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Introduction 

The IMSL Fortran Numerical Library 
The IMSL Fortran Numerical Library consists of two separate but coordinated Libraries that allow 

easy user access. These Libraries are organized as follows:  

 MATH/LIBRARY general applied mathematics and special functions  

The User‘s Guide for IMSL MATH/LIBRARY has two parts: 

1. MATH/LIBRARY 

2. MATH/LIBRARY Special Functions 

 STAT/LIBRARY statistics  

Most of the routines are available in both single and double precision versions. Many routines for 

linear solvers and eigensystems are also available for complex and double -complex precision 

arithmetic. The same user interface is found on the many hardware versions that span the range 

from personal computer to supercomputer.  

This library is the result of a merging of the products: IMSL Fortran Numerical Libraries and 

IMSL Fortran 90 Library. 

User Background 
To use this product you should be familiar with the Fortran 90 language as well as the withdrawn 

Fortran 77 language, which is, in practice, a subset of Fortran 90. A summary of the ISO and 

ANSI standard language is found in Metcalf and Reid (1990). A more comprehensive illustration 

is given in Adams et al. (1992). 

Those routines implemented in the IMSL Fortran Numerical Library provide a simpler, more 

reliable user interface than was possible with Fortran 77.  Features of the IMSL Fortran Numerical 

Library include the use of descriptive names, short required argument lists, packaged user-

interface blocks, a suite of testing and benchmark software, and a collection of examples. Source 

code is provided for the benchmark software and examples. 

Some of the routines in the IMSL Fortran Numerical Library can take advantage of a standard 

(MPI) Message Passing Interface environment but do not require an MPI environment if the user 

chooses to not take advantage of MPI.  
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The MPI logo shown below cues the reader when this is the case: 

 

Routines documented with the MPI Capable logo can be called in a scalar or one computer 

environment.  

Other routines in the IMSL Library take advantage of MPI and require that an MPI environment 

be present in order to use them. The MPI Required logo shown below clues the reader when this is 

the case: 

 

NOTE: It is recommended that users considering using the MPI capabilities of the product read 

the following sections of the MATH Library documentation:   

Introduction: Using MPI Routines,   

Introduction: Using ScaLAPACK Enhanced Routines,  

Chapter 10, Linear Algebra Operators and Generic Functions – see Dense Matrix Parallelism 

Using MPI. 

 

Vendor Supplied Libraries Usage 

The IMSL Fortran Numerical Library contains functions which may take advantage of functions 

in vendor supplied libraries such as Intel‘s
®
 Math Kernel Library (MKL) or Sun‘s


 High 

Performance Library. Functions in the vendor supplied libraries are finely tuned for performance 

to take full advantage of the environment for which they are supplied. For these functions, the user 

of the IMSL Fortran Numerical Library has the option of linking to code which is based on either 

the IMSL legacy functions or the functions in the vendor supplied library.  The following icon in 

the function documentation alerts the reader when this is the case: 

 

Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are 

explained in the online README file of the product distribution. 

Getting Started 
The IMSL MATH/LIBRARY is a collection of Fortran routines and functions useful in 

mathematical analysis research and application development. Each routine is designed and 

documented for use in research activities as well as by technical specialists. 
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To use any of these routines, you must write a program in Fortran 90 (or possibly some other  

language) to call the MATH/LIBRARY routine. Each routine conforms to established conventions 

in programming and documentation. We give first priority in development to efficient algorithms, 

clear documentation, and accurate results. The uniform design of the routines makes it easy to use 

more than one routine in a given application. Also, you will find that the design consistency 

enables you to apply your experience with one MATH/LIBRARY routine to other IMSL routines 

that you use. 

Finding the Right Routine 
The MATH/LIBRARY is organized into chapters; each chapter contains routines with similar 

computational or analytical capabilities. To locate the right routine for a given problem, you may 

use either the table of contents located in each chapter introduction, or the alphabetical list of 

routines.  The GAMS index uses GAMS classification (Boisvert, R.F., S.E. Howe, D.K. Kahaner, 

and J. L. Springmann 1990, Guide to Available Mathematical Software, National Institute of 

Standards and Technology NISTIR 90-4237). Use the GAMS index to locate which 

MATH/LIBRARY routines pertain to a particular topic or problem. 

Often the quickest way to use the MATH/LIBRARY is to find an example similar to your problem 

and then to mimic the example. Each routine document has at least one example demonstrating its 

application. The example for a routine may be created simply for illustration, it may be from a 

textbook (with reference to the source), or it may be from the mathematical literature. 

Organization of the Documentation 
This manual contains a concise description of each routine, with at least one demonstrated exam-

ple of each routine, including sample input and results. You will find all information pertaining to 

the MATH/LIBRARY in this manual. Moreover, all information pertaining to a particular routine 

is in one place within a chapter. 

Each chapter begins with an introduction followed by a table of contents that lists the routines 

included in the chapter. Documentation of the routines consists of the following information: 

 IMSL Routine‘s Generic Name  

 Purpose: a statement of the purpose of the routine. If the routine is a function rather than a 

subroutine the purpose statement will reflect this fact. 

 Function Return Value: a description of the return value (for functions only). 

 Required Arguments: a description of the required arguments in the order of their occurrence. 

Input arguments usually occur first, followed by input/output arguments, with output 

arguments described last. Futhermore, the following terms apply to arguments: 

Input Argument must be initialized; it is not changed by the routine. 

Input/Output Argument must be initialized; the routine returns output through this 

argument; cannot be a constant or an expression. 

Input[/Output] Argument must be initialized; the routine may return output through this 

argument based on other optional data the user may choose to pass to this routine; cannot 

be a constant or an expression. 
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Input or Output Select appropriate option to define the argument as either input or output. 

See individual routines for further instructions. 

Output No initialization is necessary; cannot be a constant or an expression. The routine 

returns output through this argument.  

 Optional Arguments: a description of the optional arguments in the order of their occurrence. 

 Fortran 90 Interface: a section that describes the generic and specific interfaces to the routine. 

 Fortran 77 Style Interface: an optional section, which describes Fortran 77 style interfaces, is 

supplied for backwards compatibility with previous versions of the Library. 

 ScaLAPACK Interface: an optional section, which describes an interface to a ScaLAPACK 

based version of this routine. 

 Description: a description of the algorithm and references to detailed information. In many 

cases, other IMSL routines with similar or complementary functions are noted. 

 Comments: details pertaining to code usage. 

 Programming notes: an optional section that contains programming details not covered 

elsewhere. 

 Example: at least one application of this routine showing input and required dimension and 

type statements. 

 Output: results from the example(s). Note that unique solutions may differ from platform to 

platform. 

 Additional Examples: an optional section with additional applications of this routine showing 

input and required dimension and type statements. 

Naming Conventions 
The names of the routines are mnemonic and unique. Most routines are available in both a single 

precision and a double precision version, with names of the two versions sharing a common root. 

The root name is also the generic interface name. The name of the double precision specific 

version begins with a ―D_‖  and the single precision specific version begins with an ―S_‖. For 

example, the following pairs are precision specific names of routines in the two different 

precisions: S_GQRUL/D_GQRUL (the root is ―GQRUL ,‖ for ―Gauss quadrature rule‖) and 

S_RECCF/D_RECCF (the root is ―RECCF,‖ for ―recurrence coefficient‖). The precision specific 

names of the IMSL routines that return or accept the type complex data begin with the letter ―C_‖ 

or ―Z_‖ for complex or double complex, respectively. Of course, the generic name can be used as 

an entry point for all precisions supported. 

When this convention is not followed the generic and specific interfaces are noted in the 

documentation. For example, in the case of the BLAS and trigonometric intrinsic functions where 

standard names are already established, the standard names are used as the precision specific 

names. There may also be other interfaces supplied to the routine to provide for backwards 

compatibility with previous versions of the IMSL Fortran Numerical Library. These alternate 

interfaces are noted in the documentation when they are available.  
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Except when expressly stated otherwise, the names of the variables in the argument lists follow 

the Fortran default type for integer and floating point. In other words, a variable whose name 

begins with one of the letters ―I‖ through ―N‖ is of type INTEGER, and otherwise is of type REAL 

or DOUBLE PRECISION, depending on the precision of the routine. 

An assumed-size array with more than one dimension that is used as a Fortran argument can have 

an assumed-size declarator for the last dimension only. In the MATH/LIBRARY routines, the 

information about the first dimension is passed by a variable with the prefix ―LD‖ and with the 

array name as the root. For example, the argument LDA contains the leading dimension of array A. 

In most cases, information about the dimensions of arrays is obtained from the array through the 

use of Fortran 90‘s size function.  Therefore, arguments carrying this type of information are 

usually defined as optional arguments. 

Where appropriate, the same variable name is used consistently throughout a chapter in the 

MATH/LIBRARY. For example, in the routines for random number generation, NR denotes the 

number of random numbers to be generated, and R or IR denotes the array that stores the numbers. 

When writing programs accessing the MATH/LIBRARY, the user should choose Fortran names 

that do not conflict with names of IMSL subroutines, functions, or named common blocks. The 

careful user can avoid any conflicts with IMSL names if, in choosing names, the following rules 

are observed: 

 Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of the 

User’s Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_. 

 Do not choose a name consisting of more than three characters with a numeral in the second 

or third position. 

For further details, see the section on ―Reserved Names‖ in the Reference Material. 

Using Library Subprograms 
The documentation for the routines uses the generic name and omits the prefix, and hence the 

entire suite of routines for that subject is documented under the generic name. 

Examples that appear in the documentation also use the generic name. To further illustrate this 

principle, note the LIN_SOL_GEN documentation (see Chapter 1, Linear Systems), for solving 

general systems of linear algebraic equations. A description is provided for just one data type. 

There are four documented routines in this subject area: s_lin_sol_gen, d_lin_sol_gen, 

c_lin_sol_gen, and z_lin_sol_gen. 

These routines constitute single-precision, double-precision, complex, and double-complex 

precision versions of the code. 

The Fortran 90 compiler identifies the appropriate routine. Use of a module is required with the 

routines. The naming convention for modules joins the suffix ―_int‖ to the generic routine 

name. Thus, the line ―use lin_sol_gen_int‖ is inserted near the top of any routine that calls 

the subprogram ―lin_sol_gen‖. More inclusive modules are also available, such as 

imsl_libraries and numerical libraries. To avoid name conflicts, Fortran 90 permits re-

labeling names defined in modules so they do not conflict with names of routines or variables in 

the user‘s program.  The user can also restrict access to names defined in IMSL Library modules 

by use of the ―: ONLY, <list of names>‖ qualifier. 
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When dealing with a complex matrix, all references to the transpose of a matrix, 
TA , are replaced 

by the adjoint matrix 

*T HA A A   

where the overstrike denotes complex conjugation.  IMSL Fortran Numerical  Library linear 

algebra software uses this convention to conserve the utility of generic documentation for that 

code subject. All references to orthogonal matrices are to be replaced by their complex 

counterparts, unitary matrices. Thus, an n  n orthogonal matrix Q satisfies the 

condition
T

nQ Q I . An n  n unitary matrix V satisfies the analogous condition for complex 

matrices, nV V I  . 

Programming Conventions 
In general, the IMSL MATH/LIBRARY codes are written so that computations are not affected by 

underflow, provided the system (hardware or software) places a zero value in the register. In this 

case, system error messages indicating underflow should be ignored. 

IMSL codes are also written to avoid overflow. A program that produces system error messages 

indicating overflow should be examined for programming errors such as incorrect input data, 

mismatch of argument types, or improper dimensioning. 

In many cases, the documentation for a routine points out common pitfalls that can lead to failure 

of the algorithm. 

Library routines detect error conditions, classify them as to severity, and treat them accordingly. 

This error-handling capability provides automatic protection for the user without requiring the user 

to make any specific provisions for the treatment of error conditions. See the section on ―User 

Errors‖ in the Reference Material for further details. 

Module Usage 
Users are required to incorporate a ―use‖ statement near the top of their program for the IMSL 

routine being called when writing new code that uses this library. However, legacy code which 

calls routines in the previous version of the library without the use of a ―use‖ statement will 

continue to work as before.  Also, code that employed the ―use numerical_libraries‖ 

statement from the previous version of the library will continue to work properly with this version 

of the library. 

Users wishing to update existing programs so as to call other routines from this library should 

incorporate a use statement for the specific new routine being called. (Here, the term ―new 

routine‖ implies any routine in the library, only ―new‖ to the user‘s program.) Use of the more 

encompassing ―imsl_libraries‖ module in this case could result in argument mismatches for 

the ―old‖ routine(s) being called. (The compiler would catch this.) 

Users wishing to update existing programs to call the new generic versions of the routines must 

change their calls to the existing routines to match the new calling sequences and use either the 

routine specific interface modules or the all-encompassing ―imsl_libraries‖ module.  
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Using MPI Routines  

  

Users of the IMSL Fortran Numerical Library benefit by having a standard (MPI) Message 

Passing Interface environment. This is needed to accomplish parallel computing within parts of 

the Library. Either of the icons above clues the reader when this is the case. If parallel computing 

is not required, then the IMSL Library suite of dummy MPI routines can be substituted for 

standard MPI routines. All requested MPI routines called by the IMSL Library are in this dummy 

suite. Warning messages will appear if a code or example requires more than one process to 

execute. Typically users need not be aware of the parallel codes.  
 

NOTE: that a standard MPI environment is not part of the IMSL Fortran Numerical Library. The 

standard includes a library of MPI Fortran and C routines, MPI ―include‖ files, usage 

documentation, and other run-time utilities. 

NOTE: Details on linking to the appropriate libraries are explained in the online README file of 

the product distribution. 

There are three situations of MPI usage in the IMSL Fortran Numerical Library: 

1. There are some computations that are performed with the ‗box‘ data type that benefit from the 

use of parallel processing. For computations involving a single array or a single problem, 

there is no IMSL use of parallel processing or MPI codes. The box type data type implies that 

several problems of the same size and type are to be computed and solved. Each rack of the 

box is an independent problem. This means that each problem could potentially be solved in 

parallel. The default for computing a box data type calculation is that a single processor will 

do all of the problems, one after the other. If this is acceptable there should be no further 

concern about which version of the libraries is used for linking. If the problems are to be 

solved in parallel, then the user must link with a working version of an MPI Library and the 

appropriate IMSL Library. Examples demonstrating the use of box type data may be found in 

Chapter 10, ―Linear Algebra Operators and Generic Functions‖. 

NOTE:  Box data type routines are marked with the MPI Capable icon.  

2. Various routines in Chapter 1, ―Linear Systems‖ allow the user to interface with the 

ScaLAPACK Library routines. If the user chooses to run on only one processor then these 

routines will utilize either IMSL Library code or LAPACK Library code based on the 

libraries the user chooses to use during linking. If the user chooses to run on multiple 

processors then working versions of MPI, ScaLAPACK, PBLAS, and Blacs will need to be 

present. These routines are marked with the MPI Capable icon. 

3. There are some routines or operators in the Library that require that a working MPI Library be 

present in order for them to run. Examples are the large-scale parallel solvers and the 

ScaLAPACK utilities. Routines of this type are marked with the MPI Required icon. For 

these routines, the user must link with a working version of an MPI Library and the 

appropriate IMSL Library.  

In all cases described above it is the user‘s responsibility to supply working versions of the 

aforementioned third party libraries when those libraries are required.  
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Table A below lists the chapters and IMSL routines calling MPI routines or the replacement non-

parallel package.  
 

Chapter Name and Number Routine with MPI Utilized 

Linear Systems, 1 PARALLEL_NONNEGATIVE_LSQ 

Linear Systems, 1 PARALLEL_BOUNDED_LSQ 

Linear Systems, 1 Those routines which utilize ScaLAPACK 

listed in Table D below. 

Linear Algebra and Generic Functions, 10 See entire following  

Table B.1 – Defined Operators and Generic Functions 

Utilities, 11 ScaLAPACK_SETUP 

Utilities, 11 ScaLAPACK_GETDIM 

Utilities, 11 ScaLAPACK_READ 

Utilities, 11 ScaLAPACK_WRITE 

Utilities, 11 ScaLAPACK_MAP 

Utilities, 11 ScaLAPACK_UNMAP 

Utilities, 11 ScaLAPACK_EXIT 

Reference Material Entire Error Processor Package for IMSL 

Library, if MPI is utilized 

Table A - IMSL Routines Calling MPI Routines or Replacement Non-Parallel Package 

 

 

Programming Tips 
Each subject routine called or otherwise referenced requires the ―use‖ statement for an interface 

block designed for that subject routine. The contents of this interface block are the interfaces to the 

separate routines available for that subject.  Packaged descriptive names for option numbers that 

modify documented optional data or internal parameters might also be provided in the interface 

block. Although this seems like an additional complication, many errors are avoided at an early 

stage in development through the use of these interface blocks. The ―use‖ statement is required 

for each routine called in the user‘s program. As illustrated in Examples 3 and 4 in routine 

lin_geig_gen, the ―use‖ statement is required for defining the secondary option flags. 

The function subprogram for s_NaN() or d_NaN() does not require an interface block because it 

has only a single  ―required‖ dummy argument. Also, if one is only using the Fortran 77 interfaces 

supplied for backwards compatibility then the ―use‖ statements are not required. 
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Optional Subprogram Arguments 
IMSL Fortran Numerical Library routines have required arguments and may have optional 

arguments. All arguments are documented for each routine. For example, consider the routine 

lin_sol_gen that solves the linear algebraic matrix equation Ax = b. The required arguments are 

three rank-2 Fortran 90 arrays: A, b, and x. The input data for the problem are the A and b arrays; 

the solution output is the x array. Often there are other arguments for this linear solver that are 

closely connected with the computation but are not as compelling as the primary problem. The 

inverse matrix  
1A

may be needed as part of a larger application. To output this parameter, use 

the optional argument given by the ―ainv=‖ keyword. The rank-2 output array argument used on 

the right-hand side of the equal sign contains the inverse matrix. See Example 2 in Chapter 1, 

―Linear Systems‖ of LIN_SOL_GEN for an example of computing the inverse matrix. 

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL_LIBRARIES 

interface module includes backwards-compatible positional argument interfaces to all routines that 

existed in the Fortran 77 version of the Library. Note that it is not necessary to include ―use‖ 

statements when calling these routines by themselves.  Existing programs that called these 

routines will continue to work in the same manner as before. 

Some of the primary routines have arguments ―epack=‖ and ―iopt=‖. As noted the ―epack=‖ 

argument is of derived type s_error or d_error. The prefix ―s_‖ or ―d_‖ is chosen 

depending on the precision of the data type for that routine. These optional arguments are part of 

the interface to certain routines, and are used to modify internal algorithm choices or other 

parameters. 

Optional Data 
This additional optional argument (available for some routines) is further distinguished—a derived 

type array that contains a number of parameters to modify the internal algorithm of a routine. This 

derived type has the name ?_options, where ―?_‖ is either ―s_‖ or ―d_‖. The choice depends 

on the precision of the data type. The declaration of this derived type is packaged within the 

modules for these codes. 

The definition of the derived types is: 

 type ?_options 

         integer idummy; real(kind(?)) rdummy 

 end type 

where the ―?_‖ is either ―s_‖ or ―d_‖,  and the kind value matches the desired data type 

indicated by the choice of ―s‖ or ―d‖. 

Example 3 in Chapter 1, ―Linear Systems‖ of LIN_SOL_GEN illustrates the use of iterative 

refinement to compute a double-precision solution based on a single-precision factorization of the 

matrix. This is communicated to the routine using an optional argument with optional data. For 

efficiency of iterative refinement, perform the factorization step once, and then save the factored 

matrix in the array A and the pivoting information in the rank-1 integer array, ipivots. By 

default, the factorization is normally discarded. To enable the routine to be re-entered with a 

previously computed factorization of the matrix, optional data are used as array entries in the 

―iopt=‖ optional argument. The packaging of LIN_SOL_GEN includes the definitions of the self-

documenting integer parameters lin_sol_gen_save_LU and lin_sol_gen_solve_A. These 
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parameters have the values 2 and 3, but the programmer usually does not need to be aware of it. 

