, etc.) the form of f or executing the program in a higher precision.

Comments

1. Informational errors

Type Code

3 TOL is too small to be satisfied.

4 2 Due to rounding errors F does not appear to be unimodal.

IMSL MATH LIBRARY Chapter 8: Optimization 1371

2. On exit from UVMGS without any error messages, the following conditions hold:

 (B-A) ≤ TOL.

A ≤ XMIN and XMIN ≤ B

F(XMIN) ≤ F(A) and F(XMIN) ≤ F(B)

3. On exit from UVMGS with error code 2, the following conditions hold:

A ≤ XMIN and XMIN ≤ B

F(XMIN) ≥ F(A) and F(XMIN) ≥ F(B) (only one equality can hold).

Further analysis of the function F is necessary in order to determine whether it is not

unimodal in the mathematical sense or whether it appears to be not unimodal to the

routine due to rounding errors in which case the A, B, and XMIN returned may be

acceptable.

Example

A minimum point of 3x
2
 2x + 4 is found.

 USE UVMGS_INT

 USE UMACH_INT

 IMPLICIT NONE

! Specification of variables

 INTEGER NOUT

 REAL A, B, FCN, FMIN, TOL, XMIN

 EXTERNAL FCN

! Initialize variables

 A = 0.0E0

 B = 5.0E0

 TOL = 1.0E-3

! Minimize FCN

 CALL UVMGS (FCN, A, B, XMIN, TOL=TOL)

 FMIN = FCN(XMIN)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) XMIN, FMIN, A, B

99999 FORMAT (' The minimum is at ', F5.3, //, ' The ', &

 'function value is ', F5.3, //, ' The final ', &

 'interval is (', F6.4, ',', F6.4, ')', /)

!

 END

!

! REAL FUNCTION: F = 3*X**2 - 2*X + 4

 REAL FUNCTION FCN (X)

 REAL X

!

 FCN = 3.0E0*X*X - 2.0E0*X + 4.0E0

!

 RETURN

 END

Output

The minimum is at 0.333

1372 Chapter 8: Optimization IMSL MATH LIBRARY

The function value is 3.667

The final interval is (0.3331,0.3340)

UMINF
Minimizes a function of N variables using a quasi-Newton method and a finite-difference gradient.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing an initial guess of the computed solution. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the gradient and the distance between two points. In

the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)

FSCALE is used mainly in scaling the gradient. In the absence of other information, set

FSCALE to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 7.(Input/Output)

See Comment 4.

IMSL MATH LIBRARY Chapter 8: Optimization 1373

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMINF (FCN, X [,…])

Specific: The specific interface names are S_UMINF and D_UMINF.

FORTRAN 77 Interface

Single: CALL UMINF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X,
FVALUE)

Double: The double precision name is DUMINF.

Description

The routine UMINF uses a quasi-Newton method to find the minimum of a function f(x) of n

variables. Only function values are required. The problem is stated as follows:

 min
nx

f x
R

Given a starting point xc, the search direction is computed according to the formula

d = B-1
 gc

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at xc.

A line search is then used to find a new point

xn = xc + λd, λ > 0

such that

f(xn) ≤ f(xc) + αg
T
 d, α ∈ (0, 0.5)

Finally, the optimality condition ||g(x)|| = ɛ is checked where ɛ is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula

T T

T T

Bss B yy
B B

s Bs y s

where s = xn xc and y = gn gc. Another search direction is then computed to begin the next

iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

Since a finite-difference method is used to estimate the gradient, for some single precision

calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the

exact gradient can be easily provided, IMSL routine UMING should be used instead.

1374 Chapter 8: Optimization IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of U2INF/DU2INF. The

reference is:

CALL U2INF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X,

FVALUE, WK)

The additional argument is:

WK — Work vector of length N(N + 8). WK contains the following information on

output: The second N locations contain the last step taken. The third N locations

contain the last Newton step. The fourth N locations contain an estimate of the

gradient at the solution. The final N
2
 locations contain the Cholesky

factorization of a BFGS approximation to the Hessian at the solution.

2. Informational errors

Type Code

4 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

4 5 Maximum number of gradient evaluations exceeded.

4 6 Five consecutive steps have been taken with the maximum step

length.

2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow

progress and is not near a solution, or STEPTL is too big.

3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for UMINF occurs when the infinity norm of the scaled

gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping

criterion for UMINF occurs when the scaled distance between the last two steps is less

than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UMINF, then set IPARAM(1) to zero and call the

routine UMINF. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling UMINF:

CALL U4INF (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

 Note that the call to U4INF will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above.

IMSL MATH LIBRARY Chapter 8: Optimization 1375

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.

Default: 400.

IPARAM(6) = Hessian initialization parameter.

If IPARAM(6) = 0, the Hessian is initialized to the identity matrix;

otherwise, it is initialized to a diagonal matrix containing

 2max , s if t f s

 on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE.

Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.

Default: Not used in UMINF.

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.

The i-th component of the scaled gradient at

x is calculated as

*max ,1/

max ,

i i i

s

g x s

f x f

 where g = ∇ f (x), s = XSCALE, and fs = FSCALE.

Default:

3,

 in double where ɛ is the machine precision.

1376 Chapter 8: Optimization IMSL MATH LIBRARY

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is

computed as

 max ,1/

i i

i i

x y

x s

 where s = XSCALE.

Default: ɛ2/3
 where ɛ is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: Not used in UMINF.

RPARAM(4) = Absolute function tolerance

Default: Not used in UMINF.

RPARAM(5) = False convergence tolerance.

Default: Not used in UMINF.

RPARAM(6) = Maximum allowable step size.

Default: 1000 max(ɛ1, ɛ2) where

2

1 2 21
XSCALE XGUESS, , , and

n

i ii
s t s s t

RPARAM(7) = Size of initial trust region radius.

Default: Not used in UMINF.

 If double precision is required, then DU4INF is called, and RPARAM is declared double

precision.

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The function

2 22

2 1 1100 1f x x x x

is minimized.

 USE UMINF_INT

 USE U4INF_INT

 USE UMACH_INT

 IMPLICIT NONE

IMSL MATH LIBRARY Chapter 8: Optimization 1377

 INTEGER N

 PARAMETER (N=2)

!

 INTEGER IPARAM(7), L, NOUT

 REAL F, RPARAM(7), X(N), XGUESS(N), &

 XSCALE(N)

 EXTERNAL ROSBRK

!

 DATA XGUESS/-1.2E0, 1.0E0/

!

! Relax gradient tolerance stopping

! criterion

 CALL U4INF (IPARAM, RPARAM)

 RPARAM(1) = 10.0E0*RPARAM(1)

! Minimize Rosenbrock function using

! initial guesses of -1.2 and 1.0

 CALL UMINF (ROSBRK, X, XGUESS=XGUESS, IPARAM=IPARAM, RPARAM=RPARAM, &

 FVALUE=F)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)

!

99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', &

 'value is ', F8.3, //, ' The number of iterations is ', &

 10X, I3, /, ' The number of function evaluations is ', &

 I3, /, ' The number of gradient evaluations is ', I3)

!

 END

!

 SUBROUTINE ROSBRK (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

!

 RETURN

 END

Output

The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 15

The number of function evaluations is 40

The number of gradient evaluations is 19

UMING
Minimizes a function of N variables using a quasi-Newton method and a user-supplied gradient.

1378 Chapter 8: Optimization IMSL MATH LIBRARY

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by GRAD .

G – The gradient evaluated at the point X. (Output)

 GRAD must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the gradient and the distance between two points. In

the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)

FSCALE is used mainly in scaling the gradient. In the absence of other information, set

FSCALE to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM = 0.

IMSL MATH LIBRARY Chapter 8: Optimization 1379

RPARAM — Parameter vector of length 7. (Input/Output)

See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMING (FCN, GRAD, X [,…])

Specific: The specific interface names are S_UMING and D_UMING.

FORTRAN 77 Interface

Single: CALL UMING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X,
FVALUE)

Double: The double precision name is DUMING.

Description

The routine UMING uses a quasi-Newton method to find the minimum of a function f(x) of n

variables. Function values and first derivatives are required. The problem is stated as follows:

 min
nx

f x
R

Given a starting point xc, the search direction is computed according to the formula

d = B-1
 gc

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at xc.

A line search is then used to find a new point

xn = xc + λd, λ > 0

such that

f(xn) ≤ f(xc) + αg
T
 d, α ∈ (0, 0.5)

Finally, the optimality condition ||g(x)|| = ɛ is checked where ɛ is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula

T T

T T

Bss B yy
B B

s Bs y s

where s = xn xc and y = gn gc. Another search direction is then computed to begin the next

iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

1380 Chapter 8: Optimization IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of U2ING/DU2ING. The

reference is:

CALL U2ING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVALUE, WK)

The additional argument is

WK — Work vector of length N * (N + 8). WK contains the following

information on output: The second N locations contain the last step

taken. The third N locations contain the last Newton step. The fourth N

locations contain an estimate of the gradient at the solution. The final

N
2
 locations contain the Cholesky factorization of a BFGS

approximation to the Hessian at the solution.

2. Informational errors

Type Code

4 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

4 5 Maximum number of gradient evaluations exceeded.

4 6 Five consecutive steps have been taken with the maximum step

length.

2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow

progress and is not near a solution, or STEPTL is too big.

3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for UMING occurs when the infinity norm of the scaled

gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping

criterion for UMING occurs when the scaled distance between the last two steps is less

than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UMING, then set IPARAM(1) to zero and call

routine UMING. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling UMING:

 CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

IMSL MATH LIBRARY Chapter 8: Optimization 1381

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above.

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.

Default: 400.

IPARAM(6) = Hessian initialization parameter

If IPARAM(6) = 0, the Hessian is initialized to the identity matrix;

otherwise, it is initialized to a diagonal matrix containing

 2max , s if t f s

 on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE.

Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.

Default: Not used in UMING.

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.

The i-th component of the scaled gradient at

x is calculated as

*max ,1/

max ,

i i i

s

g x s

f x f

 where g = ∇f (x), s = XSCALE, and fs = FSCALE.

Default:

3,

1382 Chapter 8: Optimization IMSL MATH LIBRARY

 in double where ɛ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is

computed as

 max ,1/

i i

i i

x y

x s

 where s = XSCALE.

Default: ɛ2/3
 where ɛ is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: Not used in UMING.

RPARAM(4) = Absolute function tolerance.

Default: Not used in UMING.

RPARAM(5) = False convergence tolerance.

Default: Not used in UMING.

RPARAM(6) = Maximum allowable step size.

Default: 1000 max(ɛ1, ɛ2) where

2

1 1

n

i ii
s t

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.

Default: Not used in UMING.

 If double precision is required, then DU4INF is called, and RPARAM is declared

double precision.

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The function

2 22

2 1 1100 1f x x x x

is minimized. Default values for parameters are used.

IMSL MATH LIBRARY Chapter 8: Optimization 1383

 USE UMING_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=2)

!

 INTEGER IPARAM(7), L, NOUT

 REAL F, X(N), XGUESS(N)

 EXTERNAL ROSBRK, ROSGRD

!

 DATA XGUESS/-1.2E0, 1.0E0/

!

 IPARAM(1) = 0

! Minimize Rosenbrock function using

! initial guesses of -1.2 and 1.0

 CALL UMING (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)

!

99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', &

 'value is ', F8.3, //, ' The number of iterations is ', &

 10X, I3, /, ' The number of function evaluations is ', &

 I3, /, ' The number of gradient evaluations is ', I3)

!

 END

!

 SUBROUTINE ROSBRK (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

!

 RETURN

 END

!

 SUBROUTINE ROSGRD (N, X, G)

 INTEGER N

 REAL X(N), G(N)

!

 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))

 G(2) = 2.0E2*(X(2)-X(1)*X(1))

!

 RETURN

 END

Output

The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 18

The number of function evaluations is 31

The number of gradient evaluations is 22

1384 Chapter 8: Optimization IMSL MATH LIBRARY

UMIDH
Minimizes a function of N variables using a modified Newton method and a finite-difference

Hessian.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – The point at which the gradient is evaluated. (Input)

X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

 GRAD must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing initial guess. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the gradient and the distance between two points. In

the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)

FSCALE is used mainly in scaling the gradient. In the absence of other information, set

IMSL MATH LIBRARY Chapter 8: Optimization 1385

FSCALE to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)

See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMIDH (FCN, GRAD, X [,…])

Specific: The specific interface names are S_UMIDH and D_UMIDH.

FORTRAN 77 Interface

Single: CALL UMIDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X,
FVALUE)

Double: The double precision name is DUMIDH.

Description

The routine UMIDH uses a modified Newton method to find the minimum of a function f (x) of n

variables. First derivatives must be provided by the user. The algorithm computes an optimal

locally constrained step (Gay 1981) with a trust region restriction on the step. It handles the case

that the Hessian is indefinite and provides a way to deal with negative curvature. For more details,

see Dennis and Schnabel (1983, Appendix A) and Gay (1983).

Since a finite-difference method is used to estimate the Hessian for some single precision

calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the

exact Hessian can be easily provided, IMSL routine UMIAH should be used instead.

Comments

1. Workspace may be explicitly provided, if desired, by use of U2IDH/DU2IDH. The

reference is:

CALL U2IDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVALUE, WK)

The additional argument is:

WK — Work vector of length N * (N + 9). WK contains the following

information on output: The second N locations contain the last step

1386 Chapter 8: Optimization IMSL MATH LIBRARY

taken. The third N locations contain the last Newton step. The fourth N

locations contain an estimate of the gradient at the solution. The final

N
2
 locations contain the Hessian at the approximate solution.

2. Informational errors

Type Code

3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.

4 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

4 5 Maximum number of gradient evaluations exceeded.

4 6 Five consecutive steps have been taken with the maximum step

length.

2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow

progress and is not near a solution, or STEPTL is too big.

4 7 Maximum number of Hessian evaluations exceeded.

3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for UMIDH occurs when the norm of the gradient is less than

the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIDH

occurs when the scaled distance between the last two steps is less than the step

tolerance (RPARAM(2)).

4. If the default parameters are desired for UMIDH, then set IPARAM(1) to zero and call

routine UMIDH. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling UMIDH:

CALL U4INF (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so

only nondefault values need to be set above.

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.

IPARAM(1) = Initialization flag.

IMSL MATH LIBRARY Chapter 8: Optimization 1387

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.

Default: 400.

IPARAM(6) = Hessian initialization parameter

Default: Not used in UMIDH.

IPARAM(7) = Maximum number of Hessian evaluations.

Default:100

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.

The i-th component of the scaled gradient at x is calculated as

*max ,1/

max ,

i i i

s

g x s

f x f

 where g = ∇f (x), s = XSCALE, and fs = FSCALE.

Default:

3,

 in double where ɛ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is

computed as

 max ,1/

i i

i i

x y

x s

 where s = XSCALE.

Default: ɛ2/3
 where ɛ is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10
, ɛ2/3

), max(10-20
, ɛ2/3

) in double where ɛ is the

machine precision.

1388 Chapter 8: Optimization IMSL MATH LIBRARY

RPARAM(4) = Absolute function tolerance.

Default: Not used in UMIDH.

RPARAM(5) = False convergence tolerance.

Default: 100ɛ where ɛ is the machine precision.

RPARAM(6) = Maximum allowable step size.

Default: 1000 max(ɛ1, ɛ2) where

2

1 1

n

i ii
s t

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.

Default: Based on initial scaled Cauchy step.

 If double precision is required, then DU4INF is called, and RPARAM is declared

double precision.

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The function

2 22

2 1 1100 1f x x x x

is minimized. Default values for parameters are used.

 USE UMIDH_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=2)

!

 INTEGER IPARAM(7), L, NOUT

 REAL F, X(N), XGUESS(N)

 EXTERNAL ROSBRK, ROSGRD

!

 DATA XGUESS/-1.2E0, 1.0E0/

!

 IPARAM(1) = 0

! Minimize Rosenbrock function using

! initial guesses of -1.2 and 1.0

 CALL UMIDH (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F)

! Print results

 CALL UMACH (2, NOUT)

IMSL MATH LIBRARY Chapter 8: Optimization 1389

 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)

!

99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', &

 'value is ', F8.3, //, ' The number of iterations is ', &

 10X, I3, /, ' The number of function evaluations is ', &

 I3, /, ' The number of gradient evaluations is ', I3, /, &

 ' The number of Hessian evaluations is ', I3)

!

 END

!

 SUBROUTINE ROSBRK (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

!

 RETURN

 END

!

 SUBROUTINE ROSGRD (N, X, G)

 INTEGER N

 REAL X(N), G(N)

!

 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))

 G(2) = 2.0E2*(X(2)-X(1)*X(1))

!

 RETURN

 END

Output

The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 21

The number of function evaluations is 30

The number of gradient evaluations is 22

The number of Hessian evaluations is 21

UMIAH
Minimizes a function of N variables using a modified Newton method and a user-supplied

Hessian.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

1390 Chapter 8: Optimization IMSL MATH LIBRARY

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the gradient is evaluated. (Input)

X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

 GRAD must be declared EXTERNAL in the calling program.

HESS — User-supplied subroutine to compute the Hessian at the point X. The usage is

CALL HESS (N, X, H, LDH), where

N – Length of X. (Input)

X – Vector of length N at which point the Hessian is evaluated. (Input)

X should not be changed by HESS.

H – The Hessian evaluated at the point X. (Output)

LDH – Leading dimension of H exactly as specified in the dimension statement

of the calling program. (Input)

 HESS must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing initial guess. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the gradient and the distance between two points. In

the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)

FSCALE is used mainly in scaling the gradient. In the absence of other information, set

FSCALE to 1.0.

Default: FSCALE = 1.0.

IMSL MATH LIBRARY Chapter 8: Optimization 1391

IPARAM — Parameter vector of length 7. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)

See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMIAH (FCN, GRAD, HESS, X, [,…])

Specific: The specific interface names are S_UMIAH and D_UMIAH.

FORTRAN 77 Interface

Single: CALL UMIAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVALUE)

Double: The double precision name is DUMIAH.

Description

The routine UMIAH uses a modified Newton method to find the minimum of a function f(x) of n

variables. First and second derivatives must be provided by the user. The algorithm computes an

optimal locally constrained step (Gay 1981) with a trust region restriction on the step. This

algorithm handles the case where the Hessian is indefinite and provides a way to deal with

negative curvature. For more details, see Dennis and Schnabel (1983, Appendix A) and Gay

(1983).

Comments

1. Workspace may be explicitly provided, if desired, by use of U2IAH/DU2IAH. The

reference is:

CALL U2IAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE,

IPARAM, RPARAM, X, FVALUE, WK)

The additional argument is:

WK — Work vector of length N * (N + 9). WK contains the following

information on output: The second N locations contain the last step

taken. The third N locations contain the last Newton step. The fourth N

locations contain an estimate of the gradient at the solution. The final

N
2
 locations contain the Hessian at the approximate solution.

2. Informational errors

Type Code

1392 Chapter 8: Optimization IMSL MATH LIBRARY

3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.

4 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

4 5 Maximum number of gradient evaluations exceeded.

4 6 Five consecutive steps have been taken with the maximum step

length.

2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow

progress and is not near a solution, or STEPTL is too big.

4 7 Maximum number of Hessian evaluations exceeded.

3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for UMIAH occurs when the norm of the gradient is less than

the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIAH

occurs when the scaled distance between the last two steps is less than the step

tolerance (RPARAM(2)).

4. If the default parameters are desired for UMIAH, then set IPARAM(1) to zero and call the

routine UMIAH. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling UMIAH:

CALL U4INF (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above.

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IMSL MATH LIBRARY Chapter 8: Optimization 1393

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.

Default: 400.

IPARAM(6) = Hessian initialization parameter

Default: Not used in UMIAH.

IPARAM(7) = Maximum number of Hessian evaluations.

Default: 100.

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.

The i-th component of the scaled gradient at x is calculated as

max ,1/

max ,

i i i

s

g x s

f x f

 where g = ∇f (x), s = XSCALE, and fs = FSCALE.

Default:

3,

 in double where ɛ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is

computed as

 max ,1/

i i

i i

x y

x s

 where s = XSCALE.

Default: ɛ2/3
 where ɛ is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10
, ɛ2/3

), max(10-20
, ɛ2/3

) in double where ɛ is the

machine precision.

RPARAM(4) = Absolute function tolerance.

Default: Not used in UMIAH.

RPARAM(5) = False convergence tolerance.

Default: 100ɛ where ɛ is the machine precision.

1394 Chapter 8: Optimization IMSL MATH LIBRARY

RPARAM(6) = Maximum allowable step size.

Default: 1000 max(ɛ1, ɛ2) where

2

1 1

n

i ii
s t

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.

Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called, and RPARAM is declared double

precision.

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The function

2 22

2 1 1100 1f x x x x

is minimized. Default values for parameters are used.

 USE UMIAH_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=2)

!

 INTEGER IPARAM(7), L, NOUT

 REAL F, FSCALE, RPARAM(7), X(N), &

 XGUESS(N), XSCALE(N)

 EXTERNAL ROSBRK, ROSGRD, ROSHES

!

 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/

!

 IPARAM(1) = 0

! Minimize Rosenbrock function using

! initial guesses of -1.2 and 1.0

 CALL UMIAH (ROSBRK, ROSGRD, ROSHES, X, XGUESS=XGUESS, IPARAM=IPARAM, &

 FVALUE=F)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)

!

99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', &

 'value is ', F8.3, //, ' The number of iterations is ', &

 10X, I3, /, ' The number of function evaluations is ', &

IMSL MATH LIBRARY Chapter 8: Optimization 1395

 I3, /, ' The number of gradient evaluations is ', I3, /, &

 ' The number of Hessian evaluations is ', I3)

!

 END

!

 SUBROUTINE ROSBRK (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

!

 RETURN

 END

!

 SUBROUTINE ROSGRD (N, X, G)

 INTEGER N

 REAL X(N), G(N)

!

 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))

 G(2) = 2.0E2*(X(2)-X(1)*X(1))

!

 RETURN

 END

!

 SUBROUTINE ROSHES (N, X, H, LDH)

 INTEGER N, LDH

 REAL X(N), H(LDH,N)

!

 H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0

 H(2,1) = -4.0E2*X(1)

 H(1,2) = H(2,1)

 H(2,2) = 2.0E2

!

 RETURN

 END

Output

The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 21

The number of function evaluations is 31

The number of gradient evaluations is 22

The number of Hessian evaluations is 21

UMCGF
Minimizes a function of N variables using a conjugate gradient algorithm and a finite-difference

gradient.

1396 Chapter 8: Optimization IMSL MATH LIBRARY

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

DFPRED — A rough estimate of the expected reduction in the function. (Input)

DFPRED is used to determine the size of the initial change to X.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

Default: XSCALE = 1.0.

GRADTL — Convergence criterion. (Input)

The calculation ends when the sum of squares of the components of G is less than

GRADTL.

Default: GRADTL = 1.e-4.

MAXFN — Maximum number of function evaluations. (Input)

If MAXFN is set to zero, then no restriction on the number of function evaluations is set.

Default: MAXFN = 0.

G — Vector of length N containing the components of the gradient at the final parameter

estimates. (Output)

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMCGF (FCN, DFPRED, X [,…])

IMSL MATH LIBRARY Chapter 8: Optimization 1397

Specific: The specific interface names are S_UMCGF and D_UMCGF.

FORTRAN 77 Interface

Single: CALL UMCGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED, X, G,
FVALUE)

Double: The double precision name is DUMCGF.

Description

The routine UMCGF uses a conjugate gradient method to find the minimum of a function f (x) of n

variables. Only function values are required.

The routine is based on the version of the conjugate gradient algorithm described in Powell

(1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of

convergence without the storage of any matrices. Therefore, it is particularly suitable for

unconstrained minimization calculations where the number of variables is so large that matrices of

dimension n cannot be stored in the main memory of the computer. For smaller problems,

however, a routine such as routine UMINF, is usually more efficient because each iteration makes

use of additional information from previous iterations.

Since a finite-difference method is used to estimate the gradient for some single precision

calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the

exact gradient can be easily provided, routine UMCGG should be used instead.

Comments

1. Workspace may be explicitly provided, if desired, by use of U2CGF/DU2CGF. The

reference is:

CALL U2CGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED,

X, G, FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT)

The additional arguments are as follows:

S — Vector of length N used for the search direction in each iteration.

RSS — Vector of length N containing conjugacy information.

RSG — Vector of length N containing conjugacy information.

GINIT — Vector of length N containing the gradient values at the start of an

iteration.

XOPT — Vector of length N containing the parameter values that yield the

least calculated value for FVALUE.

GOPT — Vector of length N containing the gradient values that yield the least

calculated value for FVALUE.

1398 Chapter 8: Optimization IMSL MATH LIBRARY

2. Informational errors

Type Code

4 1 The line search of an integration was abandoned. This error may be

caused by an error in gradient.

4 2 The calculation cannot continue because the search is uphill.

4 3 The iteration was terminated because MAXFN was exceeded.

3 4 The calculation was terminated because two consecutive iterations

failed to reduce the function.

3. Because of the close relation between the conjugate-gradient method and the method of

steepest descent, it is very helpful to choose the scale of the variables in a way that

balances the magnitudes of the components of a typical gradient vector. It can be

particularly inefficient if a few components of the gradient are much larger than the

rest.

4. If the value of the parameter GRADTL in the argument list of the routine is set to zero,

then the subroutine will continue its calculation until it stops reducing the objective

function. In this case, the usual behavior is that changes in the objective function

become dominated by computer rounding errors before precision is lost in the gradient

vector. Therefore, because the point of view has been taken that the user requires the

least possible value of the function, a value of the objective function that is small due

to computer rounding errors can prevent further progress. Hence, the precision in the

final values of the variables may be only about half the number of significant digits in

the computer arithmetic, but the least value of FVALUE is usually found to be quite

accurate.

Example

The function

2 22

2 1 1100 1f x x x x

is minimized and the solution is printed.

 USE UMCGF_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declaration of variables

 INTEGER N

 PARAMETER (N=2)

!

 INTEGER I, MAXFN, NOUT

 REAL DFPRED, FVALUE, G(N), GRADTL, X(N), XGUESS(N)

 EXTERNAL ROSBRK

!

 DATA XGUESS/-1.2E0, 1.0E0/

!

IMSL MATH LIBRARY Chapter 8: Optimization 1399

 DFPRED = 0.2

 GRADTL = 1.0E-6

 MAXFN = 100

! Minimize the Rosenbrock function

 CALL UMCGF (ROSBRK, DFPRED, X, xguess=xguess, gradtl=gradtl, &

 g=g, fvalue=fvalue)

! Print the results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N)

99999 FORMAT (' The solution is ', 2F8.3, //, ' The function ', &

 'evaluated at the solution is ', F8.3, //, ' The ', &

 'gradient is ', 2F8.3, /)

!

 END

!

 SUBROUTINE ROSBRK (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

 RETURN

 END

Output

The solution is 0.999 0.998

The function evaluated at the solution is 0.000

The gradient is -0.001 0.000

UMCGG
Minimizes a function of N variables using a conjugate gradient algorithm and a user-supplied

gradient.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

1400 Chapter 8: Optimization IMSL MATH LIBRARY

X – The point at which the gradient is evaluated. (Input)

X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

 GRAD must be declared EXTERNAL in the calling program.

DFPRED — A rough estimate of the expected reduction in the function. (Input)

DFPRED is used to determine the size of the initial change to X.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)

Default: XGUESS = 0.0.

GRADTL — Convergence criterion. (Input)

The calculation ends when the sum of squares of the components of G is less than

GRADTL.

Default: GRADTL = 1.e-4.

MAXFN — Maximum number of function evaluations. (Input)

Default: MAXFN = 100.

G — Vector of length N containing the components of the gradient at the final parameter

estimates. (Output)

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMCGG (FCN, GRAD, DFPRED, X [,…])

Specific: The specific interface names are S_UMCGG and D_UMCGG.

FORTRAN 77 Interface

Single: CALL UMCGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X, G, FVALUE)

Double: The double precision name is DUMCGG.

IMSL MATH LIBRARY Chapter 8: Optimization 1401

Description

The routine UMCGG uses a conjugate gradient method to find the minimum of a function f (x) of n

variables. Function values and first derivatives are required.

The routine is based on the version of the conjugate gradient algorithm described in Powell

(1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of

convergence without the storage of any matrices. Therefore, it is particularly suitable for

unconstrained minimization calculations where the number of variables is so large that matrices of

dimension n cannot be stored in the main memory of the computer. For smaller problems,

however, a subroutine such as IMSL routine UMING, is usually more efficient because each

iteration makes use of additional information from previous iterations.

Comments

1. Workspace may be explicitly provided, if desired, by use of U2CGG/DU2CGG. The

reference is:

CALL U2CGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED,

X, G, FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT)

The additional arguments are as follows:

S — Vector of length N used for the search direction in each iteration.

RSS — Vector of length N containing conjugacy information.

RSG — Vector of length N containing conjugacy information.

GINIT — Vector of length N containing the gradient values at the start on an

iteration.

XOPT — Vector of length N containing the parameter values which yield the

least calculated value for FVALUE.

GOPT — Vector of length N containing the gradient values which yield the

least calculated value for FVALUE.

2. Informational errors

Type Code

4 1 The line search of an integration was abandoned. This error may be

caused by an error in gradient.

4 2 The calculation cannot continue because the search is uphill.

4 3 The iteration was terminated because MAXFN was exceeded.

3 4 The calculation was terminated because two consecutive iterations

failed to reduce the function.

3. The routine includes no thorough checks on the part of the user program that calculates

the derivatives of the objective function. Therefore, because derivative calculation is a

1402 Chapter 8: Optimization IMSL MATH LIBRARY

frequent source of error, the user should verify independently the correctness of the

derivatives that are given to the routine.

4. Because of the close relation between the conjugate-gradient method and the method of

steepest descent, it is very helpful to choose the scale of the variables in a way that

balances the magnitudes of the components of a typical gradient vector. It can be

particularly inefficient if a few components of the gradient are much larger than the

rest.

5. If the value of the parameter GRADTL in the argument list of the routine is set to zero,

then the subroutine will continue its calculation until it stops reducing the objective

function. In this case, the usual behavior is that changes in the objective function

become dominated by computer rounding errors before precision is lost in the gradient

vector. Therefore, because the point of view has been taken that the user requires the

least possible value of the function, a value of the objective function that is small due

to computer rounding errors can prevent further progress. Hence, the precision in the

final values of the variables may be only about half the number of significant digits in

the computer arithmetic, but the least value of FVALUE is usually found to be quite

accurate.

Example

The function

2 22

2 1 1100 1f x x x x

is minimized and the solution is printed.

 USE UMCGG_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declaration of variables

 INTEGER N

 PARAMETER (N=2)

!

 INTEGER I, NOUT

 REAL DFPRED, FVALUE, G(N), GRADTL, X(N), &

 XGUESS(N)

 EXTERNAL ROSBRK, ROSGRD

!

 DATA XGUESS/-1.2E0, 1.0E0/

!

 DFPRED = 0.2

 GRADTL = 1.0E-7

! Minimize the Rosenbrock function

 CALL UMCGG (ROSBRK, ROSGRD, DFPRED, X, xguess=xguess, &

 gradtl=gradtl, g=g, fvalue=fvalue)

! Print the results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N)

IMSL MATH LIBRARY Chapter 8: Optimization 1403

99999 FORMAT (' The solution is ', 2F8.3, //, ' The function ', &

 'evaluated at the solution is ', F8.3, //, ' The ', &

 'gradient is ', 2F8.3, /)

!

 END

!

 SUBROUTINE ROSBRK (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

 RETURN

 END

!

 SUBROUTINE ROSGRD (N, X, G)

 INTEGER N

 REAL X(N), G(N)

!

 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))

 G(2) = 2.0E2*(X(2)-X(1)*X(1))

!

 RETURN

 END

!

 SUBROUTINE ROSBRK (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

 RETURN

 END

!

 SUBROUTINE ROSGRD (N, X, G)

 INTEGER N

 REAL X(N), G(N)

!

 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))

 G(2) = 2.0E2*(X(2)-X(1)*X(1))

!

 RETURN

 END

Output

 The solution is 1.000 1.000

 The function evaluated at the solution is 0.000

 The gradient is 0.000 -0.000

UMPOL
Minimizes a function of N variables using a direct search polytope algorithm.

1404 Chapter 8: Optimization IMSL MATH LIBRARY

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

X — Real vector of length N containing the best estimate of the minimum found. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

XGUESS — Real vector of length N which contains an initial guess to the minimum. (Input)

Default: XGUESS = 0.0.

S — On input, real scalar containing the length of each side of the initial simplex.

(Input/Output)

If no reasonable information about S is known, S could be set to a number less than or

equal to zero and UMPOL will generate the starting simplex from the initial guess with a

random number generator. On output, the average distance from the vertices to the

centroid that is taken to be the solution; see Comment 4.

Default: S = 0.0.

FTOL — First convergence criterion. (Input)

The algorithm stops when a relative error in the function values is less than FTOL, i.e.

when (F(worst) F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and F(best) are

the function values of the current worst and best points, respectively. Second

convergence criterion. The algorithm stops when the standard deviation of the function

values at the N + 1 current points is less than FTOL. If the subroutine terminates

prematurely, try again with a smaller value for FTOL.

Default: FTOL = 1.e-7.

MAXFCN — On input, maximum allowed number of function evaluations. (Input/ Output)

On output, actual number of function evaluations needed.

Default: MAXFCN = 200.

FVALUE — Function value at the computed solution. (Output)

IMSL MATH LIBRARY Chapter 8: Optimization 1405

FORTRAN 90 Interface

Generic: CALL UMPOL (FCN, X [,…])

Specific: The specific interface names are S_UMPOL and D_UMPOL.

FORTRAN 77 Interface

Single: CALL UMPOL (FCN, N, XGUESS, S, FTOL, MAXFCN, X, FVALUE)

Double: The double precision name is DUMPOL.

Description

The routine UMPOL uses the polytope algorithm to find a minimum point of a function f(x) of n

variables. The polytope method is based on function comparison; no smoothness is assumed. It

starts with n + 1 points x1, x2, …, xn + 1. At each iteration, a new point is generated to replace the

worst point xj, which has the largest function value among these n + 1 points. The new point is

constructed by the following formula:

xk = c + α(c xj)

where

1
i j ic x

n

and α (α > 0) is the reflection coefficient.

When xk is a best point, that is f(xk) ≤ f(xi) for i = 1, …, n + 1, an expansion point is computed

xe = c + β(xk c) where β(β > 1) is called the expansion coefficient. If the new point is a worst

point, then the polytope would be contracted to get a better new point. If the contraction step is

unsuccessful, the polytope is shrunk by moving the vertices halfway toward current best point.

This procedure is repeated until one of the following stopping criteria is satisfied:

Criterion 1:

fbest fworst ≤ ɛf (1. + |fbest|)

Criterion 2:

1
1

1 2

1

()
1

n
n

jj
i f

i

f
f

n

where fi = f (xi), fj = f (xj), and ɛf is a given tolerance. For a complete description, see Nelder and

Mead (1965) or Gill et al. (1981).

Comments

1. Workspace may be explicitly provided, if desired, by use of U2POL/DU2POL. The

reference is:

1406 Chapter 8: Optimization IMSL MATH LIBRARY

CALL U2POL (FCN, N, XGUESS, S, FTOL, MAXFCN, X, FVALUE,

WK)

The additional argument is:

WK — Real work vector of length N**2 + 5 * N + 1.

2. Informational error

Type Code

4 1 Maximum number of function evaluations exceeded.

3. Since UMPOL uses only function value information at each step to determine a new

approximate minimum, it could be quite ineficient on smooth problems compared to

other methods such as those implemented in routine UMINF that takes into account

derivative information at each iteration. Hence, routine UMPOL should only be used as a

last resort. Briefly, a set of N + 1 points in an N-dimensional space is called a simplex.

The minimization process iterates by replacing the point with the largest function value

by a new point with a smaller function value. The iteration continues until all the points

cluster sufficiently close to a minimum.

4. The value returned in S is useful for assessing the flatness of the function near the

computed minimum. The larger its value for a given value of FTOL, the flatter the

function tends to be in the neighborhood of the returned point.

Example

The function

2 22

2 1 1100 1f x x x x

is minimized and the solution is printed.

 USE UMPOL_INT

 USE UMACH_INT

 IMPLICIT NONE

! Variable declarations

 INTEGER N

 PARAMETER (N=2)

!

 INTEGER K, NOUT

 REAL FTOL, FVALUE, S, X(N), XGUESS(N)

 EXTERNAL FCN

!

! Initializations

! XGUESS = (-1.2, 1.0)

!

 DATA XGUESS/-1.2, 1.0/

!

 FTOL = 1.0E-10

IMSL MATH LIBRARY Chapter 8: Optimization 1407

 S = 1.0

!

 CALL UMPOL (FCN, X, xguess=xguess, s=s, ftol=ftol,&

 fvalue=fvalue)

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) (X(K),K=1,N), FVALUE

99999 FORMAT (' The best estimate for the minimum value of the', /, &

 ' function is X = (', 2(2X,F4.2), ')', /, ' with ', &

 'function value FVALUE = ', E12.6)

!

 END

! External function to be minimized

 SUBROUTINE FCN (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 100.0*(X(1)*X(1)-X(2))**2 + (1.0-X(1))**2

 RETURN

 END

Output

 The best estimate for the minimum value of the

 function is X = (1.00 1.00)

 with function value FVALUE = 0.502496E-10

UNLSF

Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm and a

finite-difference Jacobian.

Required Arguments

FCN — User-supplied subroutine to evaluate the function that defines the least-squares

problem. The usage is

CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

F – Vector of length M containing the function values at X. (Output)

 FCN must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

1408 Chapter 8: Optimization IMSL MATH LIBRARY

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments

N — Number of variables. N must be less than or equal to M. (Input)

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the gradient and the distance between two points. By

default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.

Default: XSCALE = 1.0.

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.

(Input)

FSCALE is used mainly in scaling the gradient. In the absence of other information, set

all entries to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)

See Comment 4.

FVEC — Vector of length M containing the residuals at the approximate solution. (Output)

FJAC — M by N matrix containing a finite difference approximate Jacobian at the

approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFJAC = SIZE (FJAC,1).

FORTRAN 90 Interface

Generic: CALL UNLSF (FCN, M, X [,…])

Specific: The specific interface names are S_UNLSF and D_UNLSF.

IMSL MATH LIBRARY Chapter 8: Optimization 1409

FORTRAN 77 Interface

Single: CALL UNLSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC,

FJAC, LDFJAC)

Double: The double precision name is DUNLSF.

Description

The routine UNLSF is based on the MINPACK routine LMDIF by Moré et al. (1980). It uses a

modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem is

stated as follows:

2

1

1 1
min

2 2n

m
T

i
x i

F x F x f x

R

where m ≥ n, F : R
n
→ R

m
, and fi(x) is the i-th component function of F(x). From a current point,

the algorithm uses the trust region approach:

2

min
n

n

c c n c
x

F x J x x x

R

subject to ||xn xc||2 ≤ c

to get a new point xn, which is computed as

1

T T

n c c c c c cx x J x J x I J x F x

where μc = 0 if c ≥ ||(J(xc)
T

J(xc)) -
1
 J(xc)

T
F(xc)||2 and μc > 0 otherwise. F(xc) and J(xc) are the

function values and the Jacobian evaluated at the current point xc. This procedure is repeated until

the stopping criteria are satisfied. For more details, see Levenberg (1944), Marquardt (1963), or

Dennis and Schnabel (1983, Chapter 10).

Since a finite-difference method is used to estimate the Jacobian for some single precision

calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the

exact Jacobian can be easily provided, routine UNLSJ should be used instead.

Comments

1. Workspace may be explicitly provided, if desired, by use of U2LSF/DU2LSF. The

reference is:

CALL U2LSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length 9 * N + 3 * M 1. WK contains the

following information on output: The second N locations contain the

last step taken. The third N locations contain the last Gauss-Newton

1410 Chapter 8: Optimization IMSL MATH LIBRARY

step. The fourth N locations contain an estimate of the gradient at the

solution.

IWK — Integer work vector of length N containing the permutations used in

the QR factorization of the Jacobian at the solution.

2. Informational errors

Type Code

3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.

3 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

3 6 Five consecutive steps have been taken with the maximum step

length.

2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow

progress and is not near a solution, or STEPTL is too big.

3. The first stopping criterion for UNLSF occurs when the norm of the function is less than

the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs

when the norm of the scaled gradient is less than the given gradient tolerance

(RPARAM(1)). The third stopping criterion for UNLSF occurs when the scaled distance

between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UNLSF, then set IPARAM(1) to zero and call the

routine UNLSF. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling UNLSF:

CALL U4LSF (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above.

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IMSL MATH LIBRARY Chapter 8: Optimization 1411

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.

Default: Not used in UNLSF.

IPARAM(6) = Internal variable scaling flag.

If IPARAM(6) = 1, then the values for XSCALE are set internally.

Default: 1.

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.

The i-th component of the scaled gradient at x is calculated as

2

2

max ,1/i i ig x s

F x

 where

2T

i s ii
g J x F x f

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE.

Default:

3,

 in double where ɛ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is

computed as

 max ,1/

i i

i i

x y

x s

 where s = XSCALE.

Default: ɛ2/3
 where ɛ is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10
, ɛ2/3

), max (10-20
, ɛ2/3

) in double where ɛ is the

machine precision.

1412 Chapter 8: Optimization IMSL MATH LIBRARY

RPARAM(4) = Absolute function tolerance.

Default: max (10-20
, ɛ2

), max(10-40
, ɛ2

) in double where ɛ is the

machine precision.

RPARAM(5) = False convergence tolerance.

Default: 100ɛ where ɛ is the machine precision.

RPARAM(6) = Maximum allowable step size.

Default: 1000 max(ɛ1, ɛ2) where

2

1 1

n

i ii
s t

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.

Default: based on the initial scaled Cauchy step.

 If double precision is desired, then DU4LSF is called and RPARAM is declared double

precision.

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The nonlinear least squares problem

2

2
2

1

1
min

2
i

x i

f x

R

where

 2
1 2 1 2 110 and 1f x x x f x x

is solved. RPARAM(4) is changed to a non-default value.

 USE UMACH_INT

 USE U4LSF_INT

 USE UNLSF_INT

 IMPLICIT NONE

! Declaration of variables

 INTEGER LDFJAC, M, N

 PARAMETER (LDFJAC=2, M=2, N=2)

!

 INTEGER IPARAM(6), NOUT

 REAL FVEC(M), RPARAM(7),X(N), XGUESS(N)

IMSL MATH LIBRARY Chapter 8: Optimization 1413

 EXTERNAL ROSBCK

! Compute the least squares for the

! Rosenbrock function.

 DATA XGUESS/-1.2E0, 1.0E0/

!

! Relax the first stopping criterion by

! calling U4LSF and scaling the

! absolute function tolerance by 10.

 CALL U4LSF (IPARAM, RPARAM)

 RPARAM(4) = 10.0E0*RPARAM(4)

!

 CALL UNLSF (ROSBCK, M, X,xguess=xguess, iparam=iparam, rparam=rparam,&

 fvec=fvec)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)

!

99999 FORMAT (' The solution is ', 2F9.4, //, ' The function ', &

 'evaluated at the solution is ', /, 18X, 2F9.4, //, &

 ' The number of iterations is ', 10X, I3, /, ' The ', &

 'number of function evaluations is ', I3, /)

 END

!

 SUBROUTINE ROSBCK (M, N, X, F)

 INTEGER M, N

 REAL X(N), F(M)

!

 F(1) = 10.0E0*(X(2)-X(1)*X(1))

 F(2) = 1.0E0 - X(1)

 RETURN

 END

Output

The solution is 1.0000 1.0000

The function evaluated at the solution is

0.0000 0.0000

The number of iterations is 24

The number of function evaluations is 33

UNLSJ

Solves a nonlinear least squares problem using a modified Levenberg-Marquardt algorithm and a

user-supplied Jacobian.

1414 Chapter 8: Optimization IMSL MATH LIBRARY

Required Arguments

FCN — User-supplied subroutine to evaluate the function which defines the least-squares

problem. The usage is

CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

F – Vector of length M containing the function values at X. (Output)

 FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied subroutine to evaluate the Jacobian at a point X. The usage is

CALL JAC (M, N, X, FJAC, LDFJAC), where

M – Length of F. (Input)

N – Length of X. (Input)

X – Vector of length N at which point the Jacobian is evaluated. (Input)

X should not be changed by JAC.

FJAC – The computed M by N Jacobian at the point X. (Output)

LDFJAC – Leading dimension of FJAC. (Input)

 JAC must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments

N — Number of variables. N must be less than or equal to M. (Input)

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the gradient and the distance between two points. By

default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.

Default: XSCALE = 1.0.

IMSL MATH LIBRARY Chapter 8: Optimization 1415

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.

(Input)

FSCALE is used mainly in scaling the gradient. In the absence of other information, set

all entries to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)

See Comment 4.

FVEC — Vector of length M containing the residuals at the approximate solution. (Output)

FJAC — M by N matrix containing a finite-difference approximate Jacobian at the

approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFJAC = SIZE (FJAC,1).

FORTRAN 90 Interface

Generic: CALL UNLSJ (FCN, JAC, M, X [,…])

Specific: The specific interface names are S_UNLSJ and D_UNLSJ.

FORTRAN 77 Interface

Single: CALL UNLSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVEC, FJAC, LDFJAC)

Double: The double precision name is DUNLSJ.

Description

The routine UNLSJ is based on the MINPACK routine LMDER by Moré et al. (1980). It uses a

modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem is

stated as follows:

2

1

1 1
min

2 2n

m
T

i
x i

F x F x f x

R

where m ≥ n, F : R
n
→ R

m
, and fi(x) is the i-th component function of F(x). From a current point,

the algorithm uses the trust region approach:

2

min
n

n

c c n c
x

F x J x x x

R

1416 Chapter 8: Optimization IMSL MATH LIBRARY

subject to ||xn xc||2 ≤ c

to get a new point xn, which is computed as

1

T T

n c c c c c cx x J x J x I J x F x

where

1

2

0 if
T T

c c c cc c J x J x J x F x

and 0c otherwise. F xc and J xc are the function values and the Jacobian evaluated at

the current point xc . This procedure is repeated until the stopping criteria are satisfied. For more

details, see Levenberg (1944), Marquardt(1963), or Dennis and Schnabel (1983, Chapter 10).

Comments

1. Workspace may be explicitly provided, if desired, by use of U2LSJ/DU2LSJ. The

reference is:

CALL U2LSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE,

IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 9 * N + 3 * M 1. WK contains the following

information on output: The second N locations contain the last step

taken. The third N locations contain the last Gauss-Newton step. The

fourth N locations contain an estimate of the gradient at the solution.

IWK — Work vector of length N containing the permutations used in the QR

factorization of the Jacobian at the solution.

2. Informational errors

Type Code

3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.

3 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

4 5 Maximum number of Jacobian evaluations exceeded.

3 6 Five consecutive steps have been taken with the maximum step

length.

IMSL MATH LIBRARY Chapter 8: Optimization 1417

2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow

progress and is not near a solution, or STEPTL is too big.

3. The first stopping criterion for UNLSJ occurs when the norm of the function is less than

the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs

when the norm of the scaled gradient is less than the given gradient tolerance

(RPARAM(1)). The third stopping criterion for UNLSJ occurs when the scaled distance

between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UNLSJ, then set IPARAM(1) to zero and call the

routine UNLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling UNLSJ:

CALL U4LSF (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default values, so only

nondefault values need to be set above.

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.

Default: 100.

IPARAM(6) = Internal variable scaling flag.

If IPARAM(6) = 1, then the values for XSCALE are set internally.

Default: 1.

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.

The i-th component of the scaled gradient at x is calculated as

1418 Chapter 8: Optimization IMSL MATH LIBRARY

2

2

max ,1/i i ig x s

F x

 where

2T

i s ii
g J x F x f

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE.

Default:

3,

 in double where ɛ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is

computed as

 max ,1/

i i

i i

x y

x s

 where s = XSCALE.

Default: ɛ2/3
 where ɛ is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10
, ɛ2/3

), max (10-20
, ɛ2/3

) in double where ɛ is the

machine precision.

RPARAM(4) = Absolute function tolerance.

Default: max (10-20
, ɛ2

), max(10-40
, ɛ2

) in double where ɛ is the

machine precision.

RPARAM(5) = False convergence tolerance.

Default: 100ɛ where ɛ is the machine precision.

RPARAM(6) = Maximum allowable step size.

Default: 1000 max(ɛ1, ɛ2) where

2

1 1

n

i ii
s t

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS.

IMSL MATH LIBRARY Chapter 8: Optimization 1419

RPARAM(7) = Size of initial trust region radius.

Default: based on the initial scaled Cauchy step.

 If double precision is desired, then DU4LSF is called and RPARAM is declared double

precision.

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The nonlinear least-squares problem

2

2
2

1

1
min

2
i

x i

f x

R

where

 2
1 2 1 2 110 and 1f x x x f x x

is solved; default values for parameters are used.

 USE UNLSJ_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declaration of variables

 INTEGER LDFJAC, M, N

 PARAMETER (LDFJAC=2, M=2, N=2)

!

 INTEGER IPARAM(6), NOUT

 REAL FVEC(M), X(N), XGUESS(N)

 EXTERNAL ROSBCK, ROSJAC

! Compute the least squares for the

! Rosenbrock function.

 DATA XGUESS/-1.2E0, 1.0E0/

 IPARAM(1) = 0

!

 CALL UNLSJ (ROSBCK, ROSJAC, M, X, XGUESS=XGUESS, &

 IPARAM=IPARAM, FVEC=FVEC)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4), IPARAM(5)

!

99999 FORMAT (' The solution is ', 2F9.4, //, ' The function ', &

 'evaluated at the solution is ', /, 18X, 2F9.4, //, &

 ' The number of iterations is ', 10X, I3, /, ' The ', &

 'number of function evaluations is ', I3, /, ' The ', &

 'number of Jacobian evaluations is ', I3, /)

 END

!

 SUBROUTINE ROSBCK (M, N, X, F)

 INTEGER M, N

 REAL X(N), F(M)

1420 Chapter 8: Optimization IMSL MATH LIBRARY

!

 F(1) = 10.0E0*(X(2)-X(1)*X(1))

 F(2) = 1.0E0 - X(1)

 RETURN

 END

!

 SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC)

 INTEGER M, N, LDFJAC

 REAL X(N), FJAC(LDFJAC,N)

!

 FJAC(1,1) = -20.0E0*X(1)

 FJAC(2,1) = -1.0E0

 FJAC(1,2) = 10.0E0

 FJAC(2,2) = 0.0E0

 RETURN

 END

Output

The solution is 1.0000 1.0000

The function evaluated at the solution is

0.0000 0.0000

The number of iterations is 23

The number of function evaluations is 32

The number of Jacobian evaluations is 24

BCONF
Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton

method and a finite-difference gradient.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

IMSL MATH LIBRARY Chapter 8: Optimization 1421

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have

 the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing an initial guess of the computed solution. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the gradient and the distance between two points. In

the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)

FSCALE is used mainly in scaling the gradient. In the absence of other information, set

FSCALE to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)

See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL BCONF (FCN, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCONF and D_BCONF.

1422 Chapter 8: Optimization IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL BCONF (FCN, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVALUE)

Double: The double precision name is DBCONF.

Description

The routine BCONF uses a quasi-Newton method and an active set strategy to solve minimization

problems subject to simple bounds on the variables. The problem is stated as follows:

 min
nx

f x
R

subject to l ≤ x ≤ u

From a given starting point x
c
, an active set IA, which contains the indices of the variables at their

bounds, is built. A variable is called a ―free variable‖ if it is not in the active set. The routine then

computes the search direction for the free variables according to the formula

d = B-1
 g

c

where B is a positive definite approximation of the Hessian and g
c
 is the gradient evaluated at x

c
;

both are computed with respect to the free variables. The search direction for the variables in IA is

set to zero. A line search is used to find a new point x
n
 ,

x
n
 = x

c
 + λd, λ ∈ (0, 1]

such that

f (x
n
) ≤ f (x

c
) + αg

T
 d, α ∈ (0, 0.5)

Finally, the optimality conditions

||g(xi)|| ≤ ɛ, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

are checked, where ɛ is a gradient tolerance. When optimality is not achieved, B is updated

according to the BFGS formula:

T T

T T

Bss B yy
B B

s Bs y s

where s = x
n
 x

c
 and y = g

n
 g

c
. Another search direction is then computed to begin the next

iteration.

The active set is changed only when a free variable hits its bounds during an iteration or the

optimality condition is met for the free variables but not for all variables in IA, the active set. In

the latter case, a variable that violates the optimality condition will be dropped out of IA. For more

IMSL MATH LIBRARY Chapter 8: Optimization 1423

details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For more

detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the gradient for some single precision

calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the

exact gradient can be easily provided, routine BCONG should be used instead.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2ONF/DB2ONF. The

reference is:

CALL B2ONF (FCN, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,

FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length N * (2 * N + 8). WK contains the

following information on output: The second N locations contain the

last step taken. The third N locations contain the last Newton step. The

fourth N locations contain an estimate of the gradient at the solution.

The final N
2
 locations contain a BFGS approximation to the Hessian at

the solution. Only the lower triangular portion of the matrix is stored

in WK. The values returned in the upper triangle should be ignored.

IWK — Work vector of length N stored in column order.

2. Informational errors

Type Code

3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.

4 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

4 5 Maximum number of gradient evaluations exceeded.

4 6 Five consecutive steps have been taken with the maximum step

length.

2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow

progress and is not near a solution, or STEPTL is too big.

3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for BCONF occurs when the norm of the gradient is less than

the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONF

1424 Chapter 8: Optimization IMSL MATH LIBRARY

occurs when the scaled distance between the last two steps is less than the step

tolerance (RPARAM(2)).

4. If the default parameters are desired for BCONF, then set IPARAM(1) to zero and call the

routine BCONF. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling BCONF:

CALL U4INF (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above.

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.

Default: 400.

IPARAM(6) = Hessian initialization parameter.

If IPARAM(6) = 0, the Hessian is initialized to the identity matrix;

otherwise,

it is initialized to a diagonal matrix containing

 2max , s if t f s

 on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE.

Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.

Default: Not used in BCONF.

RPARAM — Real vector of length 7.

IMSL MATH LIBRARY Chapter 8: Optimization 1425

RPARAM(1) = Scaled gradient tolerance.

The i-th component of the scaled gradient at x is calculated as

max ,1/

max ,

i i i

s

g x s

f x f

 where g = ∇f(x), s = XSCALE, and fs = FSCALE.

Default:

3,

 in double where ɛ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is

computed as

 max ,1/

i i

i i

x y

x s

 where s = XSCALE.

Default: ɛ2/3
 where ɛ is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: Not used in BCONF.

RPARAM(4) = Absolute function tolerance.

Default: Not used in BCONF.

RPARAM(5) = False convergence tolerance.

Default: Not used in BCONF.

RPARAM(6) = Maximum allowable step size.

Default: 1000 max(ɛ1, ɛ2) where

2

1 1

n

i ii
s t

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.

Default: based on the initial scaled Cauchy step.

 If double precision is required, then DU4INF is called and RPARAM is declared double

precision.

1426 Chapter 8: Optimization IMSL MATH LIBRARY

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The problem

2 22

2 1 1

1

2

min 100 1

subject to 2 0.5

1 2

f x x x x

x

x

is solved with an initial guess (1.2, 1.0) and default values for parameters.

 USE BCONF_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=2)

!

 INTEGER IPARAM(7), ITP, L, NOUT

 REAL F, FSCALE, RPARAM(7), X(N), XGUESS(N), &

 XLB(N), XSCALE(N), XUB(N)

 EXTERNAL ROSBRK

!

 DATA XGUESS/-1.2E0, 1.0E0/

 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/

! All the bounds are provided

 ITP = 0

! Default parameters are used

 IPARAM(1) = 0

! Minimize Rosenbrock function using

! initial guesses of -1.2 and 1.0

 CALL BCONF (ROSBRK, ITP, XLB, XUB, X, XGUESS=XGUESS, &

 iparam=iparam, FVALUE=F)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)

!

99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', &

 'value is ', F8.3, //, ' The number of iterations is ', &

 10X, I3, /, ' The number of function evaluations is ', &

 I3, /, ' The number of gradient evaluations is ', I3)

!

 END

!

 SUBROUTINE ROSBRK (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

!

IMSL MATH LIBRARY Chapter 8: Optimization 1427

 RETURN

 END

Output

The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 24

The number of function evaluations is 34

The number of gradient evaluations is 26

BCONG
Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton

method and a user-supplied gradient.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the gradient is evaluated. (Input)

X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

 GRAD must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

1 User will supply all the bounds.

2 All variables are nonnegative.

3 All variables are nonpositive.

1428 Chapter 8: Optimization IMSL MATH LIBRARY

4 User supplies only the bounds on 1st variable, all other

variables will have the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the gradient and the distance between two points. In

the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)

FSCALE is used mainly in scaling the gradient. In the absence of other information, set

FSCALE to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)

See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL BCONG (FCN, GRAD, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCONG and D_BCONG.

IMSL MATH LIBRARY Chapter 8: Optimization 1429

FORTRAN 77 Interface

Single: CALL BCONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE,

IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCONG.

Description

The routine BCONG uses a quasi-Newton method and an active set strategy to solve minimization

problems subject to simple bounds on the variables. The problem is stated as follows:

 min
nx

f x
R

subject to l ≤ x ≤ u

From a given starting point x
c
, an active set IA, which contains the indices of the variables at their

bounds, is built. A variable is called a ―free variable‖ if it is not in the active set. The routine then

computes the search direction for the free variables according to the formula

d = B-1
 g

c

where B is a positive definite approximation of the Hessian and g
c
 is the gradient evaluated at x

c
;

both are computed with respect to the free variables. The search direction for the variables in IA is

set to zero. A line search is used to find a new point x
n
 ,

x
n
 = x

c
 + λd, λ ∈ (0, 1]

such that

f (x
n
) ≤ f (x

c
) + αg

T
 d, α ∈ (0, 0.5)

Finally, the optimality conditions

||g(xi)|| ≤ ɛ, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

are checked, where ɛ is a gradient tolerance. When optimality is not achieved, B is updated

according to the BFGS formula:

T T

T T

Bss B yy
B B

s Bs y s

where s = x
n
 x

c
 and y = g

n
 g

c
. Another search direction is then computed to begin the next

iteration.

The active set is changed only when a free variable hits its bounds during an iteration or the

optimality condition is met for the free variables but not for all variables in IA, the active set. In

the latter case, a variable that violates the optimality condition will be dropped out of IA. For more

details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For more

detailed information on active set strategy, see Gill and Murray (1976).

1430 Chapter 8: Optimization IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of B2ONG/DB2ONG. The

reference is:

CALL B2ONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE,

IPARAM, RPARAM, X, FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length N * (2 * N + 8). WK contains the following

information on output: The second N locations contain the last step

taken. The third N locations contain the last Newton step. The fourth N

locations contain an estimate of the gradient at the solution. The final

N
2
 locations contain a BFGS approximation to the Hessian at the

solution. Only the lower triangular portion of the matrix is stored in

WK. The values returned in the upper triangle should be ignored.

IWK — Work vector of length N stored in column order.

2. Informational errors

Type Code

3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.

4 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

4 5 Maximum number of gradient evaluations exceeded.

4 6 Five consecutive steps have been taken with the maximum step

length.

2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow

progress and is not near a solution, or STEPTL is too big.

3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for BCONG occurs when the norm of the gradient is less than

the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONG

occurs when the scaled distance between the last two steps is less than the step

tolerance (RPARAM(2)).

4. If the default parameters are desired for BCONG, then set IPARAM (1) to zero and call

the routine BCONG. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling BCONG:

IMSL MATH LIBRARY Chapter 8: Optimization 1431

CALL U4INF (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above.

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.

Default: 400.

IPARAM(6) = Hessian initialization parameter.

If IPARAM (6) = 0, the Hessian is initialized to the identity matrix;

otherwise, it is initialized to a diagonal matrix containing

 2max , s if t f s

 on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE.

Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.

Default: Not used in BCONG.

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.

The i-th component of the scaled gradient at x is calculated as

max ,1/

max ,

i i i

s

g x s

f x f

 where g =∇f (x), s = XSCALE, and fs = FSCALE.

Default:

1432 Chapter 8: Optimization IMSL MATH LIBRARY

3,

 in double where ɛ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is

computed as

 max ,1/

i i

i i

x y

x s

 where s = XSCALE.

Default: ɛ2/3
 where ɛ is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: Not used in BCONG.

RPARAM(4) = Absolute function tolerance.

Default: Not used in BCONG.

RPARAM(5) = False convergence tolerance.

Default: Not used in BCONG.

RPARAM(6) = Maximum allowable step size.

Default: 1000 max(ɛ1, ɛ2) where

2

1 1

n

i ii
s t

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.

Default: based on the initial scaled Cauchy step.

 If double precision is required, then DU4INF is called and RPARAM is declared double

precision.

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The problem

IMSL MATH LIBRARY Chapter 8: Optimization 1433

2 22

2 1 1

1

2

min 100 1

subject to 2 0.5

1 2

f x x x x

x

x

is solved with an initial guess (1.2, 1.0), and default values for parameters.

 USE BCONG_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=2)

!

 INTEGER IPARAM(7), ITP, L, NOUT

 REAL F, X(N), XGUESS(N), XLB(N), XUB(N)

 EXTERNAL ROSBRK, ROSGRD

!

 DATA XGUESS/-1.2E0, 1.0E0/

 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/

! All the bounds are provided

 ITP = 0

! Default parameters are used

 IPARAM(1) = 0

! Minimize Rosenbrock function using

! initial guesses of -1.2 and 1.0

 CALL BCONG (ROSBRK, ROSGRD, ITP, XLB, XUB, X, XGUESS=XGUESS, &

 IPARAM=IPARAM, FVALUE=F)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)

!

99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', &

 'value is ', F8.3, //, ' The number of iterations is ', &

 10X, I3, /, ' The number of function evaluations is ', &

 I3, /, ' The number of gradient evaluations is ', I3)

!

 END

!

 SUBROUTINE ROSBRK (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

!

 RETURN

 END

!

 SUBROUTINE ROSGRD (N, X, G)

 INTEGER N

 REAL X(N), G(N)

!

 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))

 G(2) = 2.0E2*(X(2)-X(1)*X(1))

!

1434 Chapter 8: Optimization IMSL MATH LIBRARY

 RETURN

 END

Output

The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 22

The number of function evaluations is 32

The number of gradient evaluations is 23

BCODH
Minimizes a function of N variables subject to bounds on the variables using a modified Newton

method and a finite-difference Hessian.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the gradient is evaluated. (Input)

X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

 GRAD must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

 0 User will supply all the bounds.

 1 All variables are nonnegative.

IMSL MATH LIBRARY Chapter 8: Optimization 1435

 2 All variables are nonpositive.

 3 User supplies only the bounds on 1st variable, all other variables will have

 the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input)

XUB — Vector of length N containing the upper bounds on the variables. (Input)

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the gradient and the distance between two points. In

the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)

FSCALE is used mainly in scaling the gradient. In the absence of other information, set

FSCALE to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)

See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL BCODH (FCN, GRAD, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCODH and D_BCODH.

FORTRAN 77 Interface

Single: CALL BCODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE,

IPARAM, RPARAM, X, FVALUE)

1436 Chapter 8: Optimization IMSL MATH LIBRARY

Double: The double precision name is DBCODH.

Description

The routine BCODH uses a modified Newton method and an active set strategy to solve

minimization problems subject to simple bounds on the variables. The problem is stated as

 min
nx

f x
R

subject to l ≤ x ≤ u

From a given starting point x
c
, an active set IA, which contains the indices of the variables at their

bounds, is built. A variable is called a ―free variable‖ if it is not in the active set. The routine then

computes the search direction for the free variables according to the formula

d = H-1
 g

c

where H is the Hessian and g
c
 is the gradient evaluated at x

c
; both are computed with respect to the

free variables. The search direction for the variables in IA is set to zero. A line search is used to

find a new point x
n
 ,

x
n
 = x

c
 + λd, λ ∈ (0, 1]

such that

f (x
n
) ≤ f (x

c
) + αg

T
 d, α ∈ (0, 0.5)

Finally, the optimality conditions

||g(xi)|| ≤ ɛ, li < xi < ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

are checked where ɛ is a gradient tolerance. When optimality is not achieved, another search

direction is computed to begin the next iteration. This process is repeated until the optimality

criterion is met.

The active set is changed only when a free variable hits its bounds during an iteration or the

optimality condition is met for the free variables but not for all variables in IA, the active set. In

the latter case, a variable that violates the optimality condition will be dropped out of IA. For more

details on the modified Newton method and line search, see Dennis and Schnabel (1983). For

more detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the Hessian for some single precision

calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the

exact Hessian can be easily provided, routine BCOAH should be used instead.

IMSL MATH LIBRARY Chapter 8: Optimization 1437

Comments

1. Workspace may be explicitly provided, if desired, by use of B2ODH/DB2ODH. The

reference is:

CALL B2ODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB,

XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length N * (N + 8). WK contains the following

information on output: The second N locations contain the last step

taken. The third N locations contain the last Newton step. The fourth N

locations contain an estimate of the gradient at the solution. The final

N
2
 locations contain the Hessian at the approximate solution.

IWK — Integer work vector of length N.

2. Informational errors

Type Code

3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.

4 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

4 5 Maximum number of gradient evaluations exceeded.

4 6 Five consecutive steps have been taken with the maximum step

length.

2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow

progress and is not near a solution, or STEPTL is too big.

4 7 Maximum number of Hessian evaluations exceeded.

3. The first stopping criterion for BCODH occurs when the norm of the gradient is less than

the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCODH

occurs when the scaled distance between the last two steps is less than the step

tolerance (RPARAM(2)).

4. If the default parameters are desired for BCODH, then set IPARAM(1) to zero and call the

routine BCODH. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM; then the following steps should be taken before calling BCODH:

CALL U4INF (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

1438 Chapter 8: Optimization IMSL MATH LIBRARY

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above.

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.

Default: 400.

IPARAM(6) = Hessian initialization parameter.

Default: Not used in BCODH.

IPARAM(7) = Maximum number of Hessian evaluations.

Default: 100.

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.

The i-th component of the scaled gradient at x is calculated as

max ,1/

max ,

i i i

s

g x s

f x f

 where g = ∇f (x), s = XSCALE, and fs = FSCALE.

Default:

3,

 in double where ɛ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is

computed as

IMSL MATH LIBRARY Chapter 8: Optimization 1439

 max ,1/

i i

i i

x y

x s

 where s = XSCALE.

Default: ɛ2/3
 where ɛ is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10
, ɛ2/3

), max (10-20
, ɛ2/3

) in double where ɛ is the

machine precision.

RPARAM(4) = Absolute function tolerance.

Default: Not used in BCODH.

RPARAM(5) = False convergence tolerance.

Default: 100ɛ where ɛ is the machine precision.

RPARAM(6) = Maximum allowable step size.

Default: 1000 max(ɛ1, ɛ2) where

2

1 1

n

i ii
s t

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.

Default: based on the initial scaled Cauchy step.

 If double precision is required, then DU4INF is called and RPARAM is declared double

precision.

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The problem

2 22

2 1 1

1

2

min 100 1

subject to 2 0.5

1 2

f x x x x

x

x

is solved with an initial guess (1.2, 1.0), and default values for parameters.

 USE BCODH_INT

 USE UMACH_INT

1440 Chapter 8: Optimization IMSL MATH LIBRARY

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=2)

!

 INTEGER IP, IPARAM(7), L, NOUT

 REAL F, X(N), XGUESS(N), XLB(N), XUB(N)

 EXTERNAL ROSBRK, ROSGRD

!

 DATA XGUESS/-1.2E0, 1.0E0/

 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/

!

 IPARAM(1) = 0

 IP = 0

! Minimize Rosenbrock function using

! initial guesses of -1.2 and 1.0

 CALL BCODH (ROSBRK, ROSGRD, IP, XLB, XUB, X, XGUESS=XGUESS, &

 IPARAM=IPARAM, FVALUE=F)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)

!

99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', &

 'value is ', F8.3, //, ' The number of iterations is ', &

 10X, I3, /, ' The number of function evaluations is ', &

 I3, /, ' The number of gradient evaluations is ', I3)

!

 END

!

 SUBROUTINE ROSBRK (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

!

 RETURN

 END

 SUBROUTINE ROSGRD (N, X, G)

 INTEGER N

 REAL X(N), G(N)

!

 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))

 G(2) = 2.0E2*(X(2)-X(1)*X(1))

!

 RETURN

 END

Output

The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 17

The number of function evaluations is 26

The number of gradient evaluations is 18

IMSL MATH LIBRARY Chapter 8: Optimization 1441

BCOAH
Minimizes a function of N variables subject to bounds on the variables using a modified Newton

method and a user-supplied Hessian.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the gradient is evaluated. (Input)

X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

 GRAD must be declared EXTERNAL in the calling program.

HESS — User-supplied subroutine to compute the Hessian at the point X. The usage is

CALL HESS (N, X, H, LDH), where

N – Length of X. (Input)

X – Vector of length N at which point the Hessian is evaluated. (Input)

X should not be changed by HESS.

H – The Hessian evaluated at the point X. (Output)

LDH – Leading dimension of H exactly as specified in the dimension statement

of the calling program. (Input)

 HESS must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBYTE Action

1 User will supply all the bounds.

2 All variables are nonnegative.

1442 Chapter 8: Optimization IMSL MATH LIBRARY

3 User supplies only the bounds on 1st variable, all other

variables will have the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input)

XUB — Vector of length N containing the upper bounds on the variables. (Input)

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the gradient and the distance between two points. In

the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)

FSCALE is used mainly in scaling the gradient. In the absence of other information, set

FSCALE to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)

See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL BCOAH (FCN, GRAD, HESS, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCOAH and D_BCOAH.

FORTRAN 77 Interface

Single: CALL BCOAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,

FSCALE, IPARAM, RPARAM, X, FVALUE)

IMSL MATH LIBRARY Chapter 8: Optimization 1443

Double: The double precision name is DBCOAH.

Description

The routine BCOAH uses a modified Newton method and an active set strategy to solve

minimization problems subject to simple bounds on the variables. The problem is stated as

follows:

 min
nx

f x
R

subject to l ≤ x ≤ u

From a given starting point x
c
, an active set IA, which contains the indices of the variables at their

bounds, is built. A variable is called a ―free variable‖ if it is not in the active set. The routine then

computes the search direction for the free variables according to the formula

d = H-1
 g

c

where H is the Hessian and g
c
 is the gradient evaluated at x

c
; both are computed with respect to the

free variables. The search direction for the variables in IA is set to zero. A line search is used to

find a new point x
n
 ,

x
n
 = x

c
 + λd, λ ∈ (0, 1]

such that

f(x
n
) ≤ f(x

c
) + αg

T
 d, α ∈ (0, 0.5)

Finally, the optimality conditions

||g(xi)|| ≤ ɛ, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

are checked where ɛ is a gradient tolerance. When optimality is not achieved, another search

direction is computed to begin the next iteration. This process is repeated until the optimality

criterion is met.

The active set is changed only when a free variable hits its bounds during an iteration or the

optimality condition is met for the free variables but not for all variables in IA, the active set. In

the latter case, a variable that violates the optimality condition will be dropped out of IA. For more

details on the modified Newton method and line search, see Dennis and Schnabel (1983). For

more detailed information on active set strategy, see Gill and Murray (1976).

Comments

1. Workspace may be explicitly provided, if desired, by use of B2OAH/DB2OAH. The

reference is:

CALL B2OAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB, XUB,

XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK)

1444 Chapter 8: Optimization IMSL MATH LIBRARY

The additional arguments are as follows:

WK — Work vector of length N * (N + 8). WK contains the following

information on output: The second N locations contain the last step

taken. The third N locations contain the last Newton step. The fourth N

locations contain an estimate of the gradient at the solution. The final

N
2
 locations contain the Hessian at the approximate solution.

IWK — Work vector of length N.

2. Informational errors

Type Code

3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.

4 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

4 5 Maximum number of gradient evaluations exceeded.

4 6 Five consecutive steps have been taken with the maximum step

length.

2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow

progress and is not near a solution, or STEPTL is too big.

4 7 Maximum number of Hessian evaluations exceeded.

3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for BCOAH occurs when the norm of the gradient is less than

the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCOAH

occurs when the scaled distance between the last two steps is less than the step

tolerance (RPARAM(2)).

4. If the default parameters are desired for BCOAH, then set IPARAM(1) to zero and call the

routine BCOAH. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling BCOAH:

CALL U4INF (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above.

IMSL MATH LIBRARY Chapter 8: Optimization 1445

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.

Default: 400.

IPARAM(6) = Hessian initialization parameter.

Default: Not used in BCOAH.

IPARAM(7) = Maximum number of Hessian evaluations.

Default: 100.

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.

The i-th component of the scaled gradient at x is calculated as

max ,1/

max ,

i i i

s

g x s

f x f

 where g = ∇f(x), s = XSCALE, and fs = FSCALE.

Default:

3,

 in double where ɛ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is

computed as

 max ,1/

i i

i i

x y

x s

1446 Chapter 8: Optimization IMSL MATH LIBRARY

 where s = XSCALE.

Default: ɛ2/3
 where ɛ is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10
, ɛ2/3

), max (10-20
, ɛ2/3

) in double where ɛ is the

machine precision.

RPARAM(4) = Absolute function tolerance.

Default: Not used in BCOAH.

RPARAM(5) = False convergence tolerance.

Default: 100ɛ where ɛ is the machine precision.

RPARAM(6) = Maximum allowable step size.

Default: 1000 max(ɛ1, ɛ2) where

2

1 1

n

i ii
s t

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.

Default: based on the initial scaled Cauchy step.

 If double precision is required, then DU4INF is called and RPARAM is declared

double precision.

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The problem

2 22

2 1 1

1

2

min 100 1

subject to 2 0.5

1 2

f x x x x

x

x

is solved with an initial guess (1.2, 1.0), and default values for parameters.

 USE BCOAH_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=2)

IMSL MATH LIBRARY Chapter 8: Optimization 1447

!

 INTEGER IP, IPARAM(7), L, NOUT

 REAL F, X(N), XGUESS(N), XLB(N), XUB(N)

 EXTERNAL ROSBRK, ROSGRD, ROSHES

!

 DATA XGUESS/-1.2E0, 1.0E0/

 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/

!

 IPARAM(1) = 0

 IP = 0

! Minimize Rosenbrock function using

! initial guesses of -1.2 and 1.0

 CALL BCOAH (ROSBRK, ROSGRD, ROSHES, IP, XLB, XUB, X, &

 XGUESS=XGUESS,IPARAM=IPARAM, FVALUE=F)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)

!

99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', &

 'value is ', F8.3, //, ' The number of iterations is ', &

 10X, I3, /, ' The number of function evaluations is ', &

 I3, /, ' The number of gradient evaluations is ', I3, /, &

 ' The number of Hessian evaluations is ', I3)

!

 END

!

 SUBROUTINE ROSBRK (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

!

 RETURN

 END

!

 SUBROUTINE ROSGRD (N, X, G)

 INTEGER N

 REAL X(N), G(N)

!

 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))

 G(2) = 2.0E2*(X(2)-X(1)*X(1))

!

 RETURN

 END

!

 SUBROUTINE ROSHES (N, X, H, LDH)

 INTEGER N, LDH

 REAL X(N), H(LDH,N)

!

 H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0

 H(2,1) = -4.0E2*X(1)

 H(1,2) = H(2,1)

 H(2,2) = 2.0E2

!

 RETURN

 END

1448 Chapter 8: Optimization IMSL MATH LIBRARY

Output

The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 18

The number of function evaluations is 29

The number of gradient evaluations is 19

The number of Hessian evaluations is 18

BCPOL
Minimizes a function of N variables subject to bounds on the variables using a direct search

complex algorithm.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on the first, variable. All other variables will

have the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input, if

IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on the variables. (Input, if

IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Real vector of length N containing the best estimate of the minimum found. (Output)

IMSL MATH LIBRARY Chapter 8: Optimization 1449

Optional Arguments

N — The number of variables. (Input)

Default: N = SIZE (XGUESS,1).

XGUESS — Real vector of length N that contains an initial guess to the minimum. (Input)

Default: XGUESS = 0.0.

FTOL — First convergence criterion. (Input)

The algorithm stops when a relative error in the function values is less than FTOL, i.e.

when (F(worst) F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and F(best) are

the function values of the current worst and best point, respectively. Second

convergence criterion. The algorithm stops when the standard deviation of the function

values at the 2 * N current points is less than FTOL. If the subroutine terminates

prematurely, try again with a smaller value FTOL.

Default: FTOL = 1.0e-4 for single and 1.0d-8 for double precision.

MAXFCN — On input, maximum allowed number of function evaluations. (Input/ Output)

On output, actual number of function evaluations needed.

Default: MAXFCN = 300.

FVALUE — Function value at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL BCPOL (FCN, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCPOL and D_BCPOL.

FORTRAN 77 Interface

Single: CALL BCPOL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL, MAXFCN, X, FVALUE)

Double: The double precision name is DBCPOL.

Description

The routine BCPOL uses the complex method to find a minimum point of a function of n variables.

The method is based on function comparison; no smoothness is assumed. It starts with 2n points

x1, x2, …, x2n. At each iteration, a new point is generated to replace the worst point xj, which has

the largest function value among these 2n points. The new point is constructed by the following

formula:

xk = c + α(c xj)

where

1

2 1
i j ic x

n

and α (α > 0) is the reflection coefficient.

1450 Chapter 8: Optimization IMSL MATH LIBRARY

When xk is a best point, that is, when f (xk) ≤ f (xi) for i = 1, …, 2n, an expansion point is computed

xe = c + β(xk c), where β(β > 1) is called the expansion coefficient. If the new point is a worst

point, then the complex would be contracted to get a better new point. If the contraction step is

unsuccessful, the complex is shrunk by moving the vertices halfway toward the current best point.

Whenever the new point generated is beyond the bound, it will be set to the bound. This procedure

is repeated until one of the following stopping criteria is satisfied:

Criterion 1:

fbest fworst ≤ ɛf(1. + |fbest|)

Criterion 2:

2
2

1 2

1

()
2

n
n

jj
i f

i

f
f

n

where fi = f(xi), fj = f(xj), and ɛf is a given tolerance. For a complete description, see Nelder and

Mead (1965) or Gill et al. (1981).

Comments

1. Workspace may be explicitly provided, if desired, by use of B2POL/DB2POL. The

reference is:

CALL B2POL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL,

MAXFCN, X, FVALUE, WK)

The additional argument is:

WK — Real work vector of length 2 * N**2 + 5 * N

2. Informational error

Type Code

3 1 The maximum number of function evaluations is exceeded.

3. Since BCPOL uses only function-value information at each step to determine a new

approximate minimum, it could be quite inefficient on smooth problems compared to

other methods such as those implemented in routine BCONF, which takes into account

derivative information at each iteration. Hence, routine BCPOL should only be used as a

last resort. Briefly, a set of 2 * N points in an N-dimensional space is called a complex.

The minimization process iterates by replacing the point with the largest function value

by a new point with a smaller function value. The iteration continues until all the points

cluster sufficiently close to a minimum.

Example

The problem

IMSL MATH LIBRARY Chapter 8: Optimization 1451

2 22

2 1 1

1

2

min 100 1

subject to 2 0.5

1 2

f x x x x

x

x

is solved with an initial guess (1.2, 1.0), and the solution is printed.

 USE BCPOL_INT

 USE UMACH_INT

 IMPLICIT NONE

! Variable declarations

 INTEGER N

 PARAMETER (N=2)

!

 INTEGER IBTYPE, K, NOUT

 REAL FTOL, FVALUE, X(N), XGUESS(N), XLB(N), XUB(N)

 EXTERNAL FCN

!

! Initializations

! XGUESS = (-1.2, 1.0)

! XLB = (-2.0, -1.0)

! XUB = (0.5, 2.0)

 DATA XGUESS/-1.2, 1.0/, XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/

!

 FTOL = 1.0E-5

 IBTYPE = 0

!

 CALL BCPOL (FCN, IBTYPE, XLB, XUB, X, xguess=xguess, ftol=ftol, &

 fvalue=fvalue)

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) (X(K),K=1,N), FVALUE

99999 FORMAT (' The best estimate for the minimum value of the', /, &

 ' function is X = (', 2(2X,F4.2), ')', /, ' with ', &

 'function value FVALUE = ', E12.6)

!

 END

! External function to be minimized

 SUBROUTINE FCN (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = 100.0*(X(2)-X(1)*X(1))**2 + (1.0-X(1))**2

 RETURN

 END

Output

The best estimate for the minimum value of the

function is X = (0.50 0.25)

with function value FVALUE = 0.250002E+00

1452 Chapter 8: Optimization IMSL MATH LIBRARY

BCLSF

Solves a nonlinear least squares problem subject to bounds on the variables using a modified

Levenberg-Marquardt algorithm and a finite-difference Jacobian.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have

 the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Vector of length N containing the approximate solution. (Output)

IMSL MATH LIBRARY Chapter 8: Optimization 1453

Optional Arguments

N — Number of variables. (Input)

N must be less than or equal to M.

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the gradient and the distance between two points. By

default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.

(Input)

FSCALE is used mainly in scaling the gradient. In the absence of other information, set

all entries to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM= 0.

RPARAM — Parameter vector of length 7. (Input/Output)

See Comment 4.

FVEC — Vector of length M containing the residuals at the approximate solution. (Output)

FJAC — M by N matrix containing a finite difference approximate Jacobian at the

approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFJAC = SIZE (FJAC ,1).

FORTRAN 90 Interface

Generic: CALL BCLSF (FCN, M, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCLSF and D_BCLSF.

FORTRAN 77 Interface

Single: CALL BCLSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE,

IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC)

Double: The double precision name is DBCLSF.

1454 Chapter 8: Optimization IMSL MATH LIBRARY

Description

The routine BCLSF uses a modified Levenberg-Marquardt method and an active set strategy to

solve nonlinear least squares problems subject to simple bounds on the variables. The problem is

stated as follows:

2

1

1 1
min

2 2n

m
T

i
x i

F x F x f x

R

subject to l ≤ x ≤ u

where m ≥ n, F : R
n
→ R

m
, and fi(x) is the i-th component function of F(x). From a given starting

point, an active set IA, which contains the indices of the variables at their bounds, is built. A

variable is called a ―free variable‖ if it is not in the active set. The routine then computes the

search direction for the free variables according to the formula

d = (J
T
 J + μI) -

1
 J

T
 F

where μ is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian with respect to the

free variables. The search direction for the variables in IA is set to zero. The trust region approach

discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the optimality

conditions are checked. The conditions are

||g(xi)|| ≤ ɛ, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

where ɛ is a gradient tolerance. This process is repeated until the optimality criterion is achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the

optimality condition is met for the free variables but not for all variables in IA, the active set. In

the latter case, a variable that violates the optimality condition will be dropped out of IA. For more

detail on the Levenberg-Marquardt method, see Levenberg (1944), or Marquardt (1963). For more

detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the Jacobian for some single precision

calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the

exact Jacobian can be easily provided, routine BCLSJ should be used instead.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2LSF/DB2LSF. The

reference is:

CALL B2LSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,

FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK,

IWK)

The additional arguments are as follows:

IMSL MATH LIBRARY Chapter 8: Optimization 1455

WK — Work vector of length 11 * N + 3 * M 1. WK contains the

following information on output: The second N locations contain the

last step taken. The third N locations contain the last Gauss-Newton

step. The fourth N locations contain an estimate of the gradient at the

solution.

IWK — Work vector of length 2 * N containing the permutations used in the

QR factorization of the Jacobian at the solution.

2. Informational errors

Type Code

3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.

3 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

3 6 Five consecutive steps have been taken with the maximum step

length.

2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow

progress and is not near a solution, or STEPTL is too big.

3. The first stopping criterion for BCLSF occurs when the norm of the function is less than

the absolute function tolerance. The second stopping criterion occurs when the norm of

the scaled gradient is less than the given gradient tolerance. The third stopping criterion

for BCLSF occurs when the scaled distance between the last two steps is less than the

step tolerance.

4. If the default parameters are desired for BCLSF, then set IPARAM(1) to zero and call the

routine BCLSF. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling BCLSF:

CALL U4LSF (IPARAM, RPARAM)

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above.

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

1456 Chapter 8: Optimization IMSL MATH LIBRARY

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.

Default: 100.

IPARAM(6) = Internal variable scaling flag.

If IPARAM(6) = 1, then the values for XSCALE are set internally.

Default: 1.

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.

The i-th component of the scaled gradient at x is calculated as

2

2

max ,1/i i ig x s

F x

 where

2T

i s ii
g J x F x f

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE.

Default:

3,

 in double where ɛ is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is

computed as

 max ,1/

i i

i i

x y

x s

 where s = XSCALE.

Default: ɛ2/3
 where ɛ is the machine precision.

IMSL MATH LIBRARY Chapter 8: Optimization 1457

RPARAM(3) = Relative function tolerance.

Default: max(10 ɛ2/3
· max(10-20

 , ɛ2/3
) in double where ɛ is the

machine precision.

RPARAM(4) = Absolute function tolerance.

Default: max (10-20
 ɛ2

), max(10-40
, ɛ2

) in double where ɛ is the

machine precision.

RPARAM(5) = False convergence tolerance.

Default: 100 ɛ where ɛ is the machine precision.

RPARAM(6) = Maximum allowable step size.

Default: 1000 max(ɛ1, ɛ2) where

2

1 1

n

i ii
s t

 ɛ2 = ||s||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.

Default: based on the initial scaled Cauchy step.

 If double precision is desired, then DU4LSF is called and RPARAM is declared double

precision.

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ―Error Handling‖ in the Introduction.

Example

The nonlinear least squares problem

2

2
2

1

1
min

2
i

x i

f x

R

subject to 2 ≤ x1 ≤ 0.5

1 ≤ x2 ≤ 2

where

 2
1 2 1 2 110 and 1f x x x f x x

is solved with an initial guess (1.2, 1.0) and default values for parameters.

 USE BCLSF_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declaration of variables

1458 Chapter 8: Optimization IMSL MATH LIBRARY

 INTEGER M, N

 PARAMETER (M=2, N=2)

!

 INTEGER IPARAM(7), ITP, NOUT

 REAL FSCALE(M), FVEC(M), X(N), XGUESS(N), XLB(N), XS(N), XUB(N)

 EXTERNAL ROSBCK

! Compute the least squares for the

! Rosenbrock function.

 DATA XGUESS/-1.2E0, 1.0E0/

 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/

! All the bounds are provided

 ITP = 0

! Default parameters are used

 IPARAM(1) = 0

!

 CALL BCLSF (ROSBCK, M, ITP, XLB, XUB, X, xguess=xguess, &

 iparam=iparam, fvec=fvec)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)

!

99999 FORMAT (' The solution is ', 2F9.4, //, ' The function ', &

 'evaluated at the solution is ', /, 18X, 2F9.4, //, &

 ' The number of iterations is ', 10X, I3, /, ' The ', &

 'number of function evaluations is ', I3, /)

 END

!

 SUBROUTINE ROSBCK (M, N, X, F)

 INTEGER M, N

 REAL X(N), F(M)

!

 F(1) = 1.0E1*(X(2)-X(1)*X(1))

 F(2) = 1.0E0 - X(1)

 RETURN

 END

Output

The solution is 0.5000 0.2500

The function evaluated at the solution is

0.0000 0.5000

The number of iterations is 15

The number of function evaluations is 20

IMSL MATH LIBRARY Chapter 8: Optimization 1459

BCLSJ

Solves a nonlinear least squares problem subject to bounds on the variables using a modified

Levenberg-Marquardt algorithm and a user-supplied Jacobian.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied subroutine to evaluate the Jacobian at a point X. The usage is

CALL JAC (M, N, X, FJAC, LDFJAC), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

FJAC – The computed M by N Jacobian at the point X. (Output)

LDFJAC – Leading dimension of FJAC. (Input)

 JAC must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

1460 Chapter 8: Optimization IMSL MATH LIBRARY

3 User supplies only the bounds on 1st variable, all other

variables will have the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments

N — Number of variables. (Input)

N must be less than or equal to M.

Default: N = SIZE (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)

Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

XSCALE is used mainly in scaling the gradient and the distance between two points. By

default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.

(Input)

FSCALE is used mainly in scaling the gradient. In the absence of other information, set

all entries to 1.0.

Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.

Default: IPARAM= 0.

RPARAM — Parameter vector of length 7. (Input/Output)

See Comment 4.

FVEC — Vector of length M containing the residuals at the approximate solution. (Output)

FJAC — M by N matrix containing a finite difference approximate Jacobian at the

approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFJAC SIZE = (FJAC,1).

IMSL MATH LIBRARY Chapter 8: Optimization 1461

FORTRAN 90 Interface

Generic: CALL BCLSJ (FCN, JAC, M, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCLSJ and D_BCLSJ.

FORTRAN 77 Interface

Single: CALL BCLSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE,

IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC)

Double: The double precision name is DBCLSJ.

Description

The routine BCLSJ uses a modified Levenberg-Marquardt method and an active set strategy to

solve nonlinear least squares problems subject to simple bounds on the variables. The problem is

stated as follows:

2

1

1 1
min

2 2n

m
T

i
x i

F x F x f x

R

subject to l ≤ x ≤ u

where m ≥ n, F : R
n
→ R

m
, and fi(x) is the i-th component function of F(x). From a given starting

point, an active set IA, which contains the indices of the variables at their bounds, is built. A

variable is called a ―free variable‖ if it is not in the active set. The routine then computes the

search direction for the free variables according to the formula

d = (J
T
 J + μI) -

1
 J

T
 F

where is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian with respect to the

free variables. The search direction for the variables in IA is set to zero. The trust region approach

discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the optimality

conditions are checked. The conditions are

||g(xi)|| ≤ ɛ, lt < xt< ut

g(xt) < 0, xt = ut

g(xt) > 0, xt = lt

where ɛ is a gradient tolerance. This process is repeated until the optimality criterion is achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the

optimality condition is met for the free variables but not for all variables in IA, the active set. In

the latter case, a variable that violates the optimality condition will be dropped out of IA. For more

detail on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt (1963). For more

detailed information on active set strategy, see Gill and Murray (1976).

1462 Chapter 8: Optimization IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of B2LSJ/DB2LSJ. The

reference is:

CALL B2LSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB,

XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, FJAC,

LDFJAC, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 11 * N + 3 * M 1. WK contains the following

information on output: The second N locations contain the last step

taken. The third N locations contain the last Gauss-Newton step. The

fourth N locations contain an estimate of the gradient at the solution.

IWK — Work vector of length 2 * N containing the permutations used in the

QR factorization of the Jacobian at the solution.

2. Informational errors

Type Code

3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.

3 2 The iterates appear to be converging to a noncritical point.

4 3 Maximum number of iterations exceeded.

4 4 Maximum number of function evaluations exceeded.

3 6 Five consecutive steps have been taken with the maximum step

length.

4 5 Maximum number of Jacobian evaluations exceeded.

2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow

progress and is not near a solution, or STEPTL is too big.

3. The first stopping criterion for BCLSJ occurs when the norm of the function is less than

the absolute function tolerance. The second stopping criterion occurs when the norm of

the scaled gradient is less than the given gradient tolerance. The third stopping criterion

for BCLSJ occurs when the scaled distance between the last two steps is less than the

step tolerance.

4. If the default parameters are desired for BCLSJ, then set IPARAM(1) to zero and call the

routine BCLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or

RPARAM, then the following steps should be taken before calling BCLSJ:

CALL U4LSF (IPARAM, RPARAM)

IMSL MATH LIBRARY Chapter 8: Optimization 1463

 Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above.

 The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.

Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.

Default: 100.

IPARAM(4) = Maximum number of function evaluations.

Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.

Default: 100.

IPARAM(6) = Internal variable scaling flag.

If IPARAM(6) = 1, then the values for XSCALE are set internally.

Default: 1.

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.

The i-th component of the scaled gradient at x is calculated as

2

2

max ,1/i i ig x s

F x

 where

2T

i s ii
g J x F x f

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE.

Default:

3,

 in double where ɛ is the machine precision.

1464 Chapter 8: Optimization IMSL MATH LIBRARY

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step

between two points x and y is computed as

 max ,1/

i i

i i

x y

x s

 where s = XSCALE.

Default: ɛ2/3
 where ɛ is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10
, ɛ2/3

), max(10-20
, ɛ2/3

) in double where ɛ is the

machine precision.

RPARAM(4) = Absolute function tolerance.

Default: max (10-20
, ɛ2

), max(10-40
, ɛ2

) in double where ɛ is the

machine precision.

RPARAM(5) = False convergence tolerance.

Default: 100ɛ where ɛ is the machine precision.

RPARAM(6) = Maximum allowable step SIZE.

Default: 1000 max(ɛ1, ɛ2) where

2

1 1

n

i ii
s t

 ɛ2 = ||s||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.

Default: based on the initial scaled Cauchy step.

 If double precision is desired, then DU4LSF is called and RPARAM is declared double

precision.

5. Users wishing to override the default print/stop attributes associated with error

messages issued by this routine are referred to ERROR HANDLING in the Introduction.

Example

The nonlinear least squares problem

2

2
2

1

1
min

2
i

x i

f x

R

IMSL MATH LIBRARY Chapter 8: Optimization 1465

subject to 2 ≤ x1 ≤ 0.5

1 ≤ x2 ≤ 2

where

 2
1 2 1 2 110 and 1f x x x f x x

is solved with an initial guess (1.2, 1.0) and default values for parameters.

 USE BCLSJ_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declaration of variables

 INTEGER LDFJAC, M, N

 PARAMETER (LDFJAC=2, M=2, N=2)

!

 INTEGER IPARAM(7), ITP, NOUT

 REAL FVEC(M), RPARAM(7), X(N), XGUESS(N), XLB(N), XUB(N)

 EXTERNAL ROSBCK, ROSJAC

! Compute the least squares for the

! Rosenbrock function.

 DATA XGUESS/-1.2E0, 1.0E0/

 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/

! All the bounds are provided

 ITP = 0

! Default parameters are used

 IPARAM(1) = 0

!

 CALL BCLSJ (ROSBCK,ROSJAC,M,ITP,XLB,XUB,X,XGUESS=XGUESS, &

 IPARAM=IPARAM, FVEC=FVEC)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)

!

99999 FORMAT (' The solution is ', 2F9.4, //, ' The function ', &

 'evaluated at the solution is ', /, 18X, 2F9.4, //, &

 ' The number of iterations is ', 10X, I3, /, ' The ', &

 'number of function evaluations is ', I3, /)

 END

!

 SUBROUTINE ROSBCK (M, N, X, F)

 INTEGER M, N

 REAL X(N), F(M)

!

 F(1) = 1.0E1*(X(2)-X(1)*X(1))

 F(2) = 1.0E0 - X(1)

 RETURN

 END

!

 SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC)

 INTEGER M, N, LDFJAC

 REAL X(N), FJAC(LDFJAC,N)

!

 FJAC(1,1) = -20.0E0*X(1)

 FJAC(2,1) = -1.0E0

1466 Chapter 8: Optimization IMSL MATH LIBRARY

 FJAC(1,2) = 10.0E0

 FJAC(2,2) = 0.0E0

 RETURN

 END

Output

The solution is 0.5000 0.2500

The function evaluated at the solution is

0.0000 0.5000

The number of iterations is 13

The number of function evaluations is 21

BCNLS

Solves a nonlinear least-squares problem subject to bounds on the variables and general linear

constraints.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

M Number of functions. (Input)

N Number of variables. (Input)

X Array of length N containing the point at which the function will be

evaluated. (Input)

F Array of length M containing the computed function at the point X. (Output)

 The routine FCN must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

C — MCON N matrix containing the coefficients of the MCON general linear constraints.

(Input)

BL — Vector of length MCON containing the lower limit of the general constraints. (Input).

BU — Vector of length MCON containing the upper limit of the general constraints. (Input).

IMSL MATH LIBRARY Chapter 8: Optimization 1467

IRTYPE — Vector of length MCON indicating the types of general constraints in the matrix C.

(Input)

Let R(I) = C(I, 1)*X(1) + … + C(I, N)*X(N). Then the value of IRTYPE(I)

signifies the following:

 IRTYPE(I) I-th CONSTRAINT

 0 BL(I).EQ.R(I).EQ.BU(I)

 1 R(I).LE.BU(I)

 2 R(I).GE.BL(I)

 3 BL(I).LE.R(I).LE.BU(I)

XLB — Vector of length N containing the lower bounds on variables; if there is no lower

bound on a variable, then 1.0E30 should be set as the lower bound. (Input)

XUB — Vector of length N containing the upper bounds on variables; if there is no upper

bound on a variable, then 1.0E30 should be set as the upper bound. (Input)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments

N — Number of variables. (Input)

Default: N = SIZE (C,2).

MCON — The number of general linear constraints for the system, not including simple

bounds. (Input)

Default: MCON = SIZE (C,1).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling

program. (Input)

LDC must be at least MCON.

Default: LDC = SIZE (C,1).

XGUESS — Vector of length N containing the initial guess. (Input)

Default: XGUESS = 0.0.

RNORM — The Euclidean length of components of the function f (x) after the approximate

solution has been found. (Output).

ISTAT — Scalar indicating further information about the approximate solution X. (Output)

See the Comments section for a description of the tolerances and the vectors IPARAM

and RPARAM.

ISTAT Meaning

1 The function f (x) has a length less than TOLF = RPARAM(1).

This is the expected value for ISTAT when an actual zero

value of f (x) is anticipated.

1468 Chapter 8: Optimization IMSL MATH LIBRARY

2 The function f (x) has reached a local minimum. This is the

expected value for ISTAT when a nonzero value of f (x) is

anticipated.

3 A small change (absolute) was noted for the vector x. A full

model problem step was taken. The condition for ISTAT =

2 may also be satisfied, so that a minimum has been found.

However, this test is made before the test for ISTAT = 2.

4 A small change (relative) was noted for the vector x. A full

model problem step was taken. The condition for ISTAT =

2 may also be satisfied, so that a minimum has been found.

However, this test is made before the test for ISTAT = 2.

5 The number of terms in the quadratic model is being

restricted by the amount of storage allowed for that

purpose. It is suggested, but not required, that additional

storage be given for the quadratic model parameters. This is

accessed through the vector

IPARAM, documented below.

6 Return for evaluation of function and Jacobian if reverse

communication is desired. See the Comments below.

FORTRAN 90 Interface

Generic: CALL BCNLS (FCN, M, C, BL, BU, IRTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCNLS and D_BCNLS.

FORTRAN 77 Interface

Single: CALL BCNLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE, XLB, XUB, XGUESS, X,

RNORM, ISTAT)

Double: The double precision name is DBCNLS.

Description

The routine BCNLS solves the nonlinear least squares problem

2

1

min
m

i

i

f x

subject to

IMSL MATH LIBRARY Chapter 8: Optimization 1469

l u

l u

b Cx b

x x x

BCNLS is based on the routine DQED by R.J. Hanson and F.T. Krogh. The section of BCNLS that

approximates, using finite differences, the Jacobian of f(x) is a modification of JACBF by D.E.

Salane.

Comments

1. Workspace may be explicitly provided, if desired, by use of B2NLS/DB2NLS. The

reference is:

CALL B2NLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE, XLB,

XUB, XGUESS, X, RNORM,ISTAT, IPARAM, RPARAM, JAC, F,

FJ, LDFJ, IWORK, LIWORK, WORK, LWORK)

The additional arguments are as follows:

IPARAM — Integer vector of length six used to change certain default attributes of

BCNLS. (Input).

If the default parameters are desired for B2NLS, set IPARAM(1) to zero.

Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, the

following steps should be taken before calling B2NLS:

CALL B7NLS (IPARAM, RPARAM)

 Set nondefault values for IPARAM and RPARAM.

If double precision is being used, DB7NLS should be called instead. Following is

a list of parameters and the default values.

IPARAM(1) = Initialization flag.

IPARAM(2) = ITMAX, the maximum number of iterations allowed.

Default: 75

IPARAM(3) = a flag that suppresses the use of the quadratic model in the inner

loop. If set to one, then the quadratic model is never used. Otherwise

use the quadratic model where appropriate. This option decreases the

amount of workspace as well as the computing overhead required. A

user may wish to determine if the application really requires the use of

the quadratic model.

Default: 0

IPARAM(4) = NTERMS, one more than the maximum number of terms used in

the quadratic model.

Default: 5

IPARAM(5) = RCSTAT, a flag that determines whether forward or reverse

communication is used. If set to zero, forward communication through

functions FCN and JAC is used. If set to one, reverse communication is

1470 Chapter 8: Optimization IMSL MATH LIBRARY

used, and the dummy routines B10LS/DB10LS and B11LS/DB11LS

may be used in place of FCN and JAC, respectively. When BCNLS

returns with ISTAT = 6, arrays F and FJ are filled with f(x) and the

Jacobian of f(x), respectively. BCNLS is then called again.

Default: 0

IPARAM(6) = a flag that determines whether the analytic Jacobian, as supplied

in JAC, is used, or if a finite difference approximation is computed. If

set to zero, JAC is not accessed and finite differences are used. If set to

one, JAC is used to compute the Jacobian.

Default: 0

RPARAM — Real vector of length 7 used to change certain default attributes of

BCNLS. (Input)

For the description of RPARAM, we make the following definitions:

FC current value of the length of f (x)

FB best value of length of f (x)

FL value of length of f (x) at the previous step

PV predicted value of length of f (x), after the step is taken, using the

approximating model ɛ machine epsilon = amach(4).

The conditions |FB PV| ≤ TOLSNR*FB and |FC PV| ≤ TOLP*FB and

|FC FL| ≤ TOLSNR*FB together with taking a full model step, must be satisfied

before the condition ISTAT = 2 is returned. (Decreasing any of the values for

TOLF, TOLD, TOLX, TOLSNR, or TOLP will likely increase the number of

iterations required for convergence.)

RPARAM(1) = TOLF, tolerance used for stopping when FC ≤ TOLF.

Default : min(1.E 5,)

RPARAM(2) = TOLX, tolerance for stopping when change to x values has length

less than or equal to TOLX*length of x values.

Default : min(1.E 5,)

RPARAM(3) = TOLD, tolerance for stopping when change to x values has length

less than or equal to TOLD.

Default : min(1.E 5,)

RPARAM(4) = TOLSNR, tolerance used in stopping condition ISTAT = 2.

Default: 1.E5

RPARAM(5) = TOLP, tolerance used in stopping condition ISTAT = 2.

Default: 1.E5

RPARAM(6) = TOLUSE, tolerance used to avoid values of x in the quadratic

model's interpolation of previous points. Decreasing this value may

IMSL MATH LIBRARY Chapter 8: Optimization 1471

result in more terms being included in the quadratic model.

Default:

RPARAM(7) = COND, largest condition number to allow when solving for the

quadratic model coefficients. Increasing this value may result in more

terms being included in the quadratic model.

Default: 30

JAC — User-supplied subroutine to evaluate the Jacobian. The usage is

CALL JAC(M, N, X, FJAC, LDFJAC), where

M Number of functions. (Input)

N Number of variables. (Input)

X Array of length N containing the point at which the Jacobian will be

evaluated. (Input)

FJAC The computed M N Jacobian at the point X. (Output)

LDFJAC Leading dimension of the array FJAC. (Input)

The routine JAC must be declared EXTERNAL in the calling program.

F — Real vector of length N used to pass f(x) if reverse communication

(IPARAM(4)) is enabled. This array must be allocated regardless of the setting of

(IPARAM(4)). (Input)

FJ — Real array of size M N. It is used to store the Jacobian matrix of f(x) if reverse

communication (IPARAM(4)) is enabled. This array must be allocated regardless

of the setting of (IPARAM(4)). (Input)

Specifically,

 , i

j

f
FJ i j

x

LDFJ — Leading dimension of FJ exactly as specified in the dimension statement of

the calling program. (Input)

IWORK — Integer work vector of length LIWORK.

LIWORK — Length of work vector IWORK. LIWORK must be at least

5MCON + 12N + 47 + MAX(M, N)

WORK — Real work vector of length LWORK

LWORK — Length of work vector WORK. LWORK must be at least

41N + 6M + 11MCON + (M + MCON)(N + 1) + NA(NA + 7) + 8 MAX(M, N)
+ 99. Where NA = MCON + 2N + 6.

2. Informational errors

Type Code

1472 Chapter 8: Optimization IMSL MATH LIBRARY

3 1 The function f (x) has reached a value that may be a local minimum.

However, the bounds on the trust region defining the size of the step

are being hit at each step. Thus, the situation is suspect. (Situations

of this type can occur when the solution is at infinity at some of the

components of the unknowns, x).

3 2 The model problem solver has noted a value for the linear or

quadratic model problem residual vector length that is greater than or

equal to the current value of the function, i.e. the Euclidean length of

f (x). This situation probably means that the evaluation of f (x) has

more uncertainty or noise than is possible to account for in the

tolerances used to not a local minimum. The value of x is suspect,

but a minimum has probably been found.

3 3 More than ITMAX iterations were taken to obtain the solution. The

value obtained for x is suspect, although it is the best set of x values

that occurred in the entire computation. The value of ITMAX can be

increased though the IPARAM vector.

Example 1

This example finds the four variables x1, x2, x3, x4 that are in the model function

 2 4
1 3

x t x t
h t x e x e

There are values of h(t) at five values of t.

h(0.05) = 2.206

h(0.1) = 1.994

h(0.4) = 1.35

h(0.5) = 1.216

h(1.0) = 0.7358

There are also the constraints that x2, x4 ≤ 0, x1, x3 ≥ 0, and x2 and x4 must be separated by at least

0.05. Nothing more about the values of the parameters is known so the initial guess is 0.

 USE BCNLS_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

 INTEGER MCON, N

 PARAMETER (MCON=1, N=4)

! SPECIFICATIONS FOR PARAMETERS

 INTEGER LDC, M

 PARAMETER (M=5, LDC=MCON)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER IRTYPE(MCON), NOUT

 REAL BL(MCON), C(MCON,N), RNORM, X(N), XLB(N), &

 XUB(N)

! SPECIFICATIONS FOR SUBROUTINES

IMSL MATH LIBRARY Chapter 8: Optimization 1473

! SPECIFICATIONS FOR FUNCTIONS

 EXTERNAL FCN

!

 CALL UMACH (2, NOUT)

! Define the separation between x(2)

! and x(4)

 C(1,1) = 0.0

 C(1,2) = 1.0

 C(1,3) = 0.0

 C(1,4) = -1.0

 BL(1) = 0.05

 IRTYPE(1) = 2

! Set lower bounds on variables

 XLB(1) = 0.0

 XLB(2) = 1.0E30

 XLB(3) = 0.0

 XLB(4) = 1.0E30

! Set upper bounds on variables

 XUB(1) = -1.0E30

 XUB(2) = 0.0

 XUB(3) = -1.0E30

 XUB(4) = 0.0

!

 CALL BCNLS (FCN, M, C, BL, BL, IRTYPE, XLB, XUB, X, RNORM=RNORM)

 CALL WRRRN ('X', X, 1, N, 1)

 WRITE (NOUT,99999) RNORM

99999 FORMAT (/, 'rnorm = ', E10.5)

 END

!

 SUBROUTINE FCN (M, N, X, F)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER M, N

 REAL X(*), F(*)

! SPECIFICATIONS FOR LOCAL VARIABLES

 INTEGER I

! SPECIFICATIONS FOR SAVE VARIABLES

 REAL H(5), T(5)

 SAVE H, T

! SPECIFICATIONS FOR INTRINSICS

 INTRINSIC EXP

 REAL EXP

!

 DATA T/0.05, 0.1, 0.4, 0.5, 1.0/

 DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/

!

 DO 10 I=1, M

 F(I) = X(1)*EXP(X(2)*T(I)) + X(3)*EXP(X(4)*T(I)) - H(I)

 10 CONTINUE

 RETURN

 END

Output

 X

 1 2 3 4

 1.999 -1.000 0.500 -9.954

rnorm = .42425E-03

1474 Chapter 8: Optimization IMSL MATH LIBRARY

Additional Examples

Example 2

This example solves the same problem as the last example, but reverse communication is used to

evaluate f(x) and the Jacobian of f(x). The use of the quadratic model is turned off.

 USE B2NLS_INT

 USE UMACH_INT

 USE WRRRN_INT

 IMPLICIT NONE

 INTEGER LDC, LDFJ, M, MCON, N

 PARAMETER (M=5, MCON=1, N=4, LDC=MCON, LDFJ=M)

! Specifications for local variables

 INTEGER I, IPARAM(6), IRTYPE(MCON), ISTAT, IWORK(1000), &

 LIWORK, LWORK, NOUT

 REAL BL(MCON), C(MCON,N), F(M), FJ(M,N), RNORM, RPARAM(7), &

 WORK(1000), X(N), XGUESS(N), XLB(N), XUB(N)

 REAL H(5), T(5)

 SAVE H, T

 INTRINSIC EXP

 REAL EXP

! Specifications for subroutines

 EXTERNAL B7NLS

! Specifications for functions

 EXTERNAL B10LS, B11LS

!

 DATA T/0.05, 0.1, 0.4, 0.5, 1.0/

 DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/

!

 CALL UMACH (2, NOUT)

! Define the separation between x(2)

! and x(4)

 C(1,1) = 0.0

 C(1,2) = 1.0

 C(1,3) = 0.0

 C(1,4) = -1.0

 BL(1) = 0.05

 IRTYPE(1) = 2

! Set lower bounds on variables

 XLB(1) = 0.0

 XLB(2) = 1.0E30

 XLB(3) = 0.0

 XLB(4) = 1.0E30

! Set upper bounds on variables

 XUB(1) = -1.0E30

 XUB(2) = 0.0

 XUB(3) = -1.0E30

 XUB(4) = 0.0

! Set initial guess to 0.0

 XGUESS = 0.0E0

! Call B7NLS to set default parameters

 CALL B7NLS (IPARAM, RPARAM)

! Suppress the use of the quadratic

IMSL MATH LIBRARY Chapter 8: Optimization 1475

! model, evaluate functions and

! Jacobian by reverse communication

 IPARAM(3) = 1

 IPARAM(5) = 1

 IPARAM(6) = 1

 LWORK = 1000

 LIWORK = 1000

! Specify dummy routines for FCN

! and JAC since we are using reverse

! communication

 10 CONTINUE

 CALL B2NLS (B10LS, M, N, MCON, C, LDC, BL, BL, IRTYPE, XLB, &

 XUB, XGUESS, X, RNORM, ISTAT, IPARAM, RPARAM, &

 B11LS, F, FJ, LDFJ, IWORK, LIWORK, WORK, LWORK)

!

! Evaluate functions if the routine

! returns with ISTAT = 6

 IF (ISTAT .EQ. 6) THEN

 DO 20 I=1, M

 FJ(I,1) = EXP(X(2)*T(I))

 FJ(I,2) = T(I)*X(1)*FJ(I,1)

 FJ(I,3) = EXP(X(4)*T(I))

 FJ(I,4) = T(I)*X(3)*FJ(I,3)

 F(I) = X(1)*FJ(I,1) + X(3)*FJ(I,3) - H(I)

 20 CONTINUE

 GO TO 10

 END IF

!

 CALL WRRRN ('X', X, 1, N, 1)

 WRITE (NOUT,99999) RNORM

99999 FORMAT (/, 'rnorm = ', E10.5)

 END

 Output

 X

 1 2 3 4

 1.999 -1.000 0.500 -9.954

rnorm = .42413E-03

READ_MPS
This subroutine reads an MPS file containing a linear programming problem or a quadratic

programming problem.

Required Arguments

FILENAME — Character string containing the name of the MPS file to be read. (Input)

MPS— A structure of IMSL defined derived type s_MPS containing the data read from the

MPS file. (Output)

The IMSL defined derived type s_MPS consists of the following components:

1476 Chapter 8: Optimization IMSL MATH LIBRARY

Component Description

character, allocatable :: filename Name of the MPS file.

character (len=8) name Name of the problem.

integer nrows Number of rows in the constraint matrix.

integer ncolumns Number of columns in the constraint

matrix. This is also the number of variables.

integer nonzeros Number of non-zeros in the constraint

matrix.

integer nhessian Number of non-zeros in the Hessian matrix.

If zero, then there is no Hessian matrix.

integer ninteger Number of variables required to be integer.

This includes binary variables.

integer nbinary Number of variables required to be binary

(0 or 1).

real (kind(1e0)), allocatable :: objective(:) A real array of length ncolumns

containing the objective vector.

type (s_SparseMatrixElement), allocatable ::
constraint(:)

A derived type array of length nonzeros

and of type s_SparseMatrixElement

containing the sparse matrix representation

of the constraint matrix. See below for

details.

type(s_SparseMatrixElement), allocatable ::
hessian(:)

A derived type array of length nhessian

and of type s_SparseMatrixElement

containing the sparse matrix representation

of the Hessian matrix. If nhessian is zero,

then this field is not allocated.

real (kind(1e0)), allocatable ::lower_range(:) A real array of length nrows containing

the lower constraint bounds. If a constraint

is unbounded below, the corresponding

entry in lower_range is set to

negative_infinity, defined below.

real (kind(1e0)), allocatable ::upper_range(:) A real array of length nrows containing

the upper constraint bounds. If a constraint

is unbounded above, the corresponding

entry in upper_range is set to

positive_infinity, defined below.

real (kind(1e0)), allocatable :: lower_bound(:) A real array of length ncolumns

containing the lower variable bounds. If a

variable is unbounded below, the

corresponding entry in lower_bound is set

IMSL MATH LIBRARY Chapter 8: Optimization 1477

Component Description

to negative_infinity, defined below.

real (kind(1e0)), allocatable :: upper_bound(:) A real array of length ncolumns

containing the upper variable bounds. If a

variable is unbounded above, the

corresponding entry in upper_bound is set

to positive_infinity, defined below.

integer, allocatable :: variable_type(:) An integer array of length ncolumns

containing the type of each variable.

Variable types are:

0 Continous

1 Integer

2 Binary (0 or 1)

3 Semicontinuous

character (len=8) name_objective Name of the set in ROWS used for the

objective row.

character (len=8) name_rhs Name of the RHS set used.

character (len=8) name_ranges Name of the RANGES set used or the empty

string if no RANGES section in the file.

character (len=8) name_bounds Name of the BOUNDS set used or the empty

string if no BOUNDS section in the file.

character (len=8), allocatable :: name_row(:) Array of length nrows containing the row

names. The name of the i-th constraint row is

name_row(i).

character (len=8), allocatable :: name_column(:) Array of length ncolumns containing the

column names. The name of the i-th column

and variable is name_column(i).

real (kind (1e0)) positive_infinity Value used for a constraint or bound upper

limit when the constraint or bound is

unbounded above. This can be set using an

optional argument. Default is 1.0e+30.

real (kind (1e0)) negative_infinity Value used for a constraint or bound lower

limit when the constraint or bound is

unbounded below. This can be set using an

optional argument. Default is -1.0e+30.

This derived type stores the constraint and Hessian matrices in a simple sparse matrix format of

derived type s_SparseMatrixElement defined in the interface module mp_types.

s_SparseMatrixElement consists of three components; a row index, a column index, and a

value. For each non-zero element in the constraint and Hessian matrices an element of derived

type s_SparseMatrixElement is stored. The following code fragment expands the sparse

1478 Chapter 8: Optimization IMSL MATH LIBRARY

constraint matrix of the derived type s_SparseMatrixElement contained in mps, a derived type

of type s_MPS, into a dense matrix:

! allocate a matrix

integer nr = mps%nrows

integer nc = mps%ncolumns

real (kind(1e0)), allocatable :: matrix(:,:)

allocate(matrix(nr,nc))

matrix = 0.0e0

! expand the sparse matrix

do k = 1, mps%nonzeros

 i = mps%constraint(k)%row

 j = mps%constraint(k)%column

 matrix(i,j) = mps%constraint(k)%value

end do

The IMSL derived type d_MPS is the double precision counterpart to s_MPS. The IMSL derived

type d_SparseMatrixElement is the double precision counterpart to

s_SparseMatrixElement.

To release the space allocated for this derived type use the following statement:

call mps_free(mps)

Optional Arguments

NUNIT— The unit number for reading an MPS file opened by the user. If NUNIT is not used,

this subroutine opens the file indicated by FILENAME for reading and then closes it

after reading. (Input)

By default, 7 is used.

OBJ — Character string of length 8 containing the name of the objective function set to be

used. (Input)

An MPS file can contain multiple objective function sets.

By default, the first objective function set in the MPS file is used. This name is case

sensitive.

RHS — Character string of length 8 containing the name of the RHS set to be used. (Input)

An MPS file can contain multiple RHS sets.

By default, the first RHS set in the MPS file is used. This name is case sensitive.

RANGES — Character string of length 8 containing the name of the RANGES set to be used.

(Input)

An MPS file can contain multiple RANGES sets.

By default, the first RANGES set in the MPS file is used. This name is case sensitive.

BOUNDS — Character string of length 8 containing the name of the BOUNDS set to be used.

(Input)

An MPS file can contain multiple BOUNDS sets.

By default, the first BOUNDS set in the MPS file is used. This name is case sensitive.

IMSL MATH LIBRARY Chapter 8: Optimization 1479

POS_INF — Value used for a constraint or bound upper limit when the constraint or bound is

unbounded above. (Input)

Default: 1.0e+30.

NEG_INF — Value used for a constraint or bound lower limit when the constraint or bound

is unbounded below. (Input)

Default: -1.0e+30.

FORTRAN 90 Interface

Generic: CALL READ_MPS (FILENAME, MPS [,…])

Specific: The specific interface names are S_READ_MPS and D_READ_MPS.

Description

An MPS file defines a linear or quadratic programming problem.

A linear programming problem is assumed to have the form:

min T

x
c x

l ub Ax b

l ux x x

A quadratic programming problem is assumed to have the form:

1
min

2

T T

x
x Qx c x

l ub Ax b

l ux x x

The following table maps this notation into the components in the derived type returned by

READ_MPS:

C Objective

A Constraint

Q Hessian

bl lower_range

bu upper_range

xl lower_bound

xu upper_bound

If the MPS file specifies an equality constraint or bound, the corresponding lower and upper

values in the returned derived type will be exactly equal.

1480 Chapter 8: Optimization IMSL MATH LIBRARY

The problem formulation assumes that the constraints and bounds are two-sided. If a particular

constraint or bound has no lower limit, then the corresponding component of the derived type is

set to -1.0e+30. If the upper limit is missing, then the corresponding component of the derived

type is set to +1.0e+30.

MPS File Format

There is some variability in the MPS format. This section describes the MPS format accepted by

this reader.

An MPS file consists of a number of sections. Each section begins with a name in column 1. With

the exception of the NAME section, the rest of this line is ignored. Lines with a ‗*‘ or ‗$‘ in

column 1 are considered comment lines and are ignored.

The body of each section consists of lines divided into fields, as follows:

Field Number Columns Contents

1 2-3 Indicator

2 5-12 Name

3 15-22 Name

4 25-36 Value

5 40-47 Name

6 50-61 Value

The format limits MPS names to 8 characters and values to 12 characters. The names in fields 2, 3

and 5 are case sensitive. Leading and trailing blanks are ignored, but internal spaces are

significant.

The sections in an MPS file are as follows.

 NAME

 ROWS

 COLUMNS

 RHS

 RANGES (optional)

 BOUNDS (optional)

 QUADRATIC (optional)

 ENDATA

Sections must occur in the above order.

MPS keywords, section names and indicator values, are case insensitive. Row, column and set

names are case sensitive.

IMSL MATH LIBRARY Chapter 8: Optimization 1481

NAME Section

The NAME section contains a single line. A problem name can occur anywhere on the line after

NAME and before column 62. The problem name is truncated to 8 characters.

ROWS Section

The ROWS section defines the name and type for each row. Field 1 contains the row type and

field 2 contains the row name. Row type values are not case sensitive. Row names are case

sensitive. The following row types are allowed:

Row Type Meaning

E Equality Constraint.

L Less than or equal constraint

G Greater than or equal constraint.

N Objective or a free row.

COLUMNS Section

The COLUMNS section defines the nonzero entries in the objective and the constraint matrix. The

row names here must have been defined in the ROWS section.

Field Contents

2 Column name.

3 Row name.

4 Value for the entry whose row and column

are given by fields 3 and 2.

5 Row name.

6 Value for the entry whose row and column

are given by fields 5 and 2.

NOTE: Fields 5 and 6 are optional.

The COLUMNS section can also contain markers. These are indicated by the name ‗MARKER‘

(with the quotes) in field 3 and the marker type in field 4 or 5.

Marker type ‗INTORG‘ (with the quotes) begins an integer group. The marker type ‗INTEND‘ (with

the quotes) ends this group. The variables corresponding to the columns defined within this group

are required to be integer.

RHS Section

The RHS section defines the right-hand side of the constraints. An MPS file can contain more than

one RHS set, distinguished by the RHS set name. The row names here must be defined in the

ROWS section.

1482 Chapter 8: Optimization IMSL MATH LIBRARY

Field Contents

2 RHS set name.

3 Row name.

4 Value for the entry whose set and row are

given by fields 2 and 3.

5 Row name.

6 Value for the entry whose set and row are

given by fields 2 and 5.

NOTE: Fields 5 and 6 are optional.

RANGES Section

The optional RANGES section defines two-sided constraints. An MPS file can contain more than

one range set, distinguished by the range set name. The row names here must have been defined in

the ROWS section.

Field Contents

2 Range set name.

3 Row name.

4 Value for the entry whose set and row are

given by fields 2 and 3.

5 Row name.

6 Value for the entry whose set and row are

given by fields 2 and 5.

NOTE: Fields 5 and 6 are optional.

Ranges change one-sided constraints, defined in the RHS section, into two-sided constraints. The

two-sided constraint for row i depends on the range value, ir , defined in this section. The right-

hand side value, ib , is defined in the RHS section. The two-sided constraints for row i are given in

the following table:

Row Type Lower
Constraint

Upper Constraint

G
ib

i ib r

L
i ib r ib

E min(0,)i ib r max(0,)i ib r

IMSL MATH LIBRARY Chapter 8: Optimization 1483

BOUNDS Section

The optional BOUNDS section defines bounds on the variables. By default, the bounds

are 0 ix . The bounds can also be used to indicate that a variable must be an integer.

More than one bound can be set for a single variable. For example, to set 2 6ix use a LO

bound with value 2 to set 2 ix and a UP bound with value 6 to add the condition 6ix .

An MPS file can contain more than one bounds set, distinguished by the bound set name.

Field Contents

1 Bounds type.

2 Bounds set name.

3 Column name

4 Value for the entry whose set and column are

given by fields 2 and 3.

5 Column name.

6 Value for the entry whose set and column are

given by fields 2 and 5.

NOTE: Fields 5 and 6 are optional.

The bound types are as follows. Here ib are the bound values defined in this section, the ix are the

variables, and I is the set of integers.

Bounded
Type

Definition Formula

LO Lower bound
j ib x

UP Upper bound
i ix b

FX Fixed variable
i ix b

FR Free variable
ix

MI Lower bound is

minus infinity
ix

PL Upper bound is

positive infinity
ix

BV Binary variable

(variable must be 0

or 1).

{0,1}ix

1484 Chapter 8: Optimization IMSL MATH LIBRARY

Bounded
Type

Definition Formula

UI Upper bound and

integer
i ix b and

ix I

LI Lower bound and

integer
i ib x and

ix I

SC Semicontinuous 0 or i ib x

The bound type names are not case sensitive.

If the bound type is UP or UI and 0jb then the lower bound is set to .

QUADRATIC Section

The optional QUADRATIC section defines the Hessian for quadratic programming problems. The

names HESSIAN, QUADS, QUADOBJ, QSECTION, and QMATRIX are also recognized as

beginning the QUADRATIC section.

Field Contents

2 Column name.

3 Column name.

4 Value for the entry specified by fields 2 and 3.

5 Column name.

6 Value for the entry specified by fields 2 and 5.

NOTE: Fields 5 and 6 are optional.

ENDATA Section

The ENDATA section ends the MPS file.

Comments

Informational errors

Type Code

3 5 No objective coefficients

found.

3 6 No RHS values found.

3 8 No range values found.

IMSL MATH LIBRARY Chapter 8: Optimization 1485

Type Code

3 9 No bounds found.

4 3 Missing section title.

4 4 Error reading input file.

4 7 Invalid number.

4 11 Unexpected section header.

4 12 Unknown row type.

4 13 Out-of-order marker.

4 14 Unknown marker type.

4 15 Unknown column name.

4 16 Unknown bound type.

4 17 Unknown row name.

4 18 Unexpected section name.

Example 1

use read_mps_int

implicit none

TYPE(S_MPS) mps

CALL read_mps ('test.mps', mps)

End

Additional Examples

Example 2

See Example 2 of DENSE_LP.

MPS_FREE
Deallocates the space allocated for the IMSL derived type s_MPS. This routine is usually used in

conjunction with READ_MPS.

Required Arguments

MPS — A structure of IMSL defined derived type s_MPS containing the data read from the

MPS file. (Input/Output)

The allocated components of s_MPS will be deallocated on output.

The IMSL defined derived type s_MPS consists of the following components:

Component Description

character, allocatable :: filename Name of the MPS file.

1486 Chapter 8: Optimization IMSL MATH LIBRARY

Component Description

character (len=8) name Name of the problem.

integer nrows Number of rows in the constraint matrix.

integer ncolumns Number of columns in the constraint

matrix. This is also the number of variables.

integer nonzeros Number of non-zeros in the constraint

matrix.

integer nhessian Number of non-zeros in the Hessian matrix.

If zero, then there is no Hessian matrix.

integer ninteger Number of variables required to be integer.

This includes binary variables.

integer nbinary Number of variables required to be binary

(0 or 1).

real (kind(1e0)), allocatable :: objective(:) A real array of length ncolumns

containing the objective vector.

type (s_SparseMatrixElement), allocatable ::
constraint(:)

A derived type array of length nonzeros

and of type s_SparseMatrixElement

containing the sparse matrix representation

of the constraint matrix. See below for

details.

type(s_SparseMatrixElement), allocatable ::
hessian(:)

A derived type array of length nhessian

and of type s_SparseMatrixElement

containing the sparse matrix representation

of the Hessian matrix. If nhessian is zero,

then this field is not allocated.

real (kind(1e0)), allocatable ::lower_range(:) A real array of length nrows containing

the lower constraint bounds. If a constraint

is unbounded below, the corresponding

entry in lower_range is set to

negative_infinity, defined below.

real (kind(1e0)), allocatable ::upper_range(:) A real array of length nrows containing

the upper constraint bounds. If a constraint

is unbounded above, the corresponding

entry in upper_range is set to

positive_infinity, defined below.

real (kind(1e0)), allocatable :: lower_bound(:) A real array of length ncolumns

containing the lower variable bounds. If a

variable is unbounded below, the

corresponding entry in lower_bound is set

to negative_infinity, defined below.

IMSL MATH LIBRARY Chapter 8: Optimization 1487

Component Description

real (kind(1e0)), allocatable :: upper_bound(:) A real array of length ncolumns

containing the upper variable bounds. If a

variable is unbounded above, the

corresponding entry in upper_bound is set

to positive_infinity, defined below.

integer, allocatable :: variable_type(:) An integer array of length ncolumns

containing the type of each variable.

Variable types are:

0 Continous

1 Integer

2 Binary (0 or 1)

3 Semicontinuous

character (len=8) name_objective Name of the set in ROWS used for the

objective row.

character (len=8) name_rhs Name of the RHS set used.

character (len=8) name_ranges Name of the RANGES set used or the empty

string if no RANGES section in the file.

character (len=8) name_bounds Name of the BOUNDS set used or the empty

string if no BOUNDS section in the file.

character (len=8), allocatable :: name_row(:) Array of length nrows containing the row

names. The name of the i-th constraint row is

name_row(i).

character (len=8), allocatable :: name_column(:) Array of length ncolumns containing the

column names. The name of the i-th column

and variable is name_column(i).

real (kind (1e0)) positive_infinity Value used for a constraint or bound upper

limit when the constraint or bound is

unbounded above. This can be set using an

optional argument. Default is 1.0e+30.

real (kind (1e0)) negative_infinity Value used for a constraint or bound lower

limit when the constraint or bound is

unbounded below. This can be set using an

optional argument. Default is -1.0e+30.

This derived type stores the constraint and Hessian matrices in a simple sparse matrix format of

derived type s_SparseMatrixElement defined in the interface module mp_types.

s_SparseMatrixElement consists of three components; a row index, a column index, and a

value. For each non-zero element in the constraint and Hessian matrices an element of derived

type s_SparseMatrixElement is stored The following code fragment expands the sparse

constraint matrix of the derived type s_SparseMatrixElement contained in mps, a derived type

of type s_MPS, into a dense matrix:

1488 Chapter 8: Optimization IMSL MATH LIBRARY

! allocate a matrix

integer nr = mps%nrows

integer nc = mps%ncolumns

real (kind(1e0)), allocatable :: matrix(:,:)

allocate(matrix(nr,nc))

matrix = 0.0e0

! expand the sparse matrix

do k = 1, mps%nonzeros

 i = mps%constraint(k)%row

 j = mps%constraint(k)%column

 matrix(i,j) = mps%constraint(k)%value

end do

The IMSL derived type d_MPS is the double precision counterpart to s_MPS. The IMSL derived

type d_SparseMatrixElement is the double precision counterpart to

s_SparseMatrixElement.

FORTRAN 90 Interface

Generic: CALL MPS_FREE (MPS)

Specific: The specific interface names are S_MPS_FREE and D_MPS_FREE.

Description

This subroutine simply issues deallocate statements for each of the arrays allocated in the IMSL

derived type s_MPS defined above. It is supplied as a convenience utility to the user of

READ_MPS.

Example

In the following example, the space that had been allocated to accommodate the IMSL derived

type S_MPS is deallocated with a call to MPS_FREE after a call to READ_MPS was made.

use read_mps_int

use mps_free_int

implicit none

TYPE(S_MPS) mps

CALL read_mps ('test.mps', mps)

 .

 .

 .

call mps_free (mps)

end

DENSE_LP
Solves a linear programming problem.

NOTE: DENSE_LP is available in double precision only.

IMSL MATH LIBRARY Chapter 8: Optimization 1489

Required Arguments

A — M by NVAR matrix containing the coefficients of the M constraints. (Input)

BL — Vector of length M containing the lower limit of the general constraints; if there is no

lower limit on the I-th constraint, then BL(I) is not referenced. (Input)

BU — Vector of length M containing the upper limit of the general constraints; if there is no

upper limit on the I-th constraint, then BU(I) is not referenced; if there are no range

constraints, BL and BU can share the same storage locations. (Input)

C — Vector of length NVAR containing the coefficients of the objective function. (Input)

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.

(Input)

Let R(I) = A(I, 1) * XSOL(1) + … + A(I, NVAR) * XSOL(NVAR). Then, the value of

IRTYPE(I) signifies the following:

Irtype[I] I-th Constraint

0 BL(I) = R(I) = BU(I)

1 R(I) ≤ BU(I)

2 R(I) ≥ BL(I)

3 BL(I) ≤ R(I) ≤ BU(I)

4 Ignore this constraint

OBJ — Value of the objective function. (Output)

XSOL — Vector of length NVAR containing the primal solution.(Output)

DSOL — Vector of length M containing the dual solution. (Output)

Optional Arguments

M — Number of constraints. (Input)

Default: M = SIZE (A,1).

NVAR — Number of variables. (Input)

Default: NVAR = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

LDA must be at least M.

Default: LDA = SIZE (A,1).

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no

lower bound on a variable, then 1.0D30 should be set as the lower bound. (Input)

Default: XLB = 0.0D0.

1490 Chapter 8: Optimization IMSL MATH LIBRARY

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no

upper bound on a variable, then 1.0D30 should be set as the upper bound. (Input)

Default: No upperbound enforced.

ITREF — The type if iterative refinement used. (Input)

ITREF Refinement

0 No refinement

1 Iterative refinement

2 Use extended refinement. Iterate until

no more progress.

 Default: ITREF = 0.

ITERS — Number of iterations. (Output)

IERR — Status flag indicating which warning conditions were set upon completion.

(Output)

IERR Status

≥0 Solution found. IERR = 0 indicates there are no

warning conditions. If the solution was found

with warning conditions IERR is incremented by

the number given below.

1 1 is added to the value returned if there are

multiple solutions giving essentially the same
minimum.

2 2 is added to the value returned if there were

some constraints discarded because they were too
linearly dependent on other active constraints.

4 4 is added to the value returned if the constraints

were not satisfied. L1 minimization was applied

to all (including bounds on simple variables) but

the equalities, to approximate violated non-

equalities as well as possible. If a feasible
solution is possible then refinement may help

8 8 is added to the value returned if the algorithm

appears to be cycling. Using refinement may
help.

FORTRAN 90 Interface

Generic: CALL DENSE_LP (A, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL [,…])

Specific: The specific interface name is D_DENSE_LP. This subroutine is available in

double precision only.

IMSL MATH LIBRARY Chapter 8: Optimization 1491

Description

The routine DENSE_LP solves the linear programming problem

min
n

T

x

c x
R

subject to l x u

l u

b A b

x x x

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl and

xu are the lower and upper bounds on the constraints and the variables, respectively.

DENSE_LP uses an active set strategy.

Refer to the following paper for further information: Krogh, Fred, T. (2005), An Algorithm for

Linear Programming, http://mathalacarte.com/fkrogh/pub/lp.pdf ,Tujunga, CA.

Comments

1. Informational errors

Type Code

1 1 Multiple solutions giving essentially the same solution exist.

3 1 Some constraints were discarded because they were too linearly

dependent on other active constraints.

3 2 All constraints are not satisfied.

3 3 The algorithm appears to be cycling.

4 1 The problem appears vacuous.

4 2 The problem is unbounded.

4 3 An acceptable pivot could not be found.

4 4 The constraint bounds are inconsistent.

4 5 The variable bounds are inconsistent.

Example 1

The linear programming problem in the standard form

 1 2

1 2 3

1 2 4

1 5

2 6

min 3

1.5subject to

0.5

1.0

1.0

0, for 1, , 6i

f x x x

x x x

x x x

x x

x x

x i

http://mathalacarte.com/fkrogh/pub/lp.pdf

1492 Chapter 8: Optimization IMSL MATH LIBRARY

is solved.

 USE UMACH_INT

 USE WRRRN_INT

 USE DENSE_LP_INT

 IMPLICIT NONE

 INTEGER NOUT, M, NVAR

 PARAMETER (M=4, NVAR=6)

 DOUBLE PRECISION A(M, NVAR), B(M), C(NVAR), XSOL(NVAR), &

 DSOL(M), BL(M), BU(M), OBJ

 INTEGER IRTYPE(M)

 DATA A/1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, -1, &

 0, 0, 0, 0, 1, 0, 0, 0, 0, 1/

 DATA B/1.5, 0.5, 1.0, 1.0/

 DATA C/-1.0, -3.0, 0.0, 0.0, 0.0, 0.0/

 DATA BL/1.5, 0.5, 1.0, 1.0/

 DATA BU/M*-1.D30/

 DATA IRTYPE/M*0/

 CALL UMACH(2, NOUT)

! Solve the LP problem

 CALL DENSE_LP (A, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL)

 WRITE(NOUT, 99999) OBJ

 CALL WRRRN('Solution', XSOL, 1, NVAR, 1)

99999 FORMAT (' Objective', F9.4)

 END

Output

Objective -3.5000

 Solution

 1 2 3 4 5 6

 0.500 1.000 0.000 1.000 0.500 0.000

Additional Examples

Example 2

This example demonstrates how READ_MPS can be used together with DENSE_LP to solve a linear

programming problem defined in an MPS file. The MPS file used in this example is an

uncompressed version of the file ‗afiro‘, available from http://www.netlib.org/lp/data/.

 USE UMACH_INT

 USE WRRRN_INT

 USE READ_MPS_INT

 USE DENSE_LP_INT

 IMPLICIT NONE

 REAL(KIND(1D0)) OBJ

 REAL(KIND(1D0)), ALLOCATABLE :: XSOL(:)

 REAL(KIND(1D0)), ALLOCATABLE :: DSOL(:)

 REAL(KIND(1D0)), ALLOCATABLE :: A(:,:)

 INTEGER, ALLOCATABLE :: IRTYPE(:)

http://www.netlib.org/lp/data/

IMSL MATH LIBRARY Chapter 8: Optimization 1493

 TYPE(D_MPS) PROBLEM

 CHARACTER NAME*256

 INTEGER I,J, K, NOUT

 CALL UMACH(2, NOUT)

! READ LP PROBLEM FROM THE MPS FILE.

 NAME = 'afiro'

 CALL READ_MPS (NAME, PROBLEM)

 ALLOCATE (A(PROBLEM%NROWS, PROBLEM%NCOLUMNS))

 ALLOCATE (IRTYPE(PROBLEM%NROWS))

 ALLOCATE (XSOL(PROBLEM%NCOLUMNS))

 ALLOCATE (DSOL(PROBLEM%NROWS))

 A = 0

 IRTYPE = 3

! FILL DENSE A

 DO K = 1, PROBLEM%NONZEROS

 I = PROBLEM%CONSTRAINT(K)%ROW

 J = PROBLEM%CONSTRAINT(K)%COLUMN

 A(I,J) = PROBLEM%CONSTRAINT(K)%VALUE

 ENDDO

! CALL THE LP SOLVER

 CALL DENSE_LP (A, PROBLEM%LOWER_RANGE, PROBLEM%UPPER_RANGE, &

 PROBLEM%OBJECTIVE, IRTYPE, OBJ, XSOL, DSOL, &

 XLB=PROBLEM%LOWER_BOUND, XUB=PROBLEM%UPPER_BOUND)

 WRITE(NOUT, 99999) OBJ

 CALL WRRRN('Solution', XSOL, 1, PROBLEM%NROWS, 1)

 DEALLOCATE(A)

 DEALLOCATE(IRTYPE)

 DEALLOCATE(XSOL)

 DEALLOCATE(DSOL)

99999 FORMAT('Objective: ', E16.7)

 END

Output

Objective: -0.4647531E+03

 Solution

 1 2 3 4 5 6 7 8 9 10

 80.0 25.5 54.5 84.8 57.9 0.0 0.0 0.0 0.0 0.0

 11 12 13 14 15 16 17 18 19 20

 0.0 0.0 18.2 39.7 61.3 500.0 475.9 24.1 0.0 215.0

 21 22 23 24 25 26 27

363.9 0.0 0.0 0.0 0.0 0.0 0.0

1494 Chapter 8: Optimization IMSL MATH LIBRARY

DLPRS

Solves a linear programming problem via the revised simplex algorithm.