The following rules apply to the ―iopt=iopt‖ optional argument: 

1. Define a relative index, for example IO, for placing option numbers and data into the 

array argument iopt. Initially, set IO = 1. Before a call to the IMSL Library routine, 

follow Steps 2 through 4. 

2. The data structure for the optional data array has the following form: 

iopt (IO) = ?_options (Option_number, Optional_data) 

[iopt (IO + 1) =?_options (Option_number, Optional_data)] 

 

The length of the data set is specified by the documentation for an individual routine. 

(The Optional_data is output in some cases and may not be used in other cases.) The 

square braces [. . .] denote optional items. 

 

Illustration: Example 3 in Chapter 2, ―Singular Value and Eigenvalue Decomposition‖ of 

LIN_EIG_SELF, a new definition for a small diagonal term is passed to 

LIN_SOL_SELF. There is one line of code required for the change and the new 

tolerance: 

 
iopt (1) = d_options(d_lin_sol_self_set_small,  

epsilon(one) *abs (d(i))) 

3. The internal processing of option numbers stops when Option_number == 0 or when  

IO  > SIZE(iopt). This signals each routine having this optional argument that all 

desired changes to default values of internal parameters have been made. This implies 

that the last option number is the value zero or the value of SIZE (iopt) matches the last 

optional value changed. 

4. To add more options, replace IO with IO + n, where n is the number of items required for 

the previous option. Go to Step 2. 

Option numbers can be written in any order, and any selected set of options can be changed from 

the defaults. They may be repeated. Example 3 in Chapter 1, ―Linear Solvers‖ of LIN_SOL_SELF 

uses three and then four option numbers for purposes of computing an eigenvector associated with 

a known eigenvalue. 

Overloaded =, /=, etc., for Derived Types 
To assist users in writing compact and readable code, the IMSL Fortran Numerical Library 

provides overloaded assignment and logical operations for the derived types s_options, 

d_options, s_error, and d_error. Each of these derived types has an individual record 

consisting of an integer and a floating-point number. The components of the derived types, in all 

cases, are named idummy followed by rdummy. In many cases, the item referenced is the 

component idummy. This integer value can be used exactly as any integer by use of the 

component selector character (%). Thus, a program could assign a value and test after calling 

a routine: 
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s_epack(1)%idummy = 0 

call lin_sol_gen(A,b,x,epack=s_epack) 

if (s_epack(1)%idummy > 0) call error_post(s_epack)  

Using the overloaded assignment and logical operations, this code fragment can be written in the 

equivalent and more readable form: 

s_epack(1) = 0 

call lin_sol_gen(A,b,x,epack=s_epack) 

if (s_epack(1) > 0) call error_post(s_epack)  

Generally the assignments and logical operations refer only to component idummy. The 

assignment ―s_epack(1)=0‖ is equivalent to ―s_epack(1)=s_error(0,0E0)‖. Thus, the 

floating-point component rdummy is assigned the value 0E0. The assignment statement 

―I=s_epack(1)‖, for I an integer type, is equivalent to ―I=s_epack(1)%idummy‖. The value 

of component rdummy is ignored in this assignment. For the logical operators, a single element of 

any of the IMSL Fortran Numerical  Library derived types can be in either the first or second 

operand. 

Derived Type Overloaded Assignments and Tests 

s_options I=s_options(1);s_options(1)=I = = /= < <= > >= 

s_options I=d_options(1);d_options(1)=I = = /= < <= > >= 

d_epack I=s_epack(1);s_epack(1)=I = = /= < <= > >= 

d_epack I=d_epack(1);d_epack(1)=I = = /= < <= > >= 

In the examples, operator_ex01, , _ex37, the overloaded assignments and tests have been 

used whenever they improve the readability of the code. 

Error Handling 

 

The routines in the IMSL MATH/LIBRARY attempt to detect and report errors and invalid input. 

Errors are classified and are assigned a code number. By default, errors of moderate or worse 

severity result in messages being automatically printed by the routine. Moreover, errors of worse 

severity cause program execution to stop. The severity level and the general nature of the error are 

designated by an ―error type‖ ranging from 0 to 5. An error type 0 is no error; types 1 through 5 

are progressively more severe. In most cases, you need not be concerned with our method of 

handling errors. For those interested, a complete description of the error-handling system is given 

in the Reference Material, which also describes how you can change the default actions and access 

the error code numbers.  

A separate error handler is provided to allow users to handle errors of differing types being 

reported from several nodes without danger of  ―jumbling‖ or mixing error messages. The design 

of this error handler is described more fully in Hanson (1992). The primary feature of the design is 

the use of a separate array for each parallel call to a routine. This allows the user to summarize 

errors using the routine error_post in a non-parallel part of an application. For a more detailed 

discussion of the use of this error handler in applications which use MPI for distributed 

computing, see the Reference Material. 
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Printing Results 
Most of the routines in the IMSL MATH/LIBRARY (except the line printer routines and special 

utility routines) do not print any of the results. The output is returned in Fortran variables, and you 

can print these yourself. See Chapter 11, ―Utilities,‖ for detailed descriptions of these routines. 

A commonly used routine in the examples is the IMSL routine UMACH (see the Reference Material), 

which retrieves the Fortran device unit number for printing the results. Because this routine obtains 

device unit numbers, it can be used to redirect the input or output. The section on ―Machine-

Dependent Constants‖ in the Reference Material contains a description of the routine UMACH. 

Fortran 90 Constructs 

 

The IMSL Fortran Numerical Library contains routines which take advantage of Fortran 90 

language constructs, including Fortran 90 array data types. One feature of the design is that the 

default use may be as simple as the problem statement. Complicated, professional-quality 

mathematical software is hidden from the casual or beginning user.  

 In addition, high-level operators and functions are provided in the Library. They are described in 

Chapter 10, ―Linear Algebra Operators and Generic Functions‖.  

Shared-Memory Multiprocessors and  
Thread Safety 

 

The IMSL Fortran Numerical Library allows users to leverage the high-performance technology of 

shared memory parallelism (SMP) when their environment supports it.   Support for SMP systems 

within the IMSL Library is delivered through various means, depending upon the availability of 

technologies such as OpenMP, high performance LAPACK and BLAS, and hardware-specific 

IMSL algorithms.  Use of the IMSL Fortran Numerical Library on SMP systems can be achieved 

by using the appropriate link environment variable when building your application.   Details on 

the available link environment variables for your installation of the IMSL Fortran Numerical 

Library can be found in the online README file of the product distribution.  

The IMSL Fortran Numerical Library is thread-safe in those environments that support OpenMP 

2.0.  This was achieved by using OpenMP directives that define global variables located in the 

code so they are private to the individual threads. Thread safety allows users to create instances of 

routines running on multiple threads and to include any routine in the IMSL Fortran Numerical 

Library in these threads. 
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Using Operators and Generic Functions 
For users who are primarily interested in easy-to-use software for numerical linear algebra, see 

Chapter 10, ―Linear Algebra Operators and Generic Functions‖. This compact notation for 

writing Fortran 90 programs, when it applies, results in code that is easier to read and maintain 

than traditional subprogram usage. 

Users may begin their code development using operators and generic functions. If a more efficient 

executable code is required, a user may need to switch to equivalent subroutine calls using IMSL 

Fortran Numerical Library routines. 

Table B contain lists of the defined operators and some of their generic functions.  

Defined Array Operation Matrix Operation 

A .x. B AB  

.i. A A1
 

.t. A, .h. A A AT , *
 

A .ix. B A B1
 

B .xi. A BA1
 

A .tx. B, or (.t. A) .x. B 

A .hx. B, or (.h. A) .x. B 

A B A BT , *
 

B .xt. A, or B .x. (.t. A) 

B .xh. A, or B .x. (.h. A) 

BA BAT , *
 

S=SVD(A [,U=U, V=V]) A USV T  

E=EIG(A [[,B=B, D=D], V=V, W=W]) (AV = VE), AVD = BVE, (AW = WE), AWD = BWE 

R=CHOL(A) A R RT  

Q=ORTH(A [,R=R]) 
  , TA QR Q Q I 

 

 
U=UNIT(A) u a a1 1 1, / , 

 

 

F=DET(A) det(A) = determinant 

K=RANK(A) rank(A) = rank 
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Defined Array Operation Matrix Operation 

P=NORM(A[,[type=]i]) 

 

 

1
1

12

1
1

max

largest singular value

max

m

j ij

i

n

i ijhuge
i

p A a

p A s

p A a






 
   

 

  

 
   

 




 

 
 

C=COND(A) 1A A   

 

Z=EYE(N) Z IN  

 
A=DIAG(X)  1,A diag x

 

 
X=DIAGONALS(A)  11,x x

 

 
W=FFT(Z); Z=IFFT(W) Discrete Fourier Transform, Inverse 

A=RAND(A) random numbers, 0 < A < 1 

L=isNaN(A) test for NaN, if (l) then 

Table B.1 – Defined Operators and Generic Functions for Dense Arrays 

Defined Operation Matrix Operation 

Data Management Define entries of sparse matrices 

A .x. B AB  

.t. A, .h. A A AT , *
 

A .ix. B A B1
 

B .xi. A BA1
 

A .tx. B, or (.t. A) .x. B 

A .hx. B, or (.h. A) .x. B 

A B A BT , *
 

B .xt. A, or B .x. (.t. A) 

B .xh. A, or B .x. (.h. A) 

BA BAT , *
 

A+B Sum of two sparse matrices 
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Defined Operation Matrix Operation 

C=COND(A) 1A A 
 

 

  
Table B.2 – Defined Operators and Generic Functions for Harwell-Boeing Sparse Matrices 

Using ScaLAPACK, LAPACK, LINPACK, and 
EISPACK  

Many of the codes in the IMSL Library are based on LINPACK, Dongarra et al. (1979), and 

EISPACK, Smith et al. (1976), collections of subroutines designed in the 1970s and early 1980s. 

LAPACK, Anderson et al. (1999), was designed to make the linear solvers and eigensystem 

routines run more efficiently on high performance computers. For a number of IMSL routines, the 

user of the IMSL Fortran Numerical Library has the option of linking to code which is based on 

either the legacy routines or the more efficient LAPACK routines.  

Table C below lists the IMSL routines that make use of LAPACK codes. The intent is to obtain 

improved performance for IMSL codes by using LAPACK codes that have good performance by 

virtue of using BLAS with good performance.  To obtain improved performance we recommend 

linking with High Performance versions of LAPACK and BLAS, if available. The LAPACK, 

codes are listed where they are used. Details on linking to the appropriate IMSL Library and 

alternate libraries for LAPACK and BLAS are explained in the online README file of the 

product distribution.  

 

Generic Name 
of  

IMSL Routine 

LAPACK Routines  
used when Linking with High 

Performance Libraries 

LSARG ?GERFS,?GETRF,?GECON, ?=S/D 

LSLRG ?GETRF, ?GETRS, ?=S/D 

LFCRG ?GETRF,?GECON, ?=S/D 

LFTRG ?GETRF, ?=S/D 

LFSRG ?GETRS, ?=S/D 

LFIRG ?GETRS, ?=S/D 

LINRG ?GETRF, ?GETRI ?=S/D 

LSACG ?GETRF, GETRS, ?GECON, ?=C/Z 

LSLCG ?GETRF, ?GETRS, ?=C/Z 

LFCCG ?GETRF, ?GECON, ?=C/Z 

LFTCG ?GETRF, ?C/Z 

LFSCG ?GETRS, ?C/Z 

LFICG ?GERFS,?GETRS, ?=C/Z 
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Generic Name 
of  

IMSL Routine 

LAPACK Routines  
used when Linking with High 

Performance Libraries 

LINCG ?GETRF, ?GETRI, ?=C/Z 

LSLRT ?TRTRS, ?=S/D 

LFCRT ?TRCON, ?=S/D 

LSLCT ?TRTRS, ?=C/Z 

LFCCT ?TRCON, ?=C/Z 

LSADS ?PORFS, ?POTRS, ?=S/D  

LSLDS ?POTRF,  ?POTRS, ?=S/D 

LFCDS ?POTRF,  ?POCON, ?=S/D 

LFTDS ?POTRF, ?-S/D 

LFSDS ?POTRS, ?-S/D 

LFIDS ?PORFS, ?POTRS, ?=S/D 

LINDS ?POTRF, ?=S/D 

LSASF ?SYRFS, ?SYTRF, ?SYTRS, ?=S/D 

LSLSF ?SYTRF, ?SYTRS, ?=S/D 

LFCSF ?SYTRF, ?SYCON, ?=S/D 

LFTSF ?SYTRF,  ?=S/D 

LFSSF ?SYTRF,  ?=S/D 

LFISF ?SYRFS, ?=S/D 

LSADH ?POCON, ?POTRF, ?POTRS, ?=C/Z 

LSLDH ?TRTRS, ?POTRF, ?=C/Z 

LFCDH ?POTRF, ?POCON, ?=C/Z 

LFTDH ?POTRF, ?=C/Z  

LFSDH ?TRTRS, ?=C/Z 

LFIDH ?PORFS, ?POTRS, ?=C/Z 

LSAHF ?HECON, ?HERFS, ?HETRF, ?HETRS, ?=C/Z 

LSLHF ?HECON, ?HETRF, ?HETRS, ?=C/Z 

LFCHF ?HETRF, ?HECON, ?=C/Z 

LFTHF ?HETRF, ?=C/Z 

LFSHF ?HETRS, ?=C/Z 

LFIHF ?HERFS, ?HETRS, ?=C/Z 

LSARB ?GBTRF, ?GBTRS, ?GBRFS ?=S/D 

LSLRB ?GBTRF, ?GBTRS, ?=S/D 

LFCRB ?GBTRF, ?GBCON, ?=S/D 
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Generic Name 
of  

IMSL Routine 

LAPACK Routines  
used when Linking with High 

Performance Libraries 

LFTRB   ?GBTRF, ?=S/D 

LFSRB ?GBTRS, ?=S/D 

LFIRB ?GBTRS, ?GBRFS, ?=S/D 

LSQRR ?GEQP3, ?GEQRF, ?ORMQR, ?TRTRS. ?=S/D 

LQRRV ?GEQP3, ?GEQRF, ?ORMQR, ?=S/D 

LSBRR ?GEQRF, ?=S/D 

LQRRR ?GEQRF, ?=S/D 

LSVRR ?GESVD, ?-S/D 

LSVCR ?GESVD, ?=C/Z 

LSGRR ?GESVD, ?=S/D 

LQRSL ?TRTRS, ?ORMQR, ?=S/D 

LQERR ?ORGQR, ?=S/D 

EVLRG ?GEBAL, ?GEHRD, ?HSEQR ?=S/D 

EVCRG ?GEEVX, ?=S/D 

EVLCG ?HSEQR, ?GEBAL, ?GEHRD, ?=C/Z 

EVCCG ?GEEV, ?=C/Z 

EVLSF ?SYEV, ?=S/D 

EVCSF ?SYEV, ?=S/D 

EVLHF ?HEEV, ?=C/Z 

EVCHF ?HEEV, ?=C/Z 

GVLRG ?GEQRF, ?ORMQR, ?GGHRD, ?HGEQZ, ?=S/D 

GVCRG ?GEQRF, ?ORMQR, ?GGHRD, ?HGEQZ, 

?TGEVC,  ?=S/D 

GVLCG ?GEQRF, ?UMMQR, ?GGHRD, ?HGEQZ,?=C/Z 

GVCCG ?GEQRF, ?UMMQR, ?GGHRD, 

?HGEQZ,?TGEVC,?=C/Z 

GVLSP ?SYGV, ?=S/D 

GVCSP ?SYGV, ?=S/D 

Table C – IMSL Routines and LAPACK Routines Utilized Within 

ScaLAPACK, Blackford et al. (1997), includes a subset of LAPACK codes redesigned for use on 

distributed memory MIMD parallel computers. A number of IMSL Library routines make use of a 

subset of the ScaLAPACK library.  

Table D below lists the IMSL routines that make use of ScaLAPACK codes. The intent is to 

provide access to the ScaLAPACK codes through the familiar IMSL routine interface. The IMSL 

routines that utilize ScaLAPACK codes have a ScaLAPACK Interface documented in addition to 

the FORTRAN 90 Interface. Like the LAPACK codes, access to the ScaLAPACK codes is made 
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by linking to the appropriate library. Details on linking to the appropriate IMSL Library and 

alternate libraries for ScaLAPACK and BLAS are explained in the online README file of the 

product distribution.  

 

Generic Name 
of  

IMSL Routine 

ScaLAPACK Routines  
used when Linking with High Performance 

Libraries 

LSARG P?GERFS,P?GETRF,P?GETRS, ?=S/D 

LSLRG P?GETRF, P?GETRS, ?=S/D 

LFCRG P?GETRF,P?GECON, ?=S/D 

LFTRG P?GETRF, ?=S/D 

LFSRG P?GETRS, ?=S/D 

LFIRG P?GETRS, P?GERFS, ?=S/D 

LINRG P?GETRF, P?GETRI ?=S/D 

LSACG P?GETRF, P?GETRS, P?GERFS, ?=C/Z 

LSLCG P?GETRF, P?GETRS, ?=C/Z 

LFCCG P?GETRF, P?GECON, ?=C/Z 

LFTCG P?GETRF, ?C/Z 

LFSCG P?GETRS, ?C/Z 

LFICG P?GERFS,P?GETRS, ?=C/Z 

LINCG P?GETRF, P?GETRI, ?=C/Z 

LSLRT P?TRTRS, ?=S/D 

LFCRT P?TRCON, ?=S/D 

LSLCT P?TRTRS, ?=C/Z 

LFCCT P?TRCON, ?=C/Z 

LSADS P?PORFS, P?POTRF, P?POTRS, ?=S/D  

LSLDS P?POTRF,  P?POTRS, ?=S/D 

LFCDS P?POTRF,  P?POCON, ?=S/D 

LFTDS P?POTRF, ?-S/D 

LFSDS P?POTRS, ?-S/D 

LFIDS P?PORFS, P?POTRS, ?=S/D 

LINDS P?GETRF, P?GETRI, ?=S/D 

LSADH P?POTRF, P?PORFS, P?POTRS, ?=C/Z 

LSLDH P?POTRS, P?POTRF, ?=C/Z 

LFCDH P?POTRF, P?POCON, ?=C/Z 

LFTDH P?POTRF, ?=C/Z  

LFSDH P?POTRS, ?=C/Z 
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Generic Name 
of  

IMSL Routine 

ScaLAPACK Routines  
used when Linking with High Performance 

Libraries 

LFIDH P?PORFS, P?POTRS, ?=C/Z 

LSLRB P?GBTRF, P?GBTRS, ?=S/D 

LSQRR P?GEQPF, P?GEQRF, P?ORMQR, P?TRTRS, ?=S/D 

LQRRV P?TRTRS, P?GEQRF, P?ORMQR, ?=S/D 

LQRRR P?GEQRF, P?GEQPF, P?ORMQR, ?=S/D 

LSVRR P?GESVD, ?-S/D 

LSGRR P?GESVD, ?=S/D 

LQRSL P?TRTRS, P?ORMQR, ?=S/D 

LQERR P?ORGQR, ?=S/D 

Table D – IMSL Routines and ScaLAPACK Routines Utilized Within 

Using ScaLAPACK Enhanced Routines 

 

General Remarks 

Use of the ScaLAPACK enhanced routines allows a user to solve large linear systems of algebraic 

equations at a performance level that might not be achievable on one computer by performing the 

work in parallel across multiple computers. One might also use these routines on linear systems 

that prove to be too large for the address space of the target computer. Visual Numerics has tried 

to facilitate the use of parallel computing in these situations by providing interfaces to 

ScaLAPACK routines which accomplish the task. The IMSL Library solver interface has the same 

look and feel whether one is using the routine on a single computer or across multiple computers. 