Required Arguments

A — M by NVAR matrix containing the coefficients of the M constraints. (Input)

BL — Vector of length M containing the lower limit of the general constraints; if there is no

lower limit on the I-th constraint, then BL(I) is not referenced. (Input)

BU — Vector of length M containing the upper limit of the general constraints; if there is no

upper limit on the I-th constraint, then BU(I) is not referenced; if there are no range

constraints, BL and BU can share the same storage locations. (Input)

C — Vector of length NVAR containing the coefficients of the objective function. (Input)

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.

(Input)

Let R(I) = A(I, 1) * XSOL(1) + … + A(I, NVAR) * XSOL(NVAR). Then, the value of

IRTYPE(I) signifies the following:

IRTYPE(I) I-th Constraint

0 BL(I).EQ.R(I).EQ.BU(I)

1 R(I).LE.BU(I)

2 R(I).GE.BL(I)

3 BL(I).LE.R(I).LE.BU(I)

OBJ — Value of the objective function. (Output)

XSOL — Vector of length NVAR containing the primal solution. (Output)

DSOL — Vector of length M containing the dual solution. (Output)

Optional Arguments

M — Number of constraints. (Input)

Default: M = SIZE (A,1).

IMSL MATH LIBRARY Chapter 8: Optimization 1495

NVAR — Number of variables. (Input)

Default: NVAR = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

LDA must be at least M.

Default: LDA = SIZE (A,1).

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no

lower bound on a variable, then 1.0E30 should be set as the lower bound. (Input)

Default: XLB = 0.0.

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no

upper bound on a variable, then 1.0E30 should be set as the upper bound. (Input)

Default: XUB = 3.4e38 for single precision and 1.79d + 308 for double precision.

FORTRAN 90 Interface

Generic: CALL DLPRS (A, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL [,…])

Specific: The specific interface names are S_DLPRS and D_DLPRS.

FORTRAN 77 Interface

Single: CALL DLPRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB, OBJ, XSOL,
DSOL)

Double: The double precision name is DDLPRS.

Description

The routine DLPRS uses a revised simplex method to solve linear programming problems, i.e.,

problems of the form

min
n

T

x

c x
R

subject to bl ≤ Ax ≤ bu

xl ≤ x ≤ xu

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl and

xu are the lower and upper bounds on the constraints and the variables, respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983).

Comments

1. Workspace may be explicitly provided, if desired, by use of D2PRS/DD2PRS. The

reference is:

1496 Chapter 8: Optimization IMSL MATH LIBRARY

CALL D2PRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB,

OBJ, XSOL, DSOL, AWK, LDAWK, WK, IWK)

The additional arguments are as follows:

AWK — Real work array of dimension 1 by 1. (AWK is not used in the new

implementation of the revised simplex algorithm. It is retained merely

for calling sequence consistency.)

LDAWK — Leading dimension of AWK exactly as specified in the dimension

statement of the calling program. LDAWK should be 1. (LDAWK is not

used in the new implementation of the revised simplex algorithm. It is

retained merely for calling sequence consistency.)

WK — Real work vector of length M * (M + 28).

IWK — Integer work vector of length 29 * M + 3 * NVAR.

2. Informational errors

Type Code

3 1 The problem is unbounded.

4 2 Maximum number of iterations exceeded.

3 3 The problem is infeasible.

4 4 Moved to a vertex that is poorly conditioned; using double precision

may help.

4 5 The bounds are inconsistent.

Example

A linear programming problem is solved.

 USE DLPRS_INT

 USE UMACH_INT

 USE SSCAL_INT

 IMPLICIT NONE

 INTEGER LDA, M, NVAR

 PARAMETER (M=2, NVAR=2, LDA=M)

! M = number of constraints

! NVAR = number of variables

!

 INTEGER I, IRTYPE(M), NOUT

 REAL A(LDA,NVAR), B(M), C(NVAR), DSOL(M), OBJ, XLB(NVAR), &

 XSOL(NVAR), XUB(NVAR)

!

! Set values for the following problem

!

! Max 1.0*XSOL(1) + 3.0*XSOL(2)

IMSL MATH LIBRARY Chapter 8: Optimization 1497

!

! XSOL(1) + XSOL(2) .LE. 1.5

! XSOL(1) + XSOL(2) .GE. 0.5

!

! 0 .LE. XSOL(1) .LE. 1

! 0 .LE. XSOL(2) .LE. 1

!

 DATA XLB/2*0.0/, XUB/2*1.0/

 DATA A/4*1.0/, B/1.5, .5/, C/1.0, 3.0/

 DATA IRTYPE/1, 2/

! To maximize, C must be multiplied by

! -1.

 CALL SSCAL (NVAR, -1.0E0, C, 1)

! Solve the LP problem. Since there is

! no range constraint, only B is

! needed.

 CALL DLPRS (A, B, B, C, IRTYPE, OBJ, XSOL, DSOL, &

 XUB=XUB)

! OBJ must be multiplied by -1 to get

! the true maximum.

 OBJ = -OBJ

! DSOL must be multiplied by -1 for

! maximization.

 CALL SSCAL (M, -1.0E0, DSOL, 1)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) OBJ, (XSOL(I),I=1,NVAR), (DSOL(I),I=1,M)

!

99999 FORMAT (//, ' Objective = ', F9.4, //, ' Primal ',&

 'Solution =', 2F9.4, //, ' Dual solution =', 2F9.4)

!

 END

Output

Objective = 3.5000

Primal Solution = 0.5000 1.0000

Dual solution = 1.0000 0.0000

SLPRS
Solves a sparse linear programming problem via the revised simplex algorithm.

Required Arguments

A — Vector of length NZ containing the coefficients of the M constraints. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding element in A.

(Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements

in A. (Input)

1498 Chapter 8: Optimization IMSL MATH LIBRARY

BL — Vector of length M containing the lower limit of the general constraints; if there is no

lower limit on the I-th constraint, then BL(I) is not referenced. (Input)

BU — Vector of length M containing the upper lower limit of the general constraints; if there

is no upper limit on the I-th constraint, then BU(I) is not referenced. (Input)

C — Vector of length NVAR containing the coefficients of the objective function. (Input)

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.

(Input)

Let R(I) = A(I, 1)*XSOL(1) + … + A(I, NVAR)*XSOL(NVAR)

IRTYPE(I) I-th CONSTRAINT

 0 BL(I) = R(I) = BU(I)

 1 R(I) ≤ BU(I)

 2 R(I) ≥ BL(I)

 3 BL(I) ≤ R(I) ≤ BU(I)

OBJ — Value of the objective function. (Output)

XSOL — Vector of length NVAR containing the primal solution. (Output)

DSOL — Vector of length M containing the dual solution. (Output)

Optional Arguments

M — Number of constraints. (Input)

Default: M = SIZE (IRTYPE,1).

NVAR — Number of variables. (Input)

Default: NVAR = SIZE (C,1).

NZ — Number of nonzero coefficients in the matrix A. (Input)

Default: NZ = SIZE (A,1).

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no

lower bound on a variable, then 1.0E30 should be set as the lower bound. (Input)

Default: XLB = 0.0.

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no

upper bound on a variable, then 1.0E30 should be set as the upper bound. (Input)

Default: XLB = 3.4e38 for single precision and 1.79d + 308 for double precision.

FORTRAN 90 Interface

Generic: CALL SLPRS (A, IROW, JCOL, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL [,…])

IMSL MATH LIBRARY Chapter 8: Optimization 1499

Specific: The specific interface names are S_SLPRS and D_SLPRS.

FORTRAN 77 Interface

Single: CALL SLPRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C, IRTYPE, XLB, XUB, OBJ,

XSOL, DSOL)

Double: The double precision name is DSLPRS.

Description

This subroutine solves problems of the form

min c
T
x

subject to

,l u

l u

b Ax b

x x x

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl, and

xu are the lower and upper bounds on the constraints and the variables, respectively. SLPRS is

designed to take advantage of sparsity in A. The routine is based on DPLO by Hanson and Hiebert.

Comments

Workspace may be explicitly provided, if desired, by use of S2PRS/DS2PRS. The reference

is:

CALL S2PRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C, IRTYPE,

XLB, XUB, OBJ, XSOL, DSOL, IPARAM, RPARAM, COLSCL,

ROWSCL, WORK, LW, IWORK, LIW)

The additional arguments are as follows:

IPARAM — Integer parameter vector of length 12. If the default parameters are

desired for SLPRS, then set IPARAM(1) to zero and call the routine SLPRS.

Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then

the following steps should be taken before calling SLPRS:

CALL S5PRS (IPARAM, RPARAM)

 Set nondefault values for IPARAM and RPARAM.

Note that the call to S5PRS will set IPARAM and RPARAM to their default values so only

nondefault values need to be set above.

IPARAM(1) = 0 indicates that a minimization problem is solved. If set to 1, a

maximization problem is solved.

Default: 0

1500 Chapter 8: Optimization IMSL MATH LIBRARY

IPARAM(2) = switch indicating the maximum number of iterations to be taken

before returning to the user. If set to zero, the maximum number of

iterations taken is set to 3*(NVARS+M). If positive, that value is used as

the iteration limit.

Default: IPARAM(2) = 0

IPARAM(3) = indicator for choosing how columns are selected to enter the

basis. If set to zero, the routine uses the steepest edge pricing strategy

which is the best local move. If set to one, the minimum reduced cost

pricing strategy is used. The steepest edge pricing strategy generally

uses fewer iterations than the minimum reduced cost pricing, but each

iteration costs more in terms of the amount of calculation performed.

However, this is very problem-dependent.

Default: IPARAM(3) = 0

IPARAM(4) = MXITBR, the number of iterations between recalculating the error

in the primal solution is used to monitor the error in solving the linear

system. This is an expensive calculation and every tenth iteration is

generally enough.

Default: IPARAM(4) = 10

IPARAM(5) = NPP, the number of negative reduced costs (at most) to be found

at each iteration of choosing a variable to enter the basis. If set to zero,

NPP = NVARS will be used, implying that all of the reduced costs are

computed at each such step. This ―Partial pricing‖ may increase the

total number of iterations required. However, it decreases the number

of calculation required at each iteration. The effect on overall

efficiency is very problem-dependent. If set to some positive number,

that value is used as NPP.

Default: IPARAM(5) = 0

IPARAM(6) = IREDFQ, the number of steps between basis matrix

redecompositions. Redecompositions also occur whenever the linear

systems for the primal and dual systems have lost half their working

precision.

Default: IPARAM(6) = 50

IPARAM(7) = LAMAT, the length of the portion of WORK that is allocated to

sparse matrix storage and decomposition. LAMAT must be greater than

NZ + NVARS + 4.

Default: LAMAT = NZ + NVARS + 5

IPARAM(8) = LBM, then length of the portion of IWORK that is allocated to

sparse matrix storage and decomposition. LBM must be positive.

Default: LBM = 8*M

IPARAM(9) = switch indicating that partial results should be saved after the

maximum number of iterations, IPARAM(2), or at the optimum. If

IMSL MATH LIBRARY Chapter 8: Optimization 1501

IPARAM(9) is not zero, data essential to continuing the calculation is

saved to a file, attached to unit number IPARAM(9). The data saved

includes all the information about the sparse matrix A and information

about the current basis. If IPARAM(9) is set to zero, partial results are

not saved. It is the responsibility of the calling program to open the

output file.

IPARAM(10) = switch indicating that partial results have been computed and

stored on unit number IPARAM(10), if greater than zero. If IPARAM(10)

is zero, a new problem is started.

Default: IPARAM(10) = 0

IPARAM(11) = switch indicating that the user supplies scale factors for the

columns of the matrix A. If IPARAM(11) = 0, SLPRS computes the scale

factors as the reciprocals of the max norm of each column. If

IPARAM(11) is set to one, element I of the vector COLSCL is used as the

scale factor for column I of the matrix A. The scaling is implicit, so no

input data is actually changed.

Default: IPARAM(11) = 0

IPARAM(12) = switch indicating that the user supplied scale factors for the

rows of the matrix A. If IPARAM(12) is set to zero, no row scaling is

one. If IPARAM(12) is set to 1, element I of the vector ROWSCL is used

as the scale factor for row I of the matrix A. The scaling is implicit, so

no input data is actually changed.

Default: IPARAM(12) = 0

RPARAM — Real parameter vector of length 7.

RPARAM(1) = COSTSC, a scale factor for the vector of costs. Normally SLPRS

computes this scale factor to be the reciprocal of the max norm if the

vector costs after the column scaling has been applied. If RPARAM(1) is

zero, SLPRS compute COSTSC.

Default: RPARAM(1) = 0.0

RPARAM(2) = ASMALL, the smallest magnitude of nonzero entries in the matrix

A. If RPARAM(2) is nonzero, checking is done to ensure that all

elements of A are at least as large as RPARAM(2). Otherwise, no

checking is done.

Default: RPARAM(2) = 0.0

RPARAM(3) = ABIG, the largest magnitude of nonzero entries in the matrix A.

If RPARAM(3) is nonzero, checking is done to ensure that all elements of

A are no larger than RPARAM(3). Otherwise, no checking is done.

Default: RPARAM(3) = 0.0

RPARAM(4) = TOLLS, the relative tolerance used in checking if the residuals

are feasible. RPARAM(4) is nonzero, that value is used as TOLLS,

1502 Chapter 8: Optimization IMSL MATH LIBRARY

otherwise the default value is used.

Default: TOLLS = 1000.0*amach(4)

RPARAM(5) = PHI, the scaling factor used to scale the reduced cost error

estimates. In some environments, it may be necessary to reset PHI to

the range [0.01, 0.1], particularly on machines with short word length

and working precision when solving a large problem. If RPARAM(5) is

nonzero, that value is used as PHI, otherwise the default value is used.

Default: PHI = 1.0

RPARAM(6) = TOLABS, an absolute error test on feasibility. Normally a relative

test is used with TOLLS (see RPARAM(4)). If this test fails, an absolute

test will be applied using the value TOLABS.

Default: TOLABS = 0.0

RPARAM(7) = pivot tolerance of the underlying sparse factorization routine. If

RPARAM(7) is set to zero, the default pivot tolerance is used, otherwise,

the RPARAM(7) is used.

Default: RPARAM(7) = 0.1

COLSCL — Array of length NVARS containing column scale factors for the matrix A.

(Input).

COLSCL is not used if IPARAM(11) is set to zero.

ROWSCL — Array of length M containing row scale factors for the matrix A. (Input)

ROWSCL is not used if IPARAM(12) is set to zero.

WORK — Work array of length LW.

LW — Length of real work array. LW must be at least

2 + 2NZ + 9NVAR + 27M + MAX(NZ + NVAR + 8, 4NVAR + 7).

IWORK — Integer work array of length LIW.

LIW — Length of integer work array. LIW must be at least

1 + 3NVAR + 41M + MAX(NZ + NVAR + 8, 4NVAR + 7).

Example

Solve a linear programming problem, with

IMSL MATH LIBRARY Chapter 8: Optimization 1503

0 0.5

1 0.5

1

0.5

1

A

defined in sparse coordinate format.

 USE SLPRS_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER M, NVAR

 PARAMETER (M=200, NVAR=200)

! Specifications for local variables

 INTEGER INDEX, IROW(3*M), J, JCOL(3*M), NOUT, NZ

 REAL A(3*M), DSOL(M), OBJ, XSOL(NVAR)

 INTEGER IRTYPE(M)

 REAL B(M), C(NVAR), XL(NVAR), XU(NVAR)

! Specifications for subroutines

 DATA B/199*1.7, 1.0/

 DATA C/-1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0, &

 -10.0, 190*-1.0/

 DATA XL/200*0.1/

 DATA XU/200*2.0/

 DATA IRTYPE/200*1/

!

 CALL UMACH (2, NOUT)

! Define A

 INDEX = 1

 DO 10 J=2, M

! Superdiagonal element

 IROW(INDEX) = J - 1

 JCOL(INDEX) = J

 A(INDEX) = 0.5

! Diagonal element

 IROW(INDEX+1) = J

 JCOL(INDEX+1) = J

 A(INDEX+1) = 1.0

 INDEX = INDEX + 2

 10 CONTINUE

 NZ = INDEX - 1

!

!

 XL(4) = 0.2

 CALL SLPRS (A, IROW, JCOL, B, B, C, IRTYPE, OBJ, XSOL, DSOL, &

 NZ=NZ, XLB=XL, XUB=XU)

!

 WRITE (NOUT,99999) OBJ

!

99999 FORMAT (/, 'The value of the objective function is ', E12.6)

!

 END

1504 Chapter 8: Optimization IMSL MATH LIBRARY

Output

The value of the objective function is -.280971E+03

TRAN
Solves a transportation problem.

Required Arguments

WCAP — Array of size NW containing the source (warehouse) capacities. (Input)

SREQ — Array of size NS containing the sink (store) requirements. (Input)

COST — Array of size NW by NS containing the cost matrix. (Input)

COST (I, J) is the per unit cost to ship from source I to sink J.

X — Array of size NW by NS containing the optimal routing. (Output)

 X (I, J) units should be shipped from source I to sink J.

CMIN — Total cost of the optimal routing. (Output)

Optional Arguments

NW — Number of sources. (Input)

 Default: NW = SIZE (WCAP, 1).

NS — Number of sinks. (Input)

 Default: NS = SIZE (SREQ, 1).

MAXITN — Upper bound on the number of simplex steps. (Input)

 Default: MAXITN = 0, means no limit.

DUAL — Array of size NW + NS containing the dual solution. (Output)

FORTRAN 90 Interface

Generic: CALL TRAN (WCAP, SREQ, COST, X, CMIN [,…])

Specific: The specific interface names are S_TRAN and D_TRAN.

Description

Routine TRAN solves the transportation problem.

Minimize

IMSL MATH LIBRARY Chapter 8: Optimization 1505

1 1

NW NS

ij ij

i j

C X

subject to the constraints

1

1,
NS

ij i

j

X W for i NW

and

1

1,
NW

ij j

i

X S for j NS

and

0ijX

where C = COST, X = X, W = WCAP and S = SREQ.

The revised simplex method is used to solve a very sparse linear programming problem with

NW + NS constraints and NW * NS variables. If NW = NS = k, the work per iteration is O(k
 2
),

compared with O(k
 3
) when a dense simplex algorithm is used. For more details, see Sewell

(2005).

DUAL(I) gives the decrease in total cost per unit increase in WCAP (I), for small increases, and

–DUAL (NW+J) gives the increase in total cost per unit increase in SREQ (J).

Comments

Informational errors

Type Code

3 1 There is insufficient source capacity. The total source capacity is

less than the total sink needs, so TRAN will return a solution which

minimizes the cost to distribute everything in the sources, but does

not fill all the sink needs.

4 2 The maximum number of iterations has been exceeded.

Example

In this example, there are two warehouses with capacities 40 and 20, and 3 stores, which need 25,

10 and 22 units, respectively.

 USE TRAN_INT

 IMPLICIT NONE

 INTEGER, PARAMETER :: NW=2, NS=3

 INTEGER :: I, J, NOUT

 REAL :: X(NW,NS), COST(NW,NS), CMIN

! WAREHOUSE CAPACITIES

1506 Chapter 8: Optimization IMSL MATH LIBRARY

 REAL :: WCAP(NW) =(/40, 20/)

! STORE REQUIREMENTS

 REAL :: SREQ(NS) =(/25, 10, 22/)

! COSTS

 DATA COST/550,350,300,300,400,100/

!

 CALL UMACH(2, NOUT)

! SOLVE TRANSPORTATION PROBLEM

!

 CALL TRAN(WCAP, SREQ, COST, X, CMIN)

! PRINT RESULTS

 WRITE(NOUT, 99995) CMIN

 DO I=1, NW

 DO J=1, NS

 WRITE (NOUT, 99996) X(I,J),I,J

 END DO

 END DO

 99995 FORMAT (' Minimum cost is ',F10.2)

 99996 FORMAT (' Ship ',F5.2,' units from warehouse ',I2, &

 ' to store ',I2)

 END

Output

Minimum cost is 19550.00

Ship 25.00 units from warehouse 1 to store 1

Ship 10.00 units from warehouse 1 to store 2

Ship 2.00 units from warehouse 1 to store 3

Ship 0.00 units from warehouse 2 to store 1

Ship 0.00 units from warehouse 2 to store 2

Ship 20.00 units from warehouse 2 to store 3

QPROG
Solves a quadratic programming problem subject to linear equality/inequality constraints.

Required Arguments

NEQ — The number of linear equality constraints. (Input)

A — NCON by NVAR matrix. (Input)

The matrix contains the equality contraints in the first NEQ rows followed by the

inequality constraints.

B — Vector of length NCON containing right-hand sides of the linear constraints. (Input)

G — Vector of length NVAR containing the coefficients of the linear term of the objective

function. (Input)

H — NVAR by NVAR matrix containing the Hessian matrix of the objective function. (Input)

H should be symmetric positive definite; if H is not positive definite, the algorithm

IMSL MATH LIBRARY Chapter 8: Optimization 1507

attempts to solve the QP problem with H replaced by a H + DIAGNL * I such that

H + DIAGNL * I is positive definite. See Comment 3.

SOL — Vector of length NVAR containing solution. (Output)

Optional Arguments

NVAR — The number of variables. (Input)

Default: NVAR = SIZE (A,2).

NCON — The number of linear constraints. (Input)

Default: NCON = SIZE (A,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDH = SIZE (H,1).

DIAGNL — Scalar equal to the multiple of the identity matrix added to H to give a positive

definite matrix. (Output)

NACT — Final number of active constraints. (Output)

IACT — Vector of length NVAR containing the indices of the final active constraints in the

first NACT positions. (Output)

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final

active constraints in the first NACT positions. (Output)

MAXITN — This number is the maximum number of iterations allowed. (Input)

If MAXITN is set to 0 the iteration count is unbounded.

Default: MAXITN = 100000.

SMALL — This constant is used in the determination of the positive definiteness of the

Hessian H. (Input)

SMALL is also used for the convergence criteria of a constraint violation.

Default: SMALL = 10.0 * machine precision for single precision and 1000.0*machine

precision for double precision.

FORTRAN 90 Interface

Generic: CALL QPROG (NEQ, A, B, G, H, SOL [,…])

Specific: The specific interface names are S_QPROG and D_QPROG.

1508 Chapter 8: Optimization IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL QPROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH, DIAGNL, SOL, NACT,

IACT, ALAMDA)

Double: The double precision name is DQPROG.

Description

The routine QPROG is based on M.J.D. Powell‘s implementation of the Goldfarb and Idnani (1983)

dual quadratic programming (QP) algorithm for convex QP problems subject to general linear

equality/inequality constraints, i.e., problems of the form

1
min

2n

T T

x

g x x Hx

R

subject to A1x = b1

A1x ≥ b2

given the vectors b1, b2, and g and the matrices H, A1, and A2. H is required to be positive definite.

In this case, a unique x solves the problem or the constraints are inconsistent. If H is not positive

definite, a positive definite perturbation of H is used in place of H. For more details, see Powell

(1983, 1985).

Comments

1. Workspace may be explicitly provided, if desired, by use of Q2ROG/DQ2ROG. The

reference is:

CALL Q2ROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH, DIAGNL,

SOL, NACT, IACT, ALAMDA, WK)

The additional argument is:

WK — Work vector of length (3 * NVAR**2 + 11 * NVAR)/2 + NCON.

2. Informational errors

Type Code

3 1 Due to the effect of computer rounding error, a change in the

variables fail to improve the objective function value; usually the

solution is close to optimum.

4 2 The system of equations is inconsistent. There is no solution.

3. If a perturbation of H, H + DIAGNL * I, was used in the QP problem, then

H + DIAGNL * I should also be used in the definition of the Lagrange multipliers.

IMSL MATH LIBRARY Chapter 8: Optimization 1509

Example

The quadratic programming problem

 2 2 2 2 2
1 2 3 4 5 2 3 4 5 1

1 2 3 4 5

3 4 5

min 2 2 2

subject to 5

2 2 3

f x x x x x x x x x x x

x x x x x

x x x

is solved.

 USE QPROG_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDH, NCON, NEQ, NVAR

 PARAMETER (NCON=2, NEQ=2, NVAR=5, LDA=NCON, LDH=NVAR)

!

 INTEGER K, NACT, NOUT

 REAL A(LDA,NVAR), ALAMDA(NVAR), B(NCON), G(NVAR), &

 H(LDH,LDH), SOL(NVAR)

!

! Set values of A, B, G and H.

! A = (1.0 1.0 1.0 1.0 1.0)

! (0.0 0.0 1.0 -2.0 -2.0)

!

! B = (5.0 -3.0)

!

! G = (-2.0 0.0 0.0 0.0 0.0)

!

! H = (2.0 0.0 0.0 0.0 0.0)

! (0.0 2.0 -2.0 0.0 0.0)

! (0.0 -2.0 2.0 0.0 0.0)

! (0.0 0.0 0.0 2.0 -2.0)

! (0.0 0.0 0.0 -2.0 2.0)

!

 DATA A/1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, -2.0, 1.0, -2.0/

 DATA B/5.0, -3.0/

 DATA G/-2.0, 4*0.0/

 DATA H/2.0, 5*0.0, 2.0, -2.0, 3*0.0, -2.0, 2.0, 5*0.0, 2.0, &

 -2.0, 3*0.0, -2.0, 2.0/

!

 CALL QPROG (NEQ, A, B, G, H, SOL)

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) (SOL(K),K=1,NVAR)

99999 FORMAT (' The solution vector is', /, ' SOL = (', 5F6.1, &

 ')')

!

 END

Output

The solution vector is

SOL = (1.0 1.0 1.0 1.0 1.0)

1510 Chapter 8: Optimization IMSL MATH LIBRARY

LCONF
Minimizes a general objective function subject to linear equality/inequality constraints.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Value of NVAR. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

NEQ — The number of linear equality constraints. (Input)

A — NCON by NVAR matrix. (Input)

The matrix contains the equality constraint gradients in the first NEQ rows, followed by

the inequality constraint gradients.

B — Vector of length NCON containing right-hand sides of the linear constraints. (Input)

Specifically, the constraints on the variables X(I), I = 1, …, NVAR are

A(K, 1) * X(1) + … + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, …,

NEQ.A(K, 1) * X(1) + … + A(K, NVAR) * X(NVAR).LE.B(K), K = NEQ + 1, …,

NCON. Note that the data that define the equality constraints come before the data of the

inequalities.

XLB — Vector of length NVAR containing the lower bounds on the variables; choose a very

large negative value if a component should be unbounded below or set

XLB(I) = XUB(I) to freeze the I-th variable. (Input)

Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, …, NVAR.

XUB — Vector of length NVAR containing the upper bounds on the variables; choose a very

large positive value if a component should be unbounded above. (Input)

Specifically, these simple bounds are X(I).LE.XUB(I), I = 1, …, NVAR.

SOL — Vector of length NVAR containing solution. (Output)

Optional Arguments

NVAR — The number of variables. (Input)

Default: NVAR = SIZE (A,2).

NCON — The number of linear constraints (excluding simple bounds). (Input)

Default: NCON = SIZE (A,1).

IMSL MATH LIBRARY Chapter 8: Optimization 1511

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

XGUESS — Vector of length NVAR containing the initial guess of the minimum. (Input)

Default: XGUESS = 0.0.

ACC — The nonnegative tolerance on the first order conditions at the calculated solution.

(Input)

Default: ACC = 1.e-4 for single precision and 1.d-8 for double precision.

MAXFCN — On input, maximum number of function evaluations allowed. (Input/ Output)

On output, actual number of function evaluations needed.

Default: MAXFCN = 400.

OBJ — Value of the objective function. (Output)

NACT — Final number of active constraints. (Output)

IACT — Vector containing the indices of the final active constraints in the first NACT

positions. (Output)

Its length must be at least NCON + 2 * NVAR.

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final

active constraints in the first NACT positions. (Output)

FORTRAN 90 Interface

Generic: CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL [,…])

Specific: The specific interface names are S_LCONF and D_LCONF.

FORTRAN 77 Interface

Single: CALL LCONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS, ACC,

MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA)

Double: The double precision name is DLCONF.

Description

The routine LCONF is based on M.J.D. Powell‘s TOLMIN, which solves linearly constrained

optimization problems, i.e., problems of the form

 min
nx

f x
R

subject to A1x = b1

A2x ≤ b2

1512 Chapter 8: Optimization IMSL MATH LIBRARY

 xl ≤ x ≤ xu

given the vectors b1, b2, xl and xu and the matrices A1, and A2.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the

equality constraints are consistent, the method will revise x
0
, the initial guess provided by the user,

to satisfy

A1x = b1

Next, x
0
 is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving

a sequence of quadratic programming subproblems to minimize the sum of the constraint or bound

violations.

Now, for each iteration with a feasible x
k
, let Jk be the set of indices of inequality constraints that

have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be the set

of indices of active constraints. The following quadratic programming problem

 1
min

2

k T k T kf x d f x d B d

subject to ajd = 0 j ∈ Ik

ajd ≤ 0 j ∈ Jk

is solved to get (d
k
, λ

k
) where aj is a row vector representing either a constraint in A1or A2 or a

bound constraint on x. In the latter case, the aj = ei for the bound constraint xi ≤ (xu)i and aj = ei

for the constraint xi ≤ (xl)i. Here, ei is a vector with a 1 as the i-th component, and zeroes

elsewhere. λ
k
 are the Lagrange multipliers, and B

k
 is a positive definite approximation to the

second derivative ∇2
f(x

k
).

After the search direction d
k
 is obtained, a line search is performed to locate a better point. The

new point x
k+1

= x
k
 + α

k
d

k
 has to satisfy the conditions

 0.1
T

k k k k k k kf x d f x d f x

and

 0.7
T T

k k k k k kd f x d d f x

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-

length α
k
, then its index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation, B
k
 , is updated by the BFGS formula, if the

condition

 0
T

k k k k kd f x d f x

holds. Let x
k
 ← x

k+1
, and start another iteration.

IMSL MATH LIBRARY Chapter 8: Optimization 1513

The iteration repeats until the stopping criterion

2

k k kf x A

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell (1988, 1989).

Since a finite-difference method is used to estimate the gradient for some single precision

calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the

exact gradient can be easily provided, routine LCONG should be used instead.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2ONF/DL2ONF. The

reference is:

CALL L2ONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB,

XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA,

IPRINT, INFO, WK)

The additional arguments are as follows:

IPRINT — Print option (see Comment 3). (Input)

INFO — Informational flag (see Comment 3). (Output)

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON.

2. Informational Errors

Type Code

4 4 The equality constraints are inconsistent.

4 5 The equality constraints and the bounds on the variables are found to

be inconsistent.

4 6 No vector X satisfies all of the constraints. In particular, the current

active constraints prevent any change in X that reduces the sum of

constraint violations.

4 7 Maximum number of function evaluations exceeded.

4 9 The variables are determined by the equality constraints.

3. The following are descriptions of the arguments IPRINT and INFO:

IPRINT — This argument must be set by the user to specify the frequency of printing

during the execution of the routine LCONF. There is no printed output if IPRINT

= 0. Otherwise, after ensuring feasibility, information is given every

IABS(IPRINT) iterations and whenever a parameter called TOL is reduced. The

printing provides the values of X(.), F(.) and G(.) = GRAD(F) if IPRINT is

positive. If IPRINT is negative, this information is augmented by the current

values of IACT(K) K = 1, …, NACT, PAR(K) K = 1, …, NACT and RESKT(I) I =

1514 Chapter 8: Optimization IMSL MATH LIBRARY

1, …, N. The reason for returning to the calling program is also displayed when

IPRINT is nonzero.

INFO — On exit from L2ONF, INFO will have one of the following integer values to

indicate the reason for leaving the routine:

INFO = 1 SOL is feasible, and the condition that depends on ACC is satisfied.

INFO = 2 SOL is feasible, and rounding errors are preventing further

progress.

INFO = 3 SOL is feasible, but the objective function fails to decrease

although a decrease is predicted by the current gradient vector.

INFO = 4 In this case, the calculation cannot begin because LDA is less than

NCON or because the lower bound on a variable is greater than the

upper bound.

INFO = 5 This value indicates that the equality constraints are inconsistent.

These constraints include any components of X(.) that are frozen by

setting XL(I) = XU(I).

INFO = 6 In this case there is an error return because the equality constraints

and the bounds on the variables are found to be inconsistent.

INFO = 7 This value indicates that there is no vector of variables that

satisfies all of the constraints. Specifically, when this return or an INFO

= 6 return occurs, the current active constraints (whose indices are

IACT(K), K = 1, …, NACT) prevent any change in X(.) that reduces the

sum of constraint violations. Bounds are only included in this sum if

INFO = 6.

INFO = 8 Maximum number of function evaluations exceeded.

INFO = 9 The variables are determined by the equality constraints.

Example

The problem from Schittkowski (1987)

min f(x) = x1x2x3

subject to x1 2 x2 2 x3 ≤ 0

 x1 +2 x2 + 2 x3 ≤ 72

0 ≤ x1 ≤ 20

0 ≤ x2≤ 11

0 ≤ x3 ≤ 42

IMSL MATH LIBRARY Chapter 8: Optimization 1515

is solved with an initial guess x1 = 10, x2 = 10 and x3 = 10.

 USE LCONF_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declaration of variables

 INTEGER NCON, NEQ, NVAR

 PARAMETER (NCON=2, NEQ=0, NVAR=3)

!

 INTEGER MAXFCN, NOUT

 REAL A(NCON,NVAR), ACC, B(NCON), OBJ, &

 SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR)

 EXTERNAL FCN

!

! Set values for the following problem.

!

! Min -X(1)*X(2)*X(3)

!

! -X(1) - 2*X(2) - 2*X(3) .LE. 0

! X(1) + 2*X(2) + 2*X(3) .LE. 72

!

! 0 .LE. X(1) .LE. 20

! 0 .LE. X(2) .LE. 11

! 0 .LE. X(3) .LE. 42

!

 DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/

 DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/

 DATA ACC/0.0/, MAXFCN/400/

!

 CALL UMACH (2, NOUT)

!

 CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS, &

 MAXFCN=MAXFCN, ACC=ACC, OBJ=OBJ)

!

 WRITE (NOUT,99998) 'Solution:'

 WRITE (NOUT,99999) SOL

 WRITE (NOUT,99998) 'Function value at solution:'

 WRITE (NOUT,99999) OBJ

 WRITE (NOUT,99998) 'Number of function evaluations:', MAXFCN

 STOP

99998 FORMAT (//, ' ', A, I4)

99999 FORMAT (1X, 5F16.6)

 END

!

 SUBROUTINE FCN (N, X, F)

 INTEGER N

 REAL X(*), F

!

 F = -X(1)*X(2)*X(3)

 RETURN

 END

Output

Solution:

 20.000000 11.000000 15.000000

1516 Chapter 8: Optimization IMSL MATH LIBRARY

Function value at solution:

-3300.000000

Number of function evaluations: 5

LCONG
Minimizes a general objective function subject to linear equality/inequality constraints.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Value of NVAR. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Value of NVAR. (Input)

X – Vector of length N at which point the function is evaluated. (Input)

X should not be changed by GRAD.

G – Vector of length N containing the values of the gradient of the objective

function evaluated at the point X. (Output)

 GRAD must be declared EXTERNAL in the calling program.

NEQ — The number of linear equality constraints. (Input)

A — NCON by NVAR matrix. (Input)

The matrix contains the equality constraint gradients in the first NEQ rows, followed by

the inequality constraint gradients.

B — Vector of length NCON containing right-hand sides of the linear constraints. (Input)

Specifically, the constraints on the variables X(I), I = 1, …, NVAR are

A(K, 1) * X(1) + … + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, …,

NEQ.A(K, 1) * X(1) + … + A(K, NVAR) * X(NVAR).LE.B(K), K = NEQ + 1, …, NCON.

Note that the data that define the equality constraints come before the data of the

inequalities.

IMSL MATH LIBRARY Chapter 8: Optimization 1517

XLB — Vector of length NVAR containing the lower bounds on the variables; choose a very

large negative value if a component should be unbounded below or set

XLB(I) = XUB(I) to freeze the I-th variable. (Input)

Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, …, NVAR.

XUB — Vector of length NVAR containing the upper bounds on the variables; choose a very

large positive value if a component should be unbounded above. (Input)

Specifically, these simple bounds are X(I).LE. XUB(I), I = 1, …, NVAR.

SOL — Vector of length NVAR containing solution. (Output)

Optional Arguments

NVAR — The number of variables. (Input)

Default: NVAR = SIZE (A,2).

NCON — The number of linear constraints (excluding simple bounds). (Input)

Default: NCON = SIZE (A,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

XGUESS — Vector of length NVAR containing the initial guess of the minimum. (Input)

Default: XGUESS = 0.0.

ACC — The nonnegative tolerance on the first order conditions at the calculated solution.

(Input)

Default: ACC = 1.e-4 for single precision and 1.d-8 for double precision.

MAXFCN — On input, maximum number of function evaluations allowed.(Input/ Output)

On output, actual number of function evaluations needed.

Default: MAXFCN = 400.

OBJ — Value of the objective function. (Output)

NACT — Final number of active constraints. (Output)

IACT — Vector containing the indices of the final active constraints in the first NACT

positions. (Output)

Its length must be at least NCON + 2 * NVAR.

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final

active constraints in the first NACT positions. (Output)

FORTRAN 90 Interface

Generic: CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL [,…])

1518 Chapter 8: Optimization IMSL MATH LIBRARY

Specific: The specific interface names are S_LCONG and D_LCONG.

FORTRAN 77 Interface

Single: CALL LCONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS, ACC,

MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA)

Double: The double precision name is DLCONG.

Description

The routine LCONG is based on M.J.D. Powell‘s TOLMIN, which solves linearly constrained

optimization problems, i.e., problems of the form

 min
nx

f x
R

subject to A1x = b1

A2x ≤ b2

xl ≤ x ≤ xu

given the vectors b1, b2, xl and xu and the matrices A1, and A2.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the

equality constraints are consistent, the method will revise x
0
, the initial guess provided by the user,

to satisfy

A1x = b1

Next, x
0
 is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving

a sequence of quadratic programming subproblems to minimize the sum of the constraint or bound

violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints that

have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be the set

of indices of active constraints. The following quadratic programming problem

 1
min

2

k T k T kf x d f x d B d

subject to ajd = 0 j ∈ Ik

ajd ≤ 0 j ∈ Jk

is solved to get (d
k
, λ

k
) where aj is a row vector representing either a constraint in A1or A2 or a

bound constraint on x. In the latter case, the aj = ei for the bound constraint xi ≤ (xu)i and

aj = ei for the constraint xi ≤ (xl)i. Here, ei is a vector with a 1 as the i-th component, and

zeroes elsewhere. λ
k
 are the Lagrange multipliers, and B

k
 is a positive definite approximation to

the second derivative ∇2
f(x

k
).

IMSL MATH LIBRARY Chapter 8: Optimization 1519

After the search direction d
k
 is obtained, a line search is performed to locate a better point. The

new point x
k+1

= x
k
 + α

k
d

k
 has to satisfy the conditions

 0.1
T

k k k k k k kf x d f x d f x

and

 0.7
T T

k k k k k kd f x d d f x

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-

length α
k
, then its index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation, B
k
, is updated by the BFGS formula, if the condition

 0
T

k k k k kd f x d f x

holds. Let x
k
 ← x

k+1
, and start another iteration.

The iteration repeats until the stopping criterion

2

k k kf x A

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell (1988, 1989).

Comments

1. Workspace may be explicitly provided, if desired, by use of L2ONG/DL2ONG. The

reference is:

CALL L2ONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB,

XUB, XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT,

ALAMDA, IPRINT, INFO, WK)

The additional arguments are as follows:

IPRINT — Print option (see Comment 3). (Input)

INFO — Informational flag (see Comment 3). (Output)

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON.

2. Informational errors

Type Code

4 4 The equality constraints are inconsistent.

4 5 The equality constraints and the bounds on the variables are found to

be inconsistent.

1520 Chapter 8: Optimization IMSL MATH LIBRARY

4 6 No vector X satisfies all of the constraints. In particular, the current

active constraints prevent any change in X that reduces the sum of

constraint violations.

4 7 Maximum number of function evaluations exceeded.

4 9 The variables are determined by the equality constraints.

3. The following are descriptions of the arguments IPRINT and INFO:

IPRINT — This argument must be set by the user to specify the frequency of printing

during the execution of the routine LCONG. There is no printed output if

IPRINT = 0. Otherwise, after ensuring feasibility, information is given every

IABS(IPRINT) iterations and whenever a parameter called TOL is reduced. The

printing provides the values of X(.), F(.) and G(.) = GRAD(F) if IPRINT is

positive. If IPRINT is negative, this information is augmented by the current

values of IACT(K) K = 1, …, NACT, PAR(K) K = 1, …, NACT and

RESKT(I) I = 1, …, N. The reason for returning to the calling program is also

displayed when IPRINT is nonzero.

INFO — On exit from L2ONG, INFO will have one of the following integer values to

indicate the reason for leaving the routine:

INFO = 1 SOL is feasible and the condition that depends on ACC is satisfied.

INFO = 2 SOL is feasible and rounding errors are preventing further progress.

INFO = 3 SOL is feasible but the objective function fails to decrease although

a decrease is predicted by the current gradient vector.

INFO = 4 In this case, the calculation cannot begin because LDA is less than

NCON or because the lower bound on a variable is greater than the

upper bound.

INFO = 5 This value indicates that the equality constraints are inconsistent.

These constraints include any components of X(.) that are frozen by

setting XL(I) = XU(I).

INFO = 6 In this case, there is an error return because the equality constraints

and the bounds on the variables are found to be inconsistent.

INFO = 7 This value indicates that there is no vector of variables that

satisfies all of the constraints. Specifically, when this return or an

INFO = 6 return occurs, the current active constraints (whose indices are

IACT(K), K = 1, …, NACT) prevent any change in X(.) that reduces the

sum of constraint violations, where only bounds are included in this

sum if INFO = 6.

IMSL MATH LIBRARY Chapter 8: Optimization 1521

INFO = 8 Maximum number of function evaluations exceeded.

INFO = 9 The variables are determined by the equality constraints.

Example

The problem from Schittkowski (1987)

min f(x) = x1
 x2

 x3

subject to x1 2x2 2x3 ≤ 0

x1 +2 x2 + 2 x3 ≤ 72

0 ≤ x1 ≤ 20

0 ≤ x2 ≤ 11

0 ≤ x3 ≤ 42

is solved with an initial guess x1 = 10, x2= 10 and x3 = 10.

 USE LCONG_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declaration of variables

 INTEGER NCON, NEQ, NVAR

 PARAMETER (NCON=2, NEQ=0, NVAR=3)

!

 INTEGER MAXFCN, NOUT

 REAL A(NCON,NVAR), ACC, B(NCON), OBJ, &

 SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR)

 EXTERNAL FCN, GRAD

!

! Set values for the following problem.

!

! Min -X(1)*X(2)*X(3)

!

! -X(1) - 2*X(2) - 2*X(3) .LE. 0

! X(1) + 2*X(2) + 2*X(3) .LE. 72

!

! 0 .LE. X(1) .LE. 20

! 0 .LE. X(2) .LE. 11

! 0 .LE. X(3) .LE. 42

!

 DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/

 DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/

 DATA ACC/0.0/, MAXFCN/400/

!

 CALL UMACH (2, NOUT)

!

 CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS, &

 ACC=ACC, MAXFCN=MAXFCN, OBJ=OBJ)

!

 WRITE (NOUT,99998) 'Solution:'

 WRITE (NOUT,99999) SOL

 WRITE (NOUT,99998) 'Function value at solution:'

1522 Chapter 8: Optimization IMSL MATH LIBRARY

 WRITE (NOUT,99999) OBJ

 WRITE (NOUT,99998) 'Number of function evaluations:', MAXFCN

 STOP

99998 FORMAT (//, ' ', A, I4)

99999 FORMAT (1X, 5F16.6)

 END

!

 SUBROUTINE FCN (N, X, F)

 INTEGER N

 REAL X(*), F

!

 F = -X(1)*X(2)*X(3)

 RETURN

 END

!

 SUBROUTINE GRAD (N, X, G)

 INTEGER N

 REAL X(*), G(*)

!

 G(1) = -X(2)*X(3)

 G(2) = -X(1)*X(3)

 G(3) = -X(1)*X(2)

 RETURN

 END

Output

Solution:

20.000000 11.000000 15.000000

Function value at solution:

-3300.000000

Number of function evaluations: 5

NNLPF
Solves a general nonlinear programming problem using a sequential equality constrained quadratic

programming method.

Required Arguments

FCN — User-supplied subroutine to evaluate the objective function and constraints at a given

point. The internal usage is

CALL FCN (X, IACT, RESULT, IERR), where

X – The point at which the objective function or constraint is evaluated.

(Input)

IACT – Integer indicating whether evaluation of the objective function is

requested or evaluation of a constraint is requested. If IACT is zero, then

an objective function evaluation is requested. If IACT is nonzero then the

value if IACT indicates the index of the constraint to evaluate. IACT = 1 to

IMSL MATH LIBRARY Chapter 8: Optimization 1523

ME for equality constraints and IACT = ME +1 to M for inequality

constraints. (Input)

RESULT – If IACT is zero, then RESULT is the computed function value at the

point X. If IACT is nonzero, then RESULT is the computed constraint

value at the point X. (Output)

IERR – Logical variable. On input IERR is set to .FALSE. If an error or other

undesirable condition occurs during evaluation, then IERR should be set to

.TRUE. Setting IERR to .TRUE. will result in the step size being reduced

and the step being tried again. (If IERR is set to .TRUE. for XGUESS, then

an error is issued.)

 The routine FCN must be use-associated in a user module that uses NNLPF_INT, or else

declared EXTERNAL in the calling program. If FCN is a separately compiled routine, not

in a module, then it must be declared EXTERNAL.

M — Total number of constraints. (Input)

ME — Number of equality constraints. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable; all other variables will have

 the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

If there is no lower bound for a variable, then the corresponding XLB value should be

set to Huge(X(1)).

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3).

If there is no upper bound for a variable, then the corresponding XUB value should be

set to Huge(X(1)).

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Number of variables. (Input)

Default: N = SIZE(X).

1524 Chapter 8: Optimization IMSL MATH LIBRARY

XGUESS — Vector of length N containing an initial guess of the solution. (Input)

Default: XGUESS = x, (with the smallest value of
2

x) that satisfies the bounds.

XSCALE — Vector of length N setting the internal scaling of the variables. The initial value

given and the objective function and gradient evaluations however are always in the

original unscaled variables. The first internal variable is obtained by dividing values

X(I) by XSCALE(I). (Input)

In the absence of other information, set all entries to 1.0.

Default: XSCALE(:) = 1.0.

IPRINT — Parameter indicating the desired output level. (Input)

IPRINT Action

0 No output printed.

1 One line of intermediate results is printed in each iteration.

2 Lines of intermediate results summarizing the most important data for each

step are printed.

3 Lines of detailed intermediate results showing all primal and dual variables,

the relevant values from the working set, progress in the backtracking and

etc are printed

4 Lines of detailed intermediate results showing all primal and dual variables,

the relevant values from the working set, progress in the backtracking, the

gradients in the working set, the quasi-Newton updated and etc are printed.

 Default: IPRINT = 0.

MAXITN — Maximum number of iterations allowed. (Input)

Default: MAXITN = 200.

EPSDIF — Relative precision in gradients. (Input)

Default: EPSDIF = epsilon(1)

TAU0 — A universal bound describing how much the unscaled penalty-term may deviate

from zero. (Input)

NNLPF assumes that within the region described by

1 1

min 0,
e

e

M M

i i

i i M

g x g x

 TAU0

 all functions may be evaluated safely. The initial guess, however, may violate these

requirements. In that case an initial feasibility improvement phase is run by NNLPF

until such a point is found. A small TAU0 diminishes the efficiency of NNLPF, because

IMSL MATH LIBRARY Chapter 8: Optimization 1525

the iterates then will follow the boundary of the feasible set closely. Conversely, a

large TAU0 may degrade the reliability of the code.

Default TAU0 = 1.E0

DEL0 — In the initial phase of minimization a constraint is considered binding if

 max 1,

i

i

g x

g x

DEL0

1, ,ei M M

 Good values are between .01 and 1.0. If DEL0 is chosen too small then identification

of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large,

then the method will often escape to the full regularized SQP method, using individual

slack variables for any active constraint, which is quite costly. For well-scaled

problems DEL0=1.0 is reasonable. (Input)

Default: DEL0 = .5*TAU0

EPSFCN – Relative precision of the function evaluation routine. (Input)

Default: EPSFCN = epsilon(1)

IDTYPE – Type of numerical differentiation to be used. (Input)

Default: IDTYPE = 1

IDTYPE Action

1 Use a forward difference quotient with discretization

stepsize 0.1(EPSFCN
1/2

) componentwise relative.

2 Use the symmetric difference quotient with discretization

stepsize 0.1(EPSFCN
1/3

) componentwise relative

3 Use the sixth order approximation computing a

Richardson extrapolation of three symmetric difference

quotient values. This uses a discretization stepsize

0.01(EPSFCN
1/7)

TAUBND – Amount by which bounds may be violated during numerical differentiation.

Bounds are violated by TAUBND (at most) only if a variable is on a bound and finite

differences are taken for gradient evaluations. (Input)

Default: TAUBND = 1.E0

SMALLW — Scalar containing the error allowed in the multipliers. For example, a negative

multiplier of an inequality constraint is accepted (as zero) if its absolute value is less

than SMALLW. (Input)

Default: SMALLW = exp(2*log(epsilon(x(1)/3)))

DELMIN — Scalar which defines allowable constraint violations of the final accepted result.

Constraints are satisfied if |gi(x)| DELMIN , and gj(x) (-DELMIN) respectively.

(Input)

1526 Chapter 8: Optimization IMSL MATH LIBRARY

Default: DELMIN = min(DEL0/10, max(EPSDIF, min(DEL0/10,

max(1.E-6*DEL0, SMALLW))))

SCFMAX — Scalar containing the bound for the internal automatic scaling of the objective

function. (Intput)

Default: SCFMAX = 1.0E4

FVALUE — Scalar containing the value of the objective function at the computed solution.

(Output)

LGMULT— Vector of length M containing the Lagrange multiplier estimates of the

constraints. (Output)

CONSTRES — Vector of length M containing the constraint residuals. (Output)

FORTRAN 90 Interface

Generic: CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_NNLPF and D_NNLPF .

Description

The routine NNLPF provides an interface to a licensed version of subroutine DONLP2, a FORTRAN

code developed by Peter Spellucci (1998). It uses a sequential equality constrained quadratic

programming method with an active set technique, and an alternative usage of a fully regularized

mixed constrained subproblem in case of nonregular constraints (i.e. linear dependent gradients in

the ―working sets‖). It uses a slightly modified version of the Pantoja-Mayne update for the

Hessian of the Lagrangian, variable dual scaling and an improved Armjijo-type stepsize algorithm.

Bounds on the variables are treated in a gradient-projection like fashion. Details may be found in

the following two papers:

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained

subproblems. Math. Prog. 82, (1998), 413-448.

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of Oper.

Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany).

The problem is stated as follows:

 min
nx

f x
R

subject to 0, for 1, ,

0, for 1, ,

j e

j e

l u

g x j m

g x j m m

x x x

Although default values are provided for optional input arguments, it may be necessary to adjust

these values for some problems. Through the use of optional arguments, NNLPF allows for several

IMSL MATH LIBRARY Chapter 8: Optimization 1527

parameters of the algorithm to be adjusted to account for specific characteristics of problems.

The DONLP2 Users Guide provides detailed descriptions of these parameters as well as strategies

for maximizing the perfomance of the algorithm. The DONLP2 Users Guide is available in the

―help‖ subdirectory of the main IMSL product installation directory. In addition, the following are

a number of guidelines to consider when using NNLPF.

 A good initial starting point is very problem specific and should be provided by the calling

program whenever possible. See optional argument XGUESS.

 Gradient approximation methods can have an effect on the success of NNLPF. Selecting a

higher order appoximation method may be necessary for some problems. See optional

argument IDTYPE.

 If a two sided constraint ()i i il g x u is transformed into two constraints 2 () 0ig x and

2 1() 0ig x , then choose 1

2
() / {1, }i i iu l max g x DEL0 , or at least try to provide

an estimate for that value. This will increase the efficiency of the algorithm. See optional

argument DEL0.

 The parameter IERR provided in the interface to the user supplied function FCN can be very

useful in cases when evaluation is requested at a point that is not possible or reasonable. For

example, if evaluation at the requested point would result in a floating point exception, then

setting IERR to .TRUE. and returning without performing the evaluation will avoid the

exception. NNLPF will then reduce the stepsize and try the step again. Note, if IERR is set to

.TRUE. for the initial guess, then an error is issued.

Comments

1. Informational errors

Type Code

4 1 Constraint evaluation returns an error with current point.

4 2 Objective evaluation returns an error with current point.

4 3 Working set is singular in dual extended QP.

4 4 QP problem is seemingly infeasible.

4 5 A stationary point located or termination criteria too strong.

4 8 Maximum number of iterations exceeded.

4 9 Stationary point not feasible.

4 10 Very slow primal progress.

4 11 The problem is singular.

4 12 Matrix of gradients of binding constraints is singular or very ill-

conditioned.

4 13 Small changes in the penalty function.

Example

The problem

1528 Chapter 8: Optimization IMSL MATH LIBRARY

2 2

1 2

1 1 2

2 2
2 1 2

min 2 1

subject to 2 1 0

/ 4 1 0

F x x x

g x x x

g x x x

is solved.

 USE NNLPF_INT

 USE WRRRN_INT

 IMPLICIT NONE

 INTEGER IBTYPE, M, ME

 PARAMETER (IBTYPE=0, M=2, ME=1)

!

 REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2)

 EXTERNAL FCN

!

 XLB = -HUGE(X(1))

 XUB = HUGE(X(1))

!

 CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X)

!

 CALL WRRRN ('The solution is', X)

 END

 SUBROUTINE FCN (X, IACT, RESULT, IERR)

 INTEGER IACT

 REAL(KIND(1E0)) X(*), RESULT

 LOGICAL IERR

!

 SELECT CASE (IACT)

 CASE(0)

 RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2

 CASE(1)

 RESULT = X(1) - 2.0E0*X(2) + 1.0E0

 CASE(2)

 RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0

 END SELECT

 RETURN

 END

Output

The solution is

 1 0.8229

 2 0.9114

NNLPG
Solves a general nonlinear programming problem using a sequential equality constrained quadratic

programming method with user supplied gradients.

IMSL MATH LIBRARY Chapter 8: Optimization 1529

Required Arguments

FCN — User-supplied subroutine to evaluate the objective function and constraints at a given

point. The internal usage is

CALL FCN (X, IACT, RESULT, IERR), where

X – The point at which the objective function or constraint is evaluated.

(Input)

IACT – Integer indicating whether evaluation of the objective function is

requested or evaluation of a constraint is requested. If IACT is zero, then

an objective function evaluation is requested. If IACT is nonzero then the

value if IACT indicates the index of the constraint to evaluate. IACT = 1 to

ME for equality constraints and IACT = ME +1 to M for inequality

constraints. (Input)

RESULT – If IACT is zero, then RESULT is the computed objective function

value at the point X. If IACT is nonzero, then RESULT is the computed

constraint value at the point X. (Output)

IERR – Logical variable. On input IERR is set to .FALSE. If an error or other

undesirable condition occurs during evaluation, then IERR should be set to

.TRUE. Setting IERR to .TRUE. will result in the step size being reduced

and the step being tried again. (If IERR is set to .TRUE. for XGUESS, then

an error is issued.)

 The routine FCN must be use-associated in a user module that uses NNLPG_INT, or else

declared EXTERNAL in the calling program. If FCN is a separately compiled routine, not

in a module, then it must be declared EXTERNAL.

GRAD — User-supplied subroutine to evaluate the gradients at a given point. The usage is

CALL GRAD (X, IACT, RESULT), where

X – The point at which the gradient of the objective function or gradient of a

constraint is evaluated. (Input)

IACT – Integer indicating whether evaluation of the function gradient is

requested or evaluation of a constraint gradient is requested. If IACT is

zero, then an objective function gradient evaluation is requested. If IACT

is nonzero then the value if IACT indicates the index of the constraint

gradient to evaluate. (Input)

IACT = 1 to ME for equality constraints and IACT = ME +1 to M for

inequality constraints.

RESULT – If IACT is zero, then RESULT is the computed gradient of the

objective function at the point X. If IACT is nonzero, then RESULT is the

computed gradient of the requested constraint value at the point X.

(Output)

 The routine GRAD must be use-associated in a user module that uses NNLPG_INT, or

else declared EXTERNAL in the calling program. If GRAD is a separately compiled

routine, not in a module, then is must be declared EXTERNAL

1530 Chapter 8: Optimization IMSL MATH LIBRARY

M — Total number of constraints. (Input)

ME — Number of equality constraints. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have

 the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input, if

IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is no

lower bound on a variable, then the corresponding XLB value should be set to

huge(x(1)).

XUB — Vector of length N containing the upper bounds on the variables. (Input, if

IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is no

upper bound on a variable, then the corresponding XUB value should be set to

huge(x(1)).

X — Vector of length N containing the computed solution. (Output)

Optional Arguments

N — Number of variables. (Input)

Default: N = SIZE(X).

IPRINT — Parameter indicating the desired output level. (Input)

IPRINT Action

0 No output printed.

1 One line of intermediate results is printed in each iteration.

2 Lines of intermediate results summarizing the most

important data for each step are printed.

3 Lines of detailed intermediate results showing all primal

and dual variables, the relevant values from the working

set, progress in the backtracking and etc are printed

IMSL MATH LIBRARY Chapter 8: Optimization 1531

4 Lines of detailed intermediate results showing all primal

and dual variables, the relevant values from the working

set, progress in the backtracking, the gradients in the

working set, the quasi-Newton updated and etc are

printed.

 Default: IPRINT = 0.

MAXITN — Maximum number of iterations allowed. (Input)

Default: MAXITN = 200.

XGUESS — Vector of length N containing an initial guess of the solution. (Input)

Default: XGUESS = x, (with the smallest value of
2

x) that satisfies the bounds.

TAU0 — A universal bound describing how much the unscaled penalty-term may deviate

from zero. (Input)

NNLPG assumes that within the region described by

1 1

min 0,
e

e

M M

i i

i i M

g x g x

 TAU0

 all functions may be evaluated safely. The initial guess however, may violate these

requirements. In that case an initial feasibility improvement phase is run by NNLPG

until such a point is found. A small TAU0 diminishes the efficiency of NNLPG, because

the iterates then will follow the boundary of the feasible set closely. Conversely, a

large TAU0 may degrade the reliability of the code.

Default: TAU0 = 1.E0

DEL0 — In the initial phase of minimization a constraint is considered binding if

 max 1,

i

i

g x

g x

DEL0

1, ,ei M M

 Good values are between .01 and 1.0. If DEL0 is chosen too small then identification

of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large,

then the method will often escape to the full regularized SQP method, using individual

slack variables for any active constraint, which is quite costly. For well-scaled

problems DEL0=1.0 is reasonable. (Input)

Default: DEL0 = .5*TAU0

SMALLW — Scalar containing the error allowed in the multipliers. For example, a negative

multiplier of an inequality constraint is accepted (as zero) if its absolute value is less

than SMALLW. (Input)

Default: SMALLW = exp(2*log(epsilon(x(1)/3)))

1532 Chapter 8: Optimization IMSL MATH LIBRARY

DELMIN — Scalar which defines allowable constraint violations of the final accepted result.

Constraints are satisfied if |gi(x)| DELMIN , and gj(x) (-DELMIN) respectively.

(Input)

Default: DELMIN = min(DEL0/10, max(1.E-6*DEL0, SMALLW))

SCFMAX — Scalar containing the bound for the internal automatic scaling of the objective

function. (Intput)

Default: SCFMAX = 1.0E4

FVALUE — Scalar containing the value of the objective function at the computed solution.

(Output)

LGMULT — Vector of length M containing the Lagrange multiplier estimates of the

constraints. (Output)

CONSTRES — Vector of length M containing the constraint residuals. (Output)

FORTRAN 90 Interface

Generic: CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_NNLPG and D_NNLPG.

Description

The routine NNLPG provides an interface to a licensed version of subroutine DONLP2, a FORTRAN

code developed by Peter Spellucci (1998). It uses a sequential equality constrained quadratic

programming method with an active set technique, and an alternative usage of a fully regularized

mixed constrained subproblem in case of nonregular constraints (i.e. linear dependent gradients in

the ―working sets‖). It uses a slightly modified version of the Pantoja-Mayne update for the

Hessian of the Lagrangian, variable dual scaling and an improved Armjijo-type stepsize algorithm.

Bounds on the variables are treated in a gradient-projection like fashion. Details may be found in

the following two papers:

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained

subproblems. Math. Prog. 82, (1998), 413-448.

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of Oper.

Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany).

The problem is stated as follows:

 min
nx

f x
R

subject to 0, for 1, ,

0, for 1, ,

j e

j e

l u

g x j m

g x j m m

x x x

IMSL MATH LIBRARY Chapter 8: Optimization 1533

Although default values are provided for optional input arguments, it may be necessary to adjust

these values for some problems. Through the use of optional arguments, NNLPG allows for several

parameters of the algorithm to be adjusted to account for specific characteristics of problems.

The DONLP2 Users Guide provides detailed descriptions of these parameters as well as strategies

for maximizing the perfomance of the algorithm. The DONLP2 Users Guide is available in the

―help‖ subdirectory of the main IMSL product installation directory. In addition, the following are

a number of guidelines to consider when using NNLPG.

 A good initial starting point is very problem specific and should be provided by the calling

program whenever possible. See optional argument XGUESS.

 If a two sided constraint ()i i il g x u is transformed into two constraints 2 () 0ig x and

2 1() 0ig x , then choose 1

2
0 () / {1, }i i iu l max g x DEL , or at least try to provide

an estimate for that value. This will increase the efficiency of the algorithm. See optional

argument DEL0.

 The parameter IERR provided in the interface to the user supplied function FCN can be very

useful in cases when evaluation is requested at a point that is not possible or reasonable. For

example, if evaluation at the requested point would result in a floating point exception, then

setting IERR to .TRUE. and returning without performing the evaluation will avoid the

exception. NNLPG will then reduce the stepsize and try the step again. Note, if IERR is set to

.TRUE. for the initial guess, then an error is issued.

Comments

1. Informational errors

Type Code

4 1 Constraint evaluation returns an error with current point.

4 2 Objective evaluation returns an error with current point.

4 3 Working set is singular in dual extended QP.

4 4 QP problem is seemingly infeasible.

4 5 A stationary point located or termination criteria too strong.

4 8 Maximum number of iterations exceeded.

4 9 Stationary point not feasible.

4 10 Very slow primal progress.

4 11 The problem is singular.

4 12 Matrix of gradients of binding constraints is singular or very ill-

conditioned.

4 13 Small changes in the penalty function.

Example 1

The problem

1534 Chapter 8: Optimization IMSL MATH LIBRARY

2 2

1 2

1 1 2

2 2
2 1 2

min 2 1

subject to 2 1 0

/ 4 1 0

F x x x

g x x x

g x x x

is solved.

 USE NNLPG_INT

 USE WRRRN_INT

 IMPLICIT NONE

 INTEGER IBTYPE, M, ME

 PARAMETER (IBTYPE=0, M=2, ME=1)

!

 REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2)

 EXTERNAL FCN, GRAD

!

 XLB = -HUGE(X(1))

 XUB = HUGE(X(1))

!

 CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X)

!

 CALL WRRRN ('The solution is', X)

 END

 SUBROUTINE FCN (X, IACT, RESULT, IERR)

 INTEGER IACT

 REAL(KIND(1E0)) X(*), RESULT

 LOGICAL IERR

!

 SELECT CASE (IACT)

 CASE(0)

 RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2

 CASE(1)

 RESULT = X(1) - 2.0E0*X(2) + 1.0E0

 CASE(2)

 RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0

 END SELECT

 RETURN

 END

 SUBROUTINE GRAD (X, IACT, RESULT)

 INTEGER IACT

 REAL(KIND(1E0)) X(*),RESULT(*)

!

 SELECT CASE (IACT)

 CASE(0)

 RESULT (1) = 2.0E0*(X(1)-2.0E0)

 RESULT (2) = 2.0E0*(X(2)-1.0E0)

 CASE(1)

 RESULT (1) = 1.0E0

 RESULT (2) = -2.0E0

 CASE(2)

 RESULT (1) = -0.5E0*X(1)

IMSL MATH LIBRARY Chapter 8: Optimization 1535

 RESULT (2) = -2.0E0*X(2)

 END SELECT

 RETURN

 END

Output

 The solution is

 1 0.8229

 2 0.9114

Additional Examples

Example 2

The same problem from Example 1 is solved, but here we use central differences to compute the

gradient of the first constraint. This example demonstrates how NNLPG can be used in cases when

analytic gradients are known for only a portion of the constraints and/or objective function. The

subroutine CDGRD is used to compute an approximation to the gradient of the first constraint.

 USE NNLPG_INT

 USE CDGRD_INT

 USE WRRRN_INT

 IMPLICIT NONE

 INTEGER IBTYPE, M, ME

 PARAMETER (IBTYPE=0, M=2, ME=1)

!

 REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2)

 EXTERNAL FCN, GRAD

!

 XLB = -HUGE(X(1))

 XUB = HUGE(X(1))

!

 CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X)

!

 CALL WRRRN ('The solution is', X)

 END

 SUBROUTINE FCN (X, IACT, RESULT, IERR)

 INTEGER IACT

 REAL(KIND(1E0)) X(2), RESULT

 LOGICAL IERR

 EXTERNAL CONSTR1

!

 SELECT CASE (IACT)

 CASE(0)

 RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2

 CASE(1)

 CALL CONSTR1(2, X, RESULT)

 CASE(2)

 RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0

 END SELECT

 RETURN

 END

1536 Chapter 8: Optimization IMSL MATH LIBRARY

 SUBROUTINE GRAD (X, IACT, RESULT)

 USE CDGRD_INT

 INTEGER IACT

 REAL(KIND(1E0)) X(2),RESULT(2)

 EXTERNAL CONSTR1

!

 SELECT CASE (IACT)

 CASE(0)

 RESULT (1) = 2.0E0*(X(1)-2.0E0)

 RESULT (2) = 2.0E0*(X(2)-1.0E0)

 CASE(1)

 CALL CDGRD(CONSTR1, X, RESULT)

 CASE(2)

 RESULT (1) = -0.5E0*X(1)

 RESULT (2) = -2.0E0*X(2)

 END SELECT

 RETURN

 END

 SUBROUTINE CONSTR1 (N, X, RESULT)

 INTEGER N

 REAL(KIND(1E0)) X(*), RESULT

 RESULT = X(1) - 2.0E0*X(2) + 1.0E0

 RETURN

 END

Output

 The solution is

 1 0.8229

 2 0.9114

CDGRD
Approximates the gradient using central differences.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the gradient is to be estimated.

(Input)

IMSL MATH LIBRARY Chapter 8: Optimization 1537

GC — Vector of length N containing the estimated gradient at XC. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

In the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

EPSFCN — Estimate for the relative noise in the function. (Input)

EPSFCN must be less than or equal to 0.1. In the absence of other information, set

EPSFCN to 0.0.

Default: EPSFCN = 0.0.

FORTRAN 90 Interface

Generic: CALL CDGRD (FCN, XC, GC [,…])

Specific: The specific interface names are S_CDGRD and D_CDGRD.

FORTRAN 77 Interface

Single: CALL CDGRD (FCN, N, XC, XSCALE, EPSFCN, GC)

Double: The double precision name is DCDGRD.

Description

The routine CDGRD uses the following finite-difference formula to estimate the gradient of a

function of n variables at x:

 for 1, ,

2

i i i i

i

f x h e f x h e
i n

h

where

 1/3
max ,1/ ,i i j isignh x s x

 is the machine epsilon, is is the scaling factor of the i-th variable, and ie is the i-th unit

vector. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,

users should be aware of possible poor performance. When possible, high precision arithmetic is

recommended.

1538 Chapter 8: Optimization IMSL MATH LIBRARY

Comments

This is Description A5.6.4, Dennis and Schnabel, 1983, page 323.

Example

In this example, the gradient of f(x) = x1 – x1x2 – 2 is estimated by the finite-difference method at

the point (1.0, 1.0).

 USE CDGRD_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER I, N, NOUT

 PARAMETER (N=2)

 REAL EPSFCN, GC(N), XC(N)

 EXTERNAL FCN

! Initialization.

 DATA XC/2*1.0E0/

! Set function noise.

 EPSFCN = 0.01

!

 CALL CDGRD (FCN, XC, GC, EPSFCN=EPSFCN)

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) (GC(I),I=1,N)

99999 FORMAT (‘ The gradient is‘, 2F8.2, /)

!

 END

!

 SUBROUTINE FCN (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = X(1) - X(1)*X(2) - 2.0E0

!

 RETURN

 END

Output

The gradient is 0.00 -1.00

FDGRD
Approximates the gradient using forward differences.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

IMSL MATH LIBRARY Chapter 8: Optimization 1539

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the gradient is to be estimated.

(Input)

FC — Scalar containing the value of the function at XC. (Input)

GC — Vector of length N containing the estimated gradient at XC. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

In the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

EPSFCN — Estimate of the relative noise in the function. (Input)

EPSFCN must be less than or equal to 0.1. In the absence of other information, set

EPSFCN to 0.0.

Default: EPSFCN = 0.0.

FORTRAN 90 Interface

Generic: CALL FDGRD (FCN, XC, FC, GC [,…])

Specific: The specific interface names are S_FDGRD and D_FDGRD.

FORTRAN 77 Interface

Single: CALL FDGRD (FCN, N, XC, XSCALE, FC, EPSFCN GC)

Double: The double precision name is DFDGRD.

Description

The routine FDGRD uses the following finite-difference formula to estimate the gradient of a

function of n variables at x:

1540 Chapter 8: Optimization IMSL MATH LIBRARY

 for 1, ,

i i

i

f x h e f x
i n

h

where hi = ɛ1/2
 max{|xi|, 1/si} sign(xi), ɛ is the machine epsilon, ei is the i-th unit vector, and si is

the scaling factor of the i-th variable. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,

users should be aware of possible poor performance. When possible, high precision arithmetic is

recommended. When accuracy of the gradient is important, IMSL routine CDGRD should be used.

Comments

This is Description A5.6.3, Dennis and Schnabel, 1983, page 322.

Example

In this example, the gradient of f(x) = x1 x1 x2 2 is estimated by the finite-difference method at

the point (1.0, 1.0).

 USE FDGRD_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER I, N, NOUT

 PARAMETER (N=2)

 REAL EPSFCN, FC, GC(N), XC(N)

 EXTERNAL FCN

! Initialization.

 DATA XC/2*1.0E0/

! Set function noise.

 EPSFCN = 0.01

! Get function value at current

! point.

 CALL FCN (N, XC, FC)

!

 CALL FDGRD (FCN, XC, FC, GC, EPSFCN=EPSFCN)

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) (GC(I),I=1,N)

99999 FORMAT (‘ The gradient is‘, 2F8.2, /)

!

 END

!

 SUBROUTINE FCN (N, X, F)

 INTEGER N

 REAL X(N), F

!

 F = X(1) - X(1)*X(2) - 2.0E0

!

 RETURN

 END

IMSL MATH LIBRARY Chapter 8: Optimization 1541

Output

The gradient is 0.00 -1.00

FDHES
Approximates the Hessian using forward differences and function values.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the Hessian is to be approximated.

(Input)

FC — Function value at XC. (Input)

H — N by N matrix containing the finite difference approximation to the Hessian in the lower

triangle. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

In the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

EPSFCN — Estimate of the relative noise in the function. (Input)

EPSFCN must be less than or equal to 0.1. In the absence of other information, set

EPSFCN to 0.0.

Default: EPSFCN = 0.0.

LDH — Row dimension of H exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDH = SIZE (H,1).

1542 Chapter 8: Optimization IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL FDHES (FCN, XC, FC, H [,…])

Specific: The specific interface names are S_FDHES and D_FDHES.

FORTRAN 77 Interface

Single: CALL FDHES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH)

Double: The double precision name is DFDHES.

Description

The routine FDHES uses the following finite-difference formula to estimate the Hessian matrix of

function f at x:

 i i j j i i j j

i j

f x h e h e f x h e f x h e f x

h h

Where

 1/3 1/3
max max,1/ , ,1/ ,i i i i i i i jsign signh x s x h x s x

 is the machine epsilon or user-supplied estimate of the relative noise, is and is are the scaling

factors of the i-th and j-th variables, and ie and je are the i-th and j-th unit vectors, respectively.

For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,

users should be aware of possible poor performance. When possible, high precision arithmetic is

recommended.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2HES/DF2HES. The

reference is:

CALL F2HES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH, WK1,

WK2)

The additional arguments are as follows:

WK1 — Real work vector of length N.

WK2 — Real work vector of length N.

2. This is Description A5.6.2 from Dennis and Schnabel, 1983; page 321.

IMSL MATH LIBRARY Chapter 8: Optimization 1543

Example

The Hessian is estimated for the following function at (1, 1)

 2
1 1 2 2f x x x x

 USE FDHES_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declaration of variables

 INTEGER N, LDHES, NOUT

 PARAMETER (N=2, LDHES=2)

 REAL XC(N), FVALUE, HES(LDHES,N), EPSFCN

 EXTERNAL FCN

! Initialization

 DATA XC/1.0E0,-1.0E0/

! Set function noise

 EPSFCN = 0.001

! Evaluate the function at

! current point

 CALL FCN (N, XC, FVALUE)

! Get Hessian forward difference

! approximation

 CALL FDHES (FCN, XC, FVALUE, HES, EPSFCN=EPSFCN)

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) ((HES(I,J),J=1,I),I=1,N)

99999 FORMAT (‘ The lower triangle of the Hessian is‘, /,&

 5X,F10.2,/,5X,2F10.2,/)

!

 END

!

 SUBROUTINE FCN (N, X, F)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER N

 REAL X(N), F

!

 F = X(1)*(X(1) - X(2)) - 2.0E0

!

 RETURN

 END

Output

 The lower triangle of the Hessian is

 2.00

 -1.00 0.00

GDHES
Approximates the Hessian using forward differences and a user-supplied gradient.

1544 Chapter 8: Optimization IMSL MATH LIBRARY

Required Arguments

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – The point at which the gradient is evaluated. (Input)

X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

 GRAD must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the Hessian is to be estimated.

(Input)

GC — Vector of length N containing the gradient of the function at XC. (Input)

H — N by N matrix containing the finite-difference approximation to the Hessian in the lower

triangular part and diagonal. (Output)

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

In the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

EPSFCN — Estimate of the relative noise in the function. (Input)

EPSFCN must be less than or equal to 0.1. In the absence of other information, set

EPSFCN to 0.0.

Default: EPSFCN = 0.0.

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDH = SIZE (H,1).

FORTRAN 90 Interface

Generic: CALL GDHES (GRAD, XC, GC, H [,…])

Specific: The specific interface names are S_GDHES and D_GDHES.

IMSL MATH LIBRARY Chapter 8: Optimization 1545

FORTRAN 77 Interface

Single: CALL GDHES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH)

Double: The double precision name is DGDHES.

Description

The routine GDHES uses the following finite-difference formula to estimate the Hessian matrix of

function F at x:

 j j

j

g x h e g x

h

where

 1/3
max ,1/ ,i j j jsignh x s x

 is the machine epsilon, js is the scaling factor of the j-th variable, g is the analytic gradient of

F at x, and je is the j-th unit vector. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,

users should be aware of possible poor performance. When possible, high precision arithmetic is

recommended.

Comments

1. Workspace may be explicitly provided, if desired, by use of G2HES/DG2HES. The

reference is:

CALL G2HES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH, WK)

The additional argument is

WK — Work vector of length N.

2. This is Description A5.6.1, Dennis and Schnabel, 1983; page 320.

Example

The Hessian is estimated by the finite-difference method at point (1.0, 1.0) from the following

gradient functions:

1 1 2

2 1 1

2 2

1

g x x

g x x

 USE GDHES_INT

 USE UMACH_INT

1546 Chapter 8: Optimization IMSL MATH LIBRARY

 IMPLICIT NONE

! Declaration of variables

 INTEGER N, LDHES, NOUT

 PARAMETER (N=2, LDHES=2)

 REAL XC(N), GC(N), HES(LDHES,N)

 EXTERNAL GRAD

!

 DATA XC/2*1.0E0/

! Set function noise

! Evaluate the gradient at the

! current point

 CALL GRAD (N, XC, GC)

! Get Hessian forward-difference

! approximation

 CALL GDHES (GRAD, XC, GC, HES)

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) ((HES(I,J),J=1,N),I=1,N)

99999 FORMAT (‘ THE HESSIAN IS‘, /, 2(5X,2F10.2,/),/)

!

 END

!

 SUBROUTINE GRAD (N, X, G)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER N

 REAL X(N), G(N)

!

 G(1) = 2.0E0*X(1)*X(2) - 2.0E0

 G(2) = X(1)*X(1) + 1.0E0

!

 RETURN

 END

Output

 THE HESSIAN IS

 2.00 2.00

 2.00 0.00

DDJAC
Approximates the Jacobian of m functions in n unknowns using divided differences.

Required Arguments

FCN — User-supplied subroutine to evaluate functions. The usage is

CALL FCN (INDX, Y, F[,…]) where

Required Arguments

INDX — Index of the variable whose derivative is to be computed. (Input)

DDJAC will set this argument to the index of the variable whose derivative

is being computed. In those cases where there is a mix of finite

IMSL MATH LIBRARY Chapter 8: Optimization 1547

differencing taking place along with additional analytic terms being

computed, (see METHOD = 2), DDJAC will make two calls to FCN each time

a new function evaluation is needed, once with INDX positive and a second

time with INDX negative.

Y — Array containing the point at which the function is to be computed.

(Input)

F — Array of length M, where M is the number of functions to be evaluated at

point Y, containing the function values of the equations at point Y.

(Output)

Normally, the user will return the values of the functions evaluated at point

Y in F. However, when the function can be broken into two parts, a part

which is known analytically and a part to be differenced, FCN will be called

by DDJAC once with INDX positive for the portion to be differenced and

again with INDX negative for the portion which is known analytically. In

the case where METHOD=2 has been chosen, FCN must be writtten to

handle the known analytic portion separate from the part to be differenced.

(See Example 4 for an example where METHOD=2 is used.)

Optional Arguments

FCN_DATA — A derived type, s_fcn_data, which may be used to pass

additional integer or floating point information to or from the user-supplied

subroutine. For a detailed description of this argument see FCN_DATA

below. (Input/Output)

FCN must be declared EXTERNAL in the calling program.

Y — Array of length N containing the point at which the Jacobian is to be evaluated. (Input)

F — Array of length M containing the function values of the equations at point Y. (Output)

FJAC — Two dimensional array of which the first M by N subarray contains the estimated

Jacobian. (Input/Output)

On input the user may set entries of columns that are to be accumulated to initial values

(See the optional argument METHOD). On final output, FJAC will contain the estimated

Jacobian.

Optional Arguments

M — The number of equations. (Input)

Default: M = SIZE (F).

N — The number of variables. (Input)

Default: N = SIZE (Y).

YSCALE — Array of length N containing the diagonal scaling matrix for the variables.

(Input)

YSCALE can also be used to provide appropriate signs for the increments.

Default: YSCALE = 1.0.

1548 Chapter 8: Optimization IMSL MATH LIBRARY

METHOD — Array of length N containing the methods used to compute the derivatives.

(Input)

METHOD(i) is the method to be used for the i-th variable. METHOD(i) can be one of the

values in the following table:

Value Description

0 Indicates one-sided differences.

1 Indicates central differences.

2 Indicates the accumulation of the result from

whatever type of differences have been specified

previously into initial values of the Jacobian

3 Indicates a variable is to be skipped

Default: One-sided differences are used for all variables.

FACTOR — Array of length N containing the percentage factor for differencing. (Input)

For each divided difference for variable j the increment used is del. The value of del is

computed as follows: First define = sign(YSCALE(j)). If the user has set the elements

of array YSCALE to non-default values, then define ya = |YSCALE (j)|. Otherwise,

ya = |Y(j)| and = 1. Finally, compute del = ya FACTOR(j). By changing the sign of

YSCALE(j), the difference del can have any desired orientation, such as staying within

bounds on variable j. For central differences, a reduced factor is used for del that

normally results in relative errors as small as machine precision to the 2 / 3 power. The

elements of FACTOR must be such that machine precision to the 3 / 4

power <= FACTOR(j) <= 0.1

Default: All elements of FACTOR are set to sqrt(machine precision).

ISTATUS — Array of length 10 which contains status information that might prove useful to

the user wanting to gain better control over the differencing parameters. (Output)

This information can often be ignored. The following table describes the diagnostic

information which is returned in each of the entries of ISTATUS:

index Description

1 The number of times a function evaluation was computed.

2 The number of columns in which three attempts were made to

increase a percentage factor for differencing (i.e. a component

in the FACTOR array) but the computed del remained

unacceptably small relative to Y[j] or YSCALE[j]. In such

cases the percentage factor is set to the square root of machine

precision.

3 The number of columns in which the computed del was zero to

machine precision because Y[j] or YSCALE[j] was zero. In

such cases del is set to the square root of machine precision.

IMSL MATH LIBRARY Chapter 8: Optimization 1549

index Description

4 The number of Jacobian columns which had to be recomputed

because the largest difference formed in the column was close

to zero relative to scale, where

 max ,i i jscale f y f y del e

and i denotes the row index of the largest difference in the column

currently being processed. index = 10 gives the last column where this

occurred.

5 The number of columns whose largest difference is close to zero relative

to scale after the column has been recomputed.

6 The number of times scale information was not available for use in the

roundoff and truncation error tests. This occurs when

 min , 0i i jf y f y del e

Where i is the index of the largest difference for the column currently

being processed.

7
The number of times the increment for differencing (del) was

computed and had to be increased because

(YSCALE[j] + del) YSCALE[j]) was too small relative to

Y[j] or YSCALE[j].

8 The number of times a component of the FACTOR array was

reduced because changes in function values were large and

excess truncation error was suspected. index = 9 gives the last

column in which this occurred.

9 The index of the last column where the corresponding

component of the FACTOR array had to be reduced because

excessive truncation error was suspected.

10 The index of the last column where the difference was small

and the column had to be recomputed with an adjusted

increment (see index = 4). The largest derivative in this

column may be inaccurate due to excessive roundoff error.

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional

information to/from the user-supplied subroutine. (Input/Output)

The derived type, s_fcn_data, is defined as:

type s_fcn_data

 real(kind(1e0)), pointer, dimension(:) :: rdata

 integer, pointer, dimension(:) :: idata

end type

 in module mp_types. The double precision counterpart to s_fcn_data is named

d_fcn_data. The user must include a use mp_types statement in the calling

program to define this derived type.

1550 Chapter 8: Optimization IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL DDJAC (FCN,Y, F, FJAC [,…])

Specific: The specific interface names are S_DDJAC and D_DDJAC.

Description

Computes the Jacobian matrix for a function f (y) with m components in n independent variables.

DDJAC uses divided finite differences to compute the Jacobian. This subroutine is designed for use

in numerical methods for solving nonlinear problems where a Jacobian is evaluated repeatedly at

neighboring arguments. For example this occurs in a Gauss-Newton method for solving non-linear

least squares problems or a non-linear optimization method.

DDJAC is suited for applications where the Jacobian is a dense matrix. All cases m < n, m = n,

or m > n are allowed. Both one-sided and central divided differences can be used.

The design allows for computation of derivatives in a variety of contexts. Note that a gradient

should be considered as the special case with m = 1, n 1. A derivative of a single function of one

variable is the case m = 1, n = 1. Any non-linear solving routine that optionally requests a Jacobian

or gradient can use DDJAC. This should be considered if there are special properties or scaling

issues associated with f (y). Use the argument METHOD to specify different differencing options for

numerical differentiation. These can be combined with some analytic subexpressions or other

known relationships.

The divided differences are computed using values of the independent variables at the initial point

yj = y, and differenced points ye = y + del × ej . Here the ej, j = 1, ...,n, are the unit coordinate

vectors.

The value for each difference del depends on the variable j, the differencing method, and the

scaling for that variable. This difference is computed internally. See FACTOR for computational

details. The evaluation of f (ye) is normally done by the user-provided argument FCN, using the

values ye. The index j, values ye, and output F are arguments to FCN.

The computational kernel of DDJAC performs the following steps:

1. Evaluates the equations at the point Y using FCN.

2. Computes the Jacobian.

3. Computes the difference at ye.

There are four examples provided which illustrate various ways to use DDJAC. A discussion of the

expected errors for the difference methods is found in A First Course in Numerical Analysis,

Anthony Ralston, McGraw-Hill, NY, (1965).

Example 1

In this example, the Jacobian matrix of

1 1 2

2 1 1 2

2

1

f x x x

f x x x x

IMSL MATH LIBRARY Chapter 8: Optimization 1551

is estimated by the finite-difference method at the point (1.0, 1.0).

 USE DDJAC_INT

 USE WRRRN_INT

 IMPLICIT NONE

 INTEGER, PARAMETER :: N=2, M=2

 REAL FJAC(M,N), Y(N), F(M)

 EXTERNAL FCN

 DATA Y/2*1.0/

! Get Jacobian one-sided difference

! approximation

 CALL DDJAC (FCN, Y, F, FJAC)

 CALL WRRRN ("The Jacobian is:", FJAC)

 END

 SUBROUTINE FCN (INDX, Y, F)

 INTEGER INDX

 REAL Y(*), F(*)

 F(1) = Y(1)*Y(2) - 2.0

 F(2) = Y(1) - Y(1)*Y(2) + 1.0

 RETURN

 END

Output

The Jacobian is:

 1 2

 1 1.000 1.000

 2 0.000 -1.000

Example 2

A simple use of DDJAC is shown. The gradient of the function 2
1 2 1 1 2, expf y y a by cy y .

is required for values 1 22.5 6, 3.4, 4.5, 2.1, 3.2a e b c y y .

The analytic gradient of this function is:

 2
1 2 1 2[exp , 2]grad f a by cy cy cy

 USE DDJAC_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER, PARAMETER :: N=2, M=1

 INTEGER J, NOUT

 REAL FJAC(M,N), Y(N), F(M), SCALE(N)

 EXTERNAL FCN

1552 Chapter 8: Optimization IMSL MATH LIBRARY

 DATA Y/2.1, 3.2/ SCALE/1.0, 8000.0/

! Get Gradient one-sided difference

! approximation

 CALL DDJAC (FCN, Y, F, FJAC, YSCALE=SCALE)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) (FJAC(1,J),J=1,N)

99999 FORMAT (' The Numerical Gradient is (', 2e15.4,')')

 END

 SUBROUTINE FCN (INDX, Y, F)

 INTEGER INDX

 REAL A, B, C, Y(*), F(*)

 A = 2500000.

 B = 3.4

 C = 4.5

 F(1) = A * EXP (B * Y(1)) + C * Y(1) * Y(2) * Y(2)

 RETURN

 END

Output

 The Numerical Gradient is (0.1073E+11 0.9268E+02)

Example 3

This example uses the same data as in Example 2. Here we assume that the second component of

the gradient is analytically known. Therefore only the first gradient component needs numerical

approximation. The input values of array METHOD specify that numerical differentiation with

respect to y2 is skipped.

 USE DDJAC_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER, PARAMETER :: N=2, M=1

 INTEGER J, NOUT, METHOD(2)

 REAL FJAC(M,N), Y(N), F(M), SCALE(N)

 EXTERNAL FCN

 DATA Y/2.1, 3.2/ SCALE/1.0, 8000.0/

! Initialize second component

! of Jacobian since it is

! known analytically and can be

! skipped

 FJAC(1,2) = 2.0 * 4.5 * Y(1) * Y(2)

! Set METHOD to skip the second

! component

 METHOD(1) = 0

IMSL MATH LIBRARY Chapter 8: Optimization 1553

 METHOD(2) = 3

! Get Gradient approximation

 CALL DDJAC (FCN, Y, F, FJAC, YSCALE=SCALE, METHOD=METHOD)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) (FJAC(1,J),J=1,N)

99999 FORMAT (' The Numerical Gradient is (', 2e15.4,')')

 END

 SUBROUTINE FCN (INDX, Y, F)

 INTEGER INDX

 REAL A, B, C, Y(*), F(*)

 A = 2500000.

 B = 3.4

 C = 4.5

 F(1) = A * EXP (B * Y(1)) + C * Y(1) * Y(2) * Y(2)

 RETURN

 END

Output

 The Numerical Gradient is (0.1073E+11 0.6048E+02)

Example 4

This example uses the same data as in Example 2. An alternate examination of the function

 2
1 2 1 1 2, expf y y a by cy y

shows that the first term on the right-hand side need be evaluated just when computing the first

partial. The additive term
2
2cy occurs when computing the partial with respect to y1. Also the first

term does not depend on the second variable. Thus the first term can be left out of the function

evaluation when computing the partial with respect to y2, potentially avoiding cancellation errors.

The input values of array METHOD allow DDJAC to use these facts and obtain greater accuracy

using a minimum number of computations of the exponential function

 USE DDJAC_INT

 USE UMACH_INT

 USE MP_TYPES

 IMPLICIT NONE

 INTEGER, PARAMETER :: N=2, M=1

 INTEGER J, NOUT, METHOD(2)

 REAL FJAC(M,N), Y(N), F(M), SCALE(N)

 REAL, TARGET :: RDATA(3)

 TYPE(S_FCN_DATA) USER_DATA

 EXTERNAL FCN

 DATA Y/2.1, 3.2/ SCALE/1.0, 8000.0/

1554 Chapter 8: Optimization IMSL MATH LIBRARY

! Set up to pass some extra

! information to the function

 RDATA(1) = 2500000.0

 RDATA(2) = 3.4

 RDATA(3) = 4.5

 USER_DATA%RDATA => RDATA

! Initialize first component

! of function since it is

! known

 FJAC(1,1) = 4.5 * Y(2) * Y(2)

! Set METHOD to accumulate for

! part of the first partial,

! one-sided differences for

! the second

 METHOD(1) = 2

 METHOD(2) = 0

! Get Gradient approximation

 CALL DDJAC (FCN, Y, F, FJAC, YSCALE=SCALE, METHOD=METHOD, &

 FCN_DATA=USER_DATA)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) (FJAC(1,J),J=1,N)

99999 FORMAT (' The Numerical Gradient is (', 2e15.4,')')

 END

 SUBROUTINE FCN (INDX, Y, F, FCN_DATA)

 USE MP_TYPES

 IMPLICIT NONE

 INTEGER INDX

 REAL A, B, C, Y(*), F(*)

 TYPE(S_FCN_DATA) FCN_DATA

 A = FCN_DATA%RDATA(1)

 B = FCN_DATA%RDATA(2)

 C = FCN_DATA%RDATA(3)

! Handle both the differenced

! part and the part that is

! known analytically for each

! dependent variable

 SELECT CASE(INDX)

 CASE (1)

 F(1)=A*EXP(B*Y(1))

 CASE(-1)

 F(1)= C*Y(2)**2

 CASE(2)

 F(1) = C*Y(1)*Y(2)**2

 CASE(-2)

 F(1)=0

 END SELECT

IMSL MATH LIBRARY Chapter 8: Optimization 1555

 RETURN

 END

Output

 The Numerical Gradient is (0.1073E+11 0.6046E+02)

FDJAC
Approximates the Jacobian of M functions in N unknowns using forward differences.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the gradient is to be estimated.

(Input)

FC — Vector of length M containing the function values at XC. (Input)

FJAC — M by N matrix containing the estimated Jacobian at XC. (Output)

Optional Arguments

M — The number of functions. (Input)

Default: M = SIZE (FC,1).

N — The number of variables. (Input)

Default: N = SIZE (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.

(Input)

In the absence of other information, set all entries to 1.0.

Default: XSCALE = 1.0.

EPSFCN — Estimate for the relative noise in the function. (Input)

EPSFCN must be less than or equal to 0.1. In the absence of other information, set

1556 Chapter 8: Optimization IMSL MATH LIBRARY

EPSFCN to 0.0.

Default: EPSFCN = 0.0.

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDFJAC = SIZE (FJAC,1).

FORTRAN 90 Interface

Generic: CALL FDJAC (FCN, XC, FC, FJAC [,…])

Specific: The specific interface names are S_FDJAC and D_FDJAC.

FORTRAN 77 Interface

Single: CALL FDJAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC, LDFJAC)

Double: The double precision name is DFDJAC.

Description

The routine FDJAC uses the following finite-difference formula to estimate the Jacobian matrix of

function f at x:

 j j

j

f x h e f x

h

where ej is the j-th unit vector, hj = ɛ1/2 max{|xj|, 1/sj} sign(xj), ɛ is the machine epsilon, and sj is

the scaling factor of the j-th variable. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,

users should be aware of possible poor performance. When possible, high precision arithmetic is

recommended.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2JAC/DF2JAC. The

reference is:

CALL F2JAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC,

LDFJAC, WK)

The additional argument is:

WK — Work vector of length M.

2. This is Description A5.4.1, Dennis and Schnabel, 1983, page 314.

IMSL MATH LIBRARY Chapter 8: Optimization 1557

Example

In this example, the Jacobian matrix of

1 1 2

2 1 1 2

2

1

f x x x

f x x x x

is estimated by the finite-difference method at the point (1.0, 1.0).

 USE FDJAC_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declaration of variables

 INTEGER N, M, LDFJAC, NOUT

 PARAMETER (N=2, M=2, LDFJAC=2)

 REAL FJAC(LDFJAC,N), XC(N), FC(M), EPSFCN

 EXTERNAL FCN

!

 DATA XC/2*1.0E0/

! Set function noise

 EPSFCN = 0.01

! Evaluate the function at the

! current point

 CALL FCN (M, N, XC, FC)

! Get Jacobian forward-difference

! approximation

 CALL FDJAC (FCN, XC, FC, FJAC, EPSFCN=EPFSCN)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) ((FJAC(I,J),J=1,N),I=1,M)

99999 FORMAT (‘ The Jacobian is‘, /, 2(5X,2F10.2,/),/)

!

 END

!

 SUBROUTINE FCN (M, N, X, F)

! SPECIFICATIONS FOR ARGUMENTS

 INTEGER M, N

 REAL X(N), F(M)

!

 F(1) = X(1)*X(2) - 2.0E0

 F(2) = X(1) - X(1)*X(2) + 1.0E0

!

 RETURN

 END

Output

 The Jacobian is

 1.00 1.00

 0.00 -1.00

1558 Chapter 8: Optimization IMSL MATH LIBRARY

CHGRD
Checks a user-supplied gradient of a function.

Required Arguments

FCN — User-supplied subroutine to evaluate the function of which the gradient will be

checked. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

GRAD — Vector of length N containing the estimated gradient at X. (Input)

X — Vector of length N containing the point at which the gradient is to be checked. (Input)

INFO — Integer vector of length N. (Output)

INFO(I) = 0 means the user-supplied gradient is a poor estimate of the numerical

gradient at the point X(I).

INFO(I) = 1 means the user-supplied gradient is a good estimate of the numerical

gradient at the point X(I).

INFO(I) = 2 means the user-supplied gradient disagrees with the numerical gradient at

the point X(I), but it might be impossible to calculate the numerical gradient.

INFO(I) = 3 means the user-supplied gradient and the numerical gradient are both zero

at X(I), and, therefore, the gradient should be rechecked at a different point.

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

FORTRAN 90 Interface

Generic: CALL CHGRD (FCN, GRAD, X, INFO [,…])

Specific: The specific interface names are S_CHGRD and D_CHGRD.

IMSL MATH LIBRARY Chapter 8: Optimization 1559

FORTRAN 77 Interface

Single: CALL CHGRD (FCN, GRAD, N, X, INFO)

Double: The double precision name is DCHGRD.

Description

The routine CHGRD uses the following finite-difference formula to estimate the gradient of a

function of n variables at x:

for =1, ,
i i

i
i

f x h e f x
g x i n

h

where hi = ɛ1/2
 max{|xi|, 1/si} sign(xi), ɛ is the machine epsilon, ei is the i-th unit vector, and si is

the scaling factor of the i-th variable.

The routine CHGRD checks the user-supplied gradient ∇f(x) by comparing it with the finite-

difference gradient g(x). If

 i i i
g x f x f x

where τ = ɛ1/4
, then (∇f(x))i, which is the i-th element of ∇f(x), is declared correct; otherwise,

CHGRD computes the bounds of calculation error and approximation error. When both bounds are

too small to account for the difference, (∇f(x))i is reported as incorrect. In the case of a large error

bound, CHGRD uses a nearly optimal stepsize to recompute gi(x) and reports that (∇f(x))i is correct

if

 2i i i
g x f x f x

Otherwise, (∇f(x))i is considered incorrect unless the error bound for the optimal step is greater

than τ |(∇f(x))i|. In this case, the numeric gradient may be impossible to compute correctly. For

more details, see Schnabel (1985).

Comments

1. Workspace may be explicitly provided, if desired, by use of C2GRD/DC2GRD. The

reference is:

CALL C2GRD (FCN, GRAD, N, X, INFO, FX, XSCALE, EPSFCN,

XNEW)

The additional arguments are as follows:

FX — The functional value at X.

XSCALE — Real vector of length N containing the diagonal scaling matrix.

1560 Chapter 8: Optimization IMSL MATH LIBRARY

EPSFCN — The relative ―noise‖ of the function FCN.

XNEW — Real work vector of length N.

2. Informational errors

Type Code

4 1 The user-supplied gradient is a poor estimate of the numerical

gradient.

Example

The user-supplied gradient of

 3 42 /
2

t x x
if x x x e

at (625, 1, 3.125, 0.25) is checked where t = 2.125.

 USE CHGRD_INT

 USE WRIRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER N

 PARAMETER (N=4)

!

 INTEGER INFO(N)

 REAL GRAD(N), X(N)

 EXTERNAL DRIV, FCN

!

! Input values for point X

! X = (625.0, 1.0, 3.125, .25)

!

 DATA X/625.0E0, 1.0E0, 3.125E0, 0.25E0/

!

 CALL DRIV (N, X, GRAD)

!

 CALL CHGRD (FCN, GRAD, X, INFO)

 CALL WRIRN (‘The information vector‘, INFO, 1, N, 1)

!

 END

!

 SUBROUTINE FCN (N, X, FX)

 INTEGER N

 REAL X(N), FX

!

 REAL EXP

 INTRINSIC EXP

!

 FX = X(1) + X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))

 RETURN

 END

!

IMSL MATH LIBRARY Chapter 8: Optimization 1561

 SUBROUTINE DRIV (N, X, GRAD)

 INTEGER N

 REAL X(N), GRAD(N)

!

 REAL EXP

 INTRINSIC EXP

!

 GRAD(1) = 1.0E0

 GRAD(2) = EXP(-1.0E0*(2.125E0-X(3))**2/X(4))

 GRAD(3) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))*2.0E0/X(4)* &

 (2.125-X(3))

 GRAD(4) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))* &

 (2.125E0-X(3))**2/(X(4)*X(4))

 RETURN

 END

Output

 The information vector

 1 2 3 4

 1 1 1 1

CHHES
Checks a user-supplied Hessian of an analytic function.

Required Arguments

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – The point at which the gradient is evaluated. X should not be changed by

GRAD. (Input)

G – The gradient evaluated at the point X. (Output)

 GRAD must be declared EXTERNAL in the calling program.

HESS — User-supplied subroutine to compute the Hessian at the point X. The usage is

CALL HESS (N, X, H, LDH), where

N – Length of X. (Input)

X – The point at which the Hessian is evaluated. (Input)

X should not be changed by HESS.

H – The Hessian evaluated at the point X. (Output)

LDH – Leading dimension of H exactly as specified in in the dimension

statement of the calling program. (Input)

 HESS must be declared EXTERNAL in the calling program.

1562 Chapter 8: Optimization IMSL MATH LIBRARY

X — Vector of length N containing the point at which the Hessian is to be checked. (Input)

INFO — Integer matrix of dimension N by N. (Output)

INFO(I, J) = 0 means the Hessian is a poor estimate for function I at the point X(J).

INFO(I, J) = 1 means the Hessian is a good estimate for function I at the point X(J).

INFO(I, J) = 2 means the Hessian disagrees with the numerical Hessian for function I

at the point X(J), but it might be impossible to calculate the numerical Hessian.

INFO(I, J) = 3 means the Hessian for function I at the point X(J) and the numerical

Hessian are both zero, and, therefore, the gradient should be rechecked at a

different point.

Optional Arguments

N — Dimension of the problem. (Input)

Default: N = SIZE (X,1).

LDINFO — Leading dimension of INFO exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDINFO = SIZE (INFO,1).

FORTRAN 90 Interface

Generic: CALL CHHES (GRAD, HESS, X, INFO [,…])

Specific: The specific interface names are S_CHHES and D_CHHES.

FORTRAN 77 Interface

Single: CALL CHHES (GRAD, HESS, N, X, INFO, LDINFO)

Double: The double precision name is DCHHES.

Description

The routine CHHES uses the following finite-difference formula to estimate the Hessian of a

function of n variables at x:

 / for 1, ,ij i j j i jB x g x h e g x h j n

where

hj = ɛ1/2 max{|xj|, 1/sj} sign(xj),

ɛ is the machine epsilon,

IMSL MATH LIBRARY Chapter 8: Optimization 1563

ej

is the j-th unit vector,

sj

is the scaling factor of the j-th variable, and

gi(x)

is the gradient of the function with respect to the i-th variable.

Next, CHHES checks the user-supplied Hessian H(x) by comparing it with the finite difference

approximation B(x). If

|Bij(x) Hij(x)| < τ |Hij(x)|

where

τ = ɛ1/4
,

then

Hij(x)

is declared correct; otherwise, CHHES computes the bounds of calculation error and approximation

error. When both bounds are too small to account for the difference,

Hij(x)

is reported as incorrect. In the case of a large error bound, CHHES uses a nearly optimal stepsize to

recomputed

Bij(x)

and reports that

Bij(x)

is correct if

|Bij(x) Hij(x)| < 2τ |Hij(x)|

Otherwise, Hij(x) is considered incorrect unless the error bound for the optimal step is greater than

τ |Hij(x)|. In this case, the numeric approximation may be impossible to compute correctly. For

more details, see Schnabel (1985).

Comments

Workspace may be explicitly provided, if desired, by use of C2HES/DC2HES. The reference is

CALL C2HES (GRAD, HESS, N, X, INFO, LDINFO, G, HX, HS,

XSCALE, EPSFCN, INFT, NEWX)

The additional arguments are as follows:

G — Vector of length N containing the value of the gradient GRD at X.

HX — Real matrix of dimension N by N containing the Hessian evaluated at X.

1564 Chapter 8: Optimization IMSL MATH LIBRARY

HS — Real work vector of length N.

XSCALE — Vector of length N used to store the diagonal scaling matrix for

the variables.

EPSFCN — Estimate of the relative noise in the function.

INFT — Vector of length N. For I = 1 through N, INFT contains information

about the Jacobian.

NEWX — Real work array of length N.

Example

The user-supplied Hessian of

2 22

2 1 1100 1f x x x x

at (1.2, 1.0) is checked, and the error is found.

 USE CHHES_INT

 IMPLICIT NONE

 INTEGER LDINFO, N

 PARAMETER (N=2, LDINFO=N)

!

 INTEGER INFO(LDINFO,N)

 REAL X(N)

 EXTERNAL GRD, HES

!

! Input values for X

! X = (-1.2, 1.0)

!

 DATA X/-1.2, 1.0/

!

 CALL CHHES (GRD, HES, X, INFO)

!

 END

!

 SUBROUTINE GRD (N, X, UG)

 INTEGER N

 REAL X(N), UG(N)

!

 UG(1) = -400.0*X(1)*(X(2)-X(1)*X(1)) + 2.0*X(1) - 2.0

 UG(2) = 200.0*X(2) - 200.0*X(1)*X(1)

 RETURN

 END

!

 SUBROUTINE HES (N, X, HX, LDHS)

 INTEGER N, LDHS

 REAL X(N), HX(LDHS,N)

!

IMSL MATH LIBRARY Chapter 8: Optimization 1565

 HX(1,1) = -400.0*X(2) + 1200.0*X(1)*X(1) + 2.0

 HX(1,2) = -400.0*X(1)

 HX(2,1) = -400.0*X(1)

! A sign change is made to HX(2,2)

!

 HX(2,2) = -200.0

 RETURN

 END

Output

*** FATAL ERROR 1 from CHHES. The Hessian evaluation with respect to

*** X(2) and X(2) is a poor estimate.

CHJAC
Checks a user-supplied Jacobian of a system of equations with M functions in N unknowns.

Required Arguments

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

F – The computed function value at the point X. (Output)

 FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied subroutine to evaluate the Jacobian at a point X. The usage is

CALL JAC (M, N, X, FJAC, LDFJAC), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)

X should not be changed by FCN.

FJAC – The computed M by N Jacobian at the point X. (Output)

LDFJAC – Leading dimension of FJAC. (Input)

 JAC must be declared EXTERNAL in the calling program.

X — Vector of length N containing the point at which the Jacobian is to be checked. (Input)

INFO — Integer matrix of dimension M by N. (Output)

1566 Chapter 8: Optimization IMSL MATH LIBRARY

INFO(I, J) = 0 means the user-supplied Jacobian is a poor estimate for function I at

the point X(J).

INFO(I, J) = 1 means the user-supplied Jacobian is a good estimate for function I at

the point X(J).

INFO(I, J) = 2 means the user-supplied Jacobian disagrees with the numerical Jacobian

for function I at the point X(J), but it might be impossible to calculate the

numerical Jacobian.

INFO(I, J) = 3 means the user-supplied Jacobian for function I at the point X(J) and

the numerical Jacobian are both zero. Therefore, the gradient should be

rechecked at a different point.

Optional Arguments

M — The number of functions in the system of equations. (Input)

Default: M = SIZE (INFO,1).

N — The number of unknowns in the system of equations. (Input)

Default: N = SIZE (X,1).

LDINFO — Leading dimension of INFO exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDINFO = SIZE (INFO,1).

FORTRAN 90 Interface

Generic: CALL CHJAC (FCN, JAC, X, INFO [,…])

Specific: The specific interface names are S_CHJAC and D_CHJAC.

FORTRAN 77 Interface

Single: CALL CHJAC (FCN, JAC, M, N, X, INFO, LDINFO)

Double: The double precision name is DCHJAC.

Description

The routine CHJAC uses the following finite-difference formula to estimate the gradient of the i-th

function of n variables at x:

gij(x) = (f1(x + hjej) f1(x))/hj for j = 1, …, n

where hj = ɛ1/4 max{|xj|, 1/sj} sign(xj), ɛ is the machine epsilon, ej is the j-th unit vector, and sj is

the scaling factor of the j-th variable.

IMSL MATH LIBRARY Chapter 8: Optimization 1567

Next, CHJAC checks the user-supplied Jacobian J(x) by comparing it with the finite difference

gradient gi(x). If

|gij(x) Jij(x)| < τ |Jij(x)|

where τ = ɛ1/4
, then Jij(x) is declared correct; otherwise, CHJAC computes the bounds of calculation

error and approximation error. When both bounds are too small to account for the difference, Jij(x)

is reported as incorrect. In the case of a large error bound, CHJAC uses a nearly optimal stepsize to

recompute gij(x) and reports that Jij(x) is correct if

|gij(x) Jij(x)| < 2τ |Jij(x)|

Otherwise, Jij(x) is considered incorrect unless the error bound for the optimal step is greater than

τ |Jij(x)|. In this case, the numeric gradient may be impossible to compute correctly. For more

details, see Schnabel (1985).

Comments

1. Workspace may be explicitly provided, if desired, by use of C2JAC/DC2JAC. The

reference is:

CALL C2JAC (FCN, JAC, N, X, INFO, LDINFO, FX, FJAC, GRAD,

XSCALE, EPSFCN, INFT, NEWX)

The additional arguments are as follows:

FX — Vector of length M containing the value of each function in FCN at X.

FJAC — Real matrix of dimension M by N containing the Jacobian of FCN

evaluated at X.

GRAD — Real work vector of length N used to store the gradient of each

function in FCN.

XSCALE — Vector of length N used to store the diagonal scaling matrix for

the variables.

EPSFCN — Estimate of the relative noise in the function.

INFT — Vector of length N. For I = 1 through N, INFT contains information

about the Jacobian.

NEWX — Real work array of length N.

2. Informational errors

Type Code

4 1 The user-supplied Jacobian is a poor estimate of the numerical

Jacobian.

1568 Chapter 8: Optimization IMSL MATH LIBRARY

Example

The user-supplied Jacobian of

1 1

2
2 2 1

1

10

f x

f x x

at (1.2, 1.0) is checked.

 USE CHJAC_INT

 USE WRIRN_INT

 IMPLICIT NONE

 INTEGER LDINFO, N

 PARAMETER (M=2,N=2,LDINFO=M)

!

 INTEGER INFO(LDINFO,N)

 REAL X(N)

 EXTERNAL FCN, JAC

!

! Input value for X

! X = (-1.2, 1.0)

!

 DATA X/-1.2, 1.0/

!

 CALL CHJAC (FCN, JAC, X, INFO)

 CALL WRIRN (‘The information matrix‘, INFO)

!

 END

!

 SUBROUTINE FCN (M, N, X, F)

 INTEGER M, N

 REAL X(N), F(M)

!

 F(1) = 1.0 - X(1)

 F(2) = 10.0*(X(2)-X(1)*X(1))

 RETURN

 END

!

 SUBROUTINE JAC (M, N, X, FJAC, LDFJAC)

 INTEGER M, N, LDFJAC

 REAL X(N), FJAC(LDFJAC,N)

!

 FJAC(1,1) = -1.0

 FJAC(1,2) = 0.0

 FJAC(2,1) = -20.0*X(1)

 FJAC(2,2) = 10.0

 RETURN

 END

Output

IMSL MATH LIBRARY Chapter 8: Optimization 1569

*** WARNING ERROR 2 from C2JAC. The numerical value of the Jacobian

*** evaluation for function 1 at the point X(2) = 1.000000E+00 and

*** the user-supplied value are both zero. The Jacobian for this

*** function should probably be re-checked at another value for

*** this point.

The information matrix

 1 2

1 1 3

2 1 1

GGUES
Generates points in an N-dimensional space.

Required Arguments

A — Vector of length N. (Input)

See B.

B — Real vector of length N. (Input)

A and B define the rectangular region in which the points will be generated, i.e.,

A(I) < S(I) < B(I) for I = 1, 2, …, N. Note that if B(I) < A(I), then B(I) < S(I) < A(I).

K — The number of points to be generated. (Input)

IDO — Initialization parameter. (Input/Output)

IDO must be set to zero for the first call. GGUES resets IDO to 1 and returns the first

generated point in S. Subsequent calls should be made with IDO = 1.

S — Vector of length N containing the generated point. (Output)

Each call results in the next generated point being stored in S.

Optional Arguments

N — Dimension of the space. (Input)

Default: N = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL GGUES (A, B, K, IDO, S [,…])

Specific: The specific interface names are S_GGUES and D_GGUES.

FORTRAN 77 Interface

Single: CALL GGUES (N, A, B, K, IDO, S)

Double: The double precision name is DGGUES.

1570 Chapter 8: Optimization IMSL MATH LIBRARY

Description

The routine GGUES generates starting points for algorithms that optimize functions of several

variablesor, almost equivalentlyalgorithms that solve simultaneous nonlinear equations.

The routine GGUES is based on systematic placement of points to optimize the dispersion of the

set. For more details, see Aird and Rice (1977).

Comments

1. Workspace may be explicitly provided, if desired, by use of G2UES/DG2UES. The

reference is:

CALL G2UES (N, A, B, K, IDO, S, WK, IWK)

The additional arguments are:

WK — Work vector of length N. WK must be preserved between calls to

G2UES.

IWK — Work vector of length 10. IWK must be preserved between calls to

G2UES.

2. Informational error

Type Code

4 1 Attempt to generate more than K points.

3. The routine GGUES may be used with any nonlinear optimization routine that requires

starting points. The rectangle to be searched (defined by A, B, and N) must be

determined; and the number of starting points, K, must be chosen. One possible use for

GGUES would be to call GGUES to generate a point in the chosen rectangle. Then, call

the nonlinear optimization routine using this point as an initial guess for the solution.

Repeat this process K times. The number of iterations that the optimization routine is

allowed to perform should be quite small (5 to 10) during this search process. The best

(or best several) point(s) found during the search may be used as an initial guess to

allow the optimization routine to determine the optimum more accurately. In this

manner, an N dimensional rectangle may be effectively searched for a global optimum

of a nonlinear function. The choice of K depends upon the nonlinearity of the function

being optimized. A function with many local optima requires a larger value than a

function with only a few local optima.

Example

We want to search the rectangle with vertices at coordinates (1, 1), (3, 1), (3, 2), and (1, 2) ten

times for a global optimum of a nonlinear function. To do this, we need to generate starting points.

The following example illustrates the use of GGUES in this process:

IMSL MATH LIBRARY Chapter 8: Optimization 1571

 USE GGUES_INT

 USE UMACH_INT

 IMPLICIT NONE

! Variable Declarations

 INTEGER N

 PARAMETER (N=2)

!

 INTEGER IDO, J, K, NOUT

 REAL A(N), B(N), S(N)

! Initializations

!

! A = (1.0, 1.0)

! B = (3.0, 2.0)

!

 DATA A/1.0, 1.0/

 DATA B/3.0, 2.0/

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99998)

99998 FORMAT (‘ Point Number‘, 7X, ‘Generated Point‘)

!

 K = 10

 IDO = 0

 DO 10 J=1, K

 CALL GGUES (A, B, K, IDO, S)

!

 WRITE (NOUT,99999) J, S(1), S(2)

99999 FORMAT (1X, I7, 14X, ‘(‘, F4.1, ‘,‘, F6.3, ‘)‘)

!

 10 CONTINUE

!

 END

Output

Point Number Generated Point

 1 (1.5, 1.125)

 2 (2.0, 1.500)

 3 (2.5, 1.750)

 4 (1.5, 1.375)

 5 (2.0, 1.750)

 6 (1.5, 1.625)

 7 (2.5, 1.250)

 8 (1.5, 1.875)

 9 (2.0, 1.250)

10 (2.5, 1.500)

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1573

Chapter 9: Basic Matrix/Vector
Operations

Routines

9.1. Basic Linear Algebra Subprograms (BLAS) 1576
Programming Notes for Level 1 BLAS 1576

Set a vector to a constant value, xi ← aSSET 1579

Copy a vector, yi ← xi .. SCOPY 1579

Scale a vector by a constant, xi ← axi SSCAL 1579

Set a vector to a constant multiple of a vector, yi ← axi SVCAL 1580

Add a constant to a vector, xi ←xi + a SADD 1580

Subtract a vector from a constant, xi ← a xi SSUB 1580

Add a multiple of one vector to another, yi ← axi + yi SAXPY 1580

Swap two vectors, yi↔ xi .. SSWAP 1581

Compute x
T
y or x

H
y .. SDOT 1581

Compute extended precision x
T
y or x

H
y DSDOT 1581

Compute extended precision a + x
T
y or a + x

H
y SDSDOT 1582

Compute ACC + b + x
T
y

with extended precision accumulator SDDOTI 1582

Compute zi ← xiyi ... SHPROD 1583

Compute Σ xiyizi ...SXYZ 1583

Compute Σ xi ..SSUM 1583

Compute Σ |xi| ... SASUM 1583

Compute ||x||2 ... SNRM2 1583

Compute ∏ xi .. SPRDCT 1584

Find the index i such that xi = minj xj ISMIN 1584

Find the index i such that xi= maxj xj ISMAX 1584

Find the first index i such that |xi| = minj |xj|ISAMIN 1584

Find the first index i such that |xi| = maxj |xj| ISAMAX 1585

Construct a Givens rotation .. SROTG 1585
Apply a Givens rotation .. SROT 1586
Construct a modified Givens rotation SROTMG 1586
Programming Notes for Level 2 and Level 3 BLAS 1588

1574 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Apply a modified Givens rotation SROTM 1587
Matrix-vector multiply, general ... SGEMV 1592
Matrix-vector multiply, banded ... SGBMV 1592
Matrix-vector multiply, Hermitian .. CHEMV 1592
Matrix-vector multiply, packed Hermitian CHPMV 1593
Matrix-vector multiply, Hermitian and banded CHBMV 1593
Matrix-vector multiply, symmetric and real SSYMV 1593
Matrix-vector multiply, packed symmetric, real SSPMV 1593
Matrix-vector multiply, symmetric and banded SSBMV 1593
Matrix-vector multiply, triangular ... STRMV 1593
Matrix-vector multiply, triangular and banded STBMV 1594
Matrix-vector solve, triangular ... STRSV 1594
Matrix-vector solve, triangular and banded STBSV 1595
Matrix-vector multiply, packed triangular STPMV 1594
Matrix-vector solve, packed triangular STPSV 1595
Rank-one matrix update, general and real SGER 1595
Rank-one matrix update, general, complex,
and transpose ... CGERU 1595
Rank-one matrix update, general, complex,
and conjugate transpose .. CGERC 1596
Rank-one matrix update,
Hermitian and conjugate transpose CHER 1596
Hermitian, packed and conjugate transpose CHPR
Rank-two matrix update,
Hermitian and conjugate transpose CHER2 1596
Rank-two matrix update,
Hermitian, packed and conjugate transpose CHPR2 1596
Rank-one matrix update, symmetric and real SSYR 1597
Rank-one matrix update, packed symmetric and real SSPR 1597
Rank-two matrix update, symmetric and real SSYR2 1597
Rank-two matrix update, packed symmetric and real SSPR2 1597
Matrix-matrix multiply, general ... SGEMM 1598
Matrix-matrix multiply, symmetric SSYMM 1598
Matrix-matrix multiply, Hermitian .. CHEMM 1598
Rank-k update, symmetric ... SSYRK 1598
Rank-k update, Hermitian .. CHERK 1599
Rank-2k update, symmetric ... SSYR2K 1599
Rank-2k update, Hermitian .. CHER2K 1599
Matrix-matrix multiply, triangular .. STRMM 1600
Matrix-matrix solve, triangular ... STRSM 1600
Programming Notes Using BLAS for NVIDIA 1601
Gets the switchover value ..CUBLAS_GET 1607
Sets the switchover value... CUBLAS_SET 1609
Maintains buffer sizes CHECK_BUFFER_ALLOCATION 1611
Prints error messages CUDA_ERROR_PRINT 1612

9.2. Other Matrix/Vector Operations

9.2.1 Matrix Copy
Real general ... CRGRG 1615

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1575

Complex general ...CCGCG 1616
Real band .. CRBRB 1617
Complex band ... CCBCB 1619

9.2.2 Matrix Conversion
Real general to real band ... CRGRB 1621
Real band to real general ... CRBRG 1622
Complex general to complex band CCGCB 1624
Complex band to complex general CCBCG 1626
Real general to complex general ..CRGCG 1627
Real rectangular to complex rectangular CRRCR 1629
Real band to complex band .. CRBCB 1631
Real symmetric to real general ... CSFRG 1632
Complex Hermitian to complex general CHFCG 1634
Real symmetric band to real bandCSBRB 1635
Complex Hermitian band to complex band CHBCB 1637
Real rectangular matrix to its transpose TRNRR 1639

9.2.3 Matrix Multiplication

Compute X
T
 X ... MXTXF 1641

Compute X
T
Y ... MXTYF 1643

Compute XY
T
 .. MXYTF 1645

Multiply two real rectangular matricesMRRRR 1647
Multiply two complex rectangular matricesMCRCR 1649
Compute matrix Hadamard product.................................... HRRRR 1651

Compute the bilinear form x
T
Ay .. BLINF 1653

Compute the matrix polynomial p(A) POLRG 1655

9.2.4 Matrix-Vector Multiplication
Real rectangular matrix times a real vector MURRV 1657
Real band matrix times a real vector MURBV 1659
Complex rectangular matrix times a complex vector MUCRV 1661
Complex band matrix times a complex vector MUCBV 1663

9.2.5 Matrix Addition
Real band matrix plus a real band matrixARBRB 1665
Complex band matrix plus a complex band matrixACBCB 1667

9.2.6 Matrix Norm

∞-norm of a real rectangular matrixNRIRR 1670
1-norm of a real rectangular matrixNR1RR 1671
Frobenius norm of a real rectangular matrixNR2RR 1673
1-norm of a real band matrix .. NR1RB 1674
1-norm of a complex band matrix .. NR1CB 1676

9.2.7 Distance Between Two Points
Euclidean distance ... DISL2 1677
1-norm distance ... DISL1 1679

∞-norm distance ... DISLI 1681

9.2.8 Vector Convolutions
Convolution of real vectors ... VCONR 1683
Convolution of complex vectors .. VCONC 1685

1576 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

9.3. Extended Precision Arithmetic

Initialize a real accumulator, ACC ← a DQINI 1687

Store a real accumulator, a ← ACC DQSTO 1687

Add to a real accumulator, ACC ← ACC + a DQADD 1687

Add a product to a real accumulator, ACC ← ACC + ab DQMUL 1687

Initialize a complex accumulator, ACC ← a ZQINI 1687

Store a complex accumulator, a ← ACC ZQSTO 1687

Add to a complex accumulator, ACC ←ACC + a ZQADD 1687

Add a product to a complex accumulator,

ACC ← ACC + ab ... ZQMUL 1687

Basic Linear Algebra Subprograms
The basic linear algebra subprograms, normally referred to as the BLAS, are routines for low-level

operations such as dot products, matrix times vector, and matrix times matrix. Lawson et al.

(1979) published the original set of 38 BLAS. The IMSL BLAS collection includes these 38

subprograms plus additional ones that extend their functionality. Since Dongarra et al. (1988 and

1990) published extensions to this set, it is customary to refer to the original 38 as Level 1 BLAS.

The Level 1 operations are performed on one or two vectors of data. An extended set of

subprograms perform operations involving a matrix and one or two vectors. These are called the

Level 2 BLAS (see Specification of the Level 1 BLAS). An additional extended set of operations

on matrices is called the Level 3 BLAS (see Specification of the Level 3 BLAS).

Users of the BLAS will often benefit from using versions of the BLAS supplied by hardware

vendors, if available. This can provide for more efficient execution of many application programs.

The BLAS provided by IMSL are written in FORTRAN. Those supplied by vendors may be

written in other languages, such as assembler. The documentation given below for the BLAS is

compatible with a vendor‘s version of the BLAS that conforms to the published specifications.

Users having an NVIDIA GPGPU or NVIDIA board can make use of a subset of the BLAS

written for the NVIDIA board through the IMSL Libraries. The board is used for problems that

exceed a certain size, NSTART. For smaller values a standard version is used. This value can be

changed for any routine to any alternate value by using subprograms together with use association

of the module CUDABLAS_LIBRARY. Documentation and further descriptions are provided in

the section below Programming Notes for BLAS Using NVIDIA. Table 9.2 has the names of

NVIDIA routines that are implemented marked with GREEN.

Programming Notes for Level 1 BLAS

The Level 1 BLAS do not follow the usual IMSL naming conventions. Instead, the names consist

of a prefix of one or more of the letters ―I‖, ―S‖, ―D‖, ―C‖, and ―Z‖; a root name; and sometimes a

suffix. For subprograms involving a mixture of data types, the output type is indicated by the first

prefix letter. The suffix denotes a variant algorithm. The prefix denotes the type of the operation

according to the following table:

I Integer

S Real C Complex

D Double Z Double Complex

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1577

SD Single and Double CZ Single and Double Complex

DQ Double and Quadruple ZQ Double and Quadruple Complex

Vector arguments have an increment parameter that specifies the storage space or stride between

elements. The correspondence between the vectors x and y and the arguments SX and SY, and

INCX and INCY is

SX I-1 INCX 1 if INCX 0

SX I-N INCX 1 if INCX 0

SY I-1 INCY 1 if INCY 0

SY I-N INCY 1 if INCY 0

i

i

x

y

Function subprograms SXYZ and DXYZ refer to a third vector argument z. The storage increment

INCZ for z is defined like INCX and INCY. In the Level 1 BLAS, only positive values of INCX are

allowed for operations that have a single vector argument. The loops in all of the Level 1 BLAS

process the vector arguments in order of increasing i. For INCX, INCY, INCZ < 0, this implies

processing in reverse storage order.

The function subprograms in the Level 1 BLAS are all illustrated by means of an assignment

statement. For example, see SDOT. Any value of a function subprogram can be used in an

expression or as a parameter passed to a subprogram as long as the data types agree.

Descriptions of the Level 1 BLAS Subprograms

The set of Level 1 BLAS are summarized in Table 9.1. This table also lists the page numbers

where the subprograms are described in more detail.

Specification of the Level 1 BLAS

With the definitions,

MX = max {1, 1 + (N 1)|INCX|}

MY = max {1, 1 + (N 1)|INCY|}

MZ = max {1, 1 + (N 1)|INCZ|}

the subprogram descriptions assume the following FORTRAN declarations:

IMPLICIT INTEGER (I-N)

IMPLICIT REAL S

IMPLICIT DOUBLE PRECISION D

IMPLICIT COMPLEX C

IMPLICIT DOUBLE COMPLEX Z

INTEGER IX(MX)

REAL SX(MX), SY(MY), SZ(MZ),

 SPARAM(5)

DOUBLE PRECISION DX(MX), DY(MY), DZ(MZ),

 DPARAM(5)

DOUBLE PRECISION DACC(2), DZACC(4)

COMPLEX CX(MX), CY(MY)

DOUBLE COMPLEX ZX(MX), ZY(MY)

1578 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Since FORTRAN 77 does not include the type DOUBLE COMPLEX, subprograms with DOUBLE

COMPLEX arguments are not available for all systems. Some systems use the declaration COMPLEX

* 16 instead of DOUBLE COMPLEX.

In the following descriptions, the original BLAS are marked with an * in the left column.

Table 9.1: Level 1 Basic Linear Algebra Subprograms

Operation

Integer

Real

Double

Complex

Double
Complex

Pg.

xi ← a ISET SSET DSET CSET ZSET 1579

yi ← xi ICOPY SCOPY DCOPY CCOPY ZCOPY 1579

xi ← axi

a ∈ R

 SSCAL DSCAL CSCAL

CSSCAL

ZSCAL

ZDSCAL

1579

yi ← axi

a ∈ R

 SVCAL DVCAL CVCAL

CSVCAL

ZVCAL

ZDVCAL

1580

xi ← xi + a IADD SADD DADD CADD ZADD 1580

xi ← a xi ISUB SSUB DSUB CSUB ZSUB 1580

yi ← axi + yi SAXPY DAXPY CAXPY ZAXPY 1580

yi ↔ xi ISWAP SSWAP DSWAP CSWAP ZSWAP 1581

x y

x y

 SDOT DDOT CDOTU

CDOTC

ZDOTU

ZDOTC

1581

x y †

x y †

 DSDOT CZDOTU

CZDOTC

ZQDOTU

ZQDOTC

1581

a + x y †

a + x y †

 SDSDOT DQDDOT CZUDOT

CZCDOT

ZQUDOT

ZQCDOT

1582

b + x y †

ACC + b + x y †

 SDDOTI

SDDOTA

DQDOTI

DQDOTA

CZDOTI

CZDOTA

ZQDOTI

ZQDOTA

1582

zi ← xiyi SHPROD DHPROD 1583

 xiyizi SXYZ DXYZ 1583

 xi ISUM SSUM DSUM 1583

 |xi| SASUM DASUM SCASUM DZASUM 1583

||x||2 SNRM2 DNRM2 SCNRM2 DZNRM2 1583

 xi SPRDCT DPRDCT 1584

i : xi = minj xj IIMIN ISMIN IDMIN 1584

i : xi = maxj xj IIMAX ISMAX IDMAX 1584

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1579

Operation

Integer

Real

Double

Complex

Double
Complex

Pg.

i : |xi| = minj |xj| ISAMIN IDAMIN ICAMIN IZAMIN 1584

i : |xi| = maxj |xj| ISAMAX IDAMAX ICAMAX IZAMAX 1585

Construct Givens

rotation

 SROTG DROTG CROTG ZROTG 1585

Apply Givens

rotation

 SROT DROT CROT

CSROT

ZROT

ZDROT

1586

Construct

modified Givens

transform

 SROTMG DROTMG 1586

Apply modified

Givens transform

 SROTM DROTM CSROTM ZDROTM 1587

†Higher precision accumulation used

Set a Vector to a Constant Value

CALL ISET (N, IA, IX, INCX)

CALL SSET (N, SA, SX, INCX)

CALL DSET (N, DA, DX, INCX)

CALL CSET (N, CA, CX, INCX)

CALL ZSET (N, ZA, ZX, INCX)

These subprograms set xi ← a for i = 1, 2, …, N. If N ≤ 0, then the subprograms return

immediately.

Copy a Vector

 CALL ICOPY (N, IX, INCX, IY, INCY)

*CALL SCOPY (N, SX, INCX, SY, INCY)

*CALL DCOPY (N, DX, INCX, DY, INCY)

*CALL CCOPY (N, CX, INCX, CY, INCY)

 CALL ZCOPY (N, ZX, INCX, ZY, INCY)

These subprograms set yi ← xi for i = 1, 2, …, N. If N ≤ 0, then the subprograms return

immediately.

Scale a Vector

*CALL SSCAL (N, SA, SX, INCX)

*CALL DSCAL (N, DA, DX, INCX)

*CALL CSCAL (N, CA, CX, INCX)

 CALL ZSCAL (N, ZA, ZX, INCX)

*CALL CSSCAL (N, SA, CX, INCX)

 CALL ZDSCAL (N, DA, ZX, INCX)

1580 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

These subprograms set xi ← axi for i = 1, 2, …, N. If N ≤ 0, then the subprograms return

immediately. CAUTION: For CSSCAL and ZDSCAL, the scalar quantity a is real and the vector x is

complex.

Multiply a Vector by a Constant

CALL SVCAL (N, SA, SX, INCX, SY, INCY)

CALL DVCAL (N, DA, DX, INCX, DY, INCY)

CALL CVCAL (N, CA, CX, INCX, CY, INCY)

CALL ZVCAL (N, ZA, ZX, INCX, ZY, INCY)

CALL CSVCAL (N, SA, CX, INCX, CY, INCY)

CALL ZDVCAL (N, DA, ZX, INCX, ZY, INCY)

These subprograms set yi ← axi for i = 1, 2, …, N. If N ≤ 0, then the subprograms return

immediately. CAUTION: For CSVCAL and ZDVCAL, the scalar quantity a is real and the vector x is

complex.

Add a Constant to a Vector

CALL IADD (N, IA, IX, INCX)

CALL SADD (N, SA, SX, INCX)

CALL DADD (N, DA, DX, INCX)

CALL CADD (N, CA, CX, INCX)

CALL ZADD (N, ZA, ZX, INCX)

These subprograms set xi ← xi + a for i = 1, 2, …, N. If N ≤ 0, then the subprograms return

immediately.

Subtract a Vector from a Constant

CALL ISUB (N, IA, IX, INCX)

CALL SSUB (N, SA, SX, INCX)

CALL DSUB (N, DA, DX, INCX)

CALL CSUB (N, CA, CX, INCX)

CALL ZSUB (N, ZA, ZX, INCX)

These subprograms set xi ← a xi for i = 1, 2, …, N. If N ≤ 0, then the subprograms return

immediately.

Constant Times a Vector Plus a Vector

*CALL SAXPY (N, SA, SX, INCX, SY, INCY)

*CALL DAXPY (N, DA, DX, INCX, DY, INCY)

*CALL CAXPY (N, CA, CX, INCX, CY, INCY)

 CALL ZAXPY (N, ZA, ZX, INCX, ZY, INCY)

These subprograms set yi ← axi + yi for i = 1, 2, …, N. If N ≤ 0, then the subprograms return

immediately.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1581

Swap Two Vectors

 CALL ISWAP (N, IX, INCX, IY, INCY)

*CALL SSWAP (N, SX, INCX, SY, INCY)

*CALL DSWAP (N, DX, INCX, DY, INCY)

*CALL CSWAP (N, CX, INCX, CY, INCY)

 CALL ZSWAP (N, ZX, INCX, ZY, INCY)

These subprograms perform the exchange yi ↔ xi for i = 1, 2, …, N. If N ≤ 0, then the

subprograms return immediately.

Dot Product

*SW = SDOT (N, SX, INCX, SY, INCY)

*DW = DDOT (N, DX, INCX, DY, INCY)

*CW = CDOTU (N, CX, INCX, CY, INCY)

*CW = CDOTC (N, CX, INCX, CY, INCY)

 ZW = ZDOTU (N, ZX, INCX, ZY, INCY)

 ZW = ZDOTC (N, ZX, INCX, ZY, INCY)

The function subprograms SDOT, DDOT, CDOTU, and ZDOTU compute

1

N

i ii
x y

The function subprograms CDOTC and ZDOTC compute

1

N

i ii
x y

The suffix C indicates that the complex conjugates of xi are used. The suffix U indicates that the

unconjugated values of xi are used. If N ≤ 0, then the subprograms return zero.

Dot Product with Higher Precision Accumulation

*DW = DSDOT (N, SX, INCX, SY, INCY)

 CW = CZDOTC (N, CX, INCX, CY, INCY)

 CW = CZDOTU (N, CX, INCX, CY, INCY)

 ZW = ZQDOTC (N, ZX, INCX, ZY, INCY)

 ZW = ZQDOTU (N, ZX, INCX, ZY, INCY)

The function subprogram DSDOT computes

1

N

i ii
x y

using double precision accumulation. The function subprograms CZDOTU and ZQDOTU compute

1

N

i ii
x y

using double and quadruple complex accumulation, respectively. The function subprograms

CZDOTC and ZQDOTC compute

1

N

i ii
x y

1582 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

using double and quadruple complex accumulation, respectively. If N ≤ 0, then the subprograms

return zero.

Constant Plus Dot Product with Higher Precision Accumulation

*SW = SDSDOT (N, SA, SX, INCX, SY, INCY)

 DW = DQDDOT (N, DA, DX, INCX, DY, INCY)

 CW = CZCDOT (N, CA, CX, INCX, CY, INCY)

 CW = CZUDOT (N, CA, CX, INCX, CY, INCY)

 ZW = ZQCDOT (N, ZA, ZX, INCX, ZY, INCY)

 ZW = ZQUDOT (N, ZA, ZX, INCX, ZY, INCY)

The function subprograms SDSDOT, DQDDOT, CZUDOT, and ZQUDOT compute

1

N

i ii
a x y

using higher precision accumulation where SDSDOT uses double precision accumulation, DQDDOT

uses quadruple precision accumulation, CZUDOT uses double complex accumulation, and ZQUDOT

uses quadruple complex accumulation. The function subprograms CZCDOT and ZQCDOT compute

1

N

i ii
a x y

using double complex and quadruple complex accumulation, respectively. If N ≤ 0, then the

subprograms return zero.

Dot Product Using the Accumulator

 SW = SDDOTI (N, SB, DACC, SX, INCX, SY, INCY)

 SW = SDDOTA (N, SB, DACC, SX, INCX, SY, INCY)

 CW = CZDOTI (N, CB, DACC, CX, INCX, CY, INCY)

 CW = CZDOTA (N, CB, DACC, CX, INCX, CY, INCY)

*DW = DQDOTI (N, DB, DACC, DX, INCX, DY, INCY)

*DW = DQDOTA (N, DB, DACC, DX, INCX, DY, INCY)

 ZW = ZQDOTI (N, ZB, DZACC, ZX, INCX, ZY, INCY)

 ZW = ZQDOTA (N, ZB, DZACC, ZX, INCX, ZY, INCY)

The variable DACC, a double precision array of length two, is used as a quadruple precision

accumulator. DZACC, a double precision array of length four, is its complex analog. The function

subprograms, with a name ending in I, initialize DACC to zero. All of the function subprograms

then compute

1
DACC

N

i ii
b x y

and store the result in DACC. The result, converted to the precision of the function, is also returned

as the function value. If N ≤ 0, then the function subprograms return zero.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1583

Hadamard Product

CALL SHPROD (N, SX, INCX, SY, INCY, SZ, INCZ)

CALL DHPROD (N, DX, INCX, DY, INCY, DZ, INCZ)

These subprograms set zi ← xiyi for i = 1, 2, …, N. If N ≤ 0, then the subprograms return

immediately.

Triple Inner Product

SW = SXYZ (N, SX, INCX, SY, INCY, SZ, INCZ)

DW = DXYZ (N, DX, INCX, DY, INCY, DZ, INCZ)

These function subprograms compute

1

N

i i ii
x y z

If N ≤ 0 then the subprograms return zero.

Sum of the Elements of a Vector

IW = ISUM (N, IX, INCX)

SW = SSUM (N, SX, INCX)

DW = DSUM (N, DX, INCX)

These function subprograms compute

1

N

ii
x

If N ≤ 0, then the subprograms return zero.

Sum of the Absolute Values of the Elements of a Vector

*SW = SASUM (N, SX, INCX)

*DW = DASUM (N, DX, INCX)

*SW = SCASUM (N, CX, INCX)

 DW = DZASUM (N, ZX, INCX)

The function subprograms SASUM and DASUM compute

1

N

ii
x

The function subprograms SCASUM and DZASUM compute

1

N

i ii
x x

If N ≤ 0, then the subprograms return zero. CAUTION: For SCASUM and DZASUM, the function

subprogram returns a real value.

Euclidean or 2 Norm of a Vector

*SW = SNRM2 (N, SX, INCX)

*DW = DNRM2 (N, DX, INCX)

1584 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

*SW = SCNRM2 (N, CX, INCX)

 DW = DZNRM2 (N, ZX, INCX)

These function subprograms compute

1 2
2

1

N

ii
x

If N ≤ 0, then the subprograms return zero. CAUTION: For SCNRM2 and DZNRM2, the function

subprogram returns a real value.

Product of the Elements of a Vector

SW = SPRDCT (N, SX, INCX)

DW = DPRDCT (N, DX, INCX)

These function subprograms compute

1

N

ii
x

If N ≤ 0, then the subprograms return zero.

Index of Element Having Minimum Value

IW = IIMIN (N, IX, INCX)

IW = ISMIN (N, SX, INCX)

IW = IDMIN (N, DX, INCX)

These function subprograms compute the smallest index i such that xi = min1≤j≤N xj. If N ≤ 0, then

the subprograms return zero.

Index of Element Having Maximum Value

IW = IIMAX (N, IX, INCX)

IW = ISMAX (N, SX, INCX)

IW = IDMAX (N, DX, INCX)

These function subprograms compute the smallest index i such thatxi = max1≤j≤N xj. If N ≤ 0, then

the subprograms return zero.

Index of Element Having Minimum Absolute Value

IW = ISAMIN (N, SX, INCX)

IW = IDAMIN (N, DX, INCX)

IW = ICAMIN (N, CX, INCX)

IW = IZAMIN (N, ZX, INCX)

The function subprograms ISAMIN and IDAMIN compute the smallest index i such that

|xi| = min1≤j≤N |xj|. The function subprograms ICAMIN and IZAMIN compute the smallest index i

such that

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1585

1
mini i j j

j N
x x x x

If N ≤ 0, then the subprograms return zero.

Index of Element Having Maximum Absolute Value

*IW = ISAMAX (N, SX, INCX)

*IW = IDAMAX (N, DX, INCX)

*IW = ICAMAX (N, CX, INCX)

 IW = IZAMAX (N, ZX, INCX)

The function subprograms ISAMAX and IDAMAX compute the smallest index i such that

|xi| = max1≤j≤N |xj|. The function subprograms ICAMAX and IZAMAX compute the smallest index i

such that

1
maxi i j j

j N
x x x x

If N ≤ 0, then the subprograms return zero.

Construct a Givens Plane Rotation

*CALL SROTG (SA, SB, SC, SS)

*CALL DROTG (SA, SB, SC, SS)

Given the values a and b, these subprograms compute

/ if 0

1 if 0

a r r
c

r

and

/ if 0

1 if 0

b r r
s

r

where r = σ(a
2
 + b

2
)

1/2
 and

sign() if

sign() otherwise

a a b

b

Then, the values c, s and r satisfy the matrix equation

0

c s a r

s c b

The introduction of σ is not essential to the computation of the Givens rotation matrix; but its use

permits later stable reconstruction of c and s from just one stored number, an idea due to Stewart

(1976). For this purpose, the subprogram also computes

1586 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

if or 0

1/ if 0

s s c c
z

c c s

In addition to returning c and s, the subprograms return r overwriting a, and z overwriting b.

Reconstruction of c and s from z can be done as follows:

If z = 1, then set c = 0 and s = 1

If |z| < 1, then set

21 and c z s z

If |z| > 1, then set

21/ and = 1-c z s c

Apply a Plane Rotation

*CALL SROT (N, SX, INCX, SY, INCY, SC, SS)

*CALL DROT (N, DX, INCX, DY, INCY, DC, DS)

 CALL CSROT (N, CX, INCX, CY, INCY, SC, SS)

 CALL ZDROT (N, ZX, INCX, ZY, INCY, DC, DS)

These subprograms compute

 for 1, ,
i i

i i

x xc s
i N

y s c y

If N ≤ 0, then the subprograms return immediately. CAUTION: For CSROT and ZDROT, the scalar

quantities c and s are real, and x and y are complex.

Construct a Modified Givens Transformation

*CALL SROTMG (SD1, SD2, SX1, SY1, SPARAM)

*CALL DROTMG (DD1, DD2, DX1, DY1, DPARAM)

The input quantities d1, d2, x1 and y1 define a 2-vector [w1, z1]
T
 by the following:

1

2

0

0

i i

i i

dw x

z yd

The subprograms determine the modified Givens rotation matrix H that transforms y1, and thus, z1

to zero. They also replace d1, d2 and x1 with

1 2 1, and d d x

respectively. That is,

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1587

1 11 11 1

1 1
2 2

0 0

0 00 0

d dx xw x
H

y yd d

A representation of this matrix is stored in the array SPARAM or DPARAM. The form of the matrix H

is flagged by PARAM(1).

PARAM(1) = 1. In this case,

2 2
1 1 2 1d x d y

and

PARAM(2) 1

1 PARAM(5)
H

The elements PARAM(3) and PARAM(4) are not changed.

PARAM(1) = 0. In this case,

2 2
1 1 2 1d x d y

and

1 PARAM(4)

PARAM(3) 1
H

The elements PARAM(2) and PARAM(5) are not changed.

PARAM(1) = 1. In this case, rescaling was done and

PARAM(2) PARAM(4)

PARAM(3) PARAM(5)
H

PARAM(1) = 2. In this case, H = I where I is the identity matrix. The elements PARAM(2),

PARAM(3), PARAM(4) and PARAM(5) are not changed.

The values of d1, d2 and x1are changed to represent the effect of the transformation. The quantity

y1, which would be zeroed by the transformation, is left unchanged.

The input value of d1 should be nonnegative, but d2 can be negative for the purpose of removing

data from a least-squares problem.

See Lawson et al. (1979) for further details.

Apply a Modified Givens Transformation

*CALL SROTM (N, SX, INCX, SY, INCY, SPARAM)

*CALL DROTM (N, DX, INCX, DY, INCY, DPARAM)

 CALL CSROTM (N, CX, INCX, CY, INCY, SPARAM)

 CALL ZDROTM (N, ZX, INCX, ZY, INCY, DPARAM)

If PARAM(1) = 1.0, then these subprograms compute

1588 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

PARAM(2) 1
 for 1, ,

1 PARAM(5)

i i

i i

x x
i N

y y

If PARAM(1) = 0.0, then the subprograms compute

1 PARAM(4)
 for 1, ,

PARAM(3) 1

i i

i i

x x
i N

y y

If PARAM(1) = 1.0, then the subprograms compute

PARAM(2) PARAM(4)
 for 1, ,

PARAM(3) PARAM(5)

i i

i i

x x
i N

y y

If N ≤ 0 or if PARAM(1) = 2.0, then the subprograms return immediately. CAUTION: For

CSROTM and ZDROTM, the scalar quantities PARAM(*) are real and x and y are complex.

Programming Notes for Level 2 and Level 3 BLAS

For definitions of the matrix data structures used in the discussion below, see Reference Material.

The Level 2 and Level 3 BLAS, like the Level 1 BLAS, do not follow the IMSL naming

conventions. Instead, the names consist of a prefix of one of the letters ―S‖, ―D‖ , ―C‖ , or ―Z‖.

Next is a root name denoting the kind of matrix. This is followed by a suffix indicating the type of

the operation.
1
 The prefix denotes the type of operation according to the following table:

S Real C Complex

D Double Z Double Complex

The root names for the kind of matrix:

GE General GB General Band SP Symmetric Packed

SY Symmetric SB Symmetric Band TP Triangular Packed

HE Hermitian HB Hermitian Band HP Hermitian Packed

TR Triangular TB Triangular Band

The suffixes for the type of operation:

MV Matrix-Vector Product SV Solve for Vector

R Rank-One Update

RU Rank-One Update,

Unconjugated

RC Rank-One Update,

Conjugated

R2 Rank-Two Update

MM Matrix-Multiply SM Symmetric Matrix Multiply

RK Rank-K Update R2K Rank 2K Update

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1589

1
IMSL does not support any extended precision versions of the Level 2 BLAS.

The specifications of the operations are provided by subprogram arguments of CHARACTER*1 data

type. Both lower and upper case of the letter have the same meaning:

TRANS, TRANSA, TRANSB 'N' No Transpose

 'T' Transpose

 'C' Conjugage and Transpose

UPLO 'L' Lower Triangular

 'U' Upper Triangular

DIAGNL 'N' Non-unit Triangular

 'U' Unit Triangular

SIDE 'L' Multiply ―A‖ Matrix on Left side or

 'R' Right side of the ―B‖ matrix

Note: See the ―Triangular Mode‖ section in the Reference Material for definitions of these terms.

Descriptions of the Level 2 and Level 3 BLAS

The subprograms for Level 2 and Level 3 BLAS that perform operations involving the expression

βy or βC do not require that the contents of y or C be defined when β = 0. In that case, the

expression βy or βC is defined to be zero. Note that for the _GEMV and _GBMV subprograms, the

dimensions of the vectors x and y are implied by the specification of the operation. If

TRANS = ‘N‘, the dimension of y is m; if TRANS = ‘T‘ or = ‘C‘, the dimension of y is n. The

Level 2 and Level 3 BLAS are summarized in Table 9.2. This table also lists the page numbers

where the subprograms are described in more detail.

Specification of the Level 2 BLAS

Type and dimension for variables occurring in the subprogram specifications are

INTEGER INCX, INCY, NCODA, NLCA, NUCA, LDA, M, N

CHARACTER*1 DIAGNL, TRANS, UPLO

REAL SALPHA, SBETA, SX(*), SY(*), SA(LDA,*)

DOUBLE PRECISION DALPHA, DBETA, DX(*), DY(*), DA(LDA,*)

COMPLEX CALPHA, CBETA, CX(*), CY(*), CA(LDA,*)

DOUBLE COMPLEX ZALPHA, ZBETA, ZX(*), ZY(*), ZA(LDA,*)

There is a lower bound on the leading dimension LDA. It must be ≥ the number of rows in the

matrix that is contained in this array. Vector arguments have an increment parameter that specifies

the storage space or stride between elements. The correspondence between the vector x, y and the

arguments SX, SY and INCX, INCY is

1590 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

SX I-1 INCX 1 if INCX 0

SX I-N INCX 1 if INCX 0

SY I-1 INCY 1 if INCY 0

SY I-N INCY 1 if INCY 0

i

i

x

y

In the Level 2 BLAS, only nonzero values of INCX, INCY are allowed for operations that have

vector arguments. The Level 3 BLAS do not refer to INCX, INCY.

Specification of the Level 3 BLAS

Type and dimension for variables occurring in the subprogram specifications are

INTEGER K, LDA, LDB, LDC, M, N

CHARACTER*1 DIAGNL, TRANS, TRANSA, TRANSB, SIDE, UPLO

REAL SALPHA, SBETA, SA(LDA,*), SB(LDB,*),

 SC(LDC,*)

DOUBLE PRECISION DALPHA, DBETA, DA(LDA,*), DB(LDB,*),

 DC(LDC,*)

COMPLEX CALPHA, CBETA, CA(LDA,*), CB(LDB,*),

 CC(LDC,*)

DOUBLE COMPLEX ZALPHA, ZBETA, ZA(LDA,*), ZB(LDB,*),

 ZC(LDC,*)

Each of the integers K, M, N must be ≥ 0. It is an error if any of them are < 0. If any of them are

= 0, the subprograms return immediately. There are lower bounds on the leading dimensions LDA,

LDB, LDC. Each must be ≥ the number of rows in the matrix that is contained in this array. The

names marked with GREEN indicate that versions implemented using the NVIDIA CUBLAS

library and NVIDIA hardware are available. It may be advantageous to use the NVIDA versions

provided the vector and matrix sizes are large enough. See the section Programming Notes for

BLAS Using NVIDIA for further details.

Table 9.2: Level 2 and Level 3 Basic Linear Algebra Subprograms – GREEN Denotes

NVIDIA Version Available

Operation

Real

Double

Complex

Double
Complex

Pg.

Matrix-Vector Multiply, General SGEMV

DGEMV CGEMV ZGEMV 1592

Matrix-Vector Multiply, Banded SGBMV DGBMV CGBMV ZGBMV 1592

Matrix-Vector Multiply, Hermitian CHEMV ZHEMV 1592

Matrix-Vector Multiply,

Hermitian and Banded

 CHBMV ZHBMV 1593

Matrix-Vector Multiply

Symmetric and Real

SSYMV DSYMV 1593

Matrix-Vector Multiply,

Symmetric and Banded

SSBMV DSBMV 1593

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1591

Operation

Real

Double

Complex

Double
Complex

Pg.

Matrix-Vector Multiply, Triangular STRMV DTRMV CTRMV ZTRMV 1593

Matrix-Vector Multiply,

Triangular and Banded

STBMV DTBMV CTBMV ZTBMV 1594

Matrix-Vector Multiply,

Packed Triangular

STPMV DTPMV CTPMV ZTPMV 1594

Matrix-Vector Solve, Triangular STRSV DTRSV CTRSV ZTRSV 1594

Matrix-Vector Solve, Packed

Triangular

STPSV DTPSV CTPSV ZTPSV 1595

Matrix-Vector Solve,

Triangular and Banded

STBSV DTBSV CTBSV ZTBSV 1595

Rank-One Matrix Update,

General and Real

SGER

DGER 1595

Rank-One Matrix Update,

General, Complex and Transpose

 CGERU ZGERU 1595

Rank-One Matrix Update,

General, Complex, and Conjugate
Transpose

 CGERC ZGERC 1596

Rank-One Matrix Update,

Hermitian and Conjugate Transpose

 CHER ZHER 1596

Rank-Two Matrix Update,

Hermitian and Conjugate Transpose

 CHER2 ZHER2 1596

Rank-Two Matrix Update,

Packed and Conjugate Transpose

 CHPR2 ZHPR2

Rank-One Matrix Update,

Symmetric and Real

SSYR DSYR 1597

Rank-Two Matrix Update,

Symmetric and Real

SSYR2 DSYR2 1597

Rank-Two Matrix Update,

Packed Symmetric and Real

SSPR2 DSPR2 1597

Packed Symmetric or Hermitian
Matrix-Vector Multiply

SSPMV DSPMV CHPMV ZHPMV 1593

Packed Symmetric or Hermitian

Outer Product Update

SSPR DSPR CHPR ZHPR 1597

Matrix--Matrix Multiply, General SGEMM DGEMM CGEMM ZGEMM 1598

Matrix-Matrix Multiply, Symmetric SSYMM DSYMM CSYMM ZSYMM 1598

Matrix-Matrix Multiply, Hermitian CHEMM ZHEMM 1598

Rank - k Update, Symmetric SSYRK DSYRK CSYRK ZSYRK 1598

Rank - k Update, Hermitian CHERK ZHERK 1599

Rank - 2k Update, Symmetric SSYR2K DSYR2K CSYR2K ZSYR2K 1599

Rank - 2k Update, Hermitian CHER2K ZHER2K 1599

Matrix-Matrix Multiply, Triangular STRMM DTRMM CTRMM ZTRMM 1600

1592 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Operation

Real

Double

Complex

Double
Complex

Pg.

Matrix-Matrix solve, Triangular STRSM DTRSM CTRSM ZTRSM 1600

Matrix–Vector Multiply, General

CALL SGEMV (TRANS, M, N, SALPHA, SA, LDA, SX, INCX, SBETA, SY, INCY)

CALL DGEMV (TRANS, M, N, DALPHA, DA, LDA, DX, INCX, DBETA, DY, INCY)

CALL CGEMV (TRANS, M, N, CALPHA, CA, LDA, CX, INCX, CBETA, CY, INCY)

CALL ZGEMV (TRANS, M, N, ZALPHA, ZA, LDA, ZX, INCX, ZBETA, ZY, INCY)

For all data types, A is an M N matrix. These subprograms set y to one of the expressions:

y ← αAx + βy, y ← αA
T
x + βy, or for complex data,

Ty A y

The character flag TRANS determines the operation.

Matrix–Vector Multiply, Banded

CALL SGBMV (TRANS, M, N, NLCA, NUCA SALPHA, SA, LDA, SX, INCX, SBETA,

SY, INCY)

CALL DGBMV (TRANS, M, N, NLCA, NUCA DALPHA, DA, LDA, DX, INCX, DBETA,

DY, INCY)

CALL CGBMV (TRANS, M, N, NLCA, NUCA CALPHA, CA, LDA, CX, INCX, BETA,

CY, INCY)

CALL ZGBMV (TRANS, M, N, NLCA, NUCA ZALPHA, ZA, LDA, ZX, INCX, ZBETA,

ZY, INCY)

For all data types, A is an M N matrix with NLCA lower codiagonals and NUCA upper

codiagonals. The matrix is stored in band storage mode. These subprograms set y to one of the

expressions: y ← αAx + βy, y ← αA
T
x + βy, or for complex data,

Ty A x y

The character flag TRANS determines the operation.

Matrix-Vector Multiply, Hermitian

CALL CHEMV (UPLO, N, CALPHA, CA, LDA, CX, INCX, CBETA, CY, INCY)

CALL ZHEMV (UPLO, N, ZALPHA, ZA, LDA, ZX, INCX, ZBETA, ZY, INCY)

For complex types, A is an N N matrix. These subprograms set y ← αAx + βy where A is an

Hermitian matrix. The matrix A is either referenced using the upper or lower triangular part. The

character flag UPLO determines the part used.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1593

Matrix-Vector Multiply, Packed Hermitian

CALL CHPMV (UPLO, N, CALPHA, CAP, CX, INCX, CBETA, CY, INCY)

CALL ZHPMV (UPLO, N, ZALPHA, ZAP, ZX, INCX, ZBETA, ZY, INCY)

For complex types, A is an N N matrix. These subprograms set y ← αAx + βy where A is an

Hermitian matrix. The matrix A is either referenced using the packed upper or lower triangular

part. The character flag UPLO determines the part used.

Matrix-Vector Multiply, Hermitian and Banded

CALL CHBMV (UPLO, N, NCODA, CALPHA, CA, LDA, CX, INCX, CBETA, CY, INCY)

CALL ZHBMV (UPLO, N, NCODA, ZALPHA, ZA, LDA, ZX, INCX, ZBETA, ZY, INCY)

For all data types, A is an N N matrix with NCODA codiagonals. The matrix is stored in band

Hermitian storage mode. These subprograms set y ← αAx + βy. The matrix A is either referenced

using its upper or lower triangular part. The character flag UPLO determines the part used.

Matrix-Vector Multiply, Symmetric and Real

CALL SSYMV (UPLO, N, SALPHA, SA, LDA, SX, INCX, SBETA, SY, INCY)

CALL DSYMV (UPLO, N, DALPHA, DA, LDA, DX, INCX, DBETA, DY, INCY)

For all data types, A is an N N matrix. These subprograms set y ← αAx + βy where A is a

symmetric matrix. The matrix A is either referenced using the upper or lower triangular part. The

character flag UPLO determines the part used.

Matrix-Vector Multiply, Packed Symmetric and Real

CALL SSPMV (UPLO, N, SALPHA, SAP, SX, INCX, SBETA, SY, INCY)

CALL DSPMV (UPLO, N, DALPHA, DAP, DX, INCX, DBETA, DY, INCY)

For all data types, A is an N N matrix. These subprograms set y ← αAx + βy where A is a

packed symmetric matrix. The matrix A is either referenced using the packed upper or lower

triangular part. The character flag UPLO determines the part used.

Matrix-Vector Multiply, Symmetric and Banded

CALL SSBMV (UPLO, N, NCODA, SALPHA, SA, LDA, SX, INCX, SBETA, SY, INCY)

CALL DSBMV (UPLO, N, NCODA, DALPHA, DA, LDA, DX, INCX, DBETA, DY, INCY)

For all data types, A is an N N matrix with NCODA codiagonals. The matrix is stored in band

symmetric storage mode. These subprograms set y ← αAx + βy. The matrix A is either referenced

using its upper or lower triangular part. The character flag UPLO determines the part used.

Matrix-Vector Multiply, Triangular

CALL STRMV (UPLO, TRANS, DIAGNL, N, SA, LDA, SX, INCX)

CALL DTRMV (UPLO, TRANS, DIAGNL, N, DA, LDA, DX, INCX)

CALL CTRMV (UPLO, TRANS, DIAGNL, N, CA, LDA, CX, INCX)

CALL ZTRMV (UPLO, TRANS, DIAGNL, N, ZA, LDA, ZX, INCX)

1594 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

For all data types, A is an N N triangular matrix. These subprograms set x to one of the

expressions: x ← Ax, x ←A
T
x, or for complex data,

Tx A x

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit

triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used

and the operation performed.

Matrix-Vector Multiply, Packed Triangular

CALL STPMV (UPLO, TRANS, DIAGNL, N, SAP, SX, INCX)

CALL DTPMV (UPLO, TRANS, DIAGNL, N, DAP, DX, INCX)

CALL CTPMV (UPLO, TRANS, DIAGNL, N, CAP, CX, INCX)

CALL ZTPMV (UPLO, TRANS, DIAGNL, N, ZAP, ZX, INCX)

For all data types, A is an N N packed triangular matrix. These subprograms set x to one of the

expressions: x ← Ax, x ←A
T
x, or for complex data,

Tx A x

The matrix A is either referenced using the packed upper or lower triangular part and is unit or

nonunit triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix

used and the operation performed.

Matrix-Vector Multiply, Triangular and Banded

CALL STBMV (UPLO, TRANS, DIAGNL, N, NCODA, SA, LDA, SX, INCX)

CALL DTBMV (UPLO, TRANS, DIAGNL, N, NCODA, DA, LDA, DX, INCX)

CALL CTBMV (UPLO, TRANS, DIAGNL, N, NCODA, CA, LDA, CX, INCX)

CALL ZTBMV (UPLO, TRANS, DIAGNL, N, NCODA, ZA, LDA, ZX, INCX)

For all data types, A is an N N matrix with NCODA codiagonals. The matrix is stored in band

triangular storage mode. These subprograms set x to one of the expressions: x ← Ax, x ← A
T
x, or

for complex data,

Tx A x

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit

triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used

and the operation performed.

Matrix-Vector Solve, Triangular

CALL STRSV (UPLO, TRANS, DIAGNL, N, SA, LDA, SX, INCX)

CALL DTRSV (UPLO, TRANS, DIAGNL, N, DA, LDA, DX, INCX)

CALL CTRSV (UPLO, TRANS, DIAGNL, N, CA, LDA, CX, INCX)

CALL ZTRSV (UPLO, TRANS, DIAGNL, N, ZA, LDA, ZX, INCX)

For all data types, A is an N N triangular matrix. These subprograms solve x for one of the

expressions: x ← A-1
x, x ← (A-1

)
T
x, or for complex data,

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1595

1 1

T Hx A x A x

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit

triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used

and the operation performed.

Matrix-Vector Solve, Triangular and Banded

CALL STBSV (UPLO, TRANS, DIAGNL, N, NCODA, SA, LDA, SX, INCX)

CALL DTBSV (UPLO, TRANS, DIAGNL, N, NCODA, DA, LDA, DX, INCX)

CALL CTBSV (UPLO, TRANS, DIAGNL, N, NCODA, CA, LDA, CX, INCX)

CALL ZTBSV (UPLO, TRANS, DIAGNL, N, NCODA, ZA, LDA, ZX, INCX)

For all data types, A is an N N triangular matrix with NCODA codiagonals. The matrix is stored in

band triangular storage mode. These subprograms solve x for one of the expressions: x ← A-1
x,

x ← (A-T) -
1
x, or for complex data,

1 1

T Hx A x A x

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit

triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used

and the operation performed.

Matrix-Vector Solve, Packed Triangular

CALL STPSV (UPLO, TRANS, DIAGNL, N, SAP, SX, INCX)

CALL DTPSV (UPLO, TRANS, DIAGNL, N, DAP, DX, INCX)

CALL CTPSV (UPLO, TRANS, DIAGNL, N, CAP, CX, INCX)

CALL ZTPSV (UPLO, TRANS, DIAGNL, N, ZAP, ZX, INCX)

For all data types, A is an N N packed triangular matrix. These subprograms solve x for one of

the expressions: x ← A-1
x, x ← (A-1

)
T
x, or for complex data,

1 1

T Hx A x A x

The matrix A is either referenced using its packed upper or lower triangular part and is unit or

nonunit triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix

used and the operation performed.

Rank-One Matrix Update, General and Real

CALL SGER (M, N, SALPHA, SX, INCX, SY, INCY, SA, LDA)

CALL DGER (M, N, DALPHA, DX, INCX, DY, INCY, DA, LDA)

For all data types, A is an M N matrix. These subprograms set A ← A + αxy
T
.

Rank-One Matrix Update, General, Complex, and Transpose

CALL CGERU (M, N, CALPHA, CX, INCX, CY, INCY, CA, LDA)

CALL ZGERU (M, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA)

1596 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

For all data types, A is an M N matrix. These subprograms set A ← A + αxy
T
.

Rank-One Matrix Update, General, Complex, and Conjugate Transpose

CALL CGERC (M, N, CALPHA, CX, INCX, CY, INCY, CA, LDA)

CALL ZGERC (M, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA)

For all data types, A is an M N matrix. These subprograms set

TA A xy

Rank-One Matrix Update, Hermitian and Conjugate Transpose

CALL CHER (UPLO, N, SALPHA, CX, INCX, CA, LDA)

CALL ZHER (UPLO, N, DALPHA, ZX, INCX, ZA, LDA)

For all data types, A is an N N matrix. These subprograms set

TA A xx

where A is Hermitian. The matrix A is either referenced by its upper or lower triangular part. The

character flag UPLO determines the part used. CAUTION: Notice the scalar parameter α is real,

and the data in the matrix and vector are complex.

Rank-One Matrix Update, Packed Hermitian and Conjugate Transpose

CALL CHPR (UPLO, N, SALPHA, CX, INCX, CAP)

CALL ZHPR (UPLO, N, DALPHA, ZX, INCX, ZAP)

For all data types, A is an N N matrix. These subprograms set

TA A xx

where A is packed Hermitian. The matrix A is either referenced by its upper or lower triangular

part. The character flag UPLO determines the part used. CAUTION: Notice the scalar parameter α

is real, and the data in the matrix and vector are complex.

Rank-Two Matrix Update, Hermitian and Conjugate Transpose

CALL CHER2 (UPLO, N, CALPHA, CX, INCX, CY, INCY, CA, LDA)

CALL ZHER2 (UPLO, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA)

For all data types, A is an N N matrix. These subprograms set

T TA A xy yx

where A is an Hermitian matrix. The matrix A is either referenced by its upper or lower triangular

part. The character flag UPLO determines the part used.

Rank-Two Matrix Update, Packed Hermitian and Conjugate Transpose

CALL CHPR2 (UPLO, N, CALPHA, CX, INCX, CY, INCY, CAP)

CALL ZHPR2 (UPLO, N, ZALPHA, ZX, INCX, ZY, INCY, ZAP)

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1597

For all data types, A is an N N matrix. These subprograms set

T TA A xy yx

where A is a packed Hermitian matrix. The matrix A is either referenced by its upper or lower

triangular part. The character flag UPLO determines the part used.

Rank-One Matrix Update, Symmetric and Real

CALL SSYR (UPLO, N, SALPHA, SX, INCX, SA, LDA)

CALL DSYR (UPLO, N, DALPHA, DX, INCX, DA, LDA)

For all data types, A is an N N matrix. These subprograms set A ← A + αxx
T
 where A is a

symmetric matrix. The matrix A is either referenced by its upper or lower triangular part. The

character flag UPLO determines the part used.

Rank-One Matrix Update, Packed Symmetric and Real

CALL SSPR (UPLO, N, SALPHA, SX, INCX, SAP)

CALL DSPR (UPLO, N, DALPHA, DX, INCX, DAP)

For all data types, A is an N N matrix. These subprograms set A ← A + αxx
T
 where A is a packed

symmetric matrix. The matrix A is either referenced using the packed upper or lower triangular

part. The character flag UPLO determines the part used.

Rank-One Matrix Update, Packed Hermitian

CALL CHPR (UPLO, N, SALPHA, CX, INCX, CAP)

CALL ZHPR (UPLO, N, DALPHA, ZX, INCX, ZAP)

For all data types, A is an N N matrix. These subprograms set A ← A + αxx
T
 where A is a packed

Hermitian matrix. The matrix A is either referenced using the packed upper or lower triangular

part. The character flag UPLO determines the part used.

Rank-Two Matrix Update, Symmetric and Real

CALL SSYR2 (UPLO, N, SALPHA, SX, INCX, SY, INCY, SA, LDA)

CALL DSYR2 (UPLO, N, DALPHA, DX, INCX, DY, INCY, DA, LDA)

For all data types, A is an N N matrix. These subprograms set A ← A + αxy
T
 + αyx

T
 where A is a

symmetric matrix. The matrix A is referenced by its upper or lower triangular part. The character

flag UPLO determines the part used.

Rank-Two Matrix Update, Packed Symmetric and Real

CALL SSPR2 (UPLO, N, SALPHA, SX, INCX, SY, INCY, SAP)

CALL DSPR2 (UPLO, N, DALPHA, DX, INCX, DY, INCY, DAP)

For all data types, A is an N N matrix. These subprograms set A ← A + αxy
T
 + αyx

T
 where A is a

packed symmetric matrix. The matrix A is referenced by its upper or lower triangular part. The

character flag UPLO determines the part used.

1598 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Matrix-Matrix Multiply, General

CALL SGEMM (TRANSA, TRANSB, M, N, K, SALPHA, SA, LDA, SB, LDB, SBETA,

SC, LDC)

CALL DGEMM (TRANSA, TRANSB, M, N, K, DALPHA, DA, LDA, DB, LDB, DBETA, DC, LDC)

CALL CGEMM (TRANSA, TRANSB, M, N, K, CALPHA, CA, LDA, CB, LDB, CBETA, CC, LDC)

CALL ZGEMM (TRANSA, TRANSB, M, N, K, ZALPHA, ZA, LDA, ZB, LDB, ZBETA, ZC, LDC)

For all data types, these subprograms set CM×N to one of the expressions:

, , , ,

or for complex data, , , ,

,

T T T T

T T T T

T T T T

C AB C C A B C C AB C C A B C

C AB C C A B C C A B C

C A B C C A B C

The character flags TRANSA and TRANSB determine the operation to be performed. Each matrix

product has dimensions that follow from the fact that C has dimension M N.

Matrix-Matrix Multiply, Symmetric

CALL SSYMM (SIDE, UPLO, M, N, SALPHA, SA, LDA, SB, LDB, SBETA, SC, LDC)

CALL DSYMM (SIDE, UPLO, M, N, DALPHA, DA, LDA, DB, LDB, DBETA, DC, LDC)

CALL CSYMM (SIDE, UPLO, M, N, CALPHA, CA, LDA, CB, LDB, CBETA, CC, LDC)

CALL ZSYMM (SIDE, UPLO, M, N, ZALPHA, ZA, LDA, ZB, LDB, ZBETA, ZC, LDC)

For all data types, these subprograms set CM×N to one of the expressions: C ← αAB + βC or

C ← αBA + βC, where A is a symmetric matrix. The matrix A is referenced either by its upper or

lower triangular part. The character flags SIDE and UPLO determine the part of the matrix used

and the operation performed.

Matrix-Matrix Multiply, Hermitian

CALL CHEMM (SIDE, UPLO, M, N, CALPHA, CA, LDA, CB, LDB, CBETA, CC, LDC)

CALL ZHEMM (SIDE, UPLO, M, N, ZALPHA, ZA, LDA, ZB, LDB, ZBETA, ZC, LDC)

For all data types, these subprograms set CM×N to one of the expressions: C ← αAB + βC or

C ← αBA + βC, where A is an Hermitian matrix. The matrix A is referenced either by its upper or

lower triangular part. The character flags SIDE and UPLO determine the part of the matrix used

and the operation performed.

Rank-k Update, Symmetric

CALL SSYRK (UPLO, TRANS, N, K, SALPHA, SA, LDA, SBETA, SC, LDC)

CALL DSYRK (UPLO, TRANS, N, K, DALPHA, DA, LDA, DBETA, DC, LDC)

CALL CSYRK (UPLO, TRANS, N, K, CALPHA, CA, LDA, CBETA, CC, LDC)

CALL ZSYRK (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZBETA, ZC, LDC)

For all data types, these subprograms set CM ×N to one of the expressions: C ← αAA
T
 + C or

C ← αA
T
A + C. The matrix C is referenced either by its upper or lower triangular part. The

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1599

character flags UPLO and TRANS determine the part of the matrix used and the operation

performed. In subprogram CSYRK and ZSYRK, only values ‘N‘ or ‘T‘ are allowed for TRANS; ‘C‘

is not acceptable.

Rank-k Update, Hermitian

CALL CHERK (UPLO, TRANS, N, K, SALPHA, CA, LDA, SBETA, CC, LDC)

CALL ZHERK (UPLO, TRANS, N, K, DALPHA, ZA, LDA, DBETA, ZC, LDC)

For all data types, these subprograms set CN × N to one of the expressions:

 or T TC AA C C A A C

The matrix C is referenced either by its upper or lower triangular part. The character flags UPLO

and TRANS determine the part of the matrix used and the operation performed. CAUTION: Notice

the scalar parameters α and are real, and the data in the matrices are complex. Only values

‘N‘or ‘C‘are allowed for TRANS; ‘T‘is not acceptable.

Rank-2k Update, Symmetric

CALL SSYR2K (UPLO, TRANS, N, K, SALPHA, SA, LDA, SB, LDB, SBETA, SC,

LDC)

CALL DSYR2K (UPLO, TRANS, N, K, DALPHA, DA, LDA, DB, LDB, DBETA, DC, LDC)

CALL CSYR2K (UPLO, TRANS, N, K, CALPHA, CA, LDA, CB, LDB, CBETA, CC, LDC)

CALL ZSYR2K (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZB, LDB, ZBETA, ZC, LDC)

For all data types, these subprograms set CN × N to one of the expressions:

+ C or T T T TC AB A C A B B A C

The matrix C is referenced either by its upper or lower triangular part. The character flags UPLO

and TRANS determine the part of the matrix used and the operation performed. In subprogram

CSYR2K and ZSYR2K, only values ‘N‘or ‘T‘ are allowed for TRANS; ‘C‘is not acceptable.

Rank-2k Update, Hermitian

CALL CHER2K (UPLO, TRANS, N, K, CALPHA, CA, LDA, CB, LDB, SBETA, CC, LDC)

CALL ZHER2K (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZB, LDB, DBETA, ZC, LDC)

For all data types, these subprograms set CN × N to one of the expressions:

+ C or T T T TC AB BA C A B B A C

The matrix C is referenced either by its upper or lower triangular part. The character flags UPLO

and TRANS determine the part of the matrix used and the operation performed. CAUTION: Notice

the scalar parameter is real, and the data in the matrices are complex. In subprogram CHER2K

and ZHER2K, only values ‘N‘ or ‘C‘are allowed for TRANS; ‘T‘is not acceptable.

1600 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Matrix-Matrix Multiply, Triangular

CALL STRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, SALPHA, SA, LDA, SB, LDB)

CALL DTRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, DALPHA, DA, LDA, DB, LDB)

CALL CTRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, CALPHA, CA, LDA, CB,LDB)

CALL ZTRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, ZALPHA, ZA, LDA, ZB, LDB)

For all data types, these subprograms set BM ×N to one of the_expressions:

, , , ,T TB AB B A B B BA B BA

or for complex data,

 , or T TB A B B BA

where A is a triangular matrix. The matrix A is either referenced using its upper or lower triangular

part and is unit or nonunit triangular. The character flags SIDE, UPLO, TRANSA, and DIAGNL

determine the part of the matrix used and the operation performed.

Matrix-Matrix Solve, Triangular

CALL STRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, SALPHA, SA, LDA, SB, LDB)

CALL DTRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, DALPHA, DA, LDA, DB, LDB)

CALL CTRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, CALPHA, CA, LDA, CB, LDB)

CALL ZTRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, ZALPHA, ZA, LDA, ZB, LDB)

For all data types, these subprograms set BM ×N to one of the expressions:

T

1 1 1 1, , , ,
T

B A B B BA B A B B B A

or for complex data,

1 1

, or T TB A B B B A

where A is a triangular matrix. The matrix A is either referenced using its upper or lower triangular

part and is unit or nonunit triangular. The character flags SIDE, UPLO, TRANSA, and DIAGNL

determine the part of the matrix used and the operation performed.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1601

Programming Notes for BLAS Using NVIDIA
This reference material is intended for users who want to use the computational resources of their

NVIDIA GPU board for BLAS. Users who do not have the NVIDIA GPU board can ignore this

section.

Rationale, General Algorithm and an Example

NVIDIA Corp. implemented certain Level 1, 2 and 3 BLAS in their Library, CUDA CUBLAS

Library, V3.1, July, 2010. The NVIDIA external names and argument protocols are different

from the equivalent Fortran names and argument addressing. See Table 9.2 for names marked in

the color GREEN. IMSL has written these marked Fortran BLAS so that they call equivalent

NVIDIA C language codes from the CUBLAS library. No direct use or knowledge of C is

required by a Fortran programmer in order to take advantage of these codes. It is necessary that a

user code or application package be compiled with a Fortran 2003 compiler that has implemented

the C Interoperability Standard feature. See The Fortran 2003 Handbook, Adams, et al., p. 561.

IMSL‘s use of this feature is the key to providing a portable version of these Fortran-callable

IMSL/NVIDIA BLAS. The program or application is then compiled and linked using IMSL and

NVIDIA libraries that contain these BLAS.

Note: An NVIDIA Graphics Processing Unit (GPU) is required to take advantage of the BLAS.

The strategy for using the attached NVIDIA GPU is given by the following algorithm:

 If the maximum of vector or matrix dimensions are larger than a switchover array size,

NSTART, and NVIDIA provides a CUBLAS code, then

 Copy the required vector and matrix data from the CPU to the GPU

 Compute the result on the GPU

 Copy the result from the GPU to the CPU

 Else, use the IMSL equivalent version of the BLAS routine that does not use the GPU.

Normally a code that calls a IMSL/NVIDIA BLAS code does not have to be aware of the copy

steps or the switchover size, NSTART. These are hidden from the user code. In the first algorithm

step, a working block is allocated on the GPU for each array argument. A table within the IMSL

module, CUBLAS_LIBRARY, records the sizes and GPU addresses of these blocks. If the sizes

are too small for the current problem size and data type the blocks are reallocated to be of

adequate size. The same working block on the GPU may be used for many calls to the

IMSL/NVIDIA BLAS. The IMSL versions of the BLAS also allow a user to define individual

values of NSTART for each routine. This is important because using the GPU may be slower than

using a CPU Fortran version until a switchover array size is reached. Thereafter the GPU version

is typically faster and increasingly much faster as the problem size increases. The default value of

NSTART=32 is used for each vector/matrix argument of each routine but it may not be optimal.

This default allows the routines to function correctly without initial attention to this value.

1602 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

The user can change the default switchover value for all IMSL/NVIDIA BLAS vector/matrix

arguments by setting NSTART to the desired value prior to calling the BLAS routine. Additionally,

users can reset this value for each individual vector/matrix argument of the routines listed in Table

9.2 and marked with the color GREEN by using the IMSL routine CUBLAS_SET(…). Note that

CUBLAS_SET cannot be used prior to an initial call to a BLAS code. The switchover values can be

obtained using the IMSL routine CUBLAS_GET(…).

The floating point results obtained using the CPU vs. the GPU will likely differ in units of the low

order bits in each component. These differences come from non-equivalent strategies of floating

point arithmetic and rounding modes that are implemented in the NVIDIA board. This can be an

important detail when comparing results for purposes of benchmarking or code regression.

Generally either result should be acceptable for numerical work.

As an added feature, the user can flag when the data values for a vector or matrix are present on

the GPU and hence suppress the IMSL/NVIDIA BLAS code from first copying the data. This is

often important since the data movement from the CPU to the GPU may be a significant part of

the computation time. If there is no indication that the data is present, it is copied from the CPU to

the GPU each time a routine is called. The necessity of copying for each use of a BLAS code

depends on the application. Valid results are always copied back from the GPU to the CPU

memory. The indication that data for that positional array argument requires no initial copy step

is that the switchover value for that array argument is negative. The absolute value is used as the

switchover value. Caution: Be sure and reset this to a positive value when the argument requires

an initial copy step.

In Tables 9.3-9.5, we list an enumeration that includes the routines in Table 9.2 marked with the

color GREEN. Note the prefix to each name joined with the string ‗CUDABLAS_‘. There are

enumerated names that currently do not use the NVIDIA hardware. They are included in

anticipation of future additions that will use the CUBLAS library.

There are four utility routines provided in the IMSL module CUDABLAS_LIBRARY that can be used

to help manage the use of NVIDIA BLAS. These utilities appear in Table 9.7 and are described in

more detail in the routines section of these notes.

For example, to set the value at 500 wherein the GPU is first used for the Level-2 routine ‗SGEMV‘

first positional array argument, ‗A(*,*)‘, i.e. Array_Arg = 1, execute the code:

USE CUDABLAS_LIBRARY

 INTEGER ISWITCH, Array_Arg
 …

 ISWITCH=500

 Array_Arg = 1

! Switch to using GPU when largest size of A(*,*) > 500.

CALL CUBLAS_SET(CUDABLAS_SGEMV, Array_Arg, ISWITCH)

When the positional array argument, ‗A(*,*)‘ does not have to be copied for each subsequent

use of ‗SGEMV’:

USE CUDABLAS_LIBRARY

INTEGER ISWITCH, Array_Arg

Array_Arg = 1

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1603

ISWITCH=CUBLAS_GET(CUDABLAS_SGEMV, Array_Arg)

! Avoid copying data from CPU to GPU for subsequent calls to ‘SGEMV’

CALL CUBLAS_SET(CUDABLAS_SGEMV, Array_Arg, -abs(ISWITCH))

! Make several calls to ‘SGEMV’ with A(*,*)maintained unchanged on the GPU.

! Reset flag for copying A(*,*) when this matrix-vector product sequence is completed.

CALL CUBLAS_SET(CUDABLAS_SGEMV, Array_Arg, abs(ISWITCH))

Some NVIDIA hardware does not have working double precision versions of BLAS because there

is no double precision arithmetic available. However, the double precision code itself is part of

the CUDA CUBLAS library. It will appear to execute even though it will not give correct results

when the device has no double precision arithmetic. When the IMSL software detects that the

correct results are not returned, a warning error message will be printed. The user may instruct the

application to henceforth use the Fortran code by setting the switchover value to zero. For

example, if it is known that the hardware does not support DOUBLE PRECISION, then a code that

has calls to ‗DGEMM‘ will use an alternate version of this routine. Therefore, ignoring the error

message and continuing the code will result in using the alternate version to compute the result.

That code would include:

USE CUDABLAS_LIBRARY

 ! Flag first array argument A(*,*) to avoid use of the GPU for DGEMM:

CALL CUBLAS_SET(CUDABLAS_DGEMM,1,0)

If it is necessary to know if the GPU or the CPU version of ‗SGEMM‘ was used following a call to

that code, the inquiry code would include:

USE CUDABLAS_LIBRARY

! Get the current status for the last call to SGEMM with the INTEGER function

! CUBLAS_GET. The value ISWITCH=0 if an alternate was used, and ISWITCH=1 if the

! GPU was used.

ISWITCH = CUBLAS_GET(CUDABLAS_SGEMM, 4)

Enumeration of IMSL/NVIDIA BLAS

Table 9.3. Enumeration of Level-1 BLAS

CUDABLAS_SROTG CUDABLAS_DROTG CUDABLAS_CROTG CUDABLAS_ZROTG

CUDABLAS_SROTMG CUDABLAS_DROTMG

CUDABLAS_SROT CUDABLAS_DROT CUDABLAS_CROT CUDABLAS_ZROT

CUDABLAS_SROTM CUDABLAS_DROTM CUDABLAS_CSROT CUDABLAS_ZSROT

CUDABLAS_SSWAP CUDABLAS_DSWAP CUDABLAS_CSWAP CUDABLAS_ZSWAP

CUDABLAS_SCOPY CUDABLAS_DCOPY CUDABLAS_CCOPY CUDABLAS_ZCOPY

CUDABLAS_SAXPY CUDABLAS_DAXPY CUDABLAS_CAXPY CUDABLAS_ZAXPY

CUDABLAS_SDOT CUDABLAS_DDOT CUDABLAS_CDOTC CUDABLAS_ZDOTC

1604 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

CUDABLAS_SDSDOT CUDABLAS_DSDOT CUDABLAS_CDOTU CUDABLAS_ZDOTU

CUDABLAS_SSCAL CUDABLAS_DSCAL CUDABLAS_CSCAL CUDABLAS_ZSCAL

 CUDABLAS_CSSCAL CUDABLAS_ZSSCAL

CUDABLAS_SNRM2 CUDABLAS_DNRM2 CUDABLAS_SCNRM2 CUDABLAS_DZNRM2

CUDABLAS_SASUM CUDABLAS_DASUM CUDABLAS_SCASUM CUDABLAS_DZASUM

CUDABLAS_ISAMIN CUDABLAS_IDAMIN CUDABLAS_ICAMIN CUDABLAS_IZAMIN

CUDABLAS_ISAMAX CUDABLAS_IDAMAX CUDABLAS_ICAMAX CUDABLAS_IZAMAX

Table 9.4. Enumeration of Level-2 BLAS

CUDABLAS_SGEMV CUDABLAS_DGEMV CUDABLAS_CGEMV CUDABLAS_ZGEMV

CUDABLAS_SGBMV CUDABLAS_DGBMV CUDABLAS_CGBMV CUDABLAS_ZGBMV

CUDABLAS_SSYMV CUDABLAS_DSYMV CUDABLAS_CHEMV CUDABLAS_ZHEMV

CUDABLAS_SSBMV CUDABLAS_DSBMV CUDABLAS_CHBMV CUDABLAS_ZHBMV

CUDABLAS_SSPMV CUDABLAS_DSPMV CUDABLAS_CHPMV CUDABLAS_ZHPMV

CUDABLAS_STRMV CUDABLAS_DTRMV CUDABLAS_CTRMV CUDABLAS_ZTRMV

CUDABLAS_STBMV CUDABLAS_DTBMV CUDABLAS_CTBMV CUDABLAS_ZTBMV

CUDABLAS_STPMV CUDABLAS_DTPMV CUDABLAS_CTPMV CUDABLAS_ZTPMV

CUDABLAS_STRSV CUDABLAS_DTRSV CUDABLAS_CTRSV CUDABLAS_ZTRSV

CUDABLAS_STBSV CUDABLAS_DTBSV CUDABLAS_CTBSV CUDABLAS_ZTBSV

CUDABLAS_STPSV CUDABLAS_DTPSV CUDABLAS_CTPSV CUDABLAS_ZTPSV

CUDABLAS_SGER CUDABLAS_DGER CUDABLAS_CGERU CUDABLAS_ZGERU

 CUDABLAS_CGERC CUDABLAS_ZGERC

CUDABLAS_SSYR CUDABLAS_DSYR CUDABLAS_CHER CUDABLAS_ZHER

CUDABLAS_SSYR2 CUDABLAS_DSYR2 CUDABLAS_CHER2 CUDABLAS_ZHER2

CUDABLAS_SSPR CUDABLAS_DSPR CUDABLAS_CHPR CUDABLAS_ZHPR

CUDABLAS_SSPR2 CUDABLAS_DSPR2 CUDABLAS_CHPR2 CUDABLAS_ZHPR2

Table 9.5. Enumeration of Level-3 BLAS

CUDABLAS_SGEMM CUDABLAS_DGEMM CUDABLAS_CGEMM CUDABLAS_ZGEMM

CUDABLAS_SSYMM CUDABLAS_DSYMM CUDABLAS_CSYMM CUDABLAS_ZSYMM

CUDABLAS_SSYRK CUDABLAS_DSYRK CUDABLAS_CSYRK CUDABLAS_ZSYRK

CUDABLAS_SSYR2K CUDABLAS_DSYR2K CUDABLAS_CSYR2K CUDABLAS_ZSYR2K

CUDABLAS_STRMM CUDABLAS_DTRMM CUDABLAS_CTRMM CUDABLAS_ZTRMM

CUDABLAS_STRSM CUDABLAS_DTRSM CUDABLAS_CTRSM CUDABLAS_ZTRSM

 CUDABLAS_CHEMM CUDABLAS_ZHEMM

 CUDABLAS_CHERK CUDABLAS_ZHERK

 CUDABLAS_CHER2K CUDABLAS_ZHER2K

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1605

Table 9.6. Public Symbols and Parameters in Module CUDABLAS_LIBRARY

CUBLAS_STATUS_SUCCESS=0 CUBLAS_STATUS_NOT_INITIALIZED=1

CUBLAS_STATUS_ALLOC_FAILED=3 CUBLAS_STATUS_INVALID_VALUE=7

CUBLAS_STATUS_ARCH_MISMATCH=8 CUBLAS_STATUS_MAPPING_ERROR=11

CUBLAS_STATUS_EXECUTION_FAILED=13 CUBLAS_STATUS_INTERNAL_ERROR=14

FSIZE=4 DSIZE=8

CSIZE=8 ZSIZE=16

SKIND=kind(1.E0) DKIND=kind(1.D0)

SZERO=0.E0 DZERO=0.D0

SONE=1.E0 DONE=1.D0

LEVEL=6 (IMSL Error or Warning Level) NSTART(=32) (Default Switchover Value)

Table 9.7. Subprograms Packaged in Module CUDABLAS_LIBRARY

Fortran Name Implemented in Module

CUBLAS_GET

CUBLAS_SET

CHECK_BUFFER_ALLOCATION

CUDA_ERROR_PRINT

Table 9.8 lists a number of NVIDIA Helper subprograms called within the CUDABLAS_LIBRARY

Modules. These are mostly for internal use only but are documented in the case that a

knowledgeable NVIDIA Library user chooses to make use of them.

Table 9.8. NVIDIA Helper Subprograms Called in Module CUDABLAS_LIBRARY

Fortran Usage Name in Module NVIDIA External C Name

ISW = cublasInit() cublasInit()

ISW = cublasShutdown() cublasShutdown()

ISW = cublasError() cublasError()

ISW = cublasAlloc(n, datasize, c_ptr) cublasAlloc(n, datasize, c_ptr)

ISW = cublasFree(c_ptr) cublasFree(c_ptr)

ISW = cublasSetVector(n, datasize, x, incx,

y, incy)

cublasSetVector

(n, datasize, x, incx, y, incy)

ISW = cublasGetVector(n, datasize, x, incx,

y, incy)

cublasGetVector

(n, datasize, x, incx, y, incy)

ISW = cublasSetMatrix(m, n, datasize, A, lda,

devA, ldd)

cublasSetMatrix(m, n, datasize,

A, lda, devA, ldd)

ISW = cublasGetMatrix(m, n, datasize, devA,

lda, B, ldb)

cublasGetMatrix(m, n, datasize,

devA, lda, B, ldb)

1606 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

In Table 9.8 the arguments c_ptr, x, y, A, devA, and B are C pointers to arrays either on the

GPU or the CPU. These are instantiated with calls to helper routine cublasAlloc() or by use

of the Fortran 2003 intrinsic function c_loc(…) for array arguments residing on the CPU. This

intrinsic returns a C pointer to a Fortran object. The helper function cublasError()is called

from each of the double precision IMSL/NVIDIA BLAS codes to assess the availability of double

precision floating point hardware on the GPU.

The NVIDIA Environmental Subprograms listed in Table 9.9 provide details about the runtime

working environment.

Table 9.9. NVIDIA Environmental Subprograms

Fortran Usage Name in Module NVIDIA External Name

ISW = cudaGetDeviceCount(ICOUNT) cudaGetDeviceCount()

ISW = cudaSetDevice(IDEVICE),{0 indexed} cudaSetDevice()

ISW = cudaGetDeviceProperties &

(<TYPE> cudaDeviceProp, IDEVICE)

cudaGetDeviceProperties()

One argument for cudaGetDeviceProperties is a Fortran derived type, cudaDeviceProp,

with a C binding. This contains technical information about the device, including its name. This

C character string, NAME(*), is terminated with C_NULL_CHAR. The derived type,

cudaDeviceProp is described below:

TYPE, BIND(C) :: cudaDeviceProp

 CHARACTER(C_CHAR) NAME(256)

 INTEGER(C_SIZE_T) totalGlobalMem

 INTEGER(C_SIZE_T) sharedMemPerBlock

 INTEGER(C_INT) regsPerBlock

 INTEGER(C_INT) warpSize

 INTEGER(C_SIZE_T) memPitch

 INTEGER(C_INT) maxThreadsPerBlock

 INTEGER(C_INT) maxThreadsDim(3)

 INTEGER(C_INT) maxGridSize(3)

 INTEGER(C_SIZE_T) totalConstMem

 INTEGER(C_INT) major

 INTEGER(C_INT) minor

 INTEGER(C_INT) clockRate

 INTEGER(C_SIZE_T) textureAlignment

 INTEGER(C_INT) deviceOverlap

 INTEGER(C_INT) multiProcessorCount

 INTEGER(C_INT) kernelExecTimeoutEnabled

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1607

 INTEGER(C_INT) integrated

 INTEGER(C_INT) canMapHostMemory

 INTEGER(C_INT) computeMode

 INTEGER(C_INT) concurrentKernels

END TYPE

Required NVIDIA Copyright Notice:

© 2005–2010 by NVIDIA Corporation. All rights reserved.

Portions of the NVIDIA SGEMM and DGEMM library routines were written by Vasily Volkov

and are subject to the Modified Berkeley Software Distribution License as follows:

Copyright (©) 2007-09, Regents of the University of California

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met: Redistributions of source code must retain the

above copyright notice, this list of conditions and the following disclaimer. (See CUDA CUBLAS

Library,Version 3.1, July, 2010, for these remaining conditions.)

CUBLAS_GET
Returns the switchover value for a positional array argument for a specified BLAS routine.

Function Return Value

CUBLAS_GET — The array size switchover value used to switch between use of the

NVIDIA device or standard Fortran BLAS routine. (Output)

When ARRAY_ARGUMENT is set to 4, the return value will be 0 or 1 indicating whether

the Fortran BLAS routine was used on the last use of the specified routine. (0 =

Fortran BLAS was used , 1= NVIDIA device was used).

Required Arguments

ENUM — An enumerator which specifies the BLAS routine for which the switchover value

is described. (Input)

ENUM must be one of the values defined in Tables 9.3, 9.4, or 9.5.

ARRAY_ARGUMENT — An integer indicating the array argument of the BLAS routine for

which information is to be retrieved. The array argument is specified by its position in

the calling sequence, i.e. 1 = array argument 1, 2 = array argument 2, etc. (Input)

For example, for the BLAS routine SGEMM, array A is ARRAY_ARGUMENT =1, array B is

ARRAY_ARGUMENT = 2, and array C is ARRAY_ARGUMENT =3. Setting

ARRAY_ARGUMENT to 4 will dictate that CUBLAS_GET returns a 0, 1 value indicating

which was last used – the standard Fortran BLAS routine or the NVIDIA device,

respectively.

1608 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CUBLAS_GET (ENUM, ARRAY_ARGUMENT)

Description

This routine can be used to either retrieve the array size switchover value, NSTART, for a specified

array of a specified BLAS routine or retrieve a 0, 1 flag which indicates whether the NVIDIA

device was used for the last specified BLAS routine called.

Example

In this example the switchover value for array A of the BLAS routine SGEMM is first retrieved by

making a call to CUBLAS_GET. Then CUBLAS_SET is used to inform CUDABLAS_SGEMM not to

copy array A from the CPU to the GPU after the initial copy. Then, CUBLAS_SET is used to reset

the switchover value back to its original setting. Finally, CUBLAS_GET is used to query whether or

not the NVIDIA device was used on the last call to SGEMM.

 USE CUDABLAS_LIBRARY

 USE UMACH_INT

 INTEGER ARRAY_ARGUMENT, IDEVICE, ISWITCH, NOUT

 INTEGER, PARAMETER :: N=500

 REAL ALPHA, BETA, A(N,N), B(N,N), C(N,N), D(N,N)

 ALPHA = 1.0

 BETA = 1.0

 A = 2.0

 B = 3.0

 C = 4.0

! ARRAY A IS THE FIRST ARRAY IN

! THE SGEMM CALLING SEQUENCE

 ARRAY_ARGUMENT = 1

! GET THE CURRENT SWITCHOVER VALUE

! FOR sGEMM

 ISWITCH = CUBLAS_GET (CUDABLAS_SGEMM, ARRAY_ARGUMENT)

! PERFORM AN ARRAY MULITIPLICATION

 CALL SGEMM ('N', 'N', N, N, N, ALPHA, A, N, B, N, BETA, D, N)

! AVOID COPYING A FROM THE CPU TO

! THE GPU HENCEFORTH

 CALL CUBLAS_SET (CUDABLAS_SGEMM, ARRAY_ARGUMENT, -ABS(ISWITCH))

! PERFORM A SECOND ARRAY MULTIPLICATION

 CALL SGEMM ('N', 'N', N, N, N, ALPHA, A, N, C, N, BETA, C, N)

! RESET THE SWITCHOVER VALUE FOR

! SGEMM BACK TO ITS ORIGINAL VALUE

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1609

 CALL CUBLAS_SET (CUDABLAS_SGEMM, ARRAY_ARGUMENT, ISWITCH)

! DETERMINE WHETHER OR NOT THE GPU

! WAS USED FOR THE LAST SGEMM CALL

 ARRAY_ARGUMENT = 4

 IDEVICE = CUBLAS_GET (CUDABLAS_SGEMM, ARRAY_ARGUMENT)

! PRINT THE RESULT OF THE LAST QUERY

 CALL UMACH (2, NOUT)

 IF (IDEVICE .EQ. 0) THEN

 WRITE(NOUT, *)'THE STANDARD FORTRAN BLAS SGEMM WAS USED.'

 ELSE

 WRITE(NOUT, *)'THE NVIDIA DEVICE SGEMM WAS USED.'

 END IF

 END

Output

The NVIDIA DEVICE SGEMM WAS USED.

CUBLAS_SET
Sets the switchover value for an array used by a specified BLAS routine.

Required Arguments

ENUM — An enumerator which specifies the BLAS routine for which the switchover value

is to be set. (Input)

ENUM must be one of the values defined in Tables 9.3, 9.4, or 9.5.

ARRAY_ARGUMENT — An integer indicating the array argument of the BLAS routine for

which information is to be set. The array argument is specified by its position in the

calling sequence, i.e. 1 = array argument 1, 2 = array argument 2, etc. (Input)

For example, for the BLAS routine SGEMM, array A is ARRAY_ARGUMENT =1, array B is

ARRAY_ARGUMENT = 2, and array C is ARRAY_ARGUMENT = 3.

NSTART — Defines the array size that is used as the swichover point for the array specified

by ARRAY_ARGUMENT when the BLAS routine specified by ENUM is used. (Input)

For arrays │NSTART│ the NVIDIA device will be used. For arrays │NSTART│ a

standard Fortran BLAS routine will be used. Setting NSTART to a negative value

indicates that no array copy need be performed for the array specified by

ARRAY_ARGUMENT. Setting NSTART to 0 indicates that the NVIDIA hardware in not

used for the specified BLAS routine.

FORTRAN 90 Interface

Generic: CALL CUBLAS_SET (ENUM, ARRAY_ARGUMENT, NSTART)

1610 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Description

This routine allows the user to set the array size values that will be used by a specified BLAS

routine as the switchover point for using a standard Fortran Blas routine versus the CUDABLAS

routine with the NVIDIA device. The routine can also be used to inform the NVIDIA device to not

perform an array copy after the initial copy has been performed.

Example

In this example the switchover for array A of the BLAS routine SGEMM is first retrieved by making

a call to CUBLAS_GET. Then CUBLAS_SET is used to inform CUDABLAS_SGEMM not to copy array

A from the CPU to the GPU after the initial copy. Then, CUBLAS_SET is used to reset the

switchover value back to its original setting. Finally, CUBLAS_GET is used to query whether or not

the NVIDIA device was used on the last call to SGEMM.

 USE CUDABLAS_LIBRARY

 USE UMACH_INT

 INTEGER ARRAY_ARGUMENT, IDEVICE, ISWITCH, NOUT

 INTEGER, PARAMETER :: N=500

 REAL ALPHA, BETA, A(N,N), B(N,N), C(N,N), D(N,N)

 ALPHA = 1.0

 BETA = 1.0

 A = 2.0

 B = 3.0

 C = 4.0

! ARRAY A IS THE FIRST ARRAY IN

! THE SGEMM CALLING SEQUENCE

 ARRAY_ARGUMENT = 1

! GET THE CURRENT SWITCHOVER VALUE

! FOR SGEMM

 ISWITCH = CUBLAS_GET (CUDABLAS_SGEMM, ARRAY_ARGUMENT)

! PERFORM AN ARRAY MULITIPLICATION

 CALL SGEMM ('N', 'N', N, N, N, ALPHA, A, N, B, N, BETA, D, N)

! AVOID COPYING A FROM THE CPU TO

! THE GPU HENCEFORTH

 CALL CUBLAS_SET (CUDABLAS_SGEMM, ARRAY_ARGUMENT, -ABS(ISWITCH))

! PERFORM A SECOND ARRAY MULTIPLICATION

 CALL SGEMM ('N', 'N', N, N, N, ALPHA, A, N, C, N, BETA, C, N)

! RESET THE SWITCHOVER VALUE FOR

! SGEMM BACK TO ITS ORIGINAL VALUE

 CALL CUBLAS_SET (CUDABLAS_SGEMM, ARRAY_ARGUMENT, ISWITCH)

! DETERMINE WHETHER OR NOT THE GPU

! WAS USED FOR THE LAST SGEMM CALL

 ARRAY_ARGUMENT = 4

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1611

 IDEVICE = CUBLAS_GET (CUDABLAS_SGEMM, ARRAY_ARGUMENT)

! PRINT THE RESULT OF THE LAST QUERY

 CALL UMACH (2, NOUT)

 IF (IDEVICE .EQ. 0) THEN

 WRITE(NOUT, *)'THE STANDARD FORTRAN BLAS SGEMM WAS USED.'

 ELSE

 WRITE(NOUT, *)'THE NVIDIA DEVICE SGEMM WAS USED.'

 END IF

 END

Output

The NVIDIA DEVICE SGEMM WAS USED.

CHECK_BUFFER_ALLOCATION
Maintains buffer sizes on the NVIDIA device and performs one-time initialization.

Required Arguments

ISZ — An array of length 5. (Input/Output)

The elements of ISZ contain the following:

ISZ
Element

Description

ISZ(1) Array size for the first array which appears in the argument list

of the BLAS routine being called. If an error occurs while trying

to allocate space for this array, an error flag is returned.

ISZ(2) Array size for the second array which appears in the argument

list of the BLAS routine being called. If an error occurs while

trying to allocate space for this array, an error flag is returned.

ISZ(3) Array size for the third array which appears in the argument list

of the BLAS routine being called. If an error occurs while trying

to allocate space for this array, an error flag is returned.

ISZ(4) Not used.

ISZ(5) The word size to be used when allocating the buffer. This

element should be one of the public parameters in the

CUDABLAS_LIBRARY module FSIZE = 4, DSIZE = 8, CSIZE =

8, or ZSIZE = 16.

If any of the first three elements of ISZ is set to zero on input then the GPU buffer for

that argument is deallocated.

FORTRAN 90 Interface

Generic: CALL CHECK_BUFFER_ALLOCATION (ISZ)

1612 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Description

Note: Normally, this routine is not called by the user.

This routine is used internally to initialize the buffer sizes for the arrays on the NVIDIA device.

Space is allocated for the arrays in initialization only. If an error occurs during the allocation of the

first, second, or third positional array then an error flag is returned in ISZ(1), ISZ(2), or ISZ(3),

respectively. If ISZ(1), ISZ(2), or ISZ(3) is set to zero on input then the space for the array

designated by the respective element is deallocated.

CUDA_ERROR_PRINT
Prints error messages generated through the use of the CUDABLAS Library using the IMSL error

handler.

Required Arguments

ISZ — An array of length 5. (Input/Output)

The elemnents of ISZ contain the following:

ISZ
Element

Description

ISZ(1) NOT used.

ISZ(2) NOT used.

ISZ(3) Used to pass the argument number of the BLAS routine being

called which is in error.

ISZ(4) The enumeration value which identifies the name of the routine

for which an error has occurred. ISZ(4) can be one of the

enumerated values listed in Tables 9.3, 9.4, or 9.5.

ISZ(5) NOT used.

NARRAY_ARGS — The number of array arguments for which the error occurred. (Input)

ERROR_NUMBER — An integer which identifies the error which occurred. (Input)

ERROR_NUMBER can be one of the following:

ERROR_NUMBER
Value

Error Description

ISZ(1) ―GPU memory allocation error for

array argument = %(i1) of ‖.

ISZ(2) ―CPU or GPU copy failure for

array argument = %(i1) of ‖.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1613

ERROR_NUMBER
Value

Error Description

ISZ(3) ―GPU or CPU copy failure for

array argument = %(i1), the result:‖

ISZ(4) ―Error in routine argument =. %(i1) of

Fortran version. ‖

ISZ(5) ―Double precision hardware on GPU not

available for ‖.

FORTRAN 90 Interface

Generic: CALL CUDA_ERROR_PRINT (ISZ, NARRAY_ARGS, ERROR_NUMBER)

Description

Note: Normally, this routine is not called by the user.

This routine is used internally to process and print error messages generated through the use of the

CUDABLAS Library.

1614 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Other Matrix/Vector Operations
This section describes a set of routines for matrix/vector operations. The matrix copy and

conversion routines are summarized by the following table:

 To

From Real
General

Complex
General

Real
Band

Complex
Band

Real General CRGRG CRGCG CRGRB

Complex General CCGCG CCGCB

Real Band CRBRG CRBRB CRBCB

Complex Band CCBCG CCBCB

Symmetric Full CSFRG

Hermitian Full CHFCG

Symmetric Band CSBRB

Hermitian Band CHBCB

The matrix multiplication routines are summarized as follows:

AB A

B Real
Rect.

Complex
Rect.

Real
Band

Complex
Band

Real Rectangular MRRRR

Complex Rect. MCRCR

Vector MURRV MUCRV MURBV MUCBV

The matrix norm routines are summarized as follows:

||A|| Real
Rectangular

Real
Band

Complex
Band

∞-norm
NRIRR

1-norm NR1RR NR1RB NR1CB

Frobenius NR2RR

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1615

CRGRG
Copies a real general matrix.

Required Arguments

A — Matrix of order N. (Input)

B — Matrix of order N containing a copy of A. (Output)

Optional Arguments

N — Order of the matrices. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CRGRG (A, B [,…])

Specific: The specific interface names are S_CRGRG and D_CRGRG.

FORTRAN 77 Interface

Single: CALL CRGRG (N, A, LDA, B, LDB)

Double: The double precision name is DCRGRG.

Description

The routine CRGRG copies the real N N general matrix A into the real N N general matrix B.

Example

A real 3 3 general matrix is copied into another real 3 3 general matrix.

 USE CRGRG_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N

 PARAMETER (LDA=3, LDB=3, N=3)

1616 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

!

 REAL A(LDA,N), B(LDB,N)

! Set values for A

! A = (0.0 1.0 1.0)

! (-1.0 0.0 1.0)

! (-1.0 -1.0 0.0)

!

 DATA A/0.0, 2* - 1.0, 1.0, 0.0, -1.0, 2*1.0, 0.0/

! Copy real matrix A to real matrix B

 CALL CRGRG (A, B)

! Print results

 CALL WRRRN ('B', B)

 END

Output

 B

 1 2 3

1 0.000 1.000 1.000

2 -1.000 0.000 1.000

3 -1.000 -1.000 0.000

CCGCG
Copies a complex general matrix.

Required Arguments

A — Complex matrix of order N. (Input)

B — Complex matrix of order N containing a copy of A. (Output)

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CCGCG (A, B [,…])

Specific: The specific interface names are S_CCGCG and D_CCGCG.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1617

FORTRAN 77 Interface

Single: CALL CCGCG (N, A, LDA, B, LDB)

Double: The double precision name is DCCGCG.

Description

The routine CCGCG copies the complex N N general matrix A into the complex N N general

matrix B.

Example

A complex 3 3 general matrix is copied into another complex 3 3 general matrix.

 USE CCGCG_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N

 PARAMETER (LDA=3, LDB=3, N=3)

!

 COMPLEX A(LDA,N), B(LDB,N)

! Set values for A

! A = (0.0+0.0i 1.0+1.0i 1.0+1.0i)

! (-1.0-1.0i 0.0+0.0i 1.0+1.0i)

! (-1.0-1.0i -1.0-1.0i 0.0+0.0i)

!

 DATA A/(0.0,0.0), 2*(-1.0,-1.0), (1.0,1.0), (0.0,0.0), &

 (-1.0,-1.0), 2*(1.0,1.0), (0.0,0.0)/

! Copy matrix A to matrix B

 CALL CCGCG (A, B)

! Print results

 CALL WRCRN ('B', B)

 END

Output

 B

 1 2 3

1 (0.000, 0.000) (1.000, 1.000) (1.000, 1.000)

2 (-1.000,-1.000) (0.000, 0.000) (1.000, 1.000)

3 (-1.000,-1.000) (-1.000,-1.000) (0.000, 0.000)

CRBRB
Copies a real band matrix stored in band storage mode.

Required Arguments

A — Real band matrix of order N. (Input)

1618 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

B — Real band matrix of order N containing a copy of A. (Output)

NLCB — Number of lower codiagonals in B. (Input)

NLCB must be at least as large as NLCA.

NUCB — Number of upper codiagonals in B. (Input)

NUCB must be at least as large as NUCA.

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CRBRB (A, NLCA, NUCA, B, NLCB, NUCB [,…])

Specific: The specific interface names are S_CRBRB and D_CRBRB.

FORTRAN 77 Interface

Single: CALL CRBRB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB)

Double: The double precision name is DCRBRB.

Description

The routine CRBRB copies the real band matrix A in band storage mode into the real band matrix B

in band storage mode.

Example

A real band matrix of order 3, in band storage mode with one upper codiagonal, and one lower

codiagonal is copied into another real band matrix also in band storage mode.

 USE CRBRB_INT

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1619

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N, NLCA, NLCB, NUCA, NUCB

 PARAMETER (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1)

!

 REAL A(LDA,N), B(LDB,N)

! Set values for A (in band mode)

! A = (0.0 1.0 1.0)

! (1.0 1.0 1.0)

! (1.0 1.0 0.0)

!

 DATA A/0.0, 7*1.0, 0.0/

! Copy A to B

 CALL CRBRB (A, NLCA, NUCA, B, NLCB, NUCB)

! Print results

 CALL WRRRN ('B', B)

 END

Output

 B

 1 2 3

1 0.000 1.000 1.000

2 1.000 1.000 1.000

3 1.000 1.000 0.000

CCBCB
Copies a complex band matrix stored in complex band storage mode.

Required Arguments

A — Complex band matrix of order N. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

B — Complex matrix of order N containing a copy of A. (Output)

NLCB — Number of lower codiagonals in B. (Input)

NLCB must be at least as large as NLCA.

NUCB — Number of upper codiagonals in B. (Input)

NUCB must be at least as large as NUCA.

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

1620 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CCBCB (A, NLCA, NUCA, B, NLCB, NUCB [,…])

Specific: The specific interface names are S_CCBCB and D_CCBCB.

FORTRAN 77 Interface

Single: CALL CCBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB)

Double: The double precision name is DCCBCB.

Description

The routine CCBCB copies the complex band matrix A in band storage mode into the complex band

matrix B in band storage mode.

Example

A complex band matrix of order 3 in band storage mode with one upper codiagonal and one lower

codiagonal is copied into another complex band matrix in band storage mode.

 USE CCBCB_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N, NLCA, NLCB, NUCA, NUCB

 PARAMETER (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1)

!

 COMPLEX A(LDA,N), B(LDB,N)

! Set values for A (in band mode)

! A = (0.0+0.0i 1.0+1.0i 1.0+1.0i)

! (1.0+1.0i 1.0+1.0i 1.0+1.0i)

! (1.0+1.0i 1.0+1.0i 0.0+0.0i)

!

 DATA A/(0.0,0.0), 7*(1.0,1.0), (0.0,0.0)/

! Copy A to B

 CALL CCBCB (A, NLCA, NUCA, B, NLCB, NUCB)

! Print results

 CALL WRCRN (‘B‘, B)

 END

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1621

Output

 B

 1 2 3

1 (0.000, 0.000) (1.000, 1.000) (1.000, 1.000)

2 (1.000, 1.000) (1.000, 1.000) (1.000, 1.000)

3 (1.000, 1.000) (1.000, 1.000) (0.000, 0.000)

CRGRB
Converts a real general matrix to a matrix in band storage mode.

Required Arguments

A — Real N by N matrix. (Input)

NLC — Number of lower codiagonals in B. (Input)

NUC — Number of upper codiagonals in B. (Input)

B — Real (NUC + 1 + NLC) by N array containing the band matrix in band storage mode.

(Output)

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CRGRB (A, NLC, NUC, B [,…])

Specific: The specific interface names are S_CRGRB and D_CRGRB.

FORTRAN 77 Interface

Single: CALL CRGRB (N, A, LDA, NLC, NUC, B, LDB)

Double: The double precision name is DCRGRB.

1622 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Description

The routine CRGRB converts the real general N N matrix A with mu = NUC upper codiagonals and

ml = NLC lower codiagonals into the real band matrix B of order N. The first mu rows of B then

contain the upper codiagonals of A, the next row contains the main diagonal of A, and the last ml

rows of B contain the lower codiagonals of A.

Example

A real 4 4 matrix with one upper codiagonal and three lower codiagonals is copied to a real band

matrix of order 4 in band storage mode.

 USE CRGRB_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N, NLC, NUC

 PARAMETER (LDA=4, LDB=5, N=4, NLC=3, NUC=1)

!

 REAL A(LDA,N), B(LDB,N)

! Set values for A

! A = (1.0 2.0 0.0 0.0)

! (-2.0 1.0 3.0 0.0)

! (0.0 -3.0 1.0 4.0)

! (-7.0 0.0 -4.0 1.0)

!

 DATA A/1.0, -2.0, 0.0, -7.0, 2.0, 1.0, -3.0, 0.0, 0.0, 3.0, 1.0, &

 -4.0, 0.0, 0.0, 4.0, 1.0/

! Convert A to band matrix B

 CALL CRGRB (A, NLC, NUC, B)

! Print results

 CALL WRRRN ('B', B)

 END

Output

 B

 1 2 3 4

1 0.000 2.000 3.000 4.000

2 1.000 1.000 1.000 1.000

3 -2.000 -3.000 -4.000 0.000

4 0.000 0.000 0.000 0.000

5 -7.000 0.000 0.000 0.000

CRBRG
Converts a real matrix in band storage mode to a real general matrix.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1623

Required Arguments

A — Real (NUC + 1 + NLC) by N array containing the band matrix in band storage mode.

(Input)

NLC — Number of lower codiagonals in A. (Input)

NUC — Number of upper codiagonals in A. (Input)

B — Real N by N array containing the matrix. (Output)

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CRBRG (A, NLC, NUC, B [,…])

Specific: The specific interface names are S_CRBRG and D_CRBRG.

FORTRAN 77 Interface

Single: CALL CRBRG (N, A, LDA, NLC, NUC, B, LDB)

Double: The double precision name is DCRBRG.

Description

The routine CRBRG converts the real band matrix A of order N in band storage mode into the real

N N general matrix B with mu = NUC upper codiagonals and ml = NLC lower codiagonals. The

first mu rows of A are copied to the upper codiagonals of B, the next row of A is copied to the

diagonal of B, and the last ml rows of A are copied to the lower codiagonals of B.

Example

A real band matrix of order 3 in band storage mode with one upper codiagonal and one lower

codiagonal is copied to a 3 3 real general matrix.

 USE CRBRG_INT

 USE WRRRN_INT

1624 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N, NLC, NUC

 PARAMETER (LDA=3, LDB=3, N=3, NLC=1, NUC=1)

!

 REAL A(LDA,N), B(LDB,N)

! Set values for A (in band mode)

! A = (0.0 1.0 1.0)

! (4.0 3.0 2.0)

! (2.0 2.0 0.0)

!

 DATA A/0.0, 4.0, 2.0, 1.0, 3.0, 2.0, 1.0, 2.0, 0.0/

! Convert band matrix A to matrix B

 CALL CRBRG (A, NLC, NUC, B)

! Print results

 CALL WRRRN ('B', B)

 END

Output

 B

 1 2 3

1 4.000 1.000 0.000

2 2.000 3.000 1.000

3 0.000 2.000 2.000

CCGCB
Converts a complex general matrix to a matrix in complex band storage mode.

Required Arguments

A — Complex N by N array containing the matrix. (Input)

NLC — Number of lower codiagonals in B. (Input)

NUC — Number of upper codiagonals in B. (Input)

B — Complex (NUC + 1 + NLC) by N array containing the band matrix in band storage mode.

(Output)

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1625

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CCGCB (A, NLC, NUC, B [,…])

Specific: The specific interface names are S_CCGCB and D_CCGCB.

FORTRAN 77 Interface

Single: CALL CCGCB (N, A, LDA, NLC, NUC, B, LDB)

Double: The double precision name is DCCGCB.

Description

The routine CCGCB converts the complex general matrix A of order N with mu = NUC upper

codiagonals and ml = NLC lower codiagonals into the complex band matrix B of order N in band

storage mode. The first mu rows of B then contain the upper codiagonals of A, the next row

contains the main diagonal of A, and the last ml rows of B contain the lower codiagonals of A.

Example

A complex general matrix of order 4 with one upper codiagonal and three lower codiagonals is

copied to a complex band matrix of order 4 in band storage mode.

 USE CCGCB_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N, NLC, NUC

 PARAMETER (LDA=4, LDB=5, N=4, NLC=3, NUC=1)

!

 COMPLEX A(LDA,N), B(LDB,N)

! Set values for A

! A = (1.0+0.0i 2.0+1.0i 0.0+0.0i 0.0+0.0i)

! (-2.0+1.0i 1.0+0.0i 3.0+2.0i 0.0+0.0i)

! (0.0+0.0i -3.0+2.0i 1.0+0.0i 4.0+3.0i)

! (-7.0+1.0i 0.0+0.0i -4.0+3.0i 1.0+0.0i)

!

 DATA A/(1.0,0.0), (-2.0,1.0), (0.0,0.0), (-7.0,1.0), (2.0,1.0), &

 (1.0,0.0), (-3.0,2.0), (0.0,0.0), (0.0,0.0), (3.0,2.0), &

 (1.0,0.0), (-4.0,3.0), (0.0,0.0), (0.0,0.0), (4.0,3.0), &

 (1.0,0.0)/

! Convert A to band matrix B

 CALL CCGCB (A, NLC, NUC, B)

! Print results

 CALL WRCRN ('B', B)

 END

1626 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Output

 B

 1 2 3 4

1 (0.000, 0.000) (2.000, 1.000) (3.000, 2.000) (4.000, 3.000)

2 (1.000, 0.000) (1.000, 0.000) (1.000, 0.000) (1.000, 0.000)

3 (-2.000, 1.000) (-3.000, 2.000) (-4.000, 3.000) (0.000, 0.000)

4 (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

5 (-7.000, 1.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

CCBCG
Converts a complex matrix in band storage mode to a complex matrix in full storage mode.

Required Arguments

A — Complex (NUC + 1 + NLC) by N matrix containing the band matrix in band mode.

(Input)

NLC — Number of lower codiagonals in A. (Input)

NUC — Number of upper codiagonals in A. (Input)

B — Complex N by N matrix containing the band matrix in full mode. (Output)

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CCBCG (A, NLC, NUC, B [,…])

Specific: The specific interface names are S_CCBCG and D_CCBCG.

FORTRAN 77 Interface

Single: CALL CCBCG (N, A, LDA, NLC, NUC, B, LDB)

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1627

Double: The double precision name is DCCBCG.

Description

The routine CCBCG converts the complex band matrix A of order N with mu = NUC upper

codiagonals and ml = NLC lower codiagonals into the N N complex general matrix B. The first

mu rows of A are copied to the upper codiagonals of B, the next row of A is copied to the diagonal

of B, and the last ml rows of A are copied to the lower codiagonals of B.

Example

A complex band matrix of order 4 in band storage mode with one upper codiagonal and three

lower codiagonals is copied into a 4 4 complex general matrix.

 USE CCBCG_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N, NLC, NUC

 PARAMETER (LDA=5, LDB=4, N=4, NLC=3, NUC=1)

!

 COMPLEX A(LDA,N), B(LDB,N)

! Set values for A (in band mode)

! A = (0.0+0.0i 2.0+1.0i 3.0+2.0i 4.0+3.0i)

! (1.0+0.0i 1.0+0.0i 1.0+0.0i 1.0+0.0i)

! (-2.0+1.0i -3.0+2.0i -4.0+3.0i 0.0+0.0i)

! (0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)

! (-7.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)

!

 DATA A/(0.0,0.0), (1.0,0.0), (-2.0,1.0), (0.0,0.0), (-7.0,1.0), &

 (2.0,1.0), (1.0,0.0), (-3.0,2.0), 2*(0.0,0.0), (3.0,2.0), &

 (1.0,0.0), (-4.0,3.0), 2*(0.0,0.0), (4.0,3.0), (1.0,0.0), &

 3*(0.0,0.0)/

! Convert band matrix A to matrix B

 CALL CCBCG (A, NLC, NUC, B)

! Print results

 CALL WRCRN ('B', B)

 END

Output

 B

 1 2 3 4

1 (1.000, 0.000) (2.000, 1.000) (0.000, 0.000) (0.000, 0.000)

2 (-2.000, 1.000) (1.000, 0.000) (3.000, 2.000) (0.000, 0.000)

3 (0.000, 0.000) (-3.000, 2.000) (1.000, 0.000) (4.000, 3.000)

4 (-7.000, 1.000) (0.000, 0.000) (-4.000, 3.000) (1.000, 0.000)

CRGCG
Copies a real general matrix to a complex general matrix.

1628 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Required Arguments

A — Real matrix of order N. (Input)

B — Complex matrix of order N containing a copy of A. (Output)

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CRGCG (A, B [,…])

Specific: The specific interface names are S_CRGCG and D_CRGCG.

FORTRAN 77 Interface

Single: CALL CRGCG (N, A, LDA, B, LDB)

Double: The double precision name is DCRGCG.

Description

The routine CRGCG copies a real N N matrix to a complex N N matrix.

Example

A 3 3 real matrix is copied to a 3 3 complex matrix.

 USE CRGCG_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N

 PARAMETER (LDA=3, LDB=3, N=3)

!

 REAL A(LDA,N)

 COMPLEX B(LDB,N)

! Set values for A

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1629

! A = (2.0 1.0 3.0)

! (4.0 1.0 0.0)

! (-1.0 2.0 0.0)

!

 DATA A/2.0, 4.0, -1.0, 1.0, 1.0, 2.0, 3.0, 0.0, 0.0/

! Convert real A to complex B

 CALL CRGCG (A, B)

! Print results

 CALL WRCRN ('B', B)

 END

Output

 B

 1 2 3

1 (2.000, 0.000) (1.000, 0.000) (3.000, 0.000)

2 (4.000, 0.000) (1.000, 0.000) (0.000, 0.000)

3 (-1.000, 0.000) (2.000, 0.000) (0.000, 0.000)

CRRCR
Copies a real rectangular matrix to a complex rectangular matrix.

Required Arguments

A — Real NRA by NCA rectangular matrix. (Input)

B — Complex NRB by NCB rectangular matrix containing a copy of A. (Output)

Optional Arguments

NRA — Number of rows in A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns in A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NRB — Number of rows in B. (Input)

It must be the same as NRA.

Default: NRB = SIZE (B,1).

NCB — Number of columns in B. (Input)

It must be the same as NCA.

Default: NCB = SIZE (B,2).

1630 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CRRCR (A, B [,…])

Specific: The specific interface names are S_CRRCR and D_CRRCR.

FORTRAN 77 Interface

Single: CALL CRRCR (NRA, NCA, A, LDA, NRB, NCB, B, LDB)

Double: The double precision name is DCRRCR.

Description

The routine CRRCR copies a real rectangular matrix to a complex rectangular matrix.

Example

A 3 2 real matrix is copied to a 3 2 complex matrix.

 USE CRRCR_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, NCA, NCB, NRA, NRB

 PARAMETER (LDA=3, LDB=3, NCA=2, NCB=2, NRA=3, NRB=3)

!

 REAL A(LDA,NCA)

 COMPLEX B(LDB,NCB)

! Set values for A

! A = (1.0 4.0)

! (2.0 5.0)

! (3.0 6.0)

!

 DATA A/1.0, 2.0, 3.0, 4.0, 5.0, 6.0/

! Convert real A to complex B

 CALL CRRCR (A, B)

! Print results

 CALL WRCRN ('B', B)

 END

Output

 B

 1 2

1 (1.000, 0.000) (4.000, 0.000)

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1631

2 (2.000, 0.000) (5.000, 0.000)

3 (3.000, 0.000) (6.000, 0.000)

CRBCB
Converts a real matrix in band storage mode to a complex matrix in band storage mode.

Required Arguments

A — Real band matrix of order N. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

B — Complex matrix of order N containing a copy of A. (Output)

NLCB — Number of lower codiagonals in B. (Input)

NLCB must be at least as large as NLCA.

NUCB — Number of upper codiagonals in B. (Input)

NUCB must be at least as large as NUCA.

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CRBCB (A, NLCA, NUCA, B, NLCB, NUCB [,…])

Specific: The specific interface names are S_CRBCB and D_CRBCB.

FORTRAN 77 Interface

Single: CALL CRBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB)

Double: The double precision name is DCRBCB.

1632 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Description

The routine CRBCB converts a real band matrix in band storage mode with NUCA upper codiagonals

and NLCA lower codiagonals into a complex band matrix in band storage mode with NUCB upper

codiagonals and NLCB lower codiagonals.

Example

A real band matrix of order 3 in band storage mode with one upper codiagonal and one lower

codiagonal is copied into another complex band matrix in band storage mode.

 USE CRBCB_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N, NLCA, NLCB, NUCA, NUCB

 PARAMETER (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1)

!

 REAL A(LDA,N)

 COMPLEX B(LDB,N)

! Set values for A (in band mode)

! A = (0.0 1.0 1.0)

! (1.0 1.0 1.0)

! (1.0 1.0 0.0)

!

 DATA A/0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0/

! Convert real band matrix A

! to complex band matrix B

 CALL CRBCB (A, NLCA, NUCA, B, NLCB, NUCB)

! Print results

 CALL WRCRN ('B', B)

 END

Output

 B

 1 2 3

1 (0.000, 0.000) (1.000, 0.000) (1.000, 0.000)

2 (1.000, 0.000) (1.000, 0.000) (1.000, 0.000)

3 (1.000, 0.000) (1.000, 0.000) (0.000, 0.000)

CSFRG
Extends a real symmetric matrix defined in its upper triangle to its lower triangle.

Required Arguments

A — N by N symmetric matrix of order N to be filled out. (Input/Output)

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1633

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL CSFRG (A [,…])

Specific: The specific interface names are S_CSFRG and D_CSFRG.

FORTRAN 77 Interface

Single: CALL CSFRG (N, A, LDA)

Double: The double precision name is DCSFRG.

Description

The routine CSFRG converts an N N matrix A in symmetric mode into a general matrix by filling

in the lower triangular portion of A using the values defined in its upper triangular portion.

Example

The lower triangular portion of a real 3 3 symmetric matrix is filled with the values defined in its

upper triangular portion.

 USE CSFRG_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

!

 REAL A(LDA,N)

! Set values for A

! A = (0.0 3.0 4.0)

! (1.0 5.0)

! (2.0)

!

 DATA A/3*0.0, 3.0, 1.0, 0.0, 4.0, 5.0, 2.0/

! Fill the lower portion of A

 CALL CSFRG (A)

! Print results

 CALL WRRRN ('A', A)

 END

1634 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Output

 A

 1 2 3

1 0.000 3.000 4.000

2 3.000 1.000 5.000

3 4.000 5.000 2.000

CHFCG
Extends a complex Hermitian matrix defined in its upper triangle to its lower triangle.

Required Arguments

A — Complex Hermitian matrix of order N. (Input/Output)

On input, the upper triangle of A defines a Hermitian matrix. On output, the lower

triangle of A is defined so that A is Hermitian.

Optional Arguments

N — Order of the matrix. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL CHFCG (A [,…])

Specific: The specific interface names are S_CHFCG and D_CHFCG.

FORTRAN 77 Interface

Single: CALL CHFCG (N, A, LDA)

Double: The double precision name is DCHFCG.

Description

The routine CHFCG converts an N N complex matrix A in Hermitian mode into a complex

general matrix by filling in the lower triangular portion of A using the values defined in its upper

triangular portion.

Comments

Informational errors

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1635

Type Code

3 1 The matrix is not Hermitian. It has a diagonal entry with a small

imaginary part.

4 2 The matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

Example

A complex 3 3 Hermitian matrix defined in its upper triangle is extended to its lower triangle.

 USE CHFCG_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N

 PARAMETER (LDA=3, N=3)

!

 COMPLEX A(LDA,N)

! Set values for A

! A = (1.0+0.0i 1.0+1.0i 1.0+2.0i)

! (2.0+0.0i 2.0+2.0i)

! (3.0+0.0i)

!

 DATA A/(1.0,0.0), 2*(0.0,0.0), (1.0,1.0), (2.0,0.0), (0.0,0.0), &

 (1.0,2.0), (2.0,2.0), (3.0,0.0)/

! Fill in lower Hermitian matrix

 CALL CHFCG (A)

! Print results

 CALL WRCRN ('A', A)

 END

Output

 A

 1 2 3

1 (1.000, 0.000) (1.000, 1.000) (1.000, 2.000)

2 (1.000,-1.000) (2.000, 0.000) (2.000, 2.000)

3 (1.000,-2.000) (2.000,-2.000) (3.000, 0.000)

CSBRB
Copies a real symmetric band matrix stored in band symmetric storage mode to a real band matrix

stored in band storage mode.

Required Arguments

A — Real band symmetric matrix of order N. (Input)

NUCA — Number of codiagonals in A. (Input)

B — Real band matrix of order N containing a copy of A. (Output)

1636 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

NLCB — Number of lower codiagonals in B. (Input)

NLCB must be at least as large as NUCA.

NUCB — Number of upper codiagonals in B. (Input)

NUCB must be at least as large as NUCA.

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CSBRB (A, NUCA, B, NLCB, NUCB [,…])

Specific: The specific interface names are S_CSBRB and D_CSBRB.

FORTRAN 77 Interface

Single: CALL CSBRB (N, A, LDA, NUCA, B, LDB, NLCB, NUCB)

Double: The double precision name is DCSBRB.

Description

The routine CSBRB copies a real matrix A stored in symmetric band mode to a matrix B stored in

band mode. The lower codiagonals of B are set using the values from the upper codiagonals of A.

Example

A real matrix of order 4 in band symmetric storage mode with 2 upper codiagonals is copied to a

real matrix in band storage mode with 2 upper codiagonals and 2 lower codiagonals.

 USE CSBRB_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N, NLCB, NUCA, NUCB

 PARAMETER (N=4, NUCA=2, LDA=NUCA+1, NLCB=NUCA, NUCB=NUCA, &

 LDB=NLCB+NUCB+1)

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1637

!

 REAL A(LDA,N), B(LDB,N)

! Set values for A, in band mode

! A = (0.0 0.0 2.0 1.0)

! (0.0 2.0 3.0 1.0)

! (1.0 2.0 3.0 4.0)

!

 DATA A/2*0.0, 1.0, 0.0, 2.0, 2.0, 2.0, 3.0, 3.0, 1.0, 1.0, 4.0/

! Copy A to B

 CALL CSBRB (A, NUCA, B, NLCB, NUCB)

! Print results

 CALL WRRRN ('B', B)

 END

Output

 B

 1 2 3 4

1 0.000 0.000 2.000 1.000

2 0.000 2.000 3.000 1.000

3 1.000 2.000 3.000 4.000

4 2.000 3.000 1.000 0.000

5 2.000 1.000 0.000 0.000

CHBCB
Copies a complex Hermitian band matrix stored in band Hermitian storage mode to a complex

band matrix stored in band storage mode.

Required Arguments

A — Complex band Hermitian matrix of order N. (Input)

NUCA — Number of codiagonals in A. (Input)

B — Complex band matrix of order N containing a copy of A. (Output)

NLCB — Number of lower codiagonals in B. (Input)

NLCB must be at least as large as NUCA.

NUCB — Number of upper codiagonals in B. (Input)

NUCB must be at least as large as NUCA.

Optional Arguments

N — Order of the matrices A and B. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

1638 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL CHBCB (A, NUCA, B, NLCB, NUCB [,…])

Specific: The specific interface names are S_CHBCB and D_CHBCB.

FORTRAN 77 Interface

Single: CALL CHBCB (N, A, LDA, NUCA, B, LDB, NLCB, NUCB)

Double: The double precision name is DCHBCB.

Description

The routine CSBRB copies a complex matrix A stored in Hermitian band mode to a matrix B stored

in complex band mode. The lower codiagonals of B are filled using the values in the upper

codiagonals of A.

Comments

Informational errors

Type Code

3 1 An element on the diagonal has a complex part that is near zero, the

complex part is set to zero.

4 1 An element on the diagonal has a complex part that is not zero.

Example

A complex Hermitian matrix of order 3 in band Hermitian storage mode with one upper

codiagonal is copied to a complex matrix in band storage mode.

 USE CHBCB_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N, NLCB, NUCA, NUCB

 PARAMETER (N=3, NUCA=1, LDA=NUCA+1, NLCB=NUCA, NUCB=NUCA, &

 LDB=NLCB+NUCB+1)

!

 COMPLEX A(LDA,N), B(LDB,N)

! Set values for A (in band mode)

! A = (0.0+0.0i -1.0+1.0i -2.0+2.0i)

! (1.0+0.0i 1.0+0.0i 1.0+0.0i)

!

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1639

 DATA A/(0.0,0.0), (1.0,0.0), (-1.0,1.0), (1.0,0.0), (-2.0,2.0), &

 (1.0,0.0)/

! Copy a complex Hermitian band matrix

! to a complex band matrix

 CALL CHBCB (A, NUCA, B, NLCB, NUCB)

! Print results

 CALL WRCRN ('B', B)

 END

Output

 B

 1 2 3

1 (0.000, 0.000) (-1.000, 1.000) (-2.000, 2.000)

2 (1.000, 0.000) (1.000, 0.000) (1.000, 0.000)

3 (-1.000,-1.000) (-2.000,-2.000) (0.000, 0.000)

TRNRR
Transposes a rectangular matrix.

Required Arguments

A — Real NRA by NCA matrix in full storage mode. (Input)

B — Real NRB by NCB matrix in full storage mode containing the transpose of A. (Output)

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns of A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NRB — Number of rows of B. (Input)

NRB must be equal to NCA.

Default: NRB = SIZE (B,1).

NCB — Number of columns of B. (Input)

NCB must be equal to NRA.

Default: NCB = SIZE (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

1640 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL TRNRR (A, B [,…])

Specific: The specific interface names are S_TRNRR and D_TRNRR.

FORTRAN 77 Interface

Single: CALL TRNRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB)

Double: The double precision name is DTRNRR.

Description

The routine TRNRR computes the transpose B = A
T
 of a real rectangular matrix A.

Comments

If LDA = LDB and NRA = NCA, then A and B can occupy the same storage locations; otherwise,

A and B must be stored separately.

Example

Transpose the 5 3 real rectangular matrix A into the 3 5 real rectangular matrix B.

 USE TRNRR_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NCA, NCB, NRA, NRB

 PARAMETER (NCA=3, NCB=5, NRA=5, NRB=3)

!

 REAL A(NRA,NCA), B(NRB,NCB)

! Set values for A

! A = (11.0 12.0 13.0)

! (21.0 22.0 23.0)

! (31.0 32.0 33.0)

! (41.0 42.0 43.0)

! (51.0 52.0 53.0)

!

 DATA A/11.0, 21.0, 31.0, 41.0, 51.0, 12.0, 22.0, 32.0, 42.0,&

 52.0, 13.0, 23.0, 33.0, 43.0, 53.0/

! B = transpose(A)

 CALL TRNRR (A, B)

! Print results

 CALL WRRRN ('B = trans(A)', B)

 END

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1641

Output

 B = trans(A)

 1 2 3 4 5

1 11.00 21.00 31.00 41.00 51.00

2 12.00 22.00 32.00 42.00 52.00

3 13.00 23.00 33.00 43.00 53.00

MXTXF

Computes the transpose product of a matrix, A
T
A.

Required Arguments

A — Real NRA by NCA rectangular matrix. (Input)

The transpose product of A is to be computed.

B — Real NB by NB symmetric matrix containing the transpose product A
T
A. (Output)

Optional Arguments

NRA — Number of rows in A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns in A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NB — Order of the matrix B. (Input)

NB must be equal to NCA.

Default: NB = SIZE (B,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL MXTXF (A, B [,…])

Specific: The specific interface names are S_MXTXF and D_MXTXF.

1642 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL MXTXF (NRA, NCA, A, LDA, NB, B, LDB)

Double: The double precision name is DMXTXF.

Description

The routine MXTXF computes the real general matrix B = A
T
A given the real rectangular matrix A.

Example

Multiply the transpose of a 3 4 real matrix by itself. The output matrix will be a 4 4 real

symmetric matrix.

 USE MXTXF_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NB, NCA, NRA

 PARAMETER (NB=4, NCA=4, NRA=3)

!

 REAL A(NRA,NCA), B(NB,NB)

! Set values for A

! A = (3.0 1.0 4.0 2.0)

! (0.0 2.0 1.0 -1.0)

! (6.0 1.0 3.0 2.0)

!

 DATA A/3.0, 0.0, 6.0, 1.0, 2.0, 1.0, 4.0, 1.0, 3.0, 2.0, -1.0, &

 2.0/

! Compute B = trans(A)*A

 CALL MXTXF (A, B)

! Print results

 CALL WRRRN ('B = trans(A)*A', B)

 END

Output

 B = trans(A)*A

 1 2 3 4

1 45.00 9.00 30.00 18.00

2 9.00 6.00 9.00 2.00

3 30.00 9.00 26.00 13.00

4 18.00 2.00 13.00 9.00

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1643

MXTYF

Multiplies the transpose of matrix A by matrix B, A
T
B.

Required Arguments

A — Real NRA by NCA matrix. (Input)

B — Real NRB by NCB matrix. (Input)

C — Real NCA by NCB matrix containing the transpose product A
T
B. (Output)

Optional Arguments

NRA — Number of rows in A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns in A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NRB — Number of rows in B. (Input)

NRB must be the same as NRA.

Default: NRB = SIZE (B,1).

NCB — Number of columns in B. (Input)

Default: NCB = SIZE (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

NRC — Number of rows of C. (Input)

NRC must be equal to NCA.

Default: NRC = SIZE (C,1).

NCC — Number of columns of C. (Input)

NCC must be equal to NCB.

Default: NCC = SIZE (C,2).

1644 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDC = SIZE (C,1).

FORTRAN 90 Interface

Generic: CALL MXTYF (A, B, C [,…])

Specific: The specific interface names are S_MXTYF and D_MXTYF.

FORTRAN 77 Interface

Single: CALL MXTYF (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC)

Double: The double precision name is DMXTYF.

Description

The routine MXTYF computes the real general matrix C = A
T
B given the real rectangular matrices A

and B.

Example

Multiply the transpose of a 3 4 real matrix by a 3 3 real matrix. The output matrix will be a

4 3 real matrix.

 USE MXTYF_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NCA, NCB, NCC, NRA, NRB, NRC

 PARAMETER (NCA=4, NCB=3, NCC=3, NRA=3, NRB=3, NRC=4)

!

 REAL A(NRA,NCA), B(NRB,NCB), C(NRC,NCC)

! Set values for A

! A = (1.0 0.0 2.0 0.0)

! (3.0 4.0 -1.0 0.0)

! (2.0 1.0 2.0 1.0)

!

! Set values for B

! B = (-1.0 2.0 0.0)

! (3.0 0.0 -1.0)

! (0.0 5.0 2.0)

!

 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &

 1.0/

 DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0/

! Compute C = trans(A)*B

 CALL MXTYF (A, B, C)

! Print results

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1645

 CALL WRRRN ('C = trans(A)*B', C)

 END

Output

 C = trans(A)*B

 1 2 3

1 8.00 12.00 1.00

2 12.00 5.00 -2.00

3 -5.00 14.00 5.00

4 0.00 5.00 2.00

MXYTF

Multiplies a matrix A by the transpose of a matrix B, AB
T
.

Required Arguments

A — Real NRA by NCA rectangular matrix. (Input)

B — Real NRB by NCB rectangular matrix. (Input)

C — Real NRC by NCC rectangular matrix containing the transpose product AB
T
. (Output)

Optional Arguments

NRA — Number of rows in A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns in A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NRB — Number of rows in B. (Input)

Default: NRB = SIZE (B,1).

NCB — Number of columns in B. (Input)

NCB must be the same as NCA.

Default: NCB = SIZE (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

NRC — Number of rows of C. (Input)

NRC must be equal to NRA.

Default: NRC = SIZE (C,1).

1646 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

NCC — Number of columns of C. (Input)

NCC must be equal to NRB.

Default: NCC = SIZE (C,2).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDC = SIZE (C,1).

FORTRAN 90 Interface

Generic: CALL MXYTF (A, B, C [,…])

Specific: The specific interface names are S_MXYTF and D_MXYTF.

FORTRAN 77 Interface

Single: CALL MXYTF (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC)

Double: The double precision name is DMXYTF.

Description

The routine MXYTF computes the real general matrix C = AB
T
 given the real rectangular matrices A

and B.

Example

Multiply a 3 4 real matrix by the transpose of a 3 4 real matrix. The output matrix will be a

3 3 real matrix.

 USE MXYTF_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NCA, NCB, NCC, NRA, NRB, NRC

 PARAMETER (NCA=4, NCB=4, NCC=3, NRA=3, NRB=3, NRC=3)

!

 REAL A(NRA,NCA), B(NRB,NCB), C(NRC,NCC)

! Set values for A

! A = (1.0 0.0 2.0 0.0)

! (3.0 4.0 -1.0 0.0)

! (2.0 1.0 2.0 1.0)

!

! Set values for B

! B = (-1.0 2.0 0.0 2.0)

! (3.0 0.0 -1.0 -1.0)

! (0.0 5.0 2.0 5.0)

!

 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &

 1.0/

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1647

 DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0, 2.0, -1.0, &

 5.0/

! Compute C = A*trans(B)

 CALL MXYTF (A, B, C)

! Print results

 CALL WRRRN ('C = A*trans(B)', C)

 END

Output

 C = A*trans(B)

 1 2 3

1 -1.00 1.00 4.00

2 5.00 10.00 18.00

3 2.00 3.00 14.00

MRRRR

Multiplies two real rectangular matrices, AB.

Required Arguments

A — Real NRA by NCA matrix in full storage mode. (Input)

B — Real NRB by NCB matrix in full storage mode. (Input)

C — Real NRC by NCC matrix containing the product AB in full storage mode. (Output)

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns of A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NRB — Number of rows of B. (Input)

NRB must be equal to NCA.

Default: NRB = SIZE (B,1).

NCB — Number of columns of B. (Input)

Default: NCB = SIZE (B,2).

1648 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

NRC — Number of rows of C. (Input)

NRC must be equal to NRA.

Default: NRC = SIZE (C,1).

NCC — Number of columns of C. (Input)

NCC must be equal to NCB.

Default: NCC = SIZE (C,2).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDC = SIZE (C,1).

FORTRAN 90 Interface

Generic: CALL MRRRR (A, B, C [,…])

Specific: The specific interface names are S_MRRRR and D_MRRRR.

FORTRAN 77 Interface

Single: CALL MRRRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC)

Double: The double precision name is DMRRRR.

Description

Given the real rectangular matrices A and B, MRRRR computes the real rectangular matrix C = AB.

Example

Multiply a 3 4 real matrix by a 4 3 real matrix. The output matrix will be a 3 3 real matrix.

 USE MRRRR_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NCA, NCB, NCC, NRA, NRB, NRC

 PARAMETER (NCA=4, NCB=3, NCC=3, NRA=3, NRB=4, NRC=3)

!

 REAL A(NRA,NCA), B(NRB,NCB), C(NRC,NCC)

! Set values for A

! A = (1.0 0.0 2.0 0.0)

! (3.0 4.0 -1.0 0.0)

! (2.0 1.0 2.0 1.0)

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1649

!

! Set values for B

! B = (-1.0 0.0 2.0)

! (3.0 5.0 2.0)

! (0.0 0.0 -1.0)

! (2.0 -1.0 5.0)

!

 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &

 1.0/

 DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0, 2.0, -1.0, &

 5.0/

! Compute C = A*B

 CALL MRRRR (A, B, C)

! Print results

 CALL WRRRN ('C = A*B', C)

 END

Output

 C = A*B

 1 2 3

1 -1.00 0.00 0.00

2 9.00 20.00 15.00

3 3.00 4.00 9.00

MCRCR
Multiplies two complex rectangular matrices, AB.

Required Arguments

A — Complex NRA by NCA rectangular matrix. (Input)

B — Complex NRB by NCB rectangular matrix. (Input)

C — Complex NRC by NCC rectangular matrix containing the product A * B. (Output)

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns of A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NRB — Number of rows of B. (Input)

NRB must be equal to NCA.

Default: NRB = SIZE (B,1).

1650 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

NCB — Number of columns of B. (Input)

Default: NCB = SIZE (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

NRC — Number of rows of C. (Input)

NRC must be equal to NRA.

Default: NRC = SIZE (C,1).

NCC — Number of columns of C. (Input)

NCC must be equal to NCB.

Default: NCC = SIZE (C,2).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDC = SIZE (C,1).

FORTRAN 90 Interface

Generic: CALL MCRCR (A, B, C [,…])

Specific: The specific interface names are S_MCRCR and D_MCRCR.

FORTRAN 77 Interface

Single: CALL MCRCR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC)

Double: The double precision name is DMCRCR.

Description

Given the complex rectangular matrices A and B, MCRCR computes the complex rectangular matrix

C = AB.

Example

Multiply a 3 4 complex matrix by a 4 3 complex matrix. The output matrix will be a 3 3

complex matrix.

 USE MCRCR_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NCA, NCB, NCC, NRA, NRB, NRC

 PARAMETER (NCA=4, NCB=3, NCC=3, NRA=3, NRB=4, NRC=3)

!

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1651

 COMPLEX A(NRA,NCA), B(NRB,NCB), C(NRC,NCC)

! Set values for A

! A = (1.0 + 1.0i -1.0+ 2.0i 0.0 + 1.0i 0.0 - 2.0i)

! (3.0 + 7.0i 6.0 - 4.0i 2.0 - 1.0i 0.0 + 1.0i)

! (1.0 + 0.0i 1.0 - 2.0i -2.0+ 0.0i 0.0 + 0.0i)

!

! Set values for B

! B = (2.0 + 1.0i 3.0 + 2.0i 3.0 + 1.0i)

! (2.0 - 1.0i 4.0 - 2.0i 5.0 - 3.0i)

! (1.0 + 0.0i 0.0 - 1.0i 0.0 + 1.0i)

! (2.0 + 1.0i 1.0 + 2.0i 0.0 - 1.0i)

!

 DATA A/(1.0,1.0), (3.0,7.0), (1.0,0.0), (-1.0,2.0), (6.0,-4.0), &

 (1.0,-2.0), (0.0,1.0), (2.0,-1.0), (-2.0,0.0), (0.0,-2.0), &

 (0.0,1.0), (0.0,0.0)/

 DATA B/(2.0,1.0), (2.0,-1.0), (1.0,0.0), (2.0,1.0), (3.0,2.0), &

 (4.0,-2.0), (0.0,-1.0), (1.0,2.0), (3.0,1.0), (5.0,-3.0), &

 (0.0,1.0), (0.0,-1.0)/

! Compute C = A*B

 CALL MCRCR (A, B, C)

! Print results

 CALL WRCRN ('C = A*B', C)

 END

Output

 C = A*B

 1 2 3

1 (3.00, 5.00) (6.00, 13.00) (0.00, 17.00)

2 (8.00, 4.00) (8.00, -2.00) (22.00,-12.00)

3 (0.00, -4.00) (3.00, -6.00) (2.00,-14.00)

HRRRR
Computes the Hadamard product of two real rectangular matrices.

Required Arguments

A — Real NRA by NCA rectangular matrix. (Input)

B — Real NRB by NCB rectangular matrix. (Input)

C — Real NRC by NCC rectangular matrix containing the Hadamard product of A and B.

(Output)

If A is not needed, then C can share the same storage locations as A. Similarly, if B is

not needed, then C can share the same storage locations as B.

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = SIZE (A,1).

1652 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

NCA — Number of columns of A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NRB — Number of rows of B. (Input)

NRB must be equal to NRA.

Default: NRB = SIZE (B,1).

NCB — Number of columns of B. (Input)

NCB must be equal to NCA.

Default: NCB = SIZE (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

NRC — Number of rows of C. (Input)

NRC must be equal to NRA.

Default: NRC = SIZE (C,1).

NCC — Number of columns of C. (Input)

NCC must be equal to NCA.

Default: NCC = SIZE (C,2).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDC = SIZE (C,1).

FORTRAN 90 Interface

Generic: CALL HRRRR (A, B, C [,…])

Specific: The specific interface names are S_HRRRR and D_HRRRR.

FORTRAN 77 Interface

Single: CALL HRRRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC)

Double: The double precision name is DHRRRR.

Description

The routine HRRRR computes the Hadamard product of two real matrices A and B and returns a

real matrix C, where Cij = AijBij.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1653

Example

Compute the Hadamard product of two 4 4 real matrices. The output matrix will be a 4 4 real

matrix.

 USE HRRRR_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NCA, NCB, NCC, NRA, NRB, NRC

 PARAMETER (NCA=4, NCB=4, NCC=4, NRA=4, NRB=4, NRC=4)

!

 REAL A(NRA,NCA), B(NRB,NCB), C(NRC,NCC)

! Set values for A

! A = (-1.0 0.0 -3.0 8.0)

! (2.0 1.0 7.0 2.0)

! (3.0 -2.0 2.0 -6.0)

! (4.0 1.0 -5.0 -8.0)

!

! Set values for B

! B = (2.0 3.0 0.0 -10.0)

! (1.0 -1.0 4.0 2.0)

! (-1.0 -2.0 7.0 1.0)

! (2.0 1.0 9.0 0.0)

!

 DATA A/-1.0, 2.0, 3.0, 4.0, 0.0, 1.0, -2.0, 1.0, -3.0, 7.0, 2.0, &

 -5.0, 8.0, 2.0, -6.0, -8.0/

 DATA B/2.0, 1.0, -1.0, 2.0, 3.0, -1.0, -2.0, 1.0, 0.0, 4.0, 7.0, &

 9.0, -10.0, 2.0, 1.0, 0.0/

! Compute Hadamard product of A and B

 CALL HRRRR (A, B, C)

! Print results

 CALL WRRRN ('C = A (*) B', C)

 END

Output

 C = A (*) B

 1 2 3 4

1 -2.00 0.00 0.00 -80.00

2 2.00 -1.00 28.00 4.00

3 -3.00 4.00 14.00 -6.00

4 8.00 1.00 -45.00 0.00

BLINF

This function computes the bilinear form x
T
Ay.

Function Return Value

BLINF — The value of x
T
Ay is returned in BLINF. (Output)

1654 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Required Arguments

A — Real NRA by NCA matrix. (Input)

X — Real vector of length NRA. (Input)

Y — Real vector of length NCA. (Input)

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns of A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: BLINF (A, X, Y [,…])

Specific: The specific interface names are S_BLINF and D_BLINF.

FORTRAN 77 Interface

Single: BLINF(NRA, NCA, A, LDA, X, Y)

Double: The double precision name is DBLINF.

Description

Given the real rectangular matrix A and two vectors x and y, BLINF computes the bilinear form

x
T
Ay.

Comments

The quadratic form can be computed by calling BLINF with the vector X in place of the vector

Y.

Example

Compute the bilinear form x
T
Ay, where x is a vector of length 5, A is a 5 2 matrix and y is a

vector of length 2.

 USE BLINF_INT

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1655

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NCA, NRA

 PARAMETER (NCA=2, NRA=5)

!

 INTEGER NOUT

 REAL A(NRA,NCA), VALUE, X(NRA), Y(NCA)

! Set values for A

! A = (-2.0 2.0)

! (3.0 -6.0)

! (-4.0 7.0)

! (1.0 -8.0)

! (0.0 10.0)

! Set values for X

! X = (1.0 -2.0 3.0 -4.0 -5.0)

! Set values for Y

! Y = (-6.0 3.0)

!

 DATA A/-2.0, 3.0, -4.0, 1.0, 0.0, 2.0, -6.0, 7.0, -8.0, 10.0/

 DATA X/1.0, -2.0, 3.0, -4.0, -5.0/

 DATA Y/-6.0, 3.0/

! Compute bilinear form

 VALUE = BLINF(A,X,Y)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ' The bilinear form trans(x)*A*y = ', VALUE

 END

Output

The bilinear form trans(x)*A*y = 195.000

POLRG

Evaluates a real general matrix polynomial.

Required Arguments

A — N by N matrix for which the polynomial is to be computed. (Input)

COEF — Vector of length NCOEF containing the coefficients of the polynomial in order of

increasing power. (Input)

B — N by N matrix containing the value of the polynomial evaluated at A. (Output)

1656 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Optional Arguments

N — Order of the matrix A. (Input)

Default: N = SIZE (A,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NCOEF — Number of coefficients. (Input)

Default: NCOEF = SIZE (COEF,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

FORTRAN 90 Interface

Generic: CALL POLRG (A, COEF, B [,…])

Specific: The specific interface names are S_POLRG and D_POLRG.

FORTRAN 77 Interface

Single: CALL POLRG (N, A, LDA, NCOEF, COEF, B, LDB)

Double: The double precision name is DPOLRG.

Description

Let m = NCOEF and c = COEF.

The routine POLRG computes the matrix polynomial

1

1

m
k

k

k

B c A

using Horner‘s scheme

 1 2 1m m mB c A c I A c I A c I

where I is the N N identity matrix.

Comments

Workspace may be explicitly provided, if desired, by use of P2LRG/DP2LRG. The reference is

CALL P2LRG (N, A, LDA, NCOEF, COEF, B, LDB, WORK)

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1657

The additional argument is

WORK — Work vector of length N * N.

Example

This example evaluates the matrix polynomial 3I + A + 2A
2
, where A is a 3 3 matrix.

 USE POLRG_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, N, NCOEF

 PARAMETER (N=3, NCOEF=3, LDA=N, LDB=N)

!

 REAL A(LDA,N), B(LDB,N), COEF(NCOEF)

! Set values of A and COEF

!

! A = (1.0 3.0 2.0)

! (-5.0 1.0 7.0)

! (1.0 5.0 -4.0)

!

! COEF = (3.0, 1.0, 2.0)

!

 DATA A/1.0, -5.0, 1.0, 3.0, 1.0, 5.0, 2.0, 7.0, -4.0/

 DATA COEF/3.0, 1.0, 2.0/

!

! Evaluate B = 3I + A + 2*A**2

 CALL POLRG (A, COEF, B)

! Print B

 CALL WRRRN ('B = 3I + A + 2*A**2', B)

 END

Output

 B = 3I + A + 2*A**2

 1 2 3

1 -20.0 35.0 32.0

2 -11.0 46.0 -55.0

3 -55.0 -19.0 105.0

MURRV
Multiplies a real rectangular matrix by a vector.

Required Arguments

A — Real NRA by NCA rectangular matrix. (Input)

X — Real vector of length NX. (Input)

1658 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Y — Real vector of length NY containing the product A * X if IPATH is equal to 1 and the

product trans(A) * X if IPATH is equal to 2. (Output)

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns of A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NX — Length of the vector X. (Input)

NX must be equal to NCA if IPATH is equal to 1. NX must be equal to NRA if IPATH is

equal to 2.

Default: NX = SIZE (X,1).

IPATH — Integer flag. (Input)

IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product

Y = trans(A) * X is computed, where trans(A) is the transpose of A.

Default: IPATH =1.

NY — Length of the vector Y. (Input)

NY must be equal to NRA if IPATH is equal to 1. NY must be equal to NCA if IPATH is

equal to 2.

Default: NY = SIZE (Y,1).

FORTRAN 90 Interface

Generic: CALL MURRV (A, X, Y [,…])

Specific: The specific interface names are S_MURRV and D_MURRV.

FORTRAN 77 Interface

Single: CALL MURRV (NRA, NCA, A, LDA, NX, X, IPATH, NY, Y)

Double: The double precision name is DMURRV.

Description

If IPATH = 1, MURRV computes y = Ax, where A is a real general matrix and x and y are real

vectors. If IPATH = 2, MURRV computes y = A
T
x.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1659

Example

Multiply a 3 3 real matrix by a real vector of length 3. The output vector will be a real vector of

length 3.

 USE MURRV_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, NCA, NRA, NX, NY

 PARAMETER (NCA=3, NRA=3, NX=3, NY=3)

!

 INTEGER IPATH

 REAL A(NRA,NCA), X(NX), Y(NY)

! Set values for A and X

! A = (1.0 0.0 2.0)

! (0.0 3.0 0.0)

! (4.0 1.0 2.0)

!

! X = (1.0 2.0 1.0)

!

!

 DATA A/1.0, 0.0, 4.0, 0.0, 3.0, 1.0, 2.0, 0.0, 2.0/

 DATA X/1.0, 2.0, 1.0/

! Compute y = Ax

 IPATH = 1

 CALL MURRV (A, X, Y)

! Print results

 CALL WRRRN ('y = Ax', Y, 1, NY, 1)

 END

Output

 y = Ax

 1 2 3

3.000 6.000 8.000

MURBV
Multiplies a real band matrix in band storage mode by a real vector.

Required Arguments

A — Real NLCA + NUCA + 1 by N band matrix stored in band mode. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

X — Real vector of length NX. (Input)

1660 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Y — Real vector of length NY containing the product A * X if IPATH is equal to 1 and the

product trans(A) * X if IPATH is equal to 2. (Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NX — Length of the vector X. (Input)

NX must be equal to N.

Default: NX = SIZE (X,1).

IPATH — Integer flag. (Input)

IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product

Y = trans(A) * X is computed, where trans(A) is the transpose of A.

Default: IPATH = 1.

NY — Length of vector Y. (Input)

NY must be equal to N.

Default: NY = SIZE (Y,1).

FORTRAN 90 Interface

Generic: CALL MURBV (A, NLCA, NUCA, X, Y [,…])

Specific: The specific interface names are S_MURBV and D_MURBV.

FORTRAN 77 Interface

Single: CALL MURBV (N, A, LDA, NLCA, NUCA, NX, X, IPATH, NY, Y)

Double: The double precision name is DMURBV.

Description

If IPATH = 1, MURBV computes y = Ax, where A is a real band matrix and x and y are real vectors.

If IPATH = 2, MURBV computes y = A
T
x.

Example

Multiply a real band matrix of order 6, with two upper codiagonals and two lower codiagonals

stored in band mode, by a real vector of length 6. The output vector will be a real vector of length

6.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1661

 USE MURBV_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N, NLCA, NUCA, NX, NY

 PARAMETER (LDA=5, N=6, NLCA=2, NUCA=2, NX=6, NY=6)

!

 INTEGER IPATH

 REAL A(LDA,N), X(NX), Y(NY)

! Set values for A (in band mode)

! A = (0.0 0.0 1.0 2.0 3.0 4.0)

! (0.0 1.0 2.0 3.0 4.0 5.0)

! (1.0 2.0 3.0 4.0 5.0 6.0)

! (-1.0 -2.0 -3.0 -4.0 -5.0 0.0)

! (-5.0 -6.0 -7.0 -8.0 0.0 0.0)

!

! Set values for X

! X = (-1.0 2.0 -3.0 4.0 -5.0 6.0)

!

 DATA A/0.0, 0.0, 1.0, -1.0, -5.0, 0.0, 1.0, 2.0, -2.0, -6.0, &

 1.0, 2.0, 3.0, -3.0, -7.0, 2.0, 3.0, 4.0, -4.0, -8.0, 3.0, &

 4.0, 5.0, -5.0, 0.0, 4.0, 5.0, 6.0, 0.0, 0.0/

 DATA X/-1.0, 2.0, -3.0, 4.0, -5.0, 6.0/

! Compute y = Ax

 IPATH = 1

 CALL MURBV (A, NLCA, NUCA, X, Y)

! Print results

 CALL WRRRN ('y = Ax', Y, 1, NY, 1)

 END

Output

 y = Ax

 1 2 3 4 5 6

-2.00 7.00 -11.00 17.00 10.00 29.00

MUCRV
Multiplies a complex rectangular matrix by a complex vector.

Required Arguments

A — Complex NRA by NCA rectangular matrix. (Input)

X — Complex vector of length NX. (Input)

Y — Complex vector of length NY containing the product A * X if IPATH is equal to 1 and the

product trans(A) * X if IPATH is equal to 2. (Output)

1662 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns of A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NX — Length of the vector X. (Input)

NX must be equal to NCA if IPATH is equal to 1. NX must be equal to NRA if IPATH is

equal to 2.

Default: NX = SIZE (X,1).

IPATH — Integer flag. (Input)

IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product

Y = trans(A) * X is computed, where trans(A) is the transpose of A.

Default: IPATH =1.

NY — Length of the vector Y. (Input)

NY must be equal to NRA if IPATH is equal to 1. NY must be equal to NCA if IPATH is

equal to 2.

Default: NY = SIZE (Y,1).

FORTRAN 90 Interface

Generic: CALL MUCRV (A, X, Y [,…])

Specific: The specific interface names are S_MUCRV and D_MUCRV.

FORTRAN 77 Interface

Single: CALL MUCRV (NRA, NCA, A, LDA, NX, X, IPATH, NY, Y)

Double: The double precision name is DMUCRV.

Description

If IPATH = 1, MUCRV computes y = Ax, where A is a complex general matrix and x and y are

complex vectors. If IPATH = 2, MUCRV computes y = A
T
x.

Example

Multiply a 3 3 complex matrix by a complex vector of length 3. The output vector will be a

complex vector of length 3.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1663

 USE MUCRV_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NCA, NRA, NX, NY

 PARAMETER (NCA=3, NRA=3, NX=3, NY=3)

!

 INTEGER IPATH

 COMPLEX A(NRA,NCA), X(NX), Y(NY)

!

! Set values for A and X

! A = (1.0 + 2.0i 3.0 + 4.0i 1.0 + 0.0i)

! (2.0 + 1.0i 3.0 + 2.0i 0.0 - 1.0i)

! (2.0 - 1.0i 1.0 + 0.0i 0.0 + 1.0i)

!

! X = (1.0 - 1.0i 2.0 - 2.0i 0.0 - 1.0i)

!

 DATA A/(1.0,2.0), (2.0,1.0), (2.0,-1.0), (3.0,4.0), (3.0,2.0), &

 (1.0,0.0), (1.0,0.0), (0.0,-1.0), (0.0,1.0)/

 DATA X/(1.0,-1.0), (2.0,-2.0), (0.0,-1.0)/

! Compute y = Ax

 IPATH = 1

 CALL MUCRV (A, X, Y)

! Print results

 CALL WRCRN ('y = Ax', Y, 1, NY, 1)

 END

Output

 y = Ax

 1 2 3

(17.00, 2.00) (12.00, -3.00) (4.00, -5.00)

MUCBV
Multiplies a complex band matrix in band storage mode by a complex vector.

Required Arguments

A — Complex NLCA + NUCA + 1 by N band matrix stored in band mode. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

X — Complex vector of length NX. (Input)

Y — Complex vector of length NY containing the product A * X if IPATH is equal to 1 and the

product trans(A) * X if IPATH is equal to 2. (Output)

1664 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Optional Arguments

N — Order of the matrix. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

NX — Length of the vector X. (Input)

NX must be equal to N.

Default: NX = SIZE (X,1).

IPATH — Integer flag. (Input)

IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product

Y = trans(A) * X is computed, where trans(A) is the transpose of A.

Default: IPATH = 1.

NY — Length of vector Y. (Input)

NY must be equal to N.

Default: NY = SIZE (Y,1).

FORTRAN 90 Interface

Generic: CALL MUCBV (A, NLCA, NUCA, X, Y [,…])

Specific: The specific interface names are S_MUCBV and D_MUCBV.

FORTRAN 77 Interface

Single: CALL MUCBV (N, A, LDA, NLCA, NUCA, NX, X, IPATH, NY, Y)

Double: The double precision name is DMUCBV.

Description

If IPATH = 1, MUCBV computes y = Ax, where A is a complex band matrix and x and y are complex

vectors. If IPATH = 2, MUCBV computes y = A
T
x.

Example

Multiply the transpose of a complex band matrix of order 4, with one upper codiagonal and two

lower codiagonals stored in band mode, by a complex vector of length 3. The output vector will be

a complex vector of length 3.

 USE MUCBV_INT

 USE WRCRN_INT

 IMPLICIT NONE

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1665

! Declare variables

 INTEGER LDA, N, NLCA, NUCA, NX, NY

 PARAMETER (LDA=4, N=4, NLCA=2, NUCA=1, NX=4, NY=4)

!

 INTEGER IPATH

 COMPLEX A(LDA,N), X(NX), Y(NY)

! Set values for A (in band mode)

! A = (0.0+ 0.0i 1.0+ 2.0i 3.0+ 4.0i 5.0+ 6.0i)

! (-1.0- 1.0i -1.0- 1.0i -1.0- 1.0i -1.0- 1.0i)

! (-1.0+ 2.0i -1.0+ 3.0i -2.0+ 1.0i 0.0+ 0.0i)

! (2.0+ 0.0i 0.0+ 2.0i 0.0+ 0.0i 0.0+ 0.0i)

!

! Set values for X

! X = (3.0 + 4.0i 0.0 + 0.0i 1.0 + 2.0i -2.0 - 1.0i)

!

 DATA A/(0.0,0.0), (-1.0,-1.0), (-1.0,2.0), (2.0,0.0), (1.0,2.0), &

 (-1.0,-1.0), (-1.0,3.0), (0.0,2.0), (3.0,4.0), (-1.0,-1.0), &

 (-2.0,1.0), (0.0,0.0), (5.0,6.0), (-1.0,-1.0), (0.0,0.0), &

 (0.0,0.0)/

 DATA X/(3.0,4.0), (0.0,0.0), (1.0,2.0), (-2.0,-1.0)/

! Compute y = Ax

 IPATH = 2

 CALL MUCBV (A, NLCA, NUCA, X, Y, IPATH=IPATH)

! Print results

 CALL WRCRN ('y = Ax', Y, 1, NY, 1)

 END

Output

 y = Ax

 1 2 3 4

(3.00, -3.00) (-10.00, 7.00) (6.00, -3.00) (-6.00, 19.00)

ARBRB
Adds two band matrices, both in band storage mode.

Required Arguments

A — N by N band matrix with NLCA lower codiagonals and NUCA upper codiagonals stored in

band mode with dimension (NLCA + NUCA + 1) by N. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — N by N band matrix with NLCB lower codiagonals and NUCB upper codiagonals stored in

band mode with dimension (NLCB + NUCB + 1) by N. (Input)

NLCB — Number of lower codiagonals of B. (Input)

NUCB — Number of upper codiagonals of B. (Input)

1666 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

C — N by N band matrix with NLCC lower codiagonals and NUCC upper codiagonals

containing the sum A + B in band mode with dimension (NLCC + NUCC + 1) by N.

(Output)

NLCC — Number of lower codiagonals of C. (Input)

NLCC must be at least as large as max(NLCA, NLCB).

NUCC — Number of upper codiagonals of C. (Input)

NUCC must be at least as large as max(NUCA, NUCB).

Optional Arguments

N — Order of the matrices A, B and C. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDC = SIZE (C,1).

FORTRAN 90 Interface

Generic: CALL ARBRB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC [,…])

Specific: The specific interface names are S_ARBRB and D_ARBRB.

FORTRAN 77 Interface

Single: CALL ARBRB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C, LDC, NLCC,
NUCC)

Double: The double precision name is DARBRB.

Description

The routine ARBRB adds two real matrices stored in band mode, returning a real matrix stored in

band mode.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1667

Example

Add two real matrices of order 4 stored in band mode. Matrix A has one upper codiagonal and one

lower codiagonal. Matrix B has no upper codiagonals and two lower codiagonals. The output

matrix C, has one upper codiagonal and two lower codiagonals.

 USE ARBRB_INT

 USE WRRRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, LDC, N, NLCA, NLCB, NLCC, NUCA, NUCB, NUCC

 PARAMETER (LDA=3, LDB=3, LDC=4, N=4, NLCA=1, NLCB=2, NLCC=2, &

 NUCA=1, NUCB=0, NUCC=1)

!

 REAL A(LDA,N), B(LDB,N), C(LDC,N)

! Set values for A (in band mode)

! A = (0.0 2.0 3.0 -1.0)

! (1.0 1.0 1.0 1.0)

! (0.0 3.0 4.0 0.0)

!

! Set values for B (in band mode)

! B = (3.0 3.0 3.0 3.0)

! (1.0 -2.0 1.0 0.0)

! (-1.0 2.0 0.0 0.0)

!

 DATA A/0.0, 1.0, 0.0, 2.0, 1.0, 3.0, 3.0, 1.0, 4.0, -1.0, 1.0, &

 0.0/

 DATA B/3.0, 1.0, -1.0, 3.0, -2.0, 2.0, 3.0, 1.0, 0.0, 3.0, 0.0, &

 0.0/

! Add A and B to obtain C (in band

! mode)

 CALL ARBRB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC)

! Print results

 CALL WRRRN ('C = A+B', C)

 END

Output

 C = A+B

 1 2 3 4

1 0.000 2.000 3.000 -1.000

2 4.000 4.000 4.000 4.000

3 1.000 1.000 5.000 0.000

4 -1.000 2.000 0.000 0.000

ACBCB
Adds two complex band matrices, both in band storage mode.

Required Arguments

A — N by N complex band matrix with NLCA lower codiagonals and NUCA upper codiagonals

stored in band mode with dimension (NLCA + NUCA + 1) by N. (Input)

1668 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — N by N complex band matrix with NLCB lower codiagonals and NUCB upper codiagonals

stored in band mode with dimension (NLCB + NUCB + 1) by N. (Input)

NLCB — Number of lower codiagonals of B. (Input)

NUCB — Number of upper codiagonals of B. (Input)

C — N by N complex band matrix with NLCC lower codiagonals and NUCC upper codiagonals

containing the sum A + B in band mode with dimension (NLCC + NUCC + 1) by N.

(Output)

NLCC — Number of lower codiagonals of C. (Input)

NLCC must be at least as large as max(NLCA, NLCB).

NUCC — Number of upper codiagonals of C. (Input)

NUCC must be at least as large as max(NUCA, NUCB).

Optional Arguments

N — Order of the matrices A, B and C. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDB = SIZE (B,1).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDC = SIZE (C,1).

FORTRAN 90 Interface

Generic: CALL ACBCB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC [,…])

Specific: The specific interface names are S_ACBCB and D_ACBCB.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1669

FORTRAN 77 Interface

Single: CALL ACBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C, LDC, NLCC,
NUCC)

Double: The double precision name is DACBCB.

Description

The routine ACBCB adds two complex matrices stored in band mode, returning a complex matrix

stored in band mode.

Example

Add two complex matrices of order 4 stored in band mode. Matrix A has two upper codiagonals

and no lower codiagonals. Matrix B has no upper codiagonals and two lower codiagonals. The

output matrix C has two upper codiagonals and two lower codiagonals.

 USE ACBCB_INT

 USE WRCRN_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, LDB, LDC, N, NLCA, NLCB, NLCC, NUCA, NUCB, NUCC

 PARAMETER (LDA=3, LDB=3, LDC=5, N=3, NLCA=0, NLCB=2, NLCC=2, &

 NUCA=2, NUCB=0, NUCC=2)

!

 COMPLEX A(LDA,N), B(LDB,N), C(LDC,N)

! Set values for A (in band mode)

! A = (0.0 + 0.0i 0.0 + 0.0i 3.0 - 2.0i)

! (0.0 + 0.0i -1.0+ 3.0i 6.0 + 0.0i)

! (1.0 + 4.0i 5.0 - 2.0i 3.0 + 1.0i)

!

! Set values for B (in band mode)

! B = (3.0 + 1.0i 4.0 + 1.0i 7.0 - 1.0i)

! (-1.0- 4.0i 9.0 + 3.0i 0.0 + 0.0i)

! (2.0 - 1.0i 0.0 + 0.0i 0.0 + 0.0i)

!

 DATA A/(0.0,0.0), (0.0,0.0), (1.0,4.0), (0.0,0.0), (-1.0,3.0), &

 (5.0,-2.0), (3.0,-2.0), (6.0,0.0), (3.0,1.0)/

 DATA B/(3.0,1.0), (-1.0,-4.0), (2.0,-1.0), (4.0,1.0), (9.0,3.0), &

 (0.0,0.0), (7.0,-1.0), (0.0,0.0), (0.0,0.0)/

! Compute C = A+B

 CALL ACBCB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC)

! Print results

 CALL WRCRN ('C = A+B', C)

 END

Output

 C = A+B

 1 2 3

1 (0.00, 0.00) (0.00, 0.00) (3.00, -2.00)

2 (0.00, 0.00) (-1.00, 3.00) (6.00, 0.00)

3 (4.00, 5.00) (9.00, -1.00) (10.00, 0.00)

1670 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

4 (-1.00, -4.00) (9.00, 3.00) (0.00, 0.00)

5 (2.00, -1.00) (0.00, 0.00) (0.00, 0.00)

NRIRR
Computes the infinity norm of a real matrix.

Required Arguments

A — Real NRA by NCA matrix whose infinity norm is to be computed. (Input)

ANORM — Real scalar containing the infinity norm of A. (Output)

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns of A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL NRIRR (A, ANORM [,…])

Specific: The specific interface names are S_NRIRR and D_NRIRR.

FORTRAN 77 Interface

Single: CALL NRIRR (NRA, NCA, A, LDA, ANORM)

Double: The double precision name is DNRIRR.

Description

The routine NRIRR computes the infinity norm of a real rectangular matrix A. If m = NRA and

n = NCA, then the ∞-norm of A is

1
1

max
n

ij
i m

j

A A

This is the maximum of the sums of the absolute values of the row elements.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1671

Example

Compute the infinity norm of a 3 4 real rectangular matrix.

 USE NRIRR_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NCA, NRA

 PARAMETER (NCA=4, NRA=3)

!

 INTEGER NOUT

 REAL A(NRA,NCA), ANORM

!

! Set values for A

! A = (1.0 0.0 2.0 0.0)

! (3.0 4.0 -1.0 0.0)

! (2.0 1.0 2.0 1.0)

!

 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &

 1.0/

! Compute the infinity norm of A

 CALL NRIRR (A, ANORM)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ' The infinity norm of A is ', ANORM

 END

Output

The infinity norm of A is 8.00000

NR1RR
Computes the 1-norm of a real matrix.

Required Arguments

A — Real NRA by NCA matrix whose 1-norm is to be computed. (Input)

ANORM — Real scalar containing the 1-norm of A. (Output)

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns of A. (Input)

Default: NCA = SIZE (A,2).

1672 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL NR1RR (A, ANORM [,…])

Specific: The specific interface names are S_NR1RR and D_NR1RR.

FORTRAN 77 Interface

Single: CALL NR1RR (NRA, NCA, A, LDA, ANORM)

Double: The double precision name is DNR1RR.

Description

The routine NR1RR computes the 1-norm of a real rectangular matrix A. If m = NRA and n = NCA,

then the 1-norm of A is

1 1
1

max
m

ij
j n

i

A A

This is the maximum of the sums of the absolute values of the column elements.

Example

Compute the 1-norm of a 3 4 real rectangular matrix.

 USE NR1RR_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER NCA, NRA

 PARAMETER (NCA=4, NRA=3)

!

 INTEGER NOUT

 REAL A(NRA,NCA), ANORM

!

! Set values for A

! A = (1.0 0.0 2.0 0.0)

! (3.0 4.0 -1.0 0.0)

! (2.0 1.0 2.0 1.0)

!

 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &

 1.0/

! Compute the L1 norm of A

 CALL NR1RR (A, ANORM)

! Print results

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1673

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ' The 1-norm of A is ', ANORM

 END

Output

The 1-norm of A is 6.00000

NR2RR
Computes the Frobenius norm of a real rectangular matrix.

Required Arguments

A — Real NRA by NCA rectangular matrix. (Input)

ANORM — Frobenius norm of A. (Output)

Optional Arguments

NRA — Number of rows of A. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns of A. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL NR2RR (A, ANORM [,…])

Specific: The specific interface names are S_NR2RR and D_NR2RR.

FORTRAN 77 Interface

Single: CALL NR2RR (NRA, NCA, A, LDA, ANORM)

Double: The double precision name is DNR2RR.

Description

The routine NR2RR computes the Frobenius norm of a real rectangular matrix A. If m = NRA and

n = NCA, then the Frobenius norm of A is

1674 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

1 2

2

2
1 1

m n

ij

i j

A A

Example

Compute the Frobenius norm of a 3 4 real rectangular matrix.

 USE NR2RR_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, NCA, NRA

 PARAMETER (LDA=3, NCA=4, NRA=3)

!

 INTEGER NOUT

 REAL A(LDA,NCA), ANORM

!

! Set values for A

! A = (1.0 0.0 2.0 0.0)

! (3.0 4.0 -1.0 0.0)

! (2.0 1.0 2.0 1.0)

!

 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &

 1.0/

!