The basic steps required to utilize the IMSL routines which interface with ScaLAPACK routines 

are: 

1. Initialize MPI 

2. Initialize the processor grid 

3. Define any necessary array descriptors 

4. Allocate space for the local arrays 

5. Set up local matrices across the processor grid 

6. Call the IMSL routine which interfaces with ScaLAPACK 

7. Gather the results from across the processor grid 

8. Release the processor grid 

9. Exit MPI 
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Utilities are provided in the IMSL Library that facilitate these steps for the user.  Each of these 

utilities is documented in Chapter 11, ―Utilities‖. We visit the steps briefly here: 

1. Initialize MPI 

The user should call MP_SETUP() at this step. This function is described in detail in  

―Getting Started with Modules MPI_setup_int and MPI_node_int ‖ in Chapter 10, Linear 

Algebra Operators and Generic Functions of this manual. For ScaLAPACK usage, suffice it to say 

that following a call to the function MP_SETUP(),  the module MPI_node_int will contain 

information about the number of processors, the rank of a processor, and the communicator for the 

application.  A call to this function will return the number of processors available to the program. 

Since the module MPI_node_int is used by MPI_setup_int, it is not necessary to explicitly 

use the module MPI_node_int.  If  MP_SETUP() is not called, then the program will compute 

entirely on one node.  No routine from MPI will be called. 

2. Initialize the processor grid 

SCALAPACK_SETUP  (see  Chapter 11, ―Utilities‖) is called at this step. This call will set up the 

processor grid for the user, define the context ID variable, MP_ICTXT, for the processor grid, and 

place MP_ICTXT into the module GRIDINFO_INT. Use of SCALAPACK_SUPPORT will make the 

information in MPI_NODE_INT and GRIDINFO_INT available to the user‘s program. 

3. Define any necessary array descriptors 

Consider the generic matrix A which is to be carved up and distributed across the processors in the 

processor grid. In ScaLAPACK parlance, we refer to A as being the ―global‖ array A which is to 

be distributed across the processor grid in 2D block cyclic fashion ( Chapter 11, ―Utilities‖). Each 

processor in the grid will then have access to a subset of the global array A. We refer to the subset 

array to which the individual processor has access as the ―local‖ array A0.  Just as it is sometimes 

necessary for a program to be aware of the leading dimension of the global array A, it is also 

necessary for the program to be aware of other critical information about the local array A0.  This 

information can be obtained by calling the IMSL utility SCALAPACK_GETDIM  

(Chapter 11, ―Utilities‖). ScaLAPACK Library utility DESCINIT (see the Usage Notes section of 

Chapter 11, ―Utilities‖ ) is then used to store this information in a vector.  

4. Allocate space for the local arrays  

The array dimensions, obtained in the previous step, are used at this point to allocate space for any 

local arrays that will be used in the call to the IMSL routine. 

5. Set up local matrices across the processor grid 

If the matrices to be used by the solvers have not been distributed across the processor grid, IMSL 

provides utility routines SCALAPACK_READ  and SCALAPACK_MAP  to help in the distribution of 

global arrays across processors. SCALAPACK_READ will read data from a file while 

SCALAPACK_MAP will map a global array to the processor grid. Users may choose to distribute the 

arrays themselves as long as they distribute the arrays in 2D block cyclic fashion consistent with 

the array descriptors that have been defined. 

6. Call the IMSL routine which interfaces with ScaLAPACK 

The IMSL routines which interface with ScaLAPACK are listed in Table D. 

7. Gather the results from across the processor grid 
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IMSL provides utility routines SCALAPACK_WRITE  and SCALAPACK_UNMAP  to help in the 

gathering of results from across processors to a global array or file. SCALAPACK_WRITE will write 

data to a file while SCALAPACK_UNMAP will map local arrays from the processor grid to a global 

array. 

8. Release the processor grid 

This is accomplished by a call to SCALAPACK_EXIT. 

9. Exit MPI 

A call to MP_SETUP with the argument ‗FINAL‘ will shut down MPI and set the value of 

MP_NPROCS = 0. This flags that MPI has been initialized and terminated.  It cannot be initialized 

again in the same program unit execution.  No MPI routine is defined when MP_NPROCS has this 

value. 
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Chapter 1: Linear Systems 

Routines 

1.1 Linear Solvers 

1.1.1 Solves a general system of linear equations  
Ax = b ...................................................................... LIN_SOL_GEN 10 

1.1.2 Solves a system of linear equations Ax = b, where A is a self-adjoint 
matrix ..................................................................... LIN_SOL_SELF 18 

1.1.3 Solves a rectangular system of linear equations Ax  b,  
in a least-squares sense .......................................... LIN_SOL_LSQ 27 

1.1.4 Solves a rectangular least-squares system of linear equations  

Ax ≅ b using singular value decomposition............. LIN_SOL_SVD 36 

1.1.5 Solves multiple systems of linear equations ............. LIN_SOL_TRI 45 

1.1.6 Computes the singular value decomposition (SVD)  
of a rectangular matrix, A .................................................. LIN_SVD 57 

1.2. Large-Scale Parallel Solvers 

1.2.1 Parallel Constrained Least-Squares Solvers  .................................  66 

1.2.2 Solves a linear, non-negative constrained least-squares  
system ..................................... PARALLEL_NONNEGATIVE_LSQ 67 

1.2.3 Solves a linear least-squares system with bounds on  
the unknowns .................................. PARALLEL_BOUNDED_LSQ 75 

1.3. Solution of Linear Systems, Matrix Inversion, and Q Determinant 
Evaluation 

1.3.1 Real General Matrices 
High accuracy linear system solution  ................................. LSARG 83 
Solves a linear system ......................................................... LSLRG 87 
Factors and computes condition number ............................ LFCRG 93 
Factors ................................................................................. LFTRG 99 
Solves after factoring ........................................................... LFSRG 103 
High accuracy linear system solution after factoring ............ LFIRG 108 
Computes determinant after factoring ................................. LFDRG 113 
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Inverts ................................................................................... LINRG 115 

1.3.2 Complex General Matrices 
High accuracy linear system solution .................................. LSACG 119 
Solves a linear system ......................................................... LSLCG 123 
Factors and computes condition number ............................ LFCCG 128 
Factors.................................................................................. LFTCG 134 
Solves a linear system after factoring ................................. LFSCG 138 
High accuracy linear system solution after factoring ............. LFICG 143 
Computes determinant after factoring ................................. LFDCG 148 
Inverts ................................................................................... LINCG 150 

1.3.3 Real Triangular Matrices 
Solves a linear system ......................................................... LSLRT 154 
Computes condition number ................................................ LFCRT 158 
Computes determinant after factoring .................................. LFDRT 162 
Inverts .................................................................................... LINRT 163 

1.3.4 Complex Triangular Matrices 
Solves a linear system ......................................................... LSLCT 165 
Computes condition number ................................................ LFCCT 169 
Computes determinant after factoring .................................. LFDCT 173 
Inverts .................................................................................... LINCT 175 

1.3.5 Real Positive Definite Matrices 
High accuracy linear system solution ................................... LSADS 177 
Solves a linear system ......................................................... LSLDS 181 
Factors and computes condition number ............................. LFCDS 186 
Factors.................................................................................. LFTDS 191 
Solve a linear system after factoring .................................... LFSDS 195 
High accuracy linear system solution after factoring ............. LFIDS 199 
Computes determinant after factoring .................................. LFDDS 204 
Inverts .................................................................................... LINDS 206 

1.3.6 Real Symmetric Matrices 
High accuracy linear system solution ................................... LSASF 210 
Solves a linear system ......................................................... LSLSF 213 
Factors and computes condition number ............................. LFCSF 215 
Factors.................................................................................. LFTSF 218 
Solves a linear system after factoring .................................. LFSSF 221 
High accuracy linear system solution after factoring .............. LFISF 223 
Computes determinant after factoring .................................. LFDSF 226 

1.3.7 Complex Hermitian Positive Definite Matrices 
High accuracy linear system solution .................................. LSADH 227 
Solves a linear system ......................................................... LSLDH 232 
Factors and computes condition number ............................ LFCDH 237 
Factors.................................................................................. LFTDH 243 
Solves a linear system after factoring .................................. LFSDH 248 
High accuracy linear system solution after factoring ............. LFIDH 252 
Computes determinant after factoring ................................. LFDDH 258 

1.3.8 Complex Hermitian Matrices 
High accuracy linear system solution ................................... LSAHF 259 
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Solves a linear system .......................................................... LSLHF 262 
Factors and computes condition number ............................ LFCHF 265 
Factors .................................................................................. LFTHF 268 
Solves a linear system after factoring ...................................LFSHF 271 
High accuracy linear system solution after factoring ............. LFIHF 273 
Computes determinant after factoring ................................. LFDHF 276 

1.3.9 Real Band Matrices in Band Storage 
Solves a tridiagonal system .................................................. LSLTR 278 
Solves a tridiagonal system: Cyclic Reduction .................... LSLCR 279 
High accuracy linear system solution .................................. LSARB 282 
Solves a linear system ..........................................................LSLRB 285 
Factors and compute condition number .............................. LFCRB 290 
Factors ..................................................................................LFTRB 293 
Solves a linear system after factoring .................................. LFSRB 296 
High accuracy linear system solution after factoring ............. LFIRB 298 
Computes determinant after factoring ................................. LFDRB 301 

1.3.10 Real Band Symmetric Positive Definite Matrices in Band Storage 
High accuracy linear system solution .................................. LSAQS 303 
Solves a linear system ......................................................... LSLQS 305 
Solves a linear system .......................................................... LSLPB 308 
Factors and computes condition number ............................ LFCQS 311 
Factors ................................................................................. LFTQS 314 
Solves a linear system after factoring .................................. LFSQS 316 
High accuracy linear system solution after factoring .............LFIQS 318 
Computes determinant after factoring ................................. LFDQS 320 

1.3.11 Complex Band Matrices in Band Storage 
Solves a tridiagonal system ..................................................LSLTQ 322 
Solves a tridiagonal system: Cyclic Reduction .................... LSLCQ 324 
High accuracy linear system solution .................................. LSACB 327 
Solves a linear system ..........................................................LSLCB 330 
Factors and computes condition number ............................ LFCCB 333 
Factors ..................................................................................LFTCB 336 
Solves a linear system after factoring .................................. LFSCB 339 
High accuracy linear system solution after factoring ............. LFICB 341 
Computes determinant after factoring ................................. LFDCB 344 

1.3.12 Complex Band Positive Definite Matrices in Band Storage 
High accuracy linear system solution .................................. LSAQH 346 
Solves a linear system ......................................................... LSLQH 349 
Solves a linear system ......................................................... LSLQB 352 
Factors and compute condition number .............................. LFCQH 355 
Factors ................................................................................. LFTQH 358 
Solves a linear system after factoring .................................. LFSQH 360 
High accuracy linear system solution after factoring ............ LFIQH 362 
Computes determinant after factoring ................................. LFDQH 365 

1.3.13 Real Sparse Linear Equation Solvers 
Solves a sparse linear system ............................................. LSLXG 366 
Factors ................................................................................. LFTXG 372 
Solves a linear system after factoring .................................. LFSXG 377 

1.3.14 Complex Sparse Linear Equation Solvers 
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Solves a sparse linear system ............................................. LSLZG 380 
Factors.................................................................................. LFTZG 385 
Solves a linear system after factoring .................................. LFSZG 391 

1.3.15 Real Sparse Symmetric Positive Definite Linear Equation Solvers 
Solves a sparse linear system ............................................. LSLXD 394 
Symbolic Factor ................................................................... LSCXD 399 
Computes Factor .................................................................. LNFXD 403 
Solves a linear system after factoring .................................. LFSXD 408 

1.3.16 Complex Sparse Hermitian Positive Definite Linear Equation Solvers 
Solves a sparse linear system ............................................. LSLZD 412 
Computes Factor .................................................................. LNFZD 416 
Solves a linear system after factoring .................................. LFSZD 421 

1.3.17 Real Toeplitz Matrices in Toeplitz Storage 
Solves a linear system ......................................................... LSLTO 424 

1.3.18 Complex Toeplitz Matrices in Toeplitz Storage 
Solves a linear system ......................................................... LSLTC 426 

1.3.19 Complex Circulant Matrices in Circulant Storage 
Solves a linear system ......................................................... LSLCC 428 

1.3.20 Iterative Methods 
Preconditioned conjugate gradient ..................................... PCGRC 431 
Jacobi conjugate gradient ................................................... JCGRC 437 
Generalized minimum residual ........................................... GMRES 440 
Partial Singular Value Decomposition ..................... ARPACK_SVD 451 

1.4. Linear Least Squares and Matrix Factorization 

1.4.1 Least Squares, QR Decomposition and Generalized Inverse 
Solves a Least-squares system .......................................... LSQRR 451 
Solves a Least-squares system .......................................... LQRRV 457 
High accuracy Least squares .............................................. LSBRR 463 
Linearly constrained Least squares ..................................... LCLSQ 467 
QR decomposition ............................................................... LQRRR 471 
Accumulation of QR decomposition .................................... LQERR 478 
QR decomposition Utilities ................................................... LQRSL 483 
QR factor update ................................................................. LUPQR 489 

1.4.2 Cholesky Factorization 
Cholesky factoring for rank deficient matrices .................... LCHRG 494 
Cholesky factor update ........................................................ LUPCH 496 
Cholesky factor down-date .................................................. LDNCH 499 

1.4.3 Singular Value Decomposition (SVD) 
Real singular value decomposition ..................................... LSVRR 503 
Complex singular value decomposition ............................... LSVCR 510 
Generalized inverse ............................................................ LSGRR 514 
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Usage Notes  
Section 1.1 describes routines for solving systems of linear algebraic equations by direct matrix 

factorization methods, for computing only the matrix factorizations, and for computing linear 

least-squares solutions. 

Section 1.2 describes routines for solving systems of parallel constrained least-squares. 

Many of the routines described in sections 1.3 and 1.4 are for matrices with special properties or 

structure. Computer time and storage requirements for solving systems with coefficient matrices 

of these types can often be drastically reduced, using the appropriate routine, compared with using 

a routine for solving a general complex system. 

The appropriate matrix property and corresponding routine can be located in the ―Routines‖ 

section. Many of the linear equation solver routines in this chapter are derived from subroutines 

from LINPACK, Dongarra et al. (1979). Other routines have been developed by Visual Numerics, 

derived from draft versions of LAPACK subprograms, Bischof et al. (1988), or were obtained 

from alternate sources. 

A system of linear equations is represented by Ax = b where A is the n × n coefficient data matrix, 

b is the known right-hand-side n-vector, and x is the unknown or solution n-vector. Figure 1-1 

summarizes the relationships among the subroutines. Routine names are in boxes and input/output 

data are in ovals. The suffix ** in the subroutine names depend on the matrix type. For example, 

to compute the determinant of A use LFC** or LFT** followed by LFD**. 

The paths using LSA** or LFI** use iterative refinement for a more accurate solution. The path 

using LSA** is the same as using LFC** followed by LFI**. The path using LSL** is the same as 

the path using LFC** followed by LFS**. The matrix inversion routines LIN** are available only 

for certain matrix types. 

Matrix Types 

The two letter codes for the form of coefficient matrix, indicated by ** in Figure 1-1, are as 

follows: 

 

RG Real general (square) matrix. 

CG Complex general (square) matrix. 

TR or CR Real tridiagonal matrix. 

RB Real band matrix. 

TQ or CQ Complex tridiagonal matrix. 

CB Complex band matrix. 

SF Real symmetric matrix stored in the upper half of a square matrix. 

DS Real symmetric positive definite matrix stored in the upper half of a square matrix. 

DH Complex Hermitian positive definite matrix stored in the upper half of a complex 

square matrix. 

HF Complex Hermitian matrix stored in the upper half of a complex square matrix. 



     

     
 

6  Chapter 1: Linear Systems IMSL MATH LIBRARY  

     

     

 

QS or PB Real symmetric positive definite band matrix. 

QH or QB Complex Hermitian positive definite band matrix. 

XG Real general sparse matrix. 

ZG Complex general sparse matrix. 

XD Real symmetric positive definite sparse matrix. 

ZD Complex Hermitian positive definite sparse matrix. 

  

A

b
LFT** LFC**

LFD**LFI**

LFS**

LIN** LSA**

LSL**

Condition
number

Factorization

DeterminantA


x = A   b
or

x = A   b



T

 

Figure 1- 1  Solution and Factorization of Linear Systems 

Solution of Linear Systems 

The simplest routines to use for solving linear equations are LSL** and LSA**.  For example, the 

mnemonic for matrices of real general form is RG. So, the routines LSARG and LSLRG are 

appropriate to use for solving linear systems when the coefficient matrix is of real general form. 

The routine LSARG uses iterative refinement, and more time than LSLRG, to determine a high 

accuracy solution. 

The high accuracy solvers provide maximum protection against extraneous computational errors. 

They do not protect the results from instability in the mathematical approximation. For a more 

complete discussion of this and other important topics about solving linear equations, see Rice 

(1983), Stewart (1973), or Golub and van Loan (1989). 
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Multiple Right Sides 

There are situations where the LSL** and LSA** routines are not appropriate. For example, if the 

linear system has more than one right-hand-side vector, it is most economical to solve the system 

by first calling a factoring routine and then calling a solver routine that uses the factors. After the 

coefficient matrix has been factored, the routine LFS** or LFI** can be used to solve for one 

right-hand side at a time. Routines LFI** uses iterative refinement to determine a high accuracy 

solution but requires more computer time and storage than routines LFS**. 

Determinants 

The routines for evaluating determinants are named LFD**. As indicated in Figure 1-1, these 

routines require the factors of the matrix as input. The values of determinants are often badly 

scaled. Additional complications in structures for evaluating them result from this fact. See Rice 

(1983) for comments on determinant evaluation. 

Iterative Refinement 

Iterative refinement can often improve the accuracy of a well-posed numerical solution. The 

iterative refinement algorithm used is as follows: 

x0 = A-1 b  

For i = 1, 50 

ri = Axi-1− b computed in higher precision 

pi = A-1 ri 

xi = xi-1- pi 

if (|| pi ||∞ ≤ ε|| xi ||∞) Exit 

End for  

Error — Matrix is too ill-conditioned 

If the matrix A is in single precision, then the residual ri = Axi-1− b is computed in double 

precision. If A is in double precision, then quadruple-precision arithmetic routines are used. 

The use of the value 50 is arbitrary. In fact a single correction is usually sufficient. It is also 

helpful even when ri  is computed in the same precision as the data.  

Matrix Inversion 

An inverse of the coefficient matrix can be computed directly by one of the routines named 

LIN**. These routines are provided for general matrix forms and some special matrix forms. 

When they do not exist, or when it is desirable to compute a high accuracy inverse, the two-step 

technique of calling the factoring routine followed by the solver routine can be used. The inverse 
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is the solution of the matrix system AX = I where I denotes the n × n identity matrix, and the 

solution is X = A-1 

Singularity 

The numerical and mathematical notions of singularity are not the same. A matrix is considered 

numerically singular if it is sufficiently close to a mathematically singular matrix. If error 

messages are issued regarding an exact singularity then specific error message level reset actions 

must be taken to handle the error condition. By default, the routines in this chapter stop. The 

solvers require that the coefficient matrix be numerically nonsingular. There are some tests to 

determine if this condition is met. When the matrix is factored, using routines LFC**, the 

condition number is computed. If the condition number is large compared to the working 

precision, a warning message is issued and the computations are continued. In this case, the user 

needs to verify the usability of the output. If the matrix is determined to be mathematically 

singular, or ill-conditioned, a least-squares routine or the singular value decomposition routine 

may be used for further analysis. 

Special Linear Systems 

Toeplitz matrices have entries which are constant along each diagonal, for example: 

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

p p p p

p p p p
A

p p p p

p p p p



 

  

 
 
 
 
 
   

Real Toeplitz systems can be solved using LSLTO. Complex Toeplitz systems can be solved using 

LSLTC. 

Circulant matrices have the property that each row is obtained by shifting the row above it one 

place to the right. Entries that are shifted off at the right reenter at the left. For example: 

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

p p p p

p p p p
A

p p p p

p p p p

 
 
 
 
 
   

Complex circulant systems can be solved using LSLCC. 