! Compute Frobenius norm of A

 CALL NR2RR (A, ANORM)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ' The Frobenius norm of A is ', ANORM

 END

Output

The Frobenius norm of A is 6.40312

NR1RB
Computes the 1-norm of a real band matrix in band storage mode.

Required Arguments

A — Real (NUCA + NLCA + 1) by N array containing the N by N band matrix in band storage

mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1675

ANORM — Real scalar containing the 1-norm of A. (Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL NR1RB (A, NLCA, NUCA, ANORM [,…])

Specific: The specific interface names are S_NR1RB and D_NR1RB.

FORTRAN 77 Interface

Single: CALL NR1RB (N, A, LDA, NLCA, NUCA, ANORM)

Double: The double precision name is DNR1RB.

Description

The routine NR1RB computes the 1-norm of a real band matrix A. The 1-norm of a matrix A is

1 1
1

max
N

ij
j N

i

A A

This is the maximum of the sums of the absolute values of the column elements.

Example

Compute the 1-norm of a 4 4 real band matrix stored in band mode.

 USE NR1RB_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N, NLCA, NUCA

 PARAMETER (LDA=4, N=4, NLCA=2, NUCA=1)

!

 INTEGER NOUT

 REAL A(LDA,N), ANORM

!

! Set values for A (in band mode)

! A = (0.0 2.0 2.0 3.0)

! (-2.0 -3.0 -4.0 -1.0)

! (2.0 1.0 0.0 0.0)

1676 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

! (0.0 1.0 0.0 0.0)

!

 DATA A/0.0, -2.0, 2.0, 0.0, 2.0, -3.0, 1.0, 1.0, 2.0, -4.0, 0.0, &

 0.0, 3.0, -1.0, 2*0.0/

! Compute the L1 norm of A

 CALL NR1RB (A, NLCA, NUCA, ANORM)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ' The 1-norm of A is ', ANORM

 END

Output

The 1-norm of A is 7.00000

NR1CB
Computes the 1-norm of a complex band matrix in band storage mode.

Required Arguments

A — Complex (NUCA + NLCA + 1) by N array containing the N by N band matrix in band

storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

ANORM — Real scalar containing the 1-norm of A. (Output)

Optional Arguments

N — Order of the matrix. (Input)

Default: N = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL NR1CB (A, NLCA, NUCA, ANORM [,…])

Specific: The specific interface names are S_NR1CB and D_NR1CB.

FORTRAN 77 Interface

Single: CALL NR1CB (N, A, LDA, NLCA, NUCA, ANORM)

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1677

Double: The double precision name is DNR1CB.

Description

The routine NR1CB computes the 1-norm of a complex band matrix A. The 1-norm of a complex

matrix A is

1 1
1

max
N

ij ij
j N

i

A A A

Example

Compute the 1-norm of a complex matrix of order 4 in band storage mode.

 USE NR1CB_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER LDA, N, NLCA, NUCA

 PARAMETER (LDA=4, N=4, NLCA=2, NUCA=1)

!

 INTEGER NOUT

 REAL ANORM

 COMPLEX A(LDA,N)

!

! Set values for A (in band mode)

! A = (0.0+0.0i 2.0+3.0i -1.0+1.0i -2.0-1.0i)

! (-2.0+3.0i 1.0+0.0i -4.0-1.0i 0.0-4.0i)

! (2.0+2.0i 4.0+6.0i 3.0+2.0i 0.0+0.0i)

! (0.0-1.0i 2.0+1.0i 0.0+0.0i 0.0+0.0i)

!

 DATA A/(0.0,0.0), (-2.0,3.0), (2.0,2.0), (0.0,-1.0), (2.0,3.0), &

 (1.0,0.0), (4.0,6.0), (2.0,1.0), (-1.0,1.0), (-4.0,-1.0), &

 (3.0,2.0), (0.0,0.0), (-2.0,-1.0), (0.0,-4.0), (0.0,0.0), &

 (0.0,0.0)/

! Compute the L1 norm of A

 CALL NR1CB (A, NLCA, NUCA, ANORM)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ' The 1-norm of A is ', ANORM

 END

Output

The 1-norm of A is 19.0000

DISL2
This function computes the Euclidean (2-norm) distance between two points.

1678 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

Function Return Value

DISL2 — Euclidean (2-norm) distance between the points X and Y. (Output)

Required Arguments

X — Vector of length max(N * |INCX|, 1). (Input)

Y — Vector of length max(N * |INCY|, 1). (Input)

Optional Arguments

N — Length of the vectors X and Y. (Input)

Default: N = SIZE (X,1).

INCX — Displacement between elements of X. (Input)

The I-th element of X is X(1 + (I 1) * INCX) if INCX is greater than or equal to zero

or X(1 + (I N) * INCX) if INCX is less than zero.

Default: INCX = 1.

INCY — Displacement between elements of Y. (Input)

The I-th element of Y is Y(1 + (I 1) * INCY) if INCY is greater than or equal to zero

or Y(1 + (I N) * INCY) if INCY is less than zero.

Default: INCY = 1.

FORTRAN 90 Interface

Generic: DISL2 (X, Y [,…])

Specific: The specific interface names are S_DISL2 and D_DISL2.

FORTRAN 77 Interface

Single: DISL2(N, X, INCX, Y, INCY)

Double: The double precision function name is DDISL2.

Description

The function DISL2 computes the Euclidean (2-norm) distance between two points x and y. The

Euclidean distance is defined to be

1 2

2

1

N

i i

i

x y

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1679

Example

Compute the Euclidean (2-norm) distance between two vectors of length 4.

 USE DISL2_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER INCX, INCY, N

 PARAMETER (N=4)

!

 INTEGER NOUT

 REAL VAL, X(N), Y(N)

!

! Set values for X and Y

! X = (1.0 -1.0 0.0 2.0)

!

! Y = (4.0 2.0 1.0 -3.0)

!

 DATA X/1.0, -1.0, 0.0, 2.0/

 DATA Y/4.0, 2.0, 1.0, -3.0/

! Compute L2 distance

 VAL = DISL2(X,Y)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ' The 2-norm distance is ', VAL

 END

Output

The 2-norm distance is 6.63325

DISL1
This function computes the 1-norm distance between two points.

Function Return Value

DISL1 — 1-norm distance between the points X and Y. (Output)

Required Arguments

X — Vector of length max(N * |INCX|, 1). (Input)

Y — Vector of length max(N * |INCY|, 1). (Input)

Optional Arguments

N — Length of the vectors X and Y. (Input)

Default: N = SIZE (X,1).

1680 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

INCX — Displacement between elements of X. (Input)

The I-th element of X is X(1 + (I 1) * INCX) if INCX is greater than or equal to zero

or X(1 + (I N) * INCX) if INCX is less than zero.

Default: INCX = 1.

INCY — Displacement between elements of Y. (Input)

The I-th element of Y is Y(1 + (I 1) * INCY) if INCY is greater than or equal to zero

or Y(1 + (I N) * INCY) if INCY is less than zero.

Default: INCY = 1.

FORTRAN 90 Interface

Generic: DISL1 (X, Y [,…])

Specific: The specific interface names are S_DISL1 and D_DISL1.

FORTRAN 77 Interface

Single: DISL1(N, X, INCX, Y, INCY)

Double: The double precision function name is DDISL1.

Description

The function DISL1 computes the 1-norm distance between two points x and y. The 1-norm

distance is defined to be

1

N

i i

i

x y

Example

Compute the 1-norm distance between two vectors of length 4.

 USE DISL1_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER INCX, INCY, N

 PARAMETER (N=4)

!

 INTEGER NOUT

 REAL VAL, X(N), Y(N)

!

! Set values for X and Y

! X = (1.0 -1.0 0.0 2.0)

!

! Y = (4.0 2.0 1.0 -3.0)

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1681

!

 DATA X/1.0, -1.0, 0.0, 2.0/

 DATA Y/4.0, 2.0, 1.0, -3.0/

! Compute L1 distance

 VAL = DISL1(X,Y)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ' The 1-norm distance is ', VAL

 END

Output

The 1-norm distance is 12.0000

DISLI
This function computes the infinity norm distance between two points.

Function Return Value

DISLI — Infinity norm distance between the points X and Y. (Output)

Required Arguments

X — Vector of length max(N * |INCX|, 1). (Input)

Y — Vector of length max(N * |INCY|, 1). (Input)

Optional Arguments

N — Length of the vectors X and Y. (Input)

Default: N = SIZE (X,1).

INCX — Displacement between elements of X. (Input)

The I-th element of X is X(1 + (I 1) *INCX) if INCX is greater than or equal to zero

or X(1 + (I N) * INCX) if INCX is less than zero.

Default: INCX = 1.

INCY — Displacement between elements of Y. (Input)

The I-th element of Y is Y(1 + (I 1) * INCY) if INCY is greater than or equal to zero

or Y(1 + (I N) * INCY) if INCY is less than zero.

Default: INCY = 1.

FORTRAN 90 Interface

Generic: DISLI (X, Y [,…])

Specific: The specific interface names are S_DISLI and D_DISLI.

1682 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: DISLI(N, X, INCX, Y, INCY)

Double: The double precision function function name is DDISLI.

Description

The function DISLI computes the ∞-norm distance between two points x and y. The ∞-norm

distance is defined to be

1
max i i

i N
x y

Example

Compute the ∞-norm distance between two vectors of length 4.

 USE DISLI_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER INCX, INCY, N

 PARAMETER (N=4)

!

 INTEGER NOUT

 REAL VAL, X(N), Y(N)

!

! Set values for X and Y

! X = (1.0 -1.0 0.0 2.0)

!

! Y = (4.0 2.0 1.0 -3.0)

!

 DATA X/1.0, -1.0, 0.0, 2.0/

 DATA Y/4.0, 2.0, 1.0, -3.0/

! Compute L-infinity distance

 VAL = DISLI(X,Y)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) ' The infinity-norm distance is ', VAL

 END

Output

The infinity-norm distance is 5.00000

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1683

VCONR

Computes the convolution of two real vectors.

Required Arguments

X — Vector of length NX. (Input)

Y — Vector of length NY. (Input)

Z — Vector of length NZ containing the convolution Z = X * Y. (Output)

Optional Arguments

NX — Length of the vector X. (Input)

Default: NX = SIZE (X,1).

NY — Length of the vector Y. (Input)

Default: NY = SIZE (Y,1).

NZ — Length of the vector Z. (Input)

NZ must be at least NX + NY 1.

Default: NZ = SIZE (Z,1).

FORTRAN 90 Interface

Generic: CALL VCONR (X, Y, Z [,…])

Specific: The specific interface names are S_VCONR and D_VCONR.

FORTRAN 77 Interface

Single: CALL VCONR (NX, X, NY, Y, NZ, Z)

Double: The double precision name is DVCONR.

Description

The routine VCONR computes the convolution z of two real vectors x and y. Let nx = NX, ny = NY

and nz = NZ. The vector z is defined to be

1

1

for = 1, 2, ,
xn

j j k k z

k

z x y j n

1684 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

where nz = nx + ny 1. If the index j k + 1 is outside the range 1, 2, …, nx, then xj - k + 1 is taken

to be zero.

The fast Fourier transform is used to compute the convolution. Define the complex vector u of

length nz = nx + ny 1 to be

 1 2, , , , 0, , 0
xnu x x x

The complex vector v, also of length nz, is defined similarly using y. Then, by the Fourier

convolution theorem,

ˆ ˆ ˆ for = 1, 2, , i i i zw u v i n

where the û indicates the Fourier transform of u computed via IMSL routines FFTCF and FFTCB

(see Chapter 6, Transforms) is used to compute the complex vector w from ŵ . The vector z is

then found by taking the real part of the vector w.

Comments

Workspace may be explicitly provided, if desired, by use of V2ONR/DV2ONR. The reference is

CALL V2ONR (NX, X, NY, Y, NZ, Z, XWK, YWK, ZWK, WK)

The additional arguments are as follows:

XWK — Complex work array of length NX + NY 1.

YWK — Complex work array of length NX + NY 1.

ZWK — Complex work array of length NX + NY 1.

WK — Real work array of length 6 * (NX + NY 1) + 15.

Example

In this example, the convolution of a vector x of length 8 and a vector y of length 3 is computed.

The resulting vector z is of length 8 + 3 1 = 10. (The vector y is sometimes called a filter.)

 USE VCONR_INT

 USE WRRRN_INT

 IMPLICIT NONE

 INTEGER NX, NY, NZ

 PARAMETER (NX=8, NY=3, NZ=NX+NY-1)

!

 REAL X(NX), Y(NY), Z(NZ)

! Set values for X

! X = (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0)

! Set values for Y

! Y = (0.0 0.0 1.0)

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1685

!

 DATA X/1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0/

 DATA Y/0.0, 0.0, 1.0/

! Compute vector convolution

! Z = X * Y

 CALL VCONR (X,Y,Z)

! Print results

 CALL WRRRN ('Z = X (*) Y', Z, 1, NZ, 1)

 END

Output

 Z = X (*) Y

 1 2 3 4 5 6 7 8 9 10

0.000 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

VCONC

Computes the convolution of two complex vectors.

Required Arguments

X — Complex vector of length NX. (Input)

Y — Complex vector of length NY. (Input)

Z — Complex vector of length NZ containing the convolution Z = X * Y. (Output)

Optional Arguments

NX — Length of the vector X. (Input)

Default: NX = SIZE (X,1).

NY — Length of the vector Y. (Input)

Default: NY = SIZE (Y,1).

NZ — Length of the vector Z. (Input)

NZ must be at least NX + NY 1.

Default: NZ = SIZE (Z,1).

FORTRAN 90 Interface

Generic: CALL VCONC (X, Y, Z [,…])

Specific: The specific interface names are S_VCONC and D_VCONC.

1686 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL VCONC (NX, X, NY, Y, NZ, Z)

Double: The double precision name is DVCONC.

Description

The routine VCONC computes the convolution z of two complex vectors x and y. Let nx = NX, then

ny = NY and nz = NZ. The vector z is defined to be

1

1

for = 1, 2, ,
xn

j j k k z

k

z x y j n

where nz = nx + ny 1. If the index j k + 1 is outside the range 1, 2, …, nx, then xj k+1 is taken to

be zero.

The fast Fourier transform is used to compute the convolution. Define the complex vector u of

length nz = nx + ny 1 to be

 1 2, , , , 0, , 0
znu x x x

The complex vector v, also of length nz, is defined similarly using y. Then, by the Fourier

convolution theorem,

ˆ ˆˆ for = 1, 2, ,i i i zz u v i n

where the û indicates the Fourier transform of u computed using IMSL routine FFTCF (see

Chapter 6, Transforms). The complex vector z is computed from ŵ via IMSL routine FFTCB (see

Chapter 6, Transforms).

Comments

Workspace may be explicitly provided, if desired, by use of V2ONC/DV2ONC. The reference is

CALL V2ONC (NX, X, NY, Y, NZ, Z, XWK, YWK, WK)

The additional arguments are as follows:

XWK — Complex work array of length NX + NY 1.

YWK — Complex work array of length NX + NY 1.

WK — Real work arrary of length 6 * (NX + NY 1) + 15.

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1687

Example

In this example, the convolution of a vector x of length 4 and a vector y of length 3 is computed.

The resulting vector z is of length 4 + 3 y is sometimes called a filter.)

 USE VCONC_INT

 USE WRCRN_INT

 IMPLICIT NONE

 INTEGER NX, NY, NZ

 PARAMETER (NX=4, NY=3, NZ=NX+NY-1)

!

 COMPLEX X(NX), Y(NY), Z(NZ)

! Set values for X

! X = (1.0+2.0i 3.0+4.0i 5.0+6.0i 7.0+8.0i)

! Set values for Y

! Y = (0.0+0i 0.0+0i 1.0+0i)

!

 DATA X/(1.0,2.0), (3.0,4.0), (5.0,6.0), (7.0,8.0)/

 DATA Y/(0.0,0.0), (0.0,0.0), (1.0,1.0)/

! Compute vector convolution

! Z = X * Y

 CALL VCONC (X,Y,Z)

! Print results

 CALL WRCRN ('Z = X (*) Y', Z, 1, NZ, 1)

 END

Output

 Z = X (*) Y

 1 2 3 4

(0.00, 0.00) (0.00, 0.00) (-1.00, 3.00) (-1.00, 7.00)

 5 6

(-1.00, 11.00) (-1.00, 15.00)

Extended Precision Arithmetic
This section describes a set of routines for mixed precision arithmetic. The routines are designed

to allow the computation and use of the full quadruple precision result from the multiplication of

two double precision numbers. An array called the accumulator stores the result of this

multiplication. The result of the multiplication is added to the current contents of the accumulator.

It is also possible to add a double precision number to the accumulator or to store a double

precision approximation in the accumulator.

The mixed double precision arithmetic routines are described below. The accumulator array,

QACC, is a double precision array of length 2. Double precision variables are denoted by DA and

DB. Available operations are:

Initialize a real accumulator, QACC ← DA.

CALL DQINI (DA, QACC)

Store a real accumulator, DA ← QACC.

1688 Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY

CALL DQSTO (QACC, DA)

Add to a real accumulator, QACC ← QACC + DA.

CALL DQADD (DA, QACC)

Add a product to a real accumulator, QACC ← QACC + DA*DB.

CALL DQMUL (DA, DB, QACC)

There are also mixed double complex arithmetic versions of the above routines. The accumulator,

ZACC, is a double precision array of length 4. Double complex variables are denoted by ZA and ZB.

Available operations are:

Initialize a complex accumulator, ZACC ← ZA.

CALL ZQINI (ZA, ZACC)

Store a complex accumulator, ZA ← ZACC.

CALL ZQSTO (ZACC, ZA)

Add to a complex accumulator, ZACC ← ZACC + ZA.

CALL ZQADD (ZA, ZACC)

Add a product to a complex accumulator, ZACC ← ZACC + ZA * ZB.

CALL ZQMUL (ZA, ZB, ZACC)

Example

In this example, the value of 1.0D0/3.0D0 is computed in quadruple precision using Newton‘s

method. Four iterations of

 2
1k k k kx x x ax

with a = 3 are taken. The error ax 1 is then computed. The results are accurate to approximately

twice the usual double precision accuracy, as given by the IMSL routine DMACH(4), in the

Reference Material section of this manual. Since DMACH is machine dependent, the actual accuracy

obtained is also machine dependent.

 USE IMSL_LIBRARIES

 IMPLICIT NONE

 INTEGER I, NOUT

 DOUBLE PRECISION A, DACC(2), DMACH, ERROR, SACC(2), X(2), X1, X2, EPSQ

!

 CALL UMACH (2, NOUT)

 A = 3.0D0

 CALL DQINI (1.0001D0/A, X)

! Compute X(K+1) = X(K) - A*X(K)*X(K)

! + X(K)

 DO 10 I=1, 4

 X1 = X(1)

 X2 = X(2)

! Compute X + X

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations 1689

 CALL DQADD (X1, X)

 CALL DQADD (X2, X)

! Compute X*X

 CALL DQINI (0.0D0, DACC)

 CALL DQMUL (X1, X1, DACC)

 CALL DQMUL (X1, X2, DACC)

 CALL DQMUL (X1, X2, DACC)

 CALL DQMUL (X2, X2, DACC)

! Compute -A*(X*X)

 CALL DQINI (0.0D0, SACC)

 CALL DQMUL (-A, DACC(1), SACC)

 CALL DQMUL (-A, DACC(2), SACC)

! Compute -A*(X*X) + (X + X)

 CALL DQADD (SACC(1), X)

 CALL DQADD (SACC(2), X)

 10 CONTINUE

! Compute A*X - 1

 CALL DQINI (0.0D0, SACC)

 CALL DQMUL (A, X(1), SACC)

 CALL DQMUL (A, X(2), SACC)

 CALL DQADD (-1.0D0, SACC)

 CALL DQSTO (SACC, ERROR)

! ERROR should be less than MACHEPS**2

 EPSQ = AMACH(4)

 EPSQ = EPSQ * EPSQ

 WRITE (NOUT,99999) ERROR, ERROR/EPSQ

!

99999 FORMAT (' A*X - 1 = ', D15.7, ' = ', F10.5, '*MACHEPS**2')

 END

Output

A*X - 1 = 0.6162976D-32 = 0.12500*MACHEPS**2

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1691

Chapter 10: Linear Algebra
Operators and Generic Functions

Routines

1.1. Operators
Computes matrix-matrix or matrix-vector productx. 1707
Computes transpose matrix-matrix producttx. 1711
Computes matrix- transpose matrix productxt. 1714
Computes conjugate transpose matrix-matrix producthx. 1717
Computes matrix-conjugate transpose matrix productxh. 1720
Computes the transpose of a matrixt. 1723
Computes conjugate transpose of a matrixh. 1726
Computes the inverse matrixi. 1728
Computes inverse matrix-matrix productix. 1730

Computes matrix-inverse matrix productxi. 1740

10.2 Functions
Computes the Cholesky factorization of a positive-definite,
symmetric or self-adjoint matrix .. CHOL 1743
Computes the condition number of a matrix COND 1746
Computes the determinant of a rectangular matrix DET 1750
Constructs a square diagonal matrix DIAG 1753
Extracts the diagonal terms of a matrix DIAGONALS 1754
Computes the eigenvalue-eigenvector decomposition of an
ordinary or generalized eigenvalue problem EIG 1755
Creates the identity matrix... EYE 1759

Computes the Discrete Fourier Transform of one
complex sequence. ... FFT 1761
Discrete Fourier Transform of
several complex or real sequences FFT_BOX 1763
Computes the inverse of the Discrete Fourier
Transform of one complex sequence IFFT 1765
Computes the inverse Discrete Fourier Transform of
several complex or real sequences IFFT_BOX 1767
Tests for NaN ... isNaN 1769
Returns the value for NaN .. NaN 1770
Computes the norm of an array .. NORM 1771
Orthogonalizes the columns of a matrix ORTH 1774

1692 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Generates random numbers ... RAND 1777
Computes the mathematical rank of a matrix........................ RANK 1779
Computes the singular value decomposition of a matrix SVD 1780
Normalizes the columns of a matrix. UNIT 1783

Usage Notes
This chapter describes numerical linear algebra, Fourier transforms, random number generation,

and other utility software packaged as defined operations that are executed with a function

notation similar to standard mathematics. The resulting interface alters the way libraries are

presented to the user. Many computations of numerical linear algebra are documented here as

operators and generic functions. A notation is developed reminiscent of matrix algebra. This

allows the Fortran user to express mathematical formulas in terms of operators. The operators can

be used with both dense and sparse matrices.

A comprehensive Fortran module, linear_operators, defines the operators and functions. Its use

provides this simplification. Subroutine calls and the use of type-dependent procedure names are

largely avoided. This makes a rapid development cycle possible, at least for the purposes of

experiments and proof-of-concept. The goal is to provide the Fortran programmer with an

interface, operators, and functions that are useful and succinct. The modules can be used with or

added to existing Fortran programs, but the operators provide a more readable program whenever

they apply. This approach may require more hidden working storage. The size of the executable

program may be larger than alternatives using subroutines. There are applications wherein the

operator and function interface does not have the functionality that is available using subroutine

libraries. To retain greater flexibility, some users will continue to require the techniques of calling

subroutines.

A parallel computation for many of the defined operators and functions has been implemented.

The type of problem solved is a simple one: several independent problems of the same data type

and size. Most of the detailed communication for parallel computation is hidden from the user.

Those functions having this data type computed in parallel are marked in bold type. The section

―Dense Matrix Parallelism Using MPI‖ gives an introduction on how users should write their

codes to use machines on a network.

A number of examples, in addition to those shown in this document, are supplied in the product

examples directory. The name of the example code is shown in parentheses in the example

heading, for those examples that are included with the product.

Matrix Optional Data Changes
To reset tolerances for determining singularity and to allow for other data changes, non-allocated

―hidden‖ variables are defined within the modules. These variables can be allocated first, then

assigned values which result in the use of different tolerances or greater efficiency in the

executable program. The non-allocated variables, whose scope is limited to the module, are

hidden from the casual user. Default values or rules are applied if these arrays are not allocated.

In more detail, the inverse matrix operator “.i.” applied to a square matrix first uses the LU

factorization code LIN_SOL_GEN and row pivoting. The default value for a small diagonal term

is defined to be:

sqrt(epsilon(A))*sum(abs(A))/(n*n+1)

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1693

If the system is singular, a generalized matrix inverse is computed with the QR factorization code

LIN_SOL_LSQ using this same tolerance. Both row and column pivoting are used. If the system

is singular, an error message will be printed and a Fortran 90 STOP is executed. Users may want

to change this rule. This is illustrated by continuing and not printing the error message. The

following is a additional source to accomplish this, for all following invocations of the operator

“.i.”:

allocate(s_inv_options(1))

s_inv_options (1) = skip_error_processing

B = .i. A

There are additional self-documenting integer parameters, packaged in the module

linear_operators, that allow users other choices, such as changing the value of the tolerance, as

noted above. Included is the ability to have the option apply for just the next invocation of the

operator. Options are available that allow optional data to be passed to supporting Fortran 90

subroutines. This is illustrated in the following example:

Operator_ex36.f90

 use linear_operators

 implicit none

! This is the equivalent of Example 4 for LIN_GEIG_GEN (using operators).

 integer, parameter :: n=32

 real(kind(1d0)), parameter :: one=1d0, zero=0d0

 real(kind(1d0)) a(n,n), b(n,n), bta(n), err

 complex(kind(1d0)) alpha(n), v(n,n)

! Generate random matrices for both A and B.

 A = rand(A); B = rand(B)

! Set the option, a larger tolerance than default for lin_sol_lsq.

 allocate(d_eig_options(6))

 d_eig_options(1) = options_for_lin_geig_gen

 d_eig_options(2) = 4

 d_eig_options(3) = d_lin_geig_gen_for_lin_sol_lsq

 d_eig_options(4) = 2

 d_eig_options(5) = d_options(d_lin_sol_lsq_set_small,&

 sqrt(epsilon(one))*norm(B,1))

 d_eig_options(6) = d_lin_sol_lsq_no_sing_mess

! Compute the generalized eigenvalues.

 alpha = EIG(A, B=B, D=bta, W=V)

! Check the residuals.

 err = norm((A .x. V .x. diag(bta)) - (B .x. V .x. diag(alpha)),1)/&

 (norm(A,1)*norm(bta,1)+norm(B,1)*norm(alpha,1))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 4 for LIN_GEIG_GEN (operators) is correct.'

 end if

! Clean up the allocated array. This is good housekeeping.

1694 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 deallocate(d_eig_options)

 end

Note that in this example one first allocates the array by which the user will pass the new options

for EIG to use. This array is named d_eig_options in accordance with the name of the

unallocated option array specified in the documentation for EIG. A size of 6 is specified because a

total of six options must be passed to EIG to accomplish the resetting of the singular value

tolerance and to turn off the printing of the error message when the matrix is singular. The first

entry of d_eig_options specifies which of the options for EIG will be set. The next entry

designates the number of entries which follows that apply to ―options_for_lin_geig_gen‖.

The third entry specifies the option value of LIN_GEIG_GEN to be set,

d_lin_geig_gen_for_lin_sol_lsq. The fourth entry specifies the number of entries that

follow which apply to LIN_SOL_LSQ. Finally, the fifth and sixth entries set the two LIN_SOL_LSQ

options that we desire.

Dense Matrix Computations

For a detailed description of MPI Capability see ―Dense Matrix Parallelism Using MPI.‖

This section is concerned with methods for computing with dense matrices. Consider a Fortran 90

code fragment that solves a linear system of algebraic equations, Ay = b, then computes the

residual r = b − Ay. A standard mathematical notation is often used to write the solution,

1y A b

A user thinks: ―matrix and right-hand side yields solution.‖ The code shows the computation of

this mathematical solution using a defined Fortran operator ―.ix.‖, and random data obtained

with the function, rand. This operator is read ―inverse matrix times.‖ The residuals are computed

with another defined Fortran operator ―.x.‖, read ―matrix times vector.‖ Once a user understands

the equivalence of a mathematical formula with the corresponding Fortran operator, it is possible

to write this program with little effort. The last line of the example before end is discussed below.

USE linear_operators

 integer,parameter :: n=3; real A(n,n), y(n), b(n), r(n)

 A=rand(A); b=rand(b); y = A .ix. b

 r = b - (A .x. y) ! Parentheses are needed

end

The IMSL Fortran Numerical Library provides additional lower-level software that implements

the operation ―.ix.‖, the function rand, matrix multiply ―.x.‖, and others not used in this

example. Standard matrix products and inverse operations of matrix algebra are shown in the

following table:

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1695

Defined Array Operation Matrix Operation Alternative in Fortran 90

A .x. B AB matmul(A, B)

.i. A 1A

lin_sol_gen

lin_sol_lsq

.t. A, .h. A
,T HA A

transpose(A)

conjg(transpose(A))

A .ix. B 1A B

lin_sol_gen

lin_sol_lsq

B .xi. A 1BA

lin_sol_gen

lin_sol_lsq

A .tx. B, or (.t. A) .x. B

A .hx. B, or (.h. A) .x. B
,T HA B A B

matmul(transpose (A), B)

matmul(conjg(transpose(A)), B)

B .xt. A, or B .x. (.t. A)

B .xh. A, or B .x. (.h. A)
,T HBA BA

matmul(B, transpose(A))

matmul(B, conjg(transpose(A)))

The IMSL operators apply generically to all standard precisions and floating-point data types –

real and complex – and to objects that are broader in scope than arrays with a fixed number of

dimensions. For example, the matrix product ―.x.‖ applies to matrix times vector and matrix times

matrix represented as Fortran 90 arrays. It also applies to ―independent matrix products.‖ For

this, use the notion: a box of problems to refer to independent linear algebra computations, of the

same kind and dimension, but different data. The racks of the box are the distinct problems. In

terms of Fortran 90 arrays, a rank-3, assumed-shape array is the data structure used for a box. The

first two dimensions are the data for a matrix; the third dimension is the rack number. Each

problem is independent of other problems in consecutive racks of the box. We use parallelism of

an underlying network of processors, and MPI, when computing these disjoint problems.

In addition to the operators .ix., .xi., .i., and .x., additional operators .t., .h., .tx.,

.hx., .xt., and .xh. are provided for complex matrices. Since the transpose matrix is defined

for complex matrices, this meaning is kept for the defined operations. In order to write one defined

operation for both real and complex matrices, use the conjugate-transpose in all cases. This will

result in only real operations when the data arrays are real.

For sums and differences of vectors and matrices, the intrinsic array operations ―+‖ and ―−‖ are

available. It is not necessary to have separate defined operations. A parsing rule in Fortran 90

states that the result of a defined operation involving two quantities has a lower precedence than

any intrinsic operation. This explains the parentheses around the next-to-last line containing the

sub-expression ―A .x. y‖ found in the example. Users are advised to always include

parentheses around array expressions that are mixed with defined operations, or whenever there is

possible confusion without them. The next-to-last line of the example results in computing the

residual associated with the solution, namely r = b − Ay. Ideally, this residual is zero when the

system has a unique solution. It will be computed as a non-zero vector due to rounding errors and

conditioning of the problem.

1696 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Dense Matrix Functions

For a detailed description of MPI Capability see ―Dense Matrix Parallelism Using MPI.‖

Several decompositions and functions required for numerical linear algebra follow. The

convention of enclosing optional quantities in brackets, ―[]‖ is used. The functions that use MPI

for parallel execution of the box data type are marked in bold.

Defined Array Functions Matrix Operation

S=SVD(A [,U=U, V=V]) TA USV

E=EIG(A [[,B=B, D=D],

V=V, W=W])

(AV = VE), AVD = BVE

(AW = WE), AWD = BWE

R=CHOL(A) TA R R

Q=ORTH(A [,R=R]) , TA QR Q Q I

U=UNIT(A) 1 1 1, / ,u a a

F=DET(A) Det(A) = determinant

K=RANK(A) rank(A) = rank

P=NORM(A[,[type=]i])

1
1

12

1
=1

max ()

 largest singular value

max ()

m

j ij

i

n

i ijhuge
j

p A a

p A s

p A a

C=COND(A)
 1 / rank As s

Z=EYE(N)
NZ I

A=DIAG(X) 1,A diag x

X=DIAGONALS(A) 11,x a

Y=FFT (X,[WORK=W]);

X=IFFT(Y,[WORK=W])

Discrete Fourier Transform, Inverse

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1697

Defined Array Functions Matrix Operation

Y=FFT_BOX (X,[WORK=W]);

X=IFFT_BOX(Y,[WORK=W])

Discrete Fourier Transform for Boxes, Inverse

A=RAND(A) Random numbers, 0 < A < 1

L=isNaN(A) Test for NaN, if (l) then…

In certain functions, the optional arguments are inputs while other optional arguments are outputs.

To illustrate the example of the box SVD function, a code is given that computes the singular

value decomposition and the reconstruction of the random matrix box, A, using the computed

factors, R = USV
T
. Mathematically R = A, but this will be true, only approximately, due to

rounding errors. The value units_of_error = ||A − R||/(||A||ɛ), shows the merit of this

approximation.

Dense Matrix Parallelism Using MPI

General Remarks

The central theme we use for the computing functions of the box data type is that of delivering

results to a distinguished node of the machine. One of the design goals was to shield much of the

complexity of distributed computing from the user.

The nodes are numbered by their ―ranks.‖ Each node has rank value MP_RANK. There are

MP_NPROCS nodes, so MP_RANK = 0, 1,...,MP_NPROCS-1. The root node has

MP_RANK = 0. Most of the elementary MPI material is found in Gropp, Lusk, and Skjellum

(1994) and Snir, Otto, Huss-Lederman, Walker, and Dongarra (1996). Although IMSL Fortran

Numerical Library users are for the most part shielded from the complexity of MPI, it is desirable

for some users to learn this important topic. Users should become familiar with any referenced

MPI routines and the documentation of their usage. MPI routines are not discussed here, because

that is best found in the above references.

The IMSL Fortran Numerical Library algorithm for allocating the racks of the box to the

processors consists of creating a schedule for the processors, followed by communication and

execution of this schedule. The efficiency may be improved by using the nodes according to a

specific priority order. This order can reflect information such as a powerful machine on the

network other than the user‘s work station, or even transient network behavior. The IMSL Fortran

Numerical Library allows users to define this order, but a default order is provided. A setup

function establishes an order based on timing matrix products of a size given by the user. See

Parallel Example 4 for an illustration of this usage.

Getting Started with Modules MPI_setup_int and MPI_node_int

The MPI_setup_int and MPI_node_int modules are part of the IMSL Fortran Numerical

Library and not part of MPI itself. Following a call to the function MP_SETUP(), the module

MPI_node_int will contain information about the number of processors, the rank of a processor,

the communicator for IMSL Fortran Numerical Library, and the usage priority order of the node

1698 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

machines. Since MPI_node_int is used by MPI_setup_int, it is not necessary to explicitly

use this module. If neither MP_SETUP() nor MPI_Init() is called, then the box data type will

compute entirely on one node. No routine from MPI will be called.

MODULE MPI_NODE_INT

 INTEGER, ALLOCATABLE :: MPI_NODE_PRIORITY(:)

 INTEGER, SAVE :: MP_LIBRARY_WORLD = huge(1)

 LOGICAL, SAVE :: MPI_ROOT_WORKS = .TRUE.

 INTEGER, SAVE :: MP_RANK = 0, MP_NPROCS = 1

END MODULE

When the function MP_SETUP() is called with no arguments, the following events occur:

 If MPI has not been initialized, it is first initialized. This step uses the routines

MPI_Initialized() and possibly MPI_Init(). Users who choose not to call

MP_SETUP() must make the required initialization call before using any IMSL Fortran

Numerical Library code that relies on MPI for its execution. If the user‘s code calls an IMSL

Fortran Numerical Library function utilizing the box data type and MPI has not been

initialized, then the computations are performed on the root node. The only MPI routine

always called in this context is MPI_Initialized(). The name MP_SETUP is pushed onto

the subprogram or call stack.

 If MP_LIBRARY_WORLD equals its initial value (=huge(1)) then MPI_COMM_WORLD, the

default MPI communicator, is duplicated and becomes its handle. This uses the routine

MPI_Comm_dup(). Users can change the handle of MP_LIBRARY_WORLD as required by

their application code. Often this issue can be ignored.

 The integers MP_RANK and MP_NPROCS are respectively the node‘s rank and the number of

nodes in the communicator, MP_LIBRARY_WORLD. Their values require the routines

MPI_Comm_size() and MPI_Comm_rank(). The default values are important when MPI is

not initialized and a box data type is computed. In this case the root node is the only node

and it will do all the work. No calls to MPI communication routines are made when

MP_NPROCS = 1 when computing the box data type functions. A program can temporarily

assign this value to force box data type computation entirely at the root node. This is

desirable for problems where using many nodes would be less efficient than using the root

node exclusively.

 The array MPI_NODE_PRIORITY(:) is unallocated unless the user allocates it. The IMSL

Fortran Numerical Library codes use this array for assigning tasks to processors, if it is

allocated. If it is not allocated, the default priority of the nodes is

(0,1,...,MP_NPROCS-1). Use of the function call MP_SETUP(N) allocates the array, as

explained below. Once the array is allocated its size is MP_NPROCS. The contents of the array

is a permutation of the integers 0,...,MP_NPROCS-1. Nodes appearing at the start of the list

are used first for parallel computing. A node other than the root can avoid any computing,

except receiving the schedule, by setting the value MPI_NODE_PRIORITY(I)< 0. This means

that node |MPI_NODE_PRIORITY(I)| will be sent the task schedule but will not perform

any significant work as part of box data type function evaluations.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1699

 The LOGICAL flag MPI_ROOT_WORKS designates whether or not the root node participates in

the major computation of the tasks. The root node communicates with the other nodes to

complete the tasks but can be designated to do no other work. Since there may be only one

processor, this flag has the default value .TRUE., assuring that one node exists to do work.

When more than one processor is available users can consider assigning

MPI_ROOT_WORKS=.FALSE. This is desirable when the alternate nodes have equal or greater

computational resources compared with the root node. Parallel Example 4 illustrates this

usage. A single problem is given a box data type, with one rack. The computing is done at

the node, other than the root, with highest priority. This example requires more than one

processor since the root does no work.

When the generic function MP_SETUP(N) is called, where N is a positive integer, a call to

MP_SETUP() is first made, using no argument. Use just one of these calls to MP_SETUP(). This

initializes the MPI system and the other parameters described above. The array

MPI_NODE_PRIORITY(:) is allocated with size MP_NPROCS. Then DOUBLE PRECISION matrix

products C = AB, where A and B are N by N matrices, are computed at each node and the elapsed

time is recorded. These elapsed times are sorted and the contents of MPI_NODE_PRIORITY(:)

are permuted in accordance with the shortest times yielding the highest priority. All the nodes in

the communicator MP_LIBRARY_WORLD are timed. The array MPI_NODE_PRIORITY(:) is then

broadcast from the root to the remaining nodes of MP_LIBRARY_WORLD using the routine

MPI_Bcast(). Timing matrix products to define the node priority is relevant because the effort to

compute C is comparable to that of many linear algebra computations of similar size. Users are

free to define their own node priority and broadcast the array MPI_NODE_PRIORITY(:) to the

alternate nodes in the communicator.

To print any IMSL Fortran Numerical Library error messages that have occurred at any node, and

to finalize MPI, use the function call MP_SETUP(‗Final‘). Case of the string ‗Final‘ is not

important. Any error messages pending will be discarded after printing on the root node. This is

triggered by popping the name ‗MP_SETUP‘ from the subprogram stack or returning to Level 1 in

the stack. Users can obtain error messages by popping the stack to Level 1 and still continuing

with MPI calls. This requires executing call e1pop (‗MP_SETUP‘). To continue on after

summarizing errors execute call e1psh (‗MP_SETUP‘). More details about the error

processor are found in Reference Material chapter of this manual.

Messages are printed by nodes from largest rank to smallest, which is the root node. Use of the

routine MPI_Finalize() is made within MP_SETUP(‗Final‘), which shuts down MPI. After

MPI_Finalize() is called, the value of MP_NPROCS = 0. This flags that MPI has been

initialized and terminated. It cannot be initialized again in the same program unit execution. No

MPI routine is defined when MP_NPROCS has this value.

Using Processors

There are certain pitfalls to avoid when using IMSL Fortran Numerical Library and box data types

as implemented with MPI. A fundamental requirement is to allow all processors to participate in

parts of the program where their presence is needed for correctness. It is incorrect to have a

program unit that restricts nodes from executing a block of code required when computing with

the box data type. On the other hand it is appropriate to restrict computations with rank-2 arrays

to the root node. This is not required, but the results for the alternate nodes are normally

discarded. This will avoid gratuitous error messages that may appear at alternate nodes.

Observe that only the root has a correct result for a box data type function. Alternate nodes have

the constant value one as the result. The reason for this is that during the computation of the

1700 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

functions, sub-problems are allocated to the alternate nodes by the root, but for only the root to

utilize the result. If a user needs a value at the other nodes, then the root must send it to the nodes.

See Parallel Example 3 for an illustration of this usage. Convergence information is computed at

the root node and broadcast to the others. Without this step some nodes would not terminate the

loop even when corrections at the root become small. This would cause the program to be

incorrect.

Sparse Matrix Computations

Introduction

This section is concerned with methods for computing with sparse matrices. Our primary goal is

to give the appearance of simplicity and allow ease-of-use in dealing with these calculations. The

underlying principle in our design is to use Fortran 2003 standard support for derived types with

initialized and allocatable components. To perform data storage and conversions we use

overloaded assignment to hide complexity. The operations currently supported are:

 defining entries of the matrices,

 adding sparse matrices,

 forming products of sparse matrices and dense vectors or matrices,

 solving linear systems of algebraic equations

 condition number computation

 conversion of sparse matrices or dense arrays to the converse

 storage management operations

The definition of the sparse matrices starts with a triplet consisting of the row and column indices

and a value at that entry. By setting a flag in the derived type SLU_Options, repeated values

may be accumulated to yield a value that is the sum of all triplets for that matrix entry. A diagram

for constructing a single precision sparse 10000 10000 matrix, H, is illustrated with the

pseudocode fragment:

Use linear_operators

Integer I, J; Real(Kind(1.e0)) value, x(10000)

Type(s_sparse) A

Type(s_hbc_sparse) H

Define non-zero values of A with repeated overloaded assignments

A = s_entry(I, J, value).

Convert to computational Harwell-Boeing form with the overloaded assignment H = A.

Compute with sparse matrix H, e. g. x = H .ix. x.

A basic feature is that there are four sparse matrix derived types, Types (s_hbc_sparse),

(d_hbc_sparse), (c_hbc_sparse), and (z_hbc_sparse). These respectively handle single, double,

complex and double-complex data. The defined operators work with a sparse matrix and a

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1701

corresponding dense array of the same precision and data type. There is no mixing of data types

such as a sparse double precision matrix multiplied by a single precision vector. To accommodate

that case an intermediate double precision quantity will be created that ascends the single precision

vector to a double precision vector. The table below shows the operations that are valid with

sparse matrix types.

Mathematical Operation Operation
Notation

Input Terms Output Terms

1y H x
y = H .ix. x

n nH sparse, x(1:k), k n
y(1:n)

1T Ty x H H x
y = x .xi. H

n nH sparse, x(1:k), k n
y(1:n)

1
n rY H X

Y= H .ix. X
n nH sparse, X(1:k,1:r), k n

Y(1:n,1:r)

 1
T

T T
r nY X H H X

Y = X .xi. H
n nH sparse, X(1:r,1:n), k n

Y(1:r,1:n)

y Hx y = H .x. x
m nH sparse, x(1:k), k n

y(1:m)

T Ty x H H x
y = x .x. H

m nH sparse, x(1:k), k m
y(1:n)

n rY HX Y = H .x. X
m nH sparse,X(1:k,1:r), k n

Y(1:m,1:r)

r mY X H Y = X .x. H
m nH sparse, X(1:r,1:k), k m

Y(1:r,1:n)

TK H
K = .t. H

m nH sparse n mK sparse

THK H H
K = .h. H

m nH sparse, complex n mK sparse

Ty H x
y = H .tx. x

m nH sparse, x(1:k), k m
y(1:n)

T
m rY H X

Y = H .tx. X
m nH sparse, X(1:k,1:r), k m

Y(1:n,1:r)

Ty x H
Y = x .tx. H

m nH sparse, x(1:k), k m
y(1:n)

T
r mY X H

Y = X .tx. H
m nH sparse, X(1:k,1:r), k m

Y(1:r,1:n)

Ty Hx
y = H .xt. x

m nH sparse, x(1:k), k n
y(1:m)

T
n rY HX

Y = H .xt. X
m nH sparse, x(1:k,1:r), k n

Y(1:m,1:r)

Ty xH
y = x .xt. H

m nH sparse, x(1:k), k n
y(1:m)

1702 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Mathematical Operation Operation
Notation

Input Terms Output Terms

T
r nY X H

Y = X .xt. H
m nH sparse, x(1:r,1:k), k n

Y(1:r,1:m)

H Ty H x H x
y = H .hx. x

m nH sparse4, x(1:k), k m
y(1:n)

H T
m r m rY H X H X

Y = H .hx. X
m nH sparse, X(1:k,1:r), k m

Y(1:n,1:r)

H Ty x H x H
Y = x .hx. H

m nH sparse, x(1:k), k m
y(1:n)

H T
r m r mY X H X H

Y = X .hx. H
m nH sparse, X(1:k,1:r), k m

Y(1:r,1:n)

H Ty Hx Hx
y = H .xh. x

m nH sparse, x(1:k), k n
y(1:m)

H T
n r n rY HX HX

Y = H .xh. X
m nH sparse, x(1:k,1:r), k n

Y(1:m,1:r)

H Ty xH xH
y = x .xh H

m nH sparse, x(1:k), k n
y(1:m)

H T
r n r nY X H X H

Y = X .xh. H
m nH sparse, x(1:r,1:k), k n

Y(1:r,1:m)

Derived Type Definitions

A derived type is used for the entries (triplets or coordinate format) of a sparse matrix, which

consists of row and column coordinates and a corresponding value:

type s_entry

 integer irow

 integer jcol

 real(kind(1.e0)) value

end type

Additionally, type (d_entry), type (c_entry), and type (z_entry) are defined similarly. These

support double precision, complex and complex-double precision accuracy and types.

Thus for a sparse matrix A , the entry at the intersection of row irow and column jcol is the

scalar value. We define a sparse matrix representation in terms of a collection of triplets. This is

a convenient way for a user to define a sparse matrix. This representation is used to define the

matrix entries in a user‘s program using overloaded assignment. There is no implied order on the

collection of triplets that define this sparse matrix. Our experience shows that for writing

application code the technique of using triplets to define the matrix entries is convenient and

provides a workable transition from mathematical definitions of the entries to computer code.

Also note that there is generally no need for the programmer to allocate the components of a

matrix of type s_sparse when using the overloaded assignment: s_sparse = s_entry. The

software handles this detail by reallocating and expanding those components of the s_sparse

4 The operators .hx. and .xh. apply to sparse complex matrices only. For real matrices use

the .tx. and .xt. operators.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1703

matrix as required. (For this task we use the Fortran 2003 intrinsic subroutine move_alloc(),

when it is available. This routine provides an efficient way to perform a reallocation.) The

amount reallocated is controlled by an expansion factor that is a component of the derived type

SLU_options.

 type s_sparse

 integer :: mrows = 0

 integer :: ncols = 0

 integer :: numnz = 0

 integer, allocatable, dimension(:) :: irow

 integer, allocatable, dimension(:) :: jcol

 real(kind(1.e0)), allocatable, dimension(:) :: value

 type (SLU_options) options

 end type

When performing matrix computations we use the Harwell-Boeing column-oriented derived type.

The row indices, for each column, are unique and increasing. The values in the

colptr(1:ncols) component mark the start of the row indices and corresponding matrix entries

for that column. The value colptr(ncols+1)-1 will equal the value numnz after the matrix is

defined with non-zero entries. The row indices for each column are in array irow(:). They are

unique and sorted into increasing order.

 type s_hbc_sparse

 integer :: mrows = 0

 integer :: ncols = 0

 integer :: numnz = 0

 integer, allocatable, dimension(:) :: irow

 integer, allocatable, dimension(:) :: colptr

 real(kind(1.e0)), allocatable, dimension(:) :: value

 type(SLU_options) options

 end type

Additionally we support types (d_hbc_sparse), type (c_hbc_sparse), and type

(z_hbc_sparse). These will have analogous support for the operations defined with type

(s_hbc_sparse) and others that follow. From now on we only mention type (s_hbc_sparse).

All components of the type (s_sparse) object are self-explanatory except for the one named

type(SLU_options). This component contains various parameters for managing the data

structure, and for computing matrix products and linear system solutions. Normally these

components do not need to be changed from their default values.

The derived type SLU_Options carries extra required information. That data needed for

SuperLU5 is labeled with a comment. The remaining data is needed by IMSL codes that call on

SuperLU. Of particular importance is the Sequence attribute statement. This prevents the

Fortran compiler from rearranging the order of the components. Maintaining this order is required

since the derived type SLU_Options is passed to a IMSL C code that uses the information as a C

5 SuperLU is used to support the defined operations .ix. and .xi., and the condition number

function, cond(). SuperLU is well-tested. Distributed and threaded versions are available but

these are not used here in our software at present. SuperLU was developed by James W. Demmel,

Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu. Note that the authors

do not support the package in the context used in the IMSL Libraries.

http://math.nist.gov/MatrixMarket/formats.html

1704 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

structure. The Sequence statement orders the Fortran-defined data so that it matches the C code

structure.

Type SLU_options

 Sequence

 Integer :: unique = 1 ! Each new entry is unique –IMSL

 Integer :: Accumulate = 0

 ! Accumulate or assemble duplicated entries in

 ! a ?_sparse matrix. This flag is checked

 ! when executing an overloaded assignment

 ! with a Harwell-Boeing = ?_sparse matrix.

 ! The default is not to accumulate (0)

 ! Assign the value 1 to accumulate.

 Integer :: handle(2) = 0

 ! Each HBC matrix requiring an LU

 ! decomposition will have allocated

 ! arrays whose start is pointed to by

 ! this value. In cases where the OS

 ! uses 64 bit addressing 8 bytes are used.

 Integer :: Info = - 1

 ! Flag returned after LU factorization (SuperLU)

 Integer :: Fact = 0 !DOFACT - SuperLU

 Integer :: Equil = 1 !YES

 Integer :: ColPerm = 3 !COLAMD

 Integer :: Trans = 0 !NOTRANS

 Integer :: IterRefine = 1 !REFINE

 Integer :: PrintStat = 0 !NO

 Integer :: SymmetricMode = 0 !NO

 Integer :: PivotGrowth = 0 !NO

 Integer :: ConditionNumber = 0 !NO

 Integer :: RowPerm = 0 !NO

 Integer :: ReplaceTinyPivot = 0 !NO

 Integer :: SolveInitialized = 0 !NO

 Integer :: RefineInitialized = 0 !NO

 Real (Kind(1.d0)) :: DiagPivotThresh = 1.d0 ! SuperLU

 Real (Kind(1.d0)) :: expansion_factor = 1.2 ! VNI –

! The factor to use when expanding storage. Any value > 1.

! can be used such that the integer part of this factor times

! any integer > 9 provides at least a value of 1 increase.

 Integer :: Cond_Iteration_Max = 30

! Maximum number of Lanczos and inverse iterations with sparse COND().

 Integer Alignment_Dummy

 End Type

Overloaded Assignments

A natural way to define a sparse matrix is in terms of its triplets. The basic tool used here to

define all the non-zero entries is overloaded assignment. Fortran 90, and further updates to the

standard, supports a hidden subroutine call, packaged in a module, when an assignment is

executed between differing derived types. Thus if a Fortran program has a declaration

type(s_sparse) A, then the overloaded assignment statement

A = s_entry(I, J, value)

has the effect of calling subroutines that result in joining the matrix entry value at the intersection

of row I and column J. The components of A are managed to hold any number of values. The

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1705

number of rows, columns and non-zero values are updated as new triplets are assigned. Also the

arrays that hold the triplets are re-allocated and expanded, as required, to hold newly assigned

triplets.

The code snippet for this operation, and others that follow, will require use of the module

linear_operators. If new space is required in the assignment, a reallocation of the

components of the matrix A will occur. The user does not have to manage the details.

Use linear_operators

Type(s_sparse) A

…

{For all entries in A, A = s_entry(I, J, Value)}

Sparse = Collection of Triplets

The Harwell-Boeing sparse matrix data types are used for computations. An assignment, H = A,

implies deallocating any allocated components of H, allocating new storage, and sorting the

collection of triplets provided as input in the sparse matrix A. If the accumulation flag is set in

H%options%accumulate, the duplicate row indices in a column are reduced to a single entry and

the corresponding values are added to yield a final value. The assignment H = 0 deallocates the

allocated components and returns H to its initialized state, except for any changes to the

component SLU_options. A similar comment holds for the assignment, A = 0.

Use linear_operators

Type(s_sparse) A

Type(s_hbc_sparse) H

…

{For all nonzero matrix entries, A = s_entry(I, J, Value)}

H = A

A = 0 ! Clear and deallocate components of A

…

H = 0 ! Clear and deallocate components of H

Sparse = Dense

The non-zero entries of the dense array are converted to a Harwell-Boeing sparse matrix. As a

first step any allocated components are cleared and then allocated as needed to hold the non-zero

values of the dense array. The specific dimensions of array D are arbitrary.

Use linear_operators

Type(s_hbc_sparse) H

Integer, parameter :: M=1000, N=1000

Real (kind(1.e0)) D(M,N)

{Define entries of D}

H = D

1706 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Dense = Sparse

For some applications it is convenient to expand a sparse matrix into a dense matrix. The specific

dimensions of array D are arbitrary.

Use linear_operators

Type(s_hbc_sparse) H

Integer, parameter :: M=1000, N=1000

Real (kind(1.e0)) D(M,N)

{Define entries of H}

D = H

Scalar = s_hbc_entry(Sparse, I, J)

This assignment gets the value at the intersection of row I and column J of the Harwell-Boeing

sparse matrix. There must be type agreement with the function and sparse matrix type. Use a

prefix of d_, c_, or z_ for double, complex, or double complex values.

Use inear_operators

Type(s_hbc_sparse) H

Real (kind(1.e0)) value

{Define entries of H, I and J}

value = s_hbc_entry(H, I, J)

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1707

.x.

Computes matrix-matrix or matrix-vector product.

Operator Return Value

Matrix containing the product of A and B. (Output)

Required Operands

A — Left operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double,

complex, double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input)

Note that A and B cannot both be ?_hbc_sparse.

B — Right operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double,

complex, double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input)

Note that A and B cannot both be ?_hbc_sparse.

If A has rank one, B must have rank two.

If B has rank one, A must have rank two.

If A has rank three, B must have rank three.

If B has rank three, A must have rank three.

FORTRAN 90 Interface

A .x. B

Description

Computes the product of matrix or vector A and matrix or vector B. The results are in a precision

and data type that ascends to the most accurate or complex operand.

Rank three operation is defined as follows:

do i = 1, min(size(A,3), size(B,3))

 X(:,:,i) = A(:,:,i) .x. B(:,:,i)

end do

.x. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only.

1708 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Examples

Dense Matrix Example (operator_ex03.f90)

 use linear_operators

 implicit none

! This is the equivalent of Example 3 for LIN_SOL_GEN using operators.

 integer, parameter :: n=32

 real(kind(1e0)) :: one=1e0, zero=0e0, A(n,n), b(n), x(n)

 real(kind(1e0)) change_new, change_old

 real(kind(1d0)) :: d_zero=0d0, c(n), d(n,n), y(n)

! Generate a random matrix and right-hand side.

 A = rand(A); b= rand(b)

! Save double precision copies of the matrix and right-hand side.

 D = A

 c = b

! Compute single precision inverse to compute the iterative refinement.

 A = .i. A

! Start solution at zero. Update it to an accurate solution

! with each iteration.

 y = d_zero

 change_old = huge(one)

 iterative_refinement: do

! Compute the residual with higher accuracy than the data.

 b = c - (D .x. y)

! Compute the update in single precision.

 x = A .x. b

 y = x + y

 change_new = norm(x)

! Exit when changes are no longer decreasing.

 if (change_new >= change_old) exit iterative_refinement

 change_old = change_new

 end do iterative_refinement

 write (*,*) 'Example 3 for LIN_SOL_GEN (operators) is correct.'

 end

Sparse Matrix Example

Consider the one-dimensional Dirichlet problem

2

12
, , ,a b N

d u
f x a x b u a u u u b u u

dx

Using a standard approach to solving this involves approximating the second derivative operator

with central divided differences

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1709

2

1 1
2 2

2
, / 1 , 2, , 1, 2i i iu u ud u

h b a N i N N
dx h

This leads to the sparse linear algebraic system Mu w . The definitions for these terms are

implied in the following Fortran program.

Subroutine document_ex1

! Illustrate a 1D Poisson equation with Dirichlet boundary conditions.

! This module defines the structures and overloaded assignment code.

 Use linear_operators

 Implicit None

!

 Integer :: I

 Integer, Parameter :: N = 1000

 Real (Kind(1.d0)) :: f, h, r, w (N), a = 0.d0, b = 1.d0, &

 u_a = 0.d0, u_b = 1.d0, u (N)

 Type (d_sparse) M

 Type (d_hbc_sparse) K

 External f

! Define the difference used.

 h = (b-a) / (N-1)

 r = 1.d0 / h ** 2

! Fill in the matrix entries.

! Isolated equation for the left boundary condition.

 M = d_entry (1, 1, r)

 Do I = 2, N - 1

 M = d_entry (I, I-1, r)

 M = d_entry (I, I,-2*r)

 M = d_entry (I, I+1, r)

 End Do

! Isolated equation for the right boundary condition.

 M = d_entry (N, N, r)

! Fill in the right-hand side (a dense vector).

 Do I = 2, N - 1

 w (I) = f (a+(I-1)*h)

 End Do

! Insert the known end conditions. These should be satisfied

! almost exactly, up to rounding errors.

 w (1) = u_a * r

 w (N) = u_b * r

! Ready to solve …

! Conversion to Harwell-Boeing format using overloaded assignment

 K = M

! Solve the system using an IMSL defined operator.

 u = K .ix. w

! The parentheses are needed because of precedence rules.

! Compute residuals and overwrite w(:) with these values.

 w = w - (K .x. u)

End Subroutine

!

Function f (x)

1710 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 Real (Kind(1.d0)) :: f, x

! Define a hat function, peaked at x=0.5.

 If (x <= 0.5d0) Then

 f = x

 Else

 f = 1.d0 - x

 End If

End Function

Parallel Example (parallel_ex03.f90)

This example shows the box data type used while obtaining an accurate solution of several

systems. Important in this example is the fact that only the root will achieve convergence, which

controls program flow out of the loop. Therefore the nodes must share the root‘s view of

convergence, and that is the reason for the broadcast of the update from root to the nodes. Note

that when writing an explicit call to an MPI routine there must be the line INCLUDE ‗mpif.h‘,

placed just after the IMPLICIT NONE statement. Any number of nodes can be used.

 use linear_operators

 use mpi_setup_int

 implicit none

 INCLUDE 'mpif.h'

! This is the equivalent of Parallel Example 3 for .i. and iterative

! refinement with box date types, operators and functions.

 integer, parameter :: n=32, nr=4

 integer IERROR

 real(kind(1e0)) :: one=1e0, zero=0e0

 real(kind(1e0)) :: A(n,n,nr), b(n,1,nr), x(n,1,nr)

 real(kind(1e0)) change_old(nr), change_new(nr)

 real(kind(1d0)) :: d_zero=0d0, c(n,1,nr), D(n,n,nr), y(n,1,nr)

! Setup for MPI.

 MP_NPROCS=MP_SETUP()

! Generate a random matrix and right-hand side.

 A = rand(A); b= rand(b)

! Save double precision copies of the matrix and right-hand side.

 D = A

 c = b

! Get single precision inverse to compute the iterative refinement.

 A = .i. A

! Start solution at zero. Update it to a more accurate solution

! with each iteration.

 y = d_zero

 change_old = huge(one)

 ITERATIVE_REFINEMENT: DO

! Compute the residual with higher accuracy than the data.

 b = c - (D .x. y)

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1711

! Compute the update in single precision.

 x = A .x. b

 y = x + y

 change_new = norm(x)

! All processors must share the root's test of convergence.

 CALL MPI_BCAST(change_new, nr, MPI_REAL, 0, &

 MP_LIBRARY_WORLD, IERROR)

! Exit when changes are no longer decreasing.

 if (ALL(change_new >= change_old)) exit iterative_refinement

 change_old = change_new

 end DO ITERATIVE_REFINEMENT

 IF(MP_RANK == 0) write (*,*) 'Parallel Example 3 is correct.'

! See to any error messages and quit MPI.

 MP_NPROCS=MP_SETUP('Final')

 end

.tx.

Computes transpose matrix-matrix or transpose matrix-vector product.

Operator Return Value

Matrix containing the product of AT and B. (Output)

Required Operands

A — Left operand matrix. This is an array of rank 2, or 3. It may be real, double, complex,

double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input)

Note that A and B cannot both be ?_hbc_sparse.

B — Right operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double,

complex, double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input)

Note that A and B cannot both be ?_hbc_sparse.

If A has rank three, B must have rank three.

If B has rank three, A must have rank three.

1712 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

FORTRAN 90 Interface

A .tx. B

Description

Computes the product of the transpose of matrix A and matrix or vector B. The results are in a

precision and data type that ascends to the most accurate or complex operand.

Rank three operation is defined as follows:
do i = 1, min(size(A,3), size(B,3))

 X(:,:,i) = A(:,:,i) .tx. B(:,:,i)

 end do

.tx. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only.

Examples

Dense Matrix Example (operator_ex05.f90)

use linear_operators

 implicit none

! This is the equivalent of Example 1 for LIN_SOL_SELF using operators

! and functions.

 integer, parameter :: m=64, n=32

 real(kind(1e0)) :: one=1.0e0, err

 real(kind(1e0)) A(n,n), b(n,n), C(m,n), d(m,n), x(n,n)

! Generate two rectangular random matrices.

 C = rand(C); d=rand(d)

! Form the normal equations for the rectangular system.

 A = C .tx. C; b = C .tx. d

! Compute the solution for Ax = b, A is symmetric.

 x = A .ix. b

! Check the results.

 err = norm(b - (A .x. x))/(norm(A)+norm(b))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for LIN_SOL_SELF (operators) is correct.'

 end if

 end

Sparse Matrix Example

 use wrrrn_int

 use linear_operators

 type (s_sparse) S

 type (s_hbc_sparse) H

 integer, parameter :: N=3

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1713

 real (kind(1.e0)) x(N,N), y(N,N), B(N,N)

 real (kind(1.e0)) err

 S = s_entry (1, 1, 2.0)

 S = s_entry (1, 3, 1.0)

 S = s_entry (2, 2, 4.0)

 S = s_entry (3, 3, 6.0)

 H = S ! sparse

 X = H ! dense equivalent of H

 B = rand(B)

 Y = H .tx. B

 call wrrrn ('H', X)

 call wrrrn ('B', b)

 call wrrrn ('H .tx. B ', y)

! Check the results.

 err = norm(y - (X .tx. B))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Sparse example for .tx. operator is correct.'

 end if

 end

 Output

 H

 1 2 3

 1 2.000 0.000 1.000

 2 0.000 4.000 0.000

 3 0.000 0.000 6.000

 B

 1 2 3

 1 0.8711 0.4467 0.4743

 2 0.8315 0.7257 0.4518

 3 0.6839 0.0561 0.6972

 H .tx. B

 1 2 3

 1 1.742 0.893 0.949

 2 3.326 2.903 1.807

 3 4.975 0.784 4.657

 Sparse example for .tx. operator is correct.

Parallel Example (parallel_ex05.f90)

 use linear_operators

 use mpi_setup_int

 implicit none

! This is the equivalent of Parallel Example 5 using box data types,

! operators and functions.

 integer, parameter :: m=64, n=32, nr=4

 real(kind(1e0)) :: one=1e0, err(nr)

1714 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 real(kind(1e0)), dimension(n,n,nr) :: A, b, x

 real(kind(1e0)), dimension(m,n,nr) :: C, d

! Setup for MPI.

 mp_nprocs = mp_setup()

! Generate two rectangular random matrices, only

! at the root node.

 if (mp_rank == 0) then

 C = rand(C); d=rand(d)

 endif

! Form the normal equations for the rectangular system.

 A = C .tx. C; b = C .tx. d

! Compute the solution for Ax = b.

 x = A .ix. b

! Check the results.

 err = norm(b - (A .x. x))/(norm(A)+norm(b))

 if (ALL(err <= sqrt(epsilon(one))) .AND. MP_RANK == 0) &

 write (*,*) 'Parallel Example 5 is correct.'

! See to any error messages and quit MPI.

 mp_nprocs = mp_setup('Final')

 end

.xt.

Computes matrix- transpose matrix product.

Operator Return Value

Matrix containing the product of A and BT. (Output)

Required Operands

A — Left operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double,

complex, double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input)

Note that A and B cannot both be ?_hbc_sparse.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1715

B — Right operand matrix. This is an array of rank 2, or 3. It may be real, double, complex,

double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input)

Note that A and B cannot both be ?_hbc_sparse.

If A has rank three, B must have rank three.

If B has rank three, A must have rank three.

FORTRAN 90 Interface

A .xt. B

Description

Computes the product of matrix or vector A and the transpose of matrix B. The results are in a

precision and data type that ascends to the most accurate or complex operand.

Rank three operation is defined as follows:
 do i = 1, min(size(A,3), size(B,3))

 X(:,:,i) = A(:,:,i) .xt. B(:,:,i)

 end do

.xt. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only.

Examples

Dense Matrix Example (operator_ex14.f90)

 use linear_operators

 implicit none

!

 integer, parameter :: n=32

 real(kind(1d0)) :: one=1d0, zero=0d0

 real(kind(1d0)) A(n,n), P(n,n), Q(n,n), &

 S_D(n), U_D(n,n), V_D(n,n)

! Generate a random matrix.

 A = rand(A)

! Compute the singular value decomposition.

 S_D = SVD(A, U=U_D, V=V_D)

! Compute the (left) orthogonal factor.

 P = U_D .xt. V_D

! Compute the (right) self-adjoint factor.

 Q = V_D .x. diag(S_D) .xt. V_D

! Check the results.

 if (norm(EYE(n) - (P .xt. P)) &

 <= sqrt(epsilon(one))) then

 if (norm(A - (P .x. Q))/norm(A) &

 <= sqrt(epsilon(one))) then

1716 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 write (*,*) 'Example 2 for LIN_SOL_SVD (operators) is correct.'

 end if

 end if

 end

Sparse Matrix Example

 use wrrrn_int

 use linear_operators

 type (s_sparse) S

 type (s_hbc_sparse) H

 integer, parameter :: N=3

 real (kind(1.e0)) x(N,N), y(N,N), a(N,N)

 real (kind(1.e0)) err

 S = s_entry (1, 1, 2.0)

 S = s_entry (1, 3, 1.0)

 S = s_entry (2, 2, 4.0)

 S = s_entry (3, 3, 6.0)

 H = S ! sparse

 X = H ! dense equivalent of H

 A = rand(A)

 Y = A .xt. H

 call wrrrn ('A', A)

 call wrrrn ('H', X)

 call wrrrn ('A .xt. H', y)

! Check the results.

 err = norm(y - (A .xt. X))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Sparse example for .xt. operator is correct.'

 end if

 end

 Output

 A

 1 2 3

 1 0.5423 0.2380 0.9250

 2 0.0844 0.1323 0.1937

 3 0.4146 0.3135 0.7757

 H

 1 2 3

 1 2.000 0.000 1.000

 2 0.000 4.000 0.000

 3 0.000 0.000 6.000

 A .xt. H

 1 2 3

 1 2.010 0.952 5.550

 2 0.363 0.529 1.162

 3 1.605 1.254 4.654

 Sparse example for .xt. operator is correct.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1717

Parallel Example (parallel_ex15.f90)

A ―Polar Decomposition‖ of several matrices are computed. The box data type and the SVD()

function are used. Orthogonality and small residuals are checked to verify that the results are

correct.

 use linear_operators

 use mpi_setup_int

 implicit none

! This is the equivalent of Parallel Example 15 using operators and,

! functions for a polar decomposition.

 integer, parameter :: n=33, nr=3

 real(kind(1d0)) :: one=1d0, zero=0d0

 real(kind(1d0)),dimension(n,n,nr) :: A, P, Q, &

 S_D(n,nr), U_D, V_D

 real(kind(1d0)) TEMP1(nr), TEMP2(nr)

! Setup for MPI:

 mp_nprocs = mp_setup()

! Generate a random matrix.

 if(mp_rank == 0) A = rand(A)

! Compute the singular value decomposition.

 S_D = SVD(A, U=U_D, V=V_D)

! Compute the (left) orthogonal factor.

 P = U_D .xt. V_D

! Compute the (right) self-adjoint factor.

 Q = V_D .x. diag(S_D) .xt. V_D

! Check the results for orthogonality and

! small residuals.

 TEMP1 = NORM(spread(EYE(n),3,nr) - (p .xt. p))

 TEMP2 = NORM(A -(P .X. Q)) / NORM(A)

 if (ALL(TEMP1 <= sqrt(epsilon(one))) .and. &

 ALL(TEMP2 <= sqrt(epsilon(one)))) then

 if(mp_rank == 0)&

 write (*,*) 'Parallel Example 15 is correct.'

 end if

! See to any error messages and exit MPI.

 mp_nprocs = mp_setup('Final')

 end

.hx.

1718 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Computes conjugate transpose matrix-matrix product.

Operator Return Value

Matrix containing the product of AH and B. (Output)

Required Operands

A — Left operand matrix. This is an array of rank 2 or 3. It may be real, double, complex,

double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input)

Note that A and B cannot both be ?_hbc_sparse.

B — Right operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double,

complex, double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input)

Note that A and B cannot both be ?_hbc_sparse.

If A has rank three, B must have rank three.

If B has rank three, A must have rank three.

FORTRAN 90 Interface

A .hx. B

Description

Computes the product of the conjugate transpose of matrix A and matrix or vector B. The results

are in a precision and data type that ascends to the most accurate or complex operand.

Rank three operation is defined as follows:

 do i = 1, min(size(A,3), size(B,3))

 X(:,:,i) = A(:,:,i) .hx. B(:,:,i)

 end do

.hx. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only.

Examples

Dense Matrix Example (operator_ex32.f90)

 use linear_operators

 implicit none

! This is the equivalent of Example 4 (using operators) for LIN_EIG_GEN.

 integer, parameter :: n=17

 real(kind(1d0)), parameter :: one=1d0

 real(kind(1d0)), dimension(n,n) :: A, C

 real(kind(1d0)) variation(n), eta

 complex(kind(1d0)), dimension(n,n) :: U, V, e(n), d(n)

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1719

! Generate a random matrix.

 A = rand(A)

! Compute the eigenvalues, left- and right- eigenvectors.

 D = EIG(A, W=V); E = EIG(.t.A, W=U)

! Compute condition numbers and variations of eigenvalues.

 variation = norm(A)/abs(diagonals(U .hx. V))

! Now perturb the data in the matrix by the relative factors

! eta=sqrt(epsilon) and solve for values again. Check the

! differences compared to the estimates. They should not exceed

! the bounds.

 eta = sqrt(epsilon(one))

 C = A + eta*(2*rand(A)-1)*A

 D = EIG(C)

! Looking at the differences of absolute values accounts for

! switching signs on the imaginary parts.

 if (count(abs(d)-abs(e) > eta*variation) == 0) then

 write (*,*) 'Example 4 for LIN_EIG_GEN (operators) is correct.'

 end if

 end

Sparse Matrix Example

 use wrcrn_int

 use linear_operators

 type (c_sparse) S

 type (c_hbc_sparse) H

 integer, parameter :: N=3

 complex (kind(1.e0)) x(N,N), y(N,N), A(N,N)

 real (kind(1.e0)) err

 S = c_entry (1, 1, (2.0, 1.0))

 S = c_entry (1, 3, (1.0, 3.0))

 S = c_entry (2, 2, (4.0, -1.0))

 S = c_entry (3, 3, (6.0, 2.0))

 H = S ! sparse

 X = H ! dense equivalent of H

 A= rand(A)

 Y = H .hx. A

 call wrcrn ('H', X)

 call wrcrn ('A', a)

 call wrcrn ('H .hx. A ', y)

! Check the results.

 err = norm(y - (X .hx. A))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Sparse example for .hx. operator is correct.'

 end if

 end

Output

1720 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 H

 1 2 3

 1 (2.000, 1.000) (0.000, 0.000) (1.000, 3.000)

 2 (0.000, 0.000) (4.000,-1.000) (0.000, 0.000)

 3 (0.000, 0.000) (0.000, 0.000) (6.000, 2.000)

 A

 1 2 3

 1 (0.6278, 0.8475) (0.8007, 0.4179) (0.4512, 0.2601)

 2 (0.1249, 0.4675) (0.7957, 0.1609) (0.4228, 0.0507)

 3 (0.4608, 0.0891) (0.3181, 0.9180) (0.9961, 0.1939)

 H .hx. A

 1 2 3

 1 (2.103, 1.067) (2.019, 0.035) (1.163, 0.069)

 2 (0.032, 1.995) (3.022, 1.439) (1.640, 0.626)

 3 (6.113,-1.423) (5.799, 2.888) (7.596,-1.922)

 Sparse example for .hx. operator is correct.

Parallel Example

 use linear_operators

 use mpi_setup_int

 integer, parameter :: N=32, nr=4

 complex (kind(1.e0)) A(N,N,nr), B(N,N,nr), Y(N,N,nr)

! Setup for MPI

 mp_nprocs = mp_setup()

 if (mp_rank == 0) then

 A = rand(A)

 B = rand(B)

 end if

 Y = A .hx. B

 mp_nprocs = mp_setup ('Final')

 end

.xh.

Computes a matrix-conjugate transpose matrix product.

Operator Return Value

Matrix containing the product of A and BH. (Output)

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1721

Required Operands

A — Left operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double,

complex, double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input)

Note that A and B cannot both be ?_hbc_sparse.

B — Right operand matrix. This is an array of rank 2, or 3. It may be real, double, complex,

double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input)

Note that A and B cannot both be ?_hbc_sparse.

If A has rank three, B must have rank three.

If B has rank three, A must have rank three.

FORTRAN 90 Interface

A .xh. B

Description

Computes the product of matrix or vector A and the conjugate transpose of matrix B. The results

are in a precision and data type that ascends to the most accurate or complex operand.

Rank three operation is defined as follows:

 do i = 1, min(size(A,3), size(B,3))

 X(:,:,i) = A(:,:,i) .xh. B(:,:,i)

 end do

.xh. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only.

Examples

Dense Matrix Example

 use wrcrn_int

 use linear_operators

 integer, parameter :: N=3

 complex (kind(1.e0)) A(N,N), B(N,N), Y(N,N)

 A = rand(A)

 B = rand(B)

 Y = A .xh. B

 call wrcrn ('A', a)

 call wrcrn ('H', b)

 call wrcrn ('A .xh. B ', y)

 end

 Output

 A

 1 2 3

1722 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 1 (0.8071, 0.0054) (0.5617, 0.2508) (0.0223, 0.5555)

 2 (0.9380, 0.5181) (0.8895, 0.9512) (0.7951, 0.6010)

 3 (0.8349, 0.7291) (0.4162, 0.5255) (0.7388, 0.0309)

 B

 1 2 3

 1 (0.5342, 0.2246) (0.9045, 0.0550) (0.4576, 0.3173)

 2 (0.5531, 0.3362) (0.0757, 0.3970) (0.6807, 0.8625)

 3 (0.3553, 0.9157) (0.0951, 0.7807) (0.4853, 0.0617)

 A .xh. B

 1 2 3

 1 (1.141, 0.265) (1.085,-0.113) (0.586,-0.884)

 2 (2.029, 0.900) (2.198,-0.587) (2.058,-1.036)

 3 (1.363, 0.434) (1.477,-0.619) (1.775,-0.811)

Sparse Matrix Example

 use wrcrn_int

 use linear_operators

 type (c_sparse) S

 type (c_hbc_sparse) H

 integer, parameter :: N=3

 complex (kind(1.e0)) x(N,N), y(N,N), A(N,N)

 real (kind(1.e0)) err

 S = c_entry (1, 1, (2.0, 1.0))

 S = c_entry (1, 3, (1.0, 3.0))

 S = c_entry (2, 2, (4.0, -1.0))

 S = c_entry (3, 3, (6.0, 2.0))

 H = S ! sparse

 X = H ! dense equivalent of H

 A= rand(A)

 Y = A .xh. H

 call wrcrn ('A', a)

 call wrcrn ('H', X)

 call wrcrn ('A .xh. H ', y)

! Check the results.

 err = norm(y - (A .xh. X))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Sparse example for .xh. operator is correct.'

 end if

 end

Output

 A

 1 2 3

 1 (0.8526, 0.3532) (0.1822, 0.3938) (0.8008, 0.1308)

 2 (0.5599, 0.8914) (0.7541, 0.5163) (0.8713, 0.9580)

 3 (0.9947, 0.2735) (0.6237, 0.2137) (0.3802, 0.8903)

 H

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1723

 1 2 3

 1 (2.000, 1.000) (0.000, 0.000) (1.000, 3.000)

 2 (0.000, 0.000) (4.000,-1.000) (0.000, 0.000)

 3 (0.000, 0.000) (0.000, 0.000) (6.000, 2.000)

 A .xh. H

 1 2 3

 1 (3.252,-2.418) (0.335, 1.757) (5.066,-0.817)

 2 (5.757,-0.433) (2.500, 2.819) (7.144, 4.005)

 3 (5.314,-0.698) (2.281, 1.478) (4.062, 4.581)

 Sparse example for .xh. operator is correct.

 Parallel Example

 use linear_operators

 use mpi_setup_int

 integer, parameter :: N=32, nr=4

 complex (kind(1.e0)) A(N,N,nr), B(N,N,nr), Y(N,N,nr)

! Setup for MPI

 mp_nprocs = mp_setup()

 if (mp_rank == 0) then

 A = rand(A)

 B = rand(B)

 end if

 Y = A .xh. B

 mp_nprocs = mp_setup ('Final')

 end

.t.
Computes the transpose of a matrix.

Operator Return Value

Matrix containing the transpose of A. (Output)

Required Operand

A — Matrix for which the transpose is to be computed. This is a real, double, complex,

double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input).

FORTRAN 90 Interface

.t. A

1724 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Description

Computes the transpose of matrix A. The operation may be read transpose, and the results are the

mathematical objects in a precision and data type that matches the operand. Since this is a unary

operation, it has higher Fortran 90 precedence than any other intrinsic unary array operation.

.t. can be used with either dense or sparse matrices.

Examples

Dense Matrix Example (operator_ex07.f90)

use linear_operators

 implicit none

! This is the equivalent of Example 3 (using operators) for LIN_SOL_SELF.

 integer tries

 integer, parameter :: m=8, n=4, k=2

 integer ipivots(n+1)

 real(kind(1d0)) :: one=1.0d0, err

 real(kind(1d0)) a(n,n), b(n,1), c(m,n), x(n,1), &

 e(n), ATEMP(n,n)

 type(d_options) :: iopti(4)

! Generate a random rectangular matrix.

 C = rand(C)

! Generate a random right hand side for use in the inverse

! iteration.

 b = rand(b)

! Compute the positive definite matrix.

 A = C .tx. C; A = (A+.t.A)/2

! Obtain just the eigenvalues.

 E = EIG(A)

! Use packaged option to reset the value of a small diagonal.

 iopti(4) = 0

 iopti(1) = d_options(d_lin_sol_self_set_small,&

 epsilon(one)*abs(E(1)))

! Use packaged option to save the factorization.

 iopti(2) = d_lin_sol_self_save_factors

! Suppress error messages and stopping due to singularity

! of the matrix, which is expected.

 iopti(3) = d_lin_sol_self_no_sing_mess

 ATEMP = A

! Compute A-eigenvalue*I as the coefficient matrix.

! Use eigenvalue number k.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1725

 A = A - e(k)*EYE(n)

 do tries=1,2

 call lin_sol_self(A, b, x, &

 pivots=ipivots, iopt=iopti)

! When code is re-entered, the already computed factorization

! is used.

 iopti(4) = d_lin_sol_self_solve_A

! Reset right-hand side in the direction of the eigenvector.

 B = UNIT(x)

 end do

! Normalize the eigenvector.

 x = UNIT(x)

! Check the results.

 b=ATEMP .x. x

 err = dot_product(x(1:n,1), b(1:n,1)) - e(k)

! If any result is not accurate, quit with no printing.

 if (abs(err) <= sqrt(epsilon(one))*E(1)) then

 write (*,*) 'Example 3 for LIN_SOL_SELF (operators) is correct.'

 end if

 end

Sparse Matrix Example

 use wrrrn_int

 use linear_operators

 type (s_sparse) S

 type (s_hbc_sparse) H, HT

 integer, parameter :: N=3

 real (kind(1.e0)) X(3,3), XT(3,3)

 real (kind(1.e0)) err

 S = s_entry (1, 1, 2.0)

 S = s_entry (1, 3, 1.0)

 S = s_entry (2, 2, 4.0)

 S = s_entry (3, 3, 6.0)

 H = S ! sparse

 X = H ! dense equivalent of H

 HT = .t. H

 XT = HT ! dense equivalent of HT

 call wrrrn ('H', X)

 call wrrrn ('H Transpose', XT)

! Check the results.

 err = norm(XT - (.t. X))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Sparse example for .t. operator is correct.'

 end if

 end

1726 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Output

 H

 1 2 3

 1 2.000 0.000 1.000

 2 0.000 4.000 0.000

 3 0.000 0.000 6.000

 H Transpose

 1 2 3

 1 2.000 0.000 0.000

 2 0.000 4.000 0.000

 3 1.000 0.000 6.000

 Sparse example for .t. operator is correct.

.h.
Computes the conjugate transpose of a matrix.

Operator Return Value

Matrix containing the conjugate transpose of A. (Output)

Required Operand

A — Matrix for which the conjugate transpose is to be computed. This is an array of rank 2,

or 3. It may be real, double, complex, double complex, or one of the computational

sparse matrix derived types, ?_hbc_sparse. (Input)

FORTRAN 90 Interface

.h. A

Description

Computes the conjugate transpose of matrix A. The operation may be read adjoint, and the results

are the mathematical objects in a precision and data type that matches the operand. Since this is a

unary operation, it has higher Fortran 90 precedence than any other intrinsic unary array

operation.

.h. can be used with either dense or sparse matrices.

Examples

Dense Matrix Example (operator_ex34.f90)

 use linear_operators

 implicit none

! This is the equivalent of Example 2 (using operators) for LIN_GEIG_GEN.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1727

 integer, parameter :: n=32

 real(kind(1d0)), parameter :: one=1d0, zero=0d0

 real(kind(1d0)) err, alpha(n)

 complex(kind(1d0)), dimension(n,n) :: A, B, C, D, V

! Generate random matrices for both A and B.

 C = rand(C); D = rand(D)

 A = C + .h.C; B = D .hx. D; B = (B + .h.B)/2

 ALPHA = EIG(A, B=B, W=V)

! Check that residuals are small. Use a real array for alpha

! since the eigenvalues are known to be real.

 err= norm((A .x. V) - (B .x. V .x. diag(alpha)),1)/&

 (norm(A,1)+norm(B,1)*norm(alpha,1))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 2 for LIN_GEIG_GEN (operators) is correct.'

 end if

 end

Sparse Matrix Example

 use wrcrn_int

 use linear_operators

 type (c_sparse) S

 type (c_hbc_sparse) H, HT

 integer, parameter :: N=3

 complex (kind(1.e0)) X(3,3), XT(3,3)

 real (kind(1.e0)) err

 S = c_entry (1, 1, (2.0, 1.0))

 S = c_entry (1, 3, (1.0, 3.0))

 S = c_entry (2, 2, (4.0, -1.0))

 S = c_entry (3, 3, (6.0, 2.0))

 H = S ! sparse

 X = H ! dense equivalent of H

 HT = .h. H

 XT = HT ! dense equivalent of HT

 call wrcrn ('H', X)

 call wrcrn ('H Conjugate Transpose', XT)

! Check the results.

 err = norm(XT - (.h. X))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Sparse example for .h. operator is correct.'

 end if

 end

Output

 H

 1 2 3

1728 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 1 (2.000, 1.000) (0.000, 0.000) (1.000, 3.000)

 2 (0.000, 0.000) (4.000,-1.000) (0.000, 0.000)

 3 (0.000, 0.000) (0.000, 0.000) (6.000, 2.000)

 H Conjugate Transpose

 1 2 3

 1 (2.000,-1.000) (0.000, 0.000) (0.000, 0.000)

 2 (0.000, 0.000) (4.000, 1.000) (0.000, 0.000)

 3 (1.000,-3.000) (0.000, 0.000) (6.000,-2.000)

 Sparse example for .h. operator is correct.

.i.

Computes the inverse matrix.

Operator Return Value

Matrix containing the inverse of A. (Output)

Required Operand

A — Matrix for which the inverse is to be computed. This is an array of rank 2 or 3. It may be

real, double, complex, double complex. (Input)

Optional Variables, Reserved Names

This operator uses the routines LIN_SOL_GEN or LIN_SOL_LSQ (See Chapter 1, ―Linear

Systems‖).

The option and derived type names are given in the following tables:

Option Names for .i. Option Value

Use_lin_sol_gen_only 1

Use_lin_sol_lsq_only 2

I_options_for_lin_sol_gen 3

I_options_for_lin_sol_lsq 4

Skip_error_processing 5

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1729

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_inv_options(:) Use when setting options for

calls hereafter.

?_options

?_inv_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

LIN_SOL_GEN and LIN_SOL_LSQ located in Chapter 1, ―Linear Systems‖ for the specific

options for these routines.

FORTRAN 90 Interface

.i. A

Description

Computes the inverse matrix for square non-singular matrices using LIN_SOL_GEN, or the

Moore-Penrose generalized inverse matrix for singular square matrices or rectangular matrices

using LIN_SOL_LSQ. The operation may be read inverse or generalized inverse, and the results

are in a precision and data type that matches the operand.

This operator requires a single operand. Since this is a unary operation, it has higher Fortran 90

precedence than any other intrinsic array operation.

Examples

Dense Matrix Example (operator_ex02.f90)

 use linear_operators

 implicit none

! This is the equivalent of Example 2 for LIN_SOL_GEN using operators

! and functions.

 integer, parameter :: n=32

 real(kind(1e0)) :: one=1e0, err, det_A, det_i

 real(kind(1e0)), dimension(n,n) :: A, inv

! Generate a random matrix.

 A = rand(A)

! Compute the matrix inverse and its determinant.

 inv = .i.A; det_A = det(A)

! Compute the determinant for the inverse matrix.

 det_i = det(inv)

! Check the quality of both left and right inverses.

 err = (norm(EYE(n)-(A .x. inv))+norm(EYE(n)-(inv.x.A)))/cond(A)

 if (err <= sqrt(epsilon(one)) .and. abs(det_A*det_i - one) <= &

 sqrt(epsilon(one))) &

 write (*,*) 'Example 2 for LIN_SOL_GEN (operators) is correct.'

 end

1730 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Parallel Example (parallel_ex02.f90)

 use linear_operators

 use mpi_setup_int

 implicit none

! This is the equivalent of Parallel Example 2 for .i. and det() with box

! data types, operators and functions.

 integer, parameter :: n=32, nr=4

 integer J

 real(kind(1e0)) :: one=1e0

 real(kind(1e0)), dimension(nr) :: err, det_A, det_i

 real(kind(1e0)), dimension(n,n,nr) :: A, inv, R, S

! Setup for MPI.

 MP_NPROCS=MP_SETUP()

! Generate a random matrix.

 A = rand(A)

! Compute the matrix inverse and its determinant.

 inv = .i.A; det_A = det(A)

! Compute the determinant for the inverse matrix.

 det_i = det(inv)

! Check the quality of both left and right inverses.

 DO J=1,nr; R(:,:,J)=EYE(N); END DO

 S=R; R=R-(A .x. inv); S=S-(inv .x. A)

 err = (norm(R)+norm(S))/cond(A)

 if (ALL(err <= sqrt(epsilon(one)) .and. &

 abs(det_A*det_i - one) <= sqrt(epsilon(one)))&

 .and. MP_RANK == 0) &

 write (*,*) 'Parallel Example 2 is correct.'

! See to any error messages and quit MPI.

 MP_NPROCS=MP_SETUP('Final')

 end

.ix.

Computes the product of the inverse of a matrix and a vector or matrix.

Operator Return Value

Matrix containing the product of A
-1

 and B. (Output)

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1731

Required Operands

A — Left operand matrix. This is an array of rank 2, or 3. It may be real, double, complex,

double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input)

B — Right operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double,

complex, or double complex. (Input)

Optional Variables, Reserved Names

This operator uses the routines LIN_SOL_GEN or LIN_SOL_LSQ (See Chapter 1, ―Linear

Systems‖).

The option and derived type names are given in the following tables:

Option Names for .ix. Option Value

use_lin_sol_gen_only 1

use_lin_sol_lsq_only 2

ix_options_for_lin_sol_gen 3

ix_options_for_lin_sol_lsq 4

Skip_error_processing 5

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_invx_options(:) Use when setting options for
calls hereafter.

?_options

?_invx_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

LIN_SOL_GEN and LIN_SOL_LSQ located in Chapter 1, ―Linear Systems‖ for the specific

options for these routines.

FORTRAN 90 Interface

A .ix. B

Description

Computes the product of the inverse of matrix A and vector or matrix B, for square non-singular

matrices or the corresponding Moore-Penrose generalized inverse matrix for singular square

matrices or rectangular matrices. The operation may be read generalized inverse times. The results

are in a precision and data type that matches the most accurate or complex operand.

.ix. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only.

1732 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Examples

Dense Matrix Example (operator_ex01.f90)

 use linear_operators

 implicit none

! This is the equivalent of Example 1 for LIN_SOL_GEN, with operators

! and functions.

 integer, parameter :: n=32

 real(kind(1e0)) :: one=1.0e0, err

 real(kind(1e0)), dimension(n,n) :: A, b, x

! Generate random matrices for A and b:

 A = rand(A); b=rand(b)

! Compute the solution matrix of Ax = b.

 x = A .ix. b

! Check the results.

 err = norm(b - (A .x. x))/(norm(A)*norm(x)+norm(b))

 if (err <= sqrt(epsilon(one))) &

 write (*,*) 'Example 1 for LIN_SOL_GEN (operators) is correct.'

 end

Sparse Matrix Example 1

 use wrrrn_int

 use linear_operators

 type (s_sparse) S

 type (s_hbc_sparse) H

 integer, parameter :: N=3

 real (kind(1.e0)) x(N,N), y(N,N), B(N,N)

 real (kind(1.e0)) err

 S = s_entry (1, 1, 2.0)

 S = s_entry (1, 3, 1.0)

 S = s_entry (2, 2, 4.0)

 S = s_entry (3, 3, 6.0)

 H = S ! sparse

 X = H ! dense equivalent of H

 B= rand(B)

 Y = H .ix. B

 call wrrrn ('H', X)

 call wrrrn ('B', b)

 call wrrrn ('H .ix. B ', y)

! Check the results.

 err = norm(y - (X .ix. B))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Sparse example for .ix. operator is correct.'

 end if

 end

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1733

Output

 H

 1 2 3

 1 2.000 0.000 1.000

 2 0.000 4.000 0.000

 3 0.000 0.000 6.000

 B

 1 2 3

 1 0.8292 0.5697 0.1687

 2 0.9670 0.7296 0.0603

 3 0.1458 0.2726 0.8809

 H .ix. B

 1 2 3

 1 0.4025 0.2621 0.0109

 2 0.2417 0.1824 0.0151

 3 0.0243 0.0454 0.1468

Sparse Matrix Example 2: Plane Poisson Problem with Dirichlet Boundary
Conditions

We want to calculate a numerical solution, which approximates the true solution of the Poisson

(boundary value) problem in the solution domain , a rectangle in
2

R The equation is

2 2

2 2

u u
u f

x y

in

There are Dirichlet boundary conditions u g on 1

There are further Neumann boundary conditions
u

h
n

on 2

The boundary arcs comprising 1 2 are mutually exclusive of each other. The

functions , ,f g h are defined on their respective domains.

We will solve an instance of this problem by using finite differences to approximate the

derivatives. This will lead to a sparse system of linear algebraic equations. Note that particular

cases of this problem can be solved with methods that are likely to be more efficient or more

appropriate than the one illustrated here. We use this method to illustrate our matrix data handling

routines and defined operators.

The area of the rectangle is a b with the origin fixed at the lower left or SW corner. The

dimension along the x axis is a and along the y axis is b . A rectangular n m uniform grid is

defined on where each sub-rectangle in the grid has sides

/(1)x a n and /(1)y a m . What is perhaps novel in our development is that the

boundary values are written into the
2

m n linear system as trivial equations. This leads to

more unknowns than standard approaches to this problem but the complexity of describing the

1734 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

equations into computer code is reduced. The boundary conditions are naturally in place when the

solution is obtained. No reshaping is required.

We number the approximate values of u at the grid points and collapse them into a single vector.

Given a coordinate of the grid , , 1, , , 1, ,i j i n j m , we use the

mapping 1J i j n to define coordinate J of this vector. This mapping enables us to

define the matrix that is used to solve for the values of u at the grid points.

For the Neumann boundary conditions we take 2 to be the East face of the rectangle. Along

that edge we have
u u

n x

, and we impose the smooth interface 0h .

Our use of finite differences is standard. For the differential equation we approximate

2 2

1, , 1, , 1 , , 1

2 2 2 2

2 2
,

i j i j i j i j i j i j
i j

u u u u u uu u
f x y

x y x y

at the inner grid points , , 2, , 1 , 2, , 1i j i n j m . For the Neumann

condition we approximate

, 1,
0, 1, ,

n j n ju uu
j m

x x

The remaining equations come from the Dirichlet conditions given on 1 .

To illustrate three examples of solutions to this problem we consider

1. A Laplace Equation with the boundary conditions

 0u , on the South Edge

 0.7u , on the East Edge

 1u , on the North Edge

 0.3u , on the West Edge

The function 0f for all ,x y . Graphical results are shown below with the title

―Problem Case 1‖

2. A Poisson equation with the boundary conditions 0u on all of the edges and

 , sin sinf x y x y . This problem has the

solution 2, , / 2u x y f x y , and this identity provides a way of verifying

that the accuracy is within the truncation error implied by the difference equations.

Graphical results are shown with the title ―Problem Case 2‖ The residual function

verifies the expected accuracy.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1735

3. The Laplace Equation with the boundary conditions of Problem Case 1 except that the

boundary condition on the East Edge is replaced by the Neumann condition 0
u

x

.

Graphical results are shown as ―Problem Case 3.‖

Subroutine document_ex2

! Illustrate a 2D Poisson equation with Dirichlet and

! Neumann boundary conditions.

! These modules defines the structures and overloaded assignment code.

 Use linear_operators

 Implicit None

 Integer :: I, J, JJ, MY_CASE, IFILE

 Integer, Parameter :: N = 300, M = 300

 Real (Kind(1.d0)) :: a = 1.d0, b = 1.d0

 Real (Kind(1.d0)) :: delx, dely, r, s, pi, scale

 Real (Kind(1.d0)) :: u(N*M), w(N*M), P(N, M)

 Real (Kind(1.e0)) :: TS, TE

 CHARACTER(LEN=12) :: PR_LABEL(3)=&

 (/'Laplace','Poisson','Neumann'/)

! Mapping function (in-line) for grid coordinate to

! matrix-vector indexing.

 JJ (I, J) = I + (J-1) * N

! Define sparse matrices to hold problem data.

 Type (d_sparse) C

 Type (d_hbc_sparse) D

! Define differences and related parameters.

 delx = a / (N-1)

 dely = b / (M-1)

 r = 1.d0 / delx ** 2

 s = 1.d0 / dely ** 2

 Do MY_CASE = 1, 3

! For MY_CASE =

! 1. Solve boundary value problem with f=0 and Dirichlet

! boundary conditions.

! 2. Solve Poisson equation with f such that a solution is known.

! Use zero boundary condtions.

! 3. Solve boundary value problem with Dirichlet condtions as in 1.

! except on the East edge. There the partial WRT x is zero.

! Set timer for building the matrix.

 Call cpu_time (TS)

 Do I = 2, N - 1

 Do J = 2, M - 1

! Write entries for second partials WRT x and y.

 C = d_entry (JJ(I, J), JJ(I-1, J), r)

 C = d_entry (JJ(I, J), JJ(I+1, J), r)

 C = d_entry (JJ(I, J), JJ(I, J),-2*(r+s))

 C = d_entry (JJ(I, J), JJ(I, J-1), s)

 C = d_entry (JJ(I, J), JJ(I, J+1), s)

!

! Define components of the right-hand side.

 w (JJ(I, J)) = f((I-1)*delx, (J-1)*dely, MY_CASE)

 End Do

 End Do

! Write entries for Dirichlet boundary conditions.

1736 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

! First do the South edge, then the West, then the North.

 Select Case (MY_CASE)

 Case (1:2)

 Do I = 1, N

 C = d_entry (JJ(I, 1), JJ(I, 1), r+s)

 w (JJ(I, 1)) = g ((I-1)*delx, 0.d0, MY_CASE) * (r+s)

 End Do

 Do J = 2, M - 1

 C = d_entry (JJ(1, J), JJ(1, J), r+s)

 w (JJ(1, J)) = g (0.d0, (J-1)*dely, MY_CASE) * (r+s)

 End Do

 Do I = 1, N

 C = d_entry (JJ(I, M), JJ(I, M), r+s)

 w (JJ(I, M)) = g ((I-1)*delx, b, MY_CASE) * (r+s)

 End Do

 Do J = 2, M - 1

 C = d_entry (JJ(N, J), JJ(N, J), (r+s))

 w (JJ(N, J)) = g (a, (J-1)*dely, MY_CASE) * (r+s)

 End Do

 Case (3)

! Write entries for the boundary values but avoid the East edge.

 Do I = 1, N - 1

 C = d_entry (JJ(I, 1), JJ(I, 1), r+s)

 w (JJ(I, 1)) = g ((I-1)*delx, 0.d0, MY_CASE) * (r+s)

 End Do

 Do J = 2, M - 1

 C = d_entry (JJ(1, J), JJ(1, J), r+s)

 w (JJ(1, J)) = g (0.d0, (J-1)*dely, MY_CASE) * (r+s)

 End Do

 Do I = 1, N - 1

 C = d_entry (JJ(I, M), JJ(I, M), r+s)

 w (JJ(I, M)) = g ((I-1)*delx, b, MY_CASE) * (r+s)

 End Do

! Write entries for the Neumann condition on the East edge.

 Do J = 1, M

 C = d_entry (JJ(N, J), JJ(N, J), 1.d0/delx)

 C = d_entry (JJ(N, J), JJ(N-2, J),-1.d0/delx)

 w (JJ(N, J)) = 0.d0

 End Do

 End Select

!

! Convert to Harwell-Boeing format for solving.

 D = C

!

 Call cpu_time (TE)

 Write (*,'(A,F6.2," S. - ",A)') "Time to build matrix = ", &

 TE - TS, PR_LABEL(MY_CASE)

! Clear sparse triplets.

 C = 0

!

! Turn off iterative refinement for maximal performance.

! This is generally not recommended unless

! the problem is known not to require it.

 If (MY_CASE == 2) D%options%iterRefine = 0

! This is the solve step.

 Call cpu_time (TS)

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1737

 u = D .ix. w

 Call cpu_time (TE)

 Write (*,'(A,I6," is",F6.2," S")') &

 "Time to solve system of size = ", N * M, TE - TS

! This is a second solve step using the factorization

! from the first step.

 Call cpu_time (TS)

 u = D .ix. w

 Call cpu_time (TE)

!

 If(MY_CASE == 1) then

 Write (*,'(A,I6," is",F6.2," S")') &

 "Time for a 2nd system of size (iterative refinement) =", &

 N * M, TE - TS

 Else

 Write (*,'(A,I6," is",F6.2," S")') &

 "Time for a 2nd system of size (without refinement) =", &

 N * M, TE - TS

 End if

! Convert solution vector to a 2D array of values.

 P = reshape (u , (/ N, M /))

 If (MY_CASE == 2) Then

 pi = dconst ('pi')

!

 scale = - 0.5 / pi ** 2

 Do I = 1, N

 Do J = 1, M

! This uses the known form of the solution to compute residuals.

 P (I, J) = P (I, J) - scale * f ((I-1)*delx, &

 (J-1)*dely, MY_CASE)

 End Do

 End Do

!

 write (*,*) minval (P), " = min solution error "

 write (*,*) maxval (P), " = max solution error "

 End If

 Write (*,'(A,1pE12.4/)') "Condition number of matrix", cond (D)

! Clear all matrix data for next problem case.

 D = 0

!

 End Do ! MY_CASE

Contains

 Function f (x, y, MY_CASE)

 implicit none

! Define the right-hand side function associated with the

! "del" operator.

 Real (Kind(1.d0)) x, y, f, pi

 Integer MY_CASE

 if(MY_CASE == 2) THEN

 pi = dconst ('pi')

 f = - Sin (pi*x) * Sin (pi*y)

 Else

 f = 0.d0

 End If

 End Function

!

 Function g (x, y, MY_CASE)

1738 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 implicit none

! Define the edge values, except along East edge, x = a.

 Real (Kind(1.d0)) x, y, g

 Integer MY_CASE

! Fill in a constant value along each edge.

 If (MY_CASE == 1 .Or. MY_CASE == 3) Then

 If (y == 0.d0) Then

 g = 0.d0

 Return

 End If

 If (y == b) Then

 g = 1.d0

 Return

 End If

 If (x == 0.d0) Then

 g = 0.3d0

 Return

 End If

 If (x == a) Then

 g = 0.7d0

 End If

 Else

 g = 0.d0

!

 End If

!

 End Function

End Subroutine

Problem Case 1

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1739

Problem Case 2

Problem Case 3

Parallel Example (parallel_ex01.f90)

1740 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 use linear_operators

 use mpi_setup_int

 implicit none

! This is the equivalent of Parallel Example 1 for .ix., with box data types

! and functions.

 integer, parameter :: n=32, nr=4

 real(kind(1e0)) :: one=1e0

 real(kind(1e0)), dimension(n,n,nr) :: A, b, x, err(nr)

! Setup for MPI.

 MP_NPROCS=MP_SETUP()

! Generate random matrices for A and b:

 A = rand(A); b=rand(b)

! Compute the box solution matrix of Ax = b.

 x = A .ix. b

! Check the results.

 err = norm(b - (A .x. x))/(norm(A)*norm(x)+norm(b))

 if (ALL(err <= sqrt(epsilon(one))) .and. MP_RANK == 0) &

 write (*,*) 'Parallel Example 1 is correct.'

! See to any error messages and quit MPI.

 MP_NPROCS=MP_SETUP('Final')

 end

.xi.

Computes the product of a matrix or vector and the inverse of a matrix.

Operator Return Value

Matrix containing the product of A and B
-1

. (Output)

Required Operands

A — Right operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double,

complex, or double complex. (Input)

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1741

B — Left operand matrix. This is an array of rank 2, or 3. It may be real, double, complex,

double complex, or one of the computational sparse matrix derived types,

?_hbc_sparse. (Input)

Optional Variables, Reserved Names

This operator uses the routines LIN_SOL_GEN or LIN_SOL_LSQ (See Chapter 1, ―Linear

Systems‖).

The option and derived type names are given in the following tables:

Option Names for .xi. Option Value

use_lin_sol_gen_only 1

use_lin_sol_lsq_only 2

xi_options_for_lin_sol_gen 3

xi_options_for_lin_sol_lsq 4

Skip_error_processing 5

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_xinv_options(:) Use when setting options for

calls hereafter.

?_options

?_xinv_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

LIN_SOL_GEN and LIN_SOL_LSQ located in Chapter 1, ―Linear Systems‖ for the specific

options for these routines.

FORTRAN 90 Interface

A .xi. B

Description

Computes the product of matrix A and the inverse of matrix B, for square non-singular matrices

or the corresponding Moore-Penrose generalized inverse matrix for singular square matrices or

rectangular matrices. The operation may be read times generalized inverse. The results are in a

precision and data type that matches the most accurate or complex operand.

.xi. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only.

Examples

Dense Matrix Example

 use linear_operators

 implicit none

1742 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 integer, parameter :: n=32

 real(kind(1e0)) :: one=1.0e0, err

 real(kind(1e0)), dimension(n,n) :: A, b, x

! Generate random matrices for A and b:

 A = rand(A); b=rand(b)

! Compute the solution matrix of xA = b.

 x = b .xi. A

! Check the results.

 err = norm(b - (x .x. A))/(norm(A)*norm(x)+norm(b))

 if (err <= sqrt(epsilon(one))) &

 write (*,*) 'Example for .xi. operator is correct.'

 end

Sparse Matrix Example

 use wrrrn_int

 use linear_operators

 type (s_sparse) S

 type (s_hbc_sparse) H

 integer, parameter :: N=3

 real (kind(1.e0)) x(N,N), y(N,N), a(N,N)

 real (kind(1.e0)) err

 S = s_entry (1, 1, 2.0)

 S = s_entry (1, 3, 1.0)

 S = s_entry (2, 2, 4.0)

 S = s_entry (3, 3, 6.0)

 H = S ! sparse

 X = H ! dense equivalent of H

 A = rand(A)

 Y = A .xi. H

 call wrrrn ('A', A)

 call wrrrn ('H', X)

 call wrrrn ('A .xi. H', y)

! Check the results.

 err = norm(y - (A .xi. X))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Sparse example for .xi. operator is correct.'

 end if

 end

Output

 A

 1 2 3

 1 0.5926 0.5015 0.5368

 2 0.4001 0.9529 0.6988

 3 0.0412 0.0633 0.3821

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1743

 H

 1 2 3

 1 2.000 0.000 1.000

 2 0.000 4.000 0.000

 3 0.000 0.000 6.000

 A .xi. H

 1 2 3

 1 0.2963 0.1254 0.0401

 2 0.2001 0.2382 0.0831

 3 0.0206 0.0158 0.0602

 Sparse example for .xi. operator is correct.

Parallel Example

 use linear_operators

 use mpi_setup_int

 implicit none

! This is the equivalent of Parallel Example 1 for .xi., with box data types

! and functions.

 integer, parameter :: n=32, nr=4

 real(kind(1e0)) :: one=1e0

 real(kind(1e0)), dimension(n,n,nr) :: A, b, x, err(nr)

! Setup for MPI.

 MP_NPROCS=MP_SETUP()

! Generate random matrices for A and b:

 A = rand(A); b=rand(b)

! Compute the box solution matrix of xA = b.

 x = b .xi. A

! Check the results.

 err = norm(b - (x .x. A))/(norm(A)*norm(x)+norm(b))

 if (ALL(err <= sqrt(epsilon(one))) .and. MP_RANK == 0) &

 write (*,*) 'Parallel Example 1 is correct.'

! See to any error messages and quit MPI.

 MP_NPROCS=MP_SETUP('Final')

 end

CHOL

Computes the Cholesky factorization of a positive-definite, symmetric or self-adjoint matrix.

1744 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Function Return Value

Matrix containing the Cholesky factorization of A. The factor is upper triangular, R
T
R = A.

(Output)

Required Argument

A — Matrix to be factored. This argument must be a rank-2 or rank-3 array that contains a

positive-definite, symmetric or self-adjoint matrix. It may be real, double, complex,

double complex. (Input)

For rank-3 arrays each rank-2 array, (for fixed third subscript), is a positive-definite,

symmetric or self-adjoint matrix. In this case, the output is a rank-3 array of Cholesky

factors for the individual problems.

Optional Arguments, Packaged Options

This function uses LIN_SOL_SELF (See Chapter 1, ―Linear Systems‖), using the appropriate

options to obtain the Cholesky factorization.

The option and derived type names are given in the following tables:

Option Names for CHOL Option Value

Use_lin_sol_gen_only 4

Use_lin_sol_lsq_only 5

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_chol_options(:) Use when setting options for

calls hereafter.

?_options

?_chol_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

LIN_SOL_SELF located in Chapter 1, ―Linear Systems‖ for the specific options for this

routine.

FORTRAN 90 Interface

CHOL(A)

Description

Computes the Cholesky factorization of a positive-definite, symmetric or self-adjoint matrix, A.

The factor is upper triangular, R
T
R = A.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1745

Examples

Dense Matrix Example (operator_ex06.f90)

 use linear_operators

 implicit none

! This is the equivalent of Example 2 for LIN_SOL_SELF using operators

! and functions.

 integer, parameter :: m=64, n=32

 real(kind(1e0)) :: one=1e0, zero=0e0, err

 real(kind(1e0)) A(n,n), b(n), C(m,n), d(m), cov(n,n), x(n)

! Generate a random rectangular matrix and right-hand side.

 C = rand(C); d=rand(d)

! Form the normal equations for the rectangular system.

 A = C .tx. C; b = C .tx. d

 COV = .i. CHOL(A); COV = COV .xt. COV

! Compute the least-squares solution.

 x = C .ix. d

! Compare with solution obtained using the inverse matrix.

 err = norm(x - (COV .x. b))/norm(cov)

! Scale the inverse to obtain the sample covariance matrix.

 COV = sum((d - (C .x. x))**2)/(m-n) * COV

! Check the results.

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 2 for LIN_SOL_SELF (operators) is correct.'

 end if

 end

Parallel Example (parallel_ex06.f90)

 use linear_operators

 use mpi_setup_int

 implicit none

! This is the equivalent of Parallel Example 6 for box data types, operators

! and functions.

 integer, parameter :: m=64, n=32, nr=4

 real(kind(1e0)) :: one=1e0, zero=0e0, err(nr)

 real(kind(1e0)), dimension(m,n,nr) :: C, d(m,1,nr)

 real(kind(1e0)), dimension(n,n,nr) :: A, cov

 real(kind(1e0)), dimension(n,1,nr) :: b, x

! Setup for MPI:

 mp_nprocs=mp_setup()

1746 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

! Generate a random rectangular matrix and right-hand side.

 if(mp_rank == 0) then

 C = rand(C); d=rand(d)

 endif

! Form the normal equations for the rectangular system.

 A = C .tx. C; b = C .tx. d

 COV = .i. CHOL(A); COV = COV .xt. COV

! Compute the least-squares solution.

 x = C .ix. d

! Compare with solution obtained using the inverse matrix.

 err = norm(x - (COV .x. b))/norm(cov)

! Check the results.

 if (ALL(err <= sqrt(epsilon(one))) .and. mp_rank == 0) &

 write (*,*) 'Parallel Example 6 is correct.'

! See to any eror messages and quit MPI

 mp_nprocs=mp_setup('Final')

 end

COND

Computes the condition number of a matrix.

Function Return Value

Computes condition number of matrix A. This is a scalar for the case where A is rank-2 or a

sparse matrix. It is a rank-1 array when A is a dense rank-3 array. (Output)

Required Argument

A — Matrix for which the condition number is to be computed. The matrix may be real,

double, complex, double-complex, or one of the computational sparse matrix derived

types, ?_hbc_sparse. For an array of type real, double, complex, or double-complex

the array may be of rank-2 or rank-3.

 For a dense rank-3 array, each rank-2 array section, (for fixed third subscript), is a

separate problem. In this case, the output is a rank-1 array of condition numbers for

each problem. (Input)

Optional Arguments, Packaged Options

NORM_CHOICE — Integer indicating the type of norm to be used in computing the

condition number.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1747

NORM_CHOICE CONDITION
Number

Square Matrix Rectangular Matrix

Dense Sparse Dense Sparse

1 L1 Yes Yes No No

2 (Default) L2 Yes Yes Yes No

huge(1) L∞
Yes Yes No No

This function uses LIN_SOL_SVD (see Chapter 1, ―Linear Systems‖).

The option and derived type names are given in the following tables:

Option Names for COND Option Value

?_cond_set_small 1

?_cond_for_lin_sol_svd 2

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_cond_options(:) Use when setting options for

calls hereafter.

?_options

?_cond_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

LIN_SOL_SVD located in Chapter 1, ―Linear Systems‖ for the specific options for this routine.

FORTRAN 90 Interface

COND (A [,…])

Description

The mathematical definitions of the condition numbers which this routine estimates are:

1

1

1

1 1 1 1

2 2 2 2

condition number

condition number

condition number

l A A A

l A A A

l A A A

COND can be used with either dense or sparse matrices as follows:

 Square Matrix Rectangular Matrix

 Dense Sparse Dense Sparse

L1 Yes Yes No No

L2 Yes Yes Yes No

1748 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

L∞ Yes Yes No No

The generic function COND can be used with either dense or sparse square matrices. This function

uses LIN_SOL_SVD for dense square and rectangular matrices in computing 2 1 / nA s s .

The function uses LIN_SOL_GEN for dense square matrices in computing 1 A and A .

For sparse square matrices, the values returned for 1 A and A are provided by the

SuperLU linear equation solver. The condition number 2 1 / nA s s is computed by an

algorithm that first approximates 1s by computing the singular values of the k k bidiagonal

matrix obtained using the Lanczos method found in Golub and Van Loan, Ed. 3, p. 495. Here k is

set using the value A%Options%Cond_Iteration_Max, which has the default value of 30. The

value
2

ns is obtained using the power method, Golub and Van Loan, p. 330, iterating with the

inverse matrix
1

1T TA A A A

 . For complex matrices
TA is replaced by

H TA A . The

dominant eigenvalue of this inverse matrix is
2

ns . The number of iterations is limited by the

parameter value k or relative accuracy equal to the cube root of machine epsilon. Some timing

tests indicate that computing 2 A for sparse matrices by this algorithm typically requires about

twice the time as for a single linear solve using the defined operator A .ix. b.

For computation of 2 A with rectangular sparse matrices one can use a dense matrix

representation for the matrix. This is not recommended except for small problem sizes. For

overdetermined systems of sparse least-squares equations Ax b a related square system is given

by

00

m m

T
n n

A Ix x b
C

r rA

One can form C , which has more than twice the number of non-zeros as A . But C is still sparse.

One can use the condition number of C as an estimate of the accuracy for the solution vector x and

the residual vector r . Note that this version of the condition number is not the same as

the 2l condition number of A but is relevant to determining the accuracy of the least-squares

system.

Examples

Dense Matrix Example (operator_ex02.f90)

 use wrrrn_int

 use linear_operators

 integer, parameter :: N=3

 real (kind(1.e0)) A(N,N)

http://www.cs.berkeley.edu/~demmel/SuperLU.html

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1749

 real (kind(1.e0)) C1, C2, CINF

 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/

 CINF = COND (A, norm_choice=huge(1))

 C1 = COND (A, norm_choice=1)

 C2 = COND (A)

 call wrrrn ('A', A)

 write (*,*) 'L1 condition number= ', C1

 write (*,*) 'L2 condition number= ', C2

 write (*,*) 'L infinity condition number= ', CINF

 end

Output

 A

 1 2 3

 1 2.000 0.000 0.000

 2 2.000 -1.000 0.000

 3 -4.000 2.000 5.000

 L1 condition number= 12.0

 L2 condition number= 10.405088

 L infinity condition number= 22.0

Sparse Matrix Example

 use wrrrn_int

 use linear_operators

 type (s_sparse) S

 type (s_hbc_sparse) H

 integer, parameter :: N=3

 real (kind(1.e0)) X(N,N)

 real (kind(1.e0)) C1, C2, CINF

 S = s_entry (1, 1, 2.0)

 S = s_entry (2, 1, 2.0)

 S = s_entry (3, 1, -4.0)

 S = s_entry (3, 2, 2.0)

 S = s_entry (2, 2, -1.0)

 S = s_entry (3, 3, 5.0)

 H = S ! sparse

 X = H ! dense equivalent of H

 CINF = COND (H, norm_choice=huge(1))

 C1 = COND (H, norm_choice=1)

 C2 = COND (H)

 call wrrrn ('H', X)

 write (*,*) 'L1 condition number= ', C1

 write (*,*) 'L2 condition number= ', C2

 write (*,*) 'L infinity condition number= ', CINF

 end

Output

 H

1750 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 1 2 3

 1 2.000 0.000 0.000

 2 2.000 -1.000 0.000

 3 -4.000 2.000 5.000

 L1 condition number= 12.0

 L2 condition number= 10.405088

 L infinity condition number= 22.0

Parallel Example (parallel_ex02.f90)

 use linear_operators

 use mpi_setup_int

 implicit none

! This is the equivalent of Parallel Example 2 for .i. and det() with box

! data types, operators and functions.

 integer, parameter :: n=32, nr=4

 integer J

 real(kind(1e0)) :: one=1e0

 real(kind(1e0)), dimension(nr) :: err, det_A, det_i

 real(kind(1e0)), dimension(n,n,nr) :: A, inv, R, S

! Setup for MPI.

 MP_NPROCS=MP_SETUP()

! Generate a random matrix.

 A = rand(A)

! Compute the matrix inverse and its determinant.

 inv = .i.A; det_A = det(A)

! Compute the determinant for the inverse matrix.

 det_i = det(inv)

! Check the quality of both left and right inverses.

 DO J=1,nr; R(:,:,J)=EYE(N); END DO

 S=R; R=R-(A .x. inv); S=S-(inv .x. A)

 err = (norm(R)+norm(S))/cond(A)

 if (ALL(err <= sqrt(epsilon(one)) .and. &

 abs(det_A*det_i - one) <= sqrt(epsilon(one)))&

 .and. MP_RANK == 0) &

 write (*,*) 'Parallel Example 2 is correct.'

! See to any error messages and quit MPI.

 MP_NPROCS=MP_SETUP('Final')

 end

DET

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1751

Computes the determinant of a rectangular matrix.

Function Return Value

Determinant of matrix A. This is a scalar for the case where A is rank 2. It is a rank-1 array of

determinant values for the case where A is rank 3. (Output)

Required Argument

A — Matrix for which the determinant is to be computed. This argument must be a rank-2 or

rank-3 array that contains a rectangular matrix. It may be real, double, complex,

double complex. (Input)

For rank-3 arrays, each rank-2 array (for fixed third subscript), is a separate matrix. In

this case, the output is a rank-1 array of determinant values for each problem.

Optional Arguments, Packaged Options

This function uses LIN_SOL_LSQ (see Chapter 1, ―Linear Systems‖) to compute the QR

decomposition of A, and the logarithmic value of det(A), which is exponentiated for the

result.

The option and derived type names are given in the following tables:

Option Names for DET Option Value

?_det_for_lin_sol_lsq 1

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_det_options(:) Use when setting options for
calls hereafter.

?_options

?_det_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

LIN_SOL_LSQ located in Chapter 1, ―Linear Systems‖ for the specific options for this routine.

FORTRAN 90 Interface

DET (A)

Description

Computes the determinant of a rectangular matrix, A. The evaluation is based on the QR decompo-

sition,

0

0 0

k kR
QAP

1752 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

and k = rank(A). Thus det(A) = s det(R) where s = det(Q) det(P) = ±1.

Even well-conditioned matrices can have determinants with values that have very large or very

tiny magnitudes. The values may overflow or underflow. For this class of problems, the use of the

logarithmic representation of the determinant found in LIN_SOL_GEN or LIN_SOL_LSQ is

required.

Examples

Dense Matrix Example (operator_ex02.f90)

 use linear_operators

 implicit none

! This is Example 2 for LIN_SOL_GEN using operators and functions.

 integer, parameter :: n=32

 real(kind(1e0)) :: one=1e0, err, det_A, det_i

 real(kind(1e0)), dimension(n,n) :: A, inv

! Generate a random matrix.

 A = rand(A)

! Compute the matrix inverse and its determinant.

 inv = .i.A; det_A = det(A)

! Compute the determinant for the inverse matrix.

 det_i = det(inv)

! Check the quality of both left and right inverses.

 err = (norm(EYE(n)-(A .x. inv))+norm(EYE(n)-(inv.x.A)))/cond(A)

 if (err <= sqrt(epsilon(one)) .and. abs(det_A*det_i - one) <= &

 sqrt(epsilon(one))) &

 write (*,*) 'Example 2 for LIN_SOL_GEN (operators) is correct.'

 end

Parallel Example (parallel_ex02.f90)

 use linear_operators

 use mpi_setup_int

 implicit none

! This is the equivalent of Parallel Example 2 for .i. and det() with box

! data types, operators and functions.

 integer, parameter :: n=32, nr=4

 integer J

 real(kind(1e0)) :: one=1e0

 real(kind(1e0)), dimension(nr) :: err, det_A, det_i

 real(kind(1e0)), dimension(n,n,nr) :: A, inv, R, S

! Setup for MPI.

 MP_NPROCS=MP_SETUP()

! Generate a random matrix.

 A = rand(A)

! Compute the matrix inverse and its determinant.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1753

 inv = .i.A; det_A = det(A)

! Compute the determinant for the inverse matrix.

 det_i = det(inv)

! Check the quality of both left and right inverses.

 DO J=1,nr; R(:,:,J)=EYE(N); END DO

 S=R; R=R-(A .x. inv); S=S-(inv .x. A)

 err = (norm(R)+norm(S))/cond(A)

 if (ALL(err <= sqrt(epsilon(one)) .and. &

 abs(det_A*det_i - one) <= sqrt(epsilon(one)))&

 .and. MP_RANK == 0) &

 write (*,*) 'Parallel Example 2 is correct.'

! See to any error messages and quit MPI.

 MP_NPROCS=MP_SETUP('Final')

 end

DIAG
Constructs a square diagonal matrix.

Function Return Value

Square diagonal matrix of rank-2 if A is rank-1 or rank-3 array if A is rank-2. (Output)

Required Argument

A — This is a rank-1 or rank-2 array of type real, double, complex, or double complex,

containing the diagonal elements. The output is a rank-2 or rank-3 array,

respectively. (Input)

FORTRAN 90 Interface

DIAG (A)

Description

Constructs a square diagonal matrix from a rank-1 array or several diagonal matrices from a rank-

2 array. The dimension of the matrix is the value of the size of the rank-1 array.

The use of DIAG may be obviated by observing that the defined operations C = diag(x) .x. A

or D = B .x. diag(x) are respectively the array operations C = spread(x,

DIM=1,NCOPIES=size(A,1))*A, and D = B*spread(x,DIM=2,NCOPIES=size(B,2)).

These array products are not as easy to read as the defined operations using DIAG and matrix

multiply, but their use results in a more efficient code.

Examples

Dense Matrix Example (operator_ex13.f90)

 use linear_operators

1754 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 implicit none

! This is the equivalent of Example 1 for LIN_SOL_SVD using operators

! and functions.

 integer, parameter :: m=128, n=32

 real(kind(1d0)) :: one=1d0, err

 real(kind(1d0)) A(m,n), b(m), x(n), U(m,m), V(n,n), S(n), g(m)

! Generate a random matrix and right-hand side.

 A = rand(A); b = rand(b)

! Compute the least-squares solution matrix of Ax=b.

 S = SVD(A, U = U, V = V)

 g = U .tx. b; x = V .x. diag(one/S) .x. g(1:n)

! Check the results.

 err = norm(A .tx. (b - (A .x. x)))/(norm(A)+norm(x))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for LIN_SOL_SVD (operators) is correct.'

 end if

 end

DIAGONALS
Extracts the diagonal terms of a matrix.

Function Return Value

Array containing the diagonal terms of matrix A. It is rank-1 or rank-2 depending on the rank

of A. When A is a rank-3 array, the result is a rank-2 array consisting of each separate set of

diagonals. (Output)

Required Argument

A — Matrix from which to extract the diagonal. This is a rank-2 or rank-3 array of type real,

double, complex, or double complex. The output is a rank-1 or rank-2 array,

respectively. (Input)

FORTRAN 90 Interface

DIAGONALS (A)

Description

Extracts a rank-1 array whose values are the diagonal terms of the rank-2 array A. The size of the

array is the smaller of the two dimensions of the rank-2 array.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1755

Examples

Dense Matrix Example (operator_ex32.f90)

 use linear_operators

 implicit none

! This is the equivalent of Example 4 (using operators) for LIN_EIG_GEN.

 integer, parameter :: n=17

 real(kind(1d0)), parameter :: one=1d0

 real(kind(1d0)), dimension(n,n) :: A, C

 real(kind(1d0)) variation(n), eta

 complex(kind(1d0)), dimension(n,n) :: U, V, e(n), d(n)

! Generate a random matrix.

 A = rand(A)

! Compute the eigenvalues, left- and right- eigenvectors.

 D = EIG(A, W=V); E = EIG(.t.A, W=U)

! Compute condition numbers and variations of eigenvalues.

 variation = norm(A)/abs(diagonals(U .hx. V))

! Now perturb the data in the matrix by the relative factors

! eta=sqrt(epsilon) and solve for values again. Check the

! differences compared to the estimates. They should not exceed

! the bounds.

 eta = sqrt(epsilon(one))

 C = A + eta*(2*rand(A)-1)*A

 D = EIG(C)

! Looking at the differences of absolute values accounts for

! switching signs on the imaginary parts.

 if (count(abs(d)-abs(e) > eta*variation) == 0) then

 write (*,*) 'Example 4 for LIN_EIG_GEN (operators) is correct.'

 end if

 end

EIG

Computes the eigenvalue-eigenvector decomposition of an ordinary or generalized eigenvalue

problem.

Function Return Value

Rank-1 or rank-2 complex array of eigenvalues. (Output)

1756 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Required Argument

A — Matrix for which the eigenexpansion is to be computed. This is a square rank-2 array or

a rank-3 array with square first rank-2 sections of type single, double, complex, or

double complex. (Input)

Optional Arguments, Packaged Options

B — Matrix B for the generalized problem, Ax = eBx. B must be the same type as A. (Input)

D — Array containing the real diagonal matrix factors of the generalized eigenvalues.

(Output)

V — Array of real eigenvectors for both the ordinary and generalized problem. Used only for

the generalized problem when matrix B is singular. (Output)

W — Array of complex eigenvectors for both the ordinary and generalized problem. Do not

use optional argument V when W is present. (Output)

This function uses LIN_EIG_SELF, LIN_EIG_GEN, and LIN_GEIG_GEN to compute the

decompositions. See Chapter 2, ―Eigensystem Analysis‖.

The option and derived type names are given in the following tables:

Option Names for EIG Option Value

Options_for_lin_eig_self 1

Options_for_lin_eig_gen 2

Options_for_lin_geig_gen 3

Skip_error_processing 5

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_eig_options(:) Use when setting options for

calls hereafter.

?_options

?_eig_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

LIN_EIG_SELF, LIN_EIG_GEN, and LIN_GEIG_GEN located in Chapter 2, ―Eigensystems

Analysis‖ for the specific options for these routines.

FORTRAN 90 Interface

EIG (A [,…])

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1757

Description

Computes the eigenvalue-eigenvector decomposition of an ordinary or generalized eigenvalue

problem.

For the ordinary eigenvalue problem, Ax = ex, the optional input ―B=‖ is not used. With the

generalized problem, Ax = eBx, the matrix B is passed as the array in the right-side of ―B=‖. The

optional output ―D=‖ is an array required only for the generalized problem and then only when

the matrix B is singular.

The array of real eigenvectors is an optional output for both the ordinary and the generalized

problem. It is used as ―V=‖ where the right-side array will contain the eigenvectors. If any

eigenvectors are complex, the optional output ―W=‖ must be present. In that case ―V=‖ should not

be used.

Examples

Dense Matrix Example 1 (operator_ex26.f90)

 use linear_operators

 implicit none

! This is the equivalent of Example 2 (using operators) for LIN_EIG_SELF.

 integer, parameter :: n=8

 real(kind(1e0)), parameter :: one=1e0

 real(kind(1e0)), dimension(n,n) :: A, d(n), v_s

! Generate a random self-adjoint matrix.

 A = rand(A); A = A + .t.A

! Compute the eigenvalues and eigenvectors.

 D = EIG(A,V=v_s)

! Check the results for small residuals.

 if (norm((A .x. v_s) - (v_s .x. diag(D)))/abs(d(1)) <= &

 sqrt(epsilon(one))) then

 write (*,*) 'Example 2 for LIN_EIG_SELF (operators) is correct.'

 end if

 end

Dense Matrix Example 2 (operator_ex33.f90)

 use linear_operators

 implicit none

! This is the equivalent of Example 1 (using operators) for LIN_GEIG_GEN.

 integer, parameter :: n=32

 real(kind(1d0)), parameter :: one=1d0

 real(kind(1d0)) A(n,n), B(n,n), bta(n), beta_t(n), err

 complex(kind(1d0)) alpha(n), alpha_t(n), V(n,n)

1758 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

! Generate random matrices for both A and B.

 A = rand(A); B = rand(B)

! Compute the generalized eigenvalues.

 alpha = EIG(A, B=B, D=bta)

! Compute the full decomposition once again, A*V = B*V*values,

! and check for any error messages.

 alpha_t = EIG(A, B=B, D=beta_t, W = V)

! Use values from the first decomposition, vectors from the

! second decomposition, and check for small residuals.

 err = norm((A .x. V .x. diag(bta)) - (B .x. V .x. diag(alpha)),1)/&

 (norm(A,1)*norm(bta,1) + norm(B,1)*norm(alpha,1))

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for LIN_GEIG_GEN (operators) is correct.'

 end if

 end

Parallel Example (parallel_ex04.f90)

Here an alternate node is used to compute the majority of a single application, and the user does

not need to make any explicit calls to MPI routines. The time-consuming parts are the evaluation

of the eigenvalue-eigenvector expansion, the solving step, and the residuals. To do this, the rank-

2 arrays are changed to a box data type with a unit third dimension. This uses parallel computing.

The node priority order is established by the initial function call, MP_SETUP(n). The root is

restricted from working on the box data type by assigning MPI_ROOT_WORKS=.false. This

example anticipates that the most efficient node, other than the root, will perform the heavy

computing. Two nodes are required to execute.

 use linear_operators

 use mpi_setup_int

 implicit none

! This is the equivalent of Parallel Example 4 for matrix exponential.

! The box dimension has a single rack.

 integer, parameter :: n=32, k=128, nr=1

 integer i

 real(kind(1e0)), parameter :: one=1e0, t_max=one, delta_t=t_max/(k-1)

 real(kind(1e0)) err(nr), sizes(nr), A(n,n,nr)

 real(kind(1e0)) t(k), y(n,k,nr), y_prime(n,k,nr)

 complex(kind(1e0)), dimension(n,nr) :: x(n,n,nr), z_0, &

 Z_1(n,nr,nr), y_0, d

! Setup for MPI. Establish a node priority order.

! Restrict the root from significant computing.

! Illustrates using the 'best' performing node that

! is not the root for a single task.

 MP_NPROCS=MP_SETUP(n)

 MPI_ROOT_WORKS=.false.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1759

! Generate a random coefficient matrix.

 A = rand(A)

! Compute the eigenvalue-eigenvector decomposition

! of the system coefficient matrix on an alternate node.

 D = EIG(A, W=X)

! Generate a random initial value for the ODE system.

 y_0 = rand(y_0)

! Solve complex data system that transforms the initial

! values, X z_0=y_0.

 z_1= X .ix. y_0 ; z_0(:,nr) = z_1(:,nr,nr)

! The grid of points where a solution is computed:

 t = (/(i*delta_t,i=0,k-1)/)

! Compute y and y' at the values t(1:k).

! With the eigenvalue-eigenvector decomposition AX = XD, this

! is an evaluation of EXP(A t)y_0 = y(t).

 y = X .x.exp(spread(d(:,nr),2,k)*spread(t,1,n))*spread(z_0(:,nr),2,k)

! This is y', derived by differentiating y(t).

 y_prime = X .x. &

spread(d(:,nr),2,k)*exp(spread(d(:,nr),2,k)*spread(t,1,n))* &

 spread(z_0(:,nr),2,k)

! Check results. Is y' - Ay = 0?

 err = norm(y_prime-(A .x. y))

 sizes=norm(y_prime)+norm(A)*norm(y)

 if (ALL(err <= sqrt(epsilon(one))*sizes) .and. MP_RANK == 0) &

 write (*,*) 'Parallel Example 4 is correct.'

! See to any error messages and quit MPI.

 MP_NPROCS=MP_SETUP('Final')

 end

EYE
Creates the identity matrix.

Function Return Value

Identity matrix of size N x N and type real . (Output)

Required Argument

N — Size of output identity matrix. (Input)

1760 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

FORTRAN 90 Interface

EYE (N)

Description

Creates a rank-2 square array whose diagonals are all the value one. The off-diagonals all have

value zero.

Examples

Dense Matrix Example (operator_ex07.f90)

 use linear_operators

 implicit none

! This is the equivalent of Example 3 (using operators) for LIN_SOL_SELF.

 integer tries

 integer, parameter :: m=8, n=4, k=2

 integer ipivots(n+1)

 real(kind(1d0)) :: one=1.0d0, err

 real(kind(1d0)) a(n,n), b(n,1), c(m,n), x(n,1), &

 e(n), ATEMP(n,n)

 type(d_options) :: iopti(4)

! Generate a random rectangular matrix.

 C = rand(C)

! Generate a random right hand side for use in the inverse

! iteration.

 b = rand(b)

! Compute the positive definite matrix.

 A = C .tx. C; A = (A+.t.A)/2

! Obtain just the eigenvalues.

 E = EIG(A)

! Use packaged option to reset the value of a small diagonal.

 iopti(4) = 0

 iopti(1) = d_options(d_lin_sol_self_set_small,&

 epsilon(one)*abs(E(1)))

! Use packaged option to save the factorization.

 iopti(2) = d_lin_sol_self_save_factors

! Suppress error messages and stopping due to singularity

! of the matrix, which is expected.

 iopti(3) = d_lin_sol_self_no_sing_mess

 ATEMP = A

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1761

! Compute A-eigenvalue*I as the coefficient matrix.

! Use eigenvalue number k.

 A = A - e(k)*EYE(n)

 do tries=1,2

 call lin_sol_self(A, b, x, &

 pivots=ipivots, iopt=iopti)

! When code is re-entered, the already computed factorization

! is used.

 iopti(4) = d_lin_sol_self_solve_A

! Reset right-hand side in the direction of the eigenvector.

 B = UNIT(x)

 end do

! Normalize the eigenvector.

 x = UNIT(x)

! Check the results.

 b=ATEMP .x. x

 err = dot_product(x(1:n,1), b(1:n,1)) - e(k)

! If any result is not accurate, quit with no printing.

 if (abs(err) <= sqrt(epsilon(one))*E(1)) then

 write (*,*) 'Example 3 for LIN_SOL_SELF (operators) is correct.'

 end if

 end

FFT
Computes the Discrete Fourier Transform of one complex sequence.

Function Return Value

Complex array containing the Discrete Fourier Transform of X . The result is the complex

array of the same shape and rank as X. (Output)

Required Argument

X — Array containing the sequence for which the transform is to be computed. X is an

assumed shape complex array of rank 1, 2 or 3. If X is real or double, it is converted to

complex internally prior to the computation. (Input)

Optional Arguments, Packaged Options

WORK — A COMPLEX array of the same precision as the data. For rank-1 transforms the

size of WORK is n+15. To define this array for each problem, set WORK(1) = 0. Each

additional rank adds the dimension of the transform plus 15. Using the optional

argument WORK increases the efficiency of the transform.

The option and derived type names are given in the following tables:

1762 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Option Names for FFT Option Value

Options_for_fast_dft 1

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_fft_options(:) Use when setting options for
calls hereafter.

?_options

?_fft_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

FAST_DFT located in Chapter 6, ―Transforms‖ for the specific options for this routine.

FORTRAN 90 Interface

FFT (X [,…])

Description

Computes the Discrete Fourier Transform of a complex sequence. This function uses FAST_DFT,

FAST_2DFT, and FAST_3DFT from Chapter 6.

Examples (operator_ex37.f90)

 use rand_gen_int

 use fft_int

 use ifft_int

 use linear_operators

 implicit none

! This is Example 4 for FAST_DFT (using operators).

 integer j

 integer, parameter :: n=40

 real(kind(1e0)) :: err, one=1e0

 real(kind(1e0)), dimension(n) :: a, b, c, yy(n,n)

 complex(kind(1e0)), dimension(n) :: f, fa, fb

! Generate two random periodic sequences 'a' and 'b'.

 a=rand(a); b=rand(b)

! Compute the convolution 'c' of 'a' and 'b'.

 yy(1:,1)=b

 do j=2,n

 yy(2:,j)=yy(1:n-1,j-1)

 yy(1,j)=yy(n,j-1)

 end do

 c=yy .x. a

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1763

! Compute f=inverse(transform(a)*transform(b)).

 fa = fft(a)

 fb = fft(b)

 f=ifft(fa*fb)

! Check the Convolution Theorem:

! inverse(transform(a)*transform(b)) = convolution(a,b).

 err = norm(c-f)/norm(c)

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 4 for FAST_DFT (operators) is correct.'

 end if

 end

FFT_BOX

Computes the Discrete Fourier Transform of several complex or real sequences.

Function Return Value

Complex array containing the Discrete Fourier Transform of the sequences in X . If X is an

assumed shape complex array of rank 2, 3 or 4, the result is a complex array of the same

shape and rank consisting of the DFT for each of the last rank‘s indices. (Output)

Required Argument

X — Box containing the sequences for which the transform is to be computed. X is an

assumed shape complex array of rank 2, 3 or 4. If X is real or double, it is converted to

complex internally prior to the computation. (Input)

Optional Arguments, Packaged Options

WORK — A COMPLEX array of the same precision as the data. For rank-1 transforms the

size of WORK is n+15. To define this array for each problem, set WORK(1) = 0. Each

additional rank adds the dimension of the transform plus 15. Using the optional

argument WORK increases the efficiency of the transform

The option and derived type names are given in the following tables:

Option Names for FFT Option Value

Options_for_fast_dft 1

1764 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_fft_box_options(:) Use when setting options for

calls hereafter.

?_options

?_fft_box_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

FAST_DFT located in Chapter 6, ―Transforms‖ for the specific options for this routine.