Iterative Solution of Linear Systems 

The preconditioned conjugate gradient routines PCGRC and JCGRC can be used to solve symmetric 

positive definite systems. The routines are particularly useful if the system is large and sparse. 

These routines use reverse communication, so A can be in any storage scheme. For general linear 

systems, use GMRES. 
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QR Decomposition 

The QR decomposition of a matrix A consists of finding an orthogonal matrix Q, a permutation 

matrix P, and an upper trapezoidal matrix R with diagonal elements of nonincreasing magnitude, 

such that AP = QR. This decomposition is determined by the routines LQRRR or LQRRV. It returns 

R and the information needed to compute Q. To actually compute Q use LQERR. Figure 1-2 

summarizes the relationships among the subroutines. 

The QR decomposition can be used to solve the linear system Ax = b. This is equivalent to  

Rx = Q
T
Pb. The routine LQRSL, can be used to find Q

T
Pb from the information computed by 

LQRRR. Then x can be computed by solving a triangular system using LSLRT. If the system Ax = b 

is overdetermined, then this procedure solves the least-squares problem, i.e., it finds an x for which 

2

2
Ax b  

is a minimum. 

If the matrix A is changed by a rank-1 update, A → A + αxy
T
, the QR decomposition of A can be 

updated/down-dated using the routine LUPQR. In some applications a series of linear systems 

which differ by rank-1 updates must be solved. Computing the QR decomposition once and then 

updating or down-dating it usually faster than newly solving each system. 

A

LUPQR

LQRSL

Least-squares
solution

QR decomposition

Qb, Q  b,T

Q

b
AA + xyT

LQERR

LQRRR or LQRRV

 

Figure 1- 2   Least-Squares Routine 
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LIN_SOL_GEN 

  
 

Solves a general system of linear equations Ax = b. Using optional arguments, any of several 

related computations can be performed. These extra tasks include computing the LU factorization 

of A using partial pivoting, representing the determinant of A, computing the inverse matrix A
-1

, 

and solving 
TA x b  or Ax = b given the LU factorization of A. 

Required Arguments 

A — Array of size n × n containing the matrix. (Input [/Output]) 

If the packaged option lin_sol_gen_save_LU is used then the LU factorization of A 

is saved in A.  For solving efficiency, the diagonal reciprocals of the matrix U are saved 

in the diagonal entries of A. 

B — Array of size n × nb containing the right-hand side matrix. (Input [/Output]) 

If the packaged option lin_sol_gen_save_LU is used then input B is used as work 

storage and is not saved. 

X — Array of size n × nb containing the solution matrix.(Output) 

Optional Arguments 

NROWS = n   (Input) 

Uses array A(1:n, 1:n) for the input matrix. 

Default: n = size (A, 1) 

NRHS = nb   (Input) 

Uses array b(1:n, 1:nb) for the input right-hand side matrix. 

Default: nb = size(b, 2) 

Note that b must be a rank-2 array. 

pivots = pivots(:)   (Output [/Input]) 

Integer array of size n that contains the individual row interchanges. To construct the 

permuted order so that no pivoting is required, define an integer array ip(n). Initialize 

ip(i) = i, i = 1, n and then execute the loop, after calling lin_sol_gen, 

 
k=pivots(i) 

interchange ip(i) and ip(k), i=1,n  
 

The matrix defined by the array assignment that permutes the rows,  

A(1:n, 1:n) = A(ip(1:n), 1:n), requires no pivoting for maintaining numerical 
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stability. Now, the optional argument ―iopt=‖ and the packaged option number 

?_lin_sol_gen_no_pivoting can be safely used for increased efficiency during 

the LU factorization of A. 

det = det(1:2)   (Output) 

Array of size 2 of the same type and kind as A for representing the determinant of the 

input matrix. The determinant is represented by two numbers. The first is the base with 

the sign or complex angle of the result. The second is the exponent. When det(2) is 

within exponent range, the value of this expression is given by  

abs(det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular,  

abs(det(1)) = radix(det); otherwise, det(1) = 0., and det(2) =  huge(abs(det(1))). 

ainv = ainv(:,:)   (Output) 

Array of the same type and kind as A(1:n, 1:n). It contains the inverse matrix, A
-1

, 

when the input matrix is nonsingular. 

iopt = iopt(:)   (Input) 

Derived type array with the same precision as the input matrix; used for passing 

optional data to the routine. The options are as follows: 

 

Packaged Options for lin_sol_gen 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_sol_gen_set_small 1 

s_, d_, c_, z_ lin_sol_gen_save_LU 2 

s_, d_, c_, z_ lin_sol_gen_solve_A 3 

s_, d_, c_, z_ lin_sol_gen_solve_ADJ 4 

s_, d_, c_, z_ lin_sol_gen_no_pivoting 5 

s_, d_, c_, z_ lin_sol_gen_scan_for_NaN 6 

s_, d_, c_, z_ lin_sol_gen_no_sing_mess 7 

s_, d_, c_, z_ lin_sol_gen_A_is_sparse 8 

iopt(IO) = ?_options(?_lin_sol_gen_set_small, Small) 

Replaces a diagonal term of the matrix U if it is smaller in magnitude than the value 

Small using the same sign or complex direction as the diagonal. The system is declared 

singular. A solution is approximated based on this replacement if no overflow results.  

Default: the smallest number that can be reciprocated safely  

iopt(IO) = ?_options(?_lin_sol_gen_save_LU, ?_dummy) 

Saves the LU factorization of A. Requires the optional argument ―pivots=‖ if the 

routine will be used later for solving systems with the same matrix. This is the only 

case where the input arrays A and b are not saved. For solving efficiency, the diagonal 

reciprocals of the matrix U are saved in the diagonal entries of A. 
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iopt(IO) = ?_options(?_lin_sol_gen_solve_A, ?_dummy) 

Uses the LU factorization of A computed and saved to solve Ax = b. 

iopt(IO) = ?_options(?_lin_sol_gen_solve_ADJ,?_dummy) 

Uses the LU factorization of A computed and saved to solve A
T
x = b. 

iopt(IO) = ?_options(?_lin_sol_gen_no_pivoting, ?_dummy) 

Does no row pivoting. The array pivots (:), if present, are output as pivots (i) = i, 

for i = 1, …, n. 

iopt(IO) = ?_options(?_lin_sol_gen_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that  

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true. 

See the isNaN() function, Chapter 10. 

Default: Does not scan for NaNs. 

iopt(IO) = ?_options(?_lin_sol_gen_no_sing_mess,?_dummy) 

Do not point an error message when the matrix A is singular. 

iopt(IO) = ?_options(?_lin_sol_gen_A_is_sparse,?_dummy) 

Uses an indirect updating loop for the LU factorization that is efficient for sparse 

matrices where all matrix entries are stored. 

FORTRAN 90 Interface 

Generic: CALL LIN_SOL_GEN (A, B, X [,…]) 

Specific: The specific interface names are S_LIN_SOL_GEN, D_LIN_SOL_GEN, 

C_LIN_SOL_GEN, and Z_LIN_SOL_GEN. 

Description 

Routine LIN_SOL_GEN solves a system of linear algebraic equations with a nonsingular 

coefficient matrix A. It first computes the LU factorization of A with partial pivoting such that 

LU A .  The matrix U is upper triangular, while the following is true: 

1
1 1 1 1n n n nL A L P L P L P A U
  

 

The factors Pi and Li are defined by the partial pivoting. Each Pi is an interchange of row i with 

row j ≥ i. Thus, Pi is defined by that value of j. Every 

T
i i iL I m e 

 

is an elementary elimination matrix. The vector im  is zero in entries 1, ..., i. This vector is stored 

as column i in the strictly lower-triangular part of the working array containing the decomposition 

information. The reciprocals of the diagonals of the matrix U are saved in the diagonal of the 

working array. The solution of the linear system Ax = b is found by solving two simpler systems,  
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1y L b
and 

1x U y
 

More mathematical details are found in Golub and Van Loan (1989, Chapter 3). 

Fatal and Terminal Error Messages 

See the messages.gls file for error messages for LIN_SOL_GEN. The messages are numbered 

161175; 181195; 201215; 221235. 

Example 1: Solving a Linear System of Equations 

This example solves a linear system of equations. This is the simplest use of lin_sol_gen. The 

equations are generated using a matrix of random numbers, and a solution is obtained 

corresponding to a random right-hand side matrix. Also, see operator_ex01, supplied with the 

product examples, for this example using the operator notation. 
  

      use lin_sol_gen_int  

      use rand_gen_int  

      use error_option_packet  

  

      implicit none  

   

! This is Example 1 for LIN_SOL_GEN.   

  

      integer, parameter :: n=32  

      real(kind(1e0)), parameter :: one=1e0  

      real(kind(1e0)) err  

      real(kind(1e0)) A(n,n), b(n,n), x(n,n), res(n,n), y(n**2)  

  

! Generate a random matrix.  

      call rand_gen(y)  

      A = reshape(y,(/n,n/))  

  

! Generate random right-hand sides.  

      call rand_gen(y)  

      b = reshape(y,(/n,n/))  

  

! Compute the solution matrix of Ax=b.  

      call lin_sol_gen(A, b, x)  

  

! Check the results for small residuals.  

      res = b - matmul(A,x)  

      err = maxval(abs(res))/sum(abs(A)+abs(b))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 1 for LIN_SOL_GEN is correct.'  

      end if  

  

      end   

Output 
 

Example 1 for LIN_SOL_GEN is correct. 
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Additional Examples 

Example 2: Matrix Inversion and Determinant 

This example computes the inverse and determinant of A, a random matrix. Tests are made on the 

conditions 

1AA I   

and  

   
11det detA A
 

 

Also, see operator_ex02. 

 

      use lin_sol_gen_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 2 for LIN_SOL_GEN.  

  

      integer i  

      integer, parameter :: n=32  

      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0  

      real(kind(1e0)) err  

      real(kind(1e0)) A(n,n), b(n,0), inv(n,n), x(n,0), res(n,n), &  

           y(n**2), determinant(2), inv_determinant(2)  

  

! Generate a random matrix.  

  

      call rand_gen(y)  

      A = reshape(y,(/n,n/))  

  

! Compute the matrix inverse and its determinant.  

  

      call lin_sol_gen(A, b, x, nrhs=0, &  

                ainv=inv, det=determinant)  

  

! Compute the determinant for the inverse matrix.  

  

      call lin_sol_gen(inv, b, x, nrhs=0, &  

                det=inv_determinant)  

  

! Check residuals, A times inverse = Identity.  

  

      res = matmul(A,inv)  

      do i=1, n  

         res(i,i) = res(i,i) - one  

      end do  

 

      err = sum(abs(res)) / sum(abs(a))  

      if (err <= sqrt(epsilon(one))) then  
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         if (determinant(1) == inv_determinant(1) .and. &  

            (abs(determinant(2)+inv_determinant(2)) &  

            <= abs(determinant(2))*sqrt(epsilon(one)))) then  

            write (*,*) 'Example 2 for LIN_SOL_GEN is correct.'  

         end if  

      end if  

  

      end   

Output 
 

Example 2 for LIN_SOL_GEN is correct. 

Example 3: Solving a System with Iterative Refinement 

This example computes a factorization of a random matrix using single-precision arithmetic. The 

double-precision solution is corrected using iterative refinement. The corrections are added to the 

developing solution until they are no longer decreasing in size. The initialization of the derived 

type array iopti(1:2) = s_option(0,0.0e0) leaves the integer part of the second element 

of iopti(:) at the value zero. This stops the internal processing of options inside lin_sol_gen. 

It results in the LU factorization being saved after exit. The next time the routine is entered the 

integer entry of the second element of iopt(:) results in a solve step only. Since the LU 

factorization is saved in arrays A(:,:) and ipivots(:), at the final step, solve only steps can 

occur in subsequent entries to lin_sol_gen. Also, see operator_ex03, Chapter 10. 
 

      use lin_sol_gen_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 3 for LIN_SOL_GEN.  

  

      integer, parameter :: n=32  

      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0  

      real(kind(1d0)), parameter :: d_zero=0.0d0  

      integer ipivots(n)  

      real(kind(1e0)) a(n,n), b(n,1), x(n,1), w(n**2)  

      real(kind(1e0)) change_new, change_old  

      real(kind(1d0)) c(n,1), d(n,n), y(n,1)  

      type(s_options) ::  iopti(2)=s_options(0,zero)  

        

        

! Generate a random matrix.  

  

      call rand_gen(w)  

      a = reshape(w, (/n,n/))  

  

! Generate a random right hand side.  

        

      call rand_gen(b(1:n,1))  

  

! Save double precision copies of the matrix and right hand side.  

  

      d = a  

      c = b  
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! Start solution at zero.  

  

      y = d_zero  

      change_old = huge(one)  

  

! Use packaged option to save the factorization.  

  

      iopti(1) = s_options(s_lin_sol_gen_save_LU,zero)  

  

      iterative_refinement: do  

         b = c - matmul(d,y)  

         call lin_sol_gen(a, b, x, &  

                   pivots=ipivots, iopt=iopti)  

         y = x + y  

         change_new = sum(abs(x))  

  

! Exit when changes are no longer decreasing.  

  

         if (change_new >= change_old) &  

             exit iterative_refinement  

         change_old = change_new  

  

! Use option to re-enter code with factorization saved; solve only.  

         iopti(2) = s_options(s_lin_sol_gen_solve_A,zero)  

      end do iterative_refinement  

      write (*,*) 'Example 3 for LIN_SOL_GEN is correct.'  

      end   

Output 
 

Example 3 for LIN_SOL_GEN is correct. 

Example 4: Evaluating the Matrix Exponential 

This example computes the solution of the ordinary differential equation problem 

dy
Ay

dt


 

with initial values y(0) = y0. For this example, the matrix A is real and constant with respect to t . 

The unique solution is given by the matrix exponential: 

  0
Aty t e y

 

This method of solution uses an eigenvalue-eigenvector decomposition of the matrix  

1A XDX    

to evaluate the solution with the equivalent formula 

  0
Dty t Xe z

 

where 
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1
0 0z X y

  

is computed using the complex arithmetic version of lin_sol_gen. The results for y(t) are real 

quantities, but the evaluation uses intermediate complex-valued calculations. Note that the 

computation of the complex matrix X and the diagonal matrix D is performed using the IMSL 

MATH/LIBRARY FORTRAN 77 interface to routine EVCRG. This is an illustration of intermixing 

interfaces of FORTRAN 77 and Fortran 90 code. The information is made available to the Fortran 

90 compiler by using the FORTRAN 77 interface for EVCRG. Also, see operator_ex04, supplied 

with the product examples, where the Fortran 90 function EIG() has replaced the call to EVCRG. 
 

      use lin_sol_gen_int  

      use rand_gen_int  

      use Numerical_Libraries  

  

      implicit none  

  

! This is Example 4 for LIN_SOL_GEN.  

  

      integer, parameter :: n=32, k=128  

      real(kind(1e0)), parameter :: one=1.0e0, t_max=1, delta_t=t_max/(k-1)  

      real(kind(1e0)) err, A(n,n), atemp(n,n), ytemp(n**2)  

      real(kind(1e0)) t(k), y(n,k), y_prime(n,k)  

      complex(kind(1e0)) EVAL(n), EVEC(n,n)  

      complex(kind(1e0)) x(n,n), z_0(n,1), y_0(n,1), d(n)  

      integer i  

  

! Generate a random matrix in an F90 array.  

  

      call rand_gen(ytemp)  

      atemp = reshape(ytemp,(/n,n/))  

  

! Assign data to an F77 array.  

      A = atemp  

  

! Use IMSL Numerical Libraries F77 subroutine for the   

! eigenvalue-eigenvector calculation.  

      CALL EVCRG(N, A, N, EVAL, EVEC, N)  

  

! Generate a random initial value for the ODE system.  

      call rand_gen(ytemp(1:n))  

      y_0(1:n,1) = ytemp(1:n)  

  

! Assign the eigenvalue-eigenvector data to F90 arrays.   

      d = EVAL; x = EVEC  

  

! Solve complex data system that transforms the initial values, Xz_0=y_0.  

      call lin_sol_gen(x, y_0, z_0)  

      t = (/(i*delta_t,i=0,k-1)/)  

  

! Compute y and y' at the values t(1:k).  

      y = matmul(x, exp(spread(d,2,k)*spread(t,1,n))* &  

                   spread(z_0(1:n,1),2,k))  

      y_prime  = matmul(x, spread(d,2,k)* &  

                      exp(spread(d,2,k)*spread(t,1,n))* &  

                      spread(z_0(1:n,1),2,k))  
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! Check results. Is  y' - Ay = 0?  

      err = sum(abs(y_prime-matmul(atemp,y))) / &  

           (sum(abs(atemp))*sum(abs(y)))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 4 for LIN_SOL_GEN is correct.'  

      end if  

  

      end   

Output 
 

Example 4 for LIN_SOL_GEN is correct. 

LIN_SOL_SELF 

 

 

 

Solves a system of linear equations Ax = b, where A is a self-adjoint matrix. Using optional  

arguments, any of several related computations can be performed. These extra tasks include 

computing and saving the factorization of A using symmetric pivoting, representing the 

determinant of A, computing the inverse matrix A
-1

, or computing the solution of Ax = b given the 

factorization of A. An optional argument is provided indicating that A is positive definite so that 

the Cholesky decomposition can be used. 

Required Arguments 

A —  Array of size n × n containing the self-adjoint matrix. (Input [/Output] 

If the packaged option lin_sol_self_save_factors is used then the factorization 

of A is saved in A.  For solving efficiency, the diagonal reciprocals of the matrix R are 

saved in the diagonal entries of A when the Cholesky method is used. 

B —  Array of size n × nb containing the right-hand side matrix. (Input [/Output] 

If the packaged option lin_sol_self_save_factors is used then input B is used as 

work storage and is not saved. 

X —  Array of size n × nb containing the solution matrix. (Output) 

Optional Arguments 

NROWS = n   (Input) 

Uses array A(1:n, 1:n) for the input matrix. 

Default: n = size(A, 1) 
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NRHS = nb   (Input) 

Uses the array b(1:n, 1:nb) for the input right-hand side matrix. 

Default: nb = size(b, 2) 

Note that b must be a rank-2 array. 

pivots = pivots(:)   (Output [/Input]) 

Integer array of size n + 1 that contains the individual row interchanges in the first n 

locations. Applied in order, these yield the permutation matrix P. Location n + 1 

contains the number of the first diagonal term no larger than Small, which is defined on 

the next page of this chapter. 

det = det(1:2)   (Output) 

Array of size 2 of the same type and kind as A for representing the determinant of the 

input matrix. The determinant is represented by two numbers. The first is the base with 

the sign or complex angle of the result. The second is the exponent. When det(2) is 

within exponent range, the value of the determinant is given by the expression 

abs(det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular,  

abs(det(1)) = radix(det); otherwise, det(1) = 0., and det(2) = huge(abs(det(1))). 

ainv = ainv(:,:)   (Output) 

Array of the same type and kind as A(1:n, 1:n). It contains the inverse matrix, A
-1

 

when the input matrix is nonsingular. 

iopt = iopt(:)   (Input) 

Derived type array with the same precision as the input matrix; used for passing 

optional data to the routine. The options are as follows: 

 

Packaged Options for lin_sol_self 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_sol_self_set_small 1 

s_, d_, c_, z_ lin_sol_self_save_factors 2 

s_, d_, c_, z_ lin_sol_self_no_pivoting 3 

s_, d_, c_, z_ lin_sol_self_use_Cholesky 4 

s_, d_, c_, z_ lin_sol_self_solve_A 5 

s_, d_, c_, z_ lin_sol_self_scan_for_NaN 6 

s_, d_, c_, z_ lin_sol_self_no_sing_mess 7 

iopt(IO) = ?_options(?_lin_sol_self_set_small, Small) 

When Aasen‘s method is used, the tridiagonal system Tu = v is solved using LU 

factorization with partial pivoting. If a diagonal term of the matrix U is smaller in 

magnitude than the value Small, it is replaced by Small. The system is declared 

singular. When the Cholesky method is used, the upper-triangular matrix R, (see 

―Description‖), is obtained. If a diagonal term of the matrix R is smaller in magnitude 

than the value Small, it is replaced by Small. A solution is approximated based on this 
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replacement in either case.  