FORTRAN 90 Interface

FFT_BOX (X [,…])

Description

Computes the Discrete Fourier Transform of a box of complex sequences. This function uses

FAST_DFT, FAST_2DFT, and FAST_3DFT from Chapter 6.

Examples

Parallel Example

 use rand_gen_int

 use fft_box_int

 use ifft_box_int

 use linear_operators

 use mpi_setup_int

 implicit none

! This is FFT_BOX example.

 integer i,j

 integer, parameter :: n=40, nr=4

 real(kind(1e0)) :: err(nr), one=1e0

 real(kind(1e0)) :: a(n,1,nr), b(n,nr), c(n,1,nr), yy(n,n,nr)

 complex(kind(1e0)), dimension(n,nr) :: f, fa, fb, cc, aa

 real(kind(1e0)),parameter::zero_par=0.e0

 real(kind(1e0))::dummy_par(0)

 integer iseed_par

 type(s_options)::iopti_par(2)

! setup for MPI

 MP_NPROCS = MP_SETUP()

! Set Random Number generator seed

 iseed_par = 53976279

 iopti_par(1)=s_options(s_rand_gen_generator_seed,zero_par)

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1765

 iopti_par(2)=s_options(iseed_par,zero_par)

 call rand_gen(dummy_par,iopt=iopti_par)

! Generate two random periodic sequences 'a' and 'b'.

 a=rand(a); b=rand(b)

! Compute the convolution 'c' of 'a' and 'b'.

 do i=1,nr

 aa(1:,i) = a(1:,1,i)

 yy(1:,1,i)=b(1:,i)

 do j=2,n

 yy(2:,j,i)=yy(1:n-1,j-1,i)

 yy(1,j,i)=yy(n,j-1,i)

 end do

 end do

 c=yy .x. a

! Compute f=inverse(transform(a)*transform(b)).

 fa = fft_box(aa)

 fb = fft_box(b)

 f=ifft_box(fa*fb)

! Check the Convolution Theorem:

! inverse(transform(a)*transform(b)) = convolution(a,b).

 do i=1,nr

 cc(1:,i) = c(1:,1,i)

 end do

 err = norm(cc-f)/norm(cc)

 if (ALL(err <= sqrt(epsilon(one))) .AND. MP_RANK == 0) then

 write (*,*) 'FFT_BOX is correct.'

 end if

 MP_NPROCS = MP_SETUP('Final')

 end

IFFT
Computes the inverse of the Discrete Fourier Transform of one complex sequence.

Function Return Value

Complex array containing the inverse of the Discrete Fourier Transform of X. The result is the

complex array of the same shape and rank as X. (Output)

Required Argument

X — Array containing the sequence for which the inverse transform is to be computed. X is

an assumed shape complex array of rank 1, 2 or 3. If X is real or double, it is converted

to complex internally prior to the computation. (Input)

1766 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Optional Arguments, Packaged Options

WORK — a COMPLEX array of the same precision as the data. For rank-1 transforms the size

of WORK is n+15. To define this array for each problem, set WORK(1) = 0. Each

additional rank adds the dimension of the transform plus 15. Using the optional

argument WORK increases the efficiency of the transform.

The option and derived type names are given in the following tables:

Option Name for IFFT Option Value

options_for_fast_dft 1

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_ifft_options(:) Use when setting options for

calls hereafter.

?_options

?_ifft_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

FAST_DFT located in Chapter 6, ―Transforms‖ for the specific options for this routine.

FORTRAN 90 Interface

IFFT (X [,…])

Description

Computes the inverse of the Discrete Fourier Transform of a complex sequence. This function

uses FAST_DFT, FAST_2DFT, and FAST_3DFT from Chapter 6.

Example (operator_ex37.f90)

 use rand_gen_int

 use fft_int

 use ifft_int

 use linear_operators

 implicit none

! This is the equivalent of Example 4 for FAST_DFT (using operators).

 integer j

 integer, parameter :: n=40

 real(kind(1e0)) :: err, one=1e0

 real(kind(1e0)), dimension(n) :: a, b, c, yy(n,n)

 complex(kind(1e0)), dimension(n) :: f, fa, fb

! Generate two random periodic sequences 'a' and 'b'.

 a=rand(a); b=rand(b)

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1767

! Compute the convolution 'c' of 'a' and 'b'.

 yy(1:,1)=b

 do j=2,n

 yy(2:,j)=yy(1:n-1,j-1)

 yy(1,j)=yy(n,j-1)

 end do

 c=yy .x. a

! Compute f=inverse(transform(a)*transform(b)).

 fa = fft(a)

 fb = fft(b)

 f=ifft(fa*fb)

! Check the Convolution Theorem:

! inverse(transform(a)*transform(b)) = convolution(a,b).

 err = norm(c-f)/norm(c)

 if (err <= sqrt(epsilon(one))) then

 write (*,*) 'Example 4 for FAST_DFT (operators) is correct.'

 end if

 end

IFFT_BOX

Computes the inverse Discrete Fourier Transform of several complex or real sequences.

Function Return Value

Complex array containing the inverse of the Discrete Fourier Transform of the sequences in X.

If X is an assumed shape complex array of rank 2, 3 or 4, the result is a complex array of the

same shape and rank consisting of the inverse DFT for each of the last rank‘s indices.

(Output)

Required Argument

X — Box containing the sequences for which the inverse transform is to be computed. X is

an assumed shape complex array of rank 2, 3 or 4. If X is real or double, it is converted

to complex internally prior to the computation. (Input)

Optional Arguments, Packaged Options

WORK — A COMPLEX array of the same precision as the data. For rank-1 transforms the

size of WORK is n+15. To define this array for each problem, set WORK(1) = 0. Each

additional rank adds the dimension of the transform plus 15. Using the optional

argument WORK increases the efficiency of the transform.

1768 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

The option and derived type names are given in the following tables:

Option Names for IFFT Option Value

Options_for_fast_dft 1

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_ifft_box_options(:) Use when setting options for

calls hereafter.

?_options

?_ifft_box_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

FAST_DFT located in Chapter 6, ―Transforms‖ for the specific options for this routine.

FORTRAN 90 Interface

IFFT_BOX (X [,…])

Description

Computes the inverse of the Discrete Fourier Transform of a box of complex sequences. This

function uses FAST_DFT, FAST_2DFT, and FAST_3DFT from Chapter 6.

Parallel Example

 use rand_gen_int

 use fft_box_int

 use ifft_box_int

 use linear_operators

 use mpi_setup_int

 implicit none

! This is FFT_BOX example.

 integer i,j

 integer, parameter :: n=40, nr=4

 real(kind(1e0)) :: err(nr), one=1e0

 real(kind(1e0)) :: a(n,1,nr), b(n,nr), c(n,1,nr), yy(n,n,nr)

 complex(kind(1e0)), dimension(n,nr) :: f, fa, fb, cc, aa

 real(kind(1e0)),parameter::zero_par=0.e0

 real(kind(1e0))::dummy_par(0)

 integer iseed_par

 type(s_options)::iopti_par(2)

! setup for MPI

 MP_NPROCS = MP_SETUP()

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1769

! Set Random Number generator seed

 iseed_par = 53976279

 iopti_par(1)=s_options(s_rand_gen_generator_seed,zero_par)

 iopti_par(2)=s_options(iseed_par,zero_par)

 call rand_gen(dummy_par,iopt=iopti_par)

! Generate two random periodic sequences 'a' and 'b'.

 a=rand(a); b=rand(b)

! Compute the convolution 'c' of 'a' and 'b'.

 do i=1,nr

 aa(1:,i) = a(1:,1,i)

 yy(1:,1,i)=b(1:,i)

 do j=2,n

 yy(2:,j,i)=yy(1:n-1,j-1,i)

 yy(1,j,i)=yy(n,j-1,i)

 end do

 end do

 c=yy .x. a

! Compute f=inverse(transform(a)*transform(b)).

 fa = fft_box(aa)

 fb = fft_box(b)

 f=ifft_box(fa*fb)

! Check the Convolution Theorem:

! inverse(transform(a)*transform(b)) = convolution(a,b).

 do i=1,nr

 cc(1:,i) = c(1:,1,i)

 end do

 err = norm(cc-f)/norm(cc)

 if (ALL(err <= sqrt(epsilon(one))) .AND. MP_RANK == 0) then

 write (*,*) 'FFT_BOX is correct.'

 end if

 MP_NPROCS = MP_SETUP('Final')

 end

isNaN
Tests for NaN.

Function Return Value

Logical indicating whether or not A contains NaN. The output value tests .true. only if

there is at least one NaN in the scalar or array. (Output)

Required Argument

A — The argument can be a scalar or array of rank-1, rank-2 or rank-3. The values can be any

of the four intrinsic floating-point types. (Input)

1770 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

FORTRAN 90 Interface

isNaN(A)

Description

This is a generic logical function used to test scalars or arrays for occurrence of an IEEE 754

Standard format of floating point (ANSI/IEEE 1985) NaN, or not-a-number. Either quiet or

signaling NaNs are detected without an exception occurring in the test itself. The individual array

entries are each examined, with bit manipulation, until the first NaN is located. For non-IEEE

formats, the bit pattern tested for single precision is transfer(not(0),1). For double

precision numbers x, the bit pattern tested is equivalent to assigning the integer array

i(1:2) = not(0), then testing this array with the bit pattern of the integer array

transfer(x,i). This function is likely to be required whenever there is the possibility that a

subroutine blocked the output with NaNs in the presence of an error condition.

Example

 use isnan_int

 implicit none

! This is the equivalent of Example 1 for NaN.

 integer, parameter :: n=3

 real(kind(1e0)) A(n,n); real(kind(1d0)) B(n,n)

 real(kind(1e0)), external :: s_NaN

 real(kind(1d0)), external :: d_NaN

! Assign NaNs to both A and B:

 A = s_Nan(1e0); B = d_Nan(1d0)

! Check that NaNs are noted in both A and B:

 if (isNan(A) .and. isNan(B)) then

 write (*,*) 'Example 1 for NaN is correct.'

 end if

 end

NaN
Returns the value for NaN.

Function Return Value

Returns, as a scalar, a value corresponding to the IEEE 754 Standard format of floating point

(ANSI/IEEE 1985) for NaN. For other floating point formats a special pattern is returned that

tests .true. using the function isNaN. (Output)

Required Argument

X — Scalar value of the same type and precision as the desired result, NaN. This input value

is used only to match the type of output. (Input)

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1771

FORTRAN 90 Interface

NaN (A)

Description

NaN returns, as a scalar, a value corresponding to the IEEE 754 Standard format of floating point

(ANSI/IEEE 1985) for NaN.

The bit pattern used for single precision is transfer (not(0),1). For double precision, the bit

pattern for single precision is replicated by assigning the temporary integer array

i(1:2) = not(0), and then using the double-precision bit pattern transfer(i,x) for the

output value.

Example

Arrays are assigned all NaN values, using single and double-precision formats. These are tested

using the logical function routine, isNaN.

 use isnan_int

 implicit none

! This is the equivalent of Example 1 for NaN.

 integer, parameter :: n=3

 real(kind(1e0)) A(n,n); real(kind(1d0)) B(n,n)

 real(kind(1e0)), external :: s_NaN

 real(kind(1d0)), external :: d_NaN

! Assign NaNs to both A and B:

 A = s_Nan(1e0); B = d_Nan(1d0)

! Check that NaNs are noted in both A and B:

 if (isNan(A) .and. isNan(B)) then

 write (*,*) 'Example 1 for NaN is correct.'

 end if

 end

NORM

Computes the norm of an array.

Function Return Value

Norm of A. This is a scalar for the case where A is rank 1 or rank 2. For rank-3 arrays, the

norms of each rank-2 array, in dimension 3, are computed. (Output)

1772 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Required Argument

A — An array of rank-1, rank-2, or rank-3, containing the values for which the norm is to be

computed. It may be real, double, complex, or double complex. (Input)

Optional Arguments, Packaged Options

TYPE —Integer indicating the type of norm to be computed.

1 = 1l

2 = 2l (default)

huge(1) = l

 Use of the option number ?_reset_default_norm will switch the default from the

2l to the 1 or l l norms. (Input)

The option and derived type names are given in the following tables:

Option Names for NORM Option Value

?_norm_for_lin_sol_svd 1

?_reset_default_norm 2

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_norm_options(:) Use when setting options for
calls hereafter.

?_options

?_norm_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

LIN_SOL_SVD located in Chapter 1, ―Linear Systems‖ for the specific options for this

routine.

FORTRAN 90 Interface

NORM (A [,…])

Description

Computes the 2l , 1 or l l norm. The 1 and l l norms are likely to be less expensive to

compute than the l2 norm.

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1773

1
1

12

1
=1

max ()

 largest singular value

max ()

m

j ij

i

n

i ijhuge
j

A a

A s

A a

If the 2l norm is required, this function uses LIN_SOL_SVD (see Chapter 1, ―Linear Systems‖), to

compute the largest singular value of A. For the other norms, Fortran 90 intrinsics are used.

Examples

Compute three norms of an array

use norm_int

 real (kind(1e0)) A(5), n_1, n_2, n_inf

 A = rand (A)

! I1

 n_1 = norm(A, TYPE=1)

 write (*,*) n_1

! I2

 n_2 = norm(A)

 write (*,*) n_2

! I infinity

 n_inf = norm(A, TYPE=huge(1))

 write (*,*) n_inf

 end

Parallel Example (parallel_ex14.f90)

A ―Polar Decomposition‖ of several matrices are computed. The box data type and the SVD()

function are used. Orthogonality and small residuals are checked to verify that the results are

correct.

 use linear_operators

 use mpi_setup_int

 implicit none

! This is Parallel Example 15 using operators and

! functions for a polar decomposition.

 integer, parameter :: n=33, nr=3

 real(kind(1d0)) :: one=1d0, zero=0d0

 real(kind(1d0)),dimension(n,n,nr) :: A, P, Q, &

 S_D(n,nr), U_D, V_D

 real(kind(1d0)) TEMP1(nr), TEMP2(nr)

! Setup for MPI:

 mp_nprocs = mp_setup()

! Generate a random matrix.

 if(mp_rank == 0) A = rand(A)

1774 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

! Compute the singular value decomposition.

 S_D = SVD(A, U=U_D, V=V_D)

! Compute the (left) orthogonal factor.

 P = U_D .xt. V_D

! Compute the (right) self-adjoint factor.

 Q = V_D .x. diag(S_D) .xt. V_D

! Check the results for orthogonality and

! small residuals.

 TEMP1 = NORM(spread(EYE(n),3,nr) - (p .xt. p))

 TEMP2 = NORM(A -(P .X. Q)) / NORM(A)

 if (ALL(TEMP1 <= sqrt(epsilon(one))) .and. &

 ALL(TEMP2 <= sqrt(epsilon(one)))) then

 if(mp_rank == 0)&

 write (*,*) 'Parallel Example 15 is correct.'

 end if

! See to any error messages and exit MPI.

 mp_nprocs = mp_setup('Final')

 end

ORTH

Orthogonalizes the columns of a matrix.

Function Return Value

Orthogonal matrix Q from the decomposition A=QR. If A is rank-3, Q is rank-3. (Output)

Required Argument

A — Matrix A to be decomposed. Must be an array of rank-2 or rank-3 (box data) of type real,

double, complex, or double complex. (Input)

Optional Arguments, Packaged Options

R — Upper-triangular or upper trapezoidal matrix R, from the QR decomposition. If this

optional argument is present, the decomposition is complete. If A is rank-3, R is rank-3.

(Output)

The option and derived type names are given in the following tables:

Option Name for ORTH Option Value

Skip_error_processing 5

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1775

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_orth_options(:) Use when setting options for

calls hereafter.

?_options

?_orth_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖.

FORTRAN 90 Interface

ORTH (A [,…])

Description

Orthogonalizes the columns of a matrix. The decomposition A = QR is computed using a forward

and backward sweep of the Modified Gram-Schmidt algorithm.

Examples

(Operator_ex19.f90)

use linear_operators

 use lin_sol_tri_int

 use rand_int

 use Numerical_Libraries

 implicit none

! This is the equivalent of Example 3 (using operators) for LIN_SOL_TRI.

 integer i, nopt

 integer, parameter :: n=128, k=n/4, ncoda=1, lda=2

 real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0

 real(kind(1e0)) A(lda,n), EVAL(k)

 type(s_options) :: iopt(2)

 real(kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &

 b_t(2*n,k), y_t(2*n,k), eval_t(k), res(n,k)

 logical small

! This flag is used to get the k largest eigenvalues.

 small = .false.

! Generate the main diagonal and the co-diagonal of the

! tridiagonal matrix.

 b=rand(b); d=rand(d)

 A(1,1:)=b; A(2,1:)=d

! Use Numerical Libraries routine for the calculation of k

! largest eigenvalues.

 CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)

 EVAL_T = EVAL

1776 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

! Use IMSL Fortran Numerical Librarytridiagonal solver for inverse iteration

! calculation of eigenvectors.

 factorization_choice: do nopt=0,1

! Create k tridiagonal problems, one for each inverse

! iteration system.

 b_t(1:n,1:k) = spread(b,DIM=2,NCOPIES=k)

 c_t(1:n,1:k) = EOSHIFT(b_t(1:n,1:k),SHIFT=1,DIM=1)

 d_t(1:n,1:k) = spread(d,DIM=2,NCOPIES=k) - &

 spread(EVAL_T,DIM=1,NCOPIES=n)

! Start the right-hand side at random values, scaled downward

! to account for the expected 'blowup' in the solution.

 y_t=rand(y_t)

! Do two iterations for the eigenvectors.

 do i=1, 2

 y_t(1:n,1:k) = y_t(1:n,1:k)*epsilon(s_one)

 call lin_sol_tri(c_t, d_t, b_t, y_t, &

 iopt=iopt)

 iopt(nopt+1) = s_lin_sol_tri_solve_only

 end do

! Orthogonalize the eigenvectors. (This is the most

! intensive part of the computing.)

 y_t(1:n,1:k) = ORTH(y_t(1:n,1:k))

! See if the performance ratio is smaller than the value one.

! If it is not the code will re-solve the systems using Gaussian

! Elimination. This is an exceptional event. It is a necessary

! complication for achieving reliable results.

 res(1:n,1:k) = spread(d,DIM=2,NCOPIES=k)*y_t(1:n,1:k) + &

 spread(b,DIM=2,NCOPIES=k)* &

 EOSHIFT(y_t(1:n,1:k),SHIFT=-1,DIM=1) + &

 EOSHIFT(spread(b,DIM=2,NCOPIES=k)*y_t(1:n,1:k),SHIFT=1) &

 - y_t(1:n,1:k)*spread(EVAL_T(1:k),DIM=1,NCOPIES=n)

! If the factorization method is Cyclic Reduction and perf_ratio is

! larger than one, re-solve using Gaussian Elimination. If the

! method is already Gaussian Elimination, the loop exits

! and perf_ratio is checked at the end.

 perf_ratio = norm(res(1:n,1:k),1) / &

 norm(EVAL_T(1:k),1) / &

 epsilon(s_one) / (5*n)

 if (perf_ratio <= s_one) exit factorization_choice

 iopt(nopt+1) = s_lin_sol_tri_use_Gauss_elim

 end do factorization_choice

 if (perf_ratio <= s_one) then

 write (*,*) 'Example 3 for LIN_SOL_TRI (operators) is correct.'

 end if

 end

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1777

Parallel Example

 use linear_operators

 use mpi_setup_int

 integer, parameter :: N=32, nr=4

 real (kind(1.e0)) A(N,N,nr), Q(N,N,nr)

! Setup for MPI

 mp_nprocs = mp_setup()

 if (mp_rank == 0) then

 A = rand(A)

 end if

 Q = orth(A)

 mp_nprocs = mp_setup ('Final')

 end

RAND
Generates a scalar, rank-1, rank-2 or rank-3 array of random numbers.

Function Return Value

Scalar, rank-1, rank-2 or rank-3 array of random numbers. The output function value matches

the input argument A in type, kind and rank. For complex arguments, the output values will

be real and imaginary parts with random values of the same type, kind, and rank. (Output)

Required Argument

A — The argument must be a scalar, rank-1, rank-2, or rank-3 array of type single, double,

complex, or double complex. Used only to determine the type and rank of the output. (Input)

Optional Arguments, Packaged Options

Note: If any of the arrays s_rand_options(:), s_rand_options_once(:),

d_rand_options(:), or d_rand_options_once(:) are allocated, they are passed as

arguments to rand_gen using the keyword ―iopt=‖.

The option and derived type names are given in the following table:

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_rand_options(:) Use when setting options for

calls hereafter.

?_options

?_rand_options_once(:) Use when setting options for

next call only.

?_options

1778 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

FORTRAN 90 Interface

RAND(A)

Description

Generates a scalar, rank-1, rank-2 or rank-3 array of random numbers. Each component number is

positive and strictly less than one in value.

This function uses rand_gen to obtain the number of values required by the argument. The

values are then copied using the RESHAPE intrinsic

Example

 use show_int

 use rand_int

 implicit none

! This is the equivalent of Example 1 for SHOW.

 integer, parameter :: n=7, m=3

 real(kind(1e0)) s_x(-1:n), s_m(m,n)

 real(kind(1d0)) d_x(n), d_m(m,n)

 complex(kind(1e0)) c_x(n), c_m(m,n)

 complex(kind(1d0)) z_x(n),z_m(m,n)

 integer i_x(n), i_m(m,n)

 type (s_options) options(3)

! The data types printed are real(kind(1e0)), real(kind(1d0)),

! complex(kind(1e0)), complex(kind(1d0)), and INTEGER. Fill with random

! numbers and then print the contents, in each case with a label.

 s_x=rand(s_x); s_m=rand(s_m)

 d_x=rand(d_x); d_m=rand(d_m)

 c_x=rand(c_x); c_m=rand(c_m)

 z_x=rand(z_x); z_m=rand(z_m)

 i_x=100*rand(s_x(1:n)); i_m=100*rand(s_m)

 call show (s_x, 'Rank-1, REAL')

 call show (s_m, 'Rank-2, REAL')

 call show (d_x, 'Rank-1, DOUBLE')

 call show (d_m, 'Rank-2, DOUBLE')

 call show (c_x, 'Rank-1, COMPLEX')

 call show (c_m, 'Rank-2, COMPLEX')

 call show (z_x, 'Rank-1, DOUBLE COMPLEX')

 call show (z_m, 'Rank-2, DOUBLE COMPLEX')

 call show (i_x, 'Rank-1, INTEGER')

 call show (i_m, 'Rank-2, INTEGER')

! Show 7 digits per number and -1 according to the

! natural or declared size of the array.

 options(1)=show_significant_digits_is_7

 options(2)=show_starting_index_is

 options(3)= -1 ! The starting -1 value.

 call show (s_x, &

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1779

'Rank-1, REAL with 7 digits, natural indexing', IOPT=options)

 end

RANK

Computes the mathematical rank of a matrix.

Function Return Value

Integer rank of A. The output function value is an integer with a value equal to the number

of singular values that are greater than a tolerance. (Output)

Required Argument

A — Matrix for which the rank is to be computed. The argument must be rank-2 or rank-3

(box) array of type single, double, complex, or double complex. (Input)

Optional Arguments, Packaged Options

This function uses LIN_SOL_SVD to compute the singular values of the argument. The

singular values are then compared with the value of the tolerance to compute the rank.

The option and derived type names are given in the following tables:

Option Names for RANK Option Value

?_rank_set_small 1

?_rank_for_lin_sol_svd 2

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_rank_options(:) Use when setting options for

calls hereafter.

?_options

?_rank_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

LIN_SOL_SVD located in Chapter 1, ―Linear Systems‖ for the specific options for this

routine.

FORTRAN 90 Interface

RANK (A)

1780 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Description

Computes the mathematical rank of a rank-2 or rank-3 array. The output function value is an

integer with a value equal to the number of singular values that are greater than a tolerance. The

default value for this tolerance is
1/ 2

1s , where is machine precision and 1s is the largest

singular value of the matrix.

Examples

 use linear_operators

 real (kind(1e0)) A(5,5)

 A = rand (A)

 write (*,*) rank(A)

 A=1.0

 write (*,*) rank(A)

 end

Output
 5

 1

Parallel Example

 use linear_operators

 use mpi_setup_int

 integer, parameter :: N=3, nr=4

 integer r(nr)

 real (kind(1.e0)) s_mat(N,N), s_box(N,N,nr)

! Setup for MPI

 mp_nprocs = mp_setup()

 if (mp_rank == 0) then

 s_mat = reshape((/1.,0.,0.,epsilon(1.0e0)/),(/n,n/))

 s_box = spread(s_mat,dim=3,ncopies=nr)

 end if

 r = rank(s_box)

 mp_nprocs = mp_setup ('Final')

 end

SVD

Computes the singular value decomposition of a matrix,
TA USV .

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1781

Function Return Value

m x n diagonal matrix of singular values, S, from the
TA USV decomposition. (Output)

Required Argument

A — Array of size m x n to be decomposed. Must be rank-2 or rank-3 array of type single,

double, complex, or double complex. (Input)

 Optional Arguments, Packaged Options

U — Array of size m x m containing the singular vectors U. (Output)

V — Array of size n x n containing the singular vectors V. (Output)

The option and derived type names are given in the following tables:

Option Names for SVD Option Value

Options_for_lin_svd 1

Options_for_lin_sol_svd 2

skip_error_processing 5

Name of Unallocated Option Array
to Use for Setting Options

Use Derived Type

?_svd_options(:) Use when setting options for

calls hereafter.

?_options

?_svd_options_once(:) Use when setting options for

next call only.

?_options

For a description on how to use these options, see ―Matrix Optional Data Changes‖. See

LIN_SVD and LIN_SOL_SVD located in Chapter 1, ―Linear Systems‖ for the specific

options for these routines.

FORTRAN 90 Interface

SVD (A [,…])

Description

Computes the singular value decomposition of a rank-2 or rank-3 array,
TA USV .

This function uses one of the routines LIN_SVD and LIN_SOL_SVD. If a complete decomposition is

required, LIN_SVD is used. If singular values only, or singular values and one of the right and left

singular vectors are required, then LIN_SOL_SVD is called.

1782 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

Examples

operator_ex14.f90

 use linear_operators

 implicit none

! This is the equivalent of Example 2 for LIN_SOL_SVD using operators

! and functions.

 integer, parameter :: n=32

 real(kind(1d0)) :: one=1d0, zero=0d0

 real(kind(1d0)) A(n,n), P(n,n), Q(n,n), &

 S_D(n), U_D(n,n), V_D(n,n)

! Generate a random matrix.

 A = rand(A)

! Compute the singular value decomposition.

 S_D = SVD(A, U=U_D, V=V_D)

! Compute the (left) orthogonal factor.

 P = U_D .xt. V_D

! Compute the (right) self-adjoint factor.

 Q = V_D .x. diag(S_D) .xt. V_D

! Check the results.

 if (norm(EYE(n) - (P .xt. P)) &

 <= sqrt(epsilon(one))) then

 if (norm(A - (P .x. Q))/norm(A) &

 <= sqrt(epsilon(one))) then

 write (*,*) 'Example 2 for LIN_SOL_SVD (operators) is correct.'

 end if

 end if

 end

Parallel Example (parallel_ex14.f90)

Systems of least-squares problems are solved, but now using the SVD() function. A box data

type is used. This is an example which uses optional arguments and a generic function overloaded

for parallel execution of a box data type. Any number of nodes can be used.

 use linear_operators

 use mpi_setup_int

 implicit none

! This is the equivalent of Parallel Example 14

! for SVD, .tx. , .x. and NORM.

 integer, parameter :: m=128, n=32, nr=4

 real(kind(1d0)) :: one=1d0, err(nr)

 real(kind(1d0)) A(m,n,nr), b(m,1,nr), x(n,1,nr), U(m,m,nr), &

 V(n,n,nr), S(n,nr), g(m,1,nr)

! Setup for MPI:

 mp_nprocs=mp_setup()

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1783

 if(mp_rank == 0) then

! Generate a random matrix and right-hand side.

 A = rand(A); b = rand(b)

 endif

! Compute the least-squares solution matrix of Ax=b.

 S = SVD(A, U = U, V = V)

 g = U .tx. b

 x = V .x. (diag(one/S) .x. g(1:n,:,:))

! Check the results.

 err = norm(A .tx. (b - (A .x. x)))/(norm(A)+norm(x))

 if (ALL(err <= sqrt(epsilon(one)))) then

 if(mp_rank == 0) &

 write (*,*) 'Parallel Example 14 is correct.'

 end if

! See to any error messages and quit MPI

 mp_nprocs = mp_setup('Final')

 end

UNIT
Normalizes the columns of a matrix so each has Euclidean length of value one.

Function Return Value

Matrix containing the normalized values of A . The output function value is an array of the

same type and kind as A, where each column of each rank-2 principal section has Euclidean

length of value one (Output)

Required Argument

A — Matrix to be normalized. The argument must be a rank-2 or rank-3 array of type single,

double, complex, or double complex. (Input)

FORTRAN 90 Interface

UNIT (A)

Description

Normalizes the columns of a rank-2 or rank-3 array so each has Euclidean length of value one.

This function uses a rank-2 Euclidean length subroutine to compute the lengths of the nonzero

columns, which are then normalized to have lengths of value one. The subroutine carefully avoids

overflow or damaging underflow by rescaling the sums of squares as required.

Example (operator_ex28.f90)

use linear_operators

1784 Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY

 implicit none

! This is the equivalent of Example 4 (using operators) for LIN_EIG_SELF.

 integer, parameter :: n=64

 real(kind(1e0)), parameter :: one=1d0

 real(kind(1e0)), dimension(n,n) :: A, B, C, D(n), lambda(n), &

 S(n), vb_d, X, res

! Generate random self-adjoint matrices.

 A = rand(A); A = A + .t.A

 B = rand(B); B = B + .t.B

! Add a scalar matrix so B is positive definite.

 B = B + norm(B)*EYE(n)

! Get the eigenvalues and eigenvectors for B.

 S = EIG(B,V=vb_d)

! For full rank problems, convert to an ordinary self-adjoint

! problem. (All of these examples are full rank.)

 if (S(n) > epsilon(one)) then

 D = one/sqrt(S)

 C = diag(D) .x. (vb_d .tx. A .x. vb_d) .x. diag(D)

 C = (C + .t.C)/2

! Get the eigenvalues and eigenvectors for C.

 lambda = EIG(C,v=X)

! Compute and normalize the generalized eigenvectors.

 X = UNIT(vb_d .x. diag(D) .x. X)

 res = (A .x. X) - (B .x. X .x. diag(lambda))

! Check the results.

 if(norm(res)/(norm(A)+norm(B)) <= &

 sqrt(epsilon(one))) then

 write (*,*) 'Example 4 for LIN_EIG_SELF (operators) is correct.'

 end if

 end if

 end

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions 1785

IMSL MATH LIBRARY Chapter 11: Utilities 1787

Chapter 11: Utilities

Routines

11.1. ScaLAPACK Utilities
Sets up a processor grid ScaLAPACK_SETUP 1792
Calculates array dimensions for local arraysScaLAPACK_GETDIM 1794
Reads matrix data from a file ScaLAPACK_READ 1795
Writes the matrix data to a file ScaLAPACK_WRITE 1797
Reads matrix data from an array ScaLAPACK_MAP 1805
Writes the matrix data to a global array ScaLAPACK_UNMAP 1807
Exits ScaLAPACK usage ScaLAPACK_EXIT 1809

11.2. Print
Prints error messages .. ERROR_POST 1810
Prints rank-1 or rank-2 arrays of numbers SHOW 1813
Real rectangular matrix
with integer row and column labels.................................... WRRRN 1817
Real rectangular matrix with given format and labels WRRRL 1819
Integer rectangular matrix
with integer row and column labels...................................... WRIRN 1822
Integer rectangular matrix with given format and labels WRIRL 1825
Complex rectangular matrix
with row and column labels .. WRCRN 1827
Complex rectangular matrix
with given format and labels ... WRCRL 1830
Sets or retrieves options for printing a matrixWROPT 1833
Sets or retrieves page width and length PGOPT 1840

11.3. Permute
Elements of a vector ... PERMU 1842
Rows/columns of a matrix ... PERMA 1844

11.4. Sort
Sorts a rank-1 array of real numbers x so the y results

are algebraically nondecreasing, y1 ≤ y2 ≤ … yn SORT_REAL 1846

Real vector by algebraic value .. SVRGN 1849
Real vector by algebraic value
and permutations returned .. SVRGP 1850
Integer vector by algebraic value .. SVIGN 1852

1788 Chapter 11: Utilities IMSL MATH LIBRARY

Integer vector by algebraic value
and permutations returned ... SVIGP 1853
Real vector by absolute value ... SVRBN 1855
Real vector by absolute value
and permutations returned .. SVRBP 1856
Integer vector by absolute value ... SVIBN 1857
Integer vector by absolute value
and permutations returned .. SVIBP 1859

11.5. Search
Sorted real vector for a number .. SRCH 1860
Sorted integer vector for a number ISRCH 1862
Sorted character vector for a string SSRCH 1864

11.6. Character String Manipulation
Gets the character corresponding to a
given ASCII value .. ACHAR 1867
Get the integer ASCII value for a given character IACHAR 1868
Gets upper case integer ASCII value for a character ICASE 1869
Case-insensitive version comparing two strings IICSR 1870
Case-insensitive version of intrinsic function INDEX IIDEX 1872
Converts a character string with digits to an integer CVTSI 1873

11.7. Time, Date, and Version
CPU time ... CPSEC 1874
Time of day ... TIMDY 1875
Today’s date ... TDATE 1876
Number of days from January 1, 1900, to the given date ... NDAYS 1877
Date for the number of days from January 1, 1900 NDYIN 1878
Day of week for given date ... IDYWK 1880
Version, system, and serial numbers VERML 1881

11.8. Random Number Generation
Generates a rank-1 array of random numbers RAND_GEN 1882
Retrieves the current value of the seed RNGET 1891
Initializes a random seed... RNSET 1892
Selects the uniform (0,1) generator RNOPT 1893
Initializes the 32-bit Merseene Twister generator
using an array .. RNIN32 1894
Retrieves the current table used in the 32-bit
Mersenne Twister generator ... RNGE32 1895
Sets the current table used in the 32-bit
Mersenne Twister generator ... RNSE32 1897
Initializes the 32-bit Merseene Twister generator
using an array .. RNIN64 1897
Retrieves the current table used in the 64-bit
Mersenne Twister generator ... RNGE64 1898
Sets the current table used in the 64-bit
Mersenne Twister generator ... RNSE64 1900
Generates pseudorandom numbers (function form) RNUNF 1900

IMSL MATH LIBRARY Chapter 11: Utilities 1789

Generates pseudorandom numbersRNUN 1902

11.9 Low Discrepancy Sequences
Shuffled Faure sequence initialization FAURE_INIT 1904
Frees the structure containing information
about the Faure sequence FAURE_FREE 1905
Computes a shuffled Faure sequence FAURE_NEXT 1905

11.10. Options Manager

Gets and puts type INTEGER options IUMAG 1908

Gets and puts type REAL options .. UMAG 1911

Gets and puts type DOUBLE PRECISION optionsDUMAG 1914

11.11. Line Printer Graphics
Prints plot of up to 10 sets of points PLOTP 1914

11.12. Miscellaneous
Decomposes an integer into its prime factorsPRIME 1917
Returns mathematical and physical constants CONST 1919
Converts a quantity to different units CUNIT 1921

Computes
2 2a b without underflow or overflowHYPOT 1925

Initializes or finalizes MPI. ... MP_SETUP 1926

Usage Notes for ScaLAPACK Utilities

For a detailed description of MPI Requirements see ―Dense Matrix Parallelism Using MPI‖ in

Chapter 10 of this manual.

This section describes the use of ScaLAPACK, a suite of dense linear algebra solvers, applicable

when a single problem size is large. We have integrated usage of IMSL Fortran Library with

ScaLAPACK. However, the ScaLAPACK library, including libraries for BLACS and PBLAS, are

not part of this Library. To use ScaLAPACK software, the required libraries must be installed on

the user‘s computer system. We adhered to the specification of Blackford, et al. (1997), but use

only MPI for communication. The ScaLAPACK library includes certain LAPACK routines,

Anderson, et al. (1995), redesigned for distributed memory parallel computers. It is written in a

Single Program, Multiple Data (SPMD) style using explicit message passing for communication.

Matrices are laid out in a two-dimensional block-cyclic decomposition. Using High Performance

Fortran (HPF) directives, Koelbel, et al. (1994), and a static p q processor array, and following

declaration of the array, A(*,*), this is illustrated by:

INTEGER, PARAMETER :: N=500, P= 2, Q=3, MB=32, NB=32

!HPF$ PROCESSORS PROC(P,Q)

!HPF$ DISTRIBUTE A(cyclic(MB), cyclic(NB)) ONTO PROC

Our integration work provides modules that describe the interface to the ScaLAPACK library. We

recommend that users include these modules when using ScaLAPACK or ancillary packages,

1790 Chapter 11: Utilities IMSL MATH LIBRARY

including BLACS and PBLAS. For the job of distributing data within a user‘s application to the

block-cyclic decomposition required by ScaLAPACK solvers, we provide a utility that reads data

from an external file and arranges the data within the distributed machines for a computational

step. Another utility writes the results into an external file. We also provide similar utilities that

map/unmap global arrays to/from local arrays. These utilities are used in our ScaLAPACK

examples for brevity.

The data types supported for these utilities are integer; single precision, real; double precision,

real; single precision, complex; and double precision, complex.

A ScaLAPACK library normally includes routines for:

 the solution of full-rank linear systems of equations,

 general and symmetric, positive-definite, banded linear systems of equations,

 general and symmetric, positive-definite, tri-diagonal, linear systems of equations,

 condition number estimation and iterative refinement for LU and Cholesky factorization,

 matrix inversion,

 full-rank linear least-squares problems,

 orthogonal and generalized orthogonal factorizations,

 orthogonal transformation routines,

 reductions to upper Hessenberg, bidiagonal and tridiagonal form,

 reduction of a symmetric-definite, generalized eigenproblem to standard form,

 the self-adjoint or Hermitian eigenproblem,

 the generalized self-adjoint or Hermitian eigenproblem, and

 the non-symmetric eigenproblem

ScaLAPACK routines are available in four data types: single precision, real; double precision;

real, single precision, complex, and double precision, complex. At present, the non-symmetric

eigenproblem is only available in single and double precision. More background information and

user documentation is available on the World Wide Web at location

www.netlib.org/scalapack/slug/scalapack_slug.html.

For users with rank deficiency or simple constraints in their linear systems or least-squares

problem, we have routines for:

 full or deficient rank least-squares problems with non-negativity constraints

 full or deficient rank least-squares problems with simple upper and lower bound constraints

These are available in two data types: single precision, real, and double precision, real, and they

are not part of ScaLAPACK. The matrices are distributed in a general block-column layout.

We also provide generic interfaces to a number of ScaLAPACK routines through the standard

IMSL Library routines. These are listed in Table D in the Introduction of this manual.

The global arrays which are to be distributed across the processor grid for use by the ScaLAPACK

routines require that an array descriptor be defined for each of them. We use the ScaLAPACK

http://www.netlib.org/scalapack/slug/scalapack_slug.html

IMSL MATH LIBRARY Chapter 11: Utilities 1791

TOOLS routine DESCINIT to set up array descriptors in our examples. A typical call to

DESCINIT:

CALL DESCINIT(DESCA, M, N, MB, NB, IRSRC, ICSRC, ICTXT, LLD, INFO)

Where the arguments in the above call are defined as follows for the matrix being described:

DESCA — An input integer vector of length 9 which is to contain the array descriptor

information.

M — An input integer which indicates the row size of the global array which is being

described.

N — An input integer which indicates the column size of the global array which is being

described.

MB — An input integer which indicates the blocking factor used to distribute the rows of the

matrix being described.

NB — An input integer which indicates the blocking factor used to distribute the columns of

the matrix being described.

IRSRC — An input integer which indicates the processor grid row over which the first row of

the array being described is distributed.

ICSRC — An input integer which indicates the processor grid column over which the first

column of the array being described is distributed.

ICTXT — An input integer which indicates the BLACS context handle.

LLD — An input integer indicating the leading dimension of the local array which is to be

used for storing the local blocks of the array being described

INFO — An output integer indicating whether or not the call was successful. INFO = 0

indicates a successful exit. INFO = -i indicates the i-th argument had an illegal value.

This call is equivalent to the following assignment statements:

DESCA(1) = 1 ! This is the descriptor

 ! type. In this case, 1.

DESCA(2) = ICTXT

DESCA(3) = M

DESCA(4) = N

DESCA(5) = MB

DESCA(6) = NB

DESCA(7) = IRSRC

DESCA(8) = ICSRC

DESCA(9) = LLD

The IMSL Library routines which interface with ScaLAPACK routines use IRSRC = 0 and

ICSRC = 0 for the internal calls to DESCINIT.

1792 Chapter 11: Utilities IMSL MATH LIBRARY

ScaLAPACK Supporting Modules

We recommend that users needing routines from ScaLAPACK, PBLAS or BLACS, Version 1.4, use

modules that describe the interface to individual codes. This practice, including use of the

declaration directive, IMPLICIT NONE, is a reliable way of writing ScaLAPACK application code,

since the routines may have lengthy lists of arguments. Using the modules is helpful to avoid the

mistakes such as missing arguments or mismatches involving Type, Kind or Rank (TKR). The

modules are part of the Fortran Library product. There is a comprehensive module,

ScaLAPACK_Support, that includes use of all the modules in the table below. This module

decreases the number of lines of code for checking the interface, but at the cost of increasing

source compilation time compared with using individual modules.

Module Name Contents of the Module

ScaLAPACK_Support All of the following modules

ScaLAPACK_Int All interfaces to ScaLAPACK routines

PBLAS_Int All interfaces to parallel BLAS, or PBLAS

BLACS_Int All interfaces to basic linear algebra communication routines, or BLACS

TOOLS_Int Interfaces to ancillary routines used by ScaLAPACK, but not in other

packages

LAPACK_Int All interfaces to LAPACK routines required by ScaLAPACK

ScaLAPACK_IO_Int All interfaces to ScaLAPACK_READ, ScaLAPACK_WRITE utility

routines. See this Chapter.

MPI_Node_Int The module holding data describing the MPI communicator,

MP_LIBRARY_WORLD. See Dense Matrix Parallelism Using MPI.

GRIDINFO_Int The module holding data describing the processor grid and information

required to map the target array to the processors. See the Description

section of ScaLAPACK_SETUP below.

ScaLAPACK_MAP_Int The interface to the ScaLAPACK_MAP utility routines.

ScaLAPACK_UNMAP_Int The interface to the ScaLAPACK_UNMAP utility routines.

ScaLAPACK_SETUP

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in

the Introduction of this manual.

This routine sets up a processor grid and calculates default values for various entities to be used in

mapping a global array to the processor grid. All processors in the BLACS context call the routine.

IMSL MATH LIBRARY Chapter 11: Utilities 1793

Required Arguments

M — The row dimension of the global array for which the local array dimensions are to be

calculated. (Input)

N — The column dimension of the global array for which the local array dimensions are to be

calculated. (Input)

NSQUARE —Input logical which indicates whether the block used for mapping the global

array to the processor grid must be square. If the block must be square, set NSQUARE to

.TRUE., otherwise, set it to .FALSE. (Input)

GRID1D — Input logical which indicates whether the processor grid is to be one dimensional

or two dimensional. Set GRID1D to .TRUE. if the grid is to be one dimensional.

Otherwise, set GRID1D to .FALSE. (Input)

FORTRAN 90 Interface

Generic: CALL ScaLAPACK_SETUP (M, N, NSQUARE, GRID1D)

Description

Subroutine ScaLAPACK_SETUP creates a processor grid based on the number of processors being

used and the GRID1D logical supplied by the user. The argument, NSQUARE, is supplied because

some ScaLAPACK routines require that the row and column blocking factors be equal. GRID1D

is supplied for those routines which require that the processor grid be one dimensional.

ScaLAPACK_SETUP also establishes values for MP_M, MP_N, MP_NPROW, MP_NPCOL, MP_MB,

MP_NB, MP_PIGRID, MP_ICTXT, MP_NSQUARE, and MP_GRID1D in the IMSL Fortran Library

module GRIDINFO_INT. The above entities are defined as follows:

MP_M — The row dimension of the primary array which is to be distributed among the processors.

MP_N — The column dimension of the primary array which is to be distributed among the

processors.

MP_NPROW — The number of rows in the processor grid.

MP_NPCOL — The number of columns in the processor grid.

MP_MB — The row blocking factor to be used in distributing the array.

MP_NB — The column blocking factor to be used in distributing the array.

MP_PIGRID — The pointer to the processor grid, MP_IGRID.

MP_ICTXT — The BLACS context ID associated with the processor grid.

MP_NSQUARE — Logical indicating whether or not the block used for mapping

the global array to the processor grid must be square.

MP_GRID1D — Logical indicating whether or not the processor grid must be one dimensional.

GRIDINFO_INT is used by MPI_SETUP_INT so users do not need to explicitly use

GRIDINFO_INT since they will be using MPI_SETUP_INT when they use MPI.

1794 Chapter 11: Utilities IMSL MATH LIBRARY

Example

See ScaLAPACK_WRITE.

ScaLAPACK_GETDIM

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in

the Introduction of this manual.

This routine calculates the row and column dimensions of a local distributed array based on the

size of the array to be distributed and the row and column blocking factors to be used. All

processors in the BLACS context call the routine.

Required Arguments

M — The row dimension of the global array for which the local array dimensions are to be

calculated. (Input)

N — The column dimension of the global array for which the local array dimensions are to be

calculated. (Input)

MB — The row blocking factor to be used in distributing the array. (Input)

NB — The column blocking factor to be used in distributing the array. (Input)

MXLDA — The row dimension of the local array. (Output)

MXCOL — The column dimension of the local array. (Output)

FORTRAN 90 Interface

Generic: CALL ScaLAPACK_GETDIM (M, N, MB, NB, MXLDA, MXCOL)

Description

Subroutine ScaLAPACK_GETDIM calculates the row and column dimensions of a local array by

using the ScaLAPACK utility NUMROC.

Note that ScaLAPACK_SETUP must be called prior to calling this routine because

ScaLAPACK_GETDIM will use some of the global entities defined by ScaLAPACK_SETUP.

IMSL MATH LIBRARY Chapter 11: Utilities 1795

Example

See ScaLAPACK_WRITE.

ScaLAPACK_READ

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in

the Introduction of this manual.

This routine reads matrix data from a file and transmits it into the two-dimensional block-cyclic

form required by ScaLAPACK routines. This routine contains a call to a barrier routine so that if

one process is writing the file and an alternate process is to read it, the results will be

synchronized.

All processors in the BLACS context call the routine.

Required Arguments

File_Name — A character variable naming the file containing the matrix data. (Input)

This file is opened with STATUS=―OLD.‖ If the name is misspelled or the file does not

exist, or any access violation occurs, a type = terminal error message will occur.

After the contents are read, the file is closed. This file is read with a loop logically

equivalent to groups of reads:

READ() ((BUFFER(I,J), I=1,M), J=1, NB)

or (optionally):

READ() ((BUFFER(I,J), J=1,N), I=1, MB)

DESC_A(*) — The nine integer parameters associated with the ScaLAPACK matrix

descriptor. Values for NB,MB,LDA are contained in this array. (Input)

A(LDA,*) — This is an assumed-size array, with leading dimension LDA, that will contain

this processor‘s piece of the block-cyclic matrix. The data type for A(*,*) is any of five

Fortran intrinsic types: integer; single precision, real; double precision, real; single

precision, complex; and double precision, complex. (Output)

Optional Arguments

Format — A character variable containing a format to be used for reading the file containing

matrix data. If this argument is not present, an unformatted or list-directed read is

used. (Input)

iopt — Derived type array with the same precision as the array A(*,*), used for passing

optional data to ScaLAPACK_READ. (Input)

The options are as follows:

Packaged Options for ScaLAPACK_READ

1796 Chapter 11: Utilities IMSL MATH LIBRARY

Option Prefix = ? Option Name Option Value

S_, d_ ScaLAPACK_READ_UNIT 1

S_, d_ ScaLAPACK_READ_FROM_PROCESS 2

S_, d_ ScaLAPACK_READ_BY_ROWS 3

iopt(IO) = ScaLAPACK_READ_UNIT

Sets the unit number to the value in iopt(IO + 1)%idummy. The default unit

number is the value 11.

iopt(IO) = ScaLAPACK_READ_FROM_PROCESS

Sets the process number that reads the named file to the value in

iopt(IO + 1)%idummy. The default process number is the value 0.

iopt(IO) = ScaLAPACK_READ_BY_ROWS

Read the matrix by rows from the named file. By default the matrix is read by

columns.

FORTRAN 90 Interface

Generic: CALL ScaLAPACK_READ (File_Name, DESC_A, A [,…])

Specific: The specific interface names are S_ScaLAPACK_READ and

 D_ScaLAPACK_READ.

Description

Subroutine ScaLAPACK_READ reads columns or rows of a problem matrix so that it is usable by a

ScaLAPACK routine. It uses the two-dimensional block-cyclic array descriptor for the matrix to

place the data in the desired assumed-size arrays on the processors. The blocks of data are read,

then transmitted and received. The block sizes, contained in the array descriptor, determines the

data set size for each blocking send and receive pair. The number of these synchronization points

is proportional to /()M N MB NB . A temporary local buffer is allocated for staging the

matrix data. It is of size M by NB, when reading by columns, or N by MB, when reading by rows.

Example

See ScaLAPACK_WRITE.

IMSL MATH LIBRARY Chapter 11: Utilities 1797

ScaLAPACK_WRITE

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in

the Introduction of this manual.

This routine writes the matrix data to a file. The data is transmitted from the two-dimensional

block-cyclic form used by ScaLAPACK. This routine contains a call to a barrier routine so that if

one process is writing the file and an alternate process is to read it, the results will be

synchronized. All processors in the BLACS context call the routine.

Required Arguments

File_Name — A character variable naming the file to receive the matrix data. (Input)

This file is opened with ―STATUS=‖UNKNOWN.‖ If any access violation happens, a

type = terminal error message will occur. If the file already exists it will be

overwritten. After the contents are written, the file is closed. This file is written with a

loop logically equivalent to groups of writes:

WRITE() ((BUFFER(I,J), I=1,M), J=1, NB)

or (optionally):

WRITE() ((BUFFER(I,J), J=1,N), I=1, MB)

DESC_A(*) — The nine integer parameters associated with the ScaLAPACK matrix

descriptor. Values for NB, MB, LDA are contained in this array. (Input)

A(LDA,*) — This is an assumed-size array, with leading dimension LDA, containing this

processor‘s piece of the block-cyclic matrix. The data type for A(*,*) is any of five

Fortran intrinsic types: integer; single precision, real; double precision, real; single

precision, complex; or double precision, complex. (Input)

Optional Arguments

Format —A character variable containing a format to be used for writing the file that receives

matrix data. If this argument is not present, an unformatted or list-directed write is

used. (Input)

iopt — Derived type array with the same precision as the array A(*,*), used for passing

optional data to ScaLAPACK_WRITE. Use single precision when A(*,*) is type

INTEGER. (Input)

The options are as follows:

Packaged Options for ScaLAPACK_WRITE

Option Prefix = ? Option Name Option Value

S_, d_ ScaLAPACK_WRITE_UNIT 1

S_, d_ ScaLAPACK_WRITE_FROM_PROCESS 2

1798 Chapter 11: Utilities IMSL MATH LIBRARY

Packaged Options for ScaLAPACK_WRITE

Option Prefix = ? Option Name Option Value

S_, d_ ScaLAPACK_WRITE_BY_ROWS 3

iopt(IO) =ScaLAPACK_WRITE_UNIT

Sets the unit number to the integer component of

iopt(IO + 1)%idummy. The default unit number is the value 11.

iopt(IO) = ScaLAPACK_WRITE_FROM_PROCESS

Sets the process number that writes the named file to the integer component of

iopt(IO + 1)%idummy. The default process number is the value 0.

iopt(IO) = ScaLAPACK_WRITE_BY_ROWS

Write the matrix by rows to the named file. By default the matrix is written by

columns.

FORTRAN 90 Interface

Generic: CALL ScaLAPACK_WRITE (File_Name, DESC_A, A [,…])

Specific: The specific interface names are S_ScaLAPACK_WRITE and

 D_ScaLAPACK_WRITE.

Description

Subroutine ScaLAPACK_WRITE writes columns or rows of a problem matrix output by a

ScaLAPACK routine. It uses the two-dimensional block-cyclic array descriptor for the matrix to

extract the data from the assumed-size arrays on the processors. The blocks of data are

transmitted and received, then written. The block sizes, contained in the array descriptor,

determines the data set size for each blocking send and receive pair. The number of these

synchronization points is proportional to /()M N MB NB . A temporary local buffer is

allocated for staging the matrix data. It is of size M by NB, when writing by columns, or N by MB,

when writing by rows.

Example 1: Distributed Transpose of a Matrix, In Place

The program SCPK_EX1 illustrates an in-situ transposition of a matrix. An m n matrix, A , is

written to a file, by rows. The n m matrix,
TB A , overwrites storage for A . Two

temporary files are created and deleted. This algorithm for transposing a matrix is not efficient. It

is used to illustrate the read and write routines and optional arguments for writing of data by

matrix rows.

 program scpk_ex1

! This is Example 1 for ScaLAPACK_READ and ScaLAPACK_WRITE.

! It shows in-situ or in-place transposition of a

! block-cyclic matrix.

USE ScaLAPACK_SUPPORT

IMSL MATH LIBRARY Chapter 11: Utilities 1799

USE ERROR_OPTION_PACKET

USE MPI_SETUP_INT

IMPLICIT NONE

INCLUDE "mpif.h"

INTEGER, PARAMETER :: M=6, N=6, NIN=10

INTEGER DESC_A(9), IERROR, INFO, I, J, K, L, MXLDA, MXCOL

LOGICAL :: GRID1D = .TRUE., NSQUARE = .TRUE.

real(kind(1d0)), allocatable :: A(:,:), A0(:,:)

real(kind(1d0)) ERROR

TYPE(d_OPTIONS) IOPT(1)

 MP_NPROCS=MP_SETUP()

! Set up a 1D processor grid and define its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(M, N, NSQUARE, GRID1D)

! Get the array descriptor entities MXLDA, and MXCOL

 CALL SCALAPACK_GETDIM(M, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptor

 CALL DESCINIT(DESC_A, M, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDA, INFO)

! Allocate space for local arrays

 ALLOCATE(A0(MXLDA,MXCOL))

! A root process is used to create the matrix data for the test.

IF(MP_RANK == 0) THEN

 ALLOCATE(A(M,N))

! Fill array with a pattern that is easy to recognize.

 K=0

 DO

 K=K+1; IF(10**K > N) EXIT

 END DO

 DO J=1,N

 DO I=1,M

! The values will appear, as decimals I.J, where I is

! the row and J is the column.

 A(I,J)=REAL(I)+REAL(J)*10d0**(-K)

 END DO

 END DO

 OPEN(UNIT=NIN, FILE='test.dat', STATUS='UNKNOWN')

! Write the data by columns.

 DO J=1,N,MP_NB

 WRITE(NIN,*) ((A(I,L),I=1,M),L=J,min(N,J+MP_NB-1))

 END DO

 CLOSE(NIN)

 DEALLOCATE(A)

 ALLOCATE(A(N,M))

END IF

! Read the matrix into the local arrays.

CALL ScaLAPACK_READ('test.dat', DESC_A, A0)

! To transpose, write the matrix by rows as the first step.

! This requires an option since the default is to write

! by columns.

1800 Chapter 11: Utilities IMSL MATH LIBRARY

IOPT(1)=ScaLAPACK_WRITE_BY_ROWS

CALL ScaLAPACK_WRITE("TEST.DAT", DESC_A, A0, IOPT=IOPT)

! Resize the local storage

 DEALLOCATE(A0)

 CALL SCALAPACK_GETDIM(N, M, MP_NB, MP_MB, MXLDA, MXCOL)

! Set up the array descriptor

! Reshape the descriptor for the transpose of the matrix.

! The number of rows and columns are swapped.

 CALL DESCINIT(DESC_A, N, M, MP_NB, MP_MB, 0, 0, MP_ICTXT, &

 MXLDA, INFO)

 ALLOCATE(A0(MXLDA,MXCOL))

! Read the transpose matrix

CALL ScaLAPACK_READ("TEST.DAT", DESC_A, A0)

IF(MP_RANK == 0) THEN

! Open the used files and delete when closed.

 OPEN(UNIT=NIN, FILE='test.dat', STATUS='OLD')

 CLOSE(NIN,STATUS='DELETE')

 OPEN(UNIT=NIN, FILE='TEST.DAT', STATUS='OLD')

 DO J=1,M,MP_MB

 READ(NIN,*) ((A(I,L), I=1,N),L=J,min(M,J+MP_MB-1))

 END DO

 CLOSE(NIN,STATUS='DELETE')

 DO I=1,N

 DO J=1,M

! The values will appear, as decimals I.J, where I is the row

! and J is the column.

 A(I,J)=REAL(J)+REAL(I)*10d0**(-K) - A(I,J)

 END DO

 END DO

 ERROR=SUM(ABS(A))

 END IF

! See to any error messages.

 call e1pop("Mp_setup")

! Check results on just one process.

IF(ERROR <= SQRT(EPSILON(ERROR)) .and. &

 MP_RANK == 0) THEN

 write(*,*) " Example 1 for BLACS is correct."

END IF

! Deallocate storage arrays and exit from BLACS.

IF(ALLOCATED(A)) DEALLOCATE(A)

IF(ALLOCATED(A0)) DEALLOCATE(A0)

! Exit from using this process grid.

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

END

IMSL MATH LIBRARY Chapter 11: Utilities 1801

Output

Example 1 for BLACS is correct.

Additional Examples

Example 2: Distributed Matrix Product with PBLAS

The program SCPK_EX2 illustrates computation of the matrix product m n m k k nC A B . The

matrices on the right-hand side are random. Three temporary files are created and deleted.

BLACS and PBLAS are used. The problem size is such that the results are checked on one process.

 program scpk_ex2

! This is Example 2 for ScaLAPACK_READ and ScaLAPACK_WRITE.

! The product of two matrices is computed with PBLAS

! and checked for correctness.

USE ScaLAPACK_SUPPORT

USE MPI_SETUP_INT

IMPLICIT NONE

INCLUDE "mpif.h"

INTEGER, PARAMETER :: K=32, M=33, N=34, NIN=10

INTEGER INFO, IA, JA, IB, JB, IC, JC, MXLDA, MXCOL, MXLDB, &

 MXCOLB, MXLDC, MXCOLC, IERROR, I, J, L,&

 DESC_A(9), DESC_B(9), DESC_C(9)

LOGICAL :: GRID1D = .TRUE., NSQUARE = .TRUE.

 real(kind(1d0)) :: ALPHA, BETA, ERROR=1d0, SIZE_C

 real(kind(1d0)), allocatable, dimension(:,:) :: A,B,C,X(:),&

 A0, B0, C0

 MP_NPROCS=MP_SETUP()

! Set up a 1D processor grid and define its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(M, N, NSQUARE, GRID1D)

! Get the array descriptor entities

 CALL SCALAPACK_GETDIM(M, K, MP_MB, MP_NB, MXLDA, MXCOL)

 CALL SCALAPACK_GETDIM(K, N, MP_NB, MP_MB, MXLDB, MXCOLB)

 CALL SCALAPACK_GETDIM(M, N, MP_MB, MP_NB, MXLDC, MXCOLC)

! Set up the array descriptors

 CALL DESCINIT(DESC_A, M, K, MP_MB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDA, INFO)

 CALL DESCINIT(DESC_B, K, N, MP_NB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDB, INFO)

 CALL DESCINIT(DESC_C, M, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDC, INFO)

ALLOCATE(A0(MXLDA,MXCOL), B0(MXLDB,MXCOLB),C0(MXLDC,MXCOLC))

! A root process is used to create the matrix data for the test.

IF(MP_RANK == 0) THEN

 ALLOCATE(A(M,K), B(K,N), C(M,N), X(M))

 CALL RANDOM_NUMBER(A); CALL RANDOM_NUMBER(B)

1802 Chapter 11: Utilities IMSL MATH LIBRARY

 OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN')

! Write the data by columns.

 DO J=1,K,MP_NB

 WRITE(NIN,*) ((A(I,L),I=1,M),L=J,min(K,J+MP_NB-1))

 END DO

 CLOSE(NIN)

 OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='UNKNOWN')

! Write the data by columns.

 DO J=1,N,MP_NB

 WRITE(NIN,*) ((B(I,L),I=1,K),L=J,min(N,J+MP_NB-1))

 END DO

 CLOSE(NIN)

END IF

! Read the factors into the local arrays.

CALL ScaLAPACK_READ('Atest.dat', DESC_A, A0)

CALL ScaLAPACK_READ('Btest.dat', DESC_B, B0)

! Compute the distributed product C = A x B.

ALPHA=1d0; BETA=0d0

IA=1; JA=1; IB=1; JB=1; IC=1; JC=1

C0=0

CALL pdGEMM &

 ("No", "No", M, N, K, ALPHA, A0, IA, JA,&

 DESC_A, B0, IB, JB, DESC_B, BETA,&

 C0, IC, JC, DESC_C)

! Put the product back on the root node.

Call ScaLAPACK_WRITE('Ctest.dat', DESC_C, C0)

IF(MP_RANK == 0) THEN

! Read the residuals and check them for size.

 OPEN(UNIT=NIN, FILE='Ctest.dat', STATUS='OLD')

! Read the data by columns.

 DO J=1,N,MP_NB

 READ(NIN,*) ((C(I,L),I=1,M),L=J,min(N,J+MP_NB-1))

 END DO

 CLOSE(NIN,STATUS='DELETE')

 SIZE_C=SUM(ABS(C)); C=C-matmul(A,B)

 ERROR=SUM(ABS(C))/SIZE_C

! Open other temporary files and delete them.

 OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='OLD')

 CLOSE(NIN,STATUS='DELETE')

 OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='OLD')

 CLOSE(NIN,STATUS='DELETE')

END IF

! See to any error messages.

call e1pop("Mp_Setup")

IMSL MATH LIBRARY Chapter 11: Utilities 1803

! Deallocate storage arrays and exit from BLACS.

IF(ALLOCATED(A)) DEALLOCATE(A)

IF(ALLOCATED(B)) DEALLOCATE(B)

IF(ALLOCATED(C)) DEALLOCATE(C)

IF(ALLOCATED(X)) DEALLOCATE(X)

IF(ALLOCATED(A0)) DEALLOCATE(A0)

IF(ALLOCATED(B0)) DEALLOCATE(B0)

IF(ALLOCATED(C0)) DEALLOCATE(C0)

! Check the results.

IF(ERROR <= SQRT(EPSILON(ALPHA)) .and. &

 MP_RANK == 0) THEN

 write(*,*) " Example 2 for BLACS and PBLAS is correct."

END IF

 ! Exit from using this process grid.

 CALL SCALAPACK_EXIT(MP_ICTXT)

 ! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

END

Output

Example 2 for BLACS and PBLAS is correct.

Example 3: Distributed Linear Solver with ScaLAPACK

The program SCPK_EX3 illustrates solving a system of linear-algebraic equations, Ax b by

calling a ScaLAPACK routine directly. The right-hand side is produced by defining A and y to

have random values. Then the matrix-vector product b Ay is computed. The problem size is

such that the residuals, 0x y are checked on one process. Three temporary files are created

and deleted. BLACS are used to define the process grid and provide further information identifying

each process. Then a ScaLAPACK routine is called directly to compute the approximate solution,
x .

 program scpk_ex3

! This is Example 3 for ScaLAPACK_READ and ScaLAPACK_WRITE.

! A linear system is solved with ScaLAPACK and checked.

USE ScaLAPACK_SUPPORT

USE ERROR_OPTION_PACKET

USE MPI_SETUP_INT

IMPLICIT NONE

INCLUDE "mpif.h"

INTEGER, PARAMETER :: N=9, NIN=10

INTEGER INFO, IA, JA, IB, JB, MXLDA,MXCOL,&

 IERROR, I, J, L, DESC_A(9),&

 DESC_B(9), BUFF(3), RBUF(3)

LOGICAL :: COMMUTE = .TRUE., NSQUARE = .TRUE., GRID1D = .TRUE.

INTEGER, ALLOCATABLE :: IPIV0(:)

real(kind(1d0)) :: ERROR=0d0, SIZE_Y

real(kind(1d0)), allocatable, dimension(:,:) :: A, B(:), &

1804 Chapter 11: Utilities IMSL MATH LIBRARY

 X(:), Y(:), A0, B0

 MP_NPROCS=MP_SETUP()

! Set up a 1D processor grid and define its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, NSQUARE, GRID1D)

! Get the array descriptor entities

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESC_A, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDA, INFO)

 CALL DESCINIT(DESC_B, N, 1, MP_MB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDA, INFO)

! Allocate local space for each array.

 ALLOCATE(A0(MXLDA,MXCOL), B0(MXLDA,1), IPIV0(MXLDA+MP_MB))

! A root process is used to create the matrix data for the test.

IF(MP_RANK == 0) THEN

 ALLOCATE(A(N,N), B(N), X(N), Y(N))

 CALL RANDOM_NUMBER(A); CALL RANDOM_NUMBER(Y)

! Compute the correct result.

 B=MATMUL(A,Y); SIZE_Y=SUM(ABS(Y))

 OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN')

! Write the data by columns.

 DO J=1,N,MP_NB

 WRITE(NIN,*) ((A(I,L),I=1,N),L=J,min(N,J+MP_NB-1))

 END DO

 CLOSE(NIN)

 OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='UNKNOWN')

! Write the data by columns.

 WRITE(NIN,*) (B(I),I=1,N)

 CLOSE(NIN)

END IF

! Read the factors into the local arrays.

CALL ScaLAPACK_READ('Atest.dat', DESC_A, A0)

CALL ScaLAPACK_READ('Btest.dat', DESC_B, B0)

! Compute the distributed product solution to A x = b.

IA=1; JA=1; IB=1; JB=1

CALL pdGESV (N, 1, A0, IA, JA, DESC_A, IPIV0, &

B0, IB, JB, DESC_B, INFO)

! Put the result on the root node.

Call ScaLAPACK_WRITE('Xtest.dat', DESC_B, B0)

IF(MP_RANK == 0) THEN

! Read the residuals and check them for size.

 OPEN(UNIT=NIN, FILE='Xtest.dat', STATUS='OLD')

IMSL MATH LIBRARY Chapter 11: Utilities 1805

! Read the approximate solution data.

 READ(NIN,*) X

 B=X-Y

 CLOSE(NIN,STATUS='DELETE')

 ERROR=SUM(ABS(B))/SIZE_Y

! Delete temporary files.

 OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='OLD')

 CLOSE(NIN,STATUS='DELETE')

 OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='OLD')

 CLOSE(NIN,STATUS='DELETE')

END IF

! See to any error messages.

call e1pop("Mp_Setup")

! Deallocate storage arrays

IF(ALLOCATED(A)) DEALLOCATE(A)

IF(ALLOCATED(B)) DEALLOCATE(B)

IF(ALLOCATED(X)) DEALLOCATE(X)

IF(ALLOCATED(Y)) DEALLOCATE(Y)

IF(ALLOCATED(A0)) DEALLOCATE(A0)

IF(ALLOCATED(B0)) DEALLOCATE(B0)

IF(ALLOCATED(IPIV0)) DEALLOCATE(IPIV0)

IF(ERROR <= SQRT(EPSILON(ERROR)) .and. MP_RANK == 0) THEN

 write(*,*) &

 " Example 3 for BLACS and ScaLAPACK solver is correct."

END IF

 ! Exit from using this process grid.

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

END

Output

Example 3 for BLACS and ScaLAPACK is correct.

ScaLAPACK_MAP

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in

the Introduction of this manual.

This routine maps array data from a global array to local arrays in the two-dimensional block-

cyclic form required by ScaLAPACK routines.

1806 Chapter 11: Utilities IMSL MATH LIBRARY

All processors in the BLACS context call the routine.

Required Arguments

A — Global rank-1 or rank-2 array which is to be mapped to the processor grid. The data type

for A is any of five Fortran intrinsic types: integer; single precision, real; double

precision, real; single precision, complex; double precision, complex. Normally, the

user defines A to be valid only on the MP_RANK = 0 processor. (Input)

DESC_A — An integer vector containing the nine parameters associated with the

ScaLAPACK matrix descriptor for array A. See ―Usage Notes for ScaLAPACK

Utilities‖ for a description of the nine parameters. (Input)

A0 — This is a local rank-1 or rank-2 array that will contain this processor‘s piece of the

block-cyclic array. The data type for A0 is any of five Fortran intrinsic types: integer;

single precision, real; double precision, real; single precision, complex; and double

precision, complex. (Output)

Optional Arguments

LDA — Leading dimension of A as specified in the calling program. If this argument is not

present, SIZE(A,1) is used. (Input)

COLMAP — Input logical which indicates whether the global array should be mapped in

column major form or row major form. COLMAP set to .TRUE. will result in the array

being mapped in column- major form while setting COLMAP to .FALSE. will result in

the array being mapped in row major form. The default value of COLMAP is .TRUE.

(Input)

FORTRAN 90 Interface

Generic: CALL ScaLAPACK_MAP (A, DESC_A, A0 [,…])

Description

Subroutine ScaLAPACK_MAP maps columns or rows of a global array on

MP_RANK = 0 to local distributed arrays so that the problem array is usable by a ScaLAPACK

routine. It uses the two-dimensional block-cyclic array descriptor for the matrix to place the data

in the desired assumed-size arrays on the processors. The block sizes, contained in the array

descriptor, determine the data set size for each blocking send and receive pair. The number of

these synchronization points is proportional to /()M N MB NB . A temporary local buffer

is allocated for staging the array data. It is of size M by NB, when mapping by columns, or N by MB,

when mapping by rows.

Example

See ScaLAPACK_UNMAP.

IMSL MATH LIBRARY Chapter 11: Utilities 1807

ScaLAPACK_UNMAP

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in

the Introduction of this manual.

This routine unmaps array data from local distributed arrays to a global array. The data in the local

arrays must have been stored in the two-dimensional block-cyclic form required by ScaLAPACK

routines. All processors in the BLACS context call the routine.

Required Arguments

A0 — This is a local rank-1 or rank-2 array that contains this processor‘s piece of the block-

cyclic array. The data type for A0 is any of five Fortran intrinsic types: integer; single

precision, real; double precision, real; single precision, complex; or double

precision, complex. (Input)

DESC_A — An integer vector containing the nine parameters associated with the

ScaLAPACK matrix descriptor for array A. See ―Usage Notes for ScaLAPACK

Utilities‖ for a description of the nine parameters. (Input)

A — Global rank-1 or rank-2 array which is to receive the array which had been mapped to

the processor grid. The data type for A is any of five Fortran intrinsic types: integer;

single precision, real; double precision, real; single precision, complex; or double

precision, complex. A is only valid on MP_RANK = 0 after ScaLAPACK_UNMAP has

been called. (Output)

Optional Arguments

LDA — Leading dimension of A as specified in the calling program. If this argument is not

present, SIZE(A,1) is used. (Input)

COLMAP — Input logical which indicates whether the global array should be mapped in

column major form or row major form. COLMAP set to .TRUE. will result in the array

being mapped in column major form while setting COLMAP to .FALSE. will result in

the array being mapped in row major form. The default value of COLMAP is .TRUE.

(Input)

FORTRAN 90 Interface

Generic: CALL ScaLAPACK_UNMAP (A0, DESC_A, A [,…])

Description

Subroutine ScaLAPACK_UNMAP unmaps columns or rows of local distributed arrays to a global

array on MP_RANK = 0. It uses the two-dimensional block-cyclic array descriptor for the matrix

1808 Chapter 11: Utilities IMSL MATH LIBRARY

to retrieve the data from the assumed-size arrays on the processors. The block sizes, contained in

the array descriptor, determine the data set size for each blocking send and receive pair. The

number of these synchronization points is proportional to /()M N MB NB . A temporary

local buffer is allocated for staging the array data. It is of size M by NB, when mapping by

columns, or N by MB, when mapping by rows.

Example: Distributed Linear Solver with IMSL ScaLAPACK Interface

The program SCPKMP_EX1 illustrates solving a system of linear-algebraic equations, Ax b by

calling routine LSLRG, an IMSL routine which interfaces with a ScaLAPACK routine. The right-

hand side is produced by defining A and y to have random values. Then the matrix-vector

product b Ay is computed. The problem size is such that the residuals, 0x y are

checked on MP_RANK = 0. IMSL routine ScaLAPACK_SETUP is called to define the process grid

and provide further information identifying each process. IMSL routine ScaLAPACK_MAP is

called to map the global arrays to local distributed arrays. Then LSLRG is called to compute the

approximate solution, x .

 program scpkmp_ex1

! This is Example 1 for ScaLAPACK_MAP and ScaLAPACK_UNMAP.

! A linear system is solved with an IMSL routine which

! interfaces with ScaLAPACK and is checked.

USE ScaLAPACK_SUPPORT

USE ERROR_OPTION_PACKET

USE MPI_SETUP_INT

USE LSLRG_INT

IMPLICIT NONE

INCLUDE "mpif.h"

INTEGER, PARAMETER :: N=9

INTEGER MXLDA, MXCOL, INFO, DESC_A(9), DESC_X(9)

LOGICAL :: GRID1D = .TRUE., NSQUARE = .TRUE.

real(kind(1d0)) :: ERROR=0d0, SIZE_Y

real(kind(1d0)), allocatable, dimension(:,:) :: A, B(:), &

 X(:), Y(:), A0, B0(:), X0(:)

 MP_NPROCS=MP_SETUP()

! Set up a 1D processor grid and define its context ID, MP_ICTXT

 CALL SCALAPACK_SETUP(N, N, NSQUARE, GRID1D)

! Get the array descriptor entities MXLDA, and MXCOL

 CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors

 CALL DESCINIT(DESC_A, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, &

 MXLDA, INFO)

 CALL DESCINIT(DESC_X, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, &

 MXLDA, INFO)

! Allocate space for local arrays

 ALLOCATE(A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA))

! A root process is used to create the matrix data for the test.

IMSL MATH LIBRARY Chapter 11: Utilities 1809

IF(MP_RANK == 0) THEN

 ALLOCATE(A(N,N), B(N), X(N), Y(N))

 CALL RANDOM_NUMBER(A); CALL RANDOM_NUMBER(Y)

! Compute the correct result.

 B=MATMUL(A,Y); SIZE_Y=SUM(ABS(Y))

END IF

! Map the input arrays to the processor grid

 CALL SCALAPACK_MAP(A, DESC_A, A0)

 CALL SCALAPACK_MAP(B, DESC_X, B0)

! Compute the distributed product solution to A x = b.

 CALL LSLRG(A0, B0, X0)

! Put the result on the root node.

 Call ScaLAPACK_UNMAP(X0, DESC_X, X)

IF(MP_RANK == 0) THEN

! Check the residuals for size.

 B=X-Y

 ERROR=SUM(ABS(B))/SIZE_Y

END IF

! See to any error messages.

 call e1pop("Mp_Setup")

IF(ERROR <= SQRT(EPSILON(ERROR)) .and. MP_RANK == 0) THEN

 write(*,*) &

 " Example 1 for ScaLAPACK_MAP and ScaLAPACK_UNMAP is correct."

END IF

! Deallocate storage arrays.

 IF (MP_RANK == 0) DEALLOCATE(A, B, X, Y)

 DEALLOCATE(A0, B0, X0)

! Exit from using this process grid.

 CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI

 MP_NPROCS = MP_SETUP(‗FINAL‘)

 END

Output

Example 1 for ScaLAPACK_MAP and ScaLAPACK_UNMAP is correct.

ScaLAPACK_EXIT

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in

the Introduction of this manual.

1810 Chapter 11: Utilities IMSL MATH LIBRARY

This routine exits ScaLAPACK mode for the IMSL Library routines. All processors in the BLACS

context call the routine.

Required Arguments

ICTXT — The BLACS context ID to which the processor grid is associated. (Input)

FORTRAN 90 Interface

Generic: CALL ScaLAPACK_EXIT (ICTXT)

Description

Subroutine ScaLAPACK_EXIT exits ScaLAPACK mode for the IMSL Library routines. The

following actions occur when this routine is called:

 BLACS_GRIDEXIT is called with the input BLACS context ID.

 The pointer to the grid ID, MP_PIGRID is nullified.

 If the grid, MP_IGRID, has been allocated, it is deallocated.

 MP_ICTXT is reset to its default value, HUGE(1).

ERROR_POST
Prints error messages that are generated by IMSL routines using EPACK.

Required Argument

EPACK — (Input [/Output])

Derived type array of size p containing the array of message numbers and associated

data for the messages. The definition of this derived type is packaged within the

modules used as interfaces for each suite of routines. The declaration is:

type ?_error

 integer idummy; real(kind(?_)) rdummy

end type

 The choice of ―?_‖ is either ―s_‖ or ―d_‖ depending on the accuracy of the data.

This array gets additional messages and data from each routine that uses the ―epack=‖

optional argument, provided p is large enough to hold data for a new message. The

value p = 8 is sufficient to hold the longest single terminal, fatal, or warning message

that an IMSL Fortran Library routine generates.

 The location at entry epack (1)%idummy contains the number of data items for all

messages. When the error_post routine exits, this value is set to zero. Locations in

array positions (2:) %idummy contain groups of integers consisting of a message

number, the error severity level, then the required integer data for the message.

Floating-point data, if required in the message, is passed in locations(:)%rdummy

IMSL MATH LIBRARY Chapter 11: Utilities 1811

matched with the starting point for integer data. The extent of the data for each

message is determined by the requirements of the larger of each group of integer or

floating-point values.

Optional Arguments

new_unit = nunit (Input)
Unit number, of type integer, associated for reading the direct-access file of error

messages for the IMSL Fortran 90 routines.

Default: nunit = 4

new_path = path (Input)

Pathname in the local file space, of type character*64, needed for reading the direct-

access file of error messages. Default string for path is defined during the installation

procedure for certain IMSL Fortran Library routines.

FORTRAN 90 Interface

Generic: CALL ERROR_POST (EPACK [,…])

Specific: The specific interface names are S_ERROR_POST and D_ERROR_POST.

Description

A default direct-access error message file (.daf file) is supplied with this product. This file is read

by error_post using the contents of the derived type argument epack, containing the message

number, error severity level, and associated data. The message is converted into character strings

accepted by the error processor and then printed. The number of pending messages that print

depends on the settings of the parameters PRINT and STOP in the Reference Material in the IMSL

MATH/LIBRARY User's Manual. These values are initialized to defaults such that any Level 5 or

Level 4 message causes a STOP within the error processor after a print of the text. To change these

defaults so that more than one error message prints, use the routine ERSET documented and

illustrated with examples in the Reference Material in the IMSL MATH/LIBRARY User's

Manual. The method of using a message file to store the messages is required to support ―shared-

memory parallelism.‖

Managing the Message File

For most applications of this product, there will be no need to manage this file. However, there

are a few situations which may require changing or adding messages:

 New system-wide messages have been developed for applications using this Library.

 All or some of the existing messages need to be translated to another language

 A subset of users need to add a specific message file for their applications using this Library.

Following is information on changing the contents of the message file, and information on how to

create and access a message file for a private application.

1812 Chapter 11: Utilities IMSL MATH LIBRARY

Changing Messages

In order to change messages, two files are required:

 An editable message glossary, messages.gls, supplied with this product.

 A source program, prepmess.f, used to generate an executable which builds messages.daf

from messages.gls.

To change messages, first make a backup copy of messages.gls. Use a text editor to edit

messages.gls. The format of this file is a series of pairs of statements:

 message_number=<nnnn>

 message='message string'

(Note that neither of these lines should begin with a tab.)

The variable <nnnn> is an integer message number (see below for ranges and reserved message

numbers).

The 'message string' is any valid message string not to exceed 255 characters. If a message

line is too long for a screen, the standard Fortran 90 concatenation operator // with the line

continuation character & may be used to wrap the text.

Most strings have substitution parameters embedded within them. These may be in the following

forms:

 %(i<n>) for an integer substitution, where n is the nth integer output in this message.

 %(r<n>) for single precision real number substitution, where n is the nth real number output

in this message.

 %(d<n>) for double precision real number substitution, where n is the nth double precision

number output in this message.

New messages added to the system-wide error message file should be placed at the end of the file.

Message numbers 5000 through 10000 have been reserved for user-added messages. Currently,

messages 1 through 1400 are used by IMSL. Gaps in message number ranges are permitted;

however, the message numbers must be in ascending order within the file. The message numbers

used for each IMSL Fortran Library subroutine are documented in this manual and in online help.

If existing messages are being edited or translated, make sure not to alter the message_number

lines. (This prevents conflicts with any new messages.gls file supplied with future versions of this

Library.)

Building a New Direct-access Message File

The prepmess executable must be available to complete the message changing process. For

information on building the prepmess executable from prepmess.f , consult the installation

guide for this product.

Once new messages have been placed in the messages.gls file, make a backup copy of the

messages.daf file. Then remove messages.daf from the current directory. Now enter the

following command:

prepmess > prepmess_output

IMSL MATH LIBRARY Chapter 11: Utilities 1813

A new messages.daf file is created. Edit the prepmess_output file and look near the end of

the file for the new error messages. The prepmess program processes each message through the

error message system as a validity check. There should be no FATAL error announcement within

the prepmess_output file.

Private Message Files

Users can create a private message file within their own messages. This file would generally be

used by an application that calls this Library. Follow the steps outlined above to create a private

messages.gls file. The user should then be given a copy of the prepmess executable. In the

application code, call the error_post subprogram with the new_unit/new_path optional

arguments. The new path should point to the directory in which the private messages.daf file

resides.

SHOW
Prints rank-1 or rank-2 arrays of numbers in a readable format.

Required Arguments

X — Rank-1 or rank-2 array containing the numbers to be printed. (Input)

Optional Arguments

text = CHARACTER (Input)

CHARACTER(LEN=*) string used for labeling the array.

image = buffer (Output)

CHARACTER(LEN=*) string used for an internal write buffer. With this argument

present the output is converted to characters and packed. The lines are separated by an

end-of-line sequence. The length of buffer is estimated by the line width in effect,

time the number of lines for the array.

iopt = iopt(:) (Input)

Derived type array with the same precision as the input array; used for passing optional

data to the routine. Use the REAL(KIND(1E0)) precision for output of INTEGER

arrays. The options are as follows:

Packaged Options for SHOW

Prefix is blank Option Name Option Value

 show_significant_digits_is_4 1

 show_significant_digits_is_7 2

 show_significant_digits_is_16 3

 show_line_width_is_44 4

 show_line_width_is_72 5

 show_line_width_is_128 6

 show_end_of_line_sequence_is 7

1814 Chapter 11: Utilities IMSL MATH LIBRARY

Packaged Options for SHOW

 show_starting_index_is 8

 show_starting_row_index_is 9

 show_starting_col_index_is 10

iopt(IO) = show_significant_digits_is_4

iopt(IO) = show_significant_digits_is_7

iopt(IO) = show_significant_digits_is_16

 These options allow more precision to be displayed. The default is 4D for each value.

The other possible choices display 7D or 16D.

iopt(IO) = show_line_width_is_44

iopt(IO) = show_line_width_is_72

iopt(IO) = show_line_width_is_128

 These options allow varying the output line width. The default is 72 characters per

line. This allows output on many work stations or terminals to be read without

wrapping of lines.

iopt(IO) = show_end-of_line_sequence_is

 The sequence of characters ending a line when it is placed into the internal character

buffer corresponding to the optional argument ‗IMAGE = buffer‗. The value of

iopt(IO+1)%idummy is the number of characters. These are followed, starting at

iopt(IO+2)%idummy, by the ASCII codes of the characters themselves. The default

is the single character, ASCII value 10 or New Line.

iopt(IO) = show_starting_index_is

 This are used to reset the starting index for a rank-1 array to a value different from the

default value, which is 1.

iopt(IO) = show_starting_row_index_is

iopt(IO) = show_starting_col_index_is

 These are used to reset the starting row and column indices to values different from

their defaults, each 1.

FORTRAN 90 Interface

Generic: CALL SHOW (X [,…])

Specific: The specific interface names are S_SHOW and D_SHOW.

IMSL MATH LIBRARY Chapter 11: Utilities 1815

Description

The show routine is a generic subroutine interface to separate low-level subroutines for each data

type and array shape. Output is directed to the unit number IUNIT. That number is obtained with

the subroutine UMACH, IMSL MATH/LIBRARY User's Manual. Thus the user must open this unit

in the calling program if it desired to be different from the standard output unit. If the optional

argument ‗IMAGE = buffer‗ is present, the output is not sent to a file but to a character string

within buffer. These characters are available to output or be used in the application.

Fatal and Terminal Error Messages

See the messages.gls file for error messages for SHOW. These error messages are numbered

601−606; 611−617; 621−627; 631−636; 641−646.

Example 1: Printing an Array

Array of random numbers for all the intrinsic data types are printed. For REAL(KIND(1E0))

rank-1 arrays, the number of displayed digits is reset from the default value of 4 to the value 7 and

the subscripts for the array are reset so they match their declared extent when printed. The output

is not shown.

 use show_int

 use rand_int

 implicit none

! This is Example 1 for SHOW.

 integer, parameter :: n=7, m=3

 real(kind(1e0)) s_x(-1:n), s_m(m,n)

 real(kind(1d0)) d_x(n), d_m(m,n)

 complex(kind(1e0)) c_x(n), c_m(m,n)

 complex(kind(1d0)) z_x(n),z_m(m,n)

 integer i_x(n), i_m(m,n)

 type (s_options) options(3)

! The data types printed are real(kind(1e0)), real(kind(1d0)),

! complex(kind(1e0)), complex(kind(1d0)), and INTEGER.

! Fill with randsom numbers and then print the contents,

! in each case with a label.

 s_x=rand(s_x); s_m=rand(s_m)

 d_x=rand(d_x); d_m=rand(d_m)

 c_x=rand(c_x); c_m=rand(c_m)

 z_x=rand(z_x); z_m=rand(z_m)

 i_x=100*rand(s_x(1:n)); i_m=100*rand(s_m)

 call show (s_x, 'Rank-1, REAL')

 call show (s_m, 'Rank-2, REAL')

 call show (d_x, 'Rank-1, DOUBLE')

 call show (d_m, 'Rank-2, DOUBLE')

 call show (c_x, 'Rank-1, COMPLEX')

 call show (c_m, 'Rank-2, COMPLEX')

 call show (z_x, 'Rank-1, DOUBLE COMPLEX')

 call show (z_m, 'Rank-2, DOUBLE COMPLEX')

 call show (i_x, 'Rank-1, INTEGER')

1816 Chapter 11: Utilities IMSL MATH LIBRARY

 call show (i_m, 'Rank-2, INTEGER')

! Show 7 digits per number and according to the

! natural or declared size of the array.

 options(1)=show_significant_digits_is_7

 options(2)=show_starting_index_is

 options(3)= -1 ! The starting value.

 call show (s_x, &

'Rank-1, REAL with 7 digits, natural indexing', IOPT=options)

 end

Output

Example 1 for SHOW is correct.

Additional Examples

Example 2: Writing an Array to a Character Variable

This example prepares a rank-1 array for further processing, in this case delayed writing to the

standard output unit. The indices and the amount of precision are reset from their defaults, as in

Example 1. An end-of-line sequence of the characters CR-NL (ASCII 10,13) is used in place of

the standard ASCII 10. This is not required for writing this array, but is included for an illustration

of the option.

 use show_int

 use rand_int

 implicit none

! This is Example 2 for SHOW.

 integer, parameter :: n=7

 real(kind(1e0)) s_x(-1:n)

 type (s_options) options(7)

 CHARACTER (LEN=(72+2)*4) BUFFER

! The data types printed are real(kind(1e0)) random numbers.

 s_x=rand(s_x)

! Show 7 digits per number and according to the

! natural or declared size of the array.

! Prepare the output lines in array BUFFER.

! End each line with ASCII sequence CR-NL.

 options(1)=show_significant_digits_is_7

 options(2)=show_starting_index_is

 options(3)= -1 ! The starting value.

 options(4)=show_end_of_line_sequence_is

 options(5)= 2 ! Use 2 EOL characters.

 options(6)= 10 ! The ASCII code for CR.

 options(7)= 13 ! The ASCII code for NL.

 BUFFER= ' ' ! Blank out the buffer.

IMSL MATH LIBRARY Chapter 11: Utilities 1817

! Prepare the output in BUFFER.

 call show (s_x, &

 'Rank-1, REAL with 7 digits, natural indexing '//&

 'internal BUFFER, CR-NL EOLs.',&

 IMAGE=BUFFER, IOPT=options)

! Display BUFFER as a CHARACTER array. Discard blanks

! on the ends.

 WRITE(*,'(1x,A)') TRIM(BUFFER)

 end

Output

Example 2 for SHOW is correct.

WRRRN
Prints a real rectangular matrix with integer row and column labels.

Required Arguments

TITLE — Character string specifying the title. (Input)

TITLE set equal to a blank character(s) suppresses printing of the title. Use ―% /‖

within the title to create a new line. Long titles are automatically wrapped.

A — NRA by NCA matrix to be printed. (Input)

Optional Arguments

NRA — Number of rows. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

ITRING — Triangle option. (Input)

Default: ITRING = 0.

ITRING Action

0 Full matrix is printed.

1 Upper triangle of A is printed, including the diagonal.

2 Upper triangle of A excluding the diagonal of A is printed.

1818 Chapter 11: Utilities IMSL MATH LIBRARY

−1 Lower triangle of A is printed, including the diagonal.

−2 Lower triangle of A excluding the diagonal of A is printed.

FORTRAN 90 Interface

Generic: CALL WRRRN (TITLE, A [,…])

Specific: The specific interface names are S_WRRRN and D_WRRRN for two dimensional

arrays, and S_WRRRN1D and D_WRRRN1D for one dimensional arrays.

FORTRAN 77 Interface

Single: CALL WRRRN (TITLE, NRA, NCA, A, LDA, ITRING)

Double: The double precision name is DWRRRN.

Description

Routine WRRRN prints a real rectangular matrix with the rows and columns labeled 1, 2, 3, and so

on. WRRRN can restrict printing to the elements of the upper or lower triangles of matrices via the

ITRING option. Generally, ITRING ≠ 0 is used with symmetric matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector,

set NRA to the length of the array and set NCA = 1. For a row vector, set NRA = 1 and set NCA to the

length of the array. In both cases, set LDA = NRA and set ITRING = 0.

Comments

1. A single D, E, or F format is chosen automatically in order to print 4 significant digits

for the largest element of A in absolute value. Routine WROPT can be used to change

the default format.

2. Horizontal centering, a method for printing large matrices, paging, printing a title on

each page, and many other options can be selected by invoking WROPT.

3. A page width of 78 characters is used. Page width and page length can be reset by

invoking PGOPT .

4. Output is written to the unit specified by UMACH (see the Reference Material).

Example

The following example prints all of a 3 × 4 matrix A where aij= i + j/10.
 USE WRRRN_INT

 IMPLICIT NONE

 INTEGER ITRING, LDA, NCA, NRA

IMSL MATH LIBRARY Chapter 11: Utilities 1819

 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)

!

 INTEGER I, J

 REAL A(LDA,NCA)

!

 DO 20 I=1, NRA

 DO 10 J=1, NCA

 A(I,J) = I + J*0.1

 10 CONTINUE

 20 CONTINUE

! Write A matrix.

 CALL WRRRN ('A', A, NRA=NRA)

 END

Output

 A

 1 2 3 4

1 1.100 1.200 1.300 1.400

2 2.100 2.200 2.300 2.400

3 3.100 3.200 3.300 3.400

WRRRL
Print a real rectangular matrix with a given format and labels.

Required Arguments

TITLE — Character string specifying the title. (Input)

TITLE set equal to a blank character(s) suppresses printing of the title.

A — NRA by NCA matrix to be printed. (Input)

RLABEL — CHARACTER * (*) vector of labels for rows of A. (Input)

If rows are to be numbered consecutively 1, 2, …, NRA, use RLABEL(1) = ‘NUMBER‘. If

no row labels are desired, use RLABEL(1) = ‘NONE‘. Otherwise, RLABEL is a vector of

length NRA containing the labels.

CLABEL — CHARACTER * (*) vector of labels for columns of A. (Input)

If columns are to be numbered consecutively 1, 2, …, NCA, use

CLABEL(1) = ‘NUMBER‘. If no column labels are desired, use CLABEL(1) = ‘NONE‘.

Otherwise, CLABEL(1) is the heading for the row labels, and either CLABEL(2) must be

‘NUMBER‘or ‘NONE‘, or CLABEL must be a vector of length NCA + 1 with

CLABEL(1 + j) containing the column heading for the j-th column.

Optional Arguments

NRA — Number of rows. (Input)

Default: NRA = SIZE (A,1).

1820 Chapter 11: Utilities IMSL MATH LIBRARY

NCA — Number of columns. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

ITRING — Triangle option. (Input)

Default: ITRING = 0.

ITRING Action

0 Full matrix is printed.

1 Upper triangle of A is printed, including the diagonal.

2 Upper triangle of A excluding the diagonal of A is printed.

−1 Lower triangle of A is printed, including the diagonal.

−2 Lower triangle of A excluding the diagonal of A is printed.

FMT — Character string containing formats. (Input)

If FMT is set to a blank character(s), the format used is specified by WROPT. Otherwise,

FMT must contain exactly one set of parentheses and one or more edit descriptors. For

example, FMT = ‘(F10.3)‘ specifies this F format for the entire matrix.

FMT = ‘(2E10.3, 3F10.3)‘ specifies an E format for columns 1 and 2 and an F

format for columns 3, 4 and 5. If the end of FMT is encountered and if some columns of

the matrix remain, format control continues with the first format in FMT. Even though

the matrix A is real, an I format can be used to print the integer part of matrix elements

of A. The most useful formats are special formats, called the V and W formats, that can

be used to specify pretty formats automatically. Set FMT = ‘(V10.4)‘ if you want a

single D, E, or F format selected automatically with field width 10 and with 4

significant digits. Set FMT = ‘(W10.4)‘ if you want a single D, E, F, or I format

selected automatically with field width 10 and with 4 significant digits. While the V

format prints trailing zeroes and a trailing decimal point, the W format does not. See

Comment 4 for general descriptions of the V and W formats. FMT may contain only D, E,

F, G, I, V, or W edit descriptors, e.g., the X descriptor is not allowed.

Default: FMT = ‗ ‗.

FORTRAN 90 Interface

Generic: CALL WRRRL (TITLE, A, RLABEL, CLABEL [,…])

Specific: The specific interface names are S_WRRRL and D_WRRRL for two dimensional

arrays, and S_WRRRL1D and D_WRRRL1D for one dimensional arrays.

IMSL MATH LIBRARY Chapter 11: Utilities 1821

FORTRAN 77 Interface

Single: CALL WRRRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL, CLABEL)

Double: The double precision name is DWRRRL.

Description

Routine WRRRL prints a real rectangular matrix (stored in A) with row and column labels (specified

by RLABEL and CLABEL, respectively) according to a given format (stored in FMT). WRRRL can

restrict printing to the elements of upper or lower triangles of matrices via the ITRING option.

Generally, ITRING ≠ 0 is used with symmetric matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector,

set NRA to the length of the array and set NCA = 1. For a row vector, set NRA = 1 and set NCA to the

length of the array. In both cases, set LDA = NRA, and set ITRING = 0.

Comments

1. Workspace may be explicitly provided, if desired, by use of W2RRL/DW2RRL. The

reference is:

CALL W2RRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL,

CLABEL, CHWK)

The additional argument is:

CHWK — CHARACTER * 10 work vector of length NCA. This workspace is

referenced only if all three conditions indicated at the beginning of this

comment are met. Otherwise, CHWK is not referenced and can be a

CHARACTER * 10 vector of length one.

2. The output appears in the following form:

TITLE

CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4)

RLABEL(1) Xxxxx Xxxxx Xxxxx

RLABEL(2) Xxxxx Xxxxx Xxxxx

3. Use ―% /‖ within titles or labels to create a new line. Long titles or labels are

automatically wrapped.

4. For printing numbers whose magnitudes are unknown, the G format in FORTRAN is

useful; however, the decimal points will generally not be aligned when printing a

column of numbers. The V and W formats are special formats used by this routine to

select a D, E, F, or I format so that the decimal points will be aligned. The V and W

formats are specified as Vn.d and Wn.d. Here, n is the field width and d is the number

of significant digits generally printed. Valid values for n are 3, 4,…, 40. Valid values

for d are 1, 2, …, n − 2. If FMT specifies one format and that format is a V or W format,

all elements of the matrix A are examined to determine one FORTRAN format for

1822 Chapter 11: Utilities IMSL MATH LIBRARY

printing. If FMT specifies more than one format, FORTRAN formats are generated

separately from each V or W format.

5. A page width of 78 characters is used. Page width and page length can be reset by

invoking PGOPT .

6. Horizontal centering, method for printing large matrices, paging, method for printing

NaN (not a number), printing a title on each page, and many other options can be

selected by invoking WROPT .

7. Output is written to the unit specified by UMACH (see Reference Material).

Example

The following example prints all of a 3 × 4 matrix A where aij = (i + j/10)10
j-3

.

 USE WRRRL_INT

 IMPLICIT NONE

 INTEGER ITRING, LDA, NCA, NRA

 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)

!

 INTEGER I, J

 REAL A(LDA,NCA)

 CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5

!

 DATA FMT/'(W10.6)'/

 DATA CLABEL/' ', 'Col 1', 'Col 2', 'Col 3', 'Col 4'/

 DATA RLABEL/'Row 1', 'Row 2', 'Row 3'/

!

 DO 20 I=1, NRA

 DO 10 J=1, NCA

 A(I,J) = (I+J*0.1)*10.0**(J-3)

 10 CONTINUE

 20 CONTINUE

! Write A matrix.

 CALL WRRRL ('A', A, RLABEL, CLABEL, NRA=NRA, FMT=FMT)

 END

Output

 A

 Col 1 Col 2 Col 3 Col 4

Row 1 0.011 0.120 1.300 14.000

Row 2 0.021 0.220 2.300 24.000

Row 3 0.031 0.320 3.300 34.000

WRIRN
Prints an integer rectangular matrix with integer row and column labels.

IMSL MATH LIBRARY Chapter 11: Utilities 1823

Required Arguments

TITLE — Character string specifying the title. (Input)

TITLE set equal to a blank character(s) suppresses printing of the title. Use ―% /‖

within the title to create a new line. Long titles are automatically wrapped.

MAT — NRMAT by NCMAT matrix to be printed. (Input)

Optional Arguments

NRMAT — Number of rows. (Input)

Default: NRMAT = SIZE (MAT,1).

NCMAT — Number of columns. (Input)

Default: NCMAT = SIZE (MAT,2).

LDMAT — Leading dimension of MAT exactly as specified in the dimension statement in the

calling program. (Input)

Default: LDMAT = SIZE (MAT,1).

ITRING — Triangle option. (Input)

Default: ITRING = 0.

ITRING Action

0 Full matrix is printed.

1 Upper triangle of MAT is printed, including the diagonal.

2 Upper triangle of MAT excluding the diagonal of MAT is printed.

−1 Lower triangle of MAT is printed, including the diagonal.

−2 Lower triangle of MAT excluding the diagonal of MAT is printed.

FORTRAN 90 Interface

Generic: CALL WRIRN (TITLE, MAT [,…])

Specific: The specific interface name is S_WRIRN.

FORTRAN 77 Interface

Single: CALL WRIRN (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING)

1824 Chapter 11: Utilities IMSL MATH LIBRARY

Description

Routine WRIRN prints an integer rectangular matrix with the rows and columns labeled 1, 2, 3, and

so on. WRIRN can restrict printing to elements of the upper and lower triangles of matrices via the

ITRING option. Generally, ITRING ≠ 0 is used with symmetric matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector,

set NRMAT to the length of the array and set NCMAT = 1. For a row vector, set NRMAT = 1 and set

NCMAT to the length of the array. In both cases, set LDMAT = NRMAT and set ITRING = 0.

Comments

1. All the entries in MAT are printed using a single I format. The field width is determined

by the largest absolute entry.

2. Horizontal centering, a method for printing large matrices, paging, printing a title on

each page, and many other options can be selected by invoking WROPT.

3. A page width of 78 characters is used. Page width and page length can be reset by

invoking PGOPT .

4. Output is written to the unit specified by UMACH (see Reference Material).

Example

The following example prints all of a 3 × 4 matrix A = MAT where aij = 10i + j.

 USE WRIRN_INT

 IMPLICIT NONE

 INTEGER ITRING, LDMAT, NCMAT, NRMAT

 PARAMETER (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3)

!

 INTEGER I, J, MAT(LDMAT,NCMAT)

!

 DO 20 I=1, NRMAT

 DO 10 J=1, NCMAT

 MAT(I,J) = I*10 + J

 10 CONTINUE

 20 CONTINUE

! Write MAT matrix.

 CALL WRIRN ('MAT', MAT, NRMAT=NRMAT)

 END

Output

 MAT

 1 2 3 4

1 11 12 13 14

2 21 22 23 24

3 31 32 33 34

IMSL MATH LIBRARY Chapter 11: Utilities 1825

WRIRL
Print an integer rectangular matrix with a given format and labels.

Required Arguments

TITLE — Character string specifying the title. (Input)

TITLE set equal to a blank character(s) suppresses printing of the title.

MAT — NRMAT by NCMAT matrix to be printed. (Input)

RLABEL — CHARACTER * (*) vector of labels for rows of MAT. (Input)

If rows are to be numbered consecutively 1, 2, …, NRMAT, use

RLABEL(1) = ‘NUMBER‘. If no row labels are desired, use RLABEL(1) = ‘NONE‘.

Otherwise, RLABEL is a vector of length NRMAT containing the labels.

CLABEL — CHARACTER * (*) vector of labels for columns of MAT. (Input)

If columns are to be numbered consecutively 1, 2, …, NCMAT, use

CLABEL(1) = ‘NUMBER‘. If no column labels are desired, use CLABEL(1) = ‘NONE‘.

Otherwise, CLABEL(1) is the heading for the row labels, and either CLABEL(2) must be

‘NUMBER‘ or ‘NONE‘, or CLABEL must be a vector of length

NCMAT + 1 with CLABEL(1 + j) containing the column heading for the j-th column.

Optional Arguments

NRMAT — Number of rows. (Input)

Default: NRMAT = SIZE (MAT,1).

NCMAT — Number of columns. (Input)

Default: NCMAT = SIZE (MAT,2).

LDMAT — Leading dimension of MAT exactly as specified in the dimension statement in the

calling program. (Input)

Default: LDMAT = SIZE (MAT,1).

ITRING — Triangle option. (Input)

Default: ITRING = 0.

ITRING Action

0 Full matrix is printed.

1 Upper triangle of MAT is printed, including the diagonal.

2 Upper triangle of MAT excluding the diagonal of MAT is printed.

−1 Lower triangle of MAT is printed, including the diagonal.

1826 Chapter 11: Utilities IMSL MATH LIBRARY

−2 Lower triangle of MAT excluding the diagonal of MAT is printed.

FMT — Character string containing formats. (Input)

 If FMT is set to a blank character(s), the format used is a single I format with field

width determined by the largest absolute entry. Otherwise, FMT must contain exactly

one set of parentheses and one or more I edit descriptors. For example,

FMT = ‘(I10)‘ specifies this I format for the entire matrix. FMT = ‘(2I10, 3I5)‘

specifies an I10 format for columns 1 and 2 and an I5 format for columns 3, 4 and 5.

If the end of FMT is encountered and if some columns of the matrix remain, format

control continues with the first format in FMT. FMT may only contain the I edit

descriptor, e.g., the X edit descriptor is not allowed.

Default: FMT = ‗ ‗.

FORTRAN 90 Interface

Generic: CALL WRIRL (TITLE, MAT, RLABEL, CLABEL [,…])

Specific: The specific interface name is S_WRIRL.

FORTRAN 77 Interface

Single: CALL WRIRL (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING, FMT, RLABEL,
CLABEL)

Description

Routine WRIRL prints an integer rectangular matrix (stored in MAT) with row and column labels

(specified by RLABEL and CLABEL, respectively), according to a given format (stored in FMT).

WRIRL can restrict printing to the elements of upper or lower triangles of matrices via the ITRING

option. Generally, ITRING ≠ 0 is used with symmetric matrices. In addition, one-dimensional

arrays can be printed as column or row vectors. For a column vector, set NRMAT to the length of

the array and set NCMAT = 1. For a row vector, set NRMAT = 1 and set NCMAT to the length of the

array. In both cases, set LDMAT = NRMAT, and set ITRING = 0.

Comments

1. The output appears in the following form:

TITLE

CLABEL(1) CLABEL(2) CALBEL(3) CLABEL 4)

RLABEL(1) Xxxxx xxxxx xxxxx

RLABEL(2) Xxxxx xxxxx xxxxx

2. Use ―% /‖ within titles or labels to create a new line. Long titles or labels are

automatically wrapped.

3. A page width of 78 characters is used. Page width and page length can be reset by

invoking PGOPT.

IMSL MATH LIBRARY Chapter 11: Utilities 1827

4. Horizontal centering, a method for printing large matrices, paging, printing a title on

each page, and many other options can be selected by invoking WROPT.

5. Output is written to the unit specified by UMACH (see the Reference Material).

Example

The following example prints all of a 3 × 4 matrix A = MAT where aij= 10i + j.

 USE WRIRL_INT

 IMPLICIT NONE

 INTEGER ITRING, LDMAT, NCMAT, NRMAT

 PARAMETER (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3)

!

 INTEGER I, J, MAT(LDMAT,NCMAT)

 CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5

!

 DATA FMT/'(I2)'/

 DATA CLABEL/' ', 'Col 1', 'Col 2', 'Col 3', 'Col 4'/

 DATA RLABEL/'Row 1', 'Row 2', 'Row 3'/

!

 DO 20 I=1, NRMAT

 DO 10 J=1, NCMAT

 MAT(I,J) = I*10 + J

 10 CONTINUE

 20 CONTINUE

! Write MAT matrix.

 CALL WRIRL ('MAT', MAT, RLABEL, CLABEL, NRMAT=NRMAT)

 END

Output

 MAT

 Col 1 Col 2 Col 3 Col 4

Row 1 11 12 13 14

Row 2 21 22 23 24

Row 3 31 32 33 34

WRCRN
Prints a complex rectangular matrix with integer row and column labels.

Required Arguments

TITLE — Character string specifying the title. (Input)

TITLE set equal to a blank character(s) suppresses printing of the title. Use ―% /‖

within the title to create a new line. Long titles are automatically wrapped.

A — Complex NRA by NCA matrix to be printed. (Input)

1828 Chapter 11: Utilities IMSL MATH LIBRARY

Optional Arguments

NRA — Number of rows. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

ITRING — Triangle option. (Input)

Default: ITRING = 0.

ITRING Action

 0 Full matrix is printed.

 1 Upper triangle of A is printed, including the diagonal.

 2 Upper triangle of A excluding the diagonal of A is printed.

−1 Lower triangle of A is printed, including the diagonal.

−2 Lower triangle of A excluding the diagonal of A is printed.

FORTRAN 90 Interface

Generic: CALL WRCRN (TITLE, A [,…])

Specific: The specific interface names are S_WRCRN and D_WRCRN for two dimensional

arrays, and S_WRCRN1D and D_WRCRN1D for one dimensional arrays.

FORTRAN 77 Interface

Single: CALL WRCRN (TITLE, NRA, NCA, A, LDA, ITRING)

Double: The double precision name is DWRCRN.

Description

Routine WRCRN prints a complex rectangular matrix with the rows and columns labeled 1, 2, 3, and

so on. WRCRN can restrict printing to the elements of the upper or lower triangles of matrices via

the ITRING option. Generally, ITRING ≠ 0 is used with Hermitian matrices.

IMSL MATH LIBRARY Chapter 11: Utilities 1829

In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector,

set NRA to the length of the array, and set NCA = 1. For a row vector, set NRA = 1, and set NCA to

the length of the array. In both cases, set LDA = NRA, and set ITRING = 0.

Comments

1. A single D, E, or F format is chosen automatically in order to print 4 significant digits

for the largest real or imaginary part in absolute value of all the complex numbers in A.

Routine WROPT can be used to change the default format.

2. Horizontal centering, a method for printing large matrices, paging, method for printing

NaN (not a number), and printing a title on each page can be selected by invoking

WROPT.

3. A page width of 78 characters is used. Page width and page length can be reset by

invoking subroutine PGOPT .

4. Output is written to the unit specified by UMACH (see Reference Material).

Example

This example prints all of a 3 × 4 complex matrix A with elements

, where = 1mna m ni i

 USE WRCRN_INT

 IMPLICIT NONE

 INTEGER ITRING, LDA, NCA, NRA

 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)

!

 INTEGER I, J

 COMPLEX A(LDA,NCA), CMPLX

 INTRINSIC CMPLX

!

 DO 20 I=1, NRA

 DO 10 J=1, NCA

 A(I,J) = CMPLX(I,J)

 10 CONTINUE

 20 CONTINUE

! Write A matrix.

 CALL WRCRN ('A', A, NRA=NRA)

 END

Output

 A

 1 2 3 4

1 (1.000, 1.000) (1.000, 2.000) (1.000, 3.000) (1.000, 4.000)

2 (2.000, 1.000) (2.000, 2.000) (2.000, 3.000) (2.000, 4.000)

3 (3.000, 1.000) (3.000, 2.000) (3.000, 3.000) (3.000, 4.000)

1830 Chapter 11: Utilities IMSL MATH LIBRARY

WRCRL
Prints a complex rectangular matrix with a given format and labels.

Required Arguments

TITLE — Character string specifying the title. (Input)

TITLE set equal to a blank character(s) suppresses printing of the title.

A — Complex NRA by NCA matrix to be printed. (Input)

RLABEL — CHARACTER * (*) vector of labels for rows of A. (Input)

If rows are to be numbered consecutively 1, 2, …, NRA, use RLABEL(1) = ‘NUMBER‘. If

no row labels are desired, use RLABEL(1) = ‘NONE‘. Otherwise, RLABEL is a vector of

length NRA containing the labels.

CLABEL — CHARACTER * (*) vector of labels for columns of A. (Input)

If columns are to be numbered consecutively 1, 2, …, NCA, use

CLABEL(1) = ‘NUMBER‘. If no column labels are desired, use CLABEL(1) = ‘NONE‘.

Otherwise, CLABEL(1) is the heading for the row labels, and either CLABEL(2) must be

‘NUMBER‘ or ‘NONE‘, or CLABEL must be a vector of length NCA + 1 with

CLABEL(1 + j) containing the column heading for the j-th column.

Optional Arguments

NRA — Number of rows. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling

program. (Input)

Default: LDA = SIZE (A,1).

ITRING — Triangle option. (Input)

Default: ITRING = 0.

ITRING Action

0 Full matrix is printed.

1 Upper triangle of A is printed, including the diagonal.

2 Upper triangle of A excluding the diagonal of A is printed.

−1 Lower triangle of A is printed, including the diagonal.

IMSL MATH LIBRARY Chapter 11: Utilities 1831

−2 Lower triangle of A excluding the diagonal of A is printed.

FMT — Character string containing formats. (Input)

 If FMT is set to a blank character(s), the format used is specified by WROPT. Otherwise,

FMT must contain exactly one set of parentheses and one or more edit descriptors.

Because a complex number consists of two parts (a real and an imaginary part), two

edit descriptors are used for printing a single complex number. FMT = ‘(E10.3,

F10.3)‘ specifies an E format for the real part and an F format for the imaginary part.

FMT = ‘(F10.3)‘ uses an F format for both the real and imaginary parts. If the end of

FMT is encountered and if all columns of the matrix have not been printed, format

control continues with the first format in FMT. Even though the matrix A is complex, an

I format can be used to print the integer parts of the real and imaginary components of

each complex number. The most useful formats are special formats, called the

―V and W formats,‖ that can be used to specify pretty formats automatically. Set

FMT = ‘(V10.4)‘ if you want a single D, E, or F format selected automatially with

field width 10 and with 4 significant digits. Set FMT = ‘(W10.4)‘ if you want a single

D, E, F, or I format selected automatically with field width 10 and with 4 significant

digits. While the V format prints trailing zeroes and a trailing decimal point, the W

format does not. See Comment 4 for general descriptions of the V and W formats. FMT

may contain only D, E, F, G, I, V, or W edit descriptors, e.g., the X descriptor is not

allowed.

Default: FMT = ‗ ‗.

FORTRAN 90 Interface

Generic: CALL WRCRL (TITLE, A, RLABEL, CLABEL[,…])

Specific: The specific interface names are S_WRCRL and D_WRCRL for two dimensional

arrays, and S_WRCRL1D and D_WRCRL1D for one dimensional arrays.

FORTRAN 77 Interface

Single: CALL WRCRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL, CLABEL)

Double: The double precision name is DWRCRL.

Description

Routine WRCRL prints a complex rectangular matrix (stored in A) with row and column labels

(specified by RLABEL and CLABEL, respectively) according to a given format (stored in FMT).

Routine WRCRL can restrict printing to the elements of upper or lower triangles of matrices via the

ITRING option. Generally, the ITRING ≠ 0 is used with Hermitian matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector,

set NRA to the length of the array, and set NCA = 1. For a row vector, set NRA = 1, and set NCA to

the length of the array. In both cases, set LDA = NRA, and set ITRING = 0.

1832 Chapter 11: Utilities IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of W2CRL/DW2CRL. The

reference is:

CALL W2CRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL,

CLABEL, CHWK)

The additional argument is:

CHWK — CHARACTER * 10 work vector of length 2 * NCA. This workspace is

referenced only if all three conditions indicated at the beginning of this

comment are met. Otherwise, CHWK is not referenced and can be a

CHARACTER * 10 vector of length one.

2. The output appears in the following form:

 TITLE

CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4)

RLABEL(1) (xxxxx,xxxxx) (xxxxx,xxxxx) (xxxxx,xxxxx)

RLABEL(2) (xxxxx,xxxxx) (xxxxx,xxxxx) (xxxxx,xxxxx)

3. Use ―% /‖ within titles or labels to create a new line. Long titles or labels are

automatically wrapped.

4. For printing numbers whose magnitudes are unknown, the G format in FORTRAN is

useful; however, the decimal points will generally not be aligned when printing a

column of numbers. The V and W formats are special formats used by this routine to

select a D, E, F, or I format so that the decimal points will be aligned. The V and W

formats are specified as Vn.d and Wn.d. Here, n is the field width, and d is the number

of significant digits generally printed. Valid values for n are 3, 4, …, 40. Valid values

for d are 1, 2, …, n − 2. If FMT specifies one format and that format is a V or W format,

all elements of the matrix A are examined to determine one FORTRAN format for

printing. If FMT specifies more than one format, FORTRAN formats are generated

separately from each V or W format.

5. A page width of 78 characters is used. Page width and page length can be reset by

invoking PGOPT.

6. Horizontal centering, a method for printing large matrices, paging, method for printing

NaN (not a number), printing a title on each page, and may other options can be

selected by invoking WROPT.

7. Output is written to the unit specified by UMACH (see the Reference Material).

Example

The following example prints all of a 3 × 4 matrix A with elements

IMSL MATH LIBRARY Chapter 11: Utilities 1833

 .123456 , where = 1mna m ni i

 USE WRCRL_INT

 IMPLICIT NONE

 INTEGER ITRING, LDA, NCA, NRA

 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)

!

 INTEGER I, J

 COMPLEX A(LDA,NCA), CMPLX

 CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5

 INTRINSIC CMPLX

!

 DATA FMT/'(W12.6)'/

 DATA CLABEL/' ', 'Col 1', 'Col 2', 'Col 3', 'Col 4'/

 DATA RLABEL/'Row 1', 'Row 2', 'Row 3'/

!

 DO 20 I=1, NRA

 DO 10 J=1, NCA

 A(I,J) = CMPLX(I,J) + 0.123456

 10 CONTINUE

 20 CONTINUE

! Write A matrix.

 CALL WRCRL ('A', A, RLABEL, CLABEL, NRA=NRA, FMT=FMT)

 END

Output

 A

 Col 1 Col 2

Row 1 (1.12346, 1.00000) (1.12346, 2.00000)

Row 2 (2.12346, 1.00000) (2.12346, 2.00000)

Row 3 (3.12346, 1.00000) (3.12346, 2.00000)

 Col 3 Col 4

Row 1 (1.12346, 3.00000) (1.12346, 4.00000)

Row 2 (2.12346, 3.00000) (2.12346, 4.00000)

Row 3 (3.12346, 3.00000) (3.12346, 4.00000)

WROPT
Sets or retrieves an option for printing a matrix.

Required Arguments

IOPT — Indicator of option type. (Input)

1834 Chapter 11: Utilities IMSL MATH LIBRARY

IOPT Description of Option Type

1, 1 Horizontal centering or left justification of

matrix to be printed

−2, 2 Method for printing large matrices

−3, 3 Paging

−4, 4 Method for printing NaN (not a number), and

negative and positive machine infinity.

−5, 5 Title option

−6, 6 Default format for real and complex numbers

−7, 7 Spacing between columns

−8, 8 Maximum horizontal space reserved for row

labels

−9, 9 Indentation of continuation lines for row labels

−10, 10 Hot zone option for determining line breaks for

row labels

−11, 11 Maximum horizontal space reserved for column

labels

−12, 12 Hot zone option for determining line breaks for

column labels

−13, 13 Hot zone option for determining line breaks for

titles

−14, 14 Option for the label that appears in the upper

left hand corner that can be used as a heading

for the row numbers or a label for the column

headings for WR**N routines

−15, 15 Option for skipping a line between invocations

of WR**N routines, provided a new page is not

to be issued

−16, 16 Option for vertical alignment of the matrix

values relative to the associated row labels that

occupy more than one line

IMSL MATH LIBRARY Chapter 11: Utilities 1835

IOPT Description of Option Type

0 Reset all the current settings saved in internal

variables back to their last setting made with an

invocation of WROPT with ISCOPE = 1. (This

option is used internally by routines printing a

matrix and is not useful otherwise.)

 If IOPT is negative, ISETNG and ISCOPE are input and are saved in internal variables.

If IOPT is positive, ISETNG is output and receives the currently active setting for the

option (if ISCOPE = 0) or the last global setting for the option (if ISCOPE = 1).

If IOPT = 0, ISETNG and ISCOPE are not referenced.

ISETNG — Setting for option selected by IOPT. (Input, if IOPT is negative; output, if IOPT

is positive; not referenced if IOPT = 0)

IOPT ISETNG Meaning

−1, 1 0 Matrix is left justified

 1 Matrix is centered horizontally on page

−2, 2 0 A complete row is printed before the next row is

printed. Wrapping is used if necessary.

 m Here, m is a positive integer. Let n be the

maximum number of columns beginning with

column 1 that fit across the page (as determined by

the widths of the printing formats). First, columns

1 through n1 are printed for rows 1 through m. Let

n2 be the maximum number of columns beginning

with column n + 1 that fit across the page.

Second, columns n1 + 1 through n1 + n2 are printed

for rows 1 through m. This continues until the last

columns are printed for rows 1 through m. Printing

continues in this fashion for the next m rows, etc.

−3, 3 −2 Printing begins on the next line, and no paging

occurs.

 −1 Paging is on. Every invocation of a WR*** routine

begins on a new page, and paging occurs within

each invocation as is needed

 0 Paging is on. The first invocation of a WR***

routine begins on a new page, and subsequent

paging occurs as is needed. With this option, every

invocation of a WR*** routine ends with a call to

WROPT to reset this option to k, a positive integer

giving the number of lines printed on the current

page.

1836 Chapter 11: Utilities IMSL MATH LIBRARY

IOPT ISETNG Meaning

−1, 1 0 Matrix is left justified

 k Here, k is a positive integer. Paging is on, and k

lines have been printed on the current page. If k is

less than the page length IPAGE (see PGOPT), then

IPAGE − k lines are printed before a new page

instruction is issued. If k is greater than or equal to

IPAGE, then the first invocation of a WR***

routine begins on a new page. In any case,

subsequent paging occurs as is needed. With this

option, every invocation of a WR*** routine ends

with a call to WROPT to reset the value of k.

−4, 4 0 NaN is printed as a series of decimal points,

negative machine infinity is printed as a series of

minus signs, and positive machine infinity is

printed as a series of plus signs.

 1 NaN is printed as a series of blank characters,

negative machine infinity is printed as a series of

minus signs, and positive machine infinity is

printed as a series of plus signs.

 2 NaN is printed as ―NaN,‖ negative machine

infinity is printed as ―-Inf‖ and positive machine

infinity is printed as ―Inf.‖

 3 NaN is printed as a series of blank characters,

negative machine infinity is printed as ―-Inf,‖ and

positive machine infinity is printed as ―Inf.‖

−5, 5 0 Title appears only on first page.

 1 Title appears on the first page and all continuation

pages.

−6, 6 0 Format is (W10.4). See Comment 2.

 1 Format is (W12.6). See Comment 2.

 2 Format is (1PE12.5).

 3 Format is Vn.4 where the field width n is

determined. See Comment 2.

 4 Format is Vn.6 where the field width n is determined. See

Comment 2.

 5 Format is 1PEn.d where n = d + 7, and d + 1 is the

maximum number of significant digits.

−7, 7 K Number of characters left blank between columns.

K must be between 0 and 5, inclusively.

−8, 8 K2 Maximum width (in characters) reserved for row

labels. K2 = 0 means use the default.

IMSL MATH LIBRARY Chapter 11: Utilities 1837

IOPT ISETNG Meaning

−1, 1 0 Matrix is left justified

−9, 9 K3 Number of characters used to indent continuation

lines for row labels. K3 must be between 0 and 10,

inclusively.

−10, 10 K4 Width (in characters) of the hot zone where line

breaks in row labels can occur. K4 = 0 means use

the default. K 4 must not exceed 50.

−11, 11 K5 Maximum width (in characters) reserved for

column labels. K5 = 0 means use the default.

−12, 12 K6 Width (in characters) of the hot zone where line

breaks in column labels can occur. K 6 = 0 means

use the default. K 6 must not exceed 50.

−13, 13 K7 Width (in characters) of the hot zone where line

breaks in titles can occur. K 7 must be between 1

and 50, inclusively.

−14 0 There is no label in the upper left hand corner.

 1 The label in the upper left hand corner is

―Component‖ if a row vector or column vector is

printed; the label is ―Row/Column‖ if both the

number of rows and columns are greater than one;

otherwise, there is no label.

−15 0 A blank line is printed on each invocation of a

WR**N routine before the matrix title provided a

new page is not to be issued.

 1 A blank line is not printed on each invocation of a

WR**N routine before the matrix title.

−16, 16 0 The matrix values are aligned vertically with the

last line of the associated row label for the case

IOPT = 2 and ISET is positive.

 1 The matrix values are aligned vertically with the

first line of the associated row label.

ISCOPE — Indicator of the scope of the option. (Input if IOPT is nonzero; not referenced if

IOPT = 0)

ISCOPE Action

0 Setting is temporarily active for the next invocation of a WR*** matrix

 printing routine.

1 Setting is active until it is changed by another invocation of WROPT.

1838 Chapter 11: Utilities IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL WROPT (IOPT, ISETNG, ISCOPE)

Specific: The specific interface name is WROPT.

FORTRAN 77 Interface

Single: CALL WROPT (IOPT, ISETNG, ISCOPE)

Description

Routine WROPT allows the user to set or retrieve an option for printing a matrix. The options

controlled by WROPT include the following: horizontal centering, a method for printing large

matrices, paging, method for printing NaN (not a number) and positive and negative machine

infinities, printing titles, default formats for numbers, spacing between columns, maximum widths

reserved for row and column labels, indentation of row labels that continue beyond one line,

widths of hot zones for breaking of labels and titles, the default heading for row labels, whether to

print a blank line between invocations of routines, and vertical alignment of matrix entries with

respect to row labels continued beyond one line. (NaN and positive and negative machine

infinities can be retrieved by AMACH and DMACH that are documented in the section ―Machine-

Dependent Constants‖ in the Reference Material.) Options can be set globally (ISCOPE = 1) or

temporarily for the next call to a printing routine (ISCOPE = 0).

Comments

1. This program can be invoked repeatedly before using a WR*** routine to print a matrix.

The matrix printing routines retrieve these settings to determine the printing options. It

is not necessary to call WROPT if a default value of a printing option is desired. The

defaults are as follows.

IOPT Default
Value for
ISET

Meaning

1 0 Left justified

2 1000000 Number lines before wrapping

3 −2 No paging

4 2 NaN is printed as ―NaN,‖ negative machine

infinity is printed as ―-Inf‖ and positive

machine infinity is printed as ―Inf.‖

5 0 Title only on first page.

6 3 Default format is Vn.4.

7 2 2 spaces between columns.

8 0 Maximum row label width MAXRLW = 2 *

IPAGEW/3 if matrix has one column;

MAXRLW = IPAGEW/4 otherwise.

IMSL MATH LIBRARY Chapter 11: Utilities 1839

IOPT Default
Value for
ISET

Meaning

9 3 3 character indentation of row labels

continued beyond one line.

10 0 Width of row label hot zone is MAXRLW/3

characters.

11 0 Maximum column label width

MAXCLW = min{max (NW + NW/2, 15), 40}

for integer and real matrices, where NW is

the field width for the format corresponding

to the particular column.

MAXCLW = min{max(NW + NW/2, 15), 83} for

complex matrices, where NW is the sum of

the two field widths for the formats

corresponding to the particular column plus

3.

12 0 Width of column label hot zone is

MAXCLW/3 characters.

13 10 Width of hot zone for titles is 10 characters.

14 0 There is no label in the upper left hand

corner.

15 0 Blank line is printed.

16 0 The matrix values are aligned vertically

with the last line of the associated row label.

 For IOPT = 8, the default depends on the current value for the page width, IPAGEW (see

PGOPT).

2. The V and W formats are special formats that can be used to select a D, E, F, or I format

so that the decimal points will be aligned. The V and W formats are specified as Vn.d

and Wn.d. Here, n is the field width and d is the number of significant digits generally

printed. Valid values for n are 3, 4, …, 40. Valid values for d are 1, 2, …, n − 2. While

the V format prints trailing zeroes and a trailing decimal point, the W format does not.

Example

The following example illustrates the effect of WROPT when printing a 3 × 4 real matrix A with

WRRRN where aij = i + j/10. The first call to WROPT sets horizontal printing so that the matrix is first

printed horizontally centered on the page. In the next invocation of WRRRN, the left-justification

option has been set via routine WROPT so the matrix is left justified when printed. Finally, because

the scope of left justification was only for the next call to a printing routine, the last call to WRRRN

results in horizontally centered printing.

 USE WROPT_INT

 USE WRRRN_INT

 IMPLICIT NONE

1840 Chapter 11: Utilities IMSL MATH LIBRARY

 INTEGER ITRING, LDA, NCA, NRA

 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)

!

 INTEGER I, IOPT, ISCOPE, ISETNG, J

 REAL A(LDA,NCA)

!

 DO 20 I=1, NRA

 DO 10 J=1, NCA

 A(I,J) = I + J*0.1

 10 CONTINUE

 20 CONTINUE

! Activate centering option.

! Scope is global.

 IOPT = -1

 ISETNG = 1

 ISCOPE = 1

!

 CALL WROPT (IOPT, ISETNG, ISCOPE)

! Write A matrix.

 CALL WRRRN ('A', A, NRA=NRA)

! Activate left justification.

! Scope is local.

 IOPT = -1

 ISETNG = 0

 ISCOPE = 0

 CALL WROPT (IOPT, ISETNG, ISCOPE)

 CALL WRRRN ('A', A, NRA=NRA)

 CALL WRRRN ('A', A, NRA=NRA)

 END

Output

 A

 1 2 3 4

 1 1.100 1.200 1.300 1.400

 2 2.100 2.200 2.300 2.400

 3 3.100 3.200 3.300 3.400

 A

 1 2 3 4

1 1.100 1.200 1.300 1.400

2 2.100 2.200 2.300 2.400

3 3.100 3.200 3.300 3.400

 A

 1 2 3 4

 1 1.100 1.200 1.300 1.400

 2 2.100 2.200 2.300 2.400

 3 3.100 3.200 3.300 3.400

PGOPT
Sets or retrieves page width and length for printing.

IMSL MATH LIBRARY Chapter 11: Utilities 1841

Required Arguments

IOPT — Page attribute option. (Input)

IOPT Description of Attribute

−1, 1 Page width.

−2, 2 Page length.

Negative values of IOPT indicate the setting IPAGE is input. Positive values

of IOPT indicate the setting IPAGE is output.

IPAGE — Value of page attribute. (Input, if IOPT is negative; output, if IOPT is positive.)

IOPT Description of Attribute Settings for IPAGE

−1, 1 Page width (in characters) 10, 11, …

−2, 2 Page length (in lines) 10, 11, …

FORTRAN 90 Interface

Generic: CALL PGOPT (IOPT, IPAGE)

Specific: The specific interface name is PGOPT.

FORTRAN 77 Interface

Single: CALL PGOPT (IOPT, IPAGE)

Description

Routine PGOPT is used to set or retrieve the page width or the page length for routines that perform

printing.

Example

The following example illustrates the use of PGOPT to set the page width at 20 characters. Routine

WRRRN is then used to print a 3 × 4 matrix A where aij= i + j/10.

 USE PGOPT_INT

 USE WRRRN_INT

 IMPLICIT NONE

 INTEGER ITRING, LDA, NCA, NRA

 PARAMETER (ITRING=0, LDA=3, NCA=4, NRA=3)

!

 INTEGER I, IOPT, IPAGE, J

 REAL A(LDA,NCA)

1842 Chapter 11: Utilities IMSL MATH LIBRARY

!

 DO 20 I=1, NRA

 DO 10 J=1, NCA

 A(I,J) = I + J*0.1

 10 CONTINUE

 20 CONTINUE

! Set page width.

 IOPT = -1

 IPAGE = 20

 CALL PGOPT (IOPT, IPAGE)

! Print the matrix A.

 CALL WRRRN ('A', A)

 END

Output

 A

 1 2

1 1.100 1.200

2 2.100 2.200

3 3.100 3.200

 3 4

1 1.300 1.400

2 2.300 2.400

3 3.300 3.400

PERMU
Rearranges the elements of an array as specified by a permutation.

Required Arguments

X — Real vector of length N containing the array to be permuted. (Input)

IPERMU — Integer vector of length N containing a permutation

IPERMU(1), …, IPERMU(N) of the integers 1, …, N. (Input)

XPERMU — Real vector of length N containing the array X permuted. (Output)

If X is not needed, X and XPERMU can share the same storage locations.

Optional Arguments

N — Length of the arrays X and XPERMU. (Input)

Default: N = SIZE (IPERMU,1).

IPATH — Integer flag. (Input)

Default: IPATH = 1.

IPATH = 1 means IPERMU represents a forward permutation, i.e., X(IPERMU(I)) is

IMSL MATH LIBRARY Chapter 11: Utilities 1843

moved to XPERMU(I). IPATH = 2 means IPERMU represents a backward permutation,

i.e., X(I) is moved to XPERMU(IPERMU(I)).

FORTRAN 90 Interface

Generic: CALL PERMU (X, IPERMU, XPERMU [,…])

Specific: The specific interface names are S_PERMU and D_PERMU.

FORTRAN 77 Interface

Single: CALL PERMU (N, X, IPERMU, IPATH, XPERMU)

Double: The double precision name is DPERMU.

Description

Routine PERMU rearranges the elements of an array according to a permutation vector. It has the

option to do both forward and backward permutations.

Example

This example rearranges the array X using IPERMU; forward permutation is performed.

 USE PERMU_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER IPATH, N

 PARAMETER (IPATH=1, N=4)

!

 INTEGER IPERMU(N), J, NOUT

 REAL X(N), XPERMU(N)

! Set values for X, IPERMU

!

! X = (5.0 6.0 1.0 4.0)

! IPERMU = (3 1 4 2)

!

 DATA X/5.0, 6.0, 1.0, 4.0/, IPERMU/3, 1, 4, 2/

! Permute X into XPERMU

 CALL PERMU (X, IPERMU, XPERMU)

! Get output unit number

 CALL UMACH (2, NOUT)

! Print results

 WRITE (NOUT,99999) (XPERMU(J),J=1,N)

!

99999 FORMAT (' The output vector is:', /, 10(1X,F10.2))

 END

1844 Chapter 11: Utilities IMSL MATH LIBRARY

Output

The Output vector is:

1.00 5.00 4.00 6.00

PERMA
Permutes the rows or columns of a matrix.

Required Arguments

A — NRA by NCA matrix to be permuted. (Input)

IPERMU — Vector of length K containing a permutation IPERMU(1), …, IPERMU(K) of the

integers 1, …, K where K = NRA if the rows of A are to be permuted and K = NCA if the

columns of A are to be permuted. (Input)

APER — NRA by NCA matrix containing the permuted matrix. (Output)

If A is not needed, A and APER can share the same storage locations.

Optional Arguments

NRA — Number of rows. (Input)

Default: NRA = SIZE (A,1).

NCA — Number of columns. (Input)

Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

IPATH — Option parameter. (Input)

IPATH = 1 means the rows of A will be permuted. IPATH = 2 means the columns of A

will be permuted.

Default: IPATH = 1.

LDAPER — Leading dimension of APER exactly as specified in the dimension statement of

the calling program. (Input)

Default: LDAPER = SIZE (APER,1).

FORTRAN 90 Interface

Generic: CALL PERMA (A, IPERMU, APER [,…])

Specific: The specific interface names are S_PERMA and D_PERMA.

IMSL MATH LIBRARY Chapter 11: Utilities 1845

FORTRAN 77 Interface

Single: CALL PERMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER)

Double: The double precision name is DPERMA.

Description

Routine PERMA interchanges the rows or columns of a matrix using a permutation vector such as

the one obtained from routines SVRBP or SVRGP.

The routine PERMA permutes a column (row) at a time by calling PERMU. This process is continued

until all the columns (rows) are permuted. On completion, let B = APER and pi = IPERMU(I), then

iij p jB A

for all i, j.

Comments

1. Workspace may be explicitly provided, if desired, by use of P2RMA/DP2RMA. The

reference is:

CALL P2RMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER,

WORK)

The additional argument is:

WORK — Real work vector of length NCA.

Example

This example permutes the columns of a matrix A.

 USE PERMA_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER IPATH, LDA, LDAPER, NCA, NRA

 PARAMETER (IPATH=2, LDA=3, LDAPER=3, NCA=5, NRA=3)

!

 INTEGER I, IPERMU(5), J, NOUT

 REAL A(LDA,NCA), APER(LDAPER,NCA)

! Set values for A, IPERMU

! A = (3.0 5.0 1.0 2.0 4.0)

! (3.0 5.0 1.0 2.0 4.0)

! (3.0 5.0 1.0 2.0 4.0)

!

! IPERMU = (3 4 1 5 2)

!

 DATA A/3*3.0, 3*5.0, 3*1.0, 3*2.0, 3*4.0/, IPERMU/3, 4, 1, 5, 2/

! Perform column permutation on A,

! giving APER

1846 Chapter 11: Utilities IMSL MATH LIBRARY

 CALL PERMA (A, IPERMU, APER, IPATH=IPATH)

! Get output unit number

 CALL UMACH (2, NOUT)

! Print results

 WRITE (NOUT,99999) ((APER(I,J),J=1,NCA),I=1,NRA)

!

99999 FORMAT (' The output matrix is:', /, 3(5F8.1,/))

 END

Output

The Output matrix is:

1.0 2.0 3.0 4.0 5.0

1.0 2.0 3.0 4.0 5.0

1.0 2.0 3.0 4.0 5.0

SORT_REAL
Sorts a rank-1 array of real numbers x so the y results are algebraically nondecreasing,

y1 ≤ y2 ≤ … yn.

Required Arguments

X — Rank-1 array containing the numbers to be sorted. (Output)

Y — Rank-1 array containing the sorted numbers. (Output)

Optional Arguments

NSIZE = n (Input)

Uses the sub-array of size n for the numbers.

Default value: n = SIZE(x)

IPERM = iperm (Input/Output)

Applies interchanges of elements that occur to the entries of iperm(:). If the values

iperm(i)=i,i=1,n are assigned prior to call, then the output array is moved to its

proper order by the subscripted array assignment y = x(iperm(1:n)).

ICYCLE = icycle (Output)

Permutations applied to the input data are converted to cyclic interchanges. Thus, the

output array y is given by the following elementary interchanges, where :=: denotes a

swap:

j = icycle(i)

y(j) :=: y(i), i = 1,n

IOPT = iopt(:) (Input)

Derived type array with the same precision as the input matrix; used for passing

optional data to the routine. The options are as follows:

IMSL MATH LIBRARY Chapter 11: Utilities 1847

Packaged Options for SORT_REAL

Option Prefix = ? Option Name Option Value

s_, d_ Sort_real_scan_for_NaN 1

iopt(IO) = ?_options(?_sort_real_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(x(i)) == .true.

See the isNaN() function, Chapter 10.

Default: Does not scan for NaNs.

FORTRAN 90 Interface

Generic: CALL SORT_REAL (X, Y [,…])

Specific: The specific interface names are S_SORT_REAL and D_SORT_REAL.

Description

For a detailed description, see the ―Description‖ section of routine SVRGN, which appears later in

this chapter.

Fatal and Terminal Error Messages

See the messages.gls file for error messages for SORT_REAL. These error messages are numbered

561−567; 581−587.

Example 1: Sorting an Array

An array of random numbers is obtained. The values are sorted so they are nondecreasing.

 use sort_real_int

 use rand_gen_int

 implicit none

! This is Example 1 for SORT_REAL.

 integer, parameter :: n=100

 real(kind(1e0)), dimension(n) :: x, y

! Generate random data to sort.

 call rand_gen(x)

! Sort the data so it is non-decreasing.

 call sort_real(x, y)

! Check that the sorted array is not decreasing.

 if (count(y(1:n-1) > y(2:n)) == 0) then

 write (*,*) 'Example 1 for SORT_REAL is correct.'

 end if

 end

1848 Chapter 11: Utilities IMSL MATH LIBRARY

Output

Example 1 for SORT_REAL is correct.