Default: the smallest number that can be reciprocated safely 

iopt(IO) = ?_options(?_lin_sol_self_save_factors, ?_dummy) 

Saves the factorization of A. Requires the optional argument ―pivots=‖ if the routine 

will be used for solving further systems with the same matrix. This is the only case 

where the input arrays A and b are not saved. For solving efficiency, the diagonal 

reciprocals of the matrix R are saved in the diagonal entries of A when the Cholesky 

method is used.  

iopt(IO) = ?_options(?_lin_sol_self_no_pivoting, ?_dummy) 

Does no row pivoting. The array pivots(:), if present, satisfies pivots(i) = i + 1 for  

i = 1, …, n  1 when using Aasen‘s method. When using the Cholesky method, 

pivots(i) = i for i = 1, …, n. 

iopt(IO) = ?_options(?_lin_sol_self_use_Cholesky, ?_dummy) 

The Cholesky decomposition PAP
T
 = R

T
R is used instead of the Aasen method. 

iopt(IO) = ?_options(?_lin_sol_self_solve_A, ?_dummy) 

Uses the factorization of A computed and saved to solve Ax = b.  

iopt(IO) = ?_options(?_lin_sol_self_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that 

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.  

See the isNaN() function, Chapter 10. 

Default: Does not scan for NaNs 

iopt(IO) = ?_options(?_lin_sol_self_no_sing_mess,?_dummy) 

Do not print an error message when the matrix A is singular. 

FORTRAN 90 Interface 

Generic: CALL LIN_SOL_SELF (A, B, X [,…]) 

Specific: The specific interface names are S_LIN_SOL_SELF, D_LIN_SOL_SELF, 

C_LIN_SOL_SELF, and Z_LIN_SOL_SELF. 

Description 

Routine LIN_SOL_SELF routine solves a system of linear algebraic equations with a nonsingular 

coefficient matrix A. By default, the routine computes the factorization of A using Aasen‘s 

method. This decomposition has the form  

T TPAP LTL  

where P is a permutation matrix, L is a unit lower-triangular matrix, and T is a tridiagonal  

self-adjoint matrix. The solution of the linear system Ax = b is found by solving simpler systems,  
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1u L Pb  

 Tv = u 

and  

T Tx P L v  

More mathematical details for real matrices are found in Golub and Van Loan (1989, Chapter 4). 

When the optional Cholesky algorithm is used with a positive definite, self-adjoint matrix, the 

factorization has the alternate form  

T TPAP R R  

 where P is a permutation matrix and R is an upper-triangular matrix. The solution of the linear 

system Ax = b is computed by solving the systems 

Tu R Pb   

and 

1Tx P R u  

The permutation is chosen so that the diagonal term is maximized at each step of the 

decomposition. The individual interchanges are optionally available in the argument ―pivots‖. 

Fatal and Terminal Error Messages 

See the messages.gls file for error messages for LIN_SOL_SELF. These error messages are 

numbered 321336; 341356; 361376; 381396. 

Example 1: Solving a Linear Least-squares System 

This example solves a linear least-squares system Cx ≅ d, where Cmxn is a real matrix with m ≥ n. 

The least-squares solution is computed using the self-adjoint matrix  

TA C C   

and the right-hand side  

Tb A d  

The n × n self-adjoint system Ax = b is solved for x. This solution method is not as satisfactory, in 

terms of numerical accuracy, as solving the system Cx ≅ d directly by using the routine 

lin_sol_lsq. Also, see operator_ex05, Chapter 10. 
 

       use lin_sol_self_int  

use rand_gen_int  

  

      implicit none  

  

! This is Example 1 for LIN_SOL_SELF.  

  

      integer, parameter :: m=64, n=32  
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      real(kind(1e0)), parameter :: one=1e0  

      real(kind(1e0)) err  

      real(kind(1e0)), dimension(n,n) :: A, b, x, res, y(m*n),&  

             C(m,n), d(m,n)  

  

! Generate two rectangular random matrices.  

      call rand_gen(y)  

      C = reshape(y,(/m,n/))  

  

      call rand_gen(y)  

      d = reshape(y,(/m,n/))  

  

! Form the normal equations for the rectangular system.  

      A = matmul(transpose(C),C)  

      b = matmul(transpose(C),d)  

  

! Compute the solution for Ax = b.  

      call lin_sol_self(A, b, x)  

  

! Check the results for small residuals.  

      res = b - matmul(A,x)  

      err = maxval(abs(res))/sum(abs(A)+abs(b))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 1 for LIN_SOL_SELF is correct.'  

      end if  

  

      end   

Output 
 

Example 1 for LIN_SOL_SELF is correct. 

Additional Examples  

Example 2: System Solving with Cholesky Method 

This example solves the same form of the system as Example 1. The optional argument ―iopt=‖ 

is used to note that the Cholesky algorithm is used since the matrix A is positive definite and self-

adjoint. In addition, the sample covariance matrix  

2 1A     

is computed, where 

2

2 d Cx

m n





  

the inverse matrix is returned as the ―ainv=‖ optional argument. The scale factor 
2  and Γ are 

computed after returning from the routine. Also, see operator_ex06, Chapter 10. 
 

      use lin_sol_self_int  

      use rand_gen_int  

      use error_option_packet  
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      implicit none  

  

! This is Example 2 for LIN_SOL_SELF.  

  

      integer, parameter :: m=64, n=32  

      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0  

      real(kind(1e0)) err  

      real(kind(1e0)) a(n,n), b(n,1), c(m,n), d(m,1), cov(n,n), x(n,1), &  

           res(n,1), y(m*n)  

      type(s_options) :: iopti(1)=s_options(0,zero)  

        

  

! Generate a random rectangular matrix and a random right hand side.  

  

      call rand_gen(y)  

      c = reshape(y,(/m,n/))  

  

      call rand_gen(d(1:n,1))  

  

! Form the normal equations for the rectangular system.  

  

      a = matmul(transpose(c),c)  

      b = matmul(transpose(c),d)  

  

! Use packaged option to use Cholesky decomposition.  

       

      iopti(1) = s_options(s_lin_sol_self_Use_Cholesky,zero)  

  

! Compute the solution of Ax=b with optional inverse obtained.  

  

      call lin_sol_self(a, b, x, ainv=cov, &  

                               iopt=iopti)  

  

! Compute residuals, x - (inverse)*b, for consistency check.  

  

      res = x - matmul(cov,b)  

  

! Scale the inverse to obtain the covariance matrix.  

  

      cov = (sum((d-matmul(c,x))**2)/(m-n)) * cov  

  

! Check the results.  

  

      err = sum(abs(res))/sum(abs(cov))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 2 for LIN_SOL_SELF is correct.'  

      end if  

  

      end   

Output 
 

Example 2 for LIN_SOL_SELF is correct. 
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Example 3: Using Inverse Iteration for an Eigenvector 

This example illustrates the use of the optional argument ―iopt=‖ to reset the value of a Small 

diagonal term encountered during the factorization. Eigenvalues of the self-adjoint matrix  

TA C C  

are computed using the routine lin_eig_self. An eigenvector, corresponding to one of these 

eigenvalues, , is computed using inverse iteration. This solves the near singular system  

(A  I)x = b for an eigenvector, x. Following the computation of a normalized eigenvector 

x
y

x


 

the consistency condition  

Ty Ay 
 

is checked. Since a singular system is expected, suppress the fatal error message that normally 

prints when the error post-processor routine error_post is called within the routine 

lin_sol_self. Also, see operator_ex07, Chapter 10. 

 

      use lin_sol_self_int  

      use lin_eig_self_int  

      use rand_gen_int  

      use error_option_packet  

  

      implicit none  

  

! This is Example 3 for LIN_SOL_SELF.  

  

      integer i, tries  

      integer, parameter :: m=8, n=4, k=2  

      integer ipivots(n+1)  

      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  

      real(kind(1d0)) err  

      real(kind(1d0)) a(n,n), b(n,1), c(m,n), x(n,1), y(m*n), &  

             e(n), atemp(n,n)  

      type(d_options) :: iopti(4)  

  

  

! Generate a random rectangular matrix.  

  

      call rand_gen(y)  

      c = reshape(y,(/m,n/))  

  

! Generate a random right hand side for use in the inverse   

! iteration.  

  

      call rand_gen(y(1:n))  

      b = reshape(y,(/n,1/))  

  

! Compute the positive definite matrix.  
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      a = matmul(transpose(c),c)  

  

! Obtain just the eigenvalues.  

  

      call lin_eig_self(a, e)  

  

! Use packaged option to reset the value of a small diagonal.  

      iopti =    d_options(0,zero)  

      iopti(1) = d_options(d_lin_sol_self_set_small,&  

                 epsilon(one) * abs(e(1)))  

! Use packaged option to save the factorization.  

      iopti(2) = d_options(d_lin_sol_self_save_factors,zero)  

! Suppress error messages and stopping due to singularity   

! of the matrix, which is expected.  

      iopti(3) = d_options(d_lin_sol_self_no_sing_mess,zero)  

      atemp = a  

      do i=1, n  

         a(i,i) = a(i,i) - e(k)  

      end do  

  

! Compute A-eigenvalue*I as the coefficient matrix.  

      do tries=1, 2  

         call lin_sol_self(a, b, x, &  

                     pivots=ipivots, iopt=iopti)  

! When code is re-entered, the already computed factorization   

! is used.  

         iopti(4) = d_options(d_lin_sol_self_solve_A,zero)  

! Reset right-hand side nearly in the direction of the eigenvector.  

         b = x/sqrt(sum(x**2))  

      end do  

  

! Normalize the eigenvector.  

      x = x/sqrt(sum(x**2))  

  

! Check the results.  

      err =  dot_product(x(1:n,1),matmul(atemp(1:n,1:n),x(1:n,1))) - &  

              e(k)  

  

! If any result is not accurate, quit with no summary printing.  

      if (abs(err) <= sqrt(epsilon(one))*e(1)) then  

        write (*,*) 'Example 3 for LIN_SOL_SELF is correct.'  

      end if  

  

      end   

Output 
 

Example 3 for LIN_SOL_SELF is correct. 

Example 4: Accurate Least-squares Solution with Iterative Refinement 

This example illustrates the accurate solution of the self-adjoint linear system 

00T

I A r b

xA
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computed using iterative refinement. This solution method is appropriate for least-squares 

problems when an accurate solution is required. The solution and residuals are accumulated in 

double precision, while the decomposition is computed in single precision. Also, see 

operator_ex08, supplied with the product examples. 
 

      use lin_sol_self_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 4 for LIN_SOL_SELF.  

  

      integer i  

      integer, parameter :: m=8, n=4  

      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0  

      real(kind(1d0)), parameter :: d_zero=0.0d0  

      integer ipivots((n+m)+1)  

      real(kind(1e0)) a(m,n), b(m,1), w(m*n), f(n+m,n+m), &  

            g(n+m,1), h(n+m,1)  

      real(kind(1e0)) change_new, change_old  

      real(kind(1d0)) c(m,1), d(m,n), y(n+m,1)  

      type(s_options) ::  iopti(2)=s_options(0,zero)         

 

! Generate a random matrix.  

  

      call rand_gen(w)  

       

      a = reshape(w, (/m,n/))  

  

! Generate a random right hand side.  

        

      call rand_gen(b(1:m,1))  

  

! Save double precision copies of the matrix and right hand side.  

  

      d = a  

      c = b  

  

! Fill in augmented system for accurately solving the least-squares  

! problem.  

  

      f = zero  

      do i=1, m  

         f(i,i) = one  

      end do  

      f(1:m,m+1:) = a  

      f(m+1:,1:m) = transpose(a)  

  

! Start solution at zero.  

  

      y = d_zero  

      change_old = huge(one)  

  

! Use packaged option to save the factorization.  
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      iopti(1) = s_options(s_lin_sol_self_save_factors,zero)  

  

      iterative_refinement: do  

         g(1:m,1) = c(1:m,1) - y(1:m,1) - matmul(d,y(m+1:m+n,1))  

         g(m+1:m+n,1) = - matmul(transpose(d),y(1:m,1))  

         call lin_sol_self(f, g, h, &  

                   pivots=ipivots, iopt=iopti)  

         y = h + y  

         change_new = sum(abs(h))  

  

! Exit when changes are no longer decreasing.  

  

         if (change_new >= change_old) &  

             exit iterative_refinement  

         change_old = change_new  

  

! Use option to re-enter code with factorization saved; solve only.  

         iopti(2) = s_options(s_lin_sol_self_solve_A,zero)  

      end do iterative_refinement  

      write (*,*) 'Example 4 for LIN_SOL_SELF is correct.'  

      end   

Output 
 

Example 4 for LIN_SOL_SELF is correct. 

LIN_SOL_LSQ 

Solves a rectangular system of linear equations Ax ≅ b, in a least-squares sense. Using optional 

arguments, any of several related computations can be performed. These extra tasks include 

computing and saving the factorization of A using column and row pivoting, representing the 

determinant of A, computing the generalized inverse matrix A†, or computing the least-squares 

solution of  

Ax ≅ b  

or  

A
T
y ≅ b,  

given the factorization of A.  An optional argument is provided for computing the following 

unscaled covariance matrix 

 
1

TC A A



 

Least-squares solutions, where the unknowns are non-negative or have simple bounds, can be 

computed with PARALLEL_NONNEGATIVE_LSQ and PARALLEL_BOUNDED_LSQ.  These codes can 

be restricted to execute without MPI. 

Required Arguments 

A —   Array of size m × n containing the matrix. (Input [/Output]) 

If the packaged option lin_sol_lsq_save_QR is used then the factorization of A is 
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saved in A.  For efficiency, the diagonal reciprocals of the matrix R are saved in the 

diagonal entries of A. 

B —   Array of size m × nb containing the right-hand side matrix. When using the option to 

solve adjoint systems A
T
x ≅ b, the size of b is n × nb. (Input [/Output]) 

If the packaged option lin_sol_lsq_save_QR is used then input B is used as work 

storage and is not saved. 

X —   Array of size m × nb containing the right-hand side matrix. When using the option to 

solve adjoint systems A
T
x ≅ b, the size of x is m × nb. (Output) 

Optional Arguments 

MROWS = m   (Input) 

Uses array A(1:m, 1:n) for the input matrix. 

Default: m = size(A, 1) 

NCOLS = n   (Input) 

Uses array A(1:m, 1:n) for the input matrix. 

Default: n = size(A, 2) 

NRHS = nb   (Input) 

Uses the array b(1:, 1:nb) for the input right-hand side matrix. 

Default: nb = size(b, 2) 

Note that b must be a rank-2 array. 

pivots = pivots(:)   (Output [/Input]) 

Integer array of size 2 * min(m, n) + 1 that contains the individual row followed by the 

column interchanges. The last array entry contains the approximate rank of A. 

trans = trans(:)   (Output [/Input]) 

Array of size 2 * min(m, n) that contains data for the construction of the orthogonal 

decomposition. 

det = det(1:2)   (Output) 

Array of size 2 of the same type and kind as A for representing the products of the 

determinants of the matrices Q, P, and R. The determinant is represented by two 

numbers. The first is the base with the sign or complex angle of the result. The second 

is the exponent. When det(2) is within exponent range, the value of this expression is 

given by abs (det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular, 

abs(det(1)) = radix(det); otherwise, det(1) = 0., and det(2) =  huge(abs(det(1))). 

ainv = ainv(:,:)   (Output) 

Array with size n × m of the same type and kind as A(1:m, 1:n). It contains the 

generalized inverse matrix, A†. 



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  29 

     

     

 

cov = cov(:,:)   (Output) 

Array with size n × n of the same type and kind as A(1:m, 1:n). It contains the 

unscaled covariance matrix, C = (A
T
A)

-1
. 

iopt = iopt(:)   (Input) 

Derived type array with the same precision as the input matrix; used for passing 

optional data to the routine. The options are as follows:  

Packaged Options for lin_sol_lsq 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_sol_lsq_set_small 1 

s_, d_, c_, z_ lin_sol_lsq_save_QR 2 

s_, d_, c_, z_ lin_sol_lsq_solve_A 3 

s_, d_, c_, z_ lin_sol_lsq_solve_ADJ 4 

s_, d_, c_, z_ lin_sol_lsq_no_row_pivoting 5 

s_, d_, c_, z_ lin_sol_lsq_no_col_pivoting 6 

s_, d_, c_, z_ lin_sol_lsq_scan_for_NaN 7 

s_, d_, c_, z_ lin_sol_lsq_no_sing_mess 8 

iopt(IO) = ?_options(?_lin_sol_lsq_set_small, Small) 

Replaces with Small if a diagonal term of the matrix R is smaller in magnitude than the 

value Small. A solution is approximated based on this replacement in either case. 

Default: the smallest number that can be reciprocated safely 

iopt(IO) = ?_options(?_lin_sol_lsq_save_QR, ?_dummy) 

Saves the factorization of A. Requires the optional arguments ―pivots=‖ and 

―trans=‖ if the routine is used for solving further systems with the same matrix. This 

is the only case where the input arrays A and b are not saved. For efficiency, the 

diagonal reciprocals of the matrix R are saved in the diagonal entries of A.  

iopt(IO) = ?_options(?_lin_sol_lsq_solve_A, ?_dummy) 

Uses the factorization of A computed and saved to solve Ax = b.  

iopt(IO) = ?_options(?_lin_sol_lsq_solve_ADJ, ?_dummy) 

Uses the factorization of A computed and saved to solve A
T
x = b. 

iopt(IO) = ?_options(?_lin_sol_lsq_no_row_pivoting, ?_dummy) 

Does no row pivoting. The array pivots(:), if present, satisfies pivots(i) = i for i = 1, 

…, min (m, n). 

iopt(IO) = ?_options(?_lin_sol_lsq_no_col_pivoting, ?_dummy) 

Does no column pivoting. The array pivots(:), if present, satisfies pivots(i + min (m, 

n)) = i for i = 1, …, min (m, n). 

iopt(IO) = ?_options(?_lin_sol_lsq_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that  
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isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.  

See the isNaN() function, Chapter 10. 

Default: Does not scan for NaNs 

iopt(IO) = ?_options(?_lin_sol_lsq_no_sing_mess,?_dummy) 

Do not print an error message when A is singular or k < min(m, n). 

FORTRAN 90 Interface 

Generic: CALL LIN_SOL_LSQ (A, B, X [,…]) 

Specific: The specific interface names are S_LIN_SOL_LSQ, D_LIN_SOL_LSQ, 

C_LIN_SOL_LSQ, and Z_LIN_SOL_LSQ. 

Description 

Routine LIN_SOL_LSQ solves a rectangular system of linear algebraic equations in a least-squares 

sense. It computes the decomposition of A using an orthogonal factorization. This decomposition 

has the form 

0

0 0

k kR
QAP

 
  
   

where the matrices Q and P are products of elementary orthogonal and permutation matrices. The 

matrix R is k × k, where k is the approximate rank of A. This value is determined by the value of 

the parameter Small. See Golub and Van Loan (1989, Chapter 5.4) for further details. Note that the 

use of both row and column pivoting is nonstandard, but the routine defaults to this choice for en-

hanced reliability. 

Fatal and Terminal Error Messages 

See the messages.gls file for error messages for LIN_SOL_LSQ. These error messages are 

numbered 241256; 261276; 281296; 301316. 

Example 1: Solving a Linear Least-squares System 

This example solves a linear least-squares system Cx ≅ d, where  

m nC   

is a real matrix with m > n. The least-squares problem is derived from polynomial data fitting to 

the function 

  cos( )
2

x x
y x e  

 

using a discrete set of values in the interval 1 ≤ x ≤ 1. The polynomial is represented as the 

series 
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where the  iT x  are Chebyshev polynomials. It is natural for the problem matrix and solution to 

have a column or entry corresponding to the subscript zero, which is used in this code. Also, see 

operator_ex09, supplied with the product examples. 
  

      use lin_sol_lsq_int  

      use rand_gen_int  

      use error_option_packet  

   

      implicit none  

  

! This is Example 1 for LIN_SOL_LSQ.  

  

      integer i  

      integer, parameter :: m=128, n=8  

      real(kind(1d0)), parameter :: one=1d0, zero=0d0  

      real(kind(1d0)) A(m,0:n), c(0:n,1), pi_over_2, x(m), y(m,1), &  

             u(m), v(m), w(m), delta_x  

  

! Generate a random grid of points.  

      call rand_gen(x)  

  

! Transform points to the interval -1,1.  

      x = x*2 - one  

  

! Compute the constant 'PI/2'.  

      pi_over_2 = atan(one)*2  

  

! Generate known function data on the grid.  

      y(1:m,1) = exp(x) + cos(pi_over_2*x)  

  

! Fill in the least-squares matrix for the Chebyshev polynomials.  

      A(:,0) = one; A(:,1) = x  

  

      do i=2, n  

         A(:,i) = 2*x*A(:,i-1) - A(:,i-2)  

      end do  

  

! Solve for the series coefficients.  

      call lin_sol_lsq(A, y, c)  

  

! Generate an equally spaced grid on the interval.  

      delta_x = 2/real(m-1,kind(one))  

      do i=1, m  

         x(i) = -one + (i-1)*delta_x  

      end do  

  

! Evaluate residuals using backward recurrence formulas.  

      u = zero  

      v = zero  

      do i=n, 0, -1  

         w = 2*x*u - v + c(i,1)  

         v = u  
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         u = w  

      end do  

  

      y(1:m,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)  

  

! Check that n+1 sign changes in the residual curve occur.  

      x = one  

      x = sign(x,y(1:m,1))  

  

      if (count(x(1:m-1) /= x(2:m)) >= n+1) then  

         write (*,*) 'Example 1 for LIN_SOL_LSQ is correct.'  

      end if  

  

      end   

Output 
 

Example 1 for LIN_SOL_LSQ is correct. 

Additional Examples 

Example 2: System Solving with the Generalized Inverse 

This example solves the same form of the system as Example 1. In this case, the grid of evaluation 

points is equally spaced. The coefficients are computed using the ―smoothing formulas‖ by rows 

of the generalized inverse matrix, A†, computed using the optional argument ―ainv=‖. Thus, the 

coefficients are given by the matrix-vector product c = (A†) y, where y is the vector of values of 

the function y(x) evaluated at the grid of points. Also, see operator_ex10, supplied with the 

product examples. 
 

      use lin_sol_lsq_int  

  

      implicit none  

  

! This is Example 2 for LIN_SOL_LSQ.  

  

      integer i  

      integer, parameter :: m=128, n=8  

      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  

      real(kind(1d0)) a(m,0:n), c(0:n,1), pi_over_2, x(m), y(m,1), &  

             u(m), v(m), w(m), delta_x, inv(0:n, m)  

  

! Generate an array of equally spaced points on the interval -1,1.  

  

      delta_x = 2/real(m-1,kind(one))  

      do i=1, m  

         x(i) = -one + (i-1)*delta_x  

      end do  

  

! Compute the constant 'PI/2'.  

  

      pi_over_2 = atan(one)*2  

  

! Compute data values on the grid.  
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      y(1:m,1) = exp(x) + cos(pi_over_2*x)  

  

! Fill in the least-squares matrix for the Chebyshev polynomials.  

  

      a(:,0) = one  

      a(:,1) = x  

  

      do i=2, n  

         a(:,i) = 2*x*a(:,i-1) - a(:,i-2)  

      end do  

  

! Compute the generalized inverse of the least-squares matrix.  

  

      call lin_sol_lsq(a, y, c, nrhs=0, ainv=inv)  

  

! Compute the series coefficients using the generalized inverse  

! as 'smoothing formulas.'  

  

      c(0:n,1) = matmul(inv(0:n,1:m),y(1:m,1))  

  

! Evaluate residuals using backward recurrence formulas.  

  

      u = zero  

      v = zero  

      do i=n, 0, -1  

         w = 2*x*u - v + c(i,1)  

         v = u  

         u = w  

      end do  

  

      y(1:m,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)  

  

! Check that n+2 sign changes in the residual curve occur.  

! (This test will fail when n is larger.)  

  

      x = one  

      x = sign(x,y(1:m,1))  

  

      if (count(x(1:m-1) /= x(2:m)) == n+2) then  

         write (*,*) 'Example 2 for LIN_SOL_LSQ is correct.'  

      end if  

  

      end 

Output 
 

Example 2 for LIN_SOL_LSQ is correct. 

Example 3: Two-Dimensional Data Fitting 

This example illustrates the use of radial-basis functions to least-squares fit arbitrarily spaced data 

points. Let m data values {yi} be given at points in the unit square, {pi}. Each pi is a pair of real 

values. Then, n points {qj} are chosen on the unit square. A series of radial-basis functions is used 

to represent the data, 
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where 
2
 is a parameter. This example uses 

2
 = 1, but either larger or smaller values can give a 

better approximation for user problems. The coefficients {cj} are obtained by solving the 

following m × n linear least-squares problem: 

 j jf p y
 

This example illustrates an effective use of Fortran 90 array operations to eliminate many details 

required to build the matrix and right-hand side for the {cj} .  For this example, the two sets of 

points {pi} and {qj} are chosen randomly. The values {yj}  are computed from the following 

formula: 

2|| ||jp

jy e



 

The residual function 

   
2|| ||p

r p e f p


 
 

is computed at an N × N square grid of equally spaced points on the unit square. The magnitude of 

r(p) may be larger at certain points on this grid than the residuals at the given points,  ip . Also, 

see operator_ex11, supplied with the product examples. 
  

      use lin_sol_lsq_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 3 for LIN_SOL_LSQ.  

  

      integer i, j  

      integer, parameter :: m=128, n=32, k=2, n_eval=16  

      real(kind(1d0)), parameter :: one=1.0d0, delta_sqr=1.0d0  

      real(kind(1d0)) a(m,n), b(m,1), c(n,1), p(k,m), q(k,n), &  

              x(k*m), y(k*n), t(k,m,n), res(n_eval,n_eval), &  

              w(n_eval), delta  

        

! Generate a random set of data points in k=2 space.  

  

      call rand_gen(x)  

      p = reshape(x,(/k,m/))  

  

! Generate a random set of center points in k-space.  

  

      call rand_gen(y)  

      q = reshape(y,(/k,n/))  

  

! Compute the coefficient matrix for the least-squares system.  
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      t = spread(p,3,n)  

      do j=1, n  

        t(1:,:,j) = t(1:,:,j) - spread(q(1:,j),2,m)  

      end do  

        

      a = sqrt(sum(t**2,dim=1) + delta_sqr)  

  

! Compute the right hand side of data values.  

  

      b(1:,1) = exp(-sum(p**2,dim=1))  

  

! Compute the solution.   

  

      call lin_sol_lsq(a, b, c)  

  

! Check the results.  

  

      if (sum(abs(matmul(transpose(a),b-matmul(a,c))))/sum(abs(a)) &  

          <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 3 for LIN_SOL_LSQ is correct.'  

      end if  

  

! Evaluate residuals, known function - approximation at a square   

! grid of points.  (This evaluation is only for k=2.)  

  

      delta = one/real(n_eval-1,kind(one))  

      do i=1, n_eval  

         w(i) = (i-1)*delta  

      end do  

      res = exp(-(spread(w,1,n_eval)**2 + spread(w,2,n_eval)**2))  

      do j=1, n  

         res = res - c(j,1)*sqrt((spread(w,1,n_eval) - q(1,j))**2 + &  

                    (spread(w,2,n_eval) - q(2,j))**2 + delta_sqr)  

      end do  

  

      end   

Output 
 

Example 3 for LIN_SOL_LSQ is correct. 

Example 4: Least-squares with an Equality Constraint 

This example solves a least-squares system Ax ≅ b with the constraint that the solution values 

have a sum equal to the value 1. To solve this system, one heavily weighted row vector and right-

hand side component is added to the system corresponding to this constraint. Note that the weight 

used is  

1/ 2   

where ε is the machine precision, but any larger value can be used. The fact that lin_sol_lsq 

performs row pivoting in this case is critical for obtaining an accurate solution to the constrained 

problem solved using weighting. See Golub and Van Loan (1989, Chapter 12) for more 

information about this method. Also, see operator_ex12, supplied with the product examples.  
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      use lin_sol_lsq_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 4 for LIN_SOL_LSQ.  

  

      integer, parameter :: m=64, n=32  

      real(kind(1e0)), parameter :: one=1.0e0  

      real(kind(1e0)) :: a(m+1,n), b(m+1,1), x(n,1), y(m*n)  

        

        

  

! Generate a random matrix.  

      

      call rand_gen(y)  

      a(1:m,1:n) = reshape(y,(/m,n/))  

  

! Generate a random right hand side.  

  

      call rand_gen(b(1:m,1))  

  

! Heavily weight desired constraint.  All variables sum to one.  

  

      a(m+1,1:n) = one/sqrt(epsilon(one))  

  

      b(m+1,1) = one/sqrt(epsilon(one))  

  

      call lin_sol_lsq(a, b, x)  

  

      if (abs(sum(x) - one)/sum(abs(x)) <= &  

                  sqrt(epsilon(one))) then  

         write (*,*) 'Example 4 for LIN_SOL_LSQ is correct.'  

      end if  

  

      end  

Output 
 

Example 4 for LIN_SOL_LSQ is correct. 

LIN_SOL_SVD 

Solves a rectangular least-squares system of linear equations Ax ≅ b using singular value 

decomposition 

TA USV  

With optional arguments, any of several related computations can be performed. These extra tasks 

include computing the rank of A, the orthogonal m × m and n × n matrices U and V, and the m × n 

diagonal matrix of singular values, S. 
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Required Arguments 

A —   Array of size m × n containing the matrix. (Input [/Output]) 

If the packaged option lin_sol_svd_overwrite_input is used, this array is not 

saved on output. 

B —   Array of size m × nb containing the right-hand side matrix. (Input [/Output] 

If the packaged option lin_sol_svd_overwrite_input is used, this array is not 

saved on output. 

X—   Array of size n × nb containing the solution matrix. (Output) 

Optional Arguments 

MROWS = m   (Input) 

Uses array A(1:m, 1:n) for the input matrix. 

Default: m = size (A, 1) 

NCOLS = n   (Input) 

Uses array A(1:m, 1:n) for the input matrix. 

Default: n = size(A, 2) 

NRHS = nb   (Input) 

Uses the array b(1:, 1:nb) for the input right-hand side matrix. 

Default: nb = size(b, 2) 

Note that b must be a rank-2 array. 

RANK = k   (Output) 

Number of singular values that are at least as large as the value Small. It will satisfy k 

<= min(m, n). 

u = u(:,:)   (Output) 

Array of the same type and kind as A(1:m, 1:n). It contains the m × m orthogonal 

matrix U of the singular value decomposition. 

s = s(:)   (Output) 

Array of the same precision as A(1:m, 1:n). This array is real even when the matrix 

data is complex. It contains the m × n diagonal matrix S in a rank-1 array. The singular 

values are nonnegative and ordered non-increasing. 

v = v(:,:)   (Output) 

Array of the same type and kind as A(1:m, 1:n). It contains the n × n orthogonal 

matrix V. 

iopt = iopt(:)   (Input) 

Derived type array with the same precision as the input matrix. Used for passing 

optional data to the routine. The options are as follows: 
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Packaged Options for lin_sol_svd 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_sol_svd_set_small 1 

s_, d_, c_, z_ lin_sol_svd_overwrite_input 2 

s_, d_, c_, z_ lin_sol_svd_safe_reciprocal 3 

s_, d_, c_, z_ lin_sol_svd_scan_for_NaN 4 

iopt(IO) = ?_options(?_lin_sol_svd_set_small, Small) 

Replaces with zero a diagonal term of the matrix S if it is smaller in magnitude than the 

value Small. This determines the approximate rank of the matrix, which is returned as 

the ―rank=‖ optional argument. A solution is approximated based on this 

replacement. 

Default: the smallest number that can be safely reciprocated 

iopt(IO) = ?_options(?_lin_sol_svd_overwrite_input,?_dummy) 

Does not save the input arrays A(:,:) and b(:,:). 

iopt(IO) = ?_options(?_lin_sol_svd_safe_reciprocal, safe) 

Replaces a denominator term with safe if it is smaller in magnitude than the value safe.  

Default: the smallest number that can be safely reciprocated 

iopt(IO) = ?_options(?_lin_sol_svd_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that 

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.  

See the isNaN() function, Chapter 10. 

Default: Does not scan for NaNs 

FORTRAN 90 Interface 

Generic: CALL LIN_SOL_SVD (A, B, X [,…]) 

Specific: The specific interface names are S_LIN_SOL_SVD, D_LIN_SOL_SVD, 

C_LIN_SOL_SVD, and Z_LIN_SOL_SVD. 

Description 

Routine LIN_SOL_SVD solves a rectangular system of linear algebraic equations in a least-squares 

sense. It computes the factorization of A known as the singular value decomposition. This 

decomposition has the following form: 

A = USV
T
 

The matrices U and V are orthogonal. The matrix S is diagonal with the diagonal terms non-in-

creasing. See Golub and Van Loan (1989, Chapters 5.4 and 5.5) for further details. 
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Fatal, Terminal, and Warning Error Messages 

See the messages.gls file for error messages for LIN_SOL_SVD. These error messages are 

numbered 401412; 421432; 441452; 461472. 

Example 1: Least-squares solution of a Rectangular System 

The least-squares solution of a rectangular m × n system Ax ≅ b is obtained. The use of 

lin_sol_lsq is more efficient in this case since the matrix is of full rank. This example 

anticipates a problem where the matrix A is poorly conditioned or not of full rank; thus, 

lin_sol_svd is the appropriate routine. Also, see operator_ex13, Chapter 10. 
 

      use lin_sol_svd_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 1 for LIN_SOL_SVD.  

  

      integer, parameter :: m=128, n=32  

      real(kind(1d0)), parameter :: one=1d0  

      real(kind(1d0)) A(m,n), b(m,1), x(n,1), y(m*n), err  

  

! Generate a random matrix and right-hand side.  

      call rand_gen(y)  

      A = reshape(y,(/m,n/))  

      call rand_gen(b(1:m,1))  

  

! Compute the least-squares solution matrix of Ax=b.  

      call lin_sol_svd(A, b, x)  

  

! Check that the residuals are orthogonal to the  

! column vectors of A.  

      err = sum(abs(matmul(transpose(A),b-matmul(A,x))))/sum(abs(A))  

      if (err <= sqrt(epsilon(one))) then  

 

 

         write (*,*) 'Example 1 for LIN_SOL_SVD is correct.'  

      end if  

  

      end   

Output 
 

Example 1 for LIN_SOL_SVD is correct. 

Additional Examples 

Example 2: Polar Decomposition of a Square Matrix 

A polar decomposition of an n × n random matrix is obtained. This decomposition satisfies  

A = PQ, where P is orthogonal and Q is self-adjoint and positive definite.  

Given the singular value decomposition  
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TA USV  

the polar decomposition follows from the matrix products  

 and T TP UV Q VSV 
 

This example uses the optional arguments ―u=‖, ―s=‖, and ―v=‖, then array intrinsic functions to 

calculate P and Q. Also, see operator_ex14, Chapter 10. 
 

      use lin_sol_svd_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 2 for LIN_SOL_SVD.  

  

      integer i  

      integer, parameter :: n=32  

      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  

      real(kind(1d0)) a(n,n), b(n,0), ident(n,n), p(n,n), q(n,n), &  

             s_d(n), u_d(n,n), v_d(n,n), x(n,0), y(n*n)  

        

! Generate a random matrix.  

  

      call rand_gen(y)  

      a = reshape(y,(/n,n/))  

  

! Compute the singular value decomposition.  

  

      call lin_sol_svd(a, b, x, nrhs=0, s=s_d, &  

                u=u_d, v=v_d)  

  

! Compute the (left) orthogonal factor.  

  

      p = matmul(u_d,transpose(v_d))  

  

! Compute the (right) self-adjoint factor.  

  

      q = matmul(v_d*spread(s_d,1,n),transpose(v_d))  

  

      ident=zero  

      do i=1, n  

         ident(i,i) = one  

      end do  

  

! Check the results.  

  

      if (sum(abs(matmul(p,transpose(p)) - ident))/sum(abs(p)) &  

               <= sqrt(epsilon(one))) then  

         if (sum(abs(a - matmul(p,q)))/sum(abs(a)) &  

               <= sqrt(epsilon(one))) then  

            write (*,*) 'Example 2 for LIN_SOL_SVD is correct.'  

         end if  

      end if  

  



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  41 

     

     

 

      end   

Output 
 

Example 2 for LIN_SOL_SVD is correct. 

Example 3: Reduction of an Array of Black and White 

An n × n array A contains entries that are either 0 or 1. The entry is chosen so that as a two-

dimensional object with origin at the point (1, 1), the array appears as a black circle of radius n/4 

centered at the point (n/2, n/2). 

A singular value decomposition  

TA USV   

is computed, where S is of low rank. Approximations using fewer of these nonzero singular values 

and vectors suffice to reconstruct A. Also, see operator_ex15, supplied with the product 

examples. 
  

      use lin_sol_svd_int  

      use rand_gen_int  

      use error_option_packet  

  

      implicit none  

  

! This is Example 3 for LIN_SOL_SVD.  

  

      integer i, j, k  

      integer, parameter :: n=32  

      real(kind(1e0)), parameter :: half=0.5e0, one=1e0, zero=0e0  

      real(kind(1e0)) a(n,n), b(n,0), x(n,0), s(n), u(n,n), &  

             v(n,n), c(n,n)  

  

! Fill in value one for points inside the circle.  

      a = zero  

      do i=1, n  

         do j=1, n  

            if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) a(i,j) = one  

         end do  

      end do  

  

! Compute the singular value decomposition.  

      call lin_sol_svd(a, b, x, nrhs=0,&  

            s=s, u=u, v=v)  

  

! How many terms, to the nearest integer, exactly   

! match the circle?  

           c = zero; k = count(s > half)  

      do i=1, k  

        c = c + spread(u(1:n,i),2,n)*spread(v(1:n,i),1,n)*s(i)  

        if (count(int(c-a) /= 0) == 0) exit   

      end do  

  

      if (i < k) then  

         write (*,*) 'Example 3 for LIN_SOL_SVD is correct.'  
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      end if  

      end   

Output 
 

Example 3 for LIN_SOL_SVD is correct. 

Example 4: Laplace Transform Solution 

This example illustrates the solution of a linear least-squares system where the matrix is poorly 

conditioned. The problem comes from solving the integral equation: 

     
1

1

0

1st se f t dt s e g s    
 

The unknown function f(t) = 1 is computed. This problem is equivalent to the numerical inversion 

of the Laplace Transform of the function g(s) using real values of t and s, solving for a function 

that is nonzero only on the unit interval. The evaluation of the integral uses the following  

approximate integration rule: 

   
11

10

j

j

t
n

st st
j

j t

f t e dt f t e dt



 



 
 

The points  jt  are chosen equally spaced by using the following: 

1
j

j
t

n




 

The points  js  are computed so that the range of g(s) is uniformly sampled. This requires the  

solution of m equations 

 
1

i i

i
g s g

m
 

  

for j = 1, …, n and i = 1, …, m. Fortran 90 array operations are used to solve for the collocation 

points  is  as a single series of steps. Newton's method, 

h
s s

h
 

  

is applied to the array function  

  1sh s e sg  
 

where the following is true: 
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Note the coefficient matrix for the solution values  

   1 , ,
T

nf f t f t     

whose entry at the intersection of row i and column j is equal to the value 

1j

i

j

t

s t

t

e dt






 

is explicitly integrated and evaluated as an array operation. The solution analysis of the resulting 

linear least-squares system  

Af g
 

 is obtained by computing the singular value decomposition  

TA USV  

An approximate solution is computed with the transformed right-hand side 

Tb U g
 

followed by using as few of the largest singular values as possible to minimize the following 

squared error residual: 

 
2

1

1
n

j

j

f



 

This determines an optimal value k to use in the approximate solution 

1

k
j

j
jj

v
f b

s


 

Also, see operator_ex16, supplied with the product examples.  
  

      use lin_sol_svd_int  

      use rand_gen_int  

      use error_option_packet  

  

      implicit none  

  

! This is Example 4 for LIN_SOL_SVD.  