Additional Examples

Example 2: Sort and Final Move with a Permutation

A set of n random numbers is sorted so the results are nonincreasing. The columns of an n × n

random matrix are moved to the order given by the permutation defined by the interchange of the

entries. Since the routine sorts the results to be algebraically nondecreasing, the array of negative

values is used as input. Thus, the negative value of the sorted output order is nonincreasing. The

optional argument ―iperm=‖ records the final order and is used to move the matrix columns to

that order. This example illustrates the principle of sorting record keys, followed by direct

movement of the records to sorted order.

 use sort_real_int

 use rand_gen_int

 implicit none

! This is Example 2 for SORT_REAL.

 integer i

 integer, parameter :: n=100

 integer ip(n)

 real(kind(1e0)) a(n,n), x(n), y(n), temp(n*n)

! Generate a random array and matrix of values.

 call rand_gen(x)

 call rand_gen(temp)

 a = reshape(temp,(/n,n/))

! Initialize permutation to the identity.

 do i=1, n

 ip(i) = i

 end do

! Sort using negative values so the final order is

! non-increasing.

 call sort_real(-x, y, iperm=ip)

! Final movement of keys and matrix columns.

 y = x(ip(1:n))

 a = a(:,ip(1:n))

! Check the results.

 if (count(y(1:n-1) < y(2:n)) == 0) then

 write (*,*) 'Example 2 for SORT_REAL is correct.'

 end if

 end

IMSL MATH LIBRARY Chapter 11: Utilities 1849

Output

Example 2 for SORT_REAL is correct.

SVRGN
Sorts a real array by algebraically increasing value.

Required Arguments

RA — Vector of length N containing the array to be sorted. (Input)

RB — Vector of length N containing the sorted array. (Output)

If RA is not needed, RA and RB can share the same storage locations.

Optional Arguments

N — Number of elements in the array to be sorted. (Input)

Default: N = SIZE (RA,1).

FORTRAN 90 Interface

Generic: CALL SVRGN (RA, RB [,…])

Specific: The specific interface names are S_SVRGN and D_SVRGN.

FORTRAN 77 Interface

Single: CALL SVRGN (N, RA, RB)

Double: The double precision name is DSVRGN.

Description

Routine SVRGN sorts the elements of an array, A, into ascending order by algebraic value. The

array A is divided into two parts by picking a central element T of the array. The first and last

elements of A are compared with T and exchanged until the three values appear in the array in

ascending order. The elements of the array are rearranged until all elements greater than or equal

to the central element appear in the second part of the array and all those less than or equal to the

central element appear in the first part. The upper and lower subscripts of one of the segments are

saved, and the process continues iteratively on the other segment. When one segment is finally

sorted, the process begins again by retrieving the subscripts of another unsorted portion of the

array. On completion, Aj ≤ Ai for j < i. For more details, see Singleton (1969), Griffin and Redish

(1970), and Petro (1970).

Example

This example sorts the 10-element array RA algebraically.

1850 Chapter 11: Utilities IMSL MATH LIBRARY

 USE SVRGN_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER N, NOUT, J

 PARAMETER (N=10)

 REAL RA(N), RB(N)

! Set values for RA

! RA = (-1.0 2.0 -3.0 4.0 -5.0 6.0 -7.0 8.0 -9.0 10.0)

!

 DATA RA/-1.0, 2.0, -3.0, 4.0, -5.0, 6.0, -7.0, 8.0, -9.0, 10.0/

! Sort RA by algebraic value into RB

 CALL SVRGN (RA, RB)

! Print results

 CALL UMACH (2,NOUT)

 WRITE (NOUT, 99999) (RB(J),J=1,N)

!

99999 FORMAT (' The output vector is:', /, 10(1X,F5.1))

 END

Output

The Output vector is:

-9.0 -7.0 -5.0 -3.0 -1.0 2.0 4.0 6.0 8.0 10.0

SVRGP
Sorts a real array by algebraically increasing value and return the permutation that rearranges the

array.

Required Arguments

RA — Vector of length N containing the array to be sorted. (Input)

RB — Vector of length N containing the sorted array. (Output)

If RA is not needed, RA and RB can share the same storage locations.

IPERM — Vector of length N. (Input/Output)

On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM

contains a record of permutations made on the vector RA.

Optional Arguments

N — Number of elements in the array to be sorted. (Input)

Default: N = SIZE (IPERM,1).

FORTRAN 90 Interface

Generic: CALL SVRGP (RA, RB, IPERM [,…])

IMSL MATH LIBRARY Chapter 11: Utilities 1851

Specific: The specific interface names are S_SVRGP and D_SVRGP.

FORTRAN 77 Interface

Single: CALL SVRGP (N, RA, RB, IPERM)

Double: The double precision name is DSVRGP.

Description

Routine SVRGP sorts the elements of an array, A, into ascending order by algebraic value, keeping

a record in P of the permutations to the array A. That is, the elements of P are moved in the same

manner as are the elements in A as A is being sorted. The routine SVRGP uses the algorithm

discussed in SVRGN. On completion, Aj ≤ Ai for j < i.

Comments

For wider applicability, integers (1, 2, …, N) that are to be associated with RA(I) for I = 1, 2,

…, N may be entered into IPERM(I) in any order. Note that these integers must be unique.

Example

This example sorts the 10-element array RA algebraically.

 USE SVRGP_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER N, NOUT, J

 PARAMETER (N=10)

 REAL RA(N), RB(N)

 INTEGER IPERM(N)

! Set values for RA and IPERM

! RA = (10.0 -9.0 8.0 -7.0 6.0 5.0 4.0 -3.0 -2.0 -1.0)

!

! IPERM = (1 2 3 4 5 6 7 8 9 10)

!

 DATA RA/10.0, -9.0, 8.0, -7.0, 6.0, 5.0, 4.0, -3.0, -2.0, -1.0/

 DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/

! Sort RA by algebraic value into RB

 CALL SVRGP (RA, RB, IPERM)

! Print results

 CALL UMACH (2,NOUT)

 WRITE (NOUT, 99998) (RB(J),J=1,N)

 WRITE (NOUT, 99999) (IPERM(J),J=1,N)

!

99998 FORMAT (' The output vector is:', /, 10(1X,F5.1))

99999 FORMAT (' The permutation vector is:', /, 10(1X,I5))

 END

1852 Chapter 11: Utilities IMSL MATH LIBRARY

Output

The output vector is:

-9.0 -7.0 -3.0 -2.0 -1.0 4.0 5.0 6.0 8.0 10.0

The permutation vector is:

2 4 8 9 10 7 6 5 3 1

SVIGN
Sorts an integer array by algebraically increasing value.

Required Arguments

IA — Integer vector of length N containing the array to be sorted. (Input)

IB — Integer vector of length N containing the sorted array. (Output)

If IA is not needed, IA and IB can share the same storage locations.

Optional Arguments

N — Number of elements in the array to be sorted. (Input)

Default: N = SIZE (IA,1).

FORTRAN 90 Interface

Generic: CALL SVIGN (IA, IB [,…])

Specific: The specific interface name is S_SVIGN .

FORTRAN 77 Interface

Single: CALL SVIGN (N, IA, IB)

Description

Routine SVIGN sorts the elements of an integer array, A, into ascending order by algebraic value.

The routine SVIGN uses the algorithm discussed in SVRGN. On completion, Aj ≤ Ai for j < i.

Example

This example sorts the 10-element array IA algebraically.

 USE SVIGN_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER N, NOUT, J

IMSL MATH LIBRARY Chapter 11: Utilities 1853

 PARAMETER (N=10)

 INTEGER IA(N), IB(N)

! Set values for IA

! IA = (-1 2 -3 4 -5 6 -7 8 -9 10)

!

 DATA IA/-1, 2, -3, 4, -5, 6, -7, 8, -9, 10/

! Sort IA by algebraic value into IB

 CALL SVIGN (IA, IB)

! Print results

 CALL UMACH (2,NOUT)

 WRITE (NOUT, 99999) (IB(J),J=1,N)

!

99999 FORMAT (' The output vector is:', /, 10(1X,I5))

 END

Output

The Output vector is:

-9 -7 -5 -3 -1 2 4 6 8 10

SVIGP
Sorts an integer array by algebraically increasing value and return the permutation that rearranges

the array.

Required Arguments

IA — Integer vector of length N containing the array to be sorted. (Input)

IB — Integer vector of length N containing the sorted array. (Output)

If IA is not needed, IA and IB can share the same storage locations.

IPERM — Vector of length N. (Input/Output)

On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM

contains a record of permutations made on the vector IA.

Optional Arguments

N — Number of elements in the array to be sorted. (Input)

Default: N = SIZE (IPERM,1).

FORTRAN 90 Interface

Generic: CALL SVIGP (IA, IB, IPERM [,…])

Specific: The specific interface name is S_SVIGP.

FORTRAN 77 Interface

Single: CALL SVIGP (N, IA, IB, IPERM)

1854 Chapter 11: Utilities IMSL MATH LIBRARY

Description

Routine SVIGP sorts the elements of an integer array, A, into ascending order by algebraic value,

keeping a record in P of the permutations to the array A. That is, the elements of P are moved in

the same manner as are the elements in A as A is being sorted. The routine SVIGP uses the

algorithm discussed in SVRGN. On completion, Aj ≤ Ai for j < i.

Comments

For wider applicability, integers (1, 2, …, N) that are to be associated with IA(I) for I = 1, 2,

…, N may be entered into IPERM(I) in any order. Note that these integers must be unique.

Example

This example sorts the 10-element array IA algebraically.

 USE SVIGP_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER N, J, NOUT

 PARAMETER (N=10)

 INTEGER IA(N), IB(N), IPERM(N)

! Set values for IA and IPERM

! IA = (10 -9 8 -7 6 5 4 -3 -2 -1)

!

! IPERM = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

!

 DATA IA/10, -9, 8, -7, 6, 5, 4, -3, -2, -1/

 DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/

! Sort IA by algebraic value into IB

 CALL SVIGP (IA, IB, IPERM)

! Print results

 CALL UMACH (2,NOUT)

 WRITE (NOUT, 99998) (IB(J),J=1,N)

 WRITE (NOUT, 99999) (IPERM(J),J=1,N)

!

99998 FORMAT (' The output vector is:', /, 10(1X,I5))

99999 FORMAT (' The permutation vector is:', /, 10(1X,I5))

 END

Output

The Output vector is:

-9 -7 -3 -2 -1 4 5 6 8 10

The permutation vector is:

2 4 8 9 10 7 6 5 3 1

IMSL MATH LIBRARY Chapter 11: Utilities 1855

SVRBN
Sorts a real array by nondecreasing absolute value.

Required Arguments

RA — Vector of length N containing the array to be sorted. (Input)

RB — Vector of length N containing the sorted array. (Output)

If RA is not needed, RA and RB can share the same storage locations.

Optional Arguments

N — Number of elements in the array to be sorted. (Input)

Default: N = SIZE (RA,1).

FORTRAN 90 Interface

Generic: CALL SVRBN (RA, RB [,…])

Specific: The specific interface names are S_SVRBN and D_SVRBN.

FORTRAN 77 Interface

Single: CALL SVRBN (N, RA, RB)

Double: The double precision name is DSVRBN.

Description

Routine SVRBN sorts the elements of an array, A, into ascending order by absolute value. The

routine SVRBN uses the algorithm discussed in SVRGN. On completion, |Aj| ≤ |Ai| for j < i.

Example

This example sorts the 10-element array RA by absolute value.

 USE SVRBN_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER N, J, NOUT

 PARAMETER (N=10)

 REAL RA(N), RB(N)

! Set values for RA

! RA = (-1.0 3.0 -4.0 2.0 -1.0 0.0 -7.0 6.0 10.0 -7.0)

!

 DATA RA/-1.0, 3.0, -4.0, 2.0, -1.0, 0.0, -7.0, 6.0, 10.0, -7.0/

! Sort RA by absolute value into RB

 CALL SVRBN (RA, RB)

1856 Chapter 11: Utilities IMSL MATH LIBRARY

! Print results

 CALL UMACH (2,NOUT)

 WRITE (NOUT, 99999) (RB(J),J=1,N)

!

99999 FORMAT (' The output vector is :', /, 10(1X,F5.1))

 END

Output

The Output vector is :

0.0 -1.0 -1.0 2.0 3.0 -4.0 6.0 -7.0 -7.0 10.0

SVRBP
Sorts a real array by nondecreasing absolute value and return the permutation that rearranges the

array.

Required Arguments

RA — Vector of length N containing the array to be sorted. (Input)

RB — Vector of length N containing the sorted array. (Output)

If RA is not needed, RA and RB can share the same storage locations.

IPERM — Vector of length N. (Input/Output)

On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM

contains a record of permutations made on the vector IA.

Optional Arguments

N — Number of elements in the array to be sorted. (Input)

Default: N = SIZE (IPERM,1).

FORTRAN 90 Interface

Generic: CALL SVRBP (RA, RB, IPERM [,…])

Specific: The specific interface names are S_SVRBP and D_SVRBP.

FORTRAN 77 Interface

Single: CALL SVRBP (N, RA, RB, IPERM)

Double: The double precision name is DSVRBP.

IMSL MATH LIBRARY Chapter 11: Utilities 1857

Description

Routine SVRBP sorts the elements of an array, A, into ascending order by absolute value, keeping a

record in P of the permutations to the array A. That is, the elements of P are moved in the same

manner as are the elements in A as A is being sorted. The routine SVRBP uses the algorithm

discussed in SVRGN. On completion, Aj ≤ Ai for j < i.

Comments

For wider applicability, integers (1, 2, …, N) that are to be associated with RA(I) for I = 1, 2,

…, N may be entered into IPERM(I) in any order. Note that these integers must be unique.

Example

This example sorts the 10-element array RA by absolute value.

 USE SVRBP_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER N, J, NOUT, I

 PARAMETER (N=10)

 REAL RA(N), RB(N)

 INTEGER IPERM(N)

! Set values for RA and IPERM

! RA = (10.0 9.0 8.0 7.0 6.0 5.0 -4.0 3.0 -2.0 1.0)

!

! IPERM = (1 2 3 4 5 6 7 8 9 10)

!

 DATA RA/10.0, 9.0, 8.0, 7.0, 6.0, 5.0, -4.0, 3.0, -2.0, 1.0/

 DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/

! Sort RA by absolute value into RB

 CALL SVRBP (RA, RB, IPERM)

! Print results

 CALL UMACH (2,NOUT)

 WRITE (NOUT, 99998) (RB(J),J=1,N)

 WRITE (NOUT, 99999) (IPERM(I),I=1,N)

!

99998 FORMAT (' The output vector is:', /, 10(1X,F5.1))

99999 FORMAT (' The permutation vector is:', /, 10(1X,I5))

 END

Output

The output vector is:

1.0 -2.0 3.0 -4.0 5.0 6.0 7.0 8.0 9.0 10.0

The permutation vector is:

10 9 8 7 6 5 4 3 2 1

SVIBN
Sorts an integer array by nondecreasing absolute value.

1858 Chapter 11: Utilities IMSL MATH LIBRARY

Required Arguments

IA — Integer vector of length N containing the array to be sorted. (Input)

IB — Integer vector of length N containing the sorted array. (Output)

If IA is not needed, IA and IB can share the same storage locations.

Optional Arguments

N — Number of elements in the array to be sorted. (Input)

Default: N = SIZE (IA,1).

FORTRAN 90 Interface

Generic: CALL SVIBN (IA, IB [,…])

Specific: The specific interface name is S_SVIBN.

FORTRAN 77 Interface

Single: CALL SVIBN (N, IA, IB)

Description

Routine SVIBN sorts the elements of an integer array, A, into ascending order by absolute value.

This routine SVIBN uses the algorithm discussed in SVRGN. On completion, Aj ≤ Ai for j < i.

Example

This example sorts the 10-element array IA by absolute value.

 USE SVIBN_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER I, J, NOUT, N

 PARAMETER (N=10)

 INTEGER IA(N), IB(N)

! Set values for IA

! IA = (-1 3 -4 2 -1 0 -7 6 10 -7)

!

 DATA IA/-1, 3, -4, 2, -1, 0, -7, 6, 10, -7/

! Sort IA by absolute value into IB

 CALL SVIBN (IA, IB)

! Print results

 CALL UMACH (2,NOUT)

 WRITE (NOUT, 99999) (IB(J),J=1,N)

!

99999 FORMAT (' The output vector is:', /, 10(1X,I5))

 END

IMSL MATH LIBRARY Chapter 11: Utilities 1859

Output

The Output vector is:

0 -1 -1 2 3 -4 6 -7 -7 10

SVIBP
Sorts an integer array by nondecreasing absolute value and return the permutation that rearranges

the array.

Required Arguments

IA — Integer vector of length N containing the array to be sorted. (Input)

IB — Integer vector of length N containing the sorted array. (Output)

If IA is not needed, IA and IB can share the same storage locations.

IPERM — Vector of length N. (Input/Output)

On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM

contains a record of permutations made on the vector IA.

Optional Arguments

N — Number of elements in the array to be sorted. (Input)

Default: N = SIZE (IA,1).

FORTRAN 90 Interface

Generic: CALL SVIBP (IA, IB, IPERM [,…])

Specific: The specific interface name is S_SVIBP.

FORTRAN 77 Interface

Single: CALL SVIBP (N, IA, IB, IPERM)

Description

Routine SVIBP sorts the elements of an integer array, A, into ascending order by absolute value,

keeping a record in P of the permutations to the array A. That is, the elements of P are moved in

the same manner as are the elements in A as A is being sorted. The routine SVIBP uses the

algorithm discussed in SVRGN. On completion, Aj ≤ Ai for j < i.

Comments

For wider applicability, integers (1, 2, …, N) that are to be associated with IA(I) for I = 1, 2,

…, N may be entered into IPERM(I) in any order. Note that these integers must be unique.

1860 Chapter 11: Utilities IMSL MATH LIBRARY

Example

This example sorts the 10-element array IA by absolute value.

 USE SVIBP_INT

 USE UMACH_INT

 IMPLICIT NONE

! Declare variables

 INTEGER N, U, NOUT, J

 PARAMETER (N=10)

 INTEGER IA(N), IB(N), IPERM(N)

! Set values for IA

! IA = (10 9 8 7 6 5 -4 3 -2 1)

!

! IPERM = (1 2 3 4 5 6 7 8 9 10)

!

 DATA IA/10, 9, 8, 7, 6, 5, -4, 3, -2, 1/

 DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/

! Sort IA by absolute value into IB

 CALL SVIBP (IA, IB, IPERM)

! Print results

 CALL UMACH (2,NOUT)

 WRITE (NOUT, 99998) (IB(J),J=1,N)

 WRITE (NOUT, 99999) (IPERM(J),J=1,N)

!

99998 FORMAT (' The output vector is:', /, 10(1X,I5))

99999 FORMAT (' The permutation vector is:', /, 10(1X,I5))

 END

Output

The Output vector is:

1 -2 3 -4 5 6 7 8 9 10

The permutation vector is:

10 9 8 7 6 5 4 3 2 1

SRCH
Searches a sorted vector for a given scalar and return its index.

Required Arguments

VALUE — Scalar to be searched for in Y. (Input)

X — Vector of length N * INCX. (Input)

Y is obtained from X for I = 1, 2, …, N by Y(I) = X(1 + (I − 1) * INCX). Y(1), Y(2), …,

Y(N) must be in ascending order.

IMSL MATH LIBRARY Chapter 11: Utilities 1861

INDEX — Index of Y pointing to VALUE. (Output)

If INDEX is positive, VALUE is found in Y. If INDEX is negative, VALUE is not found in

Y.

INDEX Location of VALUE

1 thru N VALUE = Y(INDEX)

−1 VALUE < Y(1) or N = 0

−N thru −2 Y(−INDEX − 1) < VALUE < Y(INDEX)

−(N + 1) VALUE > Y(N)

Optional Arguments

N — Length of vector Y. (Input)

Default: N = (SIZE (X,1)) / INCX.

INCX — Displacement between elements of X. (Input)

INCX must be greater than zero.

Default: INCX = 1.

FORTRAN 90 Interface

Generic: CALL SRCH (VALUE, X, INDEX [,…])

Specific: The specific interface names are S_SRCH and D_SRCH.

FORTRAN 77 Interface

Single: CALL SRCH (N, VALUE, X, INCX, INDEX)

Double: The double precision name is DSRCH.

Description

Routine SRCH searches a real vector x (stored in X), whose n elements are sorted in ascending

order for a real number c (stored in VALUE). If c is found in x, its index i (stored in INDEX) is

returned so that xi = c. Otherwise, a negative number i is returned for the index. Specifically,

if 1 ≤ i ≤ n then xi = c

if i = −1 then c < x1 or n = 0

if − n ≤ I ≤ − 2 then x−i−1 < c < x− i

if i = −(n + 1) then c > xn

1862 Chapter 11: Utilities IMSL MATH LIBRARY

The argument INCX is useful if a row of a matrix, for example, row number I of a matrix X, must

be searched. The elements of row I are assumed to be in ascending order. In this case, set INCX

equal to the leading dimension of X exactly as specified in the dimension statement in the calling

program. With X declared

REAL X(LDX,N)

the invocation

CALL SRCH (N, VALUE, X(I,1), LDX, INDEX)

returns an index that will reference a column number of X.

Routine SRCH performs a binary search. The routine is an implementation of algorithm B

discussed by Knuth (1973, pages 407−411).

Example

This example searches a real vector sorted in ascending order for the value 653.0. The problem is

discussed by Knuth (1973, pages 407−409).

 USE SRCH_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=16)

!

 INTEGER INDEX, NOUT

 REAL VALUE, X(N)

!

 DATA X/61.0, 87.0, 154.0, 170.0, 275.0, 426.0, 503.0, 509.0, &

 512.0, 612.0, 653.0, 677.0, 703.0, 765.0, 897.0, 908.0/

!

 VALUE = 653.0

 CALL SRCH (VALUE, X, INDEX)

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) 'INDEX = ', INDEX

 END

Output

INDEX = 11

ISRCH
Searches a sorted integer vector for a given integer and return its index.

Required Arguments

IVALUE — Scalar to be searched for in IY. (Input)

IMSL MATH LIBRARY Chapter 11: Utilities 1863

IX — Vector of length N * INCX. (Input)

IY is obtained from IX for I = 1, 2, …, N by

IY(I) = IX(1 + (I − 1) * INCX). IY(1), IY(2), …, IY(N) must be in ascending order.

INDEX — Index of IY pointing to IVALUE. (Output)

If INDEX is positive, IVALUE is found in IY. If INDEX is negative, IVALUE is not found

in IY.

INDEX Location of VALUE

1 thru N IVALUE = IY(INDEX)

−1 IVALUE < IY(1) or N = 0

−N thru −2 IY(−INDEX − 1) < IVALUE < IY(−INDEX)

− (N + 1) IVALUE > Y(N)

Optional Arguments

N — Length of vector IY. (Input)

Default: N = SIZE (IX,1) / INCX.

INCX — Displacement between elements of IX. (Input)

INCX must be greater than zero.

Default: INCX = 1.

FORTRAN 90 Interface

Generic: CALL ISRCH (IVALUE, IX, INDEX [,…])

Specific: The specific interface name is S_ISRCH.

FORTRAN 77 Interface

Single: CALL ISRCH (N, IVALUE, IX, INCX, INDEX)

Description

Routine ISRCH searches an integer vector x (stored in IX), whose n elements are sorted in

ascending order for an integer c (stored in IVALUE). If c is found in x, its index i (stored in INDEX)

is returned so that xi = c. Otherwise, a negative number i is returned for the index. Specifically,

if 1 ≤ i ≤ n Then xi = c

if i = −1 Then c < x1 or n = 0

if −n ≤ i ≤ −2 Then x−i−1< c < x−i

if i = −(n + 1) Then c > xn

1864 Chapter 11: Utilities IMSL MATH LIBRARY

The argument INCX is useful if a row of a matrix, for example, row number I of a matrix IX, must

be searched. The elements of row I are assumed to be in ascending order. Here, set INCX equal to

the leading dimension of IX exactly as specified in the dimension statement in the calling

program. With IX declared

INTEGER IX(LDIX,N)

the invocation

CALL ISRCH (N, IVALUE, IX(I,1), LDIX, INDEX)

returns an index that will reference a column number of IX.

The routine ISRCH performs a binary search. The routine is an implementation of algorithm B

discussed by Knuth (1973, pages 407−411).

Example

This example searches an integer vector sorted in ascending order for the value 653. The problem

is discussed by Knuth (1973, pages 407−409).

 USE ISRCH_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=16)

!

 INTEGER INDEX, NOUT

 INTEGER IVALUE, IX(N)

!

 DATA IX/61, 87, 154, 170, 275, 426, 503, 509, 512, 612, 653, 677, &

 703, 765, 897, 908/

!

 IVALUE = 653

 CALL ISRCH (IVALUE, IX, INDEX)

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) 'INDEX = ', INDEX

 END

Output

INDEX = 11

SSRCH
Searches a character vector, sorted in ascending ASCII order, for a given string and return its

index.

IMSL MATH LIBRARY Chapter 11: Utilities 1865

Required Arguments

N — Length of vector CHY. (Input)

Default: N = SIZE (CHX,1) / INCX.

STRING — Character string to be searched for in CHY. (Input)

CHX — Vector of length N * INCX containing character strings. (Input)

CHY is obtained from CHX for I = 1, 2, …, N by CHY(I) = CHX(1 + (I − 1) * INCX).

CHY(1), CHY(2), …, CHY(N) must be in ascending ASCII order.

INCX — Displacement between elements of CHX. (Input)

INCX must be greater than zero.

Default: INCX = 1.

INDEX — Index of CHY pointing to STRING. (Output)

If INDEX is positive, STRING is found in CHY. If INDEX is negative, STRING is not

found in CHY.

INDEX Location of STRING

1 thru N STRING = CHY(INDEX)

−1 STRING < CHY(1) or N = 0

−N thru −2 CHY(−INDEX − 1) < STRING < CHY(−INDEX)

−(N + 1) STRING > CHY(N)

FORTRAN 90 Interface

Generic: CALL SSRCH (N, STRING, CHX, INCX, INDEX)

Specific: The specific interface name is SSRCH.

FORTRAN 77 Interface

Single: CALL SSRCH (N, STRING, CHX, INCX, INDEX)

Description

Routine SSRCH searches a vector of character strings x (stored in CHX), whose n elements are

sorted in ascending ASCII order, for a character string c (stored in STRING). If c is found in x, its

index i (stored in INDEX) is returned so that xi = c. Otherwise, a negative number i is returned for

the index. Specifically,

if 1 ≤ i ≤ n Then xi = c

if i = −1 Then c < x1 or n = 0

1866 Chapter 11: Utilities IMSL MATH LIBRARY

if −n ≤ i ≤ −2 Then x−i−1< c < x−i

if i = −(n + 1) Then c > xn

Here, ―<― and ―>‖ are in reference to the ASCII collating sequence. For comparisons made

between character strings c and xi with different lengths, the shorter string is considered as if it

were extended on the right with blanks to the length of the longer string. (SSRCH uses FORTRAN

intrinsic functions LLT and LGT.)

The argument INCX is useful if a row of a matrix, for example, row number I of a matrix CHX,

must be searched. The elements of row I are assumed to be in ascending ASCII order. In this case,

set INCX equal to the leading dimension of CHX exactly as specified in the dimension statement in

the calling program. With CHX declared

CHARACTER * 7 CHX(LDCHX,N)

the invocation

CALL SSRCH (N, STRING, CHX(I,1), LDCHX, INDEX)

returns an index that will reference a column number of CHX.

The routine SSRCH performs a binary search. The routine is an implementation of algorithm B

discussed by Knuth (1973, pages 407−411).

Example

This example searches a CHARACTER * 2 vector containing 9 character strings, sorted in ascending

ASCII order, for the value ‘CC‘.

 USE SSRCH_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N, INCX

 PARAMETER (N=9)

!

 INTEGER INDEX, NOUT

 CHARACTER CHX(N)*2, STRING*2

!

 DATA CHX/'AA', 'BB', 'CC', 'DD', 'EE', 'FF', 'GG', 'HH', &

 'II'/

!

 INCX = 1

 STRING = 'CC'

 CALL SSRCH (N, STRING, CHX, INCX, INDEX)

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) 'INDEX = ', INDEX

 END

Output

INDEX = 3

IMSL MATH LIBRARY Chapter 11: Utilities 1867

ACHAR
This function returns a character given its ASCII value.

Function Return Value

ACHAR — CHARACTER * 1 string containing the character in the I-th position of the ASCII

collating sequence. (Output)

Required Arguments

I — Integer ASCII value of the character desired. (Input)

I must be greater than or equal to zero and less than or equal to 127.

FORTRAN 90 Interface

Generic: ACHAR (I)

Specific: The specific interface name is ACHAR.

FORTRAN 77 Interface

Single: ACHAR (I)

Description

Routine ACHAR returns the character of the input ASCII value. The input value should be between

0 and 127. If the input value is out of range, the value returned in ACHAR is machine dependent.

Example

This example returns the character of the ASCII value 65.

 USE ACHAR_INT

 USE UMACH_INT

! IMPLICIT NONE

 INTEGER I, NOUT

!

 CALL UMACH (2, NOUT)

! Get character for ASCII value

! of 65 ('A')

 I = 65

 WRITE (NOUT,99999) I, ACHAR(I)

!

99999 FORMAT (' For the ASCII value of ', I2, ', the character is : ', &

 A1)

 END

1868 Chapter 11: Utilities IMSL MATH LIBRARY

Output

For the ASCII value of 65, the character is : A

IACHAR
This function returns the integer ASCII value of a character argument.

Function Return Value

IACHAR — Integer ASCII value for CH. (Output)

The character CH is in the IACHAR-th position of the ASCII collating sequence.

Required Arguments

CH — Character argument for which the integer ASCII value is desired. (Input)

FORTRAN 90 Interface

Generic: IACHAR (CH)

Specific: The specific interface name is IACHAR.

FORTRAN 77 Interface

Description

Routine IACHAR returns the ASCII value of the input character.

Single: IACHAR (CH)

Example

This example gives the ASCII value of character A.

 USE IACHAR_INT

 IMPLICIT NONE

 INTEGER NOUT

 CHARACTER CH

!

 CALL UMACH (2, NOUT)

! Get ASCII value for the character

! 'A'.

 CH = 'A'

 WRITE (NOUT,99999) CH, IACHAR(CH)

!

99999 FORMAT (' For the character ', A1, ' the ASCII value is : ', &

 I3)

 END

IMSL MATH LIBRARY Chapter 11: Utilities 1869

Output

For the character A the ASCII value is : 65

ICASE
This function returns the ASCII value of a character converted to uppercase.

Function Return Value

ICASE — Integer ASCII value for CH without regard to the case of CH. (Output)

Routine ICASE returns the same value as IACHAR for all but lowercase letters. For

these, it returns the IACHAR value for the corresponding uppercase letter.

Required Arguments

CH — Character to be converted. (Input)

FORTRAN 90 Interface

Generic: ICASE (CH)

Specific: The specific interface name is ICASE.

FORTRAN 77 Interface

Single: ICASE (CH)

Description

Routine ICASE converts a character to its integer ASCII value. The conversion is case insensitive;

that is, it returns the ASCII value of the corresponding uppercase letter for a lowercase letter.

Example

This example shows the case insensitive conversion.

 USE ICASE_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NOUT

 CHARACTER CHR

! Get output unit number

 CALL UMACH (2, NOUT)

! Get ASCII value for the character

! 'a'.

 CHR = 'a'

 WRITE (NOUT,99999) CHR, ICASE(CHR)

!

99999 FORMAT (' For the character ', A1, ' the ICASE value is : ', &

1870 Chapter 11: Utilities IMSL MATH LIBRARY

 I3)

 END

Output

For the character a the ICASE value is : 65

IICSR
This function compares two character strings using the ASCII collating sequence but without

regard to case.

Function Return Value

IICSR — Comparison indicator. (Output)

Let USTR1 and USTR2 be the uppercase versions of STR1 and STR2, respectively. The

following table indicates the relationship between USTR1 and USTR2 as determined by

the ASCII collating sequence.

IICSR Meaning

−1 USTR1 precedes USTR2

0 USTR1 equals USTR2

1 USTR1 follows USTR2

Required Arguments

STR1 — First character string. (Input)

STR2 — Second character string. (Input)

FORTRAN 90 Interface

Generic: IICSR (STR1, STR2)

Specific: The specific interface name is IICSR.

FORTRAN 77 Interface

Single: IICSR (STR1, STR2)

IMSL MATH LIBRARY Chapter 11: Utilities 1871

Description

Routine IICSR compares two character strings. It returns −1 if the first string is less than the

second string, 0 if they are equal, and 1 if the first string is greater than the second string. The

comparison is case insensitive.

Comments

If the two strings, STR1 and STR2, are of unequal length, the shorter string is considered as if

it were extended with blanks to the length of the longer string.

Example

This example shows different cases on comparing two strings.

 USE IICSR_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NOUT

 CHARACTER STR1*6, STR2*6

! Get output unit number

 CALL UMACH (2, NOUT)

! Compare String1 and String2

! String1 is 'bigger' than String2

 STR1 = 'ABc 1'

 STR2 = ' '

 WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)

!

! String1 is 'equal' to String2

 STR1 = 'AbC'

 STR2 = 'ABc'

 WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)

!

! String1 is 'smaller' than String2

 STR1 = 'ABc'

 STR2 = 'aBC 1'

 WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)

!

99999 FORMAT (' For String1 = ', A6, 'and String2 = ', A6, &

 ' IICSR = ', I2, /)

 END

Output

For String1 = ABc 1 and String2 = IICSR = 1

For String1 = AbC and String2 = ABc IICSR = 0

For String1 = ABc and String2 = aBC 1 IICSR = -1

1872 Chapter 11: Utilities IMSL MATH LIBRARY

IIDEX
This funcion determines the position in a string at which a given character sequence begins

without regard to case.

Function Return Value

IIDEX — Position in CHRSTR where KEY begins. (Output)

If KEY occurs more than once in CHRSTR, the starting position of the first occurrence is

returned. If KEY does not occur in CHRSTR, then IIDEX returns a zero.

Required Arguments

CHRSTR — Character string to be searched. (Input)

KEY — Character string that contains the key sequence. (Input)

FORTRAN 90 Interface

Generic: IIDEX (CHRSTR, KEY)

Specific: The specific interface name is IIDEX.

FORTRAN 77 Interface

Single: IIDEX (CHRSTR, KEY)

Description

Routine IIDEX searches for a key string in a given string and returns the index of the starting

element at which the key character string begins. It returns 0 if there is no match. The comparison

is case insensitive. For a case-sensitive version, use the FORTRAN 77 intrinsic function INDEX.

Comments

If the length of KEY is greater than the length CHRSTR, IIDEX returns a zero.

Example

This example locates a key string.

 USE IIDEX_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NOUT

 CHARACTER KEY*5, STRING*10

! Get output unit number

 CALL UMACH (2, NOUT)

IMSL MATH LIBRARY Chapter 11: Utilities 1873

! Locate KEY in STRING

 STRING = 'a1b2c3d4e5'

 KEY = 'C3d4E'

 WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY)

!

 KEY = 'F'

 WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY)

!

99999 FORMAT (' For STRING = ', A10, ' and KEY = ', A5, ' IIDEX = ', I2, &

 /)

 END

Output

For STRING = a1b2c3d4e5 and KEY = C3d4E IIDEX = 5

For STRING = a1b2c3d4e5 and KEY = F IIDEX = 0

CVTSI
Converts a character string containing an integer number into the corresponding integer form.

Required Arguments

STRING — Character string containing an integer number. (Input)

NUMBER — The integer equivalent of STRING. (Output)

FORTRAN 90 Interface

Generic: CALL CVTSI (STRING, NUMBER)

Specific: The specific interface name is CVTSI.

FORTRAN 77 Interface

Single: CALL CVTSI (STRING, NUMBER)

Description

Routine CVTSI converts a character string containing an integer to an INTEGER variable. Leading

and trailing blanks in the string are ignored. If the string contains something other than an integer,

a terminal error is issued. If the string contains an integer larger than can be represented by an

INTEGER variable as determined from routine IMACH (see the Reference Material), a terminal

error is issued.

Example

The string ―12345‖ is converted to an INTEGER variable.

 USE CVTSI_INT

1874 Chapter 11: Utilities IMSL MATH LIBRARY

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NOUT, NUMBER

 CHARACTER STRING*10

!

 DATA STRING/'12345'/

!

 CALL CVTSI (STRING, NUMBER)

!

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) 'NUMBER = ', NUMBER

 END

Output

NUMBER = 12345

CPSEC
This fuction returns CPU time used in seconds.

Function Return Value

CPSEC — CPU time used (in seconds) since first call to CPSEC. (Output)

Required Arguments

None

FORTRAN 90 Interface

Generic: CPSEC ()

Specific: The specific interface name is CPSEC.

FORTRAN 77 Interface

Single: CPSEC (1)

Comments

1. The first call to CPSEC returns 0.0.

2. The accuracy of this routine depends on the hardware and the operating system. On

some systems, identical runs can produce timings differing by more than 10 percent.

IMSL MATH LIBRARY Chapter 11: Utilities 1875

TIMDY
Gets time of day.

Required Arguments

IHOUR — Hour of the day. (Output)

IHOUR is between 0 and 23 inclusive.

MINUTE — Minute within the hour. (Output)

MINUTE is between 0 and 59 inclusive.

ISEC — Second within the minute. (Output)

ISEC is between 0 and 59 inclusive.

FORTRAN 90 Interface

Generic: CALL TIMDY (IHOUR, MINUTE, ISEC)

Specific: The specific interface name is TIMDY.

FORTRAN 77 Interface

Single: CALL TIMDY (IHOUR, MINUTE, ISEC)

Description

Routine TIMDY is used to retrieve the time of day.

Example

The following example uses TIMDY to return the current time. Obviously, the output is dependent

upon the time at which the program is run.

 USE TIMDY_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER IHOUR, IMIN, ISEC, NOUT

!

 CALL TIMDY (IHOUR, IMIN, ISEC)

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) 'Hour:Minute:Second = ', IHOUR, ':', IMIN, &

 ':', ISEC

 IF (IHOUR .EQ. 0) THEN

 WRITE (NOUT,*) 'The time is ', IMIN, ' minute(s), ', ISEC, &

 ' second(s) past midnight.'

 ELSE IF (IHOUR .LT. 12) THEN

 WRITE (NOUT,*) 'The time is ', IMIN, ' minute(s), ', ISEC, &

 ' second(s) past ', IHOUR, ' am.'

 ELSE IF (IHOUR .EQ. 12) THEN

 WRITE (NOUT,*) 'The time is ', IMIN, ' minute(s), ', ISEC, &

1876 Chapter 11: Utilities IMSL MATH LIBRARY

 ' second(s) past noon.'

 ELSE

 WRITE (NOUT,*) 'The time is ', IMIN, ' minute(s), ', ISEC, &

 ' second(s) past ', IHOUR-12, ' pm.'

 END IF

 END

Output

Hour:Minute:Second = 14 : 34 : 30

The time is 34 minute(s), 30 second(s) past 2 pm.

TDATE
Gets today‘s date.

Required Arguments

IDAY — Day of the month. (Output)

IDAY is between 1 and 31 inclusive.

MONTH — Month of the year. (Output)

MONTH is between 1 and 12 inclusive.

IYEAR — Year. (Output)

For example, IYEAR = 1985.

FORTRAN 90 Interface

Generic: CALL TDATE (IDAY, MONTH, IYEAR)

Specific: The specific interface name is TDATE.

FORTRAN 77 Interface

Single: CALL TDATE (IDAY, MONTH, IYEAR)

Description

Routine TDATE is used to retrieve today‘s date. Obviously, the output is dependent upon the date

the program is run.

Example

The following example uses TDATE to return today‘s date.

 USE TDATE_INT

 USE UMACH_INT

IMSL MATH LIBRARY Chapter 11: Utilities 1877

 IMPLICIT NONE

 INTEGER IDAY, IYEAR, MONTH, NOUT

!

 CALL TDATE (IDAY, MONTH, IYEAR)

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) 'Day-Month-Year = ', IDAY, '-', MONTH, &

 '-', IYEAR

 END

Output

Day-Month-Year = 7 - 7 - 2006

NDAYS
This function computes the number of days from January 1, 1900, to the given date.

Function Return Value

NDAYS — Function value. (Output)

If NDAYS is negative, it indicates the number of days prior to January 1, 1900.

Required Arguments

IDAY — Day of the input date. (Input)

MONTH — Month of the input date. (Input)

IYEAR — Year of the input date. (Input)

1950 would correspond to the year 1950 A.D. and 50 would correspond to year 50

A.D.

FORTRAN 90 Interface

Generic: NDAYS (IDAY, MONTH, IYEAR)

Specific: The specific interface name is NDAYS.

FORTRAN 77 Interface

Single: NDAYS (IDAY, MONTH, IYEAR)

Description

Function NDAYS returns the number of days from January 1, 1900, to the given date. The function

NDAYS returns negative values for days prior to January 1, 1900. A negative IYEAR can be used

to specify B.C. Input dates in year 0 and for October 5, 1582, through October 14, 1582, inclusive,

do not exist; consequently, in these cases, NDAYS issues a terminal error.

1878 Chapter 11: Utilities IMSL MATH LIBRARY

Comments

1. Informational error

Type Code

1 1 The Julian calendar, the first modern calendar, went into use in 45

B.C. No calendar prior to 45 B.C. was as universally used nor as

accurate as the Julian. Therefore, it is assumed that the Julian

calendar was in use prior to 45 B.C.

2. The number of days from one date to a second date can be computed by two references

to NDAYS and then calculating the difference.

3. The beginning of the Gregorian calendar was the first day after October 4, 1582, which

became October 15, 1582. Prior to that, the Julian calendar was in use. NDAYS makes

the proper adjustment for the change in calendars.

Example

The following example uses NDAYS to compute the number of days from January 15, 1986, to

February 28, 1986:

 USE NDAYS_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER IDAY, IYEAR, MONTH, NDAY0, NDAY1, NOUT

!

 IDAY = 15

 MONTH = 1

 IYEAR = 1986

 NDAY0 = NDAYS(IDAY,MONTH,IYEAR)

 IDAY = 28

 MONTH = 2

 IYEAR = 1986

 NDAY1 = NDAYS(IDAY,MONTH,IYEAR)

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) 'Number of days = ', NDAY1 - NDAY0

 END

Output

Number of days = 44

NDYIN
Gives the date corresponding to the number of days since January 1, 1900.

Required Arguments

NDAYS — Number of days since January 1, 1900. (Input)

IMSL MATH LIBRARY Chapter 11: Utilities 1879

IDAY — Day of the input date. (Output)

MONTH — Month of the input date. (Output)

IYEAR — Year of the input date. (Output)

1950 would correspond to the year 195 A.D. and −50 would correspond to year 50

B.C.

FORTRAN 90 Interface

Generic: CALL NDYIN (NDAYS, IDAY, MONTH, IYEAR)

Specific: The specific interface name is NDYIN.

FORTRAN 77 Interface

Single: CALL NDYIN (NDAYS, IDAY, MONTH, IYEAR)

Description

Routine NDYIN computes the date corresponding to the number of days since January 1, 1900. For

an input value of NDAYS that is negative, the date computed is prior to January 1, 1900. The

routine NDYIN is the inverse of NDAYS.

Comments

The beginning of the Gregorian calendar was the first day after October 4, 1582, which

became October 15, 1582. Prior to that, the Julian calendar was in use. Routine NDYIN makes

the proper adjustment for the change in calendars.

Example

The following example uses NDYIN to compute the date for the 100th day of 1986. This is

accomplished by first using NDAYS to get the ―day number‖ for December 31, 1985.

 USE NDYIN_INT

 USE NDAYS_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER IDAY, IYEAR, MONTH, NDAYO, NOUT, NDAY0

!

 NDAY0 = NDAYS(31,12,1985)

 CALL NDYIN (NDAY0+100, IDAY, MONTH, IYEAR)

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) 'Day 100 of 1986 is (day-month-year) ', IDAY, &

 '-', MONTH, '-', IYEAR

 END

Output

1880 Chapter 11: Utilities IMSL MATH LIBRARY

Day 100 of 1986 is (day-month-year) 10- 4- 1986

IDYWK
This function computes the day of the week for a given date.

Function Return Value

IDYWK — Function value. (Output)

The value of IDYWK ranges from 1 to 7, where 1 corresponds to Sunday and 7

corresponds to Saturday.

Required Arguments

IDAY — Day of the input date. (Input)

MONTH — Month of the input date. (Input)

IYEAR — Year of the input date. (Input)

1950 would correspond to the year 1950 A.D. and 50 would correspond to year 50

A.D.

FORTRAN 90 Interface

Generic: IDYWK (IDAY, MONTH, IYEAR)

Specific: The specific interface name is IDYWK.

FORTRAN 77 Interface

Single: IDYWK (IDAY, MONTH, IYEAR)

Description

Function IDYWK returns an integer code that specifies the day of week for a given date. Sunday

corresponds to 1, Monday corresponds to 2, and so forth.

A negative IYEAR can be used to specify B.C. Input dates in year 0 and for October 5, 1582,

through October 14, 1582, inclusive, do not exist; consequently, in these cases, IDYWK issues a

terminal error.

Comments

1. Informational error

Type Code

1 1 The Julian calendar, the first modern calendar, went into use in 45

B.C. No calendar prior to 45 B.C. was as universally used nor as

IMSL MATH LIBRARY Chapter 11: Utilities 1881

accurate as the Julian. Therefore, it is assumed that the Julian

calendar was in use prior to 45 B.C.

2. The beginning of the Gregorian calendar was the first day after October 4, 1582, which

became October 15, 1582. Prior to that, the Julian calendar was in use. Function IDYWK

makes the proper adjustment for the change in calendars.

Example

The following example uses IDYWK to return the day of the week for February 24, 1963.

 USE IDYWK_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER IDAY, IYEAR, MONTH, NOUT

!

 IDAY = 24

 MONTH = 2

 IYEAR = 1963

 CALL UMACH (2, NOUT)

 WRITE (NOUT,*) 'IDYWK (index for day of week) = ', &

 IDYWK(IDAY,MONTH,IYEAR)

 END

Output

IDYWK (index for day of week) = 1

VERML
This function obtains IMSL MATH/LIBRARY-related version, system and serial numbers.

Function Return Value

VERML — CHARACTER string containing information. (Output)

Required Arguments

ISELCT — Option for the information to retrieve. (Input)

ISELCT VERML

1 IMSL MATH/LIBRARY version number

2 Operating system (and version number) for which the library was produced.

3 Fortran compiler (and version number) for which the library was produced.

4 IMSL MATH/LIBRARY serial number

1882 Chapter 11: Utilities IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: VERML(ISELCT)

Specific: The specific interface name is VERML.

FORTRAN 77 Interface

Single: VERML(ISELCT)

Example

In this example, we print all of the information returned by VERML on a particular machine. The

output is omitted because the results are system dependent.

 USE UMACH_INT

 USE VERML_INT

 IMPLICIT NONE

 INTEGER ISELCT, NOUT

 CHARACTER STRING(4)*50, TEMP*32

!

 STRING(1) = '('' IMSL MATH/LIBRARY Version Number: '', A)'

 STRING(2) = '('' Operating System ID Number: '', A)'

 STRING(3) = '('' Fortran Compiler Version Number: '', A)'

 STRING(4) = '('' IMSL MATH/LIBRARY Serial Number: '', A)'

! Print the versions and numbers.

 CALL UMACH (2, NOUT)

 DO 10 ISELCT=1, 4

 TEMP = VERML(ISELCT)

 WRITE (NOUT,STRING(ISELCT)) TEMP

 10 CONTINUE

 END

Output

 IMSL MATH/LIBRARY Version Number: IMSL Fortran Numerical Library, Version 6.0.0

 Operating System ID Number: Solaris Version 10

 Fortran Compiler Version Number: Sun Fortran 95 8.1 2005/01/07 (Workshop 10.0)

 IMSL MATH/LIBRARY Serial Number: 999999

RAND_GEN
Generates a rank-1 array of random numbers. The output array entries are positive and less than 1

in value.

Required Argument

X — Rank-1 array containing the random numbers. (Output)

IMSL MATH LIBRARY Chapter 11: Utilities 1883

Optional Arguments

IRND = IRND (Output)

Rank-1 integer array. These integers are the internal results of the Generalized

Feedback Shift Register (GFSR) algorithm. The values are scaled to yield the floating-

point array X. The output array entries are between 1 and 2
3 1

− 1 in value.

ISTATE_IN = ISTATE_IN (Input)

Rank-1 integer array of size 3p + 2, where p = 521, that defines the ensuing state of the

GFSR generator. It is used to reset the internal tables to a previously defined state. It is

the result of a previous use of the ―ISTATE_OUT=‖ optional argument.

ISTATE_OUT = ISTATE_OUT (Output)

Rank-1 integer array of size 3p + 2 that describes the current state of the GFSR

generator. It is normally used to later reset the internal tables to the state defined

following a return from the GFSR generator. It is the result of a use of the generator

without a user initialization, or it is the result of a previous use of the optional

argument ―ISTATE_IN=‖ followed by updates to the internal tables from newly

generated values. Example 2 illustrates use of ISTATE_IN and ISTATE_OUT for

setting and then resetting RAND_GEN so that the sequence of integers, irnd, is

repeatable.

IOPT = IOPT(:) (Input[/Output])

Derived type array with the same precision as the array x; used for passing optional

data to rand_gen. The options are as follows:

Packaged Options for RAND_GEN

Option Prefix = ? Option Name Option Value

s_, d_ Rand_gen_generator_seed 1

s_, d_ Rand_gen_LCM_modulus 2

s_, d_ Rand_gen_use_Fushimi_start 3

IOPT(IO) = ?_options(?_rand_gen_generator_seed, ?_dummy)

Sets the initial values for the GFSR. The present value of the seed, obtained by default

from the real-time clock as described below, swaps places with

iopt(IO + 1)%idummy. If the seed is set before any current usage of RAND_GEN, the

exchanged value will be zero.

IOPT(IO) = ?_options(?_rand_gen_LCM_modulus, ?_dummy)

IOPT(IO+1) = ?_options(modulus, ?_dummy)

Sets the initial values for the GFSR. The present value of the LCM, with default value

k = 16807, swaps places with iopt(IO+1)%idummy.

IOPT(IO) = ?_options(?_rand_gen_use_Fushimi_start, ?_dummy)

Starts the GFSR sequence as suggested by Fushimi (1990). The default starting

sequence is with the LCM recurrence described below.

1884 Chapter 11: Utilities IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL RAND_GEN (X [,…])

Specific: The specific interface names are S_RAND_GEN and D_RAND_GEN.

Description

This GFSR algorithm is based on the recurrence

3 3t t p t px x x

where a ⊕ b is the exclusive OR operation on two integers a and b. This operation is performed

until SIZE(x) numbers have been generated. The subscripts in the recurrence formula are

computed modulo 3p. These numbers are converted to floating point by effectively multiplying

the positive integer quantity

1tx

by a scale factor slightly smaller than 1./(huge(1)). The values p = 521 and q = 32 yield a sequence

with a period approximately

156.82 10p

The default initial values for the sequence of integers {xt} are created by a congruential generator

starting with an odd integer seed

 _ (1)| 2 1 | 1bit sizem v count

obtained by the Fortran 90 real-time clock routine:

CALL SYSTEM_CLOCK(COUNT=count,CLOCK_RATE=CLRATE)

An error condition is noted if the value of CLRATE=0. This indicates that the processor does not

have a functioning real-time clock. In this exceptional case a starting seed must be provided by the

user with the optional argument ―iopt=‖ and option number ?_rand_generator_seed. The

value v is the current clock for this day, in milliseconds. This value is obtained using the date

routine:

CALL DATE_AND_TIME(VALUES=values)

and converting values(5:8) to milliseconds.

The LCM generator initializes the sequence {xt} using the following recurrence:

 , mod 1 / 2m m k huge

The default value of k = 16807. Using the optional argument ―iopt=‖ and the packaged option

number ?_rand_gen_LCM_modulus, k can be given an alternate value. The option number

?_rand_gen_generator_seed can be used to set the initial value of m instead of using the

asynchronous value given by the system clock. This is illustrated in Example 2. If the default

choice of m results in an unsatisfactory starting sequence or it is necessary to duplicate the

IMSL MATH LIBRARY Chapter 11: Utilities 1885

sequence, then it is recommended that users set the initial seed value to one of their own choosing.

Resetting the seed complicates the usage of the routine.

This software is based on Fushimi (1990), who gives a more elaborate starting sequence for the

{xt} . The starting sequence suggested by Fushimi can be used with the option number

?_rand_gen_use_Fushimi_start. Fushimi‘s starting process is more expensive than the

default method, and it is equivalent to starting in another place of the sequence with period 2
p
.

Fatal and Terminal Error Messages

See the messages.gls file for error messages for RAND_GEN. These error messages are numbered

521−528; 541−548.

Example 1: Running Mean and Variance

An array of random numbers is obtained. The sample mean and variance are computed. These

values are compared with the same quantities computed using a stable method for the running

means and variances, sequentially moving through the data. Details about the running mean and

variance are found in Henrici (1982, pp. 21−23).

 use rand_gen_int

 implicit none

! This is Example 1 for RAND_GEN.

 integer i

 integer, parameter :: n=1000

 real(kind(1e0)), parameter :: one=1e0, zero=0e0

 real(kind(1e0)) x(n), mean_1(0:n), mean_2(0:n), s_1(0:n), s_2(0:n)

! Obtain random numbers.

 call rand_gen(x)

! Calculate each partial mean.

 do i=1,n

 mean_1(i) = sum(x(1:i))/i

 end do

! Calculate each partial variance.

 do i=1,n

 s_1(i)=sum((x(1:i)-mean_1(i))**2)/i

 end do

 mean_2(0)=zero

 mean_2(1)=x(1)

 s_2(0:1)=zero

! Alternately calculate each running mean and variance,

! handling the random numbers once.

 do i=2,n

 mean_2(i)=((i-1)*mean_2(i-1)+x(i))/i

 s_2(i) = (i-1)*s_2(i-1)/i+(mean_2(i)-x(i))**2/(i-1)

 end do

! Check that the two sets of means and variances agree.

1886 Chapter 11: Utilities IMSL MATH LIBRARY

 if (maxval(abs(mean_1(1:)-mean_2(1:))/mean_1(1:)) <= &

 sqrt(epsilon(one))) then

 if (maxval(abs(s_1(2:)-s_2(2:))/s_1(2:)) <= &

 sqrt(epsilon(one))) then

 write (*,*) 'Example 1 for RAND_GEN is correct.'

 end if

 end if

 end

Output

Example 1 for RAND_GEN is correct.

Additional Examples

Example 2: Seeding, Using, and Restoring the Generator

 use rand_gen_int

 implicit none

! This is Example 2 for RAND_GEN.

 integer i

 integer, parameter :: n=34, p=521

 real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0

 integer irndi(n), i_out(3*p+2), hidden_message(n)

 real(kind(1e0)) x(n), y(n)

 type(s_options) :: iopti(2)=s_options(0,zero)

 character*34 message, returned_message

! This is the message to be hidden.

 message = 'SAVE YOURSELF. WE ARE DISCOVERED!'

! Start the generator with a known seed.

 iopti(1) = s_options(s_rand_gen_generator_seed,zero)

 iopti(2) = s_options(123,zero)

 call rand_gen(x, iopt=iopti)

! Save the state of the generator.

 call rand_gen(x, istate_out=i_out)

! Get random integers.

 call rand_gen(y, irnd=irndi)

! Hide text using collating sequence subtracted from integers.

 do i=1, n

 hidden_message(i) = irndi(i) - ichar(message(i:i))

 end do

! Reset generator to previous state and generate the previous

! random integers.

 call rand_gen(x, irnd=irndi, istate_in=i_out)

IMSL MATH LIBRARY Chapter 11: Utilities 1887

! Subtract hidden text from integers and convert to character.

 do i=1, n

 returned_message(i:i) = char(irndi(i) - hidden_message(i))

 end do

! Check the results.

 if (returned_message == message) then

 write (*,*) 'Example 2 for RAND_GEN is correct.'

 end if

 end

Output

Example 2 for RAND_GEN is correct.

Example 3: Generating Strategy with a Histogram

We generate random integers but with the frequency as in a histogram with nbins slots. The

generator is initially used a large number of times to demonstrate that it is making choices with the

same shape as the histogram. This is not required to generate samples. The program next

generates a summary set of integers according to the histogram. These are not repeatable and are

representative of the histogram in the sense of looking at 20 integers during generation of a large

number of samples.
 use rand_gen_int

 use show_int

 implicit none

! This is Example 3 for RAND_GEN.

 integer i, i_bin, i_map, i_left, i_right

 integer, parameter :: n_work=1000

 integer, parameter :: n_bins=10

 integer, parameter :: scale=1000

 integer, parameter :: total_counts=100

 integer, parameter :: n_samples=total_counts*scale

 integer, dimension(n_bins) :: histogram= &

 (/4, 6, 8, 14, 20, 17, 12, 9, 7, 3 /)

 integer, dimension(n_work) :: working=0

 integer, dimension(n_bins) :: distribution=0

 integer break_points(0:n_bins)

 real(kind(1e0)) rn(n_samples)

 real(kind(1e0)), parameter :: tolerance=0.005

 integer, parameter :: n_samples_20=20

 integer rand_num_20(n_samples_20)

 real(kind(1e0)) rn_20(n_samples_20)

! Compute the normalized cumulative distribution.

 break_points(0)=0

1888 Chapter 11: Utilities IMSL MATH LIBRARY

 do i=1,n_bins

 break_points(i)=break_points(i-1)+histogram(i)

 end do

 break_points=break_points*n_work/total_counts

! Obtain uniform random numbers.

 call rand_gen(rn)

! Set up the secondary mapping array.

 do i_bin=1,n_bins

 i_left=break_points(i_bin-1)+1

 i_right=break_points(i_bin)

 do i=i_left, i_right

 working(i)=i_bin

 end do

 end do

! Map the random numbers into the 'distribution' array.

! This is made approximately proportional to the histogram.

 do i=1,n_samples

 i_map=nint(rn(i)*(n_work-1)+1)

 distribution(working(i_map))= &

 distribution(working(i_map))+1

 end do

! Check the agreement between the distribution of the

! generated random numbers and the original histogram.

 write (*, '(A)', advance='no') 'Original: '

 write (*, '(10I6)') histogram*scale

 write (*, '(A)', advance='no') 'Generated:'

 write (*, '(10I6)') distribution

 if (maxval(abs(histogram(1:)*scale-distribution(1:))) &

 <= tolerance*n_samples) then

 write(*, '(A/)') 'Example 3 for RAND_GEN is correct.'

 end if

! Generate 20 integers in 1, 10 according to the distribution

! induced by the histogram.

 call rand_gen(rn_20)

! Map from the uniform distribution to the induced distribution.

 do i=1,n_samples_20

 i_map=nint(rn_20(i)*(n_work-1)+1)

 rand_num_20(i)=working(i_map)

 end do

 call show(rand_num_20,&

'Twenty integers generated according to the histogram:')

 end

Output

IMSL MATH LIBRARY Chapter 11: Utilities 1889

Example 3 for RAND_GEN is correct.

Example 4: Generating with a Cosine Distribution

We generate random numbers based on the continuous distribution function

 1 cos / 2 ,p x x x

Using the cumulative

 1/ 2 sin / 2
x

q x p t dt x x

we generate the samples by obtaining uniform samples u, 0 < u < 1 and solve the equation

 0,q x u x

These are evaluated in vector form, that is all entries at one time, using Newton‘s method:

 , /x x dx dx q x u p x

An iteration counter forces the loop to terminate, but this is not often required although it is an

important detail.

 use rand_gen_int

 use show_int

 use Numerical_Libraries

 IMPLICIT NONE

! This is Example 4 for RAND_GEN.

 integer i, i_map, k

 integer, parameter :: n_bins=36

 integer, parameter :: offset=18

 integer, parameter :: n_samples=10000

 integer, parameter :: n_samples_30=30

 integer, parameter :: COUNT=15

 real(kind(1e0)) probabilities(n_bins)

 real(kind(1e0)), dimension(n_bins) :: counts=0.0

 real(kind(1e0)), dimension(n_samples) :: rn, x, f, fprime, dx

 real(kind(1e0)), dimension(n_samples_30) :: rn_30, &

 x_30, f_30, fprime_30, dx_30

 real(kind(1e0)), parameter :: one=1e0, zero=0e0, half=0.5e0

 real(kind(1e0)), parameter :: tolerance=0.01

 real(kind(1e0)) two_pi, omega

! Initialize values of 'two_pi' and 'omega'.

 two_pi=2.0*const((/'pi'/))

 omega=two_pi/n_bins

! Compute the probabilities for each bin according to

! the probability density (cos(x)+1)/(2*pi), -pi<x<pi.

 do i=1,n_bins

 probabilities(i)=(sin(omega*(i-offset)) &

1890 Chapter 11: Utilities IMSL MATH LIBRARY

 -sin(omega*(i-offset-1))+omega)/two_pi

 end do

! Obtain uniform random numbers in (0,1).

 call rand_gen(rn)

! Use Newton's method to solve the nonlinear equation:

! accumulated_distribution_function - random_number = 0.

 x=zero; k=0

 solve_equation: do

 f=(sin(x)+x)/two_pi+half-rn

 fprime=(one+cos(x))/two_pi

 dx=f/fprime

 x=x-dx; k=k+1

 if (maxval(abs(dx)) <= sqrt(epsilon(one)) &

 .or. k > COUNT) exit solve_equation

 end do solve_equation

! Map the random numbers 'x' array into the 'counts' array.

 do i=1,n_samples

 i_map=int(x(i)/omega+offset)+1

 counts(i_map)=counts(i_map)+one

 end do

! Normalize the counts array.

 counts=counts/n_samples

! Check that the generated random numbers are indeed

! based on the original distribution.

 if (maxval(abs(counts(1:)-probabilities(1:))) &

 <= tolerance) then

 write (*,'(a/)') 'Example 4 for RAND_GEN is correct.'

 end if

! Generate 30 random numbers in (-pi,pi) according to

! the probability density (cos(x)+1)/(2*pi), -pi<x<pi.

 call rand_gen(rn_30)

 x_30=0.0; k=0

 solve_equation_30: do

 f_30=(sin(x_30)+x_30)/two_pi+half-rn_30

 fprime_30=(one+cos(x_30))/two_pi

 dx_30=f_30/fprime_30

 x_30=x_30-dx_30

 if (maxval(abs(dx_30)) <= sqrt(epsilon(one))&

 .or. k > COUNT) exit solve_equation_30

 end do solve_equation_30

 write(*,'(A)') 'Thirty random numbers generated ', &

 'according to the probability density ',&

 'pdf(x)=(cos(x)+1)/(2*pi), -pi<x<pi:'

 call show(x_30)

 end

IMSL MATH LIBRARY Chapter 11: Utilities 1891

 Output

Example 4 for RAND_GEN is correct.

RNGET
Retrieves the current value of the seed used in the IMSL random number generators.

Required Arguments

ISEED — The seed of the random number generator. (Output)

ISEED is in the range (1, 2147483646).

FORTRAN 90 Interface

Generic: CALL RNGET (ISEED)

Specific: The specific interface name is RNGET.

FORTRAN 77 Interface

Single: CALL RNGET (ISEED)

Description

Routine RNGET retrieves the current value of the ―seed‖ used in the IMSL random number

generators. A reason for doing this would be to restart a simulation, using RNSET to reset the seed.

Example

The following FORTRAN statements illustrate the use of RNGET:

 INTEGER ISEED

! Call RNSET to initialize the seed.

 CALL RNSET(123457)

! Do some simulations.

 ...

 ...

 CALL RNGET(ISEED)

! Save ISEED. If the simulation is to be continued

! in a different program, ISEED should be output,

! possibly to a file.

 ...

 ...

! When the simulations begun above are to be

! restarted, restore ISEED to the value obtained

! above and use as input to RNSET.

 CALL RNSET(ISEED)

! Now continue the simulations.

 ...

 ...

1892 Chapter 11: Utilities IMSL MATH LIBRARY

RNSET
Initializes a random seed for use in the IMSL random number generators.

Required Arguments

ISEED — The seed of the random number generator. (Input)

ISEED must be in the range (0, 2147483646). If ISEED is zero, a value is computed

using the system clock; and, hence, the results of programs using the IMSL random

number generators will be different at different times.

FORTRAN 90 Interface

Generic: CALL RNSET (ISEED)

Specific: The specific interface name is RNSET .

FORTRAN 77 Interface

Single: CALL RNSET (ISEED)

Description

Routine RNSET is used to initialize the seed used in the IMSL random number generators. If the

seed is not initialized prior to invocation of any of the routines for random number generation by

calling RNSET, the seed is initialized via the system clock. The seed can be reinitialized to a

clock-dependent value by calling RNSET with ISEED set to 0.

The effect of RNSET is to set some values in a FORTRAN COMMON block that is used by the

random number generators.

A common use of RNSET is in conjunction with RNGET to restart a simulation.

Example

The following FORTRAN statements illustrate the use of RNSET:

 INTEGER ISEED

! Call RNSET to initialize the seed via the

! system clock.

 CALL RNSET(0)

! Do some simulations.

 ...

 ...

! Obtain the current value of the seed.

 CALL RNGET(ISEED)

! If the simulation is to be continued in a

! different program, ISEED should be output,

! possibly to a file.

 ...

 ...

IMSL MATH LIBRARY Chapter 11: Utilities 1893

! When the simulations begun above are to be

! restarted, restore ISEED to the value

! obtained above, and use as input to RNSET.

 CALL RNSET(ISEED)

! Now continue the simulations.

 ...

 ...

RNOPT
Selects the uniform (0, 1) multiplicative congruential pseudorandom number generator.

Required Arguments

IOPT — Indicator of the generator. (Input)

The random number generator is either a multiplicative congruential generator with

modulus 2
31

 − 1 or a GFSR generator. IOPT is used to choose the multiplier and

whether or not shuffling is done, or is used to choose the GFSR method, or is used to

choose the Mersenne Twister generator.

IOPT Generator

1 The multiplier 16807 is used.

2 The multiplier 16807 is used with shuffling.

3 The multiplier 397204094 is used.

4 The multiplier 397204094 is used with shuffling.

5 The multiplier 950706376 is used.

6 The multiplier 950706376 is used with shuffling.

7 GFSR, with the recursion Xt = Xt−1563 ⊕ Xt−96 is used.

8 A 32-bit Mersenne Twister generator is used. The real and double random

numbers are generated from 32-bit integers.

9 A 64-bit Mersenne Twister generator is used. The real and double random

numbers are generated from 64-bit integers. This ensures that all bits of both

float and double are random.

FORTRAN 90 Interface

Generic: CALL RNOPT (IOPT)

Specific: The specific interface name is RNOPT.

1894 Chapter 11: Utilities IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL RNOPT (IOPT)

Description

The uniform pseudorandom number generators use a multiplicative congruential method, with or

without shuffling or a GFSR method, or the Mersenne Twister method. Routine RNOPT determines

which method is used; and in the case of a multiplicative congruential method, it determines the

value of the multiplier and whether or not to use shuffling. The description of RNUN may provide

some guidance in the choice of the form of the generator. If no selection is made explicitly, the

generators use the multiplier 16807 without shuffling. This form of the generator has been in use

for some time (see Lewis, Goodman, and Miller, 1969). This is the generator formerly known as

GGUBS in the IMSL Library. It is the ―minimal standard generator‖ discussed by Park and Miller

(1988).

Both of the Mersenne Twister generators have a period of 2
19937

 -1 and a 624-dimensional equi-

distribution property. See Matsumoto et al. 1998 for details.

The IMSL Mersenne Twister generators are derived from code copyright (C) 1997 - 2002, Makoto

Matsumoto and Takuji Nishimura, All rights reserved. It is subject to the following notice:

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

―AS IS‖ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The IMSL 32-bit Mersenne Twister generator is based on the Matsumoto and Nishimura code

‗mt19937ar‘ and the 64-bit code is based on ‗mt19937-64‘.

Example

The FORTRAN statement

CALL RNOPT(1)

would select the simple multiplicative congruential generator with multiplier 16807. Since this is

the same as the default, this statement would have no effect unless RNOPT had previously been

called in the same program to select a different generator.

RNIN32
Initializes the 32-bit Mersenne Twister generator using an array.

IMSL MATH LIBRARY Chapter 11: Utilities 1895

Required Arguments

KEY— Integer array of length LEN used to initialize the 32-bit Mersenne Twister generator.

(Input)

Optional Arguments

LEN — Length of the array key. (Input)

FORTRAN 90 Interface

Generic: CALL RNIN32 (KEY [,…])

Specific: The specific interface name is S_RNIN32.

FORTRAN 77 Interface

Single: CALL RNIN32 (KEY, LEN)

Description

By default, the Mersenne Twister random number generator is initialized using the current seed

value (see RNGET). The seed is limited to one integer for initialization. This function allows an

arbitrary length array to be used for initialization. This subroutine completely replaces the use of the

seed for initialization of the 32-bit Mersenne Twister generator.

Example

See routine RNGE32.

RNGE32
Retrieves the current table used in the 32-bit Mersenne Twister generator.

Required Arguments

MTABLE — Integer array of length 625 containing the table used in the 32-bit Mersenne

Twister generator. (Output)

FORTRAN 90 Interface

Generic: CALL RNGE32 (MTABLE)

Specific: The specific interface name is RNGE32

FORTRAN 77 Interface

Single: CALL RNGE32 (MTABLE)

1896 Chapter 11: Utilities IMSL MATH LIBRARY

Description

The values in the table contain the state of the 32-bit Mersenne Twister random number generator.

The table can be used by RNSE32 to set the generator back to this state.

Example

In this example, four simulation streams are generated. The first series is generated with the seed

used for initialization. The second series is generated using an array for initialization. The third

series is obtained by resetting the generator back to the state it had at the beginning of the second

stream. Therefore, the second and third streams are identical. The fourth stream is obtained by

resetting the generator back to its original, uninitialized state, and having it reinitialize using the

seed. The first and fourth streams are therefore the same.

 USE RNIN32_INT

 USE RNGE32_INT

 USE RNSET_INT

 USE UMACH_INT

 USE RNUN_INT

 IMPLICIT NONE

 INTEGER I, ISEED, NOUT

 INTEGER INIT(4)

 DATA INIT/291,564,837,1110/

 DATA ISEED/123457/

 INTEGER NR

 REAL R(5)

 INTEGER MTABLE(625)

 CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5

 RLABEL(1)='NONE'

 CLABEL(1)='NONE'

 DATA FMT/'(W10.4)'/

 NR=5

 CALL UMACH (2, NOUT)

 ISEED = 123457

 CALL RNOPT(8)

 CALL RNSET(ISEED)

 CALL RNUN(R)

 CALL WRRRL('FIRST STREAM OUTPUT',1,5,R,1,0, &

 FMT, RLABEL, CLABEL)

! REINITIALIZE MERSENNE TWISTER SERIES WITH AN ARRAY

 CALL RNIN32(INIT)

! SAVE THE STATE OF THE SERIES

 CALL RNGE32(MTABLE)

 CALL RNUN(R)

 CALL WRRRL('SECOND STREAM OUTPUT',1,5,R,1,0, &

 FMT, RLABEL, CLABEL)

! RESTORE THE STATE OF THE TABLE

 CALL RNSE32(MTABLE)

 CALL RNUN(R)

 CALL WRRRL('THIRD STREAM OUTPUT',1,5,R,1,0, &

 FMT, RLABEL, CLABEL)

! RESET THE SERIES - IT WILL REINITIALIZE FROM THE SEED

 MTABLE(1)=1000

 CALL RNSE32(MTABLE)

IMSL MATH LIBRARY Chapter 11: Utilities 1897

 CALL RNUN(R)

 CALL WRRRL('FOURTH STREAM OUTPUT',1,5,R,1,0, &

 FMT, RLABEL, CLABEL)

 END

Output

 First stream output

 0.4347 0.3522 0.0139 0.2091 0.4956

 Second stream output

 0.2486 0.2226 0.1111 0.9563 0.9846

 Third stream output

 0.2486 0.2226 0.1111 0.9563 0.9846

 Fourth stream output

 0.4347 0.3522 0.0139 0.2091 0.4956

RNSE32
Sets the current table used in the 32-bit Mersenne Twister generator.

Required Arguments

MTABLE — Integer array of length 625 containing the table used in the 32-bit Mersenne

Twister generator. (Input)

FORTRAN 90 Interface

Generic: CALL RNSE32 (MTABLE)

Specific: The specific interface name is RNSE32

FORTRAN 77 Interface

Single: CALL RNSE32 (MTABLE)

Description

The values in MTABLE are the state of the 32-bit Mersenne Twister random number generator

obtained by a call to RNGE32. The values in the table can be used to restore the state of the

generator.

Alternatively, if MTABLE [1] > 625 then the generator is set to its original, uninitialized, state.

Example

See routine RNGE32.

RNIN64
Initializes the 64-bit Mersenne Twister generator using an array.

1898 Chapter 11: Utilities IMSL MATH LIBRARY

Required Arguments

KEY— Integer(kind=8) array of length LEN used to initialize the 64-bit Mersenne Twister

generator. (Input)

Optional Arguments

LEN — Length of the array key. (Input)

FORTRAN 90 Interface

Generic: CALL RNIN64 (KEY [,…])

Specific: The specific interface name is S_RNIN64.

FORTRAN 77 Interface

Single: CALL RNIN64 (KEY, LEN)

Description

By default, the Mersenne Twister random number generator is initialized using the current seed

value (see RNGET). The seed is limited to one integer for initialization. This function allows an

arbitrary length array to be used for initialization. This subroutine completely replaces the use of the

seed for initialization of the 64-bit Mersenne Twister generator.

RNGE64
Retrieves the current table used in the 64-bit Mersenne Twister generator.

Required Arguments

MTABLE — Integer(kind=8) array of length 313 containing the table used in the 64-bit

Mersenne Twister generator. (Output)

FORTRAN 90 Interface

Generic: CALL RNGE64 (MTABLE)

Specific: The specific interface name is RNGE64

FORTRAN 77 Interface

Single: CALL RNGE64 (MTABLE)

IMSL MATH LIBRARY Chapter 11: Utilities 1899

Description

The values in the table contain the state of the 64-bit Mersenne Twister random number generator.

The table can be used by RNSE64 to set the generator back to this state.

Example

In this example, four simulation streams are generated. The first series is generated with the seed

used for initialization. The second series is generated using an array for initialization. The third

series is obtained by resetting the generator back to the state it had at the beginning of the second

stream. Therefore, the second and third streams are identical. The fourth stream is obtained by

resetting the generator back to its original, uninitialized state, and having it reinitialize using the

seed. The first and fourth streams are therefore the same.

 USE RNIN64_INT

 USE RNGE64_INT

 USE RNSET_INT

 USE UMACH_INT

 USE RNUN_INT

 IMPLICIT NONE

 INTEGER I, ISEED, NOUT

 INTEGER(KIND=8) INIT(4)

 DATA INIT/291,564,837,1110/

 DATA ISEED/123457/

 INTEGER NR

 REAL R(5)

 INTEGER(KIND=8) MTABLE(313)

 CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5

 RLABEL(1)='NONE'

 CLABEL(1)='NONE'

 DATA FMT/'(W10.4)'/

 NR=5

 CALL UMACH (2, NOUT)

 ISEED = 123457

 CALL RNOPT(9)

 CALL RNSET(ISEED)

 CALL RNUN(R)

 CALL WRRRL('FIRST STREAM OUTPUT',1,5,R,1,0, &

 FMT, RLABEL, CLABEL)

! REINITIALIZE MERSENNE TWISTER SERIES WITH AN ARRAY

 CALL RNIN64(INIT)

! SAVE THE STATE OF THE SERIES

 CALL RNGE64(MTABLE)

 CALL RNUN(R)

 CALL WRRRL('SECOND STREAM OUTPUT',1,5,R,1,0, &

 FMT, RLABEL, CLABEL)

! RESTORE THE STATE OF THE TABLE

 CALL RNSE64(MTABLE)

 CALL RNUN(R)

 CALL WRRRL('THIRD STREAM OUTPUT',1,5,R,1,0, &

 FMT, RLABEL, CLABEL)

! RESET THE SERIES - IT WILL REINITIALIZE FROM THE SEED

 MTABLE(1)=1000

 CALL RNSE64(MTABLE)

 CALL RNUN(R)

 CALL WRRRL('FOURTH STREAM OUTPUT',1,5,R,1,0, &

1900 Chapter 11: Utilities IMSL MATH LIBRARY

 FMT, RLABEL, CLABEL)

 END

Output

 First stream output

 0.5799 0.9401 0.7102 0.1640 0.5457

 Second stream output

 0.4894 0.7397 0.5725 0.0863 0.7588

 Third stream output

 0.4894 0.7397 0.5725 0.0863 0.7588

 Fourth stream output

 0.5799 0.9401 0.7102 0.1640 0.5457

RNSE64
Sets the current table used in the 64-bit Mersenne Twister generator.

Required Arguments

MTABLE — Integer (kind=8) array of length 313 containing the table used in the 64-bit

Mersenne Twister generator. (Input)

FORTRAN 90 Interface

Generic: CALL RNSE64 (MTABLE)

Specific: The specific interface name is RNSE64

FORTRAN 77 Interface

Single: CALL RNSE64 (MTABLE)

Description

The values in MTABLE are the state of the 64-bit Mersenne Twister random number generator

obtained by a call to RNGE64. The values in the table can be used to restore the state of the

generator. Alternatively, if MTABLE [1] > 313 then the generator is set to its original,

uninitialized, state.

Example

See function RNGE64.

RNUNF
This function generates a pseudorandom number from a uniform (0, 1) distribution.

IMSL MATH LIBRARY Chapter 11: Utilities 1901

Function Return Value

RNUNF — Function value, a random uniform (0, 1) deviate. (Output)

See Comment 1.

Required Arguments

None

FORTRAN 90 Interface

Generic: RNUNF ()

Specific: The specific interface names are S_RNUNF and D_RNUNF.

FORTRAN 77 Interface

Single: RNUNF ()

Double: The double precision name is DRNUNF.

Description

Routine RNUNF is the function form of RNUN. The routine RNUNF generates pseudorandom

numbers from a uniform (0, 1) distribution. The algorithm used is determined by RNOPT. The

values returned by RNUNF are positive and less than 1.0.

If several uniform deviates are needed, it may be more efficient to obtain them all at once by a call

to RNUN rather than by several references to RNUNF.

Comments

1. If the generic version of this function is used, the immediate result must be stored in a

variable before use in an expression. For example:

X = RNUNF(6)

Y = SQRT(X)

 must be used rather than

Y = SQRT(RNUNF(6))

 If this is too much of a restriction on the programmer, then the specific name can be

used without this restriction.

2. Routine RNSET can be used to initialize the seed of the random number generator. The

routine RNOPT can be used to select the form of the generator.

3. This function has a side effect: it changes the value of the seed, which is passed

through a common block.

1902 Chapter 11: Utilities IMSL MATH LIBRARY

Example

In this example, RNUNF is used to generate five pseudorandom uniform numbers. Since RNOPT is

not called, the generator used is a simple multiplicative congruential one with a multiplier of

16807.

 USE RNUNF_INT

 USE RNSET_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER I, ISEED, NOUT

 REAL R(5)

!

 CALL UMACH (2, NOUT)

 ISEED = 123457

 CALL RNSET (ISEED)

 DO 10 I=1, 5

 R(I) = RNUNF()

 10 CONTINUE

 WRITE (NOUT,99999) R

99999 FORMAT (' Uniform random deviates: ', 5F8.4)

 END

Output

Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448

RNUN
Generates pseudorandom numbers from a uniform (0, 1) distribution.

Required Arguments

R — Vector of length NR containing the random uniform (0, 1) deviates. (Output)

Optional Arguments

NR — Number of random numbers to generate. (Input)

Default: NR = SIZE (R,1).

FORTRAN 90 Interface

Generic: CALL RNUN (R [,…])

Specific: The specific interface names are S_RNUN and D_RNUN.

FORTRAN 77 Interface

Single: CALL RNUN (NR, R)

IMSL MATH LIBRARY Chapter 11: Utilities 1903

Double: The double precision name is DRNUN.

Description

Routine RNUN generates pseudorandom numbers from a uniform (0,1) distribution using either a

multiplicative congruential method or a generalized feedback shift register (GFSR) method, or the

Mersenne Twister generator. The form of the multiplicative congruential generator is

 31
1 mod 2 1i ix cx

Each xi is then scaled into the unit interval (0,1). The possible values for c in the IMSL generators

are 16807, 397204094, and 950706376. The selection is made by the routine RNOPT. The choice

of 16807 will result in the fastest execution time. If no selection is made explicitly, the routines

use the multiplier 16807.

The user can also select a shuffled version of the multiplicative congruential generators. In this

scheme, a table is filled with the first 128 uniform (0,1) numbers resulting from the simple

multiplicative congruential generator. Then, for each xi from the simple generator, the low-order

bits of xi are used to select a random integer, j, from 1 to 128. The j-th entry in the table is then

delivered as the random number; and xi, after being scaled into the unit interval, is inserted into the

j-th position in the table.

The GFSR method is based on the recursion Xt = Xt−1563 ⊕ Xt−96. This generator, which is

different from earlier GFSR generators, was proposed by Fushimi (1990), who discusses the

theory behind the generator and reports on several empirical tests of it.

Mersenne Twister(MT) is a pseudorandom number generating algorithm developed by Makoto

Matsumoto and Takuji Nishimura in 1996-1997. MT has far longer period and far higher order of

equidistribution than any other implemented generators. The values returned in R by RNUN are

positive and less than 1.0. Values in R may be smaller than the smallest relative spacing, however.

Hence, it may be the case that some value R(i) is such that 1.0 − R(i) = 1.0.

Deviates from the distribution with uniform density over the interval (A, B) can be obtained by

scaling the output from RNUN. The following statements (in single precision) would yield random

deviates from a uniform (A, B) distribution:

 CALL RNUN (NR, R)

 CALL SSCAL (NR, B-A, R, 1)

 CALL SADD (NR, A, R, 1)

Comments

The routine RNSET can be used to initialize the seed of the random number generator. The

routine RNOPT can be used to select the form of the generator.

Example

In this example, RNUN is used to generate five pseudorandom uniform numbers. Since RNOPT is

not called, the generator used is a simple multiplicative congruential one with a multiplier of

16807.

1904 Chapter 11: Utilities IMSL MATH LIBRARY

 USE RNUN_INT

 USE RNSET_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER ISEED, NOUT, NR

 REAL R(5)

!

 CALL UMACH (2, NOUT)

 NR = 5

 ISEED = 123457

 CALL RNSET (ISEED)

 CALL RNUN (R)

 WRITE (NOUT,99999) R

99999 FORMAT (' Uniform random deviates: ', 5F8.4)

 END

Output

 Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448

FAURE_INIT
Shuffled Faure sequence initialization.

Required Arguments

NDIM — The dimension of the hyper-rectangle. (Input)

STATE — An IMSL_FAURE pointer for the derived type created by the call to FAURE_INIT.

The output contains information about the sequence. Use ?_IMSL_FAURE as the type,

where ?_ is S_ or D_ depending on precision. (Output)

Optional Arguments

NBASE — The base of the Faure sequence. (Input)

Default: The smallest prime number greater than or equal to NDIM.

NSKIP — The number of points to be skipped at the beginning of the Faure sequence.

(Input)

Default:
/ 2 1m

base , where log logBm / base and B is the largest machine

representable integer.

FORTRAN 90 Interface

Generic: CALL FAURE_INIT (NDIM, STATE [,…])

IMSL MATH LIBRARY Chapter 11: Utilities 1905

Specific: The specific interface names are S_FAURE_INIT and D_FAURE_INIT.

FAURE_FREE
Frees the structure containing information about the Faure sequence.

Required Arguments

STATE — An IMSL_FAURE pointer containing the structure created by the call to

FAURE_INIT. (Input/Output)

FORTRAN 90 Interface

Generic: CALL FAURE_FREE (STATE)

Specific: The specific interface names are S_FAURE_FREE and D_FAURE_FREE.

FAURE_NEXT
Computes a shuffled Faure sequence.

Required Arguments

STATE — An IMSL_FAURE pointer containing the structure created by the call to

FAURE_INIT. The structure contains information about the sequence. The structure

should be freed using FAURE_FREE after it is no longer needed. (Input/Output)

NEXT_PT — Vector of length NDIM containing the next point in the shuffled Faure

sequence, where NDIM is the dimension of the hyper-rectangle specified in

FAURE_INIT. (Output)

Optional Arguments

IMSL_RETURN_SKIP — Returns the current point in the sequence. The sequence can be

restarted by calling FAURE_INIT using this value for NSKIP, and using the same value

for NDIM. (Input)

FORTRAN 90 Interface

Generic: CALL FAURE_NEXT (STATE, NEXT_PT [,…])

Specific: The specific interface names are S_FAURE_NEXT and D_FAURE_NEXT.

Description

The routines FAURE_INIT and FAURE_NEXT are used to generate shuffled Faure sequence of low

discrepancy n-dimensional points. Low discrepency series fill an n-dimensional cube more

1906 Chapter 11: Utilities IMSL MATH LIBRARY

uniformly than psuedo-random sequences, and are used in multivariate quadrature, simulation, and

global optimization. Because of this uniformity, use of low discrepency series is generally more

effiicient than psuedo-random series for multivariate Monte Carlo methods. See the IMSL routine

QMC (Chapter 4, Integration and Differentiation) for a discussion of quasi-Monte Carlo quadrature

based on low discrepancy series.

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set 1,..., 0,1 , 1
d

nx x d , is defined

;
sup ,

E

A E nd
D E

n n

where the supremum is over all subsets of [0, 1]
d
 of the form

1

0, 0 0 1, 1... , ,
d jE t t t j d ,

λ is the Lebesque measure, and ;A E n is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]
d
 is a low-discrepancy sequence if there exists a constant

c(d), depending only on d, such that

 log
d

nd
D c d

n n

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The lowest bound for the

discrepancy is obtained for the smallest prime b≥d, so the optional argument NBASE defaults to

the smallest prime greater than or equal to the dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion,

0

() i
i

i

n a n b

where ai(n) are integers, 0 ia n b .

The j-th coordinate of xn is

()() 1

0 0

() , 1jj k
n dkd

k d

x c a n b j d

IMSL MATH LIBRARY Chapter 11: Utilities 1907

The generator matrix for the series,
()j

c
k d

, is defined to be

()j d k
k dk dc j c

and k dc is an element of the Pascal matrix,

!

! !

0

k d

d
k d

c d cc

k d

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence itself. It can

be shown that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer n into the

integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized Faure sequence.

Example

In this example, five points in the Faure sequence are computed. The points are in the three-

dimensional unit cube.

Note that FAURE_INIT is used to create a structure that holds the state of the sequence. Each call

to FAURE_NEXT returns the next point in the sequence and updates the IMSL_FAURE structure. The

final call to FAURE_FREE frees data items, stored in the structure, that were allocated by

FAURE_INIT.

 use faure_int

 implicit none

 type (s_imsl_faure), pointer :: state

 real(kind(1e0)) :: x(3)

 integer,parameter :: ndim=3

 integer :: k

! CREATE THE STRUCTURE THAT HOLDS

! THE STATE OF THE SEQUENCE.

 call faure_init(ndim, state)

! GET THE NEXT POINT IN THE SEQUENCE

 do k=1,5

 call faure_next(state, x)

 write(*,'(3F15.3)') x(1), x(2) , x(3)

 enddo

! FREE DATA ITEMS STORED IN

! state STRUCTURE

 call faure_free(state)

 end

Output

 0.334 0.493 0.064

 0.667 0.826 0.397

 0.778 0.270 0.175

1908 Chapter 11: Utilities IMSL MATH LIBRARY

 0.111 0.604 0.509

 0.445 0.937 0.842

IUMAG
This routine handles MATH/LIBRARY and STAT/LIBRARY type INTEGER options.

Required Arguments

PRODNM — Product name. Use either ―MATH‖ or ―STAT.‖ (Input)

ICHP — Chapter number of the routine that uses the options. (Input)

IACT — 1 if user desires to ―get‖ or read options, or 2 if user desires to ―put‖ or write

options. (Input)

NUMOPT — Size of IOPTS. (Input)

IOPTS — Integer array of size NUMOPT containing the option numbers to ―get‖ or ―put.‖

(Input)

IVALS — Integer array containing the option values. These values are arrays corresponding

to the individual options in IOPTS in sequential order. The size of IVALS is the sum of

the sizes of the individual options. (Input/Output)

FORTRAN 90 Interface

Generic: CALL IUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, IVALS)

Specific: The specific interface name is IUMAG.

FORTRAN 77 Interface

Single: CALL IUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, IVALS)

Description

The Options Manager routine IUMAG reads or writes INTEGER data for some MATH/LIBRARY

and STAT/LIBRARY codes. See Atchison and Hanson (1991) for more complete details.

There are MATH/LIBRARY routines in Chapters 1, 2, and 5 that now use IUMAG to communicate

optional data from the user.

Comments

1. Users can normally avoid reading about options when first using a routine that calls

IUMAG.

IMSL MATH LIBRARY Chapter 11: Utilities 1909

2. Let I be any value between 1 and NUMOPT. A negative value of IOPTS(I) refers to

option number −IOPTS(I) but with a different effect: For a ―get‖ operation, the default

values are returned in IVALS. For a ―put‖ operation, the default values replace the

current values. In the case of a ―put,‖ entries of IVALS are not allocated by the user and

are not used by IUMAG.

3. Both positive and negative values of IOPTS can be used.

4. INTEGER Options

1 If the value is positive, print the next activity for any library routine that uses the

Options Manager codes IUMAG, SUMAG, or DUMAG. Each printing step

decrements the value if it is positive.

Default value is 0.

2 If the value is 2, perform error checking in IUMAG, SUMAG , and DUMAG such as

the verifying of valid option numbers and the validity of input data. If the value

is 1, do not perform error checking.

Default value is 2.

3 This value is used for testing the installation of IUMAG by other IMSL software.

Default value is 3.

Example

The number of iterations allowed for the constrained least squares solver LCLSQ that calls L2LSQ

is changed from the default value of max(nra, nca) to the value 6. The default value is restored

after the call to LCLSQ. This change has no effect on the solution. It is used only for illustration.

The first two arguments required for the call to IUMAG are defined by the product name, ―MATH,‖

and chapter number, 1, where LCLSQ is documented. The argument IACT denotes a write or ―put‖

operation. There is one option to change so NUMOPT has the value 1. The arguments for the option

number, 14, and the new value, 6, are defined by reading the documentation for LCLSQ.

 USE IUMAG_INT

 USE LCLSQ_INT

 USE UMACH_INT

 USE SNRM2_INT

 IMPLICIT NONE

!

! Solve the following in the least squares sense:

! 3x1 + 2x2 + x3 = 3.3

! 4x1 + 2x2 + x3 = 2.3

! 2x1 + 2x2 + x3 = 1.3

! x1 + x2 + x3 = 1.0

!

! Subject to: x1 + x2 + x3 <= 1

! 0 <= x1 <= .5

! 0 <= x2 <= .5

! 0 <= x3 <= .5

!

! --

1910 Chapter 11: Utilities IMSL MATH LIBRARY

! Declaration of variables

!

 INTEGER ICHP, IPUT, LDA, LDC, MCON, NCA, NEWMAX, NRA, NUMOPT

 PARAMETER (ICHP=1, IPUT=2, MCON=1, NCA=3, NEWMAX=14, NRA=4, &

 NUMOPT=1, LDA=NRA, LDC=MCON)

!

 INTEGER IOPT(1), IRTYPE(MCON), IVAL(1), NOUT

 REAL A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA), &

 RESNRM, XLB(NCA), XSOL(NCA), XUB(NCA)

! Data initialization

!

 DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, 2.0E0, 2.0E0, 1.0E0, &

 1.0E0, 1.0E0, 1.0E0, 1.0E0/, B/3.3E0, 2.3E0, 1.3E0, 1.0E0/, &

 C/3*1.0E0/, BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/

! --

!

! Reset the maximum number of

! iterations to use in the solver.

! The value 14 is the option number.

! The value 6 is the new maximum.

 IOPT(1) = NEWMAX

 IVAL(1) = 6

 CALL IUMAG ('math', ICHP, IPUT, NUMOPT, IOPT, IVAL)

! -------------------------------------

! ---------------------------------

!

! Solve the bounded, constrained

! least squares problem.

!

 CALL LCLSQ (A, B, C, BC, B, IRTYPE, XLB, XUB, XSOL, RES=RES)

! Compute the 2-norm of the residuals.

 RESNRM = SNRM2(NRA,RES,1)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) XSOL, RES, RESNRM

! -------------------------------------

! ---------------------------------

! Reset the maximum number of

! iterations to its default value.

! This is not required but is

! recommended programming practice.

 IOPT(1) = -IOPT(1)

 CALL IUMAG ('math', ICHP, IPUT, NUMOPT, IOPT, IVAL)

! -------------------------------------

! ---------------------------------

!

99999 FORMAT (' The solution is ', 3F9.4, //, ' The residuals ', &

 'evaluated at the solution are ', /, 18X, 4F9.4, //, &

 ' The norm of the residual vector is ', F8.4)

!

 END

IMSL MATH LIBRARY Chapter 11: Utilities 1911

Output

 The solution is 0.5000 0.3000 0.2000

 The residuals evaluated at the solution are

 -1.0000 0.5000 0.5000 0.0000

 The norm of the residual vector is 1.2247

UMAG
This routine handles MATH/LIBRARY and STAT/LIBRARY type REAL and double precision

options.

Required Arguments

PRODNM — Product name. Use either ―MATH‖ or ―STAT.‖ (Input)

ICHP — Chapter number of the routine that uses the options. (Input)

IACT — 1 if user desires to ―get‖ or read options, or 2 if user desires to ―put‖ or write

options. (Input)

IOPTS — Integer array of size NUMOPT containing the option numbers to ―get‖ or ―put.‖

(Input)

SVALS — Array containing the option values. These values are arrays corresponding to the

individual options in IOPTS in sequential order. The size of SVALS is the sum of the

sizes of the individual options. (Input/Output)

Optional Arguments

NUMOPT — Size of IOPTS. (Input)

Default: NUMOPT = SIZE (IOPTS,1).

FORTRAN 90 Interface

Generic: CALL UMAG (PRODNM, ICHP, IACT, IOPTS, SVALS [,…])

Specific: The specific interface names are S_UMAG and D_UMAG.

FORTRAN 77 Interface

Single: CALL SUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, SVALS)

Double: The double precision name is DUMAG.

1912 Chapter 11: Utilities IMSL MATH LIBRARY

Description

The Options Manager routine SUMAG reads or writes REAL data for some MATH/LIBRARY and

STAT/LIBRARY codes. See Atchison and Hanson (1991) for more complete details. There are

MATH/LIBRARY routines in Chapters 1 and 5 that now use SUMAG to communicate optional data

from the user.

Comments

1. Users can normally avoid reading about options when first using a routine that calls

SUMAG.

2. Let I be any value between 1 and NUMOPT. A negative value of IOPTS(I) refers to

option number −IOPTS(I) but with a different effect: For a ―get‖ operation, the default

values are returned in SVALS. For a ―put‖ operation, the default values replace the

current values. In the case of a ―put,‖ entries of SVALS are not allocated by the user and

are not used by SUMAG.

3. Both positive and negative values of IOPTS can be used.

4. Floating Point Options

1 This value is used for testing the installation of SUMAG by other IMSL software.

Default value is 3.0E0.

Example

The rank determination tolerance for the constrained least squares solver LCLSQ that calls L2LSQ

is changed from the default value of SQRT(AMACH(4)) to the value 0.01. The default value is

restored after the call to LCLSQ. This change has no effect on the solution. It is used only for

illustration. The first two arguments required for the call to SUMAG are defined by the product

name, ―MATH,‖ and chapter number, 1, where LCLSQ is documented. The argument IACT

denotes a write or ―put‖ operation. There is one option to change so NUMOPT has the value 1. The

arguments for the option number, 2, and the new value, 0.01E+0, are defined by reading the

documentation for LCLSQ.

 USE UMAG_INT

 USE LCLSQ_INT

 USE UMACH_INT

 USE SNRM2_INT

 IMPLICIT NONE

!

! Solve the following in the least squares sense:

! 3x1 + 2x2 + x3 = 3.3

! 4x1 + 2x2 + x3 = 2.3

! 2x1 + 2x2 + x3 = 1.3

! x1 + x2 + x3 = 1.0

!

! Subject to: x1 + x2 + x3 <= 1

! 0 <= x1 <= .5

IMSL MATH LIBRARY Chapter 11: Utilities 1913

! 0 <= x2 <= .5

! 0 <= x3 <= .5

!

! --

! Declaration of variables

!

 INTEGER ICHP, IPUT, LDA, LDC, MCON, NCA, NEWTOL, NRA, NUMOPT

 PARAMETER (ICHP=1, IPUT=2, MCON=1, NCA=3, NEWTOL=2, NRA=4, &

 NUMOPT=1, LDA=NRA, LDC=MCON)

!

 INTEGER IOPT(1), IRTYPE(MCON), NOUT

 REAL A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA), &

 RESNRM, SVAL(1), XLB(NCA), XSOL(NCA), XUB(NCA)

! Data initialization

!

 DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, 2.0E0, 2.0E0, 1.0E0, &

 1.0E0, 1.0E0, 1.0E0, 1.0E0/, B/3.3E0, 2.3E0, 1.3E0, 1.0E0/, &

 C/3*1.0E0/, BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/

! --

!

! Reset the rank determination

! tolerance used in the solver.

! The value 2 is the option number.

! The value 0.01 is the new tolerance.

!

 IOPT(1) = NEWTOL

 SVAL(1) = 0.01E+0

 CALL UMAG ('math', ICHP, IPUT, IOPT, SVAL)

! -------------------------------------

! ---------------------------------

!

! Solve the bounded, constrained

! least squares problem.

!

 CALL LCLSQ (A, B, C, BC, BC, IRTYPE, XLB, XUB, XSOL, RES=RES)

! Compute the 2-norm of the residuals.

 RESNRM = SNRM2(NRA,RES,1)

! Print results

 CALL UMACH (2, NOUT)

 WRITE (NOUT,99999) XSOL, RES, RESNRM

! -------------------------------------

! ---------------------------------

! Reset the rank determination

! tolerance to its default value.

! This is not required but is

! recommended programming practice.

 IOPT(1) = -IOPT(1)

 CALL UMAG ('math', ICHP, IPUT, IOPT, SVAL)

! -------------------------------------

! ---------------------------------

!

99999 FORMAT (' The solution is ', 3F9.4, //, ' The residuals ', &

 'evaluated at the solution are ', /, 18X, 4F9.4, //, &

 ' The norm of the residual vector is ', F8.4)

!

 END

1914 Chapter 11: Utilities IMSL MATH LIBRARY

Output

 The solution is 0.5000 0.3000 0.2000

 The residuals evaluated at the solution are

 -1.0000 0.5000 0.5000 0.0000

 The norm of the residual vector is 1.2247

DUMAG
See UMAG.

PLOTP
Prints a plot of up to 10 sets of points.

Required Arguments

X — Vector of length NDATA containing the values of the independent variable. (Input)

A — Matrix of dimension NDATA by NFUN containing the NFUN sets of dependent variable

values. (Input)

SYMBOL — CHARACTER string of length NFUN. (Input)

SYMBOL(I : I) is the symbol used to plot function I.

XTITLE — CHARACTER string used to label the x-axis. (Input)

YTITLE — CHARACTER string used to label the y-axis. (Input)

TITLE — CHARACTER string used to label the plot. (Input)

Optional Arguments

NDATA — Number of independent variable data points. (Input)

Default: NDATA = SIZE (X,1).

NFUN — Number of sets of points. (Input)

NFUN must be less than or equal to 10.

Default: NFUN = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)

Default: LDA = SIZE (A,1).

IMSL MATH LIBRARY Chapter 11: Utilities 1915

INC — Increment between elements of the data to be used. (Input)

PLOTP plots X(1 + (I − 1) * INC) for I = 1, 2, …, NDATA.

Default: INC = 1.

RANGE — Vector of length four specifying minimum x, maximum x, minimum y and

maximum y. (Input)

PLOTP will calculate the range of the axis if the minimum and maximum of that range

are equal.

Default: RANGE = 1.e0.

FORTRAN 90 Interface

Generic: CALL PLOTP (X, A, SYMBOL, XTITLE, YTITLE, TITLE [,…])

Specific: The specific interface names are S_PLOTP and D_PLOTP.

FORTRAN 77 Interface

Single: CALL PLOTP (NDATA, NFUN, X, A, LDA, INC, RANGE, SYMBOL, XTITLE, YTITLE,
TITLE)

Double: The double precision name is DPLOTP.

Description

Routine PLOTP produces a line printer plot of up to ten sets of points superimposed upon the same

plot. A character ―M‖ is printed to indicate multiple points. The user may specify the x and y-axis

plot ranges and plotting symbols. Plot width and length may be reset in advance by calling PGOPT.

Comments

1. Informational errors

Type Code

3 7 NFUN is greater than 10. Only the first 10 functions are plotted.

3 8 TITLE is too long. TITLE is truncated from the right side.

3 9 YTITLE is too long. YTITLE is truncated from the right side.

3 10 XTITLE is too long. XTITLE is truncated from the right side. The

maximum number of characters allowed depends on the page width

and the page length. See Comment 5 below for more information.

2. YTITLE and TITLE are automatically centered.

3. For multiple plots, the character M is used if the same print position is shared by two or

more data sets.

4. Output is written to the unit specified by UMACH (see Reference Material).

1916 Chapter 11: Utilities IMSL MATH LIBRARY

5. Default page width is 78 and default page length is 60. They may be changed by

calling PGOPT in advance.

Example

This example plots the sine and cosine functions from − 3.5 to + 3.5 and sets page width and

length to 78 and 40, respectively, by calling PGOPT in advance.

 USE PLOTP_INT

 USE CONST_INT

 USE PGOPT_INT

 IMPLICIT NONE

 INTEGER I, IPAGE

 REAL A(200,2), DELX, PI, RANGE(4), X(200)

 CHARACTER SYMBOL*2

 INTRINSIC COS, SIN

!

 DATA SYMBOL/'SC'/

 DATA RANGE/-3.5, 3.5, -1.2, 1.2/

!

 PI = 3.14159

 DELX = 2.*PI/199.

 DO 10 I= 1, 200

 X(I) = -PI + FLOAT(I-1) * DELX

 A(I,1) = SIN(X(I))

 A(I,2) = COS(X(I))

 10 CONTINUE

! Set page width and length

 IPAGE = 78

 CALL PGOPT (-1, IPAGE)

 IPAGE = 40

 CALL PGOPT (-2, IPAGE)

 CALL PLOTP (X, A, SYMBOL, 'X AXIS', 'Y AXIS', ' C = COS, S = SIN', &

 RANGE=RANGE)

!

 END

Output

 C = COS, S = SIN

 1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+::::

 . I .

 . I .

 . CCCCCCC SSSSSSSS .

 . CC I CC SS SS .

 0.8 + C I C SS SS +

 . C I MS SS .

 . C I SSC SS .

 . CC I SS CC SS .

 . CC I S CC S .

 0.4 + C I S C S +

 . C I SS C SS .

IMSL MATH LIBRARY Chapter 11: Utilities 1917

 Y . CC I S CC S .

 . C IS C S .

 A . C SS C SS .

 X 0.0 +--S-----------CC-----------S-----------CC-----------S--+

 I . SS CC SS CC .

 S . S C SI C .

 . S CC S I CC .

 . SS C SS I C .

 -0.4 + S C S I C +

 . S CC S I CC .

 . SS CC SS I CC .

 . SSC SS I C .

 . MS SS I C .

 -0.8 + C SS SS I C +

 . CC SS SS I CC .

 . CCCC SSSSSSSS I CCCC .

 . C I C .

 . I .

 -1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+::::

 -3 -1 1 3

 X AXIS

PRIME
Decomposes an integer into its prime factors.

Required Arguments

N — Integer to be decomposed. (Input)

NPF — Number of different prime factors of ABS(N). (Output)

If N is equal to −1, 0, or 1, NPF is set to 0.

IPF — Integer vector of length 13. (Output)

IPF(I) contains the prime factors of the absolute value of N, for I = 1, …, NPF. The

remaining 13 − NPF locations are not used.

IEXP — Integer vector of length 13. (Output)

IEXP(I) is the exponent of IPF(I), for I = 1, …, NPF. The remaining 13 − NPF

locations are not used.

IPW — Integer vector of length 13. (Output)

IPW(I) contains the quantity IPF(I)**IEXP(I), for I = 1, …, NPF. The remaining

13 − NPF locations are not used.

FORTRAN 90 Interface

Generic: CALL PRIME (N, NPF, IPF, IPW)

Specific: The specific interface name is PRIME.

1918 Chapter 11: Utilities IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL PRIME (N, NPF, IPF, IEXP, IPW)

Description

Routine PRIME decomposes an integer into its prime factors. The number to be factored, N, may

not have more than 13 distinct factors. The smallest number with more than 13 factors is about

1.3 × 10
16

. Most computers do not allow integers of this size.

The routine PRIME is based on a routine by Brenner (1973).

Comments

The output from PRIME should be interpreted in the following way:

ABS(N) = IPF(1)**IEXP(1) * …. * IPF(NPF)**IEXP(NPF).

Example

This example factors the integer 144 = 2
4
3

2
.

 USE PRIME_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER N

 PARAMETER (N=144)

!

 INTEGER IEXP(13), IPF(13), IPW(13), NOUT, NPF

! Get prime factors of 144

 CALL PRIME (N, NPF, IPF, IEXP, IPW)

! Get output unit number

 CALL UMACH (2, NOUT)

! Print results

 WRITE (NOUT,99999) N, IPF(1), IPF(2), IEXP(1), IEXP(2), IPW(1), &

 IPW(2), NPF

!

99999 FORMAT (' The prime factors for', I5, ' are: ', /, 10X, 2I6, // &

 ' IEXP =', 2I6, /, ' IPW =', 2I6, /, ' NPF =', I6, /)

 END

Output

 The prime factors for 144 are:

 2 3

 IEXP = 4 2

 IPW = 16 9

 NPF = 2

IMSL MATH LIBRARY Chapter 11: Utilities 1919

CONST
This function returns the value of various mathematical and physical constants.

Function Return Value

CONST — Value of the constant. (Output)

See Comment 1.

Required Arguments

NAME — Character string containing the name of the desired constant. (Input)

See Comment 3 for a list of valid constants.

FORTRAN 90 Interface

Generic: CONST (NAME)

Specific: The specific interface names are S_CONST and D_CONST.

FORTRAN 77 Interface

Single: CONST (NAME)

Double: The double precision name is DCONST.

Description

Routine CONST returns the value of various mathematical and physical quantities. For all of the

physical values, the Systeme International d‘Unites (SI) are used.

The reference for constants are indicated by the code in [] Comment above.

[1] Cohen and Taylor (1986)

[2] Liepman (1964)

[3] Precomputed mathematical constants

The constants marked with an E before the [] are exact (to machine precision).

To change the units of the values returned by CONST, see CUNIT.

Comments

1. If the generic version of this function is used, the immediate result must be stored in a

variable before use in an expression. For example:

X = CONST(‗PI‘)

Y = COS(x)

 must be used rather than

1920 Chapter 11: Utilities IMSL MATH LIBRARY

Y = COS(CONST(‗PI‘)).

 If this is too much of a restriction on the programmer, then the specific name can be

used without this restriction.

2. The case of the character string in NAME does not matter. The names ―PI‖, ―Pi‖, ―Pi‖,

and ―pi‖ are equivalent.

3. The units of the physical constants are in SI units (meter kilogram-second).

4. The names allowed are as follows:

Name Description Value Ref.

AMU Atomic mass unit 1.6605402E − 27 kg [1]

ATM Standard atm pressure 1.01325E + 5N/m
2
E [2]

AU Astronomical unit 1.496E + 11m []

Avogadro Avogadro's number 6.0221367E + 231/mole [1]

Boltzman Boltzman's constant 1.380658E − 23J/K [1]

C Speed of light 2.997924580E + 8m/sE [1]

Catalan Catalan's constant 0.915965 … E [3]

E Base of natural logs 2.718…E [3]

ElectronCharge Electron change 1.60217733E −19C [1]

ElectronMass Electron mass 9.1093897E − 31 kg [1]

ElectronVolt Electron volt 1.60217733E − 19J [1]

Euler Euler's constant gamma 0.577 … E [3]

Faraday Faraday constant 9.6485309E + 4C/mole [1]

FineStructure fine structure 7.29735308E − 3 [1]

Gamma Euler's constant 0.577 … E [3]

Gas Gas constant 8.314510J/mole/k [1]

Gravity Gravitational constant 6.67259E − 11N * m
2
/kg

2
 [1]

Hbar Planck constant / 2 pi 1.05457266E − 34J * s [1]

PerfectGasVolume Std vol ideal gas 2.241383E − 2m
3
/mole [*]

Pi Pi 3.141 … E [3]

Planck Planck's constant h 6.6260755E − 34J * s [1]

ProtonMass Proton mass 1.6726231E − 27 kg [1]

Rydberg Rydberg's constant 1.0973731534E + 7/m [1]

SpeedLight Speed of light 2.997924580E + 8m/s E [1]

StandardGravity Standard g 9.80665m/s
2
E [2]

IMSL MATH LIBRARY Chapter 11: Utilities 1921

Name Description Value Ref.

StandardPressure Standard atm pressure 1.01325E + 5N/m
2
E [2]

StefanBoltzmann Stefan-Boltzman 5.67051E − 8W/K
4
/m

2
 [1]

WaterTriple Triple point of water 2.7316E + 2K E [2]

Example

In this example, Euler‘s constant γ is obtained and printed. Euler‘s constant is defined to be

1

1

1
lim ln

n

n
k

n
k

 USE CONST_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NOUT

 REAL GAMA

! Get output unit number

 CALL UMACH (2, NOUT)

! Get gamma

 GAMA = CONST('GAMMA')

! Print gamma

 WRITE (NOUT,*) 'GAMMA = ', GAMA

 END

Output

GAMMA = 0.5772157

For another example, see CUNIT.

CUNIT
Converts X in units XUNITS to Y in units YUNITS.

Required Arguments

X — Value to be converted. (Input)

XUNITS — Character string containing the name of the units for X. (Input)

See Comments for a description of units allowed.

Y — Value in YUNITS corresponding to X in XUNITS. (Output)

YUNITS — Character string containing the name of the units for Y. (Input)

See Comments for a description of units allowed.

1922 Chapter 11: Utilities IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL CUNIT (X, XUNITS, Y, YUNITS [,…])

Specific: The specific interface names are S_CUNIT and D_CUNIT.

FORTRAN 77 Interface

Single: CALL CUNIT (X, XUNITS, Y, YUNITS)

Double: The double precision name is DCUNIT.

Description

Routine CUNIT converts a value expressed in one set of units to a value expressed in another set of

units.

The input and output units are checked for consistency unless the input unit is ―SI‖. SI means the

Systeme International d‘Unites. This is the meter−kilogram−second form of the metric system. If

the input units are ―SI‖, then the input is assumed to be expressed in the SI units consistent with

the output units.

Comments

1. Strings XUNITS and YUNITS have the form U1 * U2 * … * Um/V1 … Vn, where Ui and Vi

are the names of basic units or are the names of basic units raised to a power. Examples

are, ―METER * KILOGRAM/SECOND‖, ―M * KG/S‖, ―METER‖, or ―M/KG
2
‖.

2. The case of the character string in XUNITS and YUNITS does not matter. The names

―METER‖, ―Meter‖ and ―meter‖ are equivalent.

3. If XUNITS is ―SI‖, then X is assumed to be in the standard

international units corresponding to YUNITS. Similarly, if YUNITS is ―SI‖, then Y is

assumed to be in the standard international units corresponding to XUNITS.

4. The basic unit names allowed are as follows:

Units of time

day, hour = hr, min = minute, s = sec = second, year

Units of frequency

Hertz = Hz

Units of mass

AMU, g = gram, lb = pound, ounce = oz, slug

IMSL MATH LIBRARY Chapter 11: Utilities 1923

Units of distance

Angstrom, AU, feet = foot = ft, in = inch, m = meter = metre, micron,

mile, mill, parsec, yard

Units of area

acre

Units of volume

l = liter = litre

Units of force

dyne, N = Newton, poundal

Units of energy

BTU(thermochemical), Erg, J = Joule

Units of work

W = watt

Units of pressure

ATM = atomosphere, bar, Pascal

Units of temperature

degC = Celsius, degF = Fahrenheit, degK = Kelvin

Units of viscosity

poise, stoke

Units of charge

Abcoulomb, C = Coulomb, statcoulomb

Units of current

A = ampere, abampere, statampere,

Units of voltage

Abvolt, V = volt

Units of magnetic induction

T = Tesla, Wb = Weber

Other units

1, farad, mole, Gauss, Henry, Maxwell, Ohm

The following metric prefixes may be used with the above units. Note that the one or two letter

prefixes may only be used with one letter unit abbreviations.

A Atto 1.E − 18

F Femto 1.E − 15

P Pico 1.E − 12

N Nano 1.E − 9

1924 Chapter 11: Utilities IMSL MATH LIBRARY

U Micro 1.E − 6

M Milli 1.E − 3

C Centi 1.E − 2

D Deci 1.E − 1

DK Deca 1.E + 2

K Kilo 1.E + 3

 Myriad 1.E + 4 (no single letter prefix; M means milli

 Mega 1.E + 6 (no single letter prefix; M means milli

G Giga 1.E + 9

T Tera 1.E + 12

5. Informational error

Type Code

3 8 A conversion of units of mass to units of force was required for

consistency.

Example

The routine CONST is used to obtain the speed on light, c, in SI units. CUNIT is then used to

convert c to mile/second and to parsec/year. An example involving substitution of force for mass

is required in conversion of Newtons/Meter
2
 to Pound/Inch

2
.

 USE CONST_INT

 USE CUNIT_INT

 USE UMACH_INT

 IMPLICIT NONE

 INTEGER NOUT

 REAL CMH, CMS, CPY, CPSI

! Get output unit number

 CALL UMACH (2, NOUT)

! Get speed of light in SI (m/s)

 CMS = CONST('SpeedLight')

 WRITE (NOUT,*) 'Speed of Light = ', CMS, ' meter/second'

! Get speed of light in mile/second

 CALL CUNIT (CMS, 'SI', CMH, 'Mile/Second')

 WRITE (NOUT,*) 'Speed of Light = ', CMH, ' mile/second'

! Get speed of light in parsec/year

 CALL CUNIT (CMS, 'SI', CPY, 'Parsec/Year')

 WRITE (NOUT,*) 'Speed of Light = ', CPY, ' Parsec/Year'

! Convert Newton/Meter**2 to

! Pound/Inch**2.

 CALL CUNIT(1.E0, 'Newton/Meter**2', CPSI, &

 'Pound/Inch**2')

 WRITE(NOUT,*)' Atmospheres, in Pound/Inch**2 = ',CPSI

 END

Output

IMSL MATH LIBRARY Chapter 11: Utilities 1925

Speed of Light = 299792440.0 meter/second

Speed of Light = 186282.39 mile/second

Speed of Light = 0.3063872 Parsec/Year

*** WARNING ERROR 8 from CUNIT. A conversion of units of mass to units of

*** force was required for consistency.

Atmospheres, in Pound/Inch**2 = 1.4503773E-4

HYPOT
This functions computes SQRT(A**2 + B**2) without underflow or overflow.

Function Return Value

HYPOT — SQRT(A**2 + B**2). (Output)

Required Arguments

A — First parameter. (Input)

B — Second parameter. (Input)

FORTRAN 90 Interface

Generic: HYPOT (A, B)

Specific: The specific interface names are S_HYPOT and D_HYPOT.

FORTRAN 77 Interface

Single: HYPOT (A, B)

Double: The double precision name is DHYPOT.

Description

Routine HYPOT is based on the routine PYTHAG, used in EISPACK 3. This is an update of the work

documented in Garbow et al. (1972).

Example

Computes

2 2c a b

where a = 10
20

 and b = 2 × 10
20

 without overflow.

 USE HYPOT_INT

 USE UMACH_INT

 IMPLICIT NONE

1926 Chapter 11: Utilities IMSL MATH LIBRARY

! Declare variables

 INTEGER NOUT

 REAL A, B, C

!

 A = 1.0E+20

 B = 2.0E+20

 C = HYPOT(A,B)

! Get output unit number

 CALL UMACH (2, NOUT)

! Print the results

 WRITE (NOUT,'(A,1PE10.4)') ' C = ', C

 END

Output

C = 2.2361E+20

MP_SETUP

Initializes or finalizes MPI.

Function Return Value

Number of nodes, MP_NPROCS, in the communicator, MP_LIBRARY_WORLD. (Output)

Returned when MP_SETUP is called with no arguments:

MP_NPROCS = MP_SETUP().

Required Argument

None.

Optional Arguments

NOTE — Character string ‗Final‘. (Input)

With ‗Final‘ all pending error messages are sent from the nodes to the root and

printed. If any node should STOP after printing messages, then MPI_Finalize() and

a STOP are executed. Otherwise, only MPI_Finalize()is called. The character

string ‗Final‘ is the only valid string for this argument.

N — Size of array to be allocated for timing. (Input)

When this argument is supplied, the array MPI_NODE_PRIORITY is allocated with

MP_PROCS components. The matrix products A .x. B are timed individually at each

node of the machine. The elapsed time is noted and sorted to determine the node

priority order. A and B are allocated to size N by N, and initialized with random data.

The priority order is finally broadcast to the other nodes.

IMSL MATH LIBRARY Chapter 11: Utilities 1927

FORTRAN 90 Interface

MP_SETUP ([,…])

Description

Following a call to the function MP_SETUP(), the module MPI_node_int will contain

information about the number of processors, the rank of a processor, the communicator for

IMSL Fortran Numerical Library, and the usage priority order of the node machines:

MODULE MPI_NODE_INT

 INTEGER, ALLOCATABLE :: MPI_NODE_PRIORITY(:)

 INTEGER, SAVE :: MP_LIBRARY_WORLD = huge(1)

 LOGICAL, SAVE :: MPI_ROOT_WORKS = .TRUE.

 INTEGER, SAVE :: MP_RANK = 0, MP_NPROCS = 1

END MODULE

When the function MP_SETUP() is called with no arguments, the following events occur:

 If MPI has not been initialized, it is first initialized. This step uses the routines

MPI_Initialized() and possibly MPI_Init(). Users who choose not to call MP_SETUP()

must make the required initialization call before using any IMSL Fortran Numerical Library

code that relies on MPI for its execution. If the user‘s code calls an IMSL Fortran Numerical

Library function utilizing the box data type and MPI has not been initialized, then the

computations are performed on the root node. The only MPI routine always called in this

context is MPI_Initialized(). The name MP_SETUP is pushed onto the subprogram or

call stack.

 If MP_LIBRARY_WORLD equals its initial value (=huge(1)) then MPI_COMM_WORLD, the

default MPI communicator, is duplicated and becomes its handle. This uses the routine

MPI_Comm_dup(). Users can change the handle of MP_LIBRARY_WORLD as required by

their application code. Often this issue can be ignored.

 The integers MP_RANK and MP_NPROCS are respectively the node‘s rank and the number of

nodes in the communicator, MP_LIBRARY_WORLD. Their values require the routines

MPI_Comm_size() and MPI_Comm_rank(). The default values are important when MPI is

not initialized and a box data type is computed. In this case the root node is the only node

and it will do all the work. No calls to MPI communication routines are made when

MP_NPROCS = 1 when computing the box data type functions. A program can temporarily

assign this value to force box data type computation entirely at the root node. This is

desirable for problems where using many nodes would be less efficient than using the root

node exclusively.

 The array MPI_NODE_PRIORITY(:) is not allocated unless the user allocates it. The IMSL

Fortran Numerical Library codes use this array for assigning tasks to processors, if it is

allocated. If it is not allocated, the default priority of the nodes is

(0,1,...,MP_NPROCS-1). Use of the function call MP_SETUP(N) allocates the array, as

explained below. Once the array is allocated its size is MP_NPROCS. The contents of the array

is a permutation of the integers 0,...,MP_NPROCS-1. Nodes appearing at the start of the list

are used first for parallel computing. A node other than the root can avoid any computing,

except receiving the schedule, by setting the value MPI_NODE_PRIORITY(I) < 0. This

1928 Chapter 11: Utilities IMSL MATH LIBRARY

means that node |MPI_NODE_PRIORITY(I)| will be sent the task schedule but will not

perform any significant work as part of box data type function evaluations.

 The LOGICAL flag MPI_ROOT_WORKS designates whether or not the root node participates in

the major computation of the tasks. The root node communicates with the other nodes to

complete the tasks but can be designated to do no other work. Since there may be only one

processor, this flag has the default value .TRUE., assuring that one node exists to do work.

When more than one processor is available users can consider assigning

MPI_ROOT_WORKS=.FALSE. This is desirable when the alternate nodes have equal or greater

computational resources compared with the root node. Parallel Example 4 illustrates this

usage. A single problem is given a box data type, with one rack. The computing is done at

the node, other than the root, with highest priority. This example requires more than one

processor since the root does no work.

When the generic function MP_SETUP(N) is called, where N is a positive integer, a call to

MP_SETUP() is first made, using no argument. Use just one of these calls to MP_SETUP(). This

initializes the MPI system and the other parameters described above. The array

MPI_NODE_PRIORITY(:) is allocated with size MP_NPROCS. Then DOUBLE PRECISION matrix

products C = AB, where A and B are N by N matrices, are computed at each node and the elapsed

time is recorded. These elapsed times are sorted and the contents of MPI_NODE_PRIORITY(:)

are permuted in accordance with the shortest times yielding the highest priority. All the nodes in

the communicator MP_LIBRARY_WORLD are timed. The array MPI_NODE_PRIORITY(:) is then

broadcast from the root to the remaining nodes of MP_LIBRARY_WORLD using the routine

MPI_Bcast(). Timing matrix products to define the node priority is relevant because the effort

to compute C is comparable to that of many linear algebra computations of similar size. Users are

free to define their own node priority and broadcast the array MPI_NODE_PRIORITY(:) to the

alternate nodes in the communicator.

To print any IMSL Fortran Numerical Library error messages that have occurred at any node, and

to finalize MPI, use the function call MP_SETUP(‗Final‘). The case of the string ‗Final‘ is

not important. Any error messages pending will be discarded after printing on the root node. This

is triggered by popping the name ‗MP_SETUP‘ from the subprogram stack or returning to Level 1

in the stack. Users can obtain error messages by popping the stack to Level 1 and still continuing

with MPI calls. This requires executing call e1pop (‗MP_SETUP‘). To continue on after

summarizing errors execute call e1psh (‗MP_SETUP‘). More details about the error

processor are found in Reference Material chapter of this manual.

Messages are printed by nodes from largest rank to smallest, which is the root node. Use of the

routine MPI_Finalize() is made within MP_SETUP(‗Final‘), which shuts down MPI. After

MPI_Finalize() is called, the value of MP_NPROCS = 0. This flags that MPI has been

initialized and terminated. It cannot be initialized again in the same program unit execution. No

MPI routine is defined when MP_NPROCS has this value.

Examples

Parallel Example (parallel_ex01.f90)

 use linear_operators

 use mpi_setup_int

 implicit none

IMSL MATH LIBRARY Chapter 11: Utilities 1929

! This is the equivalent of Parallel Example 1 for .ix., with box data types

! and functions.

 integer, parameter :: n=32, nr=4

 real(kind(1e0)) :: one=1e0

 real(kind(1e0)), dimension(n,n,nr) :: A, b, x, err(nr)

! Setup for MPI.

 MP_NPROCS=MP_SETUP()

! Generate random matrices for A and b:

 A = rand(A); b=rand(b)

! Compute the box solution matrix of Ax = b.

 x = A .ix. b

! Check the results.

 err = norm(b - (A .x. x))/(norm(A)*norm(x)+norm(b))

 if (ALL(err <= sqrt(epsilon(one))) .and. MP_RANK == 0) &

 write (*,*) 'Parallel Example 1 is correct.'

! See to any error messages and quit MPI.

 MP_NPROCS=MP_SETUP('Final')

 end

Parallel Example (parallel_ex04.f90)

Here an alternate node is used to compute the majority of a single application, and the user does

not need to make any explicit calls to MPI routines. The time-consuming parts are the evaluation

of the eigenvalue-eigenvector expansion, the solving step, and the residuals. To do this, the

rank-2 arrays are changed to a box data type with a unit third dimension. This uses parallel

computing. The node priority order is established by the initial function call, MP_SETUP(n).

The root is restricted from working on the box data type by assigning

MPI_ROOT_WORKS=.false. This example anticipates that the most efficient node, other than the

root, will perform the heavy computing. Two nodes are required to execute.

 use linear_operators

 use mpi_setup_int

 implicit none

! This is the equivalent of Parallel Example 4 for matrix exponential.

! The box dimension has a single rack.

 integer, parameter :: n=32, k=128, nr=1

 integer i

 real(kind(1e0)), parameter :: one=1e0, t_max=one, delta_t=t_max/(k-1)

 real(kind(1e0)) err(nr), sizes(nr), A(n,n,nr)

 real(kind(1e0)) t(k), y(n,k,nr), y_prime(n,k,nr)

 complex(kind(1e0)), dimension(n,nr) :: x(n,n,nr), z_0, &

 Z_1(n,nr,nr), y_0, d

! Setup for MPI. Establish a node priority order.

! Restrict the root from significant computing.

! Illustrates using the 'best' performing node that

1930 Chapter 11: Utilities IMSL MATH LIBRARY

! is not the root for a single task.

 MP_NPROCS=MP_SETUP(n)

 MPI_ROOT_WORKS=.false.

! Generate a random coefficient matrix.

 A = rand(A)

! Compute the eigenvalue-eigenvector decomposition

! of the system coefficient matrix on an alternate node.

 D = EIG(A, W=X)

! Generate a random initial value for the ODE system.

 y_0 = rand(y_0)

! Solve complex data system that transforms the initial

! values, X z_0=y_0.

 z_1= X .ix. y_0 ; z_0(:,nr) = z_1(:,nr,nr)

! The grid of points where a solution is computed:

 t = (/(i*delta_t,i=0,k-1)/)

! Compute y and y' at the values t(1:k).

! With the eigenvalue-eigenvector decomposition AX = XD, this

! is an evaluation of EXP(A t)y_0 = y(t).

 y = X .x.exp(spread(d(:,nr),2,k)*spread(t,1,n))*spread(z_0(:,nr),2,k)

! This is y', derived by differentiating y(t).

 y_prime = X .x. &

spread(d(:,nr),2,k)*exp(spread(d(:,nr),2,k)*spread(t,1,n))* &

 spread(z_0(:,nr),2,k)

! Check results. Is y' - Ay = 0?

 err = norm(y_prime-(A .x. y))

 sizes=norm(y_prime)+norm(A)*norm(y)

 if (ALL(err <= sqrt(epsilon(one))*sizes) .and. MP_RANK == 0) &

 write (*,*) 'Parallel Example 4 is correct.'

! See to any error messages and quit MPI.

 MP_NPROCS=MP_SETUP('Final')

 end

IMSL MATH LIBRARY Reference Material 1931

Reference Material

Contents
Contents ... 1931
Machine-Dependent Constants ... 1937
Matrix Storage Modes .. 1943
Reserved Names ... 1954
Automatic Workspace Allocation ... 1955
Deprecated Features and Renamed Routines 1955

User Errors
IMSL routines attempt to detect user errors and handle them in a way that provides as much

information to the user as possible. To do this, we recognize various levels of severity of errors,

and we also consider the extent of the error in the context of the purpose of the routine; a trivial

error in one situation may be serious in another. IMSL routines attempt to report as many errors as

they can reasonably detect. Multiple errors present a difficult problem in error detection because

input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity

In some cases, the user‘s input may be mathematically correct, but because of limitations of the

computer arithmetic and of the algorithm used, it is not possible to compute an answer accurately.

In this case, the assessed degree of accuracy determines the severity of the error. In cases where

the routine computes several output quantities, if some are not computable but most are, an error

condition exists. The severity depends on an assessment of the overall impact of the error.

Terminal errors

If the user‘s input is regarded as meaningless, such as N = −1 when ―N‖ is the number of equations,

the routine prints a message giving the value of the erroneous input argument(s) and the reason for

the erroneous input. The routine will then cause the user‘s program to stop. An error in which the

user‘s input is meaningless is the most severe error and is called a terminal error. Multiple

terminal error messages may be printed from a single routine.

Informational errors

In many cases, the best way to respond to an error condition is simply to correct the input and

rerun the program. In other cases, the user may want to take actions in the program itself based on

errors that occur. An error that may be used as the basis for corrective action within the program is

1932 Reference Material IMSL MATH LIBRARY

called an informational error. If an informational error occurs, a user-retrievable code is set. A

routine can return at most one informational error for a single reference to the routine. The codes

for the informational error codes are printed in the error messages.

Other errors

In addition to informational errors, IMSL routines issue error messages for which no user-

retrievable code is set. Multiple error messages for this kind of error may be printed. These errors,

which generally are not described in the documentation, include terminal errors as well as less

serious errors. Corrective action within the calling program is not possible for these errors.

Kinds of Errors and Default Actions

Five levels of severity of errors are defined in the MATH/LIBRARY. Each level has an associated

PRINT attribute and a STOP attribute. These attributes have default settings (YES or NO), but

they may also be set by the user. The purpose of having multiple error severity levels is to provide

independent control of actions to be taken for errors of different severity. Upon return from an

IMSL routine, exactly one error state exists. (A code 0 ―error‖ is no informational error.) Even if

more than one informational error occurs, only one message is printed (if the PRINT attribute is

YES). Multiple errors for which no corrective action within the calling program is reasonable or

necessary result in the printing of multiple messages (if the PRINT attribute for their severity level

is YES). Errors of any of the severity levels except level 5 may be informational errors.

Level 1: Note. A note is issued to indicate the possibility of a trivial error or simply to

provide information about the computations. Default attributes: PRINT=NO,

STOP=NO

Level 2: Alert. An alert indicates that the user should be advised about events occurring

in the software. Default attributes: PRINT=NO, STOP=NO

Level 3: Warning. A warning indicates the existence of a condition that may require

corrective action by the user or calling routine. A warning error may be issued because

the results are accurate to only a few decimal places, because some of the output may

be erroneous but most of the output is correct, or because some assumptions underlying

the analysis technique are violated. Often no corrective action is necessary and the

condition can be ignored. Default attributes: PRINT=YES, STOP=NO

Level 4: Fatal.A fatal error indicates the existence of a condition that may be serious. In

most cases, the user or calling routine must take corrective action to recover. Default

attributes: PRINT=YES, STOP=YES

Level 5: Terminal.A terminal error is serious. It usually is the result of an incorrect

specification, such as specifying a negative number as the number of equations. These

errors may also be caused by various programming errors impossible to diagnose

correctly in FORTRAN. The resulting error message may be perplexing to the user. In

such cases, the user is advised to compare carefully the actual arguments passed to the

routine with the dummy argument descriptions given in the documentation. Special

attention should be given to checking argument order and data types.

IMSL MATH LIBRARY Reference Material 1933

 A terminal error is not an informational error because corrective action within the

program is generally not reasonable. In normal usage, execution is terminated

immediately when a terminal error occurs. Messages relating to more than one terminal

error are printed if they occur. Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling ERSET as described in ―Routines for Error

Handling.‖

Errors in Lower-Level Routines

It is possible that a user‘s program may call an IMSL routine that in turn calls a nested sequence of

lower-level IMSL routines. If an error occurs at a lower level in such a nest of routines and if the

lower-level routine cannot pass the information up to the original user-called routine, then a

traceback of the routines is produced. The only common situation in which this can occur is when

an IMSL routine calls a user-supplied routine that in turn calls another IMSL routine.

Routines for Error Handling

There are three ways in which the user may interact with the IMSL error handling system: (1) to

change the default actions, (2) to retrieve the integer code of an informational error so as to take

corrective action, and (3) to determine the severity level of an error. The routines to use are

ERSET, IERCD, and N1RTY, respectively.

ERSET
Change the default printing or stopping actions when errors of a particular error severity level

occur.

Required Arguments

IERSVR — Error severity level indicator. (Input)

If IERSVR = 0, actions are set for levels 1 to 5. If IERSVR is 1 to 5, actions are set for

errors of the specified severity level.

IPACT — Printing action. (Input)

IPACT Action

-1 Do not change current setting(s).

 0 Do not print.

 1 Print.

 2 Restore the default setting(s).

ISACT — Stopping action. (Input)

ISACT Action

1934 Reference Material IMSL MATH LIBRARY

-1 Do not change current setting(s).

 0 Do not stop.

 1 Stop.

 2 Restore the default setting(s).

FORTRAN 90 Interface

Generic: CALL ERSET (IERSVR, IPACT, ISACT)

Specific: The specific interface name is ERSET.

FORTRAN 77 Interface

Single: CALL ERSET (IERSVR, IPACT, ISACT)

IERCD and N1RTY
The last two routines for interacting with the error handling system, IERCD and N1RTY, are

INTEGER functions and are described in the following material.

IERCD retrieves the integer code for an informational error. Since it has no arguments, it may be

used in the following way:

ICODE = IERCD()

The function retrieves the code set by the most recently called IMSL routine.

N1RTY retrieves the error type set by the most recently called IMSL routine. It is used in the

following way:

ITYPE = N1RTY(1)

ITYPE = 1, 2, 4, and 5 correspond to error severity levels 1, 2, 4, and 5, respectively. ITYPE = 3

and ITYPE = 6 are both warning errors, error severity level 3. While ITYPE = 3 errors are

informational errors (IERCD() ≠ 0), ITYPE = 6 errors are not informational errors (IERCD() = 0).

For software developers requiring additional interaction with the IMSL error handling system, see

Aird and Howell (1991).

Examples

Changes to default actions

Some possible changes to the default actions are illustrated below. The default actions remain in

effect for the kinds of errors not included in the call to ERSET.

IMSL MATH LIBRARY Reference Material 1935

To turn off printing of warning error messages:

CALL ERSET (3, 0, −1)

To stop if warning errors occur:

CALL ERSET (3, −1, 1)

To print all error messages:

CALL ERSET (0, 1, −1)

To restore all default settings:

CALL ERSET (0, 2, 2)

Use of informational error to determine program action

In the program segment below, the Cholesky factorization of a matrix is to be performed. If it is

determined that the matrix is not nonnegative definite (and often this is not immediately obvious),

the program is to take a different branch.
 .

 .

 .

 CALL LFTDS (A, FACT)
 IF (IERCD() .EQ. 2) THEN

! Handle matrix that is not nonnegative definite

 .

 .

 .

 END IF

Examples of errors

The program below illustrates each of the different types of errors detected by the

MATH/LIBRARY routines.

The error messages refer to the argument names that are used in the documentation for the routine,

rather than the user‘s name of the variable used for the argument. In the message generated by

IMSL routine LINRG in this example, reference is made to N, whereas in the program a literal was

used for this argument.

 USE_IMSL_LIBRARIES

 INTEGER N

 PARAMETER (N=2)

!

 REAL A(N,N), AINV(N,N), B(N), X(N)

!

 DATA A/2.0, -3.0, 2.0, -3.0/

 DATA B/1.0, 2.0/

! Turn on printing and turn off

! stopping for all error types.

 CALL ERSET (0, 1, 0)

! Generate level 4 informational error.

 CALL LSARG (A, B, X)

! Generate level 5 terminal error.

 CALL LINRG (A, AINV, N = -1)

 END

1936 Reference Material IMSL MATH LIBRARY

Output

*** FATAL ERROR 2 from LSARG. The input matrix is singular. Some of

*** the diagonal elements of the upper triangular matrix U of the

*** LU factorization are close to zero.

*** TERMINAL ERROR 1 from LINRG. The order of the matrix must be positive

*** while N = −1 is given.

Example of traceback

The next program illustrates a situation in which a traceback is produced. The program uses the

IMSL quadrature routines QDAG and QDAGS to evaluate the double integral

1 1 1

0 0 0
x y dx dy g y dy

where

1 1

0 0
, with g y x y dx f x dx f x x y

Since both QDAG and QDAGS need 2500 numeric storage units of workspace, and since the

workspace allocator uses some space to keep track of the allocations, 6000 numeric storage units

of space are explicitly allocated for workspace. Although the traceback shows an error code

associated with a terminal error, this code has no meaning to the user; the printed message

contains all relevant information. It is not assumed that the user would take corrective action based

on knowledge of the code.

 USE QDAGS_INT

! Specifications for local variables

 REAL A, B, ERRABS, ERREST, ERRREL, G, RESULT

 EXTERNAL G

! Set quadrature parameters

 A = 0.0

 B = 1.0

 ERRABS = 0.0

 ERRREL = 0.001

! Do the outer integral

 CALL QDAGS (G, A, B, RESULT, ERRABS, ERRREL, ERREST)

!

 WRITE (*,*) RESULT, ERREST

 END

!

 REAL FUNCTION G (ARGY)

 USE QDAG_INT

 REAL ARGY

!

 INTEGER IRULE

 REAL C, D, ERRABS, ERREST, ERRREL, F, Y

 COMMON /COMY/ Y

 EXTERNAL F

!

 Y = ARGY

IMSL MATH LIBRARY Reference Material 1937

 C = 0.0

 D = 1.0

 ERRABS = 0.0

 ERRREL = -0.001

 IRULE = 1

!

 CALL QDAG (F, C, D, G, ERRABS, ERRREL, IRULE, ERREST)

 RETURN

 END

!

 REAL FUNCTION F (X)

 REAL X

!