  

      integer i, j, k  

      integer, parameter :: m=64, n=16  

      real(kind(1e0)), parameter :: one=1e0, zero=0.0e0  

      real(kind(1e0)) :: g(m), s(m), t(n+1), a(m,n), b(m,1), &  

               f(n,1), U_S(m,m), V_S(n,n), S_S(n), &  

               rms, oldrms  
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      real(kind(1e0)) :: delta_g, delta_t  

      

      delta_g = one/real(m+1,kind(one))  

  

! Compute which collocation equations to solve.  

      do i=1,m  

        g(i)=i*delta_g  

      end do  

  

! Compute equally spaced quadrature points.  

      delta_t =one/real(n,kind(one))  

      do j=1,n+1  

        t(j)=(j-1)*delta_t  

      end do  

  

! Compute collocation points.  

      s=m  

      solve_equations: do  

        s=s-(exp(-s)-(one-s*g))/(g-exp(-s))  

        if (sum(abs((one-exp(-s))/s - g)) <= &  

                 epsilon(one)*sum(g)) &  

            exit solve_equations  

      end do solve_equations  

  

! Evaluate the integrals over the quadrature points.  

      a = (exp(-spread(t(1:n),1,m)*spread(s,2,n)) &  

        - exp(-spread(t(2:n+1),1,m)*spread(s,2,n))) / &  

          spread(s,2,n)  

  

      b(1:,1)=g  

  

! Compute the singular value decomposition.  

  

      call lin_sol_svd(a, b, f, nrhs=0, &  

              rank=k, u=U_S, v=V_S, s=S_S)  

  

! Singular values that are larger than epsilon determine   

! the rank=k.  

      k = count(S_S > epsilon(one))  

      oldrms = huge(one)  

      g = matmul(transpose(U_S), b(1:m,1))  

  

! Find the minimum number of singular values that gives a good   

! approximation to f(t) = 1.  

  

      do i=1,k  

         f(1:n,1) = matmul(V_S(1:,1:i), g(1:i)/S_S(1:i))  

         f = f - one  

         rms = sum(f**2)/n  

         if (rms > oldrms) exit  

         oldrms = rms  

      end do  

  

      write (*,"( ' Using this number of singular values, ', &  

          &i4 / ' the approximate R.M.S. error is ', 1pe12.4)") &  

      i-1, oldrms  
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      if (sqrt(oldrms) <= delta_t**2) then  

         write (*,*) 'Example 4 for LIN_SOL_SVD is correct.'  

      end if  

  

      end  

Output 
 

Example 4 for LIN_SOL_SVD is correct. 

LIN_SOL_TRI 
Solves multiple systems of linear equations  

, 1, ,j j jA x y j k 
 

Each matrix Aj is tridiagonal with the same dimension, n. The default solution method is based on 

LU factorization computed using cyclic reduction or, optionally, Gaussian elimination with partial 

pivoting. 

Required Arguments 

C — Array of size 2n × k containing the upper diagonals of the matrices Aj. Each upper 

diagonal is entered in array locations c(1:n  1, j). The data C(n, 1:k) are not used. 

(Input [/Output])  

The input data is overwritten. See note below.  

D — Array of size 2n × k containing the diagonals of the matrices Aj. Each diagonal is 

entered in array locations D(1:n, j). (Input [/Output]) 

The input data is overwritten. See note below.  

B — Array of size 2n × k containing the lower diagonals of the matrices Aj. Each lower 

diagonal is entered in array locations B(2:n, j). The data  

B(1, 1:k) are not used. (Input [/Output]) 

The input data is overwritten. See note below.  

Y — Array of size 2n × k containing the right-hand sides, yj. Each right-hand side is entered 

in array locations Y(1:n, j). The computed solution xj is returned in locations Y(1:n, j). 

(Input [/Output]) 

NOTE: The required arguments have the Input data overwritten. If these quantities are 

used later, they must be saved in user-defined arrays. The routine uses each array's 

locations (n + 1:2 * n, 1:k) for scratch storage and intermediate data in the LU 

factorization. The default values for problem dimensions are n = (size (D, 1))/2 and  

k = size (D, 2). 
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Optional Arguments 

NCOLS = n   (Input) 

Uses arrays C(1:n  1, 1:k), D(1:n, 1:k), and B(2:n, 1:k) as the upper, main and 

lower diagonals for the input tridiagonal matrices. The right-hand sides and solutions 

are in array Y(1:n, 1:k). Note that each of these arrays are rank-2. 

Default: n = (size(D, 1))/2 

NPROB = k   (Input) 

The number of systems solved. 

Default: k = size(D, 2) 

iopt = iopt(:)   (Input) 

Derived type array with the same precision as the input matrix. Used for passing 

optional data to the routine. The options are as follows: 

Packaged Options for LIN_SOL_TRI 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_sol_tri_set_small 1 

s_, d_, c_, z_ lin_sol_tri_set_jolt 2 

s_, d_, c_, z_ lin_sol_tri_scan_for_NaN 3 

s_, d_, c_, z_ lin_sol_tri_factor_only 4 

s_, d_, c_, z_ lin_sol_tri_solve_only 5 

s_, d_, c_, z_ lin_sol_tri_use_Gauss_elim 6 

iopt(IO) = ?_options(?_lin_sol_tri_set_small, Small) 

Whenever a reciprocation is performed on a quantity smaller than Small, it is replaced 

by that value plus 2 × jolt. 

Default: 0.25 × epsilon() 

iopt(IO) = ?_options(?_lin_sol_tri_set_jolt, jolt) 

Default: epsilon(), machine precision 

iopt(IO) = ?_options(?_lin_sol_tri_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that 

isNaN(C(i,j)) .or.   

isNaN(D(i,j)) .or.   

isNaN(B(i,j)) .or.   

isNaN(Y(i,j)) == .true.  

See the isNaN() function, Chapter 10. 

Default: Does not scan for NaNs. 
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iopt(IO) = ?_options(?_lin_sol_tri_factor_only, ?_dummy) 

Obtain the LU factorization of the matrices Aj. Does not solve for a solution. 

Default: Factor the matrices and solve the systems. 

iopt(IO) = ?_options(?_lin_sol_tri_solve_only, ?_dummy) 

Solve the systems Ajxj = yj using the previously computed LU factorization. 

Default: Factor the matrices and solve the systems. 

iopt(IO) = ?_options(?_lin_sol_tri_use_Gauss_elim, ?_dummy) 

The accuracy, numerical stability or efficiency of the cyclic reduction algorithm may 

be inferior to the use of LU factorization with partial pivoting.  

Default: Use cyclic reduction to compute the factorization. 

FORTRAN 90 Interface 

Generic: CALL LIN_SOL_TRI (C, D, B, Y [,…]) 

Specific: The specific interface names are S_LIN_SOL_TRI, D_LIN_SOL_TRI, 

C_LIN_SOL_TRI, and Z_LIN_SOL_TRI. 

Description 

Routine lin_sol_tri solves k systems of tridiagonal linear algebraic equations, each problem of 

dimension n × n. No relation between k and n is required. See Kershaw, pages 8688 in Rodrigue 

(1982) for further details. To deal with poorly conditioned or singular systems, a specific 

regularizing term is added to each reciprocated value. This technique keeps the factorization 

process efficient and avoids exceptions from overflow or division by zero. Each occurrence of an 

array reciprocal 
1a

 is replaced by the expression  
1

a t


 , where the array temporary t has the 

value 0 whenever the corresponding entry satisfies |a| > Small. Alternately, t has the value 2 × jolt. 

(Every small denominator gives rise to a finite ―jolt‖.) Since this tridiagonal solver is used in the 

routines lin_svd and lin_eig_self for inverse iteration, regularization is required. Users can 

reset the values of Small and jolt for their own needs. Using the default values for these 

parameters, it is generally necessary to scale the tridiagonal matrix so that the maximum 

magnitude has value approximately one. This is normally not an issue when the systems are 

nonsingular. 

The routine is designed to use cyclic reduction as the default method for computing the LU 

factorization. Using an optional parameter, standard elimination and partial pivoting will be used 

to compute the factorization. Partial pivoting is numerically stable but is likely to be less efficient 

than cyclic reduction.  

Fatal, Terminal, and Warning Error Messages 

See the messages.gls file for error messages for LIN_SOL_TRI. These error messages are 

numbered 10811086; 11011106; 11211126; 11411146. 

Example 1: Solution of Multiple Tridiagonal Systems 

The upper, main and lower diagonals of n systems of size n × n are generated randomly. A scalar 

is added to the main diagonal so that the systems are positive definite. A random vector xj  is  
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generated and right-hand sides yj  = Aj yj are computed. The routine is used to compute the 

solution, using the Aj  and yj. The results should compare closely with the xj  used to generate the 

right-hand sides. Also, see operator_ex17, supplied with the product examples. 
 

      use lin_sol_tri_int  

      use rand_gen_int  

      use error_option_packet  

  

      implicit none  

  

! This is Example 1 for LIN_SOL_TRI.  

  

      integer i  

      integer, parameter :: n=128  

      real(kind(1d0)), parameter :: one=1d0, zero=0d0  

      real(kind(1d0)) err  

      real(kind(1d0)), dimension(2*n,n) :: d, b, c, res(n,n), &  

        t(n), x, y  

  

! Generate the upper, main, and lower diagonals of the   

! n matrices A_i.  For each system a random vector x is used   

! to construct the right-hand side, Ax = y.  The lower part  

! of each array remains zero as a result.  

  

      c = zero; d=zero; b=zero; x=zero  

      do i = 1, n  

         call rand_gen (c(1:n,i))  

         call rand_gen (d(1:n,i))  

         call rand_gen (b(1:n,i))  

         call rand_gen (x(1:n,i))  

      end do  

  

! Add scalars to the main diagonal of each system so that   

! all systems are positive definite.  

      t = sum(c+d+b,DIM=1)  

      d(1:n,1:n) = d(1:n,1:n) + spread(t,DIM=1,NCOPIES=n)  

  

! Set Ax = y.  The vector x generates y.  Note the use  

! of EOSHIFT and array operations to compute the matrix  

! product, n distinct ones as one array operation.  

  

     y(1:n,1:n)=d(1:n,1:n)*x(1:n,1:n) + &  

                c(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=+1,DIM=1) + &  

                b(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=-1,DIM=1)  

  

! Compute the solution returned in y.  (The input values of c,   

! d, b, and y are overwritten by lin_sol_tri.)  Check for any  

! error messages.  

        

      call lin_sol_tri (c, d, b, y)  

  

! Check the size of the residuals, y-x.  They should be small,   

! relative to the size of values in x.  

      res = x(1:n,1:n) - y(1:n,1:n)  

      err = sum(abs(res)) / sum(abs(x(1:n,1:n)))  
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      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 1 for LIN_SOL_TRI is correct.'  

      end if  

  

      end   

Output 
 

Example 1 for LIN_SOL_TRI is correct. 

Additional Examples 

Example 2: Iterative Refinement and Use of Partial Pivoting 

This program unit shows usage that typically gives acceptable accuracy for a large class of prob-

lems. Our goal is to use the efficient cyclic reduction algorithm when possible, and keep on using 

it unless it will fail. In exceptional cases our program switches to the LU factorization with partial 

pivoting. This use of both factorization and solution methods enhances reliability and maintains 

efficiency on the average. Also, see operator_ex18, supplied with the product examples. 
 

      use lin_sol_tri_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 2 for LIN_SOL_TRI.  

  

      integer i, nopt  

      integer, parameter :: n=128  

      real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0  

      real(kind(1d0)), parameter :: d_one=1d0, d_zero=0d0  

      real(kind(1e0)), dimension(2*n,n) :: d, b, c, res(n,n), &  

        x, y  

      real(kind(1e0)) change_new, change_old, err  

      type(s_options) :: iopt(2) = s_options(0,s_zero)  

      real(kind(1d0)), dimension(n,n) :: d_save, b_save, c_save, &  

             x_save, y_save, x_sol  

      logical solve_only  

  

  

      c = s_zero; d=s_zero; b=s_zero; x=s_zero  

  

! Generate the upper, main, and lower diagonals of the   

! matrices A.  A random vector x is used to construct the   

! right-hand sides: y=A*x.  

      do i = 1, n  

         call rand_gen (c(1:n,i))  

         call rand_gen (d(1:n,i))  

         call rand_gen (b(1:n,i))  

         call rand_gen (x(1:n,i))  

      end do  

  

! Save double precision copies of the diagonals and the   

! right-hand side.  

      c_save = c(1:n,1:n); d_save = d(1:n,1:n)   

      b_save = b(1:n,1:n); x_save = x(1:n,1:n)  
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      y_save(1:n,1:n) = d(1:n,1:n)*x_save + &  

               c(1:n,1:n)*EOSHIFT(x_save,SHIFT=+1,DIM=1) + &  

               b(1:n,1:n)*EOSHIFT(x_save,SHIFT=-1,DIM=1)  

  

  

! Iterative refinement loop.  

      factorization_choice:  do nopt=0, 1  

  

! Set the logical to flag the first time through.  

  

         solve_only = .false.  

         x_sol = d_zero  

         change_old = huge(s_one)  

  

         iterative_refinement:  do  

  

! This flag causes a copy of data to be moved to work arrays   

! and a factorization and solve step to be performed.  

            if (.not. solve_only) then  

               c(1:n,1:n)=c_save; d(1:n,1:n)=d_save  

               b(1:n,1:n)=b_save  

            end if  

  

! Compute current residuals, y - A*x, using current x.  

            y(1:n,1:n) = -y_save + &  

             d_save*x_sol + &  

             c_save*EOSHIFT(x_sol,SHIFT=+1,DIM=1) + &  

             b_save*EOSHIFT(x_sol,SHIFT=-1,DIM=1)  

  

            call lin_sol_tri (c, d, b, y, iopt=iopt)    

  

            x_sol = x_sol + y(1:n,1:n)  

  

            change_new = sum(abs(y(1:n,1:n)))  

  

! If size of change is not decreasing, stop the iteration.  

            if (change_new >= change_old) exit iterative_refinement  

  

            change_old = change_new  

            iopt(nopt+1) = s_options(s_lin_sol_tri_solve_only,s_zero)  

            solve_only = .true.  

  

         end do iterative_refinement  

  

! Use Gaussian Elimination if Cyclic Reduction did not get an   

! accurate solution.  

! It is an exceptional event when Gaussian Elimination is required.  

         if (sum(abs(x_sol - x_save)) / sum(abs(x_save)) &  

           <= sqrt(epsilon(d_one))) exit factorization_choice  

  

         iopt = s_options(0,s_zero)  

         iopt(nopt+1) = s_options(s_lin_sol_tri_use_Gauss_elim,s_zero)  

  

      end do factorization_choice  

  

! Check on accuracy of solution.   
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      res = x(1:n,1:n)- x_save  

      err = sum(abs(res)) / sum(abs(x_save))  

      if (err <= sqrt(epsilon(d_one))) then  

         write (*,*) 'Example 2 for LIN_SOL_TRI is correct.'  

      end if  

  

      end   

Output 
 

Example 2 for LIN_SOL_TRI is correct. 

Example 3: Selected Eigenvectors of Tridiagonal Matrices 

The eigenvalues 1, , n   of a tridiagonal real, self-adjoint matrix are computed. Note that the 

computation is performed using the IMSL MATH/LIBRARY FORTRAN 77 interface to routine 

EVASB. The user may write this interface based on documentation of the arguments (IMSL 2003, 

p. 480), or use the module Numerical_Libraries as we have done here. The eigenvectors 

corresponding to k < n of the eigenvalues are required. These vectors are computed using inverse 

iteration for all the eigenvalues at one step. See Golub and Van Loan (1989, Chapter 7). The 

eigenvectors are then orthogonalized. Also, see operator_ex19, supplied with the product 

examples. 
 

      use lin_sol_tri_int  

      use rand_gen_int  

      use Numerical_Libraries  

  

      implicit none  

  

! This is Example 3 for LIN_SOL_TRI.  

  

      integer i, j, nopt  

      integer, parameter :: n=128, k=n/4, ncoda=1, lda=2  

      real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0  

      real(kind(1e0)) A(lda,n), EVAL(k)  

      type(s_options) :: iopt(2)=s_options(0,s_zero)  

      real(kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &  

           b_t(2*n,k), y_t(2*n,k), eval_t(k), res(n,k), temp  

      logical small  

  

! This flag is used to get the k largest eigenvalues.  

      small = .false.  

  

! Generate the main diagonal and the co-diagonal of the   

! tridiagonal matrix.    

  

      call rand_gen (b)  

      call rand_gen (d)  

  

      A(1,1:)=b; A(2,1:)=d  

  

! Use Numerical Libraries routine for the calculation of k   

! largest eigenvalues.  
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      CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)  

      EVAL_T = EVAL  

  

  

! Use DNFL tridiagonal solver for inverse iteration   

! calculation of eigenvectors.  

      factorization_choice:  do nopt=0,1   

        

! Create k tridiagonal problems, one for each inverse   

! iteration system.  

         b_t(1:n,1:k) = spread(b,DIM=2,NCOPIES=k)  

         c_t(1:n,1:k) = EOSHIFT(b_t(1:n,1:k),SHIFT=1,DIM=1)  

         d_t(1:n,1:k) = spread(d,DIM=2,NCOPIES=k) - &  

                        spread(EVAL_T,DIM=1,NCOPIES=n)  

  

! Start the right-hand side at random values, scaled downward   

! to account for the expected 'blowup' in the solution.  

         do i=1, k  

            call rand_gen (y_t(1:n,i))  

         end do   

  

! Do two iterations for the eigenvectors.     

         do i=1, 2  

            y_t(1:n,1:k) = y_t(1:n,1:k)*epsilon(s_one)  

            call lin_sol_tri(c_t, d_t, b_t, y_t, &  

                        iopt=iopt)  

            iopt(nopt+1) = s_options(s_lin_sol_tri_solve_only,s_zero)  

         end do  

     

! Orthogonalize the eigenvectors.  (This is the most   

! intensive part of the computing.)  

         do j=1,k-1 ! Forward sweep of HMGS orthogonalization.  

            temp=s_one/sqrt(sum(y_t(1:n,j)**2))  

            y_t(1:n,j)=y_t(1:n,j)*temp  

     

            y_t(1:n,j+1:k)=y_t(1:n,j+1:k)+ &  

            spread(-matmul(y_t(1:n,j),y_t(1:n,j+1:k)), &  

         DIM=1,NCOPIES=n)* spread(y_t(1:n,j),DIM=2,NCOPIES=k-j)  

         end do  

         temp=s_one/sqrt(sum(y_t(1:n,k)**2))  

         y_t(1:n,k)=y_t(1:n,k)*temp  

     

         do j=k-1,1,-1 ! Backward sweep of HMGS.  

            y_t(1:n,j+1:k)=y_t(1:n,j+1:k)+ &  

            spread(-matmul(y_t(1:n,j),y_t(1:n,j+1:k)), &  

         DIM=1,NCOPIES=n)* spread(y_t(1:n,j),DIM=2,NCOPIES=k-j)  

         end do  

  

! See if the performance ratio is smaller than the value one.  

! If it is not the code will re-solve the systems using Gaussian  

! Elimination.  This is an exceptional event.  It is a necessary  

! complication for achieving reliable results.    