 REAL Y

 COMMON /COMY/ Y

!

 F = X + Y

 RETURN

 END

Output

*** TERMINAL ERROR 4 from Q2AG. The relative error desired ERRREL =

*** -1.000000E-03. It must be at least zero.

Here is a traceback of subprogram calls in reverse order:

Routine name Error type Error code

------------ ---------- ----------

Q2AG 5 4 (Called internally)

QDAG 0 0

Q2AGS 0 0 (Called internally)

QDAGS 0 0

USER 0 0

Machine-Dependent Constants
The function subprograms in this section return machine-dependent information and can be used

to enhance portability of programs between different computers. The routines IMACH, and AMACH

describe the computer‘s arithmetic. The routine UMACH describes the input, ouput, and error output

unit numbers.

IMACH

This function retrieves machine integer constants that define the arithmetic used by the computer.

Function Return Value

IMACH(1) = Number of bits per integer storage unit.

IMACH(2) = Number of characters per integer storage unit:

Integers are represented in M-digit, base A form as

1938 Reference Material IMSL MATH LIBRARY

0

M k
kk

x A

where σ is the sign and 0 ≤ xk < A, k = 0, …, M.

Then,

IMACH(3) = A, the base.

IMACH(4) = M, the number of base-A digits.

IMACH(5) = A
M

 − 1, the largest integer.

The machine model assumes that floating-point numbers are represented in normalized

N-digit, base B form as

1

NE k
kk

B x B

where σ is the sign, 0 < x1 < B, 0 ≤ xk < B, k = 2, …, N and E min ≤ E ≤ E max. Then,

IMACH(6) = B , the base.

IMACH(7) = sN , the number base-B-digits in single precision.

IMACH(8) = mins
E , the smallest single precision exponent.

IMACH(9) = maxs
E , the largest single precision exponent.

IMACH(10) = dN , the number base-B-digits in double precision.

IMACH(11) = mind
E , the smallest double precision exponent.

IMACH(12) = maxd
E , largest double precision exponent.

Required Arguments

I — Index of the desired constant. (Input)

FORTRAN 90 Interface

Generic: IMACH (I)

Specific: The specific interface name is IMACH.

IMSL MATH LIBRARY Reference Material 1939

FORTRAN 77 Interface

Single: IMACH (I)

AMACH
The function subprogram AMACH retrieves machine constants that define the computer‘s single-

precision or double precision arithmetic. Such floating-point numbers are represented in

normalized N-digit, base B form as

1

NE k
kk

B x B

where σ is the sign, 0 < x1 < B, 0 ≤ xk < B, k = 2, …, N and

min maxE E E

Function Return Value

AMACH(1) = min 1E
B

, the smallest normalized positive number.

AMACH(2) = max 1
1

E NB B
 , the largest number.

AMACH(3) =
NB

, the smallest relative spacing.

AMACH(4) =
1 NB

, the largest relative spacing.

AMACH(5) = 10log B .

AMACH(6) = NaN (non-signaling not a number).

AMACH(7) = positive machine infinity.

AMACH(8) = negative machine infinity.

See Comment 1 for a description of the use of the generic version of this function.

See Comment 2 for a description of min, max, and N.

Required Arguments

I — Index of the desired constant. (Input)

FORTRAN 90 Interface

Generic: AMACH (I)

Specific: The specific interface names are S_AMACH and D_AMACH.

1940 Reference Material IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: AMACH (I)

Double: The double precision name is DMACH.

Comments

1. If the generic version of this function is used, the immediate result must be stored in a

variable before use in an expression. For example:

X = AMACH(I)

Y = SQRT(X)

must be used rather than

Y = SQRT(AMACH(I)).

If this is too much of a restriction on the programmer, then the specific name can be

used without this restriction.

2. Note that for single precision B = IMACH(6), N = IMACH(7).

 Emin = IMACH(8), and Emax, = IMACH(9).

For double precision B = IMACH(6), N = IMACH(10).

Emin = IMACH(11), and Emax, = IMACH(12).

3. The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN (not a

number) as the result of various invalid or ambiguous operations, such as 0/0. The intent

is that AMACH(6) return a quiet NaN. On IEEE format computers that do not support a

quiet NaN, a special value near AMACH(2) is returned for AMACH(6). On computers that do

not have a special representation for infinity, AMACH(7) returns the same value as

AMACH(2).

DMACH
See AMACH.

IFNAN(X)
This logical function checks if the argument X is NaN (not a number).

Function Return Value

IFNAN - Logical function value. True is returned if the input argument is a NAN. Otherwise,

False is returned. (Output)

Required Arguments

X – Argument for which the test for NAN is desired. (Input)

IMSL MATH LIBRARY Reference Material 1941

FORTRAN 90 Interface

Generic: IFNAN(X)

Specific: The specific interface names are S_IFNAN and D_IFNAN.

FORTRAN 77 Interface

Single: IFNAN (X)

Double: The double precision name is DIFNAN.

Example

 USE IFNAN_INT

 USE AMACH_INT

 USE UMACH_INT

 INTEGER NOUT

 REAL X

!

 CALL UMACH (2, NOUT)

!

 X = AMACH(6)

 IF (IFNAN(X)) THEN

 WRITE (NOUT,*) ‘ X is NaN (not a number).‘

 ELSE

 WRITE (NOUT,*) ‘ X = ‘, X

 END IF

!

 END

Output

X is NaN (not a number).

Description

The logical function IFNAN checks if the single or double precision argument X is NaN (not a

number). The function IFNAN is provided to facilitate the transfer of programs across computer

systems. This is because the check for NaN can be tricky and not portable across computer

systems that do not adhere to the IEEE standard. For example, on computers that support the IEEE

standard for binary arithmetic (see IEEE 1985), NaN is specified as a bit format not equal to itself.

Thus, the check is performed as

IFNAN = X .NE. X

On other computers that do not use IEEE floating-point format, the check can be performed as:

IFNAN = X .EQ. AMACH(6)

The function IFNAN is equivalent to the specification of the function Isnan listed in the Appendix,

(IEEE 1985). The above following example illustrates the use of IFNAN. If X is NaN, a message is

printed instead of X. (Routine UMACH, which is described in the following section, is used to

retrieve the output unit number for printing the message.)

1942 Reference Material IMSL MATH LIBRARY

UMACH
Routine UMACH sets or retrieves the input, output, or error output device unit numbers.

Required Arguments

N — Integer value indicating the action desired. If the value of N is negative, the input, output, or

error output unit number is reset to NUNIT. If the value of N is positive, the input, output, or error

output unit number is returned in NUNIT. See the table in argument NUNIT for legal values of N.

(Input)

NUNIT — The unit number that is either retrieved or set, depending on the value of input

argument N. (Input/Output)

The arguments are summarized by the following table:

N Effect

1 Retrieves input unit number in NUNIT.

2 Retrieves output unit number in NUNIT.

3 Retrieves error output unit number in NUNIT.

−1 Sets the input unit number to NUNIT.

−2 Sets the output unit number to NUNIT.

−3 Sets the error output unit number to NUNIT.

FORTRAN 90 Interface

Generic: CALL UMACH (N, NUNIT)

Specific: The specific interface name is UMACH.

FORTRAN 77 Interface

Single: CALL UMACH (N, NUNIT)

Description

Routine UMACH sets or retrieves the input, output, or error output device unit numbers. UMACH is

set automatically so that the default FORTRAN unit numbers for standard input, standard output,

and standard error are used. These unit numbers can be changed by inserting a call to UMACH at the

beginning of the main program that calls MATH/LIBRARY routines. If these unit numbers are

changed from the standard values, the user should insert an appropriate OPEN statement in the

calling program.

IMSL MATH LIBRARY Reference Material 1943

Example

In the following example, a terminal error is issued from the MATH/LIBRARY AMACH function

since the argument is invalid. With a call to UMACH, the error message will be written to a local

file named ―CHECKERR‖.

 USE AMACH_INT

 USE UMACH_INT

 INTEGER N, NUNIT

 REAL X

! Set Parameter

 N = 0

 NUNIT = 9

!

 CALL UMACH (-3, NUNIT)

 OPEN (UNIT=NUNIT,FILE=‘CHECKERR‘)

 X = AMACH(N)

 END

Output

The output from this example, written to ―CHECKERR‖ is:

*** TERMINAL ERROR 5 from AMACH. The argument must be between 1 and 8

*** inclusive. N = 0

Matrix Storage Modes
In this section, the word matrix will be used to refer to a mathematical object, and the word array

will be used to refer to its representation as a FORTRAN data structure.

General Mode

A general matrix is an N × N matrix A. It is stored in a FORTRAN array that is declared by the

following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL

general matrix subprograms only refer to values Aij for i = 1, …, N and j = 1, …, N. The data type

of a general array can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN

compiler allows, the nonstandard data type DOUBLE COMPLEX can also be declared.

Rectangular Mode

A rectangular matrix is an M × N matrix A. It is stored in a FORTRAN array that is declared by

the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as M. IMSL

rectangular matrix subprograms only refer to values Aij for i = 1, …, M and j = 1, …, N. The data

type of a rectangular array can be REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN

compiler allows, you can declare the nonstandard data type DOUBLE COMPLEX.

1944 Reference Material IMSL MATH LIBRARY

Symmetric Mode

A symmetric matrix is a square N × N matrix A, such that A
T
 = A. (A

T
 is the transpose of A.) It is

stored in a FORTRAN array that is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL

symmetric matrix subprograms only refer to the upper or to the lower half of A (i.e., to values Aij

for i = 1, …, N and j = i, …, N, or Aij for j = 1, …, N and i = j, …, N). The data type of a

symmetric array can be one of REAL or DOUBLE PRECISION. Use of the upper half of the array is

denoted in the BLAS that compute with symmetric matrices, see Chapter 9, Basic Matrix/Vector

Operations, using the CHARACTER*1 flag UPLO = ‘U‘. Otherwise, UPLO = ‘L‘ denotes that the

lower half of the array is used.

Hermitian Mode

A Hermitian matrix is a square N × N matrix A, such that

TA A

The matrix

A

is the complex conjugate of A and

 H TA A

is the conjugate transpose of A. For Hermitian matrices, A
H

 = A. The matrix is stored in a

FORTRAN array that is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL

Hermitian matrix subprograms only refer to the upper or to the lower half of A (i.e., to values Aij

for i = 1, …, N and j = i, …, N., or Aij for j = 1, …, N and i = j, …, N). Use of the upper half of the

array is denoted in the BLAS that compute with Hermitian matrices, see Chapter 9, Basic

Matrix/Vector Operations, using the CHARACTER*1 flag UPLO = ‘U‘. Otherwise, UPLO = ‘L‘

denotes that the lower half of the array is used. The data type of a Hermitian array can be

COMPLEX or, if your FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX.

Triangular Mode

A triangular matrix is a square N × N matrix A such that values Aij = 0 for i < j or Aij = 0 for i > j.

The first condition defines a lower triangular matrix while the second condition defines an upper

triangular matrix. A lower triangular matrix A is stored in the lower triangular part of a

FORTRAN array A. An upper triangular matrix is stored in the upper triangular part of a

FORTRAN array. Triangular matrices are called unit triangular whenever Ajj = 1, j = 1, …, N. For

unit triangular matrices, only the strictly lower or upper parts of the array are referenced. This is

denoted in the BLAS that compute with triangular matrices, see Chapter 9, Basic Matrix/Vector

Operations, using the CHARACTER*1 flag DIAGNL = ‘U‘. Otherwise, DIAGNL = ‘N‘ denotes

IMSL MATH LIBRARY Reference Material 1945

that the diagonal array terms should be used. For unit triangular matrices, the diagonal terms are

each used with the mathematical value 1. The array diagonal term does not need to be 1.0 in this

usage. Use of the upper half of the array is denoted in the BLAS that compute with triangular

matrices, see Chapter 9, Basic Matrix/Vector Operations, using the CHARACTER*1 flag

UPLO = ‘U‘. Otherwise, UPLO = ‘L‘ denotes that the lower half of the array is used. The data

type of an array that contains a triangular matrix can be one of REAL, DOUBLE PRECISION, or

COMPLEX. If your FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX can

also be declared.

Band Storage Mode

A band matrix is an M × N matrix A with all of its nonzero elements ―close‖ to the main diagonal.

Specifically, values Aij = 0 if i − j > NLCA or j − i > NUCA. The integers NLCA and NUCA are the

lower and upper band widths. The integer m = NLCA + NUCA + 1 is the total band width. The

diagonals, other than the main diagonal, are called codiagonals. While any M × N matrix is a

band matrix, the band matrix mode is most useful only when the number of nonzero codiagonals is

much less than m.

In the band storage mode, the NLCA lower codiagonals and NUCA upper codiagonals are stored in

the rows of a FORTRAN array of dimension m × N. The elements are stored in the same column

of the array as they are in the matrix. The values Aij inside the band width are stored in array

positions (i − j + NUCA + 1, j). This array is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as m. The data

type of a band matrix array can be one of REAL, DOUBLE PRECISION, COMPLEX or, if your

FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX . Use of the

CHARACTER*1 flag TRANS=‘N‘ in the BLAS, see Chapter 9, Basic Matrix/Vector Operations,

specifies that the matrix A is used. The flag value

TRANS =‘T‘ uses TA

while

TRANS =‘C‘ uses TA

For example, consider a real 5 × 5 band matrix with 1 lower and 2 upper codiagonals, stored in

the FORTRAN array declared by the following statements:

PARAMETER (N=5, NLCA=1, NUCA=2)

REAL A(NLCA+NUCA+1, N)

The matrix A has the form

11 12 13

21 22 23 24

32 33 34 35

43 44 45

54 55

0 0

0

0

0 0

0 0 0

A A A

A A A A

A A A AA

A A A

A A

1946 Reference Material IMSL MATH LIBRARY

As a FORTRAN array, it is

13 24 35

12 23 34 45

11 22 33 44 55

21 32 43 54

A A A

A A A A
A

A A A A A

A A A A

The entries marked with an x in the above array are not referenced by the IMSL band

subprograms.

Band Symmetric Storage Mode

A band symmetric matrix is a band matrix that is also symmetric. The band symmetric storage

mode is similar to the band mode except only the lower or upper codiagonals are stored.

In the band symmetric storage mode, the NCODA upper codiagonals are stored in the rows of a

FORTRAN array of dimension (NCODA + 1) × N. The elements are stored in the same column of

the array as they are in the matrix. Specifically, values Aij, j ≤ i inside the band are stored in array

positions (i − j + NCODA + 1, j). This is the storage mode designated by using the CHARACTER*1

flag UPLO = ‘U‘ in Level 2 BLAS that compute with band symmetric matrices, see Chapter 9,

Basic Matrix/Vector Operations. Alternatively, Aij, j ≤ i, inside the band, are stored in array

positions (i − j + 1, j). This is the storage mode designated by using the CHARACTER*1 flag

UPLO = ‘L‘ in these Level 2 BLAS, see Chapter 9, Basic Matrix/Vector Operations. The array is

declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as NCODA + 1.

The data type of a band symmetric array can be REAL or DOUBLE PRECISION.

For example, consider a real 5 × 5 band matrix with 2 codiagonals. Its FORTRAN declaration is

PARAMETER (N=5, NCODA=2)

REAL A(NCODA+1, N)

The matrix A has the form

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0

0

0

0 0

A A A

A A A A

A A A A AA

A A A A

A A A

Since A is symmetric, the values Aij = Aji. In the FORTRAN array, it is

IMSL MATH LIBRARY Reference Material 1947

13 24 35

12 23 34 45

11 22 33 44 55

A A A

A A A A A

A A A A A

The entries marked with an × in the above array are not referenced by the IMSL band symmetric

subprograms.

An alternate storage mode for band symmetric matrices is designated using the CHARACTER*1 flag

UPLO = ‘L‘ in Level 2 BLAS that compute with band symmetric matrices, see Chapter 9, Basic

Matrix/Vector Operations. In that case, the example matrix is represented as

11 22 33 44 55

12 23 34 45

13 24 35

A A A A A

A A A A A

A A A

Band Hermitian Storage Mode

A band Hermitian matrix is a band matrix that is also Hermitian. The band Hermitian mode is a

complex analogue of the band symmetric mode.

In the band Hermitian storage mode, the NCODA upper codiagonals are stored in the rows of a

FORTRAN array of dimension (NCODA + 1) × N. The elements are stored in the same column of

the array as they are in the matrix. In the Level 2 BLAS, see see Chapter 9, Basic Matrix/Vector

Operations, this is denoted by using the CHARACTER*1 flag UPLO =‘U‘. The array is declared by

the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as

(NCODA + 1). The data type of a band Hermitian array can be COMPLEX or, if your FORTRAN

compiler allows, the nonstandard data type DOUBLE COMPLEX.

For example, consider a complex 5 × 5 band matrix with 2 codiagonals. Its FORTRAN

declaration is

PARAMETER (N=5, NCODA = 2)

COMPLEX A(NCODA + 1, N)

The matrix A has the form

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0

0

0

0 0

A A A

A A A A

A A A A AA

A A A A

A A A

where the value

1948 Reference Material IMSL MATH LIBRARY

ijA

is the complex conjugate of Aij. This matrix represented as a FORTRAN array is

13 24 35

12 23 34 45

11 22 33 44 55

A A A

A A A A A

A A A A A

The entries marked with an × in the above array are not referenced by the IMSL band Hermitian

subprograms.

An alternate storage mode for band Hermitian matrices is designated using the CHARACTER*1 flag

UPLO = ‘L‘ in Level 2 BLAS that compute with band Hermitian matrices, see Chapter 9, Basic

Matrix/Vector Operations. In that case, the example matrix is represented as

11 22 33 44 55

12 23 34 45

13 24 35

A A A A A

A A A A A

A A A

Band Triangular Storage Mode

A band triangular matrix is a band matrix that is also triangular. In the band triangular storage

mode, the NCODA codiagonals are stored in the rows of a FORTRAN array of dimension

(NCODA + 1) × N. The elements are stored in the same column of the array as they are in the

matrix. For usage in the Level 2 BLAS, see Chapter 9, Programming Notes for BLAS, the

CHARACTER*1 flag DIAGNL has the same meaning as used in section ―Triangular Storage Mode‖.

The flag UPLO has the meaning analogous with its usage in the section ―Banded Symmetric

Storage Mode‖. This array is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as

(NCODA + 1).

For example, consider a 5 ×5 band upper triangular matrix with 2 codiagonals. Its FORTRAN

declaration is

PARAMETER (N = 5, NCODA = 2)

COMPLEX A(NCODA + 1, N)

The matrix A has the form

IMSL MATH LIBRARY Reference Material 1949

11 12 13

22 23 24

33 34 35

44 45

55

0 0

0 0

0 0

0 0 0

0 0 0 0

A A A

A A A

A A AA

A A

A

This matrix represented as a FORTRAN array is

13 24 35

12 23 34 45

11 22 33 44 55

A A A

A A A A A

A A A A A

This corresponds to the CHARACTER*1 flags DIAGNL = ‘N‘ and UPLO = ‘U‘. The matrix A
T
 is

represented as the FORTRAN array

11 22 33 44 55

12 23 34 45

13 24 35

A A A A A

A A A A A

A A A

This corresponds to the CHARACTER*1 flags DIAGNL = ‘N‘ and UPLO = ‘L‘. In both examples,

the entries indicated with an × are not referenced by IMSL subprograms.

Codiagonal Band Symmetric Storage Mode

This is an alternate storage mode for band symmetric matrices. It is not used by any of the BLAS,

see Chapter 9, Basic Matrix/Vector Operations. Storing data in a form transposed from the Band

Symmetric Storage Mode maintains unit spacing between consecutive referenced array elements.

This data structure is used to get good performance in the Cholesky decomposition algorithm that

solves positive definite symmetric systems of linear equations Ax = b. The data type can be REAL

or DOUBLE PRECISION. In the codiagonal band symmetric storage mode, the NCODA upper

codiagonals and right-hand-side are stored in columns of this FORTRAN array. This array is

declared by the following statement:

DIMENSION A(LDA, NCODA + 2)

The parameter LDA is the leading positive dimension of A. It must be at least as large as

N + NCODA.

Consider a real symmetric 5 × 5 matrix with 2 codiagonals

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0

0

0

0 0

A A A

A A A A

A A A A AA

A A A A

A A A

1950 Reference Material IMSL MATH LIBRARY

and a right-hand-side vector

1

2

3

4

5

b

b

bb

b

b

A FORTRAN declaration for the array to hold this matrix and right-hand-side vector is

PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA)

REAL A(LDA, NCODA + 2)

The matrix and right-hand-side entries are placed in the FORTRAN array A as follows:

11 1

22 12 2

33 23 13 3

44 34 24 4

55 45 35 5

A b

A A bA

A A A b

A A A b

A A A b

Entries marked with an × do not need to be defined. Certain of the IMSL band symmetric

subprograms will initialize and use these values during the solution process. When a solution is

computed, the bi, i = 1, …, 5, are replaced by xi, i = 1, …, 5.

The nonzero Aij, j ≥ i, are stored in array locations A(j + NCODA, (j − i) + 1) . The right-hand-side

entries bj are stored in locations A(j + NCODA, NCODA + 2). The solution entries xj are returned in

A(j + NCODA, NCODA + 2).

Codiagonal Band Hermitian Storage Mode

This is an alternate storage mode for band Hermitian matrices. It is not used by any of the BLAS,

see Chapter 9, Basic Matrix/Vector Operations. In the codiagonal band Hermitian storage mode,

the real and imaginary parts of the 2 * NCODA + 1 upper codiagonals and right-hand-side are stored

in columns of a FORTRAN array. Note that there is no explicit use of the COMPLEX or the

nonstandard data type DOUBLE COMPLEX data type in this storage mode.

For Hermitian complex matrices,

 = + 1A U V

where U and V are real matrices. They satisfy the conditions U = U
T
 and V = −V

T
. The

right-hand-side

IMSL MATH LIBRARY Reference Material 1951

1b c d

where c and d are real vectors. The solution vector is denoted as

1x u v

where u and v are real. The storage is declared with the following statement

DIMENSION A(LDA, 2*NCODA + 3)

The parameter LDA is the leading positive dimension of A. It must be at least as large as

N + NCODA.

The diagonal terms Ujj are stored in array locations A (j + NCODA, 1). The diagonal Vjj are zero and

are not stored. The nonzero Uij, j > i, are stored in locations A(j + NCODA, 2 * (j − i)).

The nonzero Vij are stored in locations A(j + NCODA, 2*(j − i) + 1). The right side vector b is

stored with cj and dj in locations A(j + NCODA, 2*NCODA + 2) and A(j + NCODA, 2*NCODA + 3)

respectively. The real and imaginary parts of the solution, uj and vj, respectively overwrite cj and

dj.

Consider a complex hermitian 5 × 5 matrix with 2 codiagonals

11 12 13 12 13

12 22 23 24 12 23 24

13 23 33 34 35 13 23 34 35

24 34 44 45 24 34 45

35 45 55 35 45

0 0 0 0 0

0 0 0

01

0 0 0

0 0 0 0 0

U U U V V

U U U U V V V

U U U U U V V V VA

U U U U V V V

U U U V V

and a right-hand-side vector

1 1

2 2

3 3

4 4

5 5

1

c d

c d

c db

c d

c d

A FORTRAN declaration for the array to hold this matrix and right-hand-side vector is

PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA)
REAL A(LDA,2*NCODA + 3)

The matrix and right-hand-side entries are placed in the FORTRAN array A as follows:

1952 Reference Material IMSL MATH LIBRARY

11 1 1

22 12 12 2 2

33 23 23 13 13 3 3

44 34 34 24 24 4 4

55 45 45 35 35 5 5

U c d

U U V c dA

U U V U V c d

U U V U V c d

U U V U V c d

Entries marked with an × do not need to be defined.

Sparse Matrix Storage Mode

The sparse linear algebraic equation solvers in Chapter 1 accept the input matrix in sparse storage

mode. This structure consists of INTEGER values N and NZ, the matrix dimension and the total

number of nonzero entries in the matrix. In addition, there are two INTEGER arrays IROW(*) and

JCOL(*) that contain unique matrix row and column coordinates where values are given. There is

also an array A(*) of values. All other entries of the matrix are zero. Each of the arrays IROW(*),

JCOL(*), A(*) must be of size NZ. The correspondence between matrix and array entries is given

by

 IROW ,JCOL , 1, , NZi iA A i i

The data type for A(*) can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN

compiler allows, the nonstandard data type DOUBLE COMPLEX can also be declared.

For example, consider a real 5 × 5 sparse matrix with 11 nonzero entries. The matrix A has the

form

11 13 14

21 22

32 33 34

43

54 55

0 0

0 0 0

0 0

0 0 0 0

0 0 0

A A A

A A

A A AA

A

A A

Declarations of arrays and definitions of the values for this sparse matrix are

PARAMETER (NZ = 11, N = 5)

DIMENSION IROW(NZ), JCOL(NZ), A(NZ)
DATA IROW /1,1,1,2,2,3,3,3,4,5,5/

DATA JCOL /1,3,4,1,2,2,3,4,3,4,5/

DATA A /A11,A13,A14,A21,A22,A32,A33,A34, & A43,A54,A55/

IMSL MATH LIBRARY Reference Material 1953

Packed Symmetric Matrix Storage Mode

This structure contains either the upper or lower triangular portion of the symmetric data and is

stored in an array of length 1 / 2ncol ncol . For a matrix A and representative array a, the data

is arranged sequentially column by column such that, for the upper triangular case, a(1) contains

A11, a(2) contains A12, a(3) contains A22, etc.

For example, consider the following real 5 × 5 symmetric matrix A

5545352515

4544342414

3534332313

2524232212

1514131211

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

A

The array declaration for the upper triangle of A would be

DATA a /A11,A12,A22,A13,A23,A33,A14,A24,A34,A44,A15,A25,A35,A45,A55/

Packed Triangular Matrix Storage Mode

This structure contains either the upper or lower triangular portion of a triangular matrix and is

stored in an array of length 2/1ncolncol . For a matrix A and representative array a, the

data is arranged sequentially column by column such that, for the upper triangular case, a(1)

contains A11, a(2) contains A12, a(3) contains A22, etc.

For example, consider the following real 5 × 5 upper triangular matrix A

55

4544

353433

25242322

1514131211

0000

000

00

0

A

AA

AAA

AAAA

AAAAA

A

The array declaration for the upper triangle of A would be

DATA a /A11,A12,A22,A13,A23,A33,A14,A24,A34,A44,A15,A25,A35,A45,A55/

Packed Hermitian Matrix Storage Mode

This structure contains either the upper or lower triangular portion of a Hermitian matrix and is

stored in an array of length 2/1ncolncol . For a matrix A and representative array a, the

data is arranged sequentially column by column such that, for the upper triangular case, a(1)

contains A11, a(2) contains A12, a(3) contains A22, etc.

For example, consider the following 5 × 5 Hermitian matrix A

1954 Reference Material IMSL MATH LIBRARY

5545535251

4544434241

3534333231

2524232221

1514131211

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

A

The array declaration for the upper triangle of A would be

DATA a /A11,A12,A22,A13,A23,A33,A14,A24,A34,A44,A15,A25,A35,A45,A55/

Reserved Names
When writing programs accessing the MATH/LIBRARY, the user should choose FORTRAN

names that do not conflict with names of IMSL subroutines, functions, or named common blocks,

such as the workspace common block WORKSP (see Automatic Workspace Allocation). The user

needs to be aware of two types of name conflicts that can arise. The first type of name conflict

occurs when a name (technically a symbolic name) is not uniquely defined within a program unit

(either a main program or a subprogram). For example, such a name conflict exists when the name

RCURV is used to refer both to a type REAL variable and to the IMSL subroutine RCURV in a single

program unit. Such errors are detected during compilation and are easy to correct. The second type

of name conflict, which can be more serious, occurs when names of program units and named

common blocks are not unique. For example, such a name conflict would be caused by the user

defining a subroutine named WORKSP and also referencing an MATH/LIBRARY subroutine that

uses the named common block WORKSP. Likewise, the user must not define a subprogram with the

same name as a subprogram in the MATH/LIBRARY, that is referenced directly by the user‘s

program or is referenced indirectly by other MATH/LIBRARY subprograms.

The MATH/LIBRARY consists of many routines, some that are described in the User’s Manual

and others that are not intended to be called by the user and, hence, that are not documented. If the

choice of names were completely random over the set of valid FORTRAN names, and if a

program uses only a small subset of the MATH/LIBRARY, the probability of name conflicts is

very small. Since names are usually chosen to be mnemonic, however, the user may wish to take

some precautions in choosing FORTRAN names.

Many IMSL names consist of a root name that may have a prefix to indicate the type of the

routine. For example, the IMSL single precision subroutine for fitting a polynomial by least

squares has the name RCURV, which is the root name, and the corresponding IMSL double

precision routine has the name DRCURV. Associated with these two routines are R2URV and

DR2URV. RCURV is listed in the Alphabetical Index of Routines, but DRCURV, R2URV, and DR2URV

are not. The user of RCURV must consider both names RCURV and R2URV to be reserved; likewise,

the user of DRCURV must consider both names DRCURV and DR2URV to be reserved. The root

names of all routines and named common blocks that are used by the MATH/LIBRARY and that

do not have a numeral in the second position of the root name are listed in the Alphabetical Index

of Routines. Some of the routines in this Index (such as the ―Level 2 BLAS‖) are not intended to

be called by the user and so are not documented.

The careful user can avoid any conflicts with IMSL names if the following rules are observed:

IMSL MATH LIBRARY Reference Material 1955

 Do not choose a name that appears in the Alphabetical Summary of Routines in the User’s

Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_.

 Do not choose a name of three or more characters with a numeral in the second or third

position.

These simplified rules include many combinations that are, in fact, allowable. However, if the user

selects names that conform to these rules, no conflict will be encountered.

Deprecated Features and Renamed Routines

Automatic Workspace Allocation

FORTRAN subroutines that work with arrays as input and output often require extra arrays for use

as workspace while doing computations or moving around data. IMSL routines generally do not

require the user explicitly to allocate such arrays for use as workspace. On most systems the

workspace allocation is handled transparently. The only limitation is the actual amount of memory

available on the system.

On some systems the workspace is allocated out of a stack that is passed as a FORTRAN array in

a named common block WORKSP. A very similar use of a workspace stack is described by Fox et

al. (1978, pages 116−121). (For compatiblity with older versions of the IMSL Libraries, space is

allocated from the COMMON block, if possible.)

The arrays for workspace appear as arguments in lower-level routines. For example, the IMSL

routine LSARG (in Chapter 1, ―Linear Systems‖), which solves systems of linear equations, needs

arrays for workspace. LSARG allocates arrays from the common area, and passes them to the

lower-level routine L2ARG which does the computations. In the ―Comments‖ section of the

documentation for LSARG, the amount of workspace is noted and the call to L2ARG is described.

This scheme for using lower-level routines is followed throughout the IMSL Libraries. The names

of these routines have a ―2‖ in the second position (or in the third position in double precision

routines having a ―D‖ prefix). The user can provide workspace explicitly and call directly the ―2-

level‖ routine, which is documented along with the main routine. In a very few cases, the 2-level

routine allows additional options that the main routine does not allow.

Prior to returning to the calling program, a routine that allocates workspace generally deallocates

that space so that it becomes available for use in other routines.

Changing the Amount of Space Allocated

This section is relevant only to those systems on which the transparent workspace allocator is not

available.

By default, the total amount of space allocated in the common area for storage of numeric data is

5000 numeric storage units. (A numeric storage unit is the amount of space required to store an

integer or a real number. By comparison, a double precision unit is twice this amount. Therefore

the total amount of space allocated in the common area for storage of numeric data is 2500 double

precision units.) This space is allocated as needed for INTEGER, REAL, or other numeric data. For

larger problems in which the default amount of workspace is insufficient, the user can change the

allocation by supplying the FORTRAN statements to define the array in the named common block

and by informing the IMSL workspace allocation system of the new size of the common array. To

request 7000 units, the statements are

1956 Reference Material IMSL MATH LIBRARY

 COMMON /WORKSP/ RWKSP

 REAL RWKSP(7000)

 CALL IWKIN(7000)

If an IMSL routine attempts to allocate workspace in excess of the amount available in the

common stack, the routine issues a fatal error message that indicates how much space is needed

and prints statements like those above to guide the user in allocating the necessary amount. The

program below uses IMSL routine PERMA to permute rows or columns of a matrix. This routine

requires workspace equal to the number of columns, which in this example is too large. (Note that

the work vector RWKSP must also provide extra space for bookkeeping.)

 USE_PERMA_INT

! Specifications for local variables

 INTEGER NRA, NCA, LDA, IPERMU(6000), IPATH

 REAL A(2,6000)

! Specifications for subroutines

!

 NRA = 2

 NCA = 6000

 LDA = 2

! Initialize permutation index

 DO 10 I = 1, NCA

 IPERMU(I) = NCA + 1 - I

 10 CONTINUE

 IPATH = 2

 CALL PERMA (A, IPERMU, A, IPATH=IPATH)

 END

Output

*** TERMINAL ERROR 10 from PERMA. Insufficient workspace for current

*** allocation(s). Correct by calling IWKIN from main program with

*** the three following statements: (REGARDLESS OF PRECISION)

*** COMMON /WORKSP/ RWKSP

*** REAL RWKSP(6018)

*** CALL IWKIN(6018)

*** TERMINAL ERROR 10 from PERMA. Workspace allocation was based on NCA =

*** 6000.

In most cases, the amount of workspace is dependent on the parameters of the problem so the

amount needed is known exactly. In a few cases, however, the amount of workspace is dependent

on the data (for example, if it is necessary to count all of the unique values in a vector), so the

IMSL routine cannot tell in advance exactly how much workspace is needed. In such cases the

error message printed is an estimate of the amount of space required.

Character Workspace

Since character arrays cannot be equivalenced with numeric arrays, a separate named common

block WKSPCH is provided for character workspace. In most respects this stack is managed in the

same way as the numeric stack. The default size of the character workspace is 2000 character

units. (A character unit is the amount of space required to store one character.) The routine

analogous to IWKIN used to change the default allocation is IWKCIN.

IMSL MATH LIBRARY Reference Material 1957

The routines in the following list are being deprecated in Version 2.0 of MATH/LIBRARY. A

deprecated routine is one that is no longer used by anything in the library but is being included in

the product for those users who may be currently referencing it in their application. However, any

future versions of MATH/LIBRARY will not include these routines. If any of these routines are

being called within an application, it is recommended that you change your code or retain the

deprecated routine before replacing this library with the next version. Most of these routines were

called by users only when they needed to set up their own workspace. Thus, the impact of these

changes should be limited.

CZADD DE2LRH DNCONF E3CRG

CZINI DE2LSB DNCONG E4CRG

CZMUL DE3CRG E2ASF E4ESF

CZSTO DE3CRH E2AHF E5CRG

DE2AHF DE3LSF E2BHF E7CRG

DE2ASF DE4CRG E2BSB G2CCG

DE2BHF DE4ESF E2BSF G2CRG

DE2BSB DE5CRG E2CCG G2LCG

DE2BSF DE7CRG E2CCH G2LRG

DE2CCG DG2CCG E2CHF G3CCG

DE2CCH DG2CRG E2CRG G4CCG

DE2CHF DG2DF E2CRH G5CCG

DE2CRG DG2IND E2CSB G7CRG

DE2CRH DG2LCG E2EHF N0ONF

DE2CSB DG2LRG E2ESB NCONF

DE2EHF DG3CCG E2FHF NCONG

DE2ESB DG3DF E2FSB SDADD

DE2FHF DG4CCG E2FSF SDINI

DE2FSB DG5CCG E2LCG SDMUL

DE2FSF DG7CRG E2LCH SDSTO

DE2LCG DHOUAP E2LHF SHOUAP

DE2LCH DHOUTR E2LRG SHOUTR

DE2LHF DIVPBS E2LRH

DE2LRG DN0ONF E2LSB

The following routines have been renamed due to naming conflicts with other software

manufacturers.

CTIME − replaced with CPSEC

DTIME − replaced with TIMDY

PAGE − replaced with PGOPT

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-i

Appendix A: GAMS Index

Description

This index lists routines in MATH LIBRARY by a tree-structured classification scheme known as

GAMS Version 2.0 (Boisvert, Howe, Kahaner, and Springmann (1990). Only the GAMS classes

that contain MATH/LIBRARY routines are included in the index. The page number for the

documentation and the purpose of the routine appear alongside the routine name.

The first level of the full classification scheme contains the following major subject areas:

A. Arithmetic, Error Analysis

B. Number Theory

C. Elementary and Special Functions

D. Linear Algebra

E. Interpolation

F. Solution of Nonlinear Equations

G. Optimization

H. Differentiation and Integration

I. Differential and Integral Equations

J. Integral Transforms

K. Approximation

L. Statistics, Probability

M. Simulation, Stochastic Modeling

N. Data Handling

O. Symbolic Computation

P. Computational Geometry

Q. Graphics

R. Service Routines

S. Software Development Tools

A-ii ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

Z. Other

There are seven levels in the classification scheme. Classes in the first level are identified by a

capital letter as is given above. Classes in the remaining levels are identified by alternating letter-

and-number combinations. A single letter (a-z) is used with the odd-numbered levels. A number

(1−26) is used within the even-numbered levels.

IMSL MATH LIBRARY

A ARITHMETIC, ERROR ANALYSIS

A3 Real

A3c Extended precision

DQADD . Adds a double-precision scalar to the accumulator in extended precision.

DQINI ... Initializes an extended-precision accumulator with a double-precision

scalar.

DQMUL ... Multiplies double-precision scalars in extended precision.

DQSTO ... Stores a double-precision approximation to an extended-precision scalar.

A4 Complex

A4c Extended precision

ZQADD ... Adds a double complex scalar to the accumulator in extended precision.

ZQINI ... Initializes an extended-precision complex accumulator to a double

complex scalar.

ZQMUL ... Multiplies double complex scalars using extended precision.

ZQSTO ... Stores a double complex approximation to an extended-precision

complex scalar.

A6 Change of representation

A6c Decomposition, construction

PRIME ... Decomposes an integer into its prime factors.

B NUMBER THEORY

PRIME . Decomposes an integer into its prime factors.

C ELEMENTARY AND SPECIAL FUNCTIONS

C2 Powers, roots, reciprocals

HYPOT ... Computes
2 2a b without underflow or overflow.

C19 Other special functions

CONST ... Returns the value of various mathematical and physical constants.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-iii

CUNIT . Converts X in units XUNITS to Y in units YUNITS.

D........... LINEAR ALGEBRA

D1......... Elementary vector and matrix operations

D1a Elementary vector operations

D1a1 Set to constant

CSET Sets the components of a vector to a scalar, all complex.

ISET Sets the components of a vector to a scalar, all integer.

SSET Sets the components of a vector to a scalar, all single precision.

D1a2 Minimum and maximum components

ICAMAX. Finds the smallest index of the component of a complex vector having

maximum magnitude.

ICAMIN. Finds the smallest index of the component of a complex vector having

minimum magnitude.

IIMAX ... Finds the smallest index of the maximum component of a integer vector.

IIMIN ... Finds the smallest index of the minimum of an integer vector.

ISAMAX Finds the smallest index of the component of a single-precision vector

having maximum absolute value.

ISAMIN. Finds the smallest index of the component of a single-precision vector

having minimum absolute value.

ISMAX ... Finds the smallest index of the component of a single-precision vector

having maximum value.

ISMIN ... Finds the smallest index of the component of a single-precision vector

having minimum value.

D1a3 Norm

D1a3a ... L1 (sum of magnitudes)

DISL1 ... Computes the 1-norm distance between two points.

SASUM ... Sums the absolute values of the components of a single-precision vector.

SCASUM. Sums the absolute values of the real part together with the absolute

values of the imaginary part of the components of a complex vector.

D1a3b… L2 (Euclidean norm)

DISL2 ... Computes the Euclidean (2-norm) distance between two points.

NORM2,CNORM2 Computes the Euclidean length of a vector or matrix,

avoiding out-of-scale intermediate subexpressions.

MNORM2,CMNORM2 Computes the Euclidean length of a vector or matrix,

avoiding out-of-scale intermediate subexpressions

A-iv ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

NRM2, CNRM2 Computes the Euclidean length of a vector or matrix,

avoiding out-of-scale intermediate subexpressions.

SCNRM2 . Computes the Euclidean norm of a complex vector.

SNRM2 ... Computes the Euclidean length or L2 norm of a single-precision vector.

D1a3c ... L∞ (maximum magnitude)

DISLI ... Computes the infinity norm distance between two points.

ICAMAX . Finds the smallest index of the component of a complex vector having

maximum magnitude.

ISAMAX . Finds the smallest index of the component of a single-precision vector

having maximum absolute value.

D1a4 Dot product (inner product)

CDOTC ... Computes the complex conjugate dot product,
Tx y .

CDOTU .. Computes the complex dot product x
T
y.

CZCDOT . Computes the sum of a complex scalar plus a complex conjugate dot

product,
Ta x y , using a double-precision accumulator.

CZDOTA . Computes the sum of a complex scalar, a complex dot product and the

double-complex accumulator, which is set to the result ACC ACC + a

+ x
T
y.

CZDOTC . Computes the complex conjugate dot product,
Tx y , using a double-

precision accumulator.

CZDOTI . Computes the sum of a complex scalar plus a complex dot product using

a double-complex accumulator, which is set to the result ACC a + x
T
y.

CZDOTU . Computes the complex dot product x
T
y using a double-precision

accumulator.

CZUDOT . Computes the sum of a complex scalar plus a complex dot product, a +

x
T
y, using a double-precision accumulator.

DSDOT ... Computes the single-precision dot product x
T
y using a double precision

accumulator.

SDDOTA . Computes the sum of a single-precision scalar, a single-precision dot

product and the double-precision accumulator, which is set to the result

ACC ACC + a + x
T
y.

SDDOTI . Computes the sum of a single-precision scalar plus a singleprecision dot

product using a double-precision accumulator, which is set to the result

ACC a + x
T
y.

SDOT Computes the single-precision dot product x
T
y.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-v

SDSDOT. Computes the sum of a single-precision scalar and a single precision dot

product, a + x
T
y, using a double-precision accumulator.

D1a5 Copy or exchange (swap)

CCOPY ... Copies a vector x to a vector y, both complex.

CSWAP ... Interchanges vectors x and y, both complex.

ICOPY ... Copies a vector x to a vector y, both integer.

ISWAP ... Interchanges vectors x and y, both integer.

SCOPY ... Copies a vector x to a vector y, both single precision.

SSWAP ... Interchanges vectors x and y, both single precision.

D1a6 Multiplication by scalar

CSCAL ... Multiplies a vector by a scalar, y ay, both complex.

CSSCAL. Multiplies a complex vector by a single-precision scalar,

y ay.

CSVCAL. Multiplies a complex vector by a single-precision scalar and store the

result in another complex vector, y ax.

CVCAL ... Multiplies a vector by a scalar and store the result in another vector, y

ax, all complex.

SSCAL ... Multiplies a vector by a scalar, y ay, both single precision.

SVCAL ... Multiplies a vector by a scalar and store the result in another vector, y

ax, all single precision.

D1a7 Triad (ax + y for vectors x, y and scalar a)

CAXPY ... Computes the scalar times a vector plus a vector,

y ax + y, all complex.

SAXPY ... Computes the scalar times a vector plus a vector,

y ax + y, all single precision.

D1a8 Elementary rotation (Givens transformation) (search also class D1b10)

CSROT ... Applies a complex Givens plane rotation.

CSROTM. Applies a complex modified Givens plane rotation.

SROT Applies a Givens plane rotation in single precision.

SROTM ... Applies a modified Givens plane rotation in single precision.

D1a10 ... Convolutions

RCONV ... Computes the convolution of two real vectors.

VCONC ... Computes the convolution of two complex vectors.

VCONR ... Computes the convolution of two real vectors.

A-vi ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

D1a11 ... Other vector operations

CADD .. Adds a scalar to each component of a vector, x x + a, all complex.

CSUB Subtracts each component of a vector from a scalar,

x a x, all complex.

DISL1 ... Computes the 1-norm distance between two points.

DISL2 ... Computes the Euclidean (2-norm) distance between two points.

DISLI ... Computes the infinity norm distance between two points.

IADD Adds a scalar to each component of a vector, x x + a, all integer.

ISUB Subtracts each component of a vector from a scalar,

x a x, all integer.

ISUM Sums the values of an integer vector.

SADD Adds a scalar to each component of a vector, x x + a, all single

precision.

SHPROD . Computes the Hadamard product of two single-precision vectors.

SPRDCT . Multiplies the components of a single-precision vector.

SSUB Subtracts each component of a vector from a scalar,

x a x, all single precision.

SSUM Sums the values of a single-precision vector.

SXYZ Computes a single-precision xyz product.

D1b Elementary matrix operations

CGERC ... Computes the rank-one update of a complex general matrix:
TA A xy .

CGERU ... Computes the rank-one update of a complex general matrix:
TA A xy .

CHER Computes the rank-one update of an Hermitian matrix:
TA A xx with x complex and real.

CHER2 . Computes a rank-two update of an Hermitian matrix:
T TA A xy yx .

CHER2K . Computes one of the Hermitian rank 2k operations:

 or T T T TC AB BA C C A B B A C ,

where C is an n by n Hermitian matrix and A and B are n by k matrices

in the first case and k by n matrices in the second case.

CHERK ... Computes one of the Hermitian rank k operations:

 or T TC AA C C A A C ,

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-vii

where C is an n by n Hermitian matrix and A is an n by k matrix in the

first case and a k by n matrix in the second case.

CSYR2K. Computes one of the symmetric rank 2k operations:

 or T T T TC AB BA C C A B B A C ,

where C is an n by n symmetric matrix and A and B are n by k matrices

in the first case and k by n matrices in the second case.

CSYRK ... Computes one of the symmetric rank k operations:

 or T TC AA C C A A C ,

where C is an n by n symmetric matrix and A is an n by k matrix in the

first case and a k by n matrix in the second case.

CTBSV ... Solves one of the complex triangular systems:

1

1 1, ,
T

Tx A x x A x or x A x

 ,

where A is a triangular matrix in band storage mode.

CTRSM ... Solves one of the complex matrix equations:

T
1 1 1 1

1 1

, , , ,

, or

T

T T

B A B B BA B A B B B A

B A B B B A

where A is a triangular matrix.

CTRSV. Solves one of the complex triangular systems:

1

1 1, , or
T

Tx A x x A x x A x

 ,

where A is a triangular matrix.

HRRRR ... Computes the Hadamard product of two real rectangular matrices.

SGER.. Computes the rank-one update of a real general matrix:
TA A xy .

SSYR.. Computes the rank-one update of a real symmetric matrix:
TA A xx .

SSYR2. Computes the rank-two update of a real symmetric matrix:
T TA A xy yx .

SSYR2K Computes one of the symmetric rank 2k operations:

 or T T T TC AB BA C C A B B A C ,

where C is an n by n symmetric matrix and A and B are n by k matrices

in the first case and k by n matrices in the second case.

SSYRK ... Computes one of the symmetric rank k operations:

 or T TC AA C C A A C ,

A-viii ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

where C is an n by n symmetric matrix and A is an n by k matrix in the

first case and a k by n matrix in the second case.

STBSV ... Solves one of the triangular systems:

 1 1
T

x A x or x A x ,

where A is a triangular matrix in band storage mode.

STRSM . Solves one of the matrix equations:

where B is an m by n matrix and A is a triangular matrix.

STRSV . Solves one of the triangular linear systems:

 1 1
T

x A x or x A x ,

 where A is a triangular matrix.

D1b2 Norm

NR1CB ... Computes the 1-norm of a complex band matrix in band storage mode.

NR1RB ... Computes the 1-norm of a real band matrix in band storage mode.

NR1RR ... Computes the 1-norm of a real matrix.

NR2RR ... Computes the Frobenius norm of a real rectangular matrix.

NRIRR ... Computes the infinity norm of a real matrix.

D1b3 Transpose

TRNRR ... Transposes a rectangular matrix.

D1b4 Multiplication by vector

BLINF ... Computes the bilinear form x
T
Ay.

CGBMV ... Computes one of the matrix-vector operations:

, , or T Ty Ax y y A x y y A y ,

where A is a matrix stored in band storage mode.

CGEMV ... Computes one of the matrix-vector operations:

, , or T Ty Ax y y A x y y A y ,

CHBMV ... Computes the matrix-vector operation

y Ax y ,

where A is an Hermitian band matrix in band Hermitian storage.

CHEMV ... Computes the matrix-vector operation

y Ax y ,

where A is an Hermitian matrix.

CTBMV . Computes one of the matrix-vector operations:

, , or T Tx Ax x A x x A x ,

where A is a triangular matrix in band storage mode.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-ix

CTRMV ... Computes one of the matrix-vector operations:

, , or T Tx Ax x A x x A x ,

where A is a triangular matrix.

MUCBV. Multiplies a complex band matrix in band storage mode by a complex

vector.

MUCRV ... Multiplies a complex rectangular matrix by a complex vector.

MURBV ... Multiplies a real band matrix in band storage mode by a real vector.

MURRV ... Multiplies a real rectangular matrix by a vector.

SGBMV. Computes one of the matrix-vector operations:

, or Ty Ax y y A x y ,

where A is a matrix stored in band storage mode.

SGEMV ... Computes one of the matrix-vector operations:

, or Ty Ax y y A x y ,

SSBMV. Computes the matrix-vector operation

y Ax y ,

where A is a symmetric matrix in band symmetric storage mode.

SSYMV ... Computes the matrix-vector operation

y Ax y ,

where A is a symmetric matrix.

STBMV ... Computes one of the matrix-vector operations:

 or Tx Ax x A x ,

where A is a triangular matrix in band storage mode.

STRMV .. Computes one of the matrix-vector operations:

 or Tx Ax x A x ,

where A is a triangular matrix.

D1b5 Addition, subtraction

ACBCB ... Adds two complex band matrices, both in band storage mode.

ARBRB. Adds two band matrices, both in band storage mode.

D1b6 Multiplication

CGEMM ... Computes one of the matrix-matrix operations:

, ,

, , ,

 or , ,

, or

T T

T T T

T T T

T T T T

C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

A-x ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

CHEMM . Computes one of the matrix-matrix operations:

 or +C AB C C BA C ,

where A is an Hermitian matrix and B and C are m by n matrices.

CSYMM . Computes one of the matrix-matrix operations:

 or +C AB C C BA C ,

where A is a symmetric matrix and B and C are m by n matrices.

CTRMM . Computes one of the matrix-matrix operations:

, , , ,

,or

T T

T T

B AB B A B B BA B BA

B A B B BA

where B is an m by n matrix and A is a triangular matrix.

MCRCR ... Multiplies two complex rectangular matrices, AB.

MRRRR ... Multiplies two real rectangular matrices, AB.

MXTXF ... Computes the transpose product of a matrix, A
T
A.

MXTYF ... Multiplies the transpose of matrix A by matrix B, A
T
B.

MXYTF ... Multiplies a matrix A by the transpose of a matrix B, AB
T
.

SGEMM ... Compute one of the matrix-matrix operations:

, ,

, or

T T

T T

C AB C C A B C C AB

C C A B C

.

SSYMM ... Computes one of the matrix-matrix operations:

 or +C AB C C BA C ,

where A is a symmetric matrix and B and C are m by n matrices.

STRMM . Computes one of the matrix-matrix operations:

, , , ,T TB AB B A B or B BA B BA

where B is an m by n matrix and A is a triangular matrix.

D1b7 Matrix polynomial

POLRG . 1207 Evaluates a real general matrix polynomial.

D1b8 Copy

CCBCB . Copies a complex band matrix stored in complex band storage mode.

CCGCG Copies a complex general matrix.

CRBRB ... Copies a real band matrix stored in band storage mode.

CRGRG Copies a real general matrix.

D1b9 Storage mode conversion

CCBCG ... Converts a complex matrix in band storage mode to a complex matrix in

full storage mode.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xi

CCGCB ... Converts a complex general matrix to a matrix in complex band storage

mode.

CHBCB. Copies a complex Hermitian band matrix stored in band Hermitian

storage mode to a complex band matrix stored in band storage mode.

CHFCG ... Extends a complex Hermitian matrix defined in its upper triangle to its

lower triangle.

CRBCB ... Converts a real matrix in band storage mode to a complex matrix in

band storage mode.

CRBRG ... Converts a real matrix in band storage mode to a real general matrix.

CRGCG. Copies a real general matrix to a complex general matrix.

CRGRB ... Converts a real general matrix to a matrix in band storage mode.

CRRCR ... Copies a real rectangular matrix to a complex rectangular matrix.

CSBRB ... Copies a real symmetric band matrix stored in band symmetric storage

mode to a real band matrix stored in band storage mode.

CSFRG ... Extends a real symmetric matrix defined in its upper triangle to its lower

triangle.

D1b10 ... Elementary rotation (Givens transformation) (search also class D1a8)

SROTG ... Constructs a Givens plane rotation in single precision.

SROTMG. Constructs a modified Givens plane rotation in single precision.

D2......... Solution of systems of linear equations (including inversion, LU and

related decompositions)

D2a Real nonsymmetric matrices

LSLTO ... Solves a real Toeplitz linear system.

D2a1 General

LFCRG ... Computes the LU factorization of a real general matrix and estimate its

L1 condition number.

LFIRG ... Uses iterative refinement to improve the solution of a real general

system of linear equations.

LFSRG ... Solves a real general system of linear equations given the LU

factorization of the coefficient matrix.

LFTRG ... Computes the LU factorization of a real general matrix.

LINRG ... Computes the inverse of a real general matrix.

LSARG ... Solves a real general system of linear equations with iterative

refinement.

LSLRG ... Solves a real general system of linear equations without iterative

refinement.

A-xii ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

LIN_SOL_GEN Solves a general system of linear equations Ax = b. Using

optional arguments, any of several related computations can be

performed. These extra tasks include computing the LU factorization of

A using partial pivoting, representing the determinant of A, computing

the inverse matrix A
-1

, and solving A
T
x = b or Ax = b given the LU

factorization of A.

D2a2 Banded

LFCRB ... Computes the LU factorization of a real matrix in band storage mode

and estimate its L1 condition number.

LFIRB ... Uses iterative refinement to improve the solution of a real system of

linear equations in band storage mode.

LFSRB . Solves a real system of linear equations given the LU factorization of the

coefficient matrix in band storage mode.

LFTRB . Computes the LU factorization of a real matrix in band storage mode.

LSARB ... Solves a real system of linear equations in band storage mode with

iterative refinement.

LSLRB ... Solves a real system of linear equations in band storage mode without

iterative refinement.

STBSV ... Solves one of the triangular systems: 1 1
T

x A x or x A x ,

where A is a triangular matrix in band storage mode.

D2a2a ... Tridiagonal

LSLCR . Computes the LDU factorization of a real tridiagonal matrix A using a

cyclic reduction algorithm.

LSLTR ... Solves a real tridiagonal system of linear equations.

LIN_SOL_TRI Solves multiple systems of linear equations Ajxj = yj, j = 1,

, k. Each matrix Aj is tridiagonal with the same dimension, n: The

default solution method is based on LU factorization computed using

cyclic reduction. An option is used to select Gaussian elimination with

partial pivoting.

TRI_SOLVE A real, tri-diagonal, multiple system solver. Uses both cyclic

reduction and Gauss elimination. Similar in function to lin_sol_tri.

D2a3 Triangular

LFCRT ... Estimates the condition number of a real triangular matrix.

LINRT ... Computes the inverse of a real triangular matrix.

LSLRT . Solves a real triangular system of linear equations.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xiii

STRSM ... Solves one of the matrix equations:

T

1 1 1, ,B A B B BA B A B

 1 ,
T

or B B A

where B is an m by n matrix and A is a triangular matrix.

STRSV. Solves one of the triangular linear systems:

 1 1
T

x A x or x A x

where A is a triangular matrix.

D2a4 Sparse

LFSXG ... Solves a sparse system of linear equations given the LU factorization of

the coefficient matrix.

LFTXG ... Computes the LU factorization of a real general sparse matrix.

LSLXG ... Solves a sparse system of linear algebraic equations by Gaussian

elimination.

GMRES ... Uses restarted GMRES with reverse communication to generate an

approximate solution of Ax = b.

D2b....... Real symmetric matrices

D2b1 General

D2b1a. .. Indefinite

LCHRG ... Computes the Cholesky decomposition of a symmetric positive

semidefinite matrix with optional column pivoting.

LFCSF ... Computes the U DU
T
 factorization of a real symmetric matrix and

estimate its L1 condition number.

LFISF ... Uses iterative refinement to improve the solution of a real symmetric

system of linear equations.

LFSSF ... Solves a real symmetric system of linear equations given the U DU
T

factorization of the coefficient matrix.

LFTSF ... Computes the U DU
T
 factorization of a real symmetric matrix.

LSASF. Solves a real symmetric system of linear equations with iterative

refinement.

LSLSF ... Solves a real symmetric system of linear equations without iterative

refinement.

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a

self-adjoint matrix. Using optional arguments, any of several related

computations can be performed. These extra tasks include computing

and saving the factorization of A using symmetric pivoting, representing

the determinant of A, computing the inverse matrix A
-1

, or computing

A-xiv ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

the solution of Ax = b given the factorization of A. An optional argument

is provided indicating that A is positive definite so that the Cholesky

decomposition can be used.

D2b1b. .. Positive definite

LCHRG . Computes the Cholesky decomposition of a symmetric positive

semidefinite matrix with optional column pivoting.

LFCDS ... Computes the R
T
 R Cholesky factorization of a real symmetric positive

definite matrix and estimate its L1condition number.

LFIDS ... Uses iterative refinement to improve the solution of a real symmetric

positive definite system of linear equations.

LFSDS . Solves a real symmetric positive definite system of linear equations

given the R
T
 R Choleksy factorization of the coefficient matrix.

LFTDS ... Computes the R
T
 R Cholesky factorization of a real symmetric positive

definite matrix.

LINDS . Computes the inverse of a real symmetric positive definite matrix.

LSADS . Solves a real symmetric positive definite system of linear equations with

iterative refinement.

LSLDS . Solves a real symmetric positive definite system of linear equations

without iterative refinement.

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a

self-adjoint matrix. Using optional arguments, any of several related

computations can be performed. These extra tasks include computing

and saving the factorization of A using symmetric pivoting, representing

the determinant of A, computing the inverse matrix A
-1

, or computing

the solution of Ax = b given the factorization of A. An optional argument

is provided indicating that A is positive definite so that the Cholesky

decomposition can be used.

D2b2 Positive definite banded

LFCQS . Computes the R
T
 R Cholesky factorization of a real symmetric positive

definite matrix in band symmetric storage mode and estimate its L1

condition number.

LFDQS ... Computes the determinant of a real symmetric positive definite matrix

given the R
T
 R Cholesky factorization of the band symmetric storage

mode.

LFIQS ... Uses iterative refinement to improve the solution of a real symmetric

positive definite system of linear equations in band symmetric storage

mode.

LFSQS ... Solves a real symmetric positive definite system of linear equations

given the factorization of the coefficient matrix in band symmetric

storage mode.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xv

LFTQS ... Computes the R
T
 R Cholesky factorization of a real symmetric positive

definite matrix in band symmetric storage mode.

LSAQS ... Solves a real symmetric positive definite system of linear equations in

band symmetric storage mode with iterative refinement.

LSLPB ... Computes the R
T
 DR Cholesky factorization of a real symmetric positive

definite matrix A in codiagonal band symmetric storage mode. Solve a

system Ax = b.

LSLQS ... Solves a real symmetric positive definite system of linear equations in

band symmetric storage mode without iterative refinement.

D2b4 Sparse

JCGRC ... Solves a real symmetric definite linear system using the Jacobi

preconditioned conjugate gradient method with reverse communication.

LFSXD ... Solves a real sparse symmetric positive definite system of linear

equations, given the Cholesky factorization of the coefficient matrix.

LNFXD ... Computes the numerical Cholesky factorization of a sparse symmetrical

matrix A.

LSCXD ... Performs the symbolic Cholesky factorization for a sparse symmetric

matrix using a minimum degree ordering or a userspecified ordering,

and set up the data structure for the numerical Cholesky factorization.

LSLXD ... Solves a sparse system of symmetric positive definite linear algebraic

equations by Gaussian elimination.

PCGRC ... Solves a real symmetric definite linear system using a preconditioned

conjugate gradient method with reverse communication.

D2c. Complex non-Hermitian matrices

LSLCC. Solves a complex circulant linear system.

LSLTC ... Solves a complex Toeplitz linear system.

D2c1 General

LFCCG ... Computes the LU factorization of a complex general matrix and estimate

its L1 condition number.

LFICG ... Uses iterative refinement to improve the solution of a complex general

system of linear equations.

LFSCG ... Solves a complex general system of linear equations given the LU

factorization of the coefficient matrix.

LFTCG ... Computes the LU factorization of a complex general matrix.

LINCG. Computes the inverse of a complex general matrix.

LSACG ... Solves a complex general system of linear equations with iterative

refinement.

A-xvi ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

LSLCG ... Solves a complex general system of linear equations without iterative

refinement.

LIN_SOL_GEN Solves a general system of linear equations Ax = b. Using

optional arguments, any of several related computations can be

performed. These extra tasks include computing the LU factorization of

A using partial pivoting, representing the determinant of A, computing

the inverse matrix A
-1

, and solving A
T
x = b or Ax = b given the LU

factorization of A.

D2c2 Banded

CTBSV ... Solves one of the complex triangular systems:

1

1 1, ,
T

Tx A x x A x or x A x

 ,

where A is a triangular matrix in band storage mode.

LFCCB ... Computes the LU factorization of a complex matrix in band storage

mode and estimate its L1condition number.

LFICB ... Uses iterative refinement to improve the solution of a complex system

of linear equations in band storage mode.

LFSCB ... Solves a complex system of linear equations given the LU factorization

of the coefficient matrix in band storage mode.

LFTCB ... Computes the LU factorization of a complex matrix in band storage

mode.

LSACB ... Solves a complex system of linear equations in band storage mode with

iterative refinement.

LSLCB ... Solves a complex system of linear equations in band storage mode

without iterative refinement.

D2c2a ... Tridiagonal

LSLCQ . Computes the LDU factorization of a complex tridiagonal matrix A

using a cyclic reduction algorithm.

LSLTQ ... Solves a complex tridiagonal system of linear equations.

LIN_SOL_TRI Solves multiple systems of linear equations Ajxj = yj, j = 1,

, k. Each matrix Aj is tridiagonal with the same dimension, n: The

default solution method is based on LU factorization computed using

cyclic reduction. An option is used to select Gaussian elimination with

partial pivoting.

D2c3 Triangular

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xvii

CTRSM. Solves one of the complex matrix equations:

T
1 1 1 1

1 1

, , , ,

, or

T

T T

B A B B BA B A B B B A

B A B B B A

where A is a traiangular matrix.

CTRSV ... Solves one of the complex triangular systems:

1

1 1, , or
T

Tx A x x A x x A x

where A is a triangular matrix.

LFCCT. Estimates the condition number of a complex triangular matrix.

LINCT ... Computes the inverse of a complex triangular matrix.

LSLCT ... Solves a complex triangular system of linear equations.

D2c4 Sparse

LFSZG ... Solves a complex sparse system of linear equations given the LU

factorization of the coefficient matrix.

LFTZG ... Computes the LU factorization of a complex general sparse matrix.

LSLZG ... Solves a complex sparse system of linear equations by Gaussian

elimination.

D2d. Complex Hermitian matrices

D2d1 General

D2d1a. .. Indefinite

LFCHF ... Computes the U DU
H

 factorization of a complex Hermitian matrix and

estimate its L1 condition number.

LFDHF ... Computes the determinant of a complex Hermitian matrix given the U

DU
H

 factorization of the matrix.

LFIHF ... Uses iterative refinement to improve the solution of a complex

Hermitian system of linear equations.

LFSHF ... Solves a complex Hermitian system of linear equations given the U

DU
H

 factorization of the coefficient matrix.

LFTHF ... Computes the U DU
H

 factorization of a complex Hermitian matrix.

LSAHF ... Solves a complex Hermitian system of linear equations with iterative

refinement.

LSLHF ... Solves a complex Hermitian system of linear equations without iterative

refinement.

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a

self-adjoint matrix. Using optional arguments, any of several related

computations can be performed. These extra tasks include computing

A-xviii ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

and saving the factorization of A using symmetric pivoting, representing

the determinant of A, computing the inverse matrix A
-1

, or computing

the solution of Ax = b given the factorization of A. An optional argument

is provided indicating that A is positive definite so that the Cholesky

decomposition can be used.

D2d1b. .. Positive definite

LFCDH ... Computes the R
H

 R factorization of a complex Hermitian positive

definite matrix and estimate its L1 condition number.

LFIDH ... Uses iterative refinement to improve the solution of a complex

Hermitian positive definite system of linear equations.

LFSDH ... Solves a complex Hermitian positive definite system of linear equations

given the R
H

 R factorization of the coefficient matrix.

LFTDH ... Computes the R
H

 R factorization of a complex Hermitian positive

definite matrix.

LSADH ... Solves a Hermitian positive definite system of linear equations with

iterative refinement.

LSLDH ... Solves a complex Hermitian positive definite system of linear equations

without iterative refinement.

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a

self-adjoint matrix. Using optional arguments, any of several related

computations can be performed. These extra tasks include computing

and saving the factorization of A using symmetric pivoting, representing

the determinant of A, computing the inverse matrix A
-1

, or computing

the solution of Ax = b given the factorization of A. An optional argument

is provided indicating that A is positive definite so that the Cholesky

decomposition can be used.

D2d2 Positive definite banded

LFCQH ... Computes the R
H

 R factorization of a complex Hermitian positive

definite matrix in band Hermitian storage mode and estimate its L1

condition number.

LFIQH ... Uses iterative refinement to improve the solution of a complex

Hermitian positive definite system of linear equations in band Hermitian

storage mode.

LFSQH ... Solves a complex Hermitian positive definite system of linear equations

given the factorization of the coefficient matrix in band Hermitian

storage mode.

LFTQH ... Computes the R
H

 R factorization of a complex Hermitian positive

definite matrix in band Hermitian storage mode.

LSAQH ... Solves a complex Hermitian positive definite system of linear equations

in band Hermitian storage mode with iterative refinement.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xix

LSLQB. Computes the R
H

 DR Cholesky factorization of a complex hermitian

positive-definite matrix A in codiagonal band hermitian storage mode.

Solve a system Ax = b.

LSLQH ... Solves a complex Hermitian positive definite system of linearequations

in band Hermitian storage mode without iterative refinement.

D2d4 Sparse

LFSZD ... Solves a complex sparse Hermitian positive definite system of linear

equations, given the Cholesky factorization of the coefficient matrix.

LNFZD ... Computes the numerical Cholesky factorization of a sparse Hermitian

matrix A.

LSLZD ... Solves a complex sparse Hermitian positive definite system of linear

equations by Gaussian elimination.

D3......... Determinants

D3a. Real nonsymmetric matrices

D3a1 General

LFDRG. Computes the determinant of a real general matrix given the LU

factorization of the matrix.

D3a2 Banded

LFDRB. Computes the determinant of a real matrix in band storage mode given

the LU factorization of the matrix.

D3a3 Triangular

LFDRT ... Computes the determinant of a real triangular matrix.

D3b. Real symmetric matrices

D3b1 General

D3b1a. .. Indefinite

LFDSF ... Computes the determinant of a real symmetric matrix given the U DU
T

factorization of the matrix.

D3b1b. .. Positive definite

LFDDS. Computes the determinant of a real symmetric positive definite matrix

given the R
H

 R Cholesky factorization of the matrix.

D3c. Complex non-Hermitian matrices

D3c1 General

LFDCG ... Computes the determinant of a complex general matrix given the LU

factorization of the matrix.

D3c2 Banded

A-xx ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

LFDCB ... Computes the determinant of a complex matrix given the LU

factorization of the matrix in band storage mode.

D3c3 Triangular

LFDCT . Computes the determinant of a complex triangular matrix.

D3d. Complex Hermitian matrices

D3d1 General

D3d1b. .. Positive definite

LFDDH ... Computes the determinant of a complex Hermitian positive definite

matrix given the R
H
 R Cholesky factorization of the matrix.

D3d2 Positive definite banded

LFDQH ... Computes the determinant of a complex Hermitian positive definite

matrix given the R
H
 R Cholesky factorization in band Hermitian storage

mode.

D4 Eigenvalues, eigenvectors

ARPACK_SYMMETRIC Computes some eigenvalues and eigenvectors of the

generalized real symmetric eigenvalue problem Ax = Bx.

ARPACK_NONSYMMETRIC Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

ARPACK_COMPLEX Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

D4a. Ordinary eigenvalue problems (Ax = x)

ARPACK_SYMMETRIC Computes some eigenvalues and eigenvectors of the

generalized real symmetric eigenvalue problem Ax = Bx.

ARPACK_NONSYMMETRIC Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

D4a1 Real symmetric

ARPACK_SYMMETRIC Computes some eigenvalues and eigenvectors of the

generalized real symmetric eigenvalue problem Ax = Bx.

EVASF ... Computes the largest or smallest eigenvalues of a real symmetric matrix.

EVBSF ... Computes selected eigenvalues of a real symmetric matrix.

EVCSF ... Computes all of the eigenvalues and eigenvectors of a real symmetric

matrix.

EVESF ... Computes the largest or smallest eigenvalues and the corresponding

eigenvectors of a real symmetric matrix.

EVFSF ... Computes selected eigenvalues and eigenvectors of a real symmetric

matrix.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xxi

EVLSF ... Computes all of the eigenvalues of a real symmetric matrix.

LIN_EIG_SELF Computes the eigenvalues of a self-adjoint matrix, A.

Optionally, the eigenvectors can be computed. This gives the

decomposition A = VDV
T
, where V is an n n orthogonal matrix and D

is a real diagonal matrix.

D4a2 Real nonsymmetric

ARPACK_NONSYMMETRIC Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

EVCRG ... Computes all of the eigenvalues and eigenvectors of a real matrix.

EVLRG ... Computes all of the eigenvalues of a real matrix.

LIN_EIG_GEN Computes the eigenvalues of an n n matrix, A.

Optionally, the eigenvectors of A or A
T
 are computed. Using the

eigenvectors of A gives the decomposition

AV = VE, where V is an n n complex matrix of eigenvectors, and E is

the complex diagonal matrix of eigenvalues. Other options include the

reduction of A to upper triangular or Schur form, reduction to block

upper triangular form with 2 2 or unit sized diagonal block matrices,

and reduction to upper Hessenberg form.

D4a3 Complex Hermitian

ARPACK_COMPLEX Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

EVAHF ... Computes the largest or smallest eigenvalues of a complex Hermitian

matrix.

EVBHF ... Computes the eigenvalues in a given range of a complex Hermitian

matrix.

EVCHF ... Computes all of the eigenvalues and eigenvectors of a complex

Hermitian matrix.

EVEHF ... Computes the largest or smallest eigenvalues and the corresponding

eigenvectors of a complex Hermitian matrix.

EVFHF ... Computes the eigenvalues in a given range and the corresponding

eigenvectors of a complex Hermitian matrix.

EVLHF ... Computes all of the eigenvalues of a complex Hermitian matrix.

LIN_EIG_SELF Computes the eigenvalues of a self-adjoint matrix, A.

Optionally, the eigenvectors can be computed. This gives the

decomposition A = VDV
T
, where V is an n n orthogonal matrix and D

is a real diagonal matrix.

D4a4 Complex non-Hermitian

ARPACK_COMPLEX Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

A-xxii ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

EVCCG ... Computes all of the eigenvalues and eigenvectors of a complex matrix.

EVLCG ... Computes all of the eigenvalues of a complex matrix.

LIN_EIG_GEN Computes the eigenvalues of an n n matrix, A.

Optionally, the eigenvectors of A or A
T
 are computed. Using the

eigenvectors of A gives the decomposition

AV = VE, where V is an n n complex matrix of eigenvectors, and E is

the complex diagonal matrix of eigenvalues. Other options include the

reduction of A to upper triangular or Schur form, reduction to block

upper triangular form with 2 2 or unit sized diagonal block matrices,

and reduction to upper Hessenberg form.

D4a6 Banded

EVASB ... Computes the largest or smallest eigenvalues of a real symmetric matrix

in band symmetric storage mode.

EVBSB ... Computes the eigenvalues in a given interval of a real symmetric matrix

stored in band symmetric storage mode.

EVCSB ... Computes all of the eigenvalues and eigenvectors of a real symmetric

matrix in band symmetric storage mode.

EVESB ... Computes the largest or smallest eigenvalues and the corresponding

eigenvectors of a real symmetric matrix in band symmetric storage

mode.

EVFSB ... Computes the eigenvalues in a given interval and the corresponding

eigenvectors of a real symmetric matrix stored in band symmetric

storage mode.

EVLSB ... Computes all of the eigenvalues of a real symmetric matrix in band

symmetric storage mode.

D4a7. Sparse matrix eigenvalue problem

ARPACK_SYMMETRIC Computes some eigenvalues and eigenvectors of the

generalized real symmetric eigenvalue problem Ax = Bx.

ARPACK_NONSYMMETRIC Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

ARPACK_COMPLEX Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

D4b. Generalized eigenvalue problems (e.g., Ax = Bx)

ARPACK_SYMMETRIC Computes some eigenvalues and eigenvectors of the

generalized real symmetric eigenvalue problem Ax = Bx.

ARPACK_NONSYMMETRIC Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

ARPACK_COMPLEX Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xxiii

D4b1 Real symmetric

ARPACK_SYMMETRIC Computes some eigenvalues and eigenvectors of the

generalized real symmetric eigenvalue problem Ax = Bx.

GVCSP ... Computes all of the eigenvalues and eigenvectors of the generalized real

symmetric eigenvalue problem Az = Bz, with B symmetric positive

definite.

GVLSP ... Computes all of the eigenvalues of the generalized real symmetric

eigenvalue problem Az = Bz, with B symmetric positive definite.

LIN_GEIG_GEN Computes the generalized eigenvalues of an n n matrix

pencil, Av Bv. Optionally, the generalized eigenvectors are

computed. If either of A or B is nonsingular, there are diagonal matrices

 and and a complex matrix V computed such that AV = BV.

D4b2 Real general

ARPACK_NONSYMMETRIC Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

GVCRG ... Computes all of the eigenvalues and eigenvectors of a generalized real

eigensystem Az = Bz.

GVLRG ... Computes all of the eigenvalues of a generalized real eigensystem Az =

Bz.

LIN_GEIG_GEN Computes the generalized eigenvalues of an n n matrix

pencil, Av Bv. Optionally, the generalized eigenvectors are

computed. If either of A or B is nonsingular, there are diagonal matrices

 and and a complex matrix V computed such that AV = BV.

D4b3 Complex Hermitian generalized matrix eigenvalue problems

ARPACK_COMPLEX Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

D4b4 Complex general

ARPACK_COMPLEX Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

GVCCG ... Computes all of the eigenvalues and eigenvectors of a generalized

complex eigensystem Az = Bz.

GVLCG ... Computes all of the eigenvalues of a generalized complex eigensystem

Az = Bz.

LIN_GEIG_GEN Computes the generalized eigenvalues of an n n matrix

pencil, Av Bv. Optionally, the generalized eigenvectors are

computed. If either of A or B is nonsingular, there are diagonal matrices

 and and a complex matrix V computed such that AV = BV.

A-xxiv ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

D4c. Associated operations

BALANC, CBSLANC Balances a general matrix before computing the

eigenvalue-eigenvector decomposition.

EPICG ... Computes the performance index for a complex eigensystem.

EPIHF ... Computes the performance index for a complex Hermitian eigensystem.

EPIRG ... Computes the performance index for a real eigensystem.

EPISB ... Computes the performance index for a real symmetric eigensystem in

band symmetric storage mode.

EPISF ... Computes the performance index for a real symmetric eigensystem.

GPICG ... Computes the performance index for a generalized complex eigensystem

Az = Bz.

GPIRG ... Computes the performance index for a generalized real eigensystem Az

= Bz.

GPISP ... Computes the performance index for a generalized real symmetric

eigensystem problem.

PERFECT_SHIFT Computes eigenvectors using actual eigenvalue as an

explicit shift. Called by lin_eig_self.

PWK A rational QR algorithm for computing eigenvalues of real, symmetric

tri-diagonal matrices. Called by lin_svd and lin_eig_self.

D4c2 Compute eigenvalues of matrix in compact form

D4c2b. .. Hessenberg

EVCCH . Computes all of the eigenvalues and eigenvectors of a complex upper

Hessenberg matrix.

EVCRH ... Computes all of the eigenvalues and eigenvectors of a real upper

Hessenberg matrix.

EVLCH ... Computes all of the eigenvalues of a complex upper Hessenberg matrix.

EVLRH ... Computes all of the eigenvalues of a real upper Hessenberg matrix.

D5 QR decomposition, Gram-Schmidt orthogonalization

LQERR ... Accumulates the orthogonal matrix Q from its factored form given the

QR factorization of a rectangular matrix A.

LQRRR ... Computes the QR decomposition, AP = QR, using Householder

transformations.

LQRSL ... Computes the coordinate transformation, projection, and complete the

solution of the least-squares problem Ax = b.

LSBRR ... Solves a linear least-squares problem with iterative refinement.

LSQRR ... Solves a linear least-squares problem without iterative refinement.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xxv

D6......... Singular value decomposition

ARPACK_SVD Computes some singular values and left and right singular vectors

of a real rectangular
T

M NA USV .

LSVCR ... Computes the singular value decomposition of a complex matrix.

LSVRR ... Computes the singular value decomposition of a real matrix.

LIN_SOL_SVD Solves a rectangular least-squares system of linear

equations Ax b using singular value decomposition,

A = USV
T
. Using optional arguments, any of several related

computations can be performed. These extra tasks include computing

the rank of A, the orthogonal m m and n n matrices U and V, and the

m n diagonal matrix of singular values, S.

LIN_SVD Computes the singular value decomposition (SVD) of a rectangular

matrix, A. This gives the decomposition

A = USV
T
, where V is an n n orthogonal matrix, U is an m m

orthogonal matrix, and S is a real, rectangular diagonal matrix.

D7......... Update matrix decompositions

D7b. Cholesky

LDNCH ... Downdates the R
T
R Cholesky factorization of a real symmetric positive

definite matrix after a rank-one matrix is removed.

LUPCH ... Updates the R
T
R Cholesky factorization of a real symmetric positive

definite matrix after a rank-one matrix is added.

D7c. QR

LUPQR ... Computes an updated QR factorization after the rank-one matrix xy
T
 is

added.

D9......... Singular, overdetermined or underdetermined systems of linear

equations, generalized inverses

D9a. Unconstrained

D9a1 Least squares (L2) solution

BAND_

ACCUMALATION Accumulatez and solves banded least-squares

problem using Householder transformations.

BAND_SOLVE Accumulatez and solves banded least-squares problem using

Householder transformations.

HOUSE_HOLDER Accumulates and solves banded least-squares problem

using Householder transformations.

LQRRR. Computes the QR decomposition, AP = QR, using Householder

transformations.

A-xxvi ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

LQRRV ... Computes the least-squares solution using Householder transformations

applied in blocked form.

LQRSL ... Computes the coordinate transformation, projection, and complete the

solution of the least-squares problem Ax = b.

LSBRR ... Solves a linear least-squares problem with iterative refinement.

LSQRR ... Solves a linear least-squares problem without iterative refinement.

LIN_SOL_LSQ Solves a rectangular system of linear equations Ax b, in a

least-squares sense. Using optional arguments, any of several related

computations can be performed. These extra tasks include computing

and saving the factorization of A using column and row pivoting,

representing the determinant of A, computing the generalized inverse

matrix A†, or computing the least-squares solution of

Ax b or A
T
y d given the factorization of A. An optional argument is

provided for computing the following unscaled covariance matrix: C =

(A
T
A)

-1
.

LIN_SOL_SVD Solves a rectangular least-squares system of linear equations Ax

 b using singular value decomposition,

A = USV
T
. Using optional arguments, any of several related

computations can be performed. These extra tasks include computing

the rank of A, the orthogonal m m and n n matrices U and V, and the

m n diagonal matrix of singular values, S.

D9b. Constrained

D9b1 Least squares (L2) solution

LCLSQ ... Solves a linear least-squares problem with linear constraints.

D9c. Generalized inverses

LSGRR ... Computes the generalized inverse of a real matrix.

LIN_SOL_LSQ Solves a rectangular system of linear equations Ax b, in a least-

squares sense. Using optional arguments, any of several related

computations can be performed. These extra tasks include computing

and saving the factorization of A using column and row pivoting,

representing the determinant of A, computing the generalized inverse

matrix A†, or computing the least-squares solution of Ax b or A
T
y d

given the factorization of A. An optional argument is provided for

computing the following unscaled covariance matrix: C = (A
T
A)

-1
.

E INTERPOLATION

E1 Univariate data (curve fitting)

E1a Polynomial splines (piecewise polynomials)

BSINT ... Computes the spline interpolant, returning the B-spline coefficients.

CSAKM ... Computes the Akima cubic spline interpolant.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xxvii

CSCON ... Computes a cubic spline interpolant that is consistent with the concavity

of the data.

CSDEC ... Computes the cubic spline interpolant with specified derivative endpoint

conditions.

CSHER ... Computes the Hermite cubic spline interpolant.

CSIEZ. Computes the cubic spline interpolant with the ‗not-a-knot‘ condition

and return values of the interpolant at specified points.

CSINT ... Computes the cubic spline interpolant with the ‗not-a-knot‘ condition.

CSPER ... Computes the cubic spline interpolant with periodic boundary

conditions.

QDVAL ... Evaluates a function defined on a set of points using quadratic

interpolation.

SPLEZ ... Computes the values of a spline that either interpolates or fits user-

supplied data.

SPLINE_FITTING Solves constrained least-squares fitting of one-dimensional

data by B-splines.

SPlINE_SUPPORT B-spline function and derivative evaluation package.

E2 Multivariate data (surface fitting)

E2a Gridded

BS2IN ... Computes a two-dimensional tensor-product spline interpolant,

returning the tensor-product B-spline coefficients.

BS3IN ... Computes a three-dimensional tensor-product spline interpolant,

returning the tensor-product B-spline coefficients.

QD2DR ... Evaluates the derivative of a function defined on a rectangular grid

using quadratic interpolation.

QD2VL ... Evaluates a function defined on a rectangular grid using quadratic

interpolation.

QD3DR ... Evaluates the derivative of a function defined on a rectangular three-

dimensional grid using quadratic interpolation.

QD3VL ... Evaluates a function defined on a rectangular three-dimensional grid

using quadratic interpolation.

SURFACE_FITTING Solves constrained least-squares fitting of two-

dimensional data by tensor products of B-splines.

SURFND Multidimensional interpolation and differentiation.

E2b Scattered

SURF Computes a smooth bivariate interpolant to scattered data that is locally

a quintic polynomial in two variables.

A-xxviii ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

SURFACE_FAIRING Constrained weighted least-squares fitting of tensor

product B-splines to discrete data, with covariance matrix and

constraints at points.

E3 Service routines for interpolation

E3a Evaluation of fitted functions, including quadrature

E3a1 Function evaluation

BS1GD ... Evaluates the derivative of a spline on a grid, given its B-spline

representation.

BS2DR ... Evaluates the derivative of a two-dimensional tensor-product spline,

given its tensor-product B-spline representation.

BS2GD ... Evaluates the derivative of a two-dimensional tensor-product spline,

given its tensor-product B-spline representation on a grid.

BS2VL . Evaluates a two-dimensional tensor-product spline, given its tensor-

product B-spline representation.

BS3GD ... Evaluates the derivative of a three-dimensional tensor-product spline,

given its tensor-product B-spline representation on a grid.

BS3VL ... Evaluates a three-dimensional tensor-product spline, given its tensor-

product B-spline representation.

BSVAL ... Evaluates a spline, given its B-spline representation.

CSVAL. Evaluates a cubic spline.

PPVAL . Evaluates a piecewise polynomial.

QDDER ... Evaluates the derivative of a function defined on a set of points using

quadratic interpolation.

E3a2 Derivative evaluation

BS1GD ... Evaluates the derivative of a spline on a grid, given its B-spline

representation.

BS2DR ... Evaluates the derivative of a two-dimensional tensor-product spline,

given its tensor-product B-spline representation.

BS2GD ... Evaluates the derivative of a two-dimensional tensor-product spline,

given its tensor-product B-spline representation on a grid.

BS3DR ... Evaluates the derivative of a three-dimensional tensor-product spline,

given its tensor-product B-spline representation.

BS3GD ... Evaluates the derivative of a three-dimensional tensor-product spline,

given its tensor-product B-spline representation on a grid.

BSDER ... Evaluates the derivative of a spline, given its B-spline representation.

CS1GD ... Evaluates the derivative of a cubic spline on a grid.

CSDER ... Evaluates the derivative of a cubic spline.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xxix

PP1GD ... Evaluates the derivative of a piecewise polynomial on a grid.

PPDER. Evaluates the derivative of a piecewise polynomial.

QDDER ... Evaluates the derivative of a function defined on a set of points using

quadratic interpolation.

E3a3 Quadrature

BS2IG. Evaluates the integral of a tensor-product spline on a rectangular

domain, given its tensor-product B-spline representation.

BS3IG ... Evaluates the integral of a tensor-product spline in three dimensions

over a three-dimensional rectangle, given its tensorproduct B-spline

representation.

BSITG ... Evaluates the integral of a spline, given its B-spline representation.

CSITG. Evaluates the integral of a cubic spline.

E3b Grid or knot generation

BSNAK ... Computes the ‗not-a-knot‘ spline knot sequence.

BSOPK ... Computes the ‗optimal‘ spline knot sequence.

E3c Manipulation of basis functions (e.g., evaluation, change of basis)

BSCPP ... Converts a spline in B-spline representation to piecewise polynomial

representation.

F SOLUTION OF NONLINEAR EQUATIONS

F1 Single equation

F1a Polynomial

F1a1 Real coefficients

ZPLRC. Finds the zeros of a polynomial with real coefficients using Laguerre‘s

method.

ZPORC ... Finds the zeros of a polynomial with real coefficients using the Jenkins-

Traub three-stage algorithm.

F1a2 Complex coefficients

ZPOCC. Finds the zeros of a polynomial with complex coefficients using the

Jenkins-Traub three-stage algorithm.

F1b Nonpolynomial

ZANLY ... Finds the zeros of a univariate complex function using Müller‘s method.

ZUNI.. Finds a zero of a real univariate function.

ZBREN. Finds a zero of a real function that changes sign in a given interval.

ZREAL ... Finds the real zeros of a real function using Müller‘s method.

F2 System of equations

A-xxx ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

NEQBF . Solves a system of nonlinear equations using factored secant update

with a finite-difference approximation to the Jacobian.

NEQBJ ... Solves a system of nonlinear equations using factored secant update

with a user-supplied Jacobian.

NEQNF . Solves a system of nonlinear equations using a modified Powell hybrid

algorithm and a finite-difference approximation to the Jacobian.

NEQNJ ... Solves a system of nonlinear equations using a modified Powell hybrid

algorithm with a user-supplied Jacobian.

G OPTIMIZATION (search also classes K, L8)

G1 Unconstrained

G1a. Univariate

G1a1 Smooth function

G1a1a. .. User provides no derivatives

UVMIF ... Finds the minimum point of a smooth function of a single variable using

only function evaluations.

G1a1b ... User provides first derivatives

UVMID ... Finds the minimum point of a smooth function of a single variable using

both function evaluations and first derivative evaluations.

G1a2 General function (no smoothness assumed)

UVMGS ... Finds the minimum point of a nonsmooth function of a single variable.

G1b Multivariate

G1b1 Smooth function

G1b1a. .. User provides no derivatives

UMCGF ... Minimizes a function of N variables using a conjugate gradient

algorithm and a finite-difference gradient.

UMINF ... Minimizes a function of N variables using a quasi-New method and a

finite-difference gradient.

UNLSF ... Solves a nonlinear least squares problem using a modified Levenberg-

Marquardt algorithm and a finite-difference Jacobian.

G1b1b. .. User provides first derivatives

UMCGG ... Minimizes a function of N variables using a conjugate gradient

algorithm and a user-supplied gradient.

UMIDH ... Minimizes a function of N variables using a modified Newton method

and a finite-difference Hessian.

UMING ... Minimizes a function of N variables using a quasi-New method and a

user-supplied gradient.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xxxi

UNLSJ ... Solves a nonlinear least squares problem using a modified Levenberg-

Marquardt algorithm and a user-supplied Jacobian.

G1b1c. .. User provides first and second derivatives

UMIAH ... Minimizes a function of N variables using a modified Newton method

and a user-supplied Hessian.

G1b2 General function (no smoothness assumed)

UMPOL ... Minimizes a function of N variables using a direct search polytope

algorithm.

G2......... Constrained

G2a. Linear programming

G2a1 Dense matrix of constraints

DLPRS ... Solves a linear programming problem via the revised simplex algorithm.

G2a2 Sparse matrix of constraints

SLPRS ... Solves a sparse linear programming problem via the revised simplex

algorithm.

G2b....... Transportation and assignment problem

TRAN Solves a transportation problem.

G2e. Quadratic programming

G2e1 Positive definite Hessian (i.e., convex problem)

QPROG ... Solves a quadratic programming problem subject to linear

equality/inequality constraints.

G2h. General nonlinear programming

G2h1 Simple bounds

G2h1a. .. Smooth function

G2h1a1 . User provides no derivatives

BCLSF ... Solves a nonlinear least squares problem subject to bounds on the

variables using a modified Levenberg-Marquardt algorithm and a finite-

difference Jacobian.

BCONF ... Minimizes a function of N variables subject to bounds the variables

using a quasi-Newton method and a finite-difference gradient.

G2h1a2 . User provides first derivatives

BCLSJ ... Solves a nonlinear least squares problem subject to bounds on the

variables using a modified Levenberg-Marquardt algorithm and a user-

supplied Jacobian.

BCODH. Minimizes a function of N variables subject to bounds the variables

using a modified Newton method and a finite-difference Hessian.

A-xxxii ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

BCONG . Minimizes a function of N variables subject to bounds the variables

using a quasi-Newton method and a user-supplied gradient.

G2h1a3 . User provides first and second derivatives

BCOAH ... Minimizes a function of N variables subject to bounds the variables

using a modified Newton method and a user-supplied Hessian.

G2h1b ... General function (no smoothness assumed)

BCPOL ... Minimizes a function of N variables subject to bounds the variables

using a direct search complex algorithm.

G2h2 Linear equality or inequality constraints

G2h2a. .. Smooth function

G2h2a1 . User provides no derivatives

LCONF ... Minimizes a general objective function subject to linear

equality/inequality constraints.

G2h2a2 . User provides first derivatives

LCONG ... Minimizes a general objective function subject to linear

equality/inequality constraints.

G2h3 Nonlinear constraints

G2h3b Equality and inequality constraints

NNLPG ... Uses a sequential equality constrained QP method.

NNLPF ... Uses a sequential equality constrained QP method.

G2h3b1 Smooth function and constraints

G2h3b1a User provides no derivatives

G2h3b1b User provides first derivatives of function and constraints

G4 Service routines

G4c Check user-supplied derivatives

CHGRD ... Checks a user-supplied gradient of a function.

CHHES ... Checks a user-supplied Hessian of an analytic function.

CHJAC ... Checks a user-supplied Jacobian of a system of equations with M

functions in N unknowns.

G4d Find feasible point

GGUES . Generates points in an N-dimensional space.

G4f Other

CDGRD ... Approximates the gradient using central differences.

DDJAC ... Approximates the Jacobian of m functions in n unknowns using divided

differences.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xxxiii

FDGRD ... Approximates the gradient using forward differences.

FDHES ... Approximates the Hessian using forward differences and function

values.

FDJAC ... Approximates the Jacobian of M functions in N unknowns using forward

differences.

GDHES ... Approximates the Hessian using forward differences and a user-supplied

gradient.

H DIFFERENTIATION, INTEGRATION

H1 Numerical differentiation

DERIV ... Computes the first, second or third derivative of a user-supplied

function.

H2 Quadrature (numerical evaluation of definite integrals)

H2a One-dimensional integrals

H2a1 Finite interval (general integrand)

H2a1a Integrand available via user-defined procedure

H2a1a1 Automatic (user need only specify required accuracy)

QDAG Integrates a function using a globally adaptive scheme based on Gauss-

Kronrod rules.

QDAG1D. Integrates a function with a possible internal or endpoint singularity.

QDAGS. Integrates a function (which may have endpoint singularities).

QDNG Integrates a smooth function using a nonadaptive rule.

H2a2 Finite interval (specific or special type integrand including weight

functions, oscillating and singular integrands, principal value integrals,

splines, etc.).

H2a2a Integrand available via user-defined procedure

H2a2a1 Automatic (user need only specify required accuracy)

QDAGP ... Integrates a function with singularity points given.

QDAWC ... Integrates a function F(X)/(X C) in the Cauchy principal value sense.

QDAWO ... Integrates a function containing a sine or a cosine.

QDAWS ... Integrates a function with algebraic-logarithmic singularities.

H2a2b Integrand available only on grid.

H2a2b1 Automatic (user need only specify required accuracy)

BSITG ... Evaluates the integral of a spline, given its B-spline representation.

H2a3 Semi-infinite interval (including e-
x
 weight function)

H2a3a Integrand available via user-defined procedure

A-xxxiv ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

H2a3a1 Automatic (user need only specify required accuracy)

QDAGI ... Integrates a function over an infinite or semi-infinite interval.

QDAWF ... Computes a Fourier integral.

H2b. Multidimensional integrals

H2b1 One or more hyper-rectangular regions (including iterated integrals)

QMC Integrates a function over a hyperrectangle using a

quasi-Monte Carlo method.

H2b1a. .. Integrand available via user-defined procedure

H2b1a1 . Automatic (user need only specify required accuracy)

QAND Integrates a function on a hyper-rectangle.

QDAG2D . Integrates a function of two variables with a possible internal or end

point singularity.

QDAG3D . Integrates a function of three variables with a possible internal or

endpoint singularity.

TWODQ ... Computes a two-dimensional iterated integral.

H2b1b ... Integrand available only on grid

H2b1b2 . Nonautomatic

BS2IG ... Evaluates the integral of a tensor-product spline on a rectangular

domain, given its tensor-product B-spline representation.

BS3IG ... Evaluates the integral of a tensor-product spline in three dimensions

over a three-dimensional rectangle, given its tensorproduct B-spline

representation.

H2c. Service routines (compute weight and nodes for quadrature formulas)

FQRUL ... Computes a Fejér quadrature rule with various classical weight

functions.

GQRCF ... Computes a Gauss, Gauss-Radau or Gauss-Lobatto quadrature rule

given the recurrence coefficients for the monic polynomials orthogonal

with respect to the weight function.

GQRUL . Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with

various classical weight functions.

RECCF ... Computes recurrence coefficients for various monic polynomials.

RECQR . Computes recurrence coefficients for monic polynomials given a

quadrature rule.

I DIFFERENTIAL AND INTEGRAL EQUATIONS

I1 Ordinary differential equations (ODE‘s)

I1a Initial value problems

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xxxv

I1a1 General, nonstiff or mildly stiff

I1a1a One-step methods (e.g., Runge-Kutta)

FEYNMAN_KAC Solves the generalized Feynman-Kac PDE on a

rectangular grid using a finite element Galerkin method. Initial and

boundary conditions are provided.

IVMRK ... Solves an initial-value problem y = f(t, y) for ordinary differential

equations using Runge-Kutta pairs of various orders.

IVPRK. Solves an initial-value problem for ordinary differential equations using

the Runge-Kutta-Verner fifth-order and sixth-order method.

I1a1b Multistep methods (e.g., Adams predictor-corrector)

IVOAM. Solves an initial-value problem for a system of ordinary differential

equations of order one or two using a variable order Adams method.

IVPAG. Solves an initial-value problem for ordinary differential equations using

either Adams-Moulton‘s or Gear‘s BDF method.

I1a2 Stiff and mixed algebraic-differential equations

DASPG ... Solves a first order differential-algebraic system of equations, g(t, y, y)

= 0, using Petzold−Gear BDF method.

DAESL. Solves a first order differential-algebraic system of equations, g(t, y, yʹ)
= 0, possibly with additional constraints.

I1b Multipoint boundary value problems

I1b2 Nonlinear

BVPFD ... Solves a (parameterized) system of differential equations with boundary

conditions at two points, using a variable order, variable step size finite-

difference method with deferred corrections.

BVPMS. Solves a (parameterized) system of differential equations with boundary

conditions at two points, using a multiple-shooting method.

I1b3 Eigenvalue (e.g., Sturm-Liouville)

SLCNT ... Calculates the indices of eigenvalues of a Sturm-Liouville problem with

boundary conditions (at regular points) in a specified subinterval of the

real line, [,].

SLEIG ... Determines eigenvalues, eigenfunctions and/or spectral density

functions for Sturm-Liouville problems in the form with boundary

conditions (at regular points).

I2 Partial differential equations

FEYNMAN_KAC Solves the generalized Feynman-Kac PDE on a

rectangular grid using a finite element Galerkin method. Initial and

boundary conditions are provided.

I2a. Initial boundary value problems

A-xxxvi ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

FEYNMAN_KAC Solves the generalized Feynman-Kac PDE on a

rectangular grid using a finite element Galerkin method. Initial and

boundary conditions are provided.

I2a1 Parabolic

FEYNMAN_KAC Solves the generalized Feynman-Kac PDE on a

rectangular grid using a finite element Galerkin method. Initial and

boundary conditions are provided.

PDE_1D_MG Integrates an initial-value PDE problem with one space variable.

I2a1 One spatial dimension

MMOLCH Solves a system of partial differential equations of the form ut = f(x, t, u,

ux, uxx) using the method of lines. The solution is represented with cubic

Hermite polynomials.

I2b Elliptic boundary value problems

I2b1 Linear

I2b1a. Second order

I2b1a1 Poisson (Laplace) or Helmholtz equation

I2b1a1a Rectangular domain (or topologically rectangular in the coordinate

system)

FPS2H Solves Poisson‘s or Helmholtz‘s equation on a two-dimensional rectangle

using a fast Poisson solver based on the HODIE finite-difference scheme

on a uni mesh.

FPS3H Solves Poisson‘s or Helmholtz‘s equation on a three-dimensional box

using a fast Poisson solver based on the HODIE finite-difference scheme

on a uniform mesh.

J INTEGRAL TRANSFORMS

J1 Trigonometric transforms including fast Fourier transforms

J1a One-dimensional

J1a1 Real

FFTRB Computes the real periodic sequence from its Fourier coefficients.

FFTRF Computes the Fourier coefficients of a real periodic sequence.

FFTRI Computes parameters needed by FFTRF and FFTRB.

J1a2 Complex

FAST-DFT Computes the Discrete Fourier Transform (DFT) of a rank-1

complex array, x.

FFTCB ... Computes the complex periodic sequence from its Fourier coefficients.

FFTCF ... Computes the Fourier coefficients of a complex periodic sequence.

FFTCI ... Computes parameters needed by FFTCF and FFTCB.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xxxvii

J1a3 Sine and cosine transforms

FCOSI .. Computes parameters needed by FCOST.

FCOST ... Computes the discrete Fourier cosine transformation of an even

sequence.

FSINI ... Computes parameters needed by FSINT.

FSINT ... Computes the discrete Fourier sine transformation of an odd sequence.

QCOSB ... Computes a sequence from its cosine Fourier coefficients with only odd

wave numbers.

QCOSF ... Computes the coefficients of the cosine Fourier transform with only odd

wave numbers.

QCOSI . Computes parameters needed by QCOSF and QCOSB.

QSINB. Computes a sequence from its sine Fourier coefficients with only odd

wave numbers.

QSINF ... Computes the coefficients of the sine Fourier transform with only odd

wave numbers.

QSINI ... Computes parameters needed by QSINF and QSINB.

J1b Multidimensional

FFT2B ... Computes the inverse Fourier transform of a complex periodic two-

dimensional array.

FFT2D ... Computes Fourier coefficients of a complex periodic two-dimensional

array.

FFT3B ... Computes the inverse Fourier transform of a complex periodic three-

dimensional array.

FFT3F ... Computes Fourier coefficients of a complex periodic threedimensional

array.

FAST_2DFT Computes the Discrete Fourier Transform (DFT) of a rank-2

complex array, x.

FAST_3DFT Computes the Discrete Fourier Transform (DFT) of a rank-3

complex array, x.

J2 Convolutions

CCONV ... Computes the convolution of two complex vectors.

RCONV. Computes the convolution of two real vectors.

J3 Laplace transforms

INLAP ... Computes the inverse Laplace transform of a complex function.

SINLP ... Computes the inverse Laplace transform of a complex function.

K APPROXIMATION (search also class L8)

A-xxxviii ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

K1 Least squares (L2) approximation

K1a Linear least squares (search also classes D5, D6, D9)

K1a1 Unconstrained

K1a1a. Univariate data (curve fitting)

K1a1a1 Polynomial splines (piecewise polynomials)

BSLSQ ... Computes the least-squares spline approximation, and return the B-

spline coefficients.

BSVLS ... Computes the variable knot B-spline least squares approximation to

given data.

CONFT ... Computes the least-squares constrained spline approximation, returning

the B-spline coefficients.

FRENCH_CURVE Constrained weighted least-squares fitting of B-splines to

discrete data, with covariance matrix.and constraints at points.

K1a1a2 Polynomials

RCURV ... Fits a polynomial curve using least squares.

K1a1a3 Other functions (e.g., trigonometric, user-specified)

FNLSQ ... Compute a least-squares approximation with user-supplied basis

functions.

K1a1b Multivariate data (surface fitting)

BSLS2 ... Computes a two-dimensional tensor-product spline approximant using

least squares, returning the tensor-product B-spline coefficients.

BSLS3 . Computes a three-dimensional tensor-product spline approximant using

least squares, returning the tensor-product B-spline coefficients.

SURFACE_FAIRING Constrained weighted least-squares fitting of tensor

product B-splines to discrete data, with covariance matrix and

constraints at points.

K1a2 Constrained

LIN_SOL_LSQ_CON Routine for constrained linear-least squares based on a

least-distance, dual algorithm.

LIN_SOL_LSQ_INQ Routine for constrained linear-least squares based

on aleast-distance, dual algorithm.

LEAST_PROJ_DISTANCE Routine for constrained linear-least squares

based on a least-distance, dual algorithm.

PARALLEL_& NONONEGATIVE_LSQ Solves multiple systems of linear

equations Ajxj = yj, j = 1, , k. Each matrix Aj is tridiagonal with the

same dimension, n: The default solution method is based on LU

factorization computed using cyclic reduction. An option is used to

select Gaussian elimination with partial pivoting.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xxxix

PARALLEL_& BOUNDED_LSQ Parallel routines for simple bounded constrained

linear-least squares based on a descent algorithm.

K1a2a ... Linear constraints

LCLSQ ... Solves a linear least-squares problem with linear constraints.

PARALLEL_NONNEGATIVE_LSQ Solves a large least-squares system with non-

negative constraints, using parallel computing.

PARALLEL_BOUNDED_LSQ Solves a large least-squares system with simple

bounds, using parallel computing.

K1b Nonlinear least squares

K1b1 Unconstrained

K1b1a Smooth functions

K1b1a1 User provides no derivatives

UNLSF ... Solves a nonlinear least squares problem using a modified Levenberg-

Marquardt algorithm and a finite-difference Jacobian.

K1b1a2 User provides first derivatives

UNLSJ. Solves a nonlinear least squares problem using a modified Levenberg-

Marquardt algorithm and a user-supplied Jacobian.

K1b2 Constrained

K1b2a Linear constraints

BCLSF ... Solves a nonlinear least squares problem subject to bounds on the

variables using a modified Levenberg-Marquardt algorithm and a finite-

difference Jacobian.

BCLSJ ... Solves a nonlinear least squares problem subject to bounds on the

variables using a modified Levenberg-Marquardt algorithm and a user-

supplied Jacobian.

BCNLS ... Solves a nonlinear least-squares problem subject to bounds on the

variables and general linear constraints.

K2 Minimax (L∞) approximation

RATCH. Computes a rational weighted Chebyshev approximation to a continuous

function on an interval.

K5 Smoothing

CSSCV ... Computes a smooth cubic spline approximation to noisy data using

cross-validation to estimate the smoothing parameter.

CSSED ... Smooths one-dimensional data by error detection.

CSSMH ... Computes a smooth cubic spline approximation to noisy data.

K6 Service routines for approximation

A-xl ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

K6a. Evaluation of fitted functions, including quadrature

K6a1 Function evaluation

BSVAL Evaluates a spline, given its B-spline representation.

CSVAL Evaluates a cubic spline.

PPVAL Evaluates a piecewise polynomial.

K6a2 Derivative evaluation

BSDER Evaluates the derivative of a spline, given its B-spline representation.

CS1GD Evaluates the derivative of a cubic spline on a grid.

CSDER Evaluates the derivative of a cubic spline.

PP1GD Evaluates the derivative of a piecewise polynomial on a grid.

PPDER Evaluates the derivative of a piecewise polynomial.

K6a3 Quadrature

CSITG Evaluates the integral of a cubic spline.

PPITG Evaluates the integral of a piecewise polynomial.

K6c Manipulation of basis functions (e.g., evaluation, change of basis)

BSCPP Converts a spline in B-spline representation to piecewise polynomial

representation.

L STATISTICS, PROBABILITY

L1 Data summarization

L1c. Multi-dimensional data

L1c1 Raw data

L1c1b Covariance, correlation

CCORL ... Computes the correlation of two complex vectors.

RCORL . Computes the correlation of two real vectors.

L3 Elementary statistical graphics (search also class Q)

L3e. Multi-dimensional data

L3e3 Scatter diagrams

L3e3a Superimposed Y vs. X

PLOTP Prints a plot of up to 10 sets of points.

L6 Random number generation

L6a. Univariate

RAND_GEN Generates a rank-1 array of random numbers. The output array

entries are positive and less than 1 in value.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xli

L6a21 Uniform (continuous, discrete), uniform order statistics

RNUN Generates pseudorandom numbers from a uniform (0, 1) distribution.

RNUNF Generates a pseudorandom number from a uniform (0, 1) distribution.

L6b Mulitivariate

L6b21 Linear L-1 (least absolute value) approximation random numbers

FAURE_INIT Shuffles Faure sequence initialization.

FAURE_FREE Frees the structure containing information about the Faure

sequence.

FAURE_NEXT Computes a shuffled Faure sequence.

L6c. Service routines (e.g., seed)

RNGET ... Retrieves the current value of the seed used in the IMSL random number

generators.

RNOPT ... Selects the uniform (0, 1) multiplicative congruential pseudorandom

number generator.

RNSET. Initializes a random seed for use in the IMSL random number

generators.

RAND_GEN Generates a rank-1 array of random numbers. The output array

entries are positive and less than 1 in value.

L8 Regression (search also classes D5, D6, D9, G, K)

L8a. Simple linear (e.g., y = 0 + 1x +) (search also class L8h)

L8a1 Ordinary least squares

FNLSQ. Computes a least-squares approximation with user-supplied basis

functions.

L8a1a ... Parameter estimation

L8a1a1. Unweighted data

RLINE. Fits a line to a set of data points using least squares.

L8b. Polynomial (e.g., y = 0 + 1x + 2x2 +) (search also class L8c)

L8b1 Ordinary least squares

L8b1b ... Parameter estimation

L8b1b2. Using orthogonal polynomials

RCURV Fits a polynomial curve using least squares.

L8c Multiple linear (e.g., y = 0 + 1x1 + + kxk +)

L8c1 Ordinary least squares

L8c1b Parameter estimation (search also class L8c1a)

L8c1b1 Using raw data

A-xlii ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

LSBRR Solves a linear least-squares problem with iterative refinement.

LSQRR Solves a linear least-squares problem without iterative refinement.

N DATA HANDLING

N1 Input, output

PGOPT Sets or retrieves page width and length for printing.

WRCRL Prints a complex rectangular matrix with a given format and labels.

WRCRN ... Prints a complex rectangular matrix with integer row and column labels.

WRIRL ... Prints an integer rectangular matrix with a given format and labels.

WRIRN ... Prints an integer rectangular matrix with integer row and column labels.

WROPT ... Sets or retrieves an option for printing a matrix.

WRRRL ... Prints a real rectangular matrix with a given format and labels.

WRRRN ... Prints a real rectangular matrix with integer row and column labels.

SCALAPACK_READ Reads matrix data from a file and place in a two-dimensional

block-cyclic form on a process grid.

SCALAPACK_WRITE Writes matrix data to a file, starting with a two-dimensional

block-cyclic form on a process grid.

SHOW .. Prints rank-1 and rank-2 arrays with indexing and text.

N3 Character manipulation

ACHAR ... Returns a character given its ASCII value.

CVTSI ... Converts a character string containing an integer number into the

corresponding integer form.

IACHAR . Returns the integer ASCII value of a character argument.

ICASE . Returns the ASCII value of a character converted to uppercase.

IICSR ... Compares two character strings using the ASCII collating sequence but

without regard to case.

IIDEX ... Determines the position in a string at which a given character sequence

begins without regard to case.

N4 Storage management (e.g., stacks, heaps, trees)

IWKCIN . Initializes bookkeeping locations describing the character workspace

stack.

IWKIN ... Initializes bookkeeping locations describing the workspace stack.

ScaLAPACK_READ Moves data from a file to Block-Cyclic form, for use in

ScaLAPACK.

ScaLAPACK_WRITE Move data from Block-Cyclic form, following use in

ScaLAPACK, to a file.

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xliii

N5 Searching

N5b Insertion position

ISRCH. Searches a sorted integer vector for a given integer and return its index.

SRCH Searches a sorted vector for a given scalar and return its index.

SSRCH ... Searches a character vector, sorted in ascending ASCII order, for a

given string and return its index.

N5c On a key

IIDEX ... Determines the position in a string at which a given character sequence

begins without regard to case.

ISRCH ... Searches a sorted integer vector for a given integer and return its index.

SRCH Searches a sorted vector for a given scalar and return its index.

SSRCH ... Searches a character vector, sorted in ascending ASCII order, for a

given string and return its index.

N6 Sorting

N6a Internal

N6a1 Passive (i.e., construct pointer array, rank)

N6a1a Integer

SVIBP ... Sorts an integer array by nondecreasing absolute value and return the

permutation that rearranges the array.

SVIGP ... Sorts an integer array by algebraically increasing value and return the

permutation that rearranges the array.

N6a1b Real

SVRBP. Sorts a real array by nondecreasing absolute value and return the

permutation that rearranges the array.

SVRGP. Sorts a real array by algebraically increasing value and return the

permutation that rearranges the array.

LIN_SOL_TRI Sorts a rank-1 array of real numbers x so the y results are

algebraically nondecreasing,
1 2 ny y y .

N6a2 Active

N6a2a Integer

SVIBN ... Sorts an integer array by nondecreasing absolute value.

SVIBP ... Sorts an integer array by nondecreasing absolute value and return the

permutation that rearranges the array.

SVIGN. Sorts an integer array by algebraically increasing value.

A-xliv ∙ Appendix A: GAMS Index IMSL MATH LIBRARY

SVIGP . Sorts an integer array by algebraically increasing value and return the

permutation that rearranges the array.

N6a2b Real

SVRBN ... Sorts a real array by nondecreasing absolute value.

SVRBP ... Sorts a real array by nondecreasing absolute value and return the

permutation that rearranges the array.

SVRGN ... Sorts a real array by algebraically increasing value.

SVRGP ... Sorts a real array by algebraically increasing value and return the

permutation that rearranges the array.

N8 Permuting

PERMA ... Permutes the rows or columns of a matrix.

PERMU ... Rearranges the elements of an array as specified by a permutation.

Q GRAPHICS (search also classes L3)

PLOTP ... Prints a plot of up to 10 sets of points.

R SERVICE ROUTINES

IDYWK ... Computes the day of the week for a given date.

IUMAG ... Sets or retrieves MATH/LIBRARY integer options.

NDAYS ... Computes the number of days from January 1, 1900, to the given date.

NDYIN ... Gives the date corresponding to the number of days since January 1,

1900.

SUMAG ... Sets or retrieves MATH/LIBRARY single-precision options.

TDATE. Get stoday‘s date.

TIMDY. Gets time of day.

VERML ... Obtains IMSL MATH/LIBRARY-related version, system and license

numbers.

R1 Machine-dependent constants

AMACH ... Retrieves single-precision machine constants.

IFNAN ... Checks if a value is NaN (not a number).

IMACH Retrieves integer machine constants.

ISNAN . Detects an IEEE NaN (not-a-number).

NAN ... Returns, as a scalar function, a value corresponding to the IEEE 754

Standard format of floating point (ANSI/IEEE 1985) for NaN.

UMACH . Sets or retrieves input or output device unit numbers.

R3 Error handling

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xlv

BUILD_ERROR_STRUCTUREFills in flags, values and update the data structure for

error conditions that occur in Library routines. Prepares the structure so

that calls to routine error_post will display the reason for the error.

R3b Set unit number for error messages

UMACH ... Sets or retrieves input or output device unit numbers.

R3c Other utilities

ERROR_POST Prints error messages that are generated by IMSL Library routines.

ERSET Sets error handler default print and stop actions.

IERCD Retrieves the code for an informational error.

N1RTY Retrieves an error type for the most recently called IMSL routine.

S SOFTWARE DEVELOPMENT TOOLS

S3 Dynamic program analysis tools

CPSEC . Returns CPU time used in seconds.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-i

Appendix B: Alphabetical Summary
of Routines

Routines

Function/Page Purpose Statement

A

ACBCB see page 1667 Adds two complex band matrices, both in band storage

mode.

ACHAR see page 1867 Returns a character given its ASCII value.

AMACH see page 1939 Retrieves single-precision machine constants.

ARBRB see page 1665 Adds two band matrices, both in band storage mode.

ARPACK_COMPLEX see page

685

Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

ARPACK_NONSYMMETRIC

see page 676

Compute some eigenvalues and eigenvectors of the

generalized eigenvalue problem Ax = Bx.

ARPACK_SYMMETRIC see

page 654

Computes some eigenvalues and eigenvectors of the

generalized real symmetric eigenvalue problem Ax = Bx.

ARPACK_SVD see page 451 Computes some singular values and left and right singular

vectors of a real rectangular
T

M NA USV .

B

BCLSF see page 1452 Solves a nonlinear least squares problem subject to bounds

on the variables using a modified Levenberg-Marquardt
algorithm and a finite-difference Jacobian.

BCLSJ see page 1459 Solves a nonlinear least squares problem subject to bounds

on the variables using a modified Levenberg-Marquardt
algorithm and a user-supplied Jacobian.

BCNLS see page 1466 Solves a nonlinear least-squares problem subject to bounds

on the variables and general linear constraints.

BCOAH see page 1441 Minimizes a function of N variables subject to bounds the

variables using a modified Newton method and a user-

B-ii ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

supplied Hessian.

BCODH see page 1434 Minimizes a function of N variables subject to bounds the

variables using a modified Newton method and a finite-
difference Hessian.

BCONF see page 1420 Minimizes a function of N variables subject to bounds the

variables using a quasi-Newton method and a finite-
difference gradient.

BCONG see page 1427 Minimizes a function of N variables subject to bounds the

variables using a quasi-Newton method and a user-supplied
gradient.

BCPOL see page 1448 Minimizes a function of N variables subject to bounds the

variables using a direct search complex algorithm.

BLINF see page 1653 Computes the bilinear form x
T
Ay.

BS1GD see page 786 Evaluates the derivative of a spline on a grid, given its B-

spline representation.

BS2DR see page 794 Evaluates the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline
representation.

BS2GD see page 797 Evaluates the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline
representation on a grid.

BS2IG see page 801 Evaluates the integral of a tensor-product spline on a

rectangular domain, given its tensor-product B-spline
representation.

BS2IN see page 771 Computes a two-dimensional tensor-product spline

interpolant, returning the tensor-product B-spline
coefficients.

BS2VL see page 792 Evaluates a two-dimensional tensor-product spline, given its

tensor-product B-spline representation.

BS3DR see page 807 Evaluates the derivative of a three-dimensional tensor-

product spline, given its tensor-product B-spline
representation.

BS3GD see page 811 Evaluates the derivative of a three-dimensional tensor-

product spline, given its tensor-product B-spline
representation on a grid.

BS3IG see page 817 Evaluates the integral of a tensor-product spline in three

dimensions over a three-dimensional rectangle, given its
tensorproduct B-spline representation.

BS3IN see page 776 Computes a three-dimensional tensor-product spline

interpolant, returning the tensor-product B-spline
coefficients.

BS3VL see page 805 Evaluates a three-dimensional tensor-product spline, given

its tensor-product B-spline representation

BSCPP see page 821 Converts a spline in B-spline representation to piecewise

polynomial representation.

BSDER see page 783 Evaluates the derivative of a spline, given its B-spline

representation.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-iii

BSINT see page 761 Computes the spline interpolant, returning the B-spline

coefficients.

BSITG see page 789 Evaluates the integral of a spline, given its B-spline

representation.

BSLS2 see page 889 Computes a two-dimensional tensor-product spline

approximant using least squares, returning the tensor-
product B-spline coefficients.

BSLS3 see page 894 Computes a three-dimensional tensor-product spline

approximant using least squares, returning the tensor-
product B-spline coefficients.

BSLSQ see page 870 Computes the least-squares spline approximation, and

return the B-spline coefficients.

BSNAK see page 765 Computes the ‗not-a-knot‘ spline knot sequence.

BSOPK see page 768 Computes the ‗optimal‘ spline knot sequence.

BSVAL see page 782 Evaluates a spline, given its B-spline representation.

BSVLS see page 874 Computes the variable knot B-spline least squares

approximation to given data.

BVPFD see page 1037 Solves a (parameterized) system of differential equations

with boundary conditions at two points, using a variable

order, variable step size finite-difference method with
deferred corrections.

BVPMS see page 1050 Solves a (parameterized) system of differential equations

with boundary conditions at two points, using a multiple-
shooting method.

C

CADD Adds a scalar to each component of a vector, x x + a, all complex.

CAXPY Computes the scalar times a vector plus a vector, y ax + y, all

complex.

CCBCB see page 1619 Copies a complex band matrix stored in complex band storage mode.

CCBCG see page 1626 Converts a complex matrix in band storage mode to a complex matrix

in full storage mode.

CCGCB see page 1624 Converts a complex general matrix to a matrix in complex band

storage mode.

CCGCG see page 1616 Copies a complex general matrix.

CCONV see page 1294 Computes the convolution of two complex vectors.

CCOPY Copies a vector x to a vector y, both complex.

CCORL see page 1304 Computes the correlation of two complex vectors.

CDGRD see page 1536 Approximates the gradient using central differences.

CDOTC
Computes the complex conjugate dot product,

Tx y .

CDOTU Computes the complex dot product x
T
y.

CGBMV Computes one of the matrix-vector operations:

, , or T Ty Ax y y A x y y A y ,

B-iv ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

where A is a matrix stored in band storage mode.

CGEMM Computes one of the matrix-matrix operations:

, ,

, , ,

 or , ,

, or

T T

T T T

T T T

T T T T

C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

CGEMV Computes one of the matrix-vector operations:

, , or T Ty Ax y y A x y y A y

CGERC Computes the rank-one update of a complex general matrix:
TA A xy .

CGERU Computes the rank-one update of a complex general matrix:
TA A xy .

CHBCB see page 1637 Copies a complex Hermitian band matrix stored in band Hermitian

storage mode to a complex band matrix stored in band storage mode.

CHBMV Computes the matrix-vector operation

y Ax y ,where A is an Hermitian band matrix in band

Hermitian storage.

CHECK_BUFFER_ALLOCATION

see page 1611

Maintains buffer sizes on the NVIDIA device and performs one-

time initialization.

CHEMM Computes one of the matrix-matrix operations:

 or +C AB C C BA C ,

where A is an Hermitian matrix and B and C are m by n matrices.

CHEMV Computes the matrix-vector operation

y Ax y , where A is an Hermitian matrix.

CHER Computes the rank-one update of an Hermitian matrix:
TA A xx with x complex and real.

CHER2 Computes a rank-two update of an Hermitian matrix:
T TA A xy yx .

CHER2K Computes one of the Hermitian rank 2k operations:

 or T T T TC AB BA C C A B B A C
, where C is an n by n Hermitian matrix and A and B are n by k
matrices in the first case and k by n matrices in the second case.

CHERK Computes one of the Hermitian rank k operations:

 or T TC AA C C A A C ,

where C is an n by n Hermitian matrix and A is an n by k matrix in

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-v

the first case and a k by n matrix in the second case.

CHFCG see page 1634 Extends a complex Hermitian matrix defined in its upper triangle to

its lower triangle.

CHGRD see page 1558 Checks a user-supplied gradient of a function.

CHHES see page 1561 Checks a user-supplied Hessian of an analytic function.

CHJAC see page 1565 Checks a user-supplied Hessian of an analytic function.

CHOL see page 1743 Checks a user-supplied Jacobian of a system of equations with M

functions in N unknowns.

COND see page 1746 Computes the condition number of a matrix.

CONFT see page 879 Computes the condition number of a rectangular

matrix, A.

CONST see page 1919 Computes the least-squares constrained spline approximation,

returning the B-spline coefficients.

CPSEC see page 1874 Returns the value of various mathematical and physical constants.

CRBCB see page 1631 Returns CPU time used in seconds.

CRBRB see page 1617 Converts a real matrix in band storage mode to a complex matrix in

band storage mode.

CRBRG see page 1622 Copies a real band matrix stored in band storage mode.

CRGCG see page 1627 Converts a real matrix in band storage mode to a real general

matrix.

CRGRB see page 1621 Copies a real general matrix to a complex general matrix.

CRGRG see page 1615 Converts a real general matrix to a matrix in band storage mode.

CRRCR see page 1629 Copies a real general matrix.

CS1GD see page 753 Copies a real rectangular matrix to a complex rectangular matrix.

CSAKM see page 740 Evaluates the derivative of a cubic spline on a grid.

CSBRB see page 1635 Computes the Akima cubic spline interpolant.

CSCAL Copies a real symmetric band matrix stored in band symmetric

storage mode to a real band matrix stored in band storage mode.

CSCON see page 742 Multiplies a vector by a scalar, y ay, both complex.

CSDEC see page 732 Computes a cubic spline interpolant that is consistent with the

concavity of the data.

CSDER see page 750 Computes the cubic spline interpolant with specified derivative

endpoint conditions.

CSET Evaluates the derivative of a cubic spline.

CSFRG see page 1632 Sets the components of a vector to a scalar, all complex.

CSHER see page 737 Extends a real symmetric matrix defined in its upper triangle to its

lower triangle.

CSIEZ see page 727 Computes the cubic spline interpolant with the ‗not-a-knot‘

condition and return values of the interpolant at specified points.

CSINT see page 729 Computes the cubic spline interpolant with the ‗not-a-knot‘

condition.

CSITG see page 756 Evaluates the integral of a cubic spline.

CSPER see page 746 Computes the cubic spline interpolant with periodic boundary

B-vi ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

conditions.

CSROT Applies a complex Givens plane rotation.

CSROTM Applies a complex modified Givens plane rotation.

CSSCAL Multiplies a complex vector by a single-precision scalar, y ay.

CSSCV see page 907 Computes a smooth cubic spline approximation to noisy data using

cross-validation to estimate the smoothing parameter.

CSSED see page 900 Smooths one-dimensional data by error detection.

CSSMH see page 904 Computes a smooth cubic spline approximation to noisy data.

CSUB Subtracts each component of a vector from a scalar,

x a x, all complex.

CSVAL see page 749 Evaluates a cubic spline.

CSVCAL Multiplies a complex vector by a single-precision scalar and store

the result in another complex vector, y ax.

CSWAP Interchanges vectors x and y, both complex.

CSYMM Computes one of the matrix-matrix operations:

 or +C AB C C BA C ,

where A is a symmetric matrix and B and C are m by n matrices.

CSYR2K Computes one of the symmetric rank 2k operations:

 or T T T TC AB BA C C A B B A C
,

where C is an n by n symmetric matrix and A and B are n by k
matrices in the first case and k by n matrices in the second case.

CSYRK Computes one of the symmetric rank k operations:

 or T TC AA C C A A C ,

where C is an n by n symmetric matrix and A is an n by k matrix in
the first case and a k by n matrix in the second case.

CTBMV Computes one of the matrix-vector operations:

, , or T Tx Ax x A x x A x ,

where A is a triangular matrix in band storage mode.

CTBSV Solves one of the complex triangular systems:

1

1 1, ,
T

Tx A x x A x or x A x

 ,

where A is a triangular matrix in band storage mode.

CTRMM Computes one of the matrix-matrix operations:

, , , ,

,or

T T

T T

B AB B A B B BA B BA

B A B B BA

where B is an m by n matrix and A is a triangular matrix.

CTRMV Computes one of the matrix-vector operations:

, , or T Tx Ax x A x x A x ,

where A is a triangular matrix.

CTRSM Solves one of the complex matrix equations:

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-vii

1 1 1 1

1 1

, , , ,

, or

T T

T T

B A B B BA B A B B B A

B A B B B A

where A is a traiangular matrix

CTRSV Solves one of the complex triangular systems:

1

1 1, , or
T

Tx A x x A x x A x

 ,

where A is a triangular matrix.

CUBLAS_GET see page 1607 Returns the switchover value for a positional array argument for a

specified BLAS routine.

CUBLAS_SET see page 1609 Sets the switchover value for an array used by a specified BLAS

routine.

CUDA_ERROR_PRINT see page

1612

Prints error messages generated through the use of the CUDABLAS

Library using the IMSL error handler.

CUNIT see page 1921 Converts X in units XUNITS to Y in units YUNITS.

CVCAL Multiplies a vector by a scalar and store the result in another vector,

y ax, all complex.

CVTSI see page 1873 Converts a character string containing an integer number into the

corresponding integer form.

CZCDOT Computes the sum of a complex scalar plus a complex conjugate

dot product,
Ta x y , using a double-precision accumulator.

CZDOTA Computes the sum of a complex scalar, a complex dot product and

the double-complex accumulator, which is set to the result ACC

ACC + a + x
T
y.

CZDOTC
Computes the complex conjugate dot product,

Tx y , using a

double-precision accumulator.

CZDOTI Computes the sum of a complex scalar plus a complex dot product

using a double-complex accumulator, which is set to the result ACC

 a + x
T
y.

CZDOTU Computes the complex dot product x
T
y using a double-precision

accumulator.

CZUDOT Computes the sum of a complex scalar plus a complex dot product,

a + x
T
y, using a double-precision accumulator.

D

DAESL see page 1057 Solves a first order differential-algebraic system of

equations, g(t, y, yʹ) = 0, possibly with additional
constraints.

DDJAC see page 1546 Approximates the Jacobian of m functions in n unknowns

using divided differences

DENSE_LP see page 1488 Solves a linear programming problem.

B-viii ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

DERIV see page 995 Computes the first, second or third derivative of a user-

supplied function.

DET see page 1750 Computes the determinant of a rectangular matrix, A.

DIAG see page 1753 Constructs a square diagonal matrix from a rank-1 array or

several diagonal matrices from a rank-2 array.

DIAGONALS see page 1754 Extracts a rank-1 array whose values are the diagonal terms

of a rank-2 array argument.

DISL1 see page 1679 Computes the 1-norm distance between two points.

DISL2 see page 1677 Computes the Euclidean (2-norm) distance between two

points.

DISLI see page 1681 Computes the infinity norm distance between two points.

DLPRS see page 1494 Solves a linear programming problem via the revised

simplex algorithm.

DMACH see page 1940 See AMACH.

DQADD (See Extended

Precision Arithmetic Chapter 9)

Adds a double-precision scalar to the accumulator in

extended precision.

DQINI (See Extended

Precision Arithmetic Chapter 9)

Initializes an extended-precision accumulator with a double-

precision scalar.

DQMUL (See Extended

Precision Arithmetic Chapter 9)

Multiplies double-precision scalars in extended precision.

DQSTO (See Extended

Precision Arithmetic Chapter 9)

Stores a double-precision approximation to an extended-

precision scalar.

DSDOT (See Chapter 9) Computes the single-precision dot product x
T
y using a

double precision accumulator. This routine handles

MATH/LIBRARY and STAT/LIBRARY type DOUBLE

PRECISION options.

DUMAG see page 1914 This routine handles MATH/LIBRARY and

STAT/LIBRARY type DOUBLE PRECISION options.

E

EIG see page 1755 Computes the eigenvalue-eigenvector decomposition of an

ordinary or generalized eigenvalue problem.

EPICG see page 562 Computes the performance index for a complex

eigensystem.

EPIHF see page 615 Computes the performance index for a complex Hermitian

eigensystem.

EPIRG see page 555 Computes the performance index for a real eigensystem.

EPISB see page 596 Computes the performance index for a real symmetric

eigensystem in band symmetric storage mode.

EPISF see page 578 Computes the performance index for a real symmetric

eigensystem.

ERROR_POST see page 1810 Prints error messages that are generated by IMSL routines

using EPACK.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-ix

ERSET see page 1933 Sets error handler default print and stop actions.

EVAHF see page 604 Computes the largest or smallest eigenvalues of a complex

Hermitian matrix.

EVASB see page 585 Computes the largest or smallest eigenvalues of a real

symmetric matrix in band symmetric storage mode.

EVASF see page 568 Computes the largest or smallest eigenvalues of a real

symmetric matrix.

EVBHF see page 609 Computes the eigenvalues in a given range of a complex

Hermitian matrix.

EVBSB see page 591 Computes the eigenvalues in a given interval of a real

symmetric matrix stored in band symmetric storage mode.

EVBSF see page 573 Computes selected eigenvalues of a real symmetric matrix.

EVCCG see page 559 Computes all of the eigenvalues and eigenvectors of a

complex matrix.

EVCCH see page 623 Computes all of the eigenvalues and eigenvectors of a

complex upper Hessenberg matrix.

EVCHF see page 601 Computes all of the eigenvalues and eigenvectors of a

complex Hermitian matrix.

EVCRG see page 552 Computes all of the eigenvalues and eigenvectors of a real

matrix.

EVCRH see page 619 Computes all of the eigenvalues and eigenvectors of a real

upper Hessenberg matrix.

EVCSB see page 582 Computes all of the eigenvalues and eigenvectors of a real

symmetric matrix in band symmetric storage mode.

EVCSF see page 566 Computes all of the eigenvalues and eigenvectors of a real
symmetric matrix.

EVEHF see page 606 Computes the largest or smallest eigenvalues and the

corresponding eigenvectors of a complex Hermitian matrix.

EVESB see page 588 Computes the largest or smallest eigenvalues and the

corresponding eigenvectors of a real symmetric matrix in
band symmetric storage mode.

EVESF see page 570 Computes the largest or smallest eigenvalues and the

corresponding eigenvectors of a real symmetric matrix.

EVFHF see page 612 Computes the eigenvalues in a given range and the

corresponding eigenvectors of a complex Hermitian matrix.

EVFSB see page 593 Computes the eigenvalues in a given interval and the

corresponding eigenvectors of a real symmetric matrix
stored in band symmetric storage mode.

EVFSF see page 575 Computes selected eigenvalues and eigenvectors of a real

symmetric matrix.

EVLCG see page 557 Computes all of the eigenvalues of a complex matrix.

EVLCH see page 621 Computes all of the eigenvalues of a complex upper

Hessenberg matrix.

EVLHF see page 598 Computes all of the eigenvalues of a complex Hermitian

matrix.

EVLRG see page 549 Computes all of the eigenvalues of a real matrix.

B-x ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

EVLRH see page 617 Computes all of the eigenvalues of a real upper Hessenberg

matrix.

EVLSB see page 580 Computes all of the eigenvalues of a real symmetric matrix

in band symmetric storage mode.

EVLSF see page 564 Computes all of the eigenvalues of a real symmetric matrix.

EYE see page 1759 Creates a rank-2 square array whose diagonals are all the

value one.

F

FAURE_FREE see page 1905 Frees the structure containing information about the Faure

sequence.

FAURE_INIT see page 1904 Shuffled Faure sequence initialization.

FAURE_NEXT see page 1905 Computes a shuffled Faure sequence.

FAST_DFT see page 1220 Computes the Discrete Fourier Transform

of a rank-1 complex array, x.

FAST_2DFT see page 1227 Computes the Discrete Fourier Transform (2DFT)

of a rank-2 complex array, x.

FAST_3DFT see page 1233 Computes the Discrete Fourier Transform (2DFT)

of a rank-3 complex array, x.

FCOSI see page 1259 Computes parameters needed by FCOST.

FCOST see page 1257 Computes the discrete Fourier cosine transformation of an

even sequence.

FDGRD see page 1538 Approximates the gradient using forward differences.

FDHES see page 1541 Approximates the Hessian using forward differences and

function values.

FDJAC see page 1555 Approximates the Jacobian of M functions in N unknowns

using forward differences.

FEYNMAN_KAC see page

1128

Solves the generalized Feynman-Kac PDE on a rectangular

grid using a finite element Galerkin method. Initial and
boundary conditions are provided.

FFT see page 1761 The Discrete Fourier Transform of a complex sequence and

its inverse transform.

FFT_BOX see page 1763 The Discrete Fourier Transform of several complex or real

sequences.

FFT2B see page 1277 Computes the inverse Fourier transform of a complex

periodic two-dimensional array.

FFT2D see page 1274 Computes Fourier coefficients of a complex periodic two-
dimensional array.

FFT3B see page 1285 Computes the inverse Fourier transform of a complex

periodic three-dimensional array.

FFT3F see page 1281 Computes Fourier coefficients of a complex periodic

threedimensional array.

FFTCB see page 1248 Computes the complex periodic sequence from its Fourier

coefficients.

FFTCF see page 1245 Computes the Fourier coefficients of a complex periodic

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-xi

sequence.

FFTCI see page 1251 Computes parameters needed by FFTCF and FFTCB.

FFTRB see page 1240 Computes the real periodic sequence from its Fourier

coefficients.

FFTRF see page 1236 Computes the Fourier coefficients of a real periodic

sequence.

FFTRI see page 1243 Computes parameters needed by FFTRF and FFTRB.

FNLSQ see page 865 Computes a least-squares approximation with user-supplied

basis functions.

FPS2H see page 1188 Solves Poisson‘s or Helmholtz‘s equation on a two-

dimensional rectangle using a fast Poisson solver based on

the HODIE finite-difference scheme on a uni mesh.

FPS3H see page 1194 Solves Poisson‘s or Helmholtz‘s equation on a three-

dimensional box using a fast Poisson solver based on the

HODIE finite-difference scheme on a uniform mesh.

FQRUL see page 991 Computes a Fejér quadrature rule with various classical

weight functions.

FSINI see page 1255 Computes parameters needed by FSINT.

FSINT see page 1253 Computes the discrete Fourier sine transformation of an odd

sequence.

G

GDHES see page 1543 Approximates the Hessian using forward differences and a

user-supplied gradient.

GGUES see page 1569 Generates points in an N-dimensional space.

GMRES see page 440 Uses restarted GMRES with reverse communication to

generate an approximate solution of Ax = b.

GPICG see page 640 Computes the performance index for a generalized complex

eigensystem Az = Bz.

GPIRG see page 632 Computes the performance index for a generalized real

eigensystem Az = Bz.

GPISP see page 648 Computes the performance index for a generalized real

symmetric eigensystem problem.

GQRCF see page 983 Computes a Gauss, Gauss-Radau or Gauss-Lobatto

quadrature rule given the recurrence coefficients for the

monic polynomials orthogonal with respect to the weight

function.

GQRUL see page 979 Computes a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight functions.

GVCCG see page 637 Computes all of the eigenvalues and eigenvectors of a

generalized complex eigensystem Az = Bz.

GVCRG see page 629 Computes all of the eigenvalues and eigenvectors of a

generalized real eigensystem Az = Bz.

GVCSP see page 645 Computes all of the eigenvalues and eigenvectors of the

generalized real symmetric eigenvalue problem Az = Bz,

B-xii ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

with B symmetric positive definite.

GVLCG see page 634 Computes all of the eigenvalues of a generalized complex

eigensystem Az = Bz.

GVLRG see page 626 Computes all of the eigenvalues of a generalized real

eigensystem Az = Bz.

GVLSP see page 642 Computes all of the eigenvalues of the generalized real

symmetric eigenvalue problem Az = Bz, with B symmetric

positive definite.

H

HRRRR see page 1651 Computes the Hadamard product of two real rectangular

matrices.

HYPOT see page 1925
Computes

2 2a b without underflow or overflow.

I

IACHAR see page 1868 Returns the integer ASCII value of a character argument.

IADD Adds a scalar to each component of a vector, x x + a, all

integer. Finds the smallest index of the component of a
complex vector having maximum magnitude.

ICAMAX Finds the smallest index of the component of a complex

vector having minimum magnitude.

ICAMIN Returns the ASCII value of a character converted to

uppercase.

ICASE see page 1869 Copies a vector x to a vector y, both integer.

ICOPY Computes the day of the week for a given date.

IDYWK see page 1880 Retrieves the code for an informational error.

IERCD and N1RTY see page

1934

The inverse of the Discrete Fourier Transform of a complex

sequence.

IFFT see page 1765 The inverse of the Discrete Fourier Transform of a complex

sequence.

IFFT_BOX see page 1767 The inverse Discrete Fourier Transform of several complex
or real sequences.

IFNAN(X) see page 1940 Checks if a value is NaN (not a number).

IICSR see page 1870 Compares two character strings using the ASCII collating

sequence but without regard to case.

IIDEX see page 1872 Determines the position in a string at which a given

character sequence begins without regard to case.

IIMAX Finds the smallest index of the maximum component of a

integer vector.

IIMIN Finds the smallest index of the minimum of an integer

vector.

IMACH see page 1937 Retrieves integer machine constants.

INLAP see page 1309 Computes the inverse Laplace transform of a complex

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-xiii

function.

ISAMAX Finds the smallest index of the component of a single-

precision vector having maximum absolute value.

ISAMIN Finds the smallest index of the component of a single-

precision vector having minimum absolute value.

ISET Sets the components of a vector to a scalar, all integer.

ISMAX Finds the smallest index of the component of a single-
precision vector having maximum value.

ISMIN Finds the smallest index of the component of a single-

precision vector having minimum value.

ISNAN see page 1769 This is a generic logical function used to test scalars or

arrays for occurrence of an IEEE 754 Standard format of

floating point (ANSI/IEEE 1985) NaN, or not-a-number.

ISRCH see page 1862 Searches a sorted integer vector for a given integer and

return its index.

ISUB Subtracts each component of a vector from a scalar,

x a x, all integer.

ISUM Sums the values of an integer vector.

ISWAP Interchanges vectors x and y, both integer.

IUMAG see page 1908 Sets or retrieves MATH/LIBRARY integer options.

IVMRK see page 1011 Solves an initial-value problem y = f(t, y) for ordinary

differential equations using Runge-Kutta pairs of various
orders.

IVOAM see page 1072 Solves an initial-value problem for a system of ordinary

differential equations of order one or two using a variable
order Adams method.

IVPAG see page 1021 Solves an initial-value problem for ordinary differential

equations using either Adams-Moulton‘s or Gear‘s BDF
method.

IVPRK see page 1003 Solves an initial-value problem for ordinary differential

equations using the Runge-Kutta-Verner fifth-order and
sixth-order method.

J

JCGRC see page 437 Solves a real symmetric definite linear system using the

Jacobi preconditioned conjugate gradient method with
reverse communication.

L

LCHRG see page 494 Computes the Cholesky decomposition of a symmetric

positive semidefinite matrix with optional column pivoting.

LCLSQ see page 467 Solves a linear least-squares problem with linear

constraints.

LCONF see page 1510 Minimizes a general objective function subject to linear

equality/inequality constraints.

B-xiv ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LCONG see page 1516 Minimizes a general objective function subject to linear

equality/inequality constraints.

LDNCH see page 499 Downdates the R
T
R Cholesky factorization of a real

symmetric positive definite matrix after a rank-one matrix is

removed

LFCCB see page 333 Computes the LU factorization of a complex matrix in band

storage mode and estimate its L1condition number.

LFCCG see page 128 Computes the LU factorization of a complex general matrix

and estimate its L1 condition number.

LFCCT see page 169 Estimates the condition number of a complex triangular

matrix.

LFCDH see page 237 Computes the R
H

 R factorization of a complex Hermitian

positive definite matrix and estimate its L1 condition

number.

LFCDS see page 186 Computes the R
T
 R Cholesky factorization of a real

symmetric positive definite matrix and estimate its

L1condition number.

LFCHF see page 265 Computes the U DU
H

 factorization of a complex Hermitian

matrix and estimate its L1 condition number.

LFCQH see page 355 Computes the R
H

 R factorization of a complex Hermitian

positive definite matrix in band Hermitian storage mode and

estimate its L1 condition number.

LFCQS see page 311 Computes the R
T
 R Cholesky factorization of a real

symmetric positive definite matrix in band symmetric

storage mode and estimate its L1 condition number.

LFCRB see page 290 Computes the LU factorization of a real matrix in band

storage mode and estimate its L1 condition number.

LFCRG see page 93 Computes the LU factorization of a real general matrix and

estimate its L1 condition number.

LFCRT see page 158 Estimates the condition number of a real triangular matrix.

LFCSF see page 215 Computes the U DU
T
 factorization of a real symmetric

matrix and estimate its L1condition number.

LFDCB see page 344 Computes the determinant of a complex matrix given the

LU factorization of the matrix in band storage mode.

LFDCG see page 148 Computes the determinant of a complex general matrix

given the LU factorization of the matrix.

LFDCT see page 173 Computes the determinant of a complex triangular matrix.

LFDDH see page 258 Computes the determinant of a complex Hermitian positive

definite matrix given the R
H

 R Cholesky factorization of the

matrix.

LFDDS see page 204 Computes the determinant of a real symmetric positive

definite matrix given the R
H

 R Cholesky factorization of the

matrix.

LFDHF see page 276 Computes the determinant of a complex Hermitian matrix

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-xv

given the U DU
H

 factorization of the matrix.

LFDQH see page 365 Computes the determinant of a complex Hermitian positive

definite matrix given the R
H

 R Cholesky factorization in

band Hermitian storage mode.

LFDQS see page 320 Computes the determinant of a real symmetric positive

definite matrix given the R
T
 R Cholesky factorization of the

band symmetric storage mode.

LFDRB see page 301 Computes the determinant of a real matrix in band storage

mode given the LU factorization of the matrix.

LFDRG see page 113 Computes the determinant of a real general matrix given the

LU factorization of the matrix.

LFDRT see page 162 Computes the determinant of a real triangular matrix.

LFDSF see page 226 Computes the determinant of a real symmetric matrix given

the U DU
T
 factorization of the matrix.

LFICB see page 341 Uses iterative refinement to improve the solution of a

complex system of linear equations in band storage mode.

LFICG see page 143 Uses iterative refinement to improve the solution of a

complex general system of linear equations.

LFIDH see page 252 Uses iterative refinement to improve the solution of a

complex Hermitian positive definite system of linear
equations.

LFIDS see page 199 Uses iterative refinement to improve the solution of a real

symmetric positive definite system of linear equations.

LFIHF see page 273 Uses iterative refinement to improve the solution of a

complex Hermitian system of linear equations.

LFIQH see page 362 Uses iterative refinement to improve the solution of a

complex Hermitian positive definite system of linear

equations in band Hermitian storage mode.

LFIQS see page 318 Uses iterative refinement to improve the solution of a real

symmetric positive definite system of linear equations in

band symmetric storage mode.

LFIRB see page 298 Uses iterative refinement to improve the solution of a real
system of linear equations in band storage mode.

LFIRG see page 108 Uses iterative refinement to improve the solution of a real

general system of linear equations.

LFISF see page 223 Uses iterative refinement to improve the solution of a real

symmetric system of linear equations.

LFSCB see page 339 Solves a complex system of linear equations given the LU

factorization of the coefficient matrix in band storage mode.

LFSCG see page 138 Solves a complex general system of linear equations given

the LU factorization of the coefficient matrix.

LFSDH see page 248 Solves a complex Hermitian positive definite system of

linear equations given the R
H

 R factorization of the

coefficient matrix.

LFSDS see page 195 Solves a real symmetric positive definite system of linear

equations given the R
T
 R Choleksy factorization of the

B-xvi ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

coefficient matrix.

LFSHF see page 271 Solves a complex Hermitian system of linear equations

given the U DU
H

 factorization of the coefficient matrix.

LFSQH see page 360 Solves a complex Hermitian positive definite system of

linear equations given the factorization of the coefficient
matrix in band Hermitian storage mode.

LFSQS see page 316 Solves a real symmetric positive definite system of linear

equations given the factorization of the coefficient matrix in

band symmetric storage mode.

LFSRB see page 296 Solves a real system of linear equations given the LU

factorization of the coefficient matrix in band storage mode.

LFSRG see page 103 Solves a real general system of linear equations given the

LU factorization of the coefficient matrix.

LFSSF see page 221 Solves a real symmetric system of linear equations given

the U DU
T
 factorization of the coefficient matrix.

LFSXD see page 408 Solves a real sparse symmetric positive definite system of

linear equations, given the Cholesky factorization of the
coefficient matrix.

LFSXG see page 377 Solves a sparse system of linear equations given the LU

factorization of the coefficient matrix.

LFSZD see page 421 Solves a complex sparse Hermitian positive definite system

of linear equations, given the Cholesky factorization of the
coefficient matrix.

LFSZG see page 391 Solves a complex sparse system of linear equations given

the LU factorization of the coefficient matrix.

LFTCB see page 336 Computes the LU factorization of a complex matrix in band

storage mode.

LFTCG see page 134 Computes the LU factorization of a complex general matrix.

LFTDH see page 243 Computes the R
H

 R factorization of a complex Hermitian

positive definite matrix.

LFTDS see page 191 Computes the R
T
 R Cholesky factorization of a real

symmetric positive definite matrix.

LFTHF see page 268 Computes the U DU
H

 factorization of a complex Hermitian

matrix.

LFTQH see page 358 Computes the R
H

 R factorization of a complex Hermitian

positive definite matrix in band Hermitian storage mode.

LFTQS see page 314 Computes the R
T
 R Cholesky factorization of a real

symmetric positive definite matrix in band symmetric
storage mode.

LFTRB see page 293 Computes the LU factorization of a real matrix in band

storage mode.

LFTRG see page 99 Computes the LU factorization of a real general matrix.

LFTSF see page 218 Computes the U DU
T
 factorization of a real symmetric

matrix.

LFTXG see page 372 Computes the LU factorization of a real general sparse

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-xvii

matrix.

LFTZG see page 385 Computes the LU factorization of a complex general sparse

matrix.

LINCG see page 150 Computes the inverse of a complex general matrix.

LINCT see page 175 Computes the inverse of a complex triangular matrix.

LINDS see page 206 Computes the inverse of a real symmetric positive definite

matrix.

LINRG see page 115 Computes the inverse of a real general matrix.

LINRT see page 163 Computes the inverse of a real triangular matrix.

LIN_EIG_GEN see page 533 Computes the eigenvalues of a self-adjoint

matrix, A.

LIN_EIG_SELF see page 526 Computes the eigenvalues of a self-adjoint

matrix, A.

LIN_GEIG_GEN see page 542 Computes the generalized eigenvalues of an n n

matrix pencil, Av = Bv.

LIN_SOL_GEN see page 10 Solves a general system of linear equations Ax = b.

LIN_SOL_LSQ see page 27 Solves a rectangular system of linear equations Ax b,
in a least-squares sense.

LIN_SOL_SELF see page 18 Solves a system of linear equations Ax = b, where A is a

self-adjoint matrix.

LIN_SOL_SVD see page 36 Solves a rectangular least-squares system of linear

equations Ax b using singular value decomposition.

LIN_SOL_TRI see page 45 Solves multiple systems of linear equations.

LIN_SVD see page 57 Computes the singular value decomposition (SVD) of a

rectangular matrix, A.

LNFXD see page 403 Computes the numerical Cholesky factorization of a sparse

symmetrical matrix A.

LNFZD see page 416 Computes the numerical Cholesky factorization of a sparse

Hermitian matrix A.

LQERR see page 478 Accumulates the orthogonal matrix Q from its factored form

given the QR factorization of a rectangular matrix A.

LQRRR see page 471 Computes the QR decomposition, AP = QR, using

Householder transformations.

LQRRV see page 457 Computes the least-squares solution using Householder

transformations applied in blocked form.

LQRSL see page 483 Computes the coordinate transformation, projection, and

complete the solution of the least-squares problem Ax = b.

LSACB see page 327 Solves a complex system of linear equations in band storage
mode with iterative refinement.

LSACG see page 119 Solves a complex general system of linear equations with

iterative refinement.

LSADH see page 227 Solves a Hermitian positive definite system of linear

equations with iterative refinement.

LSADS see page 177 Solves a real symmetric positive definite system of linear

equations with iterative refinement.

B-xviii ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LSAHF see page 259 Solves a complex Hermitian system of linear equations with

iterative refinement.

LSAQH see page 346 Solves a complex Hermitian positive definite system of

linear equations in band Hermitian storage mode with
iterative refinement.

LSAQS see page 303 Solves a real symmetric positive definite system of linear

equations in band symmetric storage mode with iterative
refinement.

LSARB see page 282 Solves a real system of linear equations in band storage

mode with iterative refinement.

LSARG see page 83 Solves a real general system of linear equations with

iterative refinement.

LSASF see page 210 Solves a real symmetric system of linear equations with

iterative refinement.

LSBRR see page 463 Solves a linear least-squares problem with iterative

refinement.

LSCXD see page 399 Performs the symbolic Cholesky factorization for a sparse

symmetric matrix using a minimum degree ordering or a

userspecified ordering, and set up the data structure for the
numerical Cholesky factorization.

LSGRR see page 514 Computes the generalized inverse of a real matrix.

LSLCB see page 330 Solves a complex system of linear equations in band storage
mode without iterative refinement.

LSLCC see page 428 Solves a complex circulant linear system.

LSLCG see page 123 Solves a complex general system of linear equations

without iterative refinement.

LSLCQ see page 324 Computes the LDU factorization of a complex tridiagonal

matrix A using a cyclic reduction algorithm.

LSLCR see page 279 Computes the LDU factorization of a real tridiagonal matrix
A using a cyclic reduction algorithm.

LSLCT see page 165 Solves a complex triangular system of linear equations.

LSLDH see page 232 Solves a complex Hermitian positive definite system of

linear equations without iterative refinement.

LSLDS see page 181 Solves a real symmetric positive definite system of linear

equations without iterative refinement.

LSLHF see page 262 Solves a complex Hermitian system of linear equations
without iterative refinement.

LSLPB see page 308 Computes the R
T
 DR Cholesky factorization of a real

symmetric positive definite matrix A in codiagonal band

symmetric storage mode. Solve a system Ax = b.

LSLQB see page 352 Computes the R
H

 DR Cholesky factorization of a complex

hermitian positive-definite matrix A in codiagonal band
hermitian storage mode. Solve a system Ax = b.

LSLQH see page 349 Solves a complex Hermitian positive definite system of

linearequations in band Hermitian storage mode without
iterative refinement.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-xix

LSLQS see page 305 Solves a real symmetric positive definite system of linear

equations in band symmetric storage mode without iterative

refinement.

LSLRB see page 285 Solves a real system of linear equations in band storage

mode without iterative refinement.

LSLRG see page 87 Solves a real general system of linear equations without

iterative refinement.

LSLRT see page 154 Solves a real triangular system of linear equations.

LSLSF see page 213 Solves a real symmetric system of linear equations without

iterative refinement.

LSLTC see page 426 Solves a complex Toeplitz linear system.

LSLTO see page 424 Solves a real Toeplitz linear system.

LSLTQ see page 322 Solves a complex tridiagonal system of linear equations.

LSLTR see page 278 Solves a real tridiagonal system of linear equations.

LSLXD see page 394 Solves a sparse system of symmetric positive definite linear

algebraic equations by Gaussian elimination.

LSLXG see page 366 Solves a sparse system of linear algebraic equations by

Gaussian elimination.

LSLZD see page 412 Solves a complex sparse Hermitian positive definite system

of linear equations by Gaussian elimination.

LSLZG see page 380 Solves a complex sparse system of linear equations by

Gaussian elimination.

LSQRR see page 451 Solves a linear least-squares problem without iterative

refinement.

LSVCR see page 510 Computes the singular value decomposition of a complex

matrix.

LSVRR see page 503 Computes the singular value decomposition of a real matrix.

LUPCH see page 496 Updates the R
T
R Cholesky factorization of a real symmetric

positive definite matrix after a rank-one matrix is added.

LUPQR see page 489 Computes an updated QR factorization after the rank-one

matrix xy
T
 is added.

M

MCRCR see page 1649 Multiplies two complex rectangular matrices, AB.

MMOLCH see page 1115 Solves a system of partial differential equations of the form

ut = f(x, t, u, ux, uxx) using the method of lines. The solution

is represented with cubic Hermite polynomials.

MP_SETUP see page 1926 Initializes or finalizes MPI.

MPS_FREE see page 1485 Deallocates the space allocated for the IMSL derived type

s_MPS. This routine is usually used in conjunction with

READ_MPS.

MRRRR see page 1647 Multiplies two real rectangular matrices, AB.

MUCBV see page 1663 Multiplies a complex band matrix in band storage mode by

a complex vector.

B-xx ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

MUCRV see page 1661 Multiplies a complex rectangular matrix by a complex

vector.

MURBV see page 1659 Multiplies a real band matrix in band storage mode by a real

vector.

MURRV see page 1657 Multiplies a real rectangular matrix by a vector.

MXTXF see page 1641 Computes the transpose product of a matrix, A
T
A.

MXTYF see page 1643 Multiplies the transpose of matrix A by matrix B, A
T
B.

MXYTF see page 1645 Multiplies a matrx A by the transpose of a matrix B, AB
T
.

N

NAN see page 1770 Returns, as a scalar function, a value corresponding to the

IEEE 754 Standard format of floating point (ANSI/IEEE

1985) for NaN.

IERCD and N1RTY see page

1934

Retrieves an error type for the most recently called IMSL

routine.

NDAYS see page 1877 Computes the number of days from January 1, 1900, to the

given date.

NDYIN see page 1878 Gives the date corresponding to the number of days since

January 1, 1900.

NEQBF see page 1344 Solves a system of nonlinear equations using factored

secant update with a finite-difference approximation to the

Jacobian.

NEQBJ see page 1350 Solves a system of nonlinear equations using factored
secant update with a user-supplied Jacobian.

NEQNF see page 1337 Solves a system of nonlinear equations using a modified

Powell hybrid algorithm and a finite-difference

approximation to the Jacobian.

NEQNJ see page 1340 Solves a system of nonlinear equations using a modified

Powell hybrid algorithm with a user-supplied Jacobian.

NNLPF see page 1522 Uses a sequential equality constrained QP method.

NNLPG see page 1528 Uses a sequential equality constrained QP method.

NORM see page 1771 Computes the norm of a rank-1 or rank-2 array. For rank-3

arrays, the norms of each rank-2 array, in dimension 3, are

computed.

NR1CB see page 1676 Computes the 1-norm of a complex band matrix in band
storage mode.

NR1RB see page 1674 Computes the 1-norm of a real band matrix in band storage

mode.

NR1RR see page 1671 Computes the 1-norm of a real matrix.

NR2RR see page 1673 Computes the Frobenius norm of a real rectangular matrix.

NRIRR see page 1670 Computes the infinity norm of a real matrix.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-xxi

O

OPERATORS:

.h. see page 1726 Computes transpose and conjugate transpose of a matrix.

.hx. see page 1717 Computes matrix-vector and matrix-matrix products.

.i. see page 1728 Computes the inverse matrix, for square non-singular

matrices.

.ix. see page 1730 Computes the inverse matrix times a vector or matrix for

square non-singular matrices.

.t. see page 1723 Computes transpose and conjugate transpose of a matrix.

.tx. see page 1711 Computes matrix-vector and matrix-matrix products.

.x. see page 1707 Computes matrix-vector and matrix-matrix products.

.xh. see page 1720 Computes matrix-vector and matrix-matrix products.

.xi. see page 1740 Computes the inverse matrix times a vector or matrix for

square non-singular matrices.

.xt. see page 1714 Computes matrix-vector and matrix-matrix products.

ORTH see page 1774 Orthogonalizes the columns of a rank-2 or rank-3 array.

P

PCGRC see page 431 Solves a real symmetric definite linear system using a

preconditioned conjugate gradient method with reverse
communication.

PARALLEL_NONNEGATIVE_LS

Q see page 67

Solves a linear, non-negative constrained least-squares

system.

PARALLEL_BOUNDED_LSQ see

page 75

Solves a linear least-squares system with bounds on

the unknowns.

PDE_1D_MG see page 1081 Method of lines with Variable Griddings.

PERMA see page 1844 Permutes the rows or columns of a matrix.

PERMU see page 1842 Rearranges the elements of an array as specified by a

permutation.

PGOPT see page 1840 Prints a plot of up to 10 sets of points.

PLOTP see page 1914 Prints a plot of up to 10 sets of points.

POLRG see page 1655 Evaluates a real general matrix polynomial.

PP1GD see page 828 Evaluates the derivative of a piecewise polynomial on a

grid.

PPDER see page 825 Evaluates the derivative of a piecewise polynomial.

PPITG see page 831 Evaluates the integral of a piecewise polynomial.

PPVAL see page 823 Evaluates a piecewise polynomial.

PRIME see page 1917 Decomposes an integer into its prime factors.

Q

QAND see page 973 Integrates a function on a hyper-rectangle.

QCOSB see page 1270 Computes a sequence from its cosine Fourier coefficients

B-xxii ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

with only odd wave numbers.

QCOSF see page 1268 Computes the coefficients of the cosine Fourier transform

with only odd wave numbers.

QCOSI see page 1272 Computes parameters needed by QCOSF and QCOSB.

QD2DR see page 840 Evaluates the derivative of a function defined on a

rectangular grid using quadratic interpolation.

QD2VL see page 838 Evaluates a function defined on a rectangular grid using

quadratic interpolation.

QD3DR see page 847 Evaluates the derivative of a function defined on a

rectangular three-dimensional grid using quadratic
interpolation.

QD3VL see page 843 Evaluates a function defined on a rectangular three-

dimensional grid using quadratic interpolation.

QDAG see page 922 Integrates a function using a globally adaptive scheme
based on Gauss-Kronrod rules.

QDAGI see page 935 Integrates a function over an infinite or semi-infinite

interval.

QDAGP see page 925 Integrates a function with singularity points given.

QDAG1D see page 929 Integrates a function with a possible internal or endpoint

singularity.

QDAG2D see page 960 Integrates a function of two variables with a possible
internal or end point singularity.

QDAG3D see page 966 Integrates a function of three variables with a possible

internal or endpoint singularity.

QDAGS see page 918 Integrates a function (which may have endpoint

singularities).

QDAWC see page 949 Integrates a function F(X)/(X C) in the Cauchy principal

value sense.

QDAWF see page 942 Computes a Fourier integral.

QDAWO see page 938 Integrates a function containing a sine or a cosine.

QDAWS see page 946 Integrates a function with algebraic-logarithmic

singularities.

QDDER see page 835 Evaluates the derivative of a function defined on a set of

points using quadratic interpolation.

QDNG see page 953 Integrates a smooth function using a nonadaptive rule.

QDVAL see page 833 Evaluates a function defined on a set of points using

quadratic interpolation.

QMC see page 976 Integrates a function over a hyperrectangle using a

quasi-Monte Carlo method.

QPROG see page 1506 Solves a quadratic programming problem subject to linear

equality/inequality constraints.

QSINB see page 1263 Computes a sequence from its sine Fourier coefficients with

only odd wave numbers.

QSINF see page 1261 Computes the coefficients of the sine Fourier transform with

only odd wave numbers.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-xxiii

QSINI see page 1266 Computes parameters needed by QSINF and QSINB.

R

RAND see page 1777 Computes a scalar, rank-1, rank-2 or rank-3 array of random

numbers.

RAND_GEN see page 1882 Generates a rank-1 array of random numbers.

RANK see page 1779 Computes the mathematical rank of a rank-2 or rank-3

array.

RATCH see page 910 Computes a rational weighted Chebyshev approximation to

a continuous function on an interval.

RCONV see page 1289 Computes the convolution of two real vectors.

RCORL see page 1299 Computes the correlation of two real vectors.

RCURV see page 861 Fits a polynomial curve using least squares.

READ_MPS see page 1475 Reads an MPS file containing a linear program problem or a

quadratic programming problem.

RECCF see page 986 Computes recurrence coefficients for various monic

polynomials.

RECQR see page 988 Computes recurrence coefficients for monic polynomials

given a quadrature rule.

RLINE see page 858 Fits a line to a set of data points using least squares.

RNGET see page 1891 Retrieves the current value of the seed used in the IMSL

random number generators.

RNIN32 see page 1894 Initializes the 32-bit Merseene Twister generator using an

array.

RNGE32 see page 1895 Retrieves the current table used in the 32-bit

Mersenne Twister generator.

RNSE32 see page 1897 Sets the current table used in the 32-bit
Mersenne Twister generator.

RNIN64 see page 1897 Initializes the 32-bit Merseene Twister generator

using an array.

RNGE64 see page 1898 Retrieves the current table used in the 64-bit

Mersenne Twister generator

RNSE64 see page 1900 Sets the current table used in the 64-bit

Mersenne Twister generator.

RNOPT see page 1893 Selects the uniform (0, 1) multiplicative congruential

pseudorandom number generator.

RNSET see page 1892 Initializes a random seed for use in the IMSL random

number generators.

RNUN see page 1902 Generates pseudorandom numbers from a uniform (0, 1)

distribution.

RNUNF see page 1900 Generates a pseudorandom number from a uniform (0, 1)

distribution.

B-xxiv ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

S

SADD Adds a scalar to each component of a vector, x x + a, all

single precision.

SASUM Sums the absolute values of the components of a single-

precision vector.

SAXPY Computes the scalar times a vector plus a vector,

y ax + y, all single precision.

ScaLAPACK_EXIT see page

1809

Exits ScaLAPACK mode for the IMSL Library routines.

ScaLAPACK_GETDIM see

page 1794

Calculates the row and column dimensions of a local

distributed array based on the size of the array to be distributed

and the row and column blocking factors to be used.

ScaLAPACK_MAP see page

1805

Maps array data from a global array to local arrays in the two-

dimensional block-cyclic form required by ScaLAPACK
routines.

ScaLAPACK_READ see page

1795

Reads matrix data from a file and transmits it into the two-

dimensional block-cyclic form required by ScaLAPACK
routines.

ScaLAPACK_SETUP see page

1792

Sets up a processor grid and calculates default values for use in

mapping arrays to the processor grid

ScaLAPACK_UNMAP see page

1807

Unmaps array data from local distributed arrays to a global

array.

ScaLAPACK_WRITE see page

1797

Writes the matrix data to a file.

SCASUM Sums the absolute values of the real part together with the

absolute values of the imaginary part of the components of a

complex vector.

SCNRM2 Computes the Euclidean norm of a complex vector.

SCOPY Copies a vector x to a vector y, both single precision.

SDDOTA Computes the sum of a single-precision scalar, a single-

precision dot product and the double-precision accumulator,

which is set to the result ACC ACC + a + x
T
y.

SDDOTI Computes the sum of a single-precision scalar plus a

singleprecision dot product using a double-precision

accumulator, which is set to the result ACC a + x
T
y.

SDOT Computes the single-precision dot product x
T
y.

SDSDOT Computes the sum of a single-precision scalar and a single

precision dot product, a + x
T
y, using a double-precision

accumulator.

SGBMV Computes one of the matrix-vector operations:

, or Ty Ax y y A x y ,

where A is a matrix stored in band storage mode.

SGEMM Computes one of the matrix-matrix operations:

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-xxv

, ,

, or

T T

T T

C AB C C A B C C AB

C C A B C

.

SGEMV Computes one of the matrix-vector operations:

, or Ty Ax y y A x y ,

SGER Computes the rank-one update of a real general matrix:
TA A xy .

SHOW see page 1813 Prints rank-1 or rank-2 arrays of numbers in a readable format.

SHPROD Computes the Hadamard product of two single-precision

vectors.

SINLP see page 1311 Computes the inverse Laplace transform of a complex

function.

SLCNT see page 1213 Calculates the indices of eigenvalues of a Sturm-Liouville

problem with boundary conditions (at regular points) in a

specified subinterval of the real line, [,].

SLEIG see page 1201 Determines eigenvalues, eigenfunctions and/or spectral density

functions for Sturm-Liouville problems in the form with
boundary conditions (at regular points).

SLPRS see page 1497 Solves a sparse linear programming problem via the revised

simplex algorithm.

SNRM2 Computes the Euclidean length or L2 norm of a single-

precision vector.

SORT_REAL see page 1846 Sorts a rank-1 array of real numbers x so the y results are

algebraically nondecreasing, y1 y2 yn.

SPLEZ see page 758 Computes the values of a spline that either interpolates or fits

user-supplied data.

SPLINE_CONSTRAINTS see

page 702

Returns the derived type array result.

SPLINE_FITTING see page 704 Weighted least-squares fitting by B-splines to discrete One-

Dimensional data is performed.

SPLINE_VALUES see page 703 Returns an array result, given an array

of input

SPRDCT Multiplies the components of a single-precision vector.

SRCH see page 1860 Searches a sorted vector for a given scalar and return its index.

SROT Applies a Givens plane rotation in single precision.

SROTG Constructs a Givens plane rotation in single precision.

SROTM Applies a modified Givens plane rotation in single precision.

SROTMG Constructs a modified Givens plane rotation in single

precision.

SSBMV Computes the matrix-vector operation

y Ax y ,

where A is a symmetric matrix in band symmetric storage

B-xxvi ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

mode.

SSCAL Multiplies a vector by a scalar, y ay, both single precision.

SSET Sets the components of a vector to a scalar, all single precision.

SSPMV Performs the matrix-vector operation y := *A*x + *y.

SSPR Performs the matrix-vector operation.

SSPR2 Performs the symmetric rank 2 operation.

SSRCH see page 1864 Searches a character vector, sorted in ascending ASCII order,

for a given string and return its index.

SSUB Subtracts each component of a vector from a scalar,

x a x, all single precision.

SSUM Sums the values of a single-precision vector.

SSWAP Interchanges vectors x and y, both single precision.

SSYMM Computes one of the matrix-matrix operations:

 or +C AB C C BA C ,

where A is a symmetric matrix and B and C are m by n
matrices.

SSYMV Computes the matrix-vector operation

y Ax y ,

where A is a symmetric matrix.

SSYR Computes the rank-one update of a real symmetric matrix:
TA A xx .

SSYR2 Computes the rank-two update of a real symmetric matrix:
T TA A xy yx .

SSYR2K Computes one of the symmetric rank 2k operations:

 or T T T TC AB BA C C A B B A C
where C is an n by n symmetric matrix and A and B are n by k

matrices in the first case and k by n matrices in the second
case.

SSYRK Computes one of the symmetric rank k operations:

 or T TC AA C C A A C ,

where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second case.

STBMV Computes one of the matrix-vector operations:
Tx Ax or x A x ,

where A is a triangular matrix in band storage mode.

STBSV Solves one of the triangular systems:

 1 1
T

x A x or x A x ,

where A is a triangular matrix in band storage mode.

STPMV Performs one of the matrix-vector operations.

STPSV Solves one of the systems of equations.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-xxvii

STRMM Computes one of the matrix-matrix operations:

, , , ,T TB AB B A B or B BA B BA

where B is an m by n matrix and A is a triangular matrix.

STRMV Computes one of the matrix-vector operations:
Tx Ax or x A x ,

where A is a triangular matrix.

STRSM Solves one of the matrix equations:

T

1 1 1, ,B A B B BA B A B

 1 ,
T

or B B A

where B is an m by n matrix and A is a triangular matrix.

STRSV Solves one of the triangular linear systems:

 1 1
T

x A x or x A x

where A is a triangular matrix.

SURF see page 851 Computes a smooth bivariate interpolant to scattered data that

is locally a quintic polynomial in two variables.

SURFND see page 855 Multidimensional interpolation and differentiation.

SURFACE_CONSTRAINTS

see page 714

Returns the derived type array result given

optional input.

SURFACE_FITTING see page

716

Weighted least-squares fitting by tensor product

B-splines to discrete two-dimensional data
is performed.

SURFACE_VALUES see page

715

Returns a tensor product array result, given two arrays of

independent variable values.

SVCAL Multiplies a vector by a scalar and store the result in another

vector, y ax, all single precision.

SVD see page 1780 Computes the singular value decomposition of a rank-2 or

rank-3 array,
TA USV .

SVIBN see page 1857 Sorts an integer array by nondecreasing absolute value.

SVIGN see page 1852 Sorts an integer array by algebraically increasing value.

SVIGP see page 1853 Sorts an integer array by algebraically increasing value and
returns the permutation that rearranges the array.

SVRBN see page 1855 Sorts a real array by nondecreasing absolute value.

SVRBP see page 1856 Sorts a real array by nondecreasing absolute value and returns

the permutation that rearranges the array.

SVRGN see page 1849 Sorts a real array by algebraically increasing value.

SVRGP see page 1850 Sorts a real array by algebraically increasing value and returns

the permutation that rearranges the array.

SXYZ Computes a single-precision xyz product.

B-xxviii ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

T

TDATE see page 1876 Gets today‘s date.

TIMDY see page 1875 Gets time of day.

TRAN see page 1504 Solves a transportation problem.

TRNRR see page 1639 Transposes a rectangular matrix.

TWODQ see page 955 Computes a two-dimensional iterated integral.

U

UMACH see page 1942 Sets or retrieves input or output device unit numbers.

UMAG see page 1911 Handles MATH/LIBRARY and STAT/LIBRARY type

REAL and double precision options.

UMCGF see page 1395 Minimizes a function of N variables using a conjugate

gradient algorithm and a finite-difference gradient.

UMCGG see page 1399 Minimizes a function of N variables using a conjugate

gradient algorithm and a user-supplied gradient.

UMIAH see page 1389 Minimizes a function of N variables using a modified

Newton method and a user-supplied Hessian.

UMIDH see page 1384 Minimizes a function of N variables using a modified

Newton method and a finite-difference Hessian.

UMINF see page 1372 Minimizes a function of N variables using a modified

Newton method and a finite-difference Hessian.

UMING see page 1377 Minimizes a function of N variables using a quasi-New

method and a finite-difference gradient.

UMPOL see page 1403 Minimizes a function of N variables using a direct search

polytope algorithm.

UNIT see page 1783 Normalizes the columns of a rank-2 or rank-3 array so each

has Euclidean length of value one.

UNLSF see page 1407 Solves a nonlinear least squares problem using a modified

Levenberg-Marquardt algorithm and a finite-difference
Jacobian.

UNLSJ see page 1413 Solves a nonlinear least squares problem using a modified

Levenberg-Marquardt algorithm and a user-supplied
Jacobian.

UVMGS see page 1369 Finds the minimum point of a nonsmooth function of a

single variable.

UVMID see page 1365 Finds the minimum point of a smooth function of a single

variable using both function evaluations and first derivative

evaluations.

UVMIF see page 1362 Finds the minimum point of a smooth function of a single

variable using only function evaluations.

V

VCONC see page 1685 Computes the convolution of two complex vectors.

VCONR see page 1683 Computes the convolution of two real vectors.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines ∙ B-xxix

VERML see page 1881 Obtains IMSL MATH/LIBRARY-related version, system

and license numbers.

W

WRCRL see page 1830 Prints a complex rectangular matrix with a given format and

labels.

WRCRN see page 1827 Prints a complex rectangular matrix with integer row and

column labels.

WRIRL see page 1825 Prints an integer rectangular matrix with a given format and

labels.

WRIRN see page 1822 Prints an integer rectangular matrix with integer row and

column labels.

WROPT see page 1833 Sets or retrieves an option for printing a matrix.

WRRRL see page 1819 Prints a real rectangular matrix with a given format and

labels.

WRRRN see page 1817 Prints a real rectangular matrix with integer row and column

labels.

Z

ZANLY see page 1325 Finds the zeros of a univariate complex function using

Müller‘s method.

ZBREN see page 1331 Finds a zero of a real function that changes sign in a given
interval.

ZPLRC see page 1320 Finds the zeros of a polynomial with real coefficients using

Laguerre‘s method.

ZPOCC see page 1324 Finds the zeros of a polynomial with complex coefficients

using the Jenkins-Traub three-stage algorithm.

ZPORC see page 1322 Finds the zeros of a polynomial with real coefficients using

the Jenkins-Traub three-stage algorithm.

ZQADD Adds a double complex scalar to the accumulator in

extended precision.

ZQINI Initializes an extended-precision complex accumulator to a

double complex scalar.

ZQMUL Multiplies double complex scalars using extended precision.

ZQSTO Stores a double complex approximation to an extended-

precision complex scalar.

ZREAL see page 1334 Finds the real zeros of a real function using Müller‘s

method.

ZUNI see page 1328 Finds a zero of a real univariate function.

B-xxx ∙ Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

IMSL MATH/LIBRARY Appendix C: References ∙ C-i

Appendix C: References

Adams et al.

Adams et al. (2008), The Fortran 2003 Handbook: The Complete Syntax, Features and

Procedures, 561.

Aird and Howell

Aird, Thomas J., and Byron W. Howell (1991), IMSL Technical Report 9103, IMSL, Houston.

Aird and Rice

Aird, T.J., and J.R. Rice (1977), Systematic search in high dimensional sets, SIAM Journal on

Numerical Analysis, 14, 296−312.

Akima

Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local

procedures, Journal of the ACM, 17, 589−602.

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting for irregularly

distributed data points, ACM Transactions on Mathematical Software, 4, 148159.

Anderson et al.

Anderson, E., Bai, Z., Bishop, C., Blackford, S., Demmel, J., Dongarra, J., DuCroz, J.,

Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. (1999), LAPACK Users’

Guide, SIAM, 3
rd

 ed., Philadelphia.

Arushanian et al.

Arushanian, O.B., M.K. Samarin, V.V. Voevodin, E.E. Tyrtyshikov, B.S. Garbow, J.M. Boyle,

W.R. Cowell, and K.W. Dritz (1983), The TOEPLITZ Package Users’ Guide, Argonne National

Laboratory, Argonne, Illinois.

Ashcraft

Ashcraft, C. (1987), A vector implementation of the multifrontal method for large sparse,

symmetric positive definite linear systems, Technical Report ETA-TR-51, Engineering

Technology Applications Division, Boeing Computer Services, Seattle, Washington.

C-ii ∙ Appendix C: References IMSL MATH/LIBRARY

Ashcraft et al.

Ashcraft, C., R.Grimes, J. Lewis, B. Peyton, and H. Simon (1987), Progress in sparse matrix

methods for large linear systems on vector supercomputers. Intern. J. Supercomputer Applic.,

1(4), 10−29.

Atkinson

Atkinson, Ken (1978), An Introduction to Numerical Analysis, John Wiley & Sons, New York.

Atchison and Hanson

Atchison, M.A., and R.J. Hanson (1991), An Options Manager for the IMSL Fortran 77 Libraries,

Technical Report 9101, IMSL, Houston.

Bischof et al.

Bischof, C., J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, D. Sorensen

(1988), LAPACK Working Note #5: Provisional Contents, Argonne National Laboratory Report

ANL-88-38, Mathematics and Computer Science.

Bjorck

Bjorck, Ake (1967), Iterative refinement of linear least squares solutions I, BIT, 7, 322−337.

Bjorck, Ake (1968), Iterative refinement of linear least squares solutions II, BIT, 8, 8−30.

Boisvert (1984)

Boisvert, Ronald (1984), A fourth order accurate fast direct method for the Helmholtz equation,

Elliptic Problem Solvers II, (edited by G. Birkhoff and A. Schoenstadt), Academic Press, Orlando,

Florida, 35−44.

Boisvert, Howe, and Kahaner

Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1985), GAMS: A framework for the

management of scientific software, ACM Transactions on Mathematical Software, 11, 313−355.

Boisvert, Howe, Kahaner, and Springmann

Boisvert, Ronald F., Sally E. Howe, David K. Kahaner, and Jeanne L. Springmann (1990), Guide

to Available Mathematical Software, NISTIR 90-4237, National Institute of Standards and Tech-

nology, Gaithersburg, Maryland.

Blackford et al.

Blackford, L. S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,

Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R. C., (1997),

ScaLAPACK User’s Guide, Society for Industrial and Applied Mathematics, Philadephia, PA.

IMSL MATH/LIBRARY Appendix C: References ∙ C-iii

Brankin et al.

Brankin, R.W., I. Gladwell, and L.F. Shampine, RKSUITE: a Suite of Runge-Kutta Codes for the

Initial Value Problem for ODEs, Softreport 91-1, Mathematics Department, Southern Methodist

University, Dallas, Texas, 1991.

Brenan, Campbell, and Petzold

Brenan, K.E., S.L. Campbell, L.R. Petzold (1989), Numerical Solution of Initial-Value Problems

in Differential-Algebraic Equations, Elseview Science Publ. Co.

Brenner

Brenner, N. (1973), Algorithm 467: Matrix transposition in place [F1], Communication of ACM,

16, 692−694.

Brent

Brent, R.P. (1971), An algorithm with guaranteed convergence for finding a zero of a function,

The Computer Journal, 14, 422−425.

Brent, Richard P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey.

Brigham

Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, New

Jersey.

Cheney

Cheney, E.W. (1966), Introduction to Approximation Theory, McGraw-Hill, New York.

Cline et al.

Cline, A.K., C.B. Moler, G.W. Stewart, and J.H. Wilkinson (1979), An estimate for the condition

number of a matrix, SIAM Journal of Numerical Analysis, 16, 368−375.

Cody, Fraser, and Hart

Cody, W.J., W. Fraser, and J.F. Hart (1968), Rational Chebyshev approximation using linear

equations, Numerische Mathematik, 12, 242−251.

Cohen and Taylor

Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of the Fundamental

Physical Constants, Codata Bulletin, Pergamon Press, New York.

C-iv ∙ Appendix C: References IMSL MATH/LIBRARY

Cooley and Tukey

Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of complex

Fourier series, Mathematics of Computation, 19, 297−301.

Courant and Hilbert

Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics, Volume II, John Wiley &

Sons, New York, NY.

Craven and Wahba

Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline functions, Numerische

Mathematik, 31, 377−403.

Crowe et al.

Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990), A direct sparse

linear equation solver using linked list storage, IMSL Technical Report 9006, IMSL, Houston.

Crump

Crump, Kenny S. (1976), Numerical inversion of Laplace transforms using a Fourier series

approximation, Journal of the Association for Computing Machinery, 23, 89−96.

Davis and Rabinowitz

Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical Integration, Academic

Press, Orlando, Florida.

de Boor

de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.

de Hoog, Knight, and Stokes

de Hoog, F.R., J.H. Knight, and A.N. Stokes (1982), An improved method for numerical inversion

of Laplace transforms. SIAM Journal on Scientific and Statistical Computing, 3, 357−366.

Demmel et al

Demmel, J.W., Gilbert, J.R., and Li, X.S. (2003), SuperLU User's Guide, University of California,

Berkeley, CA, Xerox Corporation.

Dennis and Schnabel

Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for Unconstrained

Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

IMSL MATH/LIBRARY Appendix C: References ∙ C-v

Dongarra et al.

Dongarra, J.J., and C.B. Moler, (1977) EISPACK A package for solving matrix eigenvalue

problems, Argonne National Laboratory, Argonne, Illinois.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK Users’ Guide, SIAM,

Philadelphia.

Dongarra, J.J., J. DuCroz, S. Hammarling, R. J. Hanson (1988), An Extended Set of Fortran basic

linear algebra subprograms, ACM Transactions on Mathematical Software, 14 , 1−17.

Dongarra, J.J., J. DuCroz, S. Hammarling, I. Duff (1990), A set of level 3 basic linear algebra

subprograms, ACM Transactions on Mathematical Software, 16 , 1−17.

Draper and Smith

Draper, N.R., and H. Smith (1981), Applied Regression Analysis, second edition, John Wiley &

Sons, New York.

Du Croz et al.

Du Croz, Jeremy, P. Mayes, G. and Radicati (1990), Factorization of band matrices using Level-3

BLAS, Proceedings of CONPAR 90 VAPP IV, Lecture Notes in Computer Science, Springer,

Berlin, 222.

Duff and Reid

Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite sparse symmetric linear

equations. ACM Transactions on Mathematical Software, 9, 302−325.

Duff, I.S., and J.K. Reid (1984), The multifrontal solution of unsymmetric sets of linear equations.

SIAM Journal on Scientific and Statistical Computing, 5, 633−641.

Duff et al.

Duff, I.S., A.M. Erisman, and J.K. Reid (1986), Direct Methods for Sparse Matrices, Clarendon

Press, Oxford.

Duff et al.

Duff, Ian S., R. G. Grimes, and J. G. Lewis (1992) first ed, Users’ Guide for the Harwell-Boeing

Sparse Matrix Collection, CERFACS, Toulouse Cedex, France.

Enright and Pryce

Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing initial value

methods, ACM Transactions on Mathematical Software, 13, 1−22.

Fabijonas

B. R. Fabijonas,. Algorithm 838: Airy Functions, ACM Transactions on Mathematical Software,

Vol. 30, No. 4, December 2004, Pages 491–501.

C-vi ∙ Appendix C: References IMSL MATH/LIBRARY

Fabijonas et al.

B. R. Fabijonas, D. W. Lozier, and F. W. J. Olver Computation of Complex Airy Functions and

Their Zeros Using Asymptotics and the Differential Equation, ACM Transactions on

Mathematical Software, Vol. 30, No. 4, December 2004, 471–490.

Forsythe

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data with a digital

computer, SIAM Journal on Applied Mathematics, 5, 74−88.

Fox, Hall, and Schryer

Fox, P.A., A.D. Hall, and N.L. Schryer (1978), The PORT mathematical subroutine library, ACM

Transactions on Mathematical Software, 4, 104−126.

Garbow

Garbow, B.S. (1978) CALGO Algorithm 535: The QZ algorithm to solve the generalized eigenvalue

problem for complex matrices, ACM Transactions on Mathematical Software, 4, 404−410.

Garbow et al.

Garbow, B.S., J.M. Boyle, J.J. Dongarra, and C.B. Moler (1972), Matrix eigensystem Routines:

EISPACK Guide Extension, Springer-Verlag, New York.

Garbow, B.S., J.M. Boyle, J.J. Dongarra, and C.B. Moler (1977), Matrix Eigensystem

RoutinesEISPACK Guide Extension, Springer-Verlag, New York.

Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for an implementation of

Weeks‘ method for the inverse Laplace transform problem, ACM Transactions of Mathematical

Software, 14, 163−170.

Gautschi

Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas, Mathematics of

Computation, 22, 251−270.

Gautschi and Milovanofic

Gautschi, Walter, and Gradimir V. Milovanofic (1985), Gaussian quadrature involving Einstein

and Fermi functions with an application to summation of series, Mathematics of Computation, 44,

177−190.

Gay

Gay, David M. (1981), Computing optimal locally constrained steps, SIAM Journal on Scientific

and Statistical Computing, 2, 186−197.

IMSL MATH/LIBRARY Appendix C: References ∙ C-vii

Gay, David M. (1983), Algorithm 611: Subroutine for unconstrained minimization using a

model/trust-region approach, ACM Transactions on Mathematical Software, 9, 503− 524.

Gear

Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equations,

Prentice-Hall, Englewood Cliffs, New Jersey.

Gear and Petzold

Gear, C.W., and Linda R. Petzold (1984), ODE methods for the solutions of differential/algebraic

equations, SIAM Journal Numerical Analysis, 21, #4, 716.

George and Liu

George, A., and J.W.H. Liu (1981), Computer Solution of Large Sparse Positive-definite Systems,

Prentice-Hall, Englewood Cliffs, New Jersey.

Gill et al.

Gill, Philip E., and Walter Murray (1976), Minimization subject to bounds on the variables, NPL

Report NAC 72, National Physical Laboratory, England.

Gill, Philip E., Walter Murray, and Margaret Wright (1981), Practical Optimization, Academic

Press, New York.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building and practical

aspects of nonlinear programming, in Computational Mathematical Programming, (edited by K.

Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

Goldfarb and Idnani

Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving strictly convex

quadratic programs, Mathematical Programming, 27, 1−33.

Golub

Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM Review, 15, 318−334.

Golub and Van Loan

Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations, Johns Hopkins

University Press, Baltimore, Maryland.

Golub, Gene H., and Charles F. Van Loan (1989), Matrix Computations, 2d ed., Johns Hopkins

University Press, Baltimore, Maryland.

Golub, Gene H., and Charles F. Van Loan (1996), Matrix Computations, 3rd ed., Johns Hopkins

University Press, Baltimore, Maryland.

C-viii ∙ Appendix C: References IMSL MATH/LIBRARY

Golub and Welsch

Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules, Mathematics of

Computation, 23, 221−230.

Gregory and Karney

Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing Computational

Algorithms, Wiley-Interscience, John Wiley & Sons, New York.

Griffin and Redish

Griffin, R., and K.A. Redish (1970), Remark on Algorithm 347: An efficient algorithm for sorting

with minimal storage, Communications of the ACM, 13, 54.

Grosse

Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its Applications, 34,

29−41.

Guerra and Tapia

Guerra, V., and R. A. Tapia (1974), A local procedure for error detection and data smoothing,

MRC Technical Summary Report 1452, Mathematics Research Center, University of Wisconsin,

Madison.

Hageman and Young

Hageman, Louis A., and David M.Young (1981), Applied Iterative Methods, Academic Press,

New York.

Hanson

Hanson, Richard J. (1986), Least squares with bounds and linear constraints, SIAM Journal Sci.

Stat. Computing, 7, #3.

Hanson, Richard.J. (1990), A cyclic reduction solver for the IMSL Mathematics Library, IMSL

Technical Report 9002, IMSL, Houston.

Hanson et al.

Hanson, Richard J., R. Lehoucq, J. Stolle, and A. Belmonte (1990), Improved performance of

certain matrix eigenvalue computations for the IMSL/MATH Library, IMSL Technical Report

9007, IMSL, Houston.

Hartman

Hartman, Philip (1964) Ordinary Differential Equations, John Wiley and Sons, New York, NY.

IMSL MATH/LIBRARY Appendix C: References ∙ C-ix

Hausman

Hausman, Jr., R.F. (1971), Function Optimization on a Line Segment by Golden Section,

Lawrence Radiation Laboratory, University of California, Livermore.

Hindmarsh

Hindmarsh, A.C. (1974), GEAR: Ordinary differential equation system solver, Lawrence

Livermore Laboratory Report UCID30001, Revision 3.

Hull et al.

Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s guide for DVERK A subroutine for

solving non-stiff ODEs, Department of Computer Science Technical Report 100, University of

Toronto.

IEEE

ANSI/IEEE Std 754-1985 (1985), IEEE Standard for Binary Floating-Point Arithmetic, The

IEEE, Inc., New York.

IMSL (1991)

IMSL (1991), IMSL STAT/LIBRARY User’s Manual, Version 2.0, IMSL, Houston.

Irvine et al.

Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained interpolation and

smoothing, Constructive Approximation, 2, 129−151.

Jenkins

Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM Transactions on

Mathematical Software, 1, 178−189.

Jenkins and Traub

Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real polynomials using quadratic

iteration, SIAM Journal on Numerical Analysis, 7, 545566.

Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift iteration for polynomial zeros

and its relation to generalized Rayleigh iteration, Numerische Mathematik, 14, 252−263.

Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial, Communications of the

ACM, 15, 97−99.

Kennedy and Gentle

Kennedy, William J., Jr., and James E. Gentle (1980), Statistical Computing, Marcel Dekker, New

York.

C-x ∙ Appendix C: References IMSL MATH/LIBRARY

Kershaw

Kershaw, D. (1982), Solution of tridiagonal linear systems and vectorization of the ICCG

algorithm on the Cray-1, Parallel Computations, Academic Press, Inc., 85-99.

Knuth

Knuth, Donald E. (1973), The Art of Computer Programming, Volume 3: Sorting and Searching,

Addison-Wesley Publishing Company, Reading, Mass.

Krogh

Krogh, Fred T. (1970), Efficient Algorithms for Polynomial Interpolation and Numerical

Differentiation, Math. of Comp. 24, 109, 185-190.

Krogh, Fred T. (2005), An Algorithm for Linear Programming,

http://mathalacarte.com/fkrogh/pub/lp.pdf, Tojunga, CA.

Lawson et al.

Lawson, C.L., R.J. Hanson, D.R. Kincaid, and F.T. Krogh (1979), Basic linear algebra

subprograms for Fortran usage, ACM Transactions on Mathematical Software, 5, 308− 323.

Leavenworth

Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function, Communications of the

ACM, 3, 602.

Lehoucq et al.

Lehoucq, R. B., Danny C. Sorenson, and Chao Yang (1998), ARPACK Users' Guide: Solution of

Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM,

Philadelphia.

Levenberg

Levenberg, K. (1944), A method for the solution of certain problems in least squares, Quarterly of

Applied Mathematics, 2, 164−168.

Lewis et al.

Lewis, P.A. W., A.S. Goodman, and J.M. Miller (1969), A pseudo-random number generator for

the System/360, IBM Systems Journal, 8, 136−146.

Liepman

Liepman, David S. (1964), Mathematical constants, in Handbook of Mathematical Functions,

Dover Publications, New York.

http://mathalacarte.com/fkrogh/pub/lp.pdf

IMSL MATH/LIBRARY Appendix C: References ∙ C-xi

Liu

Liu, J.W.H. (1986), On the storage requirement in the out-of-core multifrontal method for sparse

factorization. ACM Transactions on Mathematical Software, 12, 249−264.

Liu, J.W.H. (1987), A collection of routines for an implementation of the multifrontal method,

Technical Report CS-87-10, Department of Computer Science, York University, North York,

Ontario, Canada.

Liu, J.W.H. (1989), The multifrontal method and paging in sparse Cholesky factorization. ACM

Transactions on Mathematical Software, 15, 310−325.

Liu, J.W.H. (1990), The multifrontal method for sparse matrix solution: theory and practice,

Technical Report CS-90-04, Department of Computer Science, York University, North York,

Ontario, Canada.

Liu and Ashcraft

Liu, J., and C. Ashcraft (1987), A vector implementation of the multifrontal method for large

sparse, symmetric positive definite linear systems, Technical Report ETA-TR-51, Engineering

Technology Applications Division, Boeing Computer Services, Seattle, Washington.

Lyness and Giunta

Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method for numerical inversion

of the Laplace transform, Mathmetics of Computation, 47, 313−322.

Madsen and Sincovec

Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL, General collocation software

for partial differential equations, ACM Transactions on Mathematical Software, 5, #3, 326-351.

Marquardt

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM

Journal on Applied Mathematics, 11, 431−441.

Martin and Wilkinson

Martin, R.S., and J.W. Wilkinson (1968), Reduction of the symmetric eigenproblem Ax = Bx and

related problems to standard form, Numerische Mathematik, 11, 99−119.

Matsumoto and Nishimure

Makoto Matsumoto and Takuji Nishimura, ACM Transactions on Modeling and Computer

Simulation, Vol. 8, No. 1, January 1998, Pages 3–30.

Micchelli et al.

Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of smooth functions,

Numerische Mathematik, 26, 279285

C-xii ∙ Appendix C: References IMSL MATH/LIBRARY

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985), Constrained Lp

approximation, Constructive Approximation, 1, 93−102.

Moler and Stewart

Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix eigenvalue problems,

SIAM Journal on Numerical Analysis, 10, 241−256.

More et al.

More, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User guide for MINPACK-1,

Argonne National Labs Report ANL-80-74, Argonne, Illinois.

Muller

Muller, D.E. (1956), A method for solving algebraic equations using an automatic computer,

Mathematical Tables and Aids to Computation, 10, 208−215.

Murtagh

Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and Practice, McGraw-

Hill, New York.

Murty

Murty, Katta G. (1983), Linear Programming, John Wiley and Sons, New York.

Nelder and Mead

Nelder, J.A., and R. Mead (1965), A simplex method for function minimization, Computer

Journal 7, 308−313.

Neter and Wasserman

Neter, John, and William Wasserman (1974), Applied Linear Statistical Models, Richard D. Irwin,

Homewood, Ill.

NVIDIA

NVIDIA Corporation (©2005-2008), © All rights reserved. Portions of the NVIDIA SGEMM

and DGEMM library routines were written by Vasily Volkov and are subject to the Modified

Berkeley Software Distribution License. (©) 2007-09, Regents of the University of California.

Park and Miller

Park, Stephen K., and Keith W. Miller (1988), Random number generators: good ones are hard to

find, Communications of the ACM, 31, 1192−1201.

IMSL MATH/LIBRARY Appendix C: References ∙ C-xiii

Parlett

Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice−Hall, Inc., Englewood Cliffs,

New Jersey.

Patterson

Patterson, T.N.L, (1968), The Optimum Addition Of Points To Quadrature Formulae.

Mathematics of Comp, 22, 847-856.

Pereyra

Pereyra, Victor (1978), PASVA3: An adaptive finite-difference FORTRAN program for first

order nonlinear boundary value problems, in Lecture Notes in Computer Science, 76, Springer-

Verlag, Berlin, 6788.

Petro

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal

storage, Communications of the ACM, 13, 624.

Petzold

Petzold, L.R. (1982), A description of DASSL: A differential/ algebraic system solver,

Proceedings of the IMACS World Congress, Montreal, Canada.

Piessens et al.

Piessens, R., E. deDoncker-Kapenga, C.W. Uberhuber, and D.K. Kahaner (1983), QUADPACK,

Springer-Verlag, New York.

Powell

Powell, M.J.D. (1977), Restart procedures for the conjugate gradient method, Mathematical

Programming, 12, 241−254.

Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization calculations, in

Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in Mathematics, (edited by G.A.

Watson), 630, Springer-Verlag, Berlin, Germany, 144−157.

Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex quadratic programming,

DAMTP Report NA17, Cambridge, England.

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and Idnani,

Mathematical Programming Study, 25, 46-61.

Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained optimization calculations,

DAMTP Report NA17, University of Cambridge, England.

Powell, M.J.D. (1989), TOLMIN: A fortran package for linearly constrained optimization

calculations, DAMTP Report NA2, University of Cambridge, England.

C-xiv ∙ Appendix C: References IMSL MATH/LIBRARY

Pruess and Fulton

Pruess, S. and C.T. Fulton (1993), Mathematical Software for Sturm-Liouville Problems, ACM

Transactions on Mathematical Software, 17, 3, 360376.

Ralston

Ralston, Anthony (1965), A First Course in Numeriacal Analysis, McGraw-Hill, New York.

Reinsch

Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische Mathematik, 10,

177−183.

Rice

Rice, J.R. (1983), Numerical Methods, Software, and Analysis, McGraw-Hill, New York.

Saad and Schultz

Saad, Y., and M.H. Schultz (1986), GMRES: a generalized minimal residual residual algorithm

for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856869.

Schittkowski

Schittkowski, K. (1987), More test examples for nonlinear programming codes, SpringerVerlag,

Berlin, 74.

Schnabel

Schnabel, Robert B. (1985), Finite Difference Derivatives Theory and Practice, Report, National

Bureau of Standards, Boulder, Colorado.

Schreiber and Van Loan

Schreiber, R., and C. Van Loan (1989), A Storage−Efficient WY Representation for Products of

Householder Transformations, SIAM J. Sci. Stat. Comp., Vol. 10, No. 1, pp. 53-57, January

(1989).

Scott et al.

Scott, M.R., L.F. Shampine, and G.M. Wing (1969), Invariant Embedding and the Calculation of

Eigenvalues for Sturm-Liouville Systems, Computing, 4, 1023.

Sewell

Sewell, Granville (1982), IMSL software for differential equations in one space variable, IMSL

Technical Report 8202, IMSL, Houston.

Sewell, Granville (2005), Computational Methods of Linear Algebra, section 4.6, second edition,

John Wiley & Sons, New York.

IMSL MATH/LIBRARY Appendix C: References ∙ C-xv

Shampine

Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications of the ACM, 18,

179−180.

Shampine and Gear

Shampine, L.F. and C.W. Gear (1979), A user‘s view of solving stiff ordinary differential

equations, SIAM Review, 21, 1−17.

Sorensen

Sorensen, D.C. (1992), Implicit Application of Polynomial Filters in a K-step Arnoldi Method,

SIAM, J. Matrix Analysis and Applications, 13(1): 357-385.

Sincovec and Madsen

Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial differential equations,

ACM Transactions on Mathematical Software, 1, #3, 232-260.

Singleton

Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal storage,

Communications of the ACM, 12, 185−187.

Smith

Smith, B.T. (1967), ZERPOL, A Zero Finding Algorithm for Polynomials Using Laguerre’s

Method, Department of Computer Science, University of Toronto.

Smith et al.

Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler

(1976), Matrix Eigensystem Routines EISPACK Guide, Springer-Verlag, New York.

Spang

Spang, III, H.A. (1962), A review of minimization techniques for non-linear functions, SIAM

Review, 4, 357−359.

Stewart

Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press, New York.

Stewart, G.W. (1976), The economical storage of plane rotations, Numerische Mathematik, 25,

137−139.

C-xvi ∙ Appendix C: References IMSL MATH/LIBRARY

Stoer

Stoer, J. (1985), Principles of sequential quadratic programming methods for solving nonlinear

programs, in Computational Mathematical Programming, (edited by K. Schittkowski), NATO

ASI Series, 15, Springer-Verlag, Berlin, Germany.

Stroud and Secrest

Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae, Prentice-Hall,

Englewood Cliffs, New Jersey.

Titchmarsh

Titchmarsh, E. Eigenfunction Expansions Associated with Second Order Differential Equations,

Part I, 2d Ed., Oxford University Press, London, 1962.

Trench

Trench, W.F. (1964), An algorithm for the inversion of finite Toeplitz matrices, Journal of the

Society for Industrial and Applied Mathematics, 12, 515−522.

Volkov

Volkov, V. (2007-09), Portions of the NVIDIA SGEMM and DGEMM library routines were

written by Vasily Volkov and are subject to the Modified Berkeley Software Distribution License

as follows: Copyright (©) 2007-09, Regents of the University of California.

Walker

Walker, H.F. (1988), Implementation of the GMRES method using Householder transformations,

SIAM J. Sci. Stat. Comput., 9, 152163.

Washizu

Washizu, K. (1968), Variational Methods in Elasticity and Plasticity, Pergamon Press, New York.

Watkins and Elsner

Watkins, D.S., and L. Elsner (1990), Convergence of algorithms of decomposition type for the

eigenvalue problem, Linear Algebra and Applications (to appear).

Weeks

Weeks, W.T. (1966), Numerical inversion of Laplace transforms using Laguerre functions, J.

ACM, 13, 419−429.

Wilkinson

Wilkinson, J.H., and Howinson, S., and Dewynne, J (1965), The Algebraic Eigenvalue Problem,

Oxford University Press, London, 635.

IMSL MATH/LIBRARY Appendix C: References ∙ C-xvii

Wilmot et al.

Wilkinson, J.H. (1965), The Mathematics of Financial Derivatives: A Student Introduction,

Cambridge University Press, NY, 41-57.

IMSL MATH/LIBRARY Appendix D: Benchmarking or Timing Programs D- i

Appendix D: Benchmarking or
Timing Programs

Scalar Program Descriptions

A set of benchmark programs is provided to allow the user to compare performance of certain

routines with similar functionality. For example, the user may wish to compare the performance of

lin_sol_gen with LFTRG and LFSRG. Since performance is dependent on problem size and

platform, the user can run the time_sol_gen benchmark to determine which of these routines is

likely to perform better with the user's specific configuration.

The benchmark programs are supplied with the product in the examples benchmark subdirectory

and are summarized in Table B. These programs call Fortran 90 array functions, in single and

double precision, to compare the routines shown in columns A and B of Table B. The main

program reads single lines of input:

NSIZE NTRIES PREC ―Description‖

NSIZE NTRIES PREC ―Description‖

...

QUIT

The parameters of NSIZE and NTRIES appear in summary tables. The parameter PREC has values

1, 2 or 3. The choice depends on whether the user wants precision of single, double or both

versions timed. The array functions return a summary table with these 6 values:

1. Average time

2. Standard deviation

3. Total time

4. nsize

5. ntries

6. Time Units/Sec.

As an example, the program time_rand_gend is compiled and linked with the single and double

precision timing functions s_rand_gen_bench and d_rand_gen_bench.

The two lines of input are:

100000 5 3 ―Random Number Benchmarks‖

QUIT

D-ii ∙ Appendix D: Benchmarking or Timing Programs IMSL MATH/LIBRARY

This routine evaluates the elapsed time to compute 100,000 random numbers obtained with

rand_gen and rnun(drnun). The ―Average‖ is the mean of the individual elapsed times for 5

calls to the routines, obtaining 100,000 random numbers in each call. The ―St. Dev.‖ is the

standard deviation for that ―Average‖. This value indicates the variability of the ―Average‖. In

order for this value to provide any useful information it is necessary for |NTRIES| > 1. The value

|NTRIES| = 1 is acceptable, but only one time sample and no standard deviation is obtained.

Values of NTRIES > 0 result in the printing of results as shown in Table A. The numbers in the

table will vary depending on the machine and other factors that impact performance of Fortran

codes.

Benchmark of rand_gend and rnun:

Date of benchmark, (Y, Mo, D, H, M, S): 2006 5 11 8 58 58

1 3.6000E+00 3.2000E+00 Average

2 4.8990E-01 4.0000E-01 St. Dev.

3 1.8000E+01 1.6000E+01 Total Ticks

4 1.0000E+04 1.0000E+04 Size

5 5.0000E+00 5.0000E+00 Repeats

6 5.0000E+01 5.0000E+01 Ticks per sec.

Benchmark of rand_gend and rnun:

Date of benchmark, (Y, Mo, D, H, M, S): 2006 5 11 8 58 58

1 2.8000E+00 3.2000E+00 Average

2 4.0000E-01 4.0000E-01 St. Dev.

3 1.4000E+01 1.6000E+01 Total Ticks

4 1.0000E+04 1.0000E+01 Size

5 5.0000E+00 5.0000E+00 Repeats

6 5.0000E+01 5.0000E+01 Ticks per sec.

Table A: Benchmark Summary: rand_gen, rnun, (drnun)

If NTRIES < 0 the 6 2 functions return the tabular values shown, with |NTRIES| samples. No

printing is performed with NTRIES < 0.

To compute a related benchmark such as the rate ―random numbers per second‖ for single

precision rand_gen, separately calculate

rate = size ticks per sec./average

= 104 50/3.6
= 138,889. numbers/sec.

= 0.139 million numbers/sec.

IMSL MATH/LIBRARY Appendix D: Benchmarking or Timing Programs D- iii

Number

Program Units

Routines
Timed for Comparison

A B

1 time_dft.f90,

s_dft_bench.f90,

d_dft_bench.f90

fast_dft fftcf, fftcb

dfftcf, dfftcb

2 time_eig_gen.f90,

s_eig_gen_bench.f90,

d_eig_gen_bench.f90

lin_eig_gen e8crg, de8crg

3 time_eig_self.f90,

s_eig_self_bench.f90,

d_eig_self_bench.f90

lin_eig_self e5csf, de5csf

4 time_geig_gen.f90,

s_geig_gen_bench.f90,

d_geig_gen_bench.f90

lin_geig_gen g8crg, dg8crg

5 time_inv_chol.f90,

s_inv_chol_bench.f90,

d_inv_chol_bench.f90

lin_sol_self l2nds, dl2nds

6 time_inv_gen.f90,

s_inv_gen_bench.f90,

d_inv_gen_bench.f90

lin_sol_gen l2nrg, dl2nrg

7 time_inv_lsq.f90,

s_inv_lsq_bench.f90,

d_inv_lsq_bench.f90

lin_sol_lsq lsgrr, dlsgrr

8 time_inv_self.f90,

s_inv_self_bench.f90,

d_inv_self_bench.f90

lin_sol_self lftsf, lfssf

dlftsf, dlfssf

9 time_rand_gen.f90,

s_inv_rand_bench.f90,

d_inv_rand_bench.f90

rand_gen rnun, drnun

Table B: Scalar Benchmark Comparisons

D-iv ∙ Appendix D: Benchmarking or Timing Programs IMSL MATH/LIBRARY

Number

Program Units

Routines
Timed for Comparison

A B

10 time_sol_chol.f90,

s_inv_sol_chol.f90,

d_inv_sol_chol.f90

lin_sol_self lftds, lfsds

dlftds, dlfsds

11 time_sol_gen.f90,

s_sol_gen_bench.f90,

d_sol_gen_bench.f90

lin_sol_gen lftrg, lfsrg

dftrg, dlfsrg

12 time_sol_lsq.f90,

s_sol_lsq_bench.f90,

d_sol_lsq_bench.f90

lin_sol_lsq l2rrv, dl2rrv

13 time_sol_self.f90,

s_sol_self_bench.f90,

d_sol_self_bench.f90

lin_sol_self lftsf, lfssf,

dlftsf, dlfssf

14 time_svd.f90,

s_svd_bench.f90,

d_svd_bench.f90

lin_svd lsvrr, dlsvrr

15 time_tri.f90,

s_tri_bench.f90,

d_tri_bench.f90

lin_sol_tri lslcr, dlslcr

16 time_mult.f90

s_mult_bench.f90

d_mult_bench.f90

A .x. B matmul(D,E)

Table B- continued: Scalar Benchmark Comparisons

Notes on the comparable problems:

1. Perform forward and backward DFT of a random complex sequence of size NSIZE.

2. Compute eigenexpansion of a random real matrix of dimension

NSIZE NSIZE.

3. Compute eigenexpansion of a random symmetric real matrix of dimension

NSIZE NSIZE.

4. Compute generalized eigenexpansion of a random matrix pencil of dimension

NSIZE NSIZE.

5. Compute the inverse of a positive definite real matrix of dimension NSIZE NSIZE.

Uses Cholesky method.

6. Compute the inverse of a general real random matrix of dimension NSIZE NSIZE.

Uses LU factorization.

IMSL MATH/LIBRARY Appendix D: Benchmarking or Timing Programs D- v

7. Compute the generalized inverse of a general real random matrix of dimension

(2 NSIZE) NSIZE. Uses QR factorization for lin_sol_lsq and SVD for LSGRR.

8. Compute the inverse of a real, symmetric random matrix of dimension

NSIZE NSIZE. Uses Aasen's decomposition for lin_sol_self and Bunch-

Kaufman decomposition for LFTSF.

9. Generate NSIZE random numbers.

10. Solve a single system of linear equations with a positive definite real random matrix of

dimension NSIZE NSIZE.

11. Solve a single system of linear equations with a general real random matrix of

dimension NSIZE NSIZE.

12. Solve a single least-squares system of linear equations with a real random matrix of

dimension (2 NSIZE) NSIZE.

13. Solve a single system of linear equations with a symmetric real random matrix of

dimension NSIZE NSIZE.

14. Compute the full singular value decomposition of a general real random matrix of

dimension NSIZE NSIZE.

15. Solve NSIZE systems of linear equations of a nonsymmetric

NSIZE NSIZE tridiagonal matrix. Uses cyclic reduction.

16. Compute products of square matrices of size NSIZE NSIZE. Compare the IMSL

defined operation C = A .x. B with F = matmul(D,E). The arrays are assumed

shape. Identical problems A = D and B = E are timed.

17. Compare times to use SHOW() for writing a random array of size NSIZE to a

CHARACTER buffer vs. writing the same array to a scratch file.

Parallel Program Descriptions

A set of parallel benchmark programs is shown in Table D. These main programs call Fortran 90

box data type functions, in single and double precision. They compare our parallel allocation

algorithm to a scalar sequential method. The main program reads single lines of input:

NSIZE NTIMES NRACKS PREC ROOT_WORKS ―Description‖

QUIT to Stop

Two initial lines of output echo the ―Description‖ field, whether or not the root is working, and the

number of processors in the MPI communicator. The parameters NSIZE, NTRIES and NRACKS

appear in the summary tables. The parameter PREC has values 1, 2 or 3. The choice depends on

whether the user wants precision of single, double or both versions timed. The array functions

return a 7 2 summary table of values. The (1:6, 1) and (1:6,2) elements of this array represent the

results and parameters of the benchmark for the parallel and non-parallel versions. The (7,1) and

D-vi ∙ Appendix D: Benchmarking or Timing Programs IMSL MATH/LIBRARY

(7,2) elements of this array represent the ratio of the parallel to the scalar times and a first-order

approximation to the variation in the ratio.

Parallel Box Version Scalar Box Equivalent

1. Average time Average time

2. Standard deviation Standard deviation

3. Total Seconds Total Seconds

4. nsize nsize

5. nracks nracks

6. ntries ntries

7. Parallel/Scalar Ratio Variation in Ratio

As an example, the program time_parallel_i is compiled and linked with the single and

double precision timing functions s_parallel_i_bench and d_parallel_i_bench.

This routine evaluates the time to compute 4 inverse matrices of size 600 by 600 using the defined

operator .i. The ―Average‖ is the mean of the individual elapsed times for 5 calls to the routines,

obtaining 4 inverses in each call. The ―St. Dev.‖ is the standard deviation for that ―Average‖. This

value indicates the variability of the ―Average‖. In order for this value to provide any useful

information it is necessary for |NTRIES| > 1. The value |NTRIES| = 1 is acceptable, but only one

time sample and no standard deviation is obtained. Values of NTRIES > 0 result in the printing of

results as shown in Table C. The numbers in the table will vary depending on the machine and

other factors that impact performance of Fortran codes. If NTRIES < 0 the 7 2 functions return

the tabular values shown, with |NTRIES| samples. No printing is performed with NTRIES < 0.

IMSL MATH/LIBRARY Appendix D: Benchmarking or Timing Programs D- vii

Single precision benchmark of parallel .i. and non-parallel .i.:

Date of benchmark, (Y, Mo, D, H, M, S): 2006 5 11 8 58 58

1 1.5815E+00 4.0241E+00 Average

2 2.5031E-01 1.8035E-02 St. Dev.

3 7.9077E+00 2.0121E+01 Total Seconds

4 5.0000E+01 5.0000E+01 Size

5 5.0000E+00 5.0000E+00 Racks per box

6 5.0000E+00 5.0000E+00 Repeats

Non-parallel/parallel averages and variation:

 2.5444E+00 3.9129E-01

Double precision benchmark of parallel .i. and non-parallel .i.:

Date of benchmark, (Y, Mo, D, H, M, S): 2006 5 11 8 58 59

1 1.6985D+00 4.0372D+00 Average

2 9.8576D-01 2.3836D-02 St. Dev.

3 8.4923D+00 2.0186D+01 Total Seconds

4 5.0000D+01 5.0000D+01 Size

5 5.0000D+00 5.0000D+00 Racks per box

6 5.0000D+00 5.0000D+00 Repeats

Non-parallel/parallel averages and variation:

 2.3770D+00 1.2392D-01

Table C: Performance Summary: Box operator .i.

D-viii ∙ Appendix D: Benchmarking or Timing Programs IMSL MATH/LIBRARY

Below is a list of the performance evaluation programs that time the box data computations using

parallel and non-parallel resources.

Number Program Units Function Timed

1 time_parallel_i.f90,

s_parallel_i_bench.f90,

d_parallel_i_bench.f90

.i. A

2 time_parallel_ix.f90,

s_parallel_ix_bench.f90,

d_parallel_ix_bench.f90

A .ix. B

3 time_parallel_xi.f90,

s_parallel_xi_bench.f90,

d_parallel_xi_bench.f90

B .xi. A

4 time_parallel_x.f90,

s_parallel_x_bench.f90,

d_parallel_x_bench.f90

A .x. B

5 time_parallel_tx.f90,

s_parallel_tx_bench.f90,

d_parallel_tx_bench.f90

A .tx. B

6 time_parallel_xt.f90,

s_parallel_xt_bench.f90,

d_parallel_xt_bench.f90

A .xt. B

7 time_parallel_hx.f90,

s_parallel_hx_bench.f90,

d_parallel_hx_bench.f90

A .hx. B

8 time_parallel_xh.f90,

s_parallel_xh_bench.f90,

d_parallel_xh_bench.f90

A .xh. B

9 time_parallel_chol.f90,

s_parallel_chol_bench.f90,

d_parallel_chol_bench.f90

CHOL(A)

10 time_parallel_cond.f90,

s_parallel_cond_bench.f90,

d_parallel_cond_bench.f90

COND(A)

11 time_parallel_rank.f90,

s_parallel_rank_bench.f90,

d_parallel_rank_bench.f90

RANK(A)

IMSL MATH/LIBRARY Appendix D: Benchmarking or Timing Programs D- ix

Number Program Units Function Timed

12 time_parallel_det.f90,

s_parallel_det_bench.f90,

d_parallel_det_bench.f90

DET(A)

13 time_parallel_orth.f90,

s_parallel_orth_bench.f90,

d_parallel_orht_bench.f90

ORTH(A,R=R)

14 time_parallel_svd.f90,

s_parallel_svd_bench.f90,

d_parallel_svd_bench.f90

SVD(A,U=U,V=V)

15 time_parallel_norm.f90,

s_parallel_norm_bench.f90,

d_parallel_norm_bench.f90

NORM(A,TYPE=I)

16 time_parallel_eig.f90,

s_parallel_eig_bench.f90,

d_parallel_eig_bench.f90

EIG(A,W=W)

17 time_parallel_fft.f90,

s_parallel_fft_bench.f90,

d_parallel_fft_bench.f90

FFT_BOX(A)

IFFT_BOX(A)

Table D: Parallel and non-Parallel Box Comparisons

IMSL MATH/LIBRARY Product Support D- 11

Product Support

Contacting IMSL Support

Users within support warranty may contact Rogue Wave Software regarding the use of the IMSL

Fortran Numerical Library. IMSL Support can consult on the following topics:

 Clarity of documentation

 Possible IMSL-related programming problems

 Choice of IMSL Libraries functions or procedures for a particular problem

Not included in these topics are mathematical/statistical consulting and debugging of your

program.

Refer to the following for IMSL Product Support contact information:

 http://www.vni.com/tech/imsl/phone.php.

The following describes the procedure for consultation with IMSL Support:

1. Include your IMSL license number

2. Include the product name and version number: IMSL Fortran Numerical Library

Version 7.0

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a description of the

problem

http://www.vni.com/tech/imsl/phone.php

D-12 ∙ Product Support IMSL MATH/LIBRARY

IMSL MATH/LIBRARY Index I- i

Index

1

1-norm 1671, 1674, 1676, 1679

2

2DFT (Discrete Fourier Transform)

1227, x

3

3DFT (Discrete Fourier Transform)

x

A

Aasen' s method 19, 20

accuracy estimates of eigenvalues,

example 541

Adams i

Adams method

variable order 1072

Adams-Moulton's method 1021

adjoint eigenvectors, example 541

adjoint matrix vi

ainv= optional argument ix

Akima interpolant 740

algebraic-logarithmic singularities

946

ANSI i, 1770, 1771, xiii

arguments, optional subprogram ix

ARPACK

Base Class, ARPACKBASE 651,

653

Object Oriented 653

Type Extension 653

array permutation 1842

ASCII collating sequence 1870

ASCII values 1867, 1868, 1869

Avoiding Data Copy to Board 1602

B

backward difference formulas 1062

band Hermitian storage mode 346,

349, 355, 358, 360, 362, 365,

1947

band storage mode 282, 285, 290,

298, 301, 327, 330, 333, 341,

344, 1617, 1619, 1621, 1622,

1624, 1626, 1631, 1637, 1659,

1663, 1665, 1667, 1674, 1676,

1945

band symmetric storage mode 303,

305, 311, 314, 316, 318, 320,

322, 324, 327, 330, 333, 336,

339, 341, 344, 346, 349, 352,

355, 358, 360, 362, 365, 366,

372, 377, 580, 582, 585, 588,

591, 593, 596, 1635, 1946

band triangular storage mode 1948

Basic Linear Algebra Subprograms

1576

basis functions 865

bidiagonal matrix 60

bilinear form 1653

Black-Scholes Equation

American Put Pricing 1145

Cash-or-Nothing Payoff, A Bet

1150

Convertible Bond Pricing 1154

Greeks, Delta, Gamma, and Theta,

Feynman-Kac 1145

Vertical Spread Payoff 1150

BLACS 1789

BLAS 1576, 1577, 1588, 1589, 1590

Level 1 1576, 1577

Level 2 1588, 1589

Level 3 1588, 1589, 1590

block-cyclic decomposition

reading, writing utility 1790

boundary conditions 1037

boundary value problem 53

Brenan 54

Broyden‘s update 1320

B-spline coefficients 761, 870, 879

B-spline representation 782, 783,

786, 789, 821

B-splines 695

C

Campbell 54

Cauchy principal value 916, 949

central differences 1536

changing messages 1812

character arguments 1868

character sequence 1872

character string 1873

character workspace 1956

Chasing a Board 1606

I-ii ∙ Index IMSL MATH/LIBRARY

Chebyshev approximation 699, 910

Chebyshev polynomials 31

Cholesky

algorithm 21

decomposition 18, 532, 545

factorization 1743, 1744

method 22

Cholesky decomposition 494

Cholesky factorization 186, 191,

195, 204, 308, 311, 314, 320,

352, 365, 399, 403, 408, 416,

421, 424, 496, 499

circulant linear system 428

circulant matrices 8

classical weight functions 979, 991

codiagonal band hermitian storage

mode 352

codiagonal band Hermitian storage

mode 1950

codiagonal band symmetric storage

mode 308, 1949

coefficient matrix 296, 316, 339,

360, 377, 380, 385, 391, 394,

399, 403, 408, 412, 421, 424,

426, 428, 431, 437, 440, 451,

457, 463, 467, 471, 478, 483,

489, 494, 496, 503, 510, 514

coefficients 1261, 1268

column pivoting 494

companion matrix 538

Complex Eigenvectors, real matrices

679, 680

complex function 1309, 1311

complex periodic sequence 1245,

1248

complex sparse Hermitian positive

definite system 412, 421, 424

complex sparse system 380, 391

complex triangular system 165

complex tridiagonal system 322

complex vectors 1294, 1304

computing

eigenvalues, example 528

the rank of A 36

the SVD 60

computing eigenvalues, example 537

Computing Initial Derivatives for

DAE Systems 1063, 1066

condition number 158, 169, 541

conjugate gradient algorithm 1395,

1399

conjugate gradient method 431, 437

Constant elasticity of variance, CEV

1139

Constraints

after Index Reduction 1060, 1066,

1069

Conservation Principles 1063,

1069

continuous Fourier transform 1219

continuous function 910

convolution 1289, 1294, 1683, 1685

convolutions, real or complex

periodic sequences 1226

coordinate transformation 483

correlation 1299, 1304

cosine 938

cosine Fourier coefficients 1270

cosine Fourier transform 1268

covariance matrix 22, 27, 29

CPU time 1874

crossvalidation 907

cross-validation with weighting,

example 64

cubic spline 749, 750, 753, 756

cubic spline approximation 904, 907

cubic spline interpolant 727, 729,

732, 737, 740, 742, 746

cubic splines 697

cyclic reduction 45, 47

cyclic reduction algorithm 324

cyclical 2D data, linear trend 1230

cyclical data, linear trend 1223

D

DAE

Index of DAE System 1063

Reducing the Index 1063

DAE Solver 1057

DASPG

deprecated routine 1072

DASPG routine 54

data fitting

polynomial 30

two dimensional 33

data points 858

data, optional ix

date 1876, 1877, 1878, 1880

decomposition, singular value 36,

xvii

degree of accuracy 1931

DENSE_LP 1488

deprecated routines 1957

Deprecated Routines

DASPG 1072

MOLCH 1128

determinant 1751, viii

determinant of A 10

determinants 113, 148, 162, 163,

204, 226, 276, 301, 320, 344,

365

determinants 7

IMSL MATH/LIBRARY Index I- iii

DFT (Discrete Fourier Transform)

1220, 1233

differential algebraic equations 1001

Differential Algebraic Equations 547

differential equations 1000, 1037

differential-algebraic equations 1057

differential-algebraic solver 54, 1057

diffusion equation 53

direct- access message file 1812

direct search complex algorithm

1448

direct search polytope algorithm

1403

discrete Fourier cosine

transformation 1257

discrete Fourier sine transformation

1253

discrete Fourier transform 1219,

1761, 1762, 1763, 1764, 1766,

1767, 1768, x, xii

inverse 1765, xii

dot product 1581, 1582

double precision i, 1687

DOUBLE PRECISION types v

E

efficient solution method 539

eigensystem

complex 562, 634, 637, 640

Hermitian 615

real 555, 578, 626, 629, 632

symmetric 596, 648

eigenvalue 1755, 1757, viii

Eigenvalue problem

eigenvectors 651

generalized complex matrix 687

generalized real matrix 678

generalized symmetric 651, 655

standard complex matrix 687

standard real matrix 678

standard symmetric 651, 655

eigenvalue-eigenvector

decomposition 528, 532, 1755,

1757, viii

expansion (eigenexpansion) 529

eigenvalues 451, 549, 552, 557, 559,

564, 566, 568, 570, 573, 575,

580, 582, 585, 588, 591, 593,

598, 601, 604, 606, 609, 612,

617, 619, 621, 623, 626, 629,

634, 637, 642, 645, 654, 676,

685

eigenvalues, self-adjoint matrix 24,

526, 533, xvii

eigenvectors 51, 526, 530, 532, 533,

552, 559, 566, 570, 575, 582,

588, 593, 601, 606, 612, 619,

623, 629, 637, 645, 654, 676,

685

EISPACK xv

endpoint singularities 918

equality constraint, least squares 35

error detection 900

error handling xi, 1934

errors 1931, 1932, 1933

alert 1932

detection 1931

fatal 1932

informational 1931

multiple 1931

note 1932

printing error messages 1810

severity 1931

terminal 1931, 1932

warning 1932

Euclidean (2-norm) distance 1677

Euclidean length 1783

even sequence 1257

example

least-squares, by rows

distributed 72

linear constraints

distributed 77

linear inequalities

distributed 69

linear system

distributed, ScaLAPACK 1803,

1808

matrix product

distributed, PBLAS 1801

Newton's Method

distributed 80

transposing matrix

distributed 1798

Example

complex eigenvectors, complex

matrices 689

complex eigenvectors, real

matrices 680

Example

generalized symmetric matrix

shift and invert 664

real matrix

shift and invert 680

type extensions 680

symmetric matrix

matrix products 657

shift and invert 661

type extensions 661, 664

Example

complex matrix

type extensions 689

Example

complex matrix

products 689

I-iv ∙ Index IMSL MATH/LIBRARY

examples

accuracy estimates of eigenvalues

541

accurate least-squares solution

with iterative refinement 25

analysis and reduction of a

generalized eigensystem 532

complex polynomial equation

Roots 538

computing eigenvalues 528, 537

computing eigenvectors with

inverse iteration 530

computing generalized eigenvalues

545

computing the SVD 60

constraining a spline surface to be

non-negative interpolation to

data 725

constraining points using spline

surface 723

convolution with Fourier

Transform 1226

cross-validation with weighting 64

cyclical 2D data with a linear trend

1230

cyclical data with a linear trend

1223

eigenvalue-eigenvector expansion

of a square matrix 529

evaluating the matrix exponential

15, 16

Generalized Singular Value

Decomposition 62

generating strategy with a

histogram 1887

generating with a Cosine

distribution 1889

internal write of an array 1816

iterative refinement and use of

partial pivoting 49

Laplace transform solution 42

larger data uncertainty 548

least squares with an equality

constraint 35

least-squares solution of a

rectangular system 39

linear least squares with a

quadratic constraint 61

matrix inversion and determinant

14

natural cubic spline interpolation

to data 705

parametric representation of a

sphere 721

periodic curves 712

polar decomposition of a square

matrix 39

printing an array 1815

reduction of an array of black and

white 41

ridge regression 64

running mean and variance 1885

seeding, using, and restoring the

generator 1886

selected eigenvectors of tridiagonal

matrices 51

self-adjoint, positive definite

generalized eigenvalue

problem 546

several 2D transforms with

initialization 1232

several transforms with

initialization 1225

shaping a curve and its derivatives

707

solution of multiple tridiagonal

systems 47

solving a linear least squares

system of equations 21, 30

solving a linear system of

equations 13

solving parametric linear systems

with scalar change 539

sort and final move with a

permutation 1848

sorting an array 1847

splines model a random number

generator 709

system solving with Cholesky

method 22

system solving with the

generalized inverse 32

tensor product spline fitting of data

719

test for a regular matrix pencil 547

transforming array of random

complex numbers 1223, 1230,

1235

tridiagonal matrix solving 53

two-dimensional data fitting 33

using inverse iteration for an

eigenvector 24

Examples

Linear ODE

User-Defined Linear Solver

Constraints 1069
Swinging Pendulum

Constraints

Index 1 System 1066
exclusive OR 1884

Expanded Matrix 670

extended precision arithmetic 1687

IMSL MATH/LIBRARY Index I- v

F

factored secant update 1344, 1350

factorization, LU 10

Fast Fourier Transforms 1218

Faure 1904, 1906, xli, x

Faure sequence 1904, 1905, xli, x

Fejer quadrature rule 991

Feynman-Kac Differential Equation

Forcing or Source Term, Feynman-

Kac 1145

FFT (Fast Fourier Transform) 1222,

1229, 1235

finite difference gradient 1522

finite-difference approximation

1337, 1344

finite-difference gradient 1372,

1395, 1420

finite-difference Hessian 1384

finite-difference Jacobian 1407

first derivative 995

first derivative evaluations 1365

FORTRAN 77

combining with Fortran 90 i

Fortran 90

language i

rank-2 array ix

real-time clock 1884

forward differences 1538, 1541,

1543, 1546, 1555

Fourier coefficients 1236, 1240,

1245, 1248, 1274, 1281

Fourier integral 942

Fourier transform 1277, 1285

Frobenius norm 1673

full storage mode 1626

Fushimi 1883, 1885

G

Galerkin principle 54

Gauss quadrature 917

Gauss quadrature rule 979, 983

Gaussian elimination 366, 372, 377,

380, 394, 412, 416

Gauss-Kronrod rules 922

Gauss-Lobatto quadrature rule 979,

983

Gauss-Radau quadrature rule 979,

983

Gear‘s BDF method 1021

generalized

eigenvalue 532, 545, 1755, 1757,

viii

feedback shift register (GFSR)

1883

inverse

matrix 27, 28, 32

generalized inverse

system solving 32

generator 1886, 1889

getting started viii

GFSR algorithm 1884

Givens plane rotation 1585

Givens transformations 1586, 1587

globally adaptive scheme 922

Golub 13, 21, 30, 35, 60, 62, 65, 528,

532, 537

gradient 1536, 1538, 1543, 1558

Gray code 1907

GSVD 62

H

Hadamard product 1583, 1651

Hanson 528

harmonic series 1223, 1230

Helmholtz‘s equation 1188

Helmholtz's equation 1194

Hermite interpolant 737

Hermite polynomials 1115

Hermitian positive definite system

227, 232, 248, 252, 346, 349,

360, 362

Hermitian system 259, 262, 271, 273

Hessenberg matrix, upper 534, 538

Hessian 1389, 1434, 1441, 1541,

1543, 1561

High Performance Fortran

HPF 1789

histogram 1887

Horner's scheme 1656

Householder 544

Householder transformations 457,

471

hyper-rectangle 973

I

IEEE 1770, 1771, xiii

Index of DAE System 1063

infinite eigenvalues 545

infinite interval 935

infinity norm 1670

infinity norm distance 1681

informational errors 1931

initialization, several 2D transforms

1232

initialization, several transforms

1225

initial-value problem 1003, 1011,

1021, 1072

integer options 1908

INTEGER types v

integrals 756

I-vi ∙ Index IMSL MATH/LIBRARY

integration 918, 922, 925, 929, 935,

938, 946, 949, 953, 960, 966,

973

interface block i

internal write 1816

interpolation 701

cubic spline 727, 729

quadratic 699

scattered data 699

inverse 10

iteration, computing eigenvectors

24, 51, 530

matrix ix, 11, 18, 19, 22

generalized 27, 28

transform 1221, 1228, 1233

inverse matrix 10

isNaN 1770, 1771

ISO i

iterated integral 955

Iterative Method 668

Iterative Method 451

iterative refinement ix, 6, 7, 49, 83,

108, 143, 177, 181, 186, 191,

195, 199, 204, 206, 210, 213,

223, 252, 273, 298, 318, 341,

346, 362, 451, 463

IVOAM

initial-value problem 1072

IVPAG routine 54

J

Jacobian 1320, 1337, 1340, 1344,

1350, 1413, 1452, 1459, 1546,

1555, 1565

Jenkins-Traub three-stage algorithm

1322

K

Kershaw 47

L

Laguerre‘s method 1320

LAPACK xv, 550, 553, 558, 560,

565, 567, 599, 602, 627, 630,

635

Laplace transform 1309, 1311

Laplace transform solution 42

larger data uncertainty, example 548

LDU factorization 324

least squares 21, 27, 33, 35, 36, 42,

43, 699, 858, 861, 879, 1223,

1230, xvii

least-squares approximation 865, 874

least-squares problem 483

least-squares solution 457

Lebesque measure 1906

Left and right singular vectors 668,

671

Level 1 BLAS 1576, 1577

Level 2 BLAS 1588, 1589

NVIDIA

SGBMV, DGBMV, CGBMV,

ZGBMV 1590, 1592

SGEMV, DGEMV, CGEMV,

ZGEMV 1590, 1592

SGER, DGER 1591, 1595

SSYR, DSYR 1591, 1597

Level 3 BLAS 1588, 1589, 1590

NVIDIA

CHEMM, ZHEMM 1598

CHERK, ZHERK 1599

SGEMM, DGEMM, CGEMM,

ZGEMM 1598

SSYMM, DSYMM, CSYMM,

ZSYMM 1598

SSYR2K, DSYR2K 1599

SSYRK, DSYRK, CSYRK,

ZSYRK 1598

STRMM, DTRMM, CTRMM,

ZTRMM 1600

STRSM, DTRSM, CTRSM,

ZTRSM 1600

Levenberg-Marquardt algorithm

1358, 1407, 1413, 1452, 1459

library subprograms v

linear algebraic equations 366, 394

linear constraints 467

linear equality/inequality constraints

1510, 1516

linear equations 18

solving 83, 87, 103, 119, 123, 138,

165, 177, 181, 195, 199, 210,

213, 221, 223, 227, 232, 248,

252, 259, 262, 271, 273, 278,

282, 285, 296, 298, 303, 305,

316, 318, 322, 341, 346, 349,

360, 362, 377, 380, 391, 394,

408, 412, 421, 424, 431

linear least-squares problem 451,

463, 467

linear least-squares with non-

negativity constraints 67, 68,

69, 76

linear programming problem 1488,

1494, 1497

linear solutions

packaged options 11

linear trend, cyclical 2D data 1230

linear trend, cyclical data 1223

IMSL MATH/LIBRARY Index I- vii

LINPACK xv, 550, 553, 558, 560,

565, 567, 599, 602, 627, 630,

635

low-discrepancy 1907

LU factorization 93, 99, 103, 113,

128, 134, 138, 148, 290, 293,

296, 301, 333, 336, 339, 344,

372, 377, 385, 391

LU factorization of A 10, 11, 18,

1692

M

machine-dependent constants 1937

mathematical constants 1919

matrices 1615, 1616, 1617, 1619,

1621, 1622, 1624, 1626, 1627,

1629, 1631, 1635, 1637, 1639,

1647, 1649, 1657, 1659, 1661,

1667, 1673, 1674, 1676, 1817,

1819, 1822, 1825, 1827, 1830,

1833

adjoint vi

complex 333, 336, 344, 510, 557,

559, 1626, 1631

band 1619, 1663, 1667, 1676

general 128, 148, 150, 1616,

1624, 1627

general sparse 385

Hermitian 237, 265, 268, 276,

352, 355, 358, 365, 598, 601,

604, 606, 609, 612, 1634, 1637

rectangular 1629, 1649, 1661,

1827, 1830

tridiagonal 324

upper Hessenberg 621, 623

copying 1615, 1616, 1617, 1619,

1627, 1629, 1635, 1637

covariance 22, 27, 29

general 1943

Hermitian 1944

inverse ix, 10, 11, 18, 19, 22

generalized 27, 28, 32

inversion and determinant 14

multiplying 1645, 1647, 1649,

1657, 1659, 1661

orthogonal vi

permutation 1844

poorly conditioned 39

printing 1817, 1819, 1822, 1825,

1827, 1830, 1833

real 290, 293, 301, 514, 549, 552,

1622, 1631

band 1617, 1659, 1674

general 93, 99, 113, 115, 1615,

1621, 1627

general sparse 372

rectangular 1629, 1647, 1651,

1657, 1673, 1817, 1819

sparse 6

symmetric 186, 191, 204, 206,

215, 218, 226, 308, 311, 314,

320, 496, 499, 564, 566, 568,

570, 573, 575, 580, 582, 585,

588, 591, 593, 1632, 1635

tridiagonal 279

upper Hessenberg 617, 619

rectangular 1639, 1943

sparse

Hermitian 416

symmetric 399

symmetrical 403

symmetric 494, 1944

transposing 1639, 1641, 1643

triangular 1944

unitary vi

upper Hessenberg 538

matrix

inversion 7

types 5

matrix pencil 545, 547

matrix permutation 1844

matrix storage modes 1943

matrix/vector operations 1614

matrix-matrix multiply 1598, 1600

matrix-matrix solve 1600

matrix-vector multiply 1592, 1593,

1594, 1595

Matrix-Vector Operations 671

means 1885

Mersenne Twister 1894, 1895, 1897,

1898, 1900

message file

building new direct-access

message file 1812

changing messages 1812

management 1811

private message files 1813

Metcalf i

method of lines 54, 1115

minimization 1358, 1359, 1360,

1362, 1365, 1369, 1372, 1377,

1384, 1389, 1395, 1399, 1403,

1420, 1427, 1434, 1441, 1448,

1452, 1488, 1494, 1510, 1516,

1522, 1528, 1536, 1538, 1541,

1543, 1546, 1555, 1558, 1561,

1565, 1569

minimum degree ordering 399

minimum point 1362, 1365, 1369

mistake

missing argument 1792

Type, Kind or Rank

TKR 1792

I-viii ∙ Index IMSL MATH/LIBRARY

Modified Gram-Schmidt algorithm

1775

modified Powell hybrid algorithm

1337, 1340

MOLCH

deprecated routine 1128

monic polynomials 986, 988

Moore-Penrose 1728, 1729, 1731,

1740, 1741

MPI 1698, 1927

parallelism xix

Muller‘s method 1320, 1325

multiple right sides 7

multivariate functions 1358

multivariate quadrature 917

N

naming conventions iv

NaN (Not a Number) 1770

quiet 1770

signaling 1770

Newton algorithm 1358

Newton method 1384, 1389, 1434,

1441

Newton' s method 42, 61

noisy data 904, 907

nonadaptive rule 953

nonlinear equations 1337, 1340,

1344, 1350

nonlinear least-squares problem

1358, 1407, 1413, 1452, 1459,

1466

nonlinear programming 1522, 1528

norm 1771

Normal Matrix 670

normalize 1783

not-a-knot condition 727, 729

Notes for BLAS Using NVIDIA

1576, 1601
Number of Installed

Boards 1606

numerical differentiation 918

NVIDIA

Avoiding Data Copy to Board

1602

Chasing a Board 1606

Increased Performance 1576, 1601
Number of Installed

Boards 1606

Switching from Fortran to

NVIDIA BLAS 1602

Switchover Size 1601

O

odd sequence 1253

odd wave numbers 1261, 1263,

1268, 1270

optional argument ix

optional data viii, ix

optional subprogram arguments ix

order one or two

system of ordinary differential

equations 1072

ordinary differential equations 1000,

1003, 1011, 1021

ordinary eigenvectors, example 541

orthogonal

decomposition 60

factorization 30

matrix vi

orthogonal matrix 478

orthogonalized 51, 530

overflow vi

P

packed hermitian matrix storage

mode 1953

packed symmetric matrix storage

mode 1953

packed triangular matrix storage

mode 1953

page length 1840

page width 1840

parameters 1243, 1251, 1255, 1259,

1266, 1272

parametric linear systems with scalar

change 539

parametric systems 539

partial differential equations 1000,

1001, 1115

Partial Expansion 671, 672

partial pivoting 45, 47

PBLAS 1789

performance index 555, 562, 578,

596, 615, 632, 640, 648

periodic boundary conditions 746

permutation 1848

Petzold 54

physical constants 1919

piecewise polynomial 695, 821, 823,

825, 828, 831

piecewise-linear Galerkin 54

pivoting

partial 10, 12, 19

row and column 27, 30

symmetric 18

plane rotation 1586

plots 1914

Poisson solver 1188, 1194

Poisson's equation 1188, 1194

polar decomposition 39, 49

IMSL MATH/LIBRARY Index I- ix

polynomial 1655

interpolation 855, xxvii

polynomial curve 861

prime factors 1917

printing 1840, 1914, 1933

printing an array, example 1815

printing arrays 1813

printing results xii

private message files 1813

programming conventions vi

pseudorandom number generators

1893

pseudorandom numbers 1900, 1902

PV-WAVE 1091

Q

QR algorithm 60, 528

double-shifted 536

QR decomposition 9, 471, 1751

QR factorization 478, 489

quadratic interpolation 833, 835,

838, 840, 843, 847

quadratic polynomial interpolation

699

quadrature formulas 917

quadrature rule 988

quadruple precision 1687

quasi-Monte Carlo 976

quasi-Newton method 1372, 1377,

1420, 1427

quintic polynomial 851

R

radial-basis functions 33

random complex numbers,

transforming an array 1223,

1230, 1235

random number generator 1895,

1896, 1897, 1898, 1899, 1900

random number generators 1891,

1892

random numbers 1882

rank-2k update 1599

rank-k update 1598, 1599

rank-one matrix 489, 496, 499

rank-one matrix update 1595, 1596,

1597

rank-two matrix update 1596, 1597

rational weighted Chebyshev

approximation 910

READ_MPS 1475, 1485

real numbers, sorting 1846

real periodic sequence 1236, 1240

real sparse symmetric positive

definite system 408

real symmetric definite linear system

431, 437

real symmetric positive definite

system 177, 181, 195, 199,

303, 305, 316, 318

real symmetric system 210, 213, 221,

223

real triangular system 154

real tridiagonal system 278

REAL types v

real vectors 1289, 1299

record keys, sorting 1848

rectangular domain 801

rectangular grid 838, 840, 843, 847

recurrence coefficients 983, 986, 988

Reducing the Index 1063

reduction

array of black and white 41

References

Parabolic PDE

Banded Linear System 1063

regularizing term 47

Reid i

required arguments viii, ix

reserved names 1954

reverse communication 54

revised simplex method 1359, 1505

ridge regression 64

cross-validation

example 64

Rodrigue 47

row and column pivoting 27, 30

row vector, heavily weighted 35

Runge-Kutta-order method 1011

Runge-Kutta-Verner fifth-order

method 1003

Runge-Kutta-Verner sixth-order

method 1003

S

ScaLAPACK

contents 1790

data types 1790

definition of library 1789

interface modules 1792

reading utility

block-cyclic distributions 1795,

1805, 1807

scattered data 851

scattered data interpolation 699

Schur form 533, 539

search 1860, 1862, 1864

second derivative 995

self-adjoint

eigenvalue problem 532

linear system 25

matrix 18, 21, 528, 529, 532, xvii

I-x ∙ Index IMSL MATH/LIBRARY

eigenvalues 24, 526, 533, xvii

tridiagonal 20

semi-infinite interval 935

sequence 1263, 1270

serial number 1881

simplex algorithm 1494, 1497

sine 938

sine Fourier coefficients 1263

sine Fourier transform 1261

single precision i

SINGLE PRECISION options 1911

Single Program, Multiple Data

SPMD 1789

singular value decomposition 510

Singular Value Decomposition

ARPACK 451, 526, 651, 668

singular value decomposition (SVD)

36, 1780, 1781, xvii

singularity 8

singularity points 925, 929, 960, 966

smooth bivariate interpolant 851

smoothing 900

smoothing formulas 32

smoothing spline routines 699

solvable 547

solving

general system 10

linear equations 18

rectangular

least squares 36

system 27
solving linear equations 5

sorting 1849, 1850, 1852, 1853,

1855, 1856, 1857, 1859, 1860,

1862, 1864

sorting an array, example 1847

Sparse <atrix, Complex

Harwell-Boeing column-oriented

sparse form 1703

sparse linear programming 1497

Sparse Matrix Computations,

Examples

Plane Poisson Problem with

Dirichlet Boundary Conditions

1733

sparse matrix storage mode 1952

Sparse Matrix, Complex 1700, 1702

Accumulate entries of sparse

matrix 1705

Collection of Triplets 1702, 1705

Compressed Sparse Column

Format 1703

Converstion of Triplets to Harwell-

Boeing form 1705

Derived types for sparse matrices

1702

Triplets types for sparse matrices

1702

Sparse Matrix, Real 1700

sparse system 366, 377

spline approximation 870, 879

spline interpolant 761, 771

spline knot sequence 765, 768

splines 699, 758, 782, 783, 786, 789

cubic 697

tensor product 698

square matrices

eigenvalue-eigenvector expansion

529

polar decomposition 39, 49

square root 1925

Stiff Solver 1057

Sturm-Liouville problem 1201, 1213

subprograms

library v

optional arguments ix

SVD 57, 62, xvii

SVD Example

Expanded Matrix 672

Normal Matrix 672

Partial Expansion 672

Type Extension 672

SVRGN 1847

Switching from Fortran to NVIDIA

BLAS

set value 1602

Switchover Size 1601

symmetric Markowitz strategy 373

Symmetric Matrix

eigenvectors 655

system of ordinary differential

equations

order one or two 1072

T

tensor product splines 698

tensor-product B-spline coefficients

771, 776, 889, 894

tensor-product B-spline

representation 792, 794, 797,

801, 805, 807, 811, 817

tensor-product spline 792, 794, 797,

801, 805, 807, 811, 817

tensor-product spline approximant

889, 894

tensor-product spline interpolant 776

terminal errors 1931

third derivative 995

time 1875

Timing

Benchmarking

list, parallel codes ix

IMSL MATH/LIBRARY Index I- xi

list,scalar version iv

parallel version i, v

Toeplitz linear system 426

Toeplitz matrices 8

traceback 1936

transfer 1771

transportation problem 1504

transpose 1723, 1724, 1726

tridiagonal 45

matrix 47

matrix solving, example 53

triple inner product 1583

two-dimensional data fitting 33

U

unconstrained minimization 1358

underflow vi

uniform (0, 1) distribution 1900,

1902

uniform mesh 1194

unitary matrix vi

univariate functions 1358

univariate quadrature 916

upper Hessenberg matrix 538

user errors 1931

user interface i

User-Defined Linear Solver 1061,

1069

user-supplied function 995

user-supplied gradient 1399, 1427,

1528

Using LAPACK, LINPACK, and

EISPACK xv

using library subprograms v

V

Van Loan 13, 21, 30, 35, 60, 62, 65,

528, 532, 537

variable knot B-spline 874

variable order 1037

variable order Adams method 1072

variances 1885

variational equation 54

vectors 1579, 1580, 1581, 1583,

1584, 1592, 1661, 1663, 1683,

1685

complex 1685

real 1683

version 1881

W

workspace allocation 1955

World Wide Web

URL for ScaLAPACK User's

Guide 1790

Z

zero of a real function 1331

zero of a real univariate function

1328

zeros of a polynomial 1320, 1322,

1324

zeros of a univariate complex

function 1325

zeros of the polynomial 1319

	IMSL Fortran Numerical MATH Library - Version 7.0
	Table of Contents
	Introduction
	The IMSL Fortran Numerical Library
	User Background
	Getting Started
	Finding the Right Routine
	Organization of the Documentation
	Naming Conventions
	Using Library Subprograms
	Programming Conventions
	Module Usage
	Using MPI Routines
	Programming Tips
	Optional Subprogram Arguments
	Optional Data
	Overloaded =, /=, etc., for Derived Types
	Error Handling
	Printing Results
	Fortran 90 Constructs
	Shared-Memory Multiprocessors and Thread Safety
	Using Operators and Generic Functions
	Using ScaLAPACK, LAPACK, LINPACK, and EISPACK
	Using ScaLAPACK Enhanced Routines

	Chapter 1: Linear Systems
	Routines
	Usage Notes
	Matrix Types
	Solution of Linear Systems
	Multiple Right Sides
	Determinants
	Iterative Refinement
	Singularity
	Special Linear Systems
	Iterative Solution of Linear Systems
	QR Decomposition

	LIN_SOL_GEN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal and Terminal Error Messages
	Example 1: Solving a Linear System of Equations
	Output
	Additional Examples
	Example 2: Matrix Inversion and Determinant
	Output
	Example 3: Solving a System with Iterative Refinement
	Output
	Example 4: Evaluating the Matrix Exponential
	Output

	LIN_SOL_SELF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal and Terminal Error Messages
	Example 1: Solving a Linear Least-squares System
	Output
	Additional Examples
	Example 2: System Solving with Cholesky Method
	Output
	Example 3: Using Inverse Iteration for an Eigenvector
	Output
	Example 4: Accurate Least-squares Solution with Iterative Refinement
	Output

	LIN_SOL_LSQ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal and Terminal Error Messages
	Example 1: Solving a Linear Least-squares System
	Output
	Additional Examples
	Example 2: System Solving with the Generalized Inverse
	Output
	Example 3: Two-Dimensional Data Fitting
	Output
	Example 4: Least-squares with an Equality Constraint
	Output

	LIN_SOL_SVD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal, Terminal, and Warning Error Messages
	Example 1: Least-squares solution of a Rectangular System
	Output
	Additional Examples
	Example 2: Polar Decomposition of a Square Matrix
	Output
	Example 3: Reduction of an Array of Black and White
	Output
	Example 4: Laplace Transform Solution
	Output

	LIN_SOL_TRI
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal, Terminal, and Warning Error Messages
	Example 1: Solution of Multiple Tridiagonal Systems
	Output
	Additional Examples
	Example 2: Iterative Refinement and Use of Partial Pivoting
	Output
	Example 3: Selected Eigenvectors of Tridiagonal Matrices
	Output
	Example 4: Tridiagonal Matrix Solving within Diffusion Equations
	Output

	LIN_SVD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal, Terminal, and Warning Error Messages
	Example 1: Computing the SVD
	Output
	Additional Examples
	Example 2: Linear Least Squares with a Quadratic Constraint
	Output
	Example 3: Generalized Singular Value Decomposition
	Example 4: Ridge Regression as Cross-Validation with Weighting
	Output

	Parallel Constrained Least-Squares Solvers
	Solving Constrained Least-Squares Systems

	PARALLEL_NONNEGATIVE_LSQ
	Usage Notes
	Required Arguments
	Optional Argument
	Description
	Example 1: Distributed Linear Inequality Constraint Solver
	Output
	Additional Examples
	Example 2: Distributed Non-negative Least-Squares
	Output

	PARALLEL_BOUNDED_LSQ
	Usage Notes
	Required Arguments
	Optional Argument
	FORTRAN 90 Interface
	Description
	Example 1: Distributed Equality and Inequality Constraint Solver
	Output
	Additional Examples
	Example 2: Distributed Newton-Raphson Method with Step Control

	LSARG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LSLRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example 1
	Output
	Additional Example
	Example 2
	Output
	ScaLAPACK Example
	Output

	LFCRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFTRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFSRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFIRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFDRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LINRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LSACG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LSLCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFCCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFTCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFSCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFICG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFDCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LINCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LSLRT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFCRT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFDRT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LINRT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LSLCT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFCCT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFDCT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LINCT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSADS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LSLDS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFCDS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFTDS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFSDS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFIDS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFDDS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LINDS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LSASF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLSF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFCSF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFTSF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFSSF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LFISF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFDSF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LSADH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LSLDH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFCDH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFTDH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFSDH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFIDH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFDDH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LSAHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFCHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFTHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFSHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LFIHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFDHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LSLTR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLCR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LSARB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLRB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LFCRB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFTRB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFSRB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LFIRB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFDRB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LSAQS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLQS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLPB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFCQS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFTQS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFSQS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFIQS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFDQS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LSLTQ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLCQ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LSACB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLCB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFCCB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFTCB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFSCB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LFICB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFDCB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LSAQH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLQH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLQB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFCQH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFTQH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFSQH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFIQH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFDQH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LSLXG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFTXG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFSXG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LSLZG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFTZG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFSZG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LSLXD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSCXD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LNFXD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFSXD
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLZD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LNFZD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LFSZD
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLTO
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLTC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSLCC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	PCGRC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output
	Example 2
	Output

	JCGRC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	GMRES
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output
	Example 3
	Output

	ARPACK_SVD
	LSQRR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LQRRV
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example

	LSBRR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LCLSQ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LQRRR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LQERR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example

	LQRSL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LUPQR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LCHRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LUPCH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	LDNCH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSVRR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example
	Output

	LSVCR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LSGRR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	ScaLAPACK Interface
	Description
	Comments
	ScaLAPACK Usage Notes
	Example
	Output
	ScaLAPACK Example

	Chapter 2: Eigensystem Analysis
	Routines
	Usage Notes
	Error Analysis and Accuracy
	Reformulating Generalized Eigenvalue Problems
	Using ARPACK for Ordinary and Generalized Eigenvalue Problems

	LIN_EIG_SELF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal, Terminal, and Warning Error Messages
	Example 1: Computing Eigenvalues
	Output
	Additional Examples
	Example 2: Eigenvalue-Eigenvector Expansion of a Square Matrix
	Output
	Example 3: Computing a few Eigenvectors with Inverse Iteration
	Output
	Example 4: Analysis and Reduction of a Generalized Eigensystem
	Output

	LIN_EIG_GEN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal, Terminal, and Warning Error Messages
	Example 1: Computing Eigenvalues
	Output
	Additional Examples
	Example 2: Complex Polynomial Equation Roots
	Output
	Example 3: Solving Parametric Linear Systems with a Scalar Change
	Output
	Example 4: Accuracy Estimates of Eigenvalues Using Adjoint and Ordinary Eigenvectors
	Output

	LIN_GEIG_GEN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal, Terminal, and Warning Error Messages
	Example 1: Computing Generalized Eigenvalues
	Output
	Additional Examples
	Example 2: Self-Adjoint, Positive-Definite Generalized Eigenvalue Problem
	Output
	Example 3: A Test for a Regular Matrix Pencil
	Output
	Example 4: Larger Data Uncertainty than Working Precision
	Output

	EVLRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVCRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EPIRG
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	EVLCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVCCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EPICG
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	EVLSF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVCSF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVASF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVESF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVBSF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVFSF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EPISF
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	EVLSB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVCSB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVASB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVESB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVBSB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVFSB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EPISB
	Required Arguments
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	EVLHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVCHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVAHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVEHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVBHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVFHF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EPIHF
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	EVLRH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVCRH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVLCH
	Required Arguments
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	EVCCH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	GVLRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	GVCRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	GPIRG
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Comments
	Example

	GVLCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	GVCCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	GPICG
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GVLSP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	GVCSP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	GPISP
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	Eigenvalues and Eigenvectors Computed with ARPACK
	The Abstract Interfaces for User-Written Array Functions

	The Base Class ARPACKBASE
	ARPACK_SYMMETRIC
	Required Arguments
	Optional Arguments
	FORTRAN 2003 Interface
	FORTRAN 90 Interface
	Description
	Comments
	Example 1
	Output
	Example 2
	Output
	Example 3
	Output

	ARPACK_SVD
	Required Arguments
	Optional Arguments
	FORTRAN 2003 Interface
	FORTRAN 90 Interface
	Description
	Comments
	Example 1
	Output

	ARPACK_NONSYMMETRIC
	Required Arguments
	Optional Arguments
	FORTRAN 2003 Interface
	FORTRAN 90 Interface
	Description
	Comments
	Example 1
	Output

	ARPACK_COMPLEX
	Required Arguments
	Optional Arguments
	FORTRAN 2003 Interface
	FORTRAN 90 Interface
	Description
	Comments
	Example 1
	Output

	Chapter 3: Interpolation and Approximation
	Routines
	Usage Notes
	Piecewise Polynomials
	Splines and B-splines
	Cubic Splines
	Tensor Product Splines
	Quadratic Interpolation
	Multi-dimensional Interpolation
	Least Squares
	Smoothing by Cubic Splines
	Rational Chebyshev Approximation
	Using the Univariate Spline Routines
	Choosing an Interpolation Routine

	SPLINE_CONSTRAINTS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface

	SPLINE_VALUES
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface

	SPLINE_FITTING
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal and Terminal Error Messages
	Example 1: Natural Cubic Spline Interpolation to Data
	Output
	Additional Examples
	Example 2: Shaping a Curve and its Derivatives
	Output
	Example 3: Splines Model a Random Number Generator
	Output
	Example 4: Represent a Periodic Curve
	Output

	SURFACE_CONSTRAINTS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface

	SURFACE_VALUES
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface

	SURFACE_FITTING
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal and Terminal Error Messages
	Example 1: Tensor Product Spline Fitting of Data
	Output
	Additional Examples
	Example 2: Parametric Representation of a Sphere
	Output
	Example 3: Constraining Some Points using a Spline Surface
	Output
	Example 4: Constraining a Spline Surface to be non-Negative
	Output

	CSIEZ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CSINT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CSDEC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output

	CSHER
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CSAKM
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CSCON
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Descritpion
	Comments
	Example
	Output

	CSPER
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CSVAL
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CSDER
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CS1GD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CSITG
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	SPLEZ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	BSINT
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BSNAK
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BSOPK
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BS2IN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BS3IN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BSVAL
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSDER
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BS1GD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BSITG
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BS2VL
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BS2DR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BS2GD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BS2IG
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BS3VL
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BS3DR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BS3GD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BS3IG
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BSCPP
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	PPVAL
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	PPDER
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	PP1GD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	PPITG
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	QDVAL
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QDDER
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QD2VL
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QD2DR
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QD3VL
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QD3DR
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	SURF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	SURFND
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example
	Output

	RLINE
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	RCURV
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FNLSQ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BSLSQ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BSVLS
	Required Arguments
	Optonal Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CONFT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output

	BSLS2
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BSLS3
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CSSED
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CSSMH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CSSCV
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	RATCH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	Chapter 4: Integration and Differentiation
	Routines
	Usage Notes
	Univariate Quadrature
	Multivariate Quadrature
	Gauss Rules and Three-term Recurrences
	Numerical Differentiation

	QDAGS
	Required Arguments
	Optional Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QDAG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QDAGP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QDAG1D
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example 1
	Output
	Example 2
	Output

	QDAGI
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QDAWO
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QDAWF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QDAWS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QDAWC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QDNG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	TWODQ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output

	QDAG2D
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example
	Output

	QDAG3D
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example
	Output

	QAND
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QMC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Example
	Output

	GQRUL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output

	GQRCF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	RECCF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	RECQR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FQRUL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	DERIV
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Example
	Example 2
	Output

	Chapter 5: Differential Equations
	Routines
	Usage Notes
	Ordinary Differential Equations
	Differential-algebraic Equations
	Partial Differential Equations
	Summary

	IVPRK
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output

	IVMRK
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output
	Example 3
	Output

	IVPAG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output
	Example 3
	Output
	Example 4
	Output

	BVPFD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output
	Example 3
	Output

	BVPMS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	DAESL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Examples
	Example 1 – Method of Lines PDE Problem
	Output
	Example 2 – Pendulum Problem
	Output
	Example 3 – User Solves Linear System
	Output

	DASPG
	IVOAM
	Required Arguments
	Optional Arguments
	Fortran 90 Interface
	Description
	Comments
	Example 1
	Output
	Example 2
	Output

	Introduction to Subroutine PDE_1D_MG
	PDE_1D_MG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Remarks on the Examples
	Code for PV-WAVE Plotting (Examples Directory)

	Example 1 - Electrodynamics Model
	Rationale: Example 1
	Additional Examples

	Example 2 - Inviscid Flow on a Plate
	Rationale: Example 2

	Example 3 - Population Dynamics
	Rationale: Example 3

	Example 4 - A Model in Cylindrical Coordinates
	Rationale: Example 4

	Example 5 - A Flame Propagation Model
	Rationale: Example 5

	Example 6 - A ‘Hot Spot’ Model
	Rationale: Example 6

	Example 7 - Traveling Waves
	Rationale: Example 7

	Example 8 - Black-Scholes
	Rationale: Example 8

	Example 9 - Electrodynamics, Parameters Studied with MPI
	Rationale: Example 9

	MMOLCH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example 1
	Output
	Additonal Examples
	Example 2
	Output
	Example 3
	Output

	MOLCH
	FEYNMAN_KAC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Examples
	Example 1 – A Diffusion Model For Call Options
	Output
	Example 2 – American Option vs. European Option On a Vanilla Put
	Output
	Example 3 – European Option With Two Payoff Strategies
	Output
	Example 4 – Convertible Bonds
	Output
	Example 5 – A Non-Standard American Option
	Output
	Example 6 – Oxygen Diffusion Problem
	Output
	Example 7 – Calculating the Greeks
	Output

	HQSVAL
	Function Return Value
	Required Arguments
	Optional Argument
	FORTRAN 90 Interface
	Description
	Example: Exact Interpolation with Hermite Quintic Splines
	Output

	FPS2H
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FPS3H
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	SLEIG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output

	SLCNT
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	Chapter 6: Transforms
	Routines
	Usage Notes
	Fast Fourier Transforms
	Continuous versus Discrete Fourier Transform
	Inverse Laplace Transform

	FAST_DFT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal and Terminal Messages
	Example 1: Transforming an Array of Random Complex Numbers
	Output
	Additional Examples
	Example 2: Cyclical Data with a Linear Trend
	Output
	Example 3: Several Transforms with Initialization
	Output
	Example 4: Convolutions using Fourier Transforms
	Output

	FAST_2DFT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal and Terminal Messages
	Example 1: Transforming an Array of Random Complex Numbers
	Output
	Additional Examples
	.Example 2: Cyclical 2D Data with a Linear Trend
	Output
	Example 3: Several 2D Transforms with Initialization
	Output

	FAST_3DFT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal and Terminal Messages
	Example: Transforming an Array of Random Complex Numbers
	Output

	FFTRF
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FFTRB
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FFTRI
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FFTCF
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FFTCB
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FFTCI
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FSINT
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FSINI
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FCOST
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FCOSI
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QSINF
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QSINB
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QSINI
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QCOSF
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QCOSB
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	QCOSI
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FFT2D
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FFT2B
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FFT3F
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FFT3B
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	RCONV
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CCONV
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	RCORL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CCORL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	INLAP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	SINLP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	Chapter 7: Nonlinear Equations
	Routines
	Usage Notes
	Zeros of a Polynomial
	Zero(s) of a Function
	Root of System of Equations

	ZPLRC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	ZPORC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	ZPOCC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	ZANLY
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output

	ZUNI
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example
	Output

	ZBREN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	ZREAL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	NEQNF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	NEQNJ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	NEQBF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	NEQBJ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	Chapter 8: Optimization
	Routines
	Usage Notes
	Unconstrained Minimization
	Minimization with Simple Bounds
	Linearly Constrained Minimization
	Nonlinearly Constrained Minimization
	Selection of Routines
	Unconstrained Minimization
	Minimization with Simple Bounds

	UVMIF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	UVMID
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	UVMGS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	UMINF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	UMING
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	UMIDH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	UMIAH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	UMCGF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	UMCGG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	UMPOL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	UNLSF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	UNLSJ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BCONF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BCONG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BCODH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BCOAH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BCPOL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BCLSF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BCLSJ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	BCNLS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output

	READ_MPS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	MPS File Format
	NAME Section
	ROWS Section
	COLUMNS Section
	RHS Section
	RANGES Section
	BOUNDS Section
	QUADRATIC Section
	ENDATA Section
	Comments
	Example 1
	Additional Examples
	Example 2

	MPS_FREE
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	DENSE_LP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output

	DLPRS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	SLPRS
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	TRAN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example
	Output

	QPROG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LCONF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	LCONG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	NNLPF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example
	Output

	NNLPG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output

	CDGRD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FDGRD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FDHES
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	GDHES
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	DDJAC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Example 1
	Output
	Example 2
	Output
	Example 3
	Output
	Example 4
	Output

	FDJAC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CHGRD
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CHHES
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CHJAC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	GGUES
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	Chapter 9: Basic Matrix/Vector Operations
	Routines
	Basic Linear Algebra Subprograms
	Programming Notes for Level 1 BLAS
	Descriptions of the Level 1 BLAS Subprograms
	Specification of the Level 1 BLAS
	Set a Vector to a Constant Value
	Copy a Vector
	Scale a Vector
	Multiply a Vector by a Constant
	Add a Constant to a Vector
	Subtract a Vector from a Constant
	Constant Times a Vector Plus a Vector
	Swap Two Vectors
	Dot Product
	Dot Product with Higher Precision Accumulation
	Constant Plus Dot Product with Higher Precision Accumulation
	Dot Product Using the Accumulator
	Hadamard Product
	Triple Inner Product
	Sum of the Elements of a Vector
	Sum of the Absolute Values of the Elements of a Vector
	Euclidean or 2 Norm of a Vector
	Product of the Elements of a Vector
	Index of Element Having Minimum Value
	Index of Element Having Maximum Value
	Index of Element Having Minimum Absolute Value
	Index of Element Having Maximum Absolute Value
	Construct a Givens Plane Rotation
	Apply a Plane Rotation
	Construct a Modified Givens Transformation
	Apply a Modified Givens Transformation

	Programming Notes for Level 2 and Level 3 BLAS
	Descriptions of the Level 2 and Level 3 BLAS
	Specification of the Level 2 BLAS
	Specification of the Level 3 BLAS
	Matrix–Vector Multiply, General
	Matrix–Vector Multiply, Banded
	Matrix-Vector Multiply, Hermitian
	Matrix-Vector Multiply, Packed Hermitian
	Matrix-Vector Multiply, Hermitian and Banded
	Matrix-Vector Multiply, Symmetric and Real
	Matrix-Vector Multiply, Packed Symmetric and Real
	Matrix-Vector Multiply, Symmetric and Banded
	Matrix-Vector Multiply, Triangular
	Matrix-Vector Multiply, Packed Triangular
	Matrix-Vector Multiply, Triangular and Banded
	Matrix-Vector Solve, Triangular
	Matrix-Vector Solve, Triangular and Banded
	Matrix-Vector Solve, Packed Triangular
	Rank-One Matrix Update, General and Real
	Rank-One Matrix Update, General, Complex, and Transpose
	Rank-One Matrix Update, General, Complex, and Conjugate Transpose
	Rank-One Matrix Update, Hermitian and Conjugate Transpose
	Rank-One Matrix Update, Packed Hermitian and Conjugate Transpose
	Rank-Two Matrix Update, Hermitian and Conjugate Transpose
	Rank-Two Matrix Update, Packed Hermitian and Conjugate Transpose
	Rank-One Matrix Update, Symmetric and Real
	Rank-One Matrix Update, Packed Symmetric and Real
	Rank-One Matrix Update, Packed Hermitian
	Rank-Two Matrix Update, Symmetric and Real
	Rank-Two Matrix Update, Packed Symmetric and Real
	Matrix-Matrix Multiply, General
	Matrix-Matrix Multiply, Symmetric
	Matrix-Matrix Multiply, Hermitian
	Rank-k Update, Symmetric
	Rank-k Update, Hermitian
	Rank-2k Update, Symmetric
	Rank-2k Update, Hermitian
	Matrix-Matrix Multiply, Triangular
	Matrix-Matrix Solve, Triangular

	Programming Notes for BLAS Using NVIDIA
	Rationale, General Algorithm and an Example
	Enumeration of IMSL/NVIDIA BLAS
	Required NVIDIA Copyright Notice:

	CUBLAS_GET
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example
	Output

	CUBLAS_SET
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example
	Output

	CHECK_BUFFER_ALLOCATION
	Required Arguments
	FORTRAN 90 Interface
	Description

	CUDA_ERROR_PRINT
	Required Arguments
	FORTRAN 90 Interface
	Description

	Other Matrix/Vector Operations
	CRGRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CCGCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CRBRB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CCBCB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CRGRB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CRBRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CCGCB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CCBCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CRGCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CRRCR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CRBCB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CSFRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CHFCG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CSBRB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CHBCB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	TRNRR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	MXTXF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	MXTYF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	MXYTF
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	MRRRR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	MCRCR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	HRRRR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	BLINF
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	POLRG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	MURRV
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	MURBV
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	MUCRV
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	MUCBV
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	ARBRB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	ACBCB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	NRIRR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	NR1RR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	NR2RR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	NR1RB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	NR1CB
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	DISL2
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	DISL1
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	DISLI
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	VCONR
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	VCONC
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	Extended Precision Arithmetic
	Example
	Output

	Chapter 10: Linear Algebra Operators and Generic Functions
	Routines
	Usage Notes
	Matrix Optional Data Changes
	Operator_ex36.f90

	Dense Matrix Computations
	Dense Matrix Functions
	Dense Matrix Parallelism Using MPI
	General Remarks
	Getting Started with Modules MPI_setup_int and MPI_node_int
	Using Processors

	Sparse Matrix Computations
	Introduction
	Derived Type Definitions
	Overloaded Assignments
	Sparse = Collection of Triplets
	Sparse = Dense
	Dense = Sparse
	Scalar = s_hbc_entry(Sparse, I, J)

	.x.
	Operator Return Value
	Required Operands
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex03.f90)
	Sparse Matrix Example

	Parallel Example (parallel_ex03.f90)

	.tx.
	Operator Return Value
	Required Operands
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex05.f90)
	Sparse Matrix Example
	Output

	Parallel Example (parallel_ex05.f90)

	.xt.
	Operator Return Value
	Required Operands
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex14.f90)
	Sparse Matrix Example
	Output

	Parallel Example (parallel_ex15.f90)

	.hx.
	Operator Return Value
	Required Operands
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex32.f90)
	Sparse Matrix Example
	Output
	Parallel Example

	.xh.
	Operator Return Value
	Required Operands
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example
	Output
	Sparse Matrix Example
	Output
	Parallel Example

	.t.
	Operator Return Value
	Required Operand
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex07.f90)
	Sparse Matrix Example
	Output

	.h.
	Operator Return Value
	Required Operand
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex34.f90)
	Sparse Matrix Example
	Output

	.i.
	Operator Return Value
	Required Operand
	Optional Variables, Reserved Names
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex02.f90)
	Parallel Example (parallel_ex02.f90)

	.ix.
	Operator Return Value
	Required Operands
	Optional Variables, Reserved Names
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex01.f90)
	Sparse Matrix Example 1
	Output
	Sparse Matrix Example 2: Plane Poisson Problem with Dirichlet Boundary Conditions
	Parallel Example (parallel_ex01.f90)

	.xi.
	Operator Return Value
	Required Operands
	Optional Variables, Reserved Names
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example
	Sparse Matrix Example
	Output
	Parallel Example

	CHOL
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex06.f90)
	Parallel Example (parallel_ex06.f90)

	COND
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex02.f90)
	Output
	Sparse Matrix Example
	Output
	Parallel Example (parallel_ex02.f90)

	DET
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex02.f90)
	Parallel Example (parallel_ex02.f90)

	DIAG
	Function Return Value
	Required Argument
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex13.f90)

	DIAGONALS
	Function Return Value
	Required Argument
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex32.f90)

	EIG
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example 1 (operator_ex26.f90)
	Dense Matrix Example 2 (operator_ex33.f90)
	Parallel Example (parallel_ex04.f90)

	EYE
	Function Return Value
	Required Argument
	FORTRAN 90 Interface
	Description
	Examples
	Dense Matrix Example (operator_ex07.f90)

	FFT
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Examples (operator_ex37.f90)

	FFT_BOX
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Examples
	Parallel Example

	IFFT
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Example (operator_ex37.f90)

	IFFT_BOX
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Parallel Example

	isNaN
	Function Return Value
	Required Argument
	FORTRAN 90 Interface
	Description
	Example

	NaN
	Function Return Value
	Required Argument
	FORTRAN 90 Interface
	Description
	Example

	NORM
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Examples
	Parallel Example (parallel_ex14.f90)

	ORTH
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Examples
	(Operator_ex19.f90)
	Parallel Example

	RAND
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Example

	RANK
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Examples
	Output
	Parallel Example

	SVD
	Function Return Value
	Required Argument
	Optional Arguments, Packaged Options
	FORTRAN 90 Interface
	Description
	Examples
	operator_ex14.f90
	Parallel Example (parallel_ex14.f90)

	UNIT
	Function Return Value
	Required Argument
	FORTRAN 90 Interface
	Description
	Example (operator_ex28.f90)

	Chapter 11: Utilities
	Routines
	Usage Notes for ScaLAPACK Utilities
	ScaLAPACK Supporting Modules

	ScaLAPACK_SETUP
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	ScaLAPACK_GETDIM
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	ScaLAPACK_READ
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Example

	ScaLAPACK_WRITE
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Example 1: Distributed Transpose of a Matrix, In Place
	Output
	Additional Examples
	Example 2: Distributed Matrix Product with PBLAS
	Output
	Example 3: Distributed Linear Solver with ScaLAPACK
	Output

	ScaLAPACK_MAP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Example

	ScaLAPACK_UNMAP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Example: Distributed Linear Solver with IMSL ScaLAPACK Interface
	Output

	ScaLAPACK_EXIT
	Required Arguments
	FORTRAN 90 Interface
	Description

	ERROR_POST
	Required Argument
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Managing the Message File
	Changing Messages
	Building a New Direct-access Message File
	Private Message Files

	SHOW
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal and Terminal Error Messages
	Example 1: Printing an Array
	Output
	Additional Examples
	Example 2: Writing an Array to a Character Variable
	Output

	WRRRN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	WRRRL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	WRIRN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	WRIRL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	WRCRN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	WRCRL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	WROPT
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	PGOPT
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	PERMU
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	PERMA
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	SORT_REAL
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal and Terminal Error Messages
	Example 1: Sorting an Array
	Output
	Additional Examples
	Example 2: Sort and Final Move with a Permutation
	Output

	SVRGN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	SVRGP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	SVIGN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	SVIGP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	SVRBN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	SVRBP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	SVIBN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	SVIBP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	SRCH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	ISRCH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	SSRCH
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	ACHAR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	IACHAR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	ICASE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	IICSR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	IIDEX
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CVTSI
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	CPSEC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Comments

	TIMDY
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	TDATE
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	NDAYS
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	NDYIN
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	IDYWK
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	VERML
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output

	RAND_GEN
	Required Argument
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Fatal and Terminal Error Messages
	Example 1: Running Mean and Variance
	Output
	Additional Examples
	Example 2: Seeding, Using, and Restoring the Generator
	Output
	Example 3: Generating Strategy with a Histogram
	Output
	Example 4: Generating with a Cosine Distribution
	Output

	RNGET
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RNSET
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RNOPT
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RNIN32
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RNGE32
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	RNSE32
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RNIN64
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description

	RNGE64
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	RNSE64
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RNUNF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	RNUN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	FAURE_INIT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface

	FAURE_FREE
	Required Arguments
	FORTRAN 90 Interface

	FAURE_NEXT
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Example
	Output

	IUMAG
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	UMAG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	DUMAG
	PLOTP
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	PRIME
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CONST
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	CUNIT
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	HYPOT
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	MP_SETUP
	Function Return Value
	Required Argument
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Examples
	Parallel Example (parallel_ex01.f90)
	Parallel Example (parallel_ex04.f90)

	Reference Material
	Contents
	User Errors
	What Determines Error Severity
	Terminal errors
	Informational errors
	Other errors

	Kinds of Errors and Default Actions
	Errors in Lower-Level Routines
	Routines for Error Handling

	ERSET
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface

	IERCD and N1RTY
	Examples
	Changes to default actions
	Use of informational error to determine program action
	Examples of errors
	Output
	Example of traceback
	Output

	Machine-Dependent Constants
	IMACH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface

	AMACH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Comments

	DMACH
	IFNAN(X)
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	UMACH
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	Matrix Storage Modes
	General Mode
	Rectangular Mode
	Symmetric Mode
	Hermitian Mode
	Triangular Mode
	Band Storage Mode
	Band Symmetric Storage Mode
	Band Hermitian Storage Mode
	Band Triangular Storage Mode
	Codiagonal Band Symmetric Storage Mode
	Codiagonal Band Hermitian Storage Mode
	Sparse Matrix Storage Mode
	Packed Symmetric Matrix Storage Mode
	Packed Triangular Matrix Storage Mode
	Packed Hermitian Matrix Storage Mode

	Reserved Names
	Deprecated Features and Renamed Routines
	Automatic Workspace Allocation
	Changing the Amount of Space Allocated
	Output

	Character Workspace

	Appendix A: GAMS Index
	Description
	IMSL MATH LIBRARY

	Appendix B: Alphabetical Summary of Routines
	Routines

	Appendix C: References
	Adams et al.
	Aird and Howell
	Aird and Rice
	Akima
	Anderson et al.
	Arushanian et al.
	Ashcraft
	Ashcraft et al.
	Atkinson
	Atchison and Hanson
	Bischof et al.
	Bjorck
	Boisvert (1984)
	Boisvert, Howe, and Kahaner
	Boisvert, Howe, Kahaner, and Springmann
	Blackford et al.
	Brankin et al.
	Brenan, Campbell, and Petzold
	Brenner
	Brent
	Brigham
	Cheney
	Cline et al.
	Cody, Fraser, and Hart
	Cohen and Taylor
	Cooley and Tukey
	Courant and Hilbert
	Craven and Wahba
	Crowe et al.
	Crump
	Davis and Rabinowitz
	de Boor
	de Hoog, Knight, and Stokes
	Demmel et al
	Dennis and Schnabel
	Dongarra et al.
	Draper and Smith
	Du Croz et al.
	Duff and Reid
	Duff et al.
	Duff et al.
	Enright and Pryce
	Fabijonas
	Fabijonas et al.
	Forsythe
	Fox, Hall, and Schryer
	Garbow
	Garbow et al.
	Gautschi
	Gautschi and Milovanofic
	Gay
	Gear
	Gear and Petzold
	George and Liu
	Gill et al.
	Goldfarb and Idnani
	Golub
	Golub and Van Loan
	Golub and Welsch
	Gregory and Karney
	Griffin and Redish
	Grosse
	Guerra and Tapia
	Hageman and Young
	Hanson
	Hanson et al.
	Hartman
	Hausman
	Hindmarsh
	Hull et al.
	IEEE
	IMSL (1991)
	Irvine et al.
	Jenkins
	Jenkins and Traub
	Kennedy and Gentle
	Kershaw
	Knuth
	Krogh
	Lawson et al.
	Leavenworth
	Lehoucq et al.
	Levenberg
	Lewis et al.
	Liepman
	Liu
	Liu and Ashcraft
	Lyness and Giunta
	Madsen and Sincovec
	Marquardt
	Martin and Wilkinson
	Matsumoto and Nishimure
	Micchelli et al.
	Moler and Stewart
	More et al.
	Muller
	Murtagh
	Murty
	Nelder and Mead
	Neter and Wasserman
	NVIDIA
	Park and Miller
	Parlett
	Patterson
	Pereyra
	Petro
	Petzold
	Piessens et al.
	Powell
	Pruess and Fulton
	Ralston
	Reinsch
	Rice
	Saad and Schultz
	Schittkowski
	Schnabel
	Schreiber and Van Loan
	Scott et al.
	Sewell
	Shampine
	Shampine and Gear
	Sorensen
	Sincovec and Madsen
	Singleton
	Smith
	Smith et al.
	Spang
	Stewart
	Stoer
	Stroud and Secrest
	Titchmarsh
	Trench
	Volkov
	Walker
	Washizu
	Watkins and Elsner
	Weeks
	Wilkinson
	Wilmot et al.

	Appendix D: Benchmarking or Timing Programs
	Scalar Program Descriptions
	Parallel Program Descriptions

	Product Support
	Contacting IMSL Support

	Index