  

         res(1:n,1:k) = spread(d,DIM=2,NCOPIES=k)*y_t(1:n,1:k) + &  

          spread(b,DIM=2,NCOPIES=k)* &  

          EOSHIFT(y_t(1:n,1:k),SHIFT=-1,DIM=1) + &  
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          EOSHIFT(spread(b,DIM=2,NCOPIES=k)*y_t(1:n,1:k),SHIFT=1) &  

          -y_t(1:n,1:k)*spread(EVAL_T(1:k),DIM=1,NCOPIES=n)  

  

! If the factorization method is Cyclic Reduction and perf_ratio is   

! larger than one, re-solve using Gaussian Elimination.  If the   

! method is already Gaussian Elimination, the loop exits  

! and perf_ratio is checked at the end.     

         perf_ratio = sum(abs(res(1:n,1:k))) / &  

                         sum(abs(EVAL_T(1:k))) / &  

                         epsilon(s_one) / (5*n)  

         if (perf_ratio <= s_one) exit factorization_choice  

         iopt(nopt+1) = s_options(s_lin_sol_tri_use_Gauss_elim,s_zero)  

     

      end do factorization_choice  

  

      if (perf_ratio <= s_one) then  

         write (*,*) 'Example 3 for LIN_SOL_TRI is correct.'  

      end if  

  

      end   

Output 
 

Example 3 for LIN_SOL_TRI is correct. 

Example 4: Tridiagonal Matrix Solving within Diffusion Equations 

The normalized partial differential equation 

2

2t xx

u u
u u

t x

 

 
  

 

is solved for values of 0 ≤ x ≤ π and t > 0. A boundary value problem consists of choosing the 

value 

  00,u t u
 

such that the equation  

 1 1 1,u x t u
 

 is satisfied.  Arbitrary values 

1 1

1
,

2 2
x u


 

 

and  

1 1t 
 

are used for illustration of the solution process. The one-parameter equation  

 1 1 1, 0u x t u 
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The variables are changed to 

    0, ,v x t u x t u 
 

 that v(0, t) = 0. The function v(x, t) satisfies the differential equation. The one-parameter equation 

solved is therefore 

   1 1 1 0, 0v x t u u  
 

To solve this equation for 0u , use the standard technique of the variational equation, 

0

v
w

u






 

Thus 

2

2

w w

t x

 

 


 

Since the initial data for 

  0,0v x u 
 

the variational equation initial condition is  

w(x, 0) = 1 

This model problem illustrates the method of lines and Galerkin principle implemented with the 

differential-algebraic solver, D2SPG (IMSL 2003, pp. 889911). We use the integrator in ―reverse 

communication‖ mode for evaluating the required functions, derivatives, and solving linear 

algebraic equations. See Example 4 of routine DASPG for a problem that uses reverse 

communication. Next see Example 4 of routine IVPAG for the development of the piecewise-

linear Galerkin discretization method to solve the differential equation. This present example 

extends parts of both previous examples and illustrates Fortran 90 constructs. It further illustrates 

how a user can deal with a defect of an integrator that normally functions using only dense linear 

algebra factorization methods for solving the corrector equations. See the comments in Brenan et 

al. (1989, esp. p. 137). Also, see operator_ex20, supplied with the product examples. 
 

      use lin_sol_tri_int  

      use rand_gen_int  

      use Numerical_Libraries  

  

      implicit none  

  

! This is Example 4 for LIN_SOL_TRI.  

  

      integer, parameter :: n=1000, ichap=5, iget=1, iput=2, &  

         inum=6, irnum=7  

      real(kind(1e0)), parameter :: zero=0e0, one = 1e0  

      integer    i, ido, in(50), inr(20), iopt(6), ival(7), &  

                iwk(35+n)  

      real(kind(1e0))      hx, pi_value, t, u_0, u_1, atol, rtol, sval(2), &  
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                tend, wk(41+11*n), y(n), ypr(n), a_diag(n), &  

                a_off(n), r_diag(n), r_off(n), t_y(n), t_ypr(n), &  

                t_g(n), t_diag(2*n,1), t_upper(2*n,1), &  

                t_lower(2*n,1), t_sol(2*n,1)  

      type(s_options) :: iopti(2)=s_options(0,zero)  

  

      character(2) :: pi(1) = 'pi'  

! Define initial data.  

      t = 0.0e0  

      u_0 = 1  

      u_1 = 0.5  

      tend = one  

  

! Initial values for the variational equation.  

      y = -one; ypr= zero  

      pi_value = const(pi)  

      hx = pi_value/(n+1)  

  

      a_diag = 2*hx/3  

      a_off  = hx/6  

      r_diag = -2/hx  

      r_off  = 1/hx  

        

! Get integer option numbers.  

      iopt(1) = inum  

      call iumag ('math', ichap, iget, 1, iopt, in)  

  

! Get floating point option numbers.  

      iopt(1) = irnum  

      call iumag ('math', ichap, iget, 1, iopt, inr)  

  

! Set for reverse communication evaluation of the DAE.  

      iopt(1) = in(26)  

      ival(1) = 0  

! Set for use of explicit partial derivatives.  

      iopt(2) = in(5)  

      ival(2) = 1  

! Set for reverse communication evaluation of partials.  

      iopt(3) = in(29)  

      ival(3) = 0  

! Set for reverse communication solution of linear equations.  

      iopt(4) = in(31)  

      ival(4) = 0  

! Storage for the partial derivative array are not allocated or   

! required in the integrator.  

      iopt(5) = in(34)  

      ival(5) = 1  

! Set the sizes of iwk, wk for internal checking.  

      iopt(6) = in(35)  

      ival(6) = 35 + n  

      ival(7) = 41 + 11*n  

! Set integer options:  

      call iumag ('math', ichap, iput, 6, iopt, ival)  

! Reset tolerances for integrator:  

      atol = 1e-3; rtol= 1e-3  

      sval(1) = atol; sval(2) = rtol  

      iopt(1) = inr(5)  
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! Set floating point options:  

      call sumag ('math', ichap, iput, 1, iopt, sval)  

! Integrate ODE/DAE.  Use dummy external names for g(y,y')  

! and partials.  

      ido = 1  

      Integration_Loop: do  

  

          call d2spg (n, t, tend, ido, y, ypr, dgspg, djspg, iwk, wk)  

! Find where g(y,y') goes.  (It only goes in one place here, but can  

! vary where divided differences are used for partial derivatives.)  

          iopt(1) = in(27)  

          call iumag ('math', ichap, iget, 1, iopt, ival)  

! Direct user response:  

        select case(ido)  

  

        case(1,4)  

! This should not occur.  

          write (*,*) ' Unexpected return with ido = ', ido  

          stop  

  

        case(3)  

! Reset options to defaults.  (This is good housekeeping but not   

! required for this problem.)  

          in = -in  

          call iumag ('math', ichap, iput, 50, in, ival)  

          inr = -inr  

          call sumag ('math', ichap, iput, 20, inr, sval)  

          exit Integration_Loop  

        case(5)  

! Evaluate partials of g(y,y').  

          t_y = y; t_ypr = ypr  

  

          t_g = r_diag*t_y + r_off*EOSHIFT(t_y,SHIFT=+1) &  

                          + EOSHIFT(r_off*t_y,SHIFT=-1) &  

            -  (a_diag*t_ypr + a_off*EOSHIFT(t_ypr,SHIFT=+1) &  

                             + EOSHIFT(a_off*t_ypr,SHIFT=-1))  

! Move data from the assumed size to assumed shape arrays.  

          do i=1, n  

             wk(ival(1)+i-1) = t_g(i)  

          end do  

          cycle Integration_Loop  

  

        case(6)  

! Evaluate partials of g(y,y').  

! Get value of c_j for partials.  

          iopt(1) = inr(9)  

          call sumag ('math', ichap, iget, 1, iopt, sval)  

  

! Subtract c_j from diagonals to compute (partials for y')*c_j.  

! The linear system is tridiagonal.  

          t_diag(1:n,1) = r_diag - sval(1)*a_diag  

          t_upper(1:n,1) = r_off - sval(1)*a_off  

          t_lower = EOSHIFT(t_upper,SHIFT=+1,DIM=1)  

  

          cycle Integration_Loop  
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        case(7)  

! Compute the factorization.  

          iopti(1) = s_options(s_lin_sol_tri_factor_only,zero)  

          call lin_sol_tri (t_upper, t_diag, t_lower, &  

                  t_sol, iopt=iopti)  

          cycle Integration_Loop  

  

        case(8)  

! Solve the system.  

          iopti(1) = s_options(s_lin_sol_tri_solve_only,zero)  

! Move data from the assumed size to assumed shape arrays.  

          t_sol(1:n,1)=wk(ival(1):ival(1)+n-1)  

  

          call lin_sol_tri (t_upper, t_diag, t_lower, &  

                    t_sol, iopt=iopti)  

  

! Move data from the assumed shape to assumed size arrays.  

          wk(ival(1):ival(1)+n-1)=t_sol(1:n,1)  

  

          cycle Integration_Loop  

  

        case(2)  

! Correct initial value to reach u_1 at t=tend.  

          u_0 = u_0 - (u_0*y(n/2) - (u_1-u_0)) / (y(n/2) + 1)  

  

! Finish up internally in the integrator.  

          ido = 3  

          cycle Integration_Loop  

      end select  

      end do Integration_Loop  

  

      write (*,*) 'The equation u_t = u_xx, with u(0,t) = ', u_0  

      write (*,*) 'reaches the value ',u_1, ' at time = ', tend, '.'  

      write (*,*) 'Example 4 for LIN_SOL_TRI is correct.'  

  

      end  

Output 
 

Example 4 for LIN_SOL_TRI is correct. 

LIN_SVD 
Computes the singular value decomposition (SVD) of a rectangular matrix, A. This gives the 

decomposition  

TA USV  

where V is an n × n orthogonal matrix, U is an m × m orthogonal matrix, and S is a real, 

rectangular diagonal matrix. 
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Required Arguments 

A —    Array of size m × n containing the matrix. (Input [/Output]) 

If the packaged option lin_svd_overwrite_input is used, this array is not saved 

on output. 

S —    Array of size min(m, n) containing the real singular values. These nonnegative values 

are in non-increasing order. (Output) 

U —    Array of size m × m containing the singular vectors, U. (Output) 

V —    Array of size n × n containing the singular vectors, V. (Output) 

Optional Arguments 

MROWS = m   (Input) 

Uses array A(1:m, 1:n) for the input matrix. 

Default: m = size(A, 1) 

NCOLS = n   (Input) 

Uses array A(1:m, 1:n) for the input matrix. 

Default: n = size(A, 2) 

RANK = k   (Output) 

Number of singular values that exceed the value Small. RANK will satisfy  

k <= min(m, n). 

iopt = iopt(:)   (Input) 

Derived type array with the same precision as the input matrix. Used for passing 

optional data to the routine. The options are as follows: 

 

Packaged Options for LIN_SVD 

Option Prefix = ? Option Name Option Value 

S_, d_, c_, z_ lin_svd_set_small 1 

S_, d_, c_, z_ lin_svd_overwrite_input 2 

S_, d_, c_, z_ lin_svd_scan_for_NaN 3 

S_, d_, c_, z_ lin_svd_use_qr 4 

S_, d_, c_, z_ lin_svd_skip_orth 5 

S_, d_, c_, z_ lin_svd_use_gauss_elim 6 

S_, d_, c_, z_ lin_svd_set_perf_ratio 7 
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iopt(IO) = ?_options(?_lin_svd_set_small, Small) 

If a singular value is smaller than Small, it is defined as zero for the purpose of 

computing the rank of A.  

Default: the smallest number that can be reciprocated safely  

iopt(IO) = ?_options(?_lin_svd_overwrite_input, ?_dummy) 

Does not save the input array A(:, :). 

iopt(IO) = ?_options(?_lin_svd_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that  

isNaN(a(i,j)) == .true.  

 See the isNaN() function, Chapter 10. 

Default: The array is not scanned for NaNs. 

iopt(IO) = ?_options(?_lin_svd_use_qr, ?_dummy) 

Uses a rational QR algorithm to compute eigenvalues. Accumulate the singular vectors 

using this algorithm. 

Default: singular vectors computed using inverse iteration 

iopt(IO) = ?_options(?_lin_svd_skip_Orth, ?_dummy) 

If the eigenvalues are computed using inverse iteration, skips the final 

orthogonalization of the vectors. This method results in a more efficient computation. 

However, the singular vectors, while a complete set, may not be orthogonal. 

Default: singular vectors are orthogonalized if obtained using inverse iteration 

iopt(IO) = ?_options(?_lin_svd_use_gauss_elim, ?_dummy) 

If the eigenvalues are computed using inverse iteration, uses standard elimination with 

partial pivoting to solve the inverse iteration problems. 

Default: singular vectors computed using cyclic reduction 

iopt(IO) = ?_options(?_lin_svd_set_perf_ratio, perf_ratio) 

Uses residuals for approximate normalized singular vectors if they have a performance 

index no larger than perf_ratio. Otherwise an alternate approach is taken and the 

singular vectors are computed again: Standard elimination is used instead of cyclic 

reduction, or the standard QR algorithm is used as a backup procedure to inverse 

iteration. Larger values of perf_ratio are less likely to cause these exceptions. 

Default: perf_ratio = 4 

FORTRAN 90 Interface 

Generic: CALL LIN_SVD (A, S, U, V [,…]) 

Specific: The specific interface names are S_LIN_SVD, D_LIN_SVD, C_LIN_SVD, and 

Z_LIN_SVD. 
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Description 

Routine lin_svd is an implementation of the QR algorithm for computing the SVD of 

rectangular matrices. An orthogonal reduction of the input matrix to upper bidiagonal form is 

performed. Then, the SVD of a real bidiagonal matrix is calculated. The orthogonal decomposition 

AV = US results from products of intermediate matrix factors. See Golub and Van Loan (1989, 

Chapter 8) for details. 

Fatal, Terminal, and Warning Error Messages 

See the messages.gls file for error messages for LIN_SVD. These error messages are numbered 

10011010; 10211030; 10411050; 10611070. 

Example 1: Computing the SVD 

The SVD of a square, random matrix A is computed. The residuals R = AV  US are small with 

respect to working precision. Also, see operator_ex21, supplied with the product examples. 
 

      use lin_svd_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 1 for LIN_SVD.  

  

      integer, parameter :: n=32  

      real(kind(1d0)), parameter :: one=1d0  

      real(kind(1d0)) err  

      real(kind(1d0)), dimension(n,n) :: A, U, V, S(n), y(n*n)  

  

! Generate a random n by n matrix.  

      call rand_gen(y)  

      A = reshape(y,(/n,n/))  

  

! Compute the singular value decomposition.  

      call lin_svd(A, S, U, V)  

  

! Check for small residuals of the expression A*V - U*S.  

      err = sum(abs(matmul(A,V) - U*spread(S,dim=1,ncopies=n))) &  

                   / sum(abs(S))  

      if (err  <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 1 for LIN_SVD is correct.'  

      end if  

      end   

Output 
 

Example 1 for LIN_SVD is correct. 
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Additional Examples 

Example 2: Linear Least Squares with a Quadratic Constraint 

An m × n matrix equation Ax ≅ b, m > n, is approximated in a least-squares sense. The matrix b is 

size m × k. Each of the k solution vectors of the matrix x is constrained to have Euclidean length of 

value αj > 0. The value of αi is chosen so that the constrained solution is 0.25 the length of the 

nonregularized or standard least-squares equation. See Golub and Van Loan (1989, Chapter 12) 

for more details. In the Example 2 code, Newton‘s method is used to solve for each regularizing 

parameter of the k systems. The solution is then computed and its length is checked. Also, see 

operator_ex22, supplied with the product examples. 
 

      use lin_svd_int  

      use rand_gen_int   

  

      implicit none  

  

! This is Example 2 for LIN_SVD.  

  

      integer, parameter :: m=64, n=32, k=4  

      real(kind(1d0)), parameter :: one=1d0, zero=0d0  

      real(kind(1d0)) a(m,n), s(n), u(m,m), v(n,n), y(m*max(n,k)), &  

             b(m,k), x(n,k), g(m,k), alpha(k), lamda(k), &   

             delta_lamda(k), t_g(n,k), s_sq(n), phi(n,k), &  

             phi_dot(n,k), rand(k), err  

  

! Generate a random matrix for both A and B.  

      call rand_gen(y)  

      a = reshape(y,(/m,n/))  

  

      call rand_gen(y)  

      b = reshape(y,(/m,k/))  

  

! Compute the singular value decomposition.  

      call lin_svd(a, s, u, v)  

  

! Choose alpha so that the lengths of the regularized solutions  

! are 0.25 times lengths of the non-regularized solutions.  

  

      g = matmul(transpose(u),b)  

      x = matmul(v,spread(one/s,dim=2,ncopies=k)*g(1:n,1:k))  

      alpha = 0.25*sqrt(sum(x**2,dim=1))  

  

      t_g = g(1:n,1:k)*spread(s,dim=2,ncopies=k)  

      s_sq = s**2; lamda = zero  

  

      solve_for_lamda:  do  

         x=one/(spread(s_sq,dim=2,ncopies=k)+ &  

                    spread(lamda,dim=1,ncopies=n))  

         phi = (t_g*x)**2; phi_dot = -2*phi*x  

         delta_lamda = (sum(phi,dim=1)-alpha**2)/sum(phi_dot,dim=1)  

  

! Make Newton method correction to solve the secular equations for  

! lamda.  

         lamda = lamda - delta_lamda  
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         if (sum(abs(delta_lamda)) <= &  

             sqrt(epsilon(one))*sum(lamda)) &  

                         exit solve_for_lamda  

  

! This is intended to fix up negative solution approximations.  

         call rand_gen(rand)  

         where (lamda < 0) lamda = s(1) * rand  

  

      end do solve_for_lamda  

  

! Compute solutions and check lengths.  

      x = matmul(v,t_g/(spread(s_sq,dim=2,ncopies=k)+ &  

                       spread(lamda,dim=1,ncopies=n)))  

  

      err = sum(abs(sum(x**2,dim=1) - alpha**2))/sum(abs(alpha**2))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 2 for LIN_SVD is correct.'  

      end if  

  

      end   

Output 
 

Example 2 for LIN_SVD is correct. 

Example 3: Generalized Singular Value Decomposition 

The n × n matrices A and B are expanded in a Generalized Singular Value Decomposition 

(GSVD). Two n × n orthogonal matrices, U and V, and a nonsingular matrix X are computed such 

that 

 1, , nAX U diag c c
 

and  

 1, , nBX V diag s s
 

The values is  and ic  are normalized so that 

2 2 1i is c 
 

The ic are nonincreasing, and the is  are nondecreasing. See Golub and Van Loan (1989, Chapter 

8) for more details. Our method is based on computing three SVDs as opposed to the QR 

decomposition and two SVDs outlined in Golub and Van Loan. As a bonus, an SVD of the matrix 

X is obtained, and you can use this information to answer further questions about its conditioning. 

This form of the decomposition assumes that the matrix 

A
D

B
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has all its singular values strictly positive. For alternate problems, where some singular values of 

D are zero, the GSVD becomes  

 1, ,T
nU A diag c c W

 

 and  

 1, ,T
nV B diag s s W

 

The matrix W has the same singular values as the matrix D. Also, see operator_ex23, supplied 

with the product examples. 
 

      use lin_svd_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 3 for LIN_SVD.  

  

      integer, parameter :: n=32  

      integer i  

      real(kind(1d0)), parameter :: one=1.0d0  

      real(kind(1d0)) a(n,n), b(n,n), d(2*n,n), x(n,n), u_d(2*n,2*n), &  

             v_d(n,n), v_c(n,n), u_c(n,n), v_s(n,n), u_s(n,n), &  

             y(n*n), s_d(n), c(n), s(n), sc_c(n), sc_s(n), &  

             err1, err2  

  

! Generate random square matrices for both A and B.  

  

      call rand_gen(y)  

      a = reshape(y,(/n,n/))  

  

      call rand_gen(y)  

      b = reshape(y,(/n,n/))  

  

! Construct D; A is on the top; B is on the bottom.  

  

      d(1:n,1:n) = a  

      d(n+1:2*n,1:n) = b  

   

! Compute the singular value decompositions used for the GSVD.  

  

      call lin_svd(d, s_d, u_d, v_d)  

      call lin_svd(u_d(1:n,1:n), c, u_c, v_c)  

      call lin_svd(u_d(n+1:,1:n), s, u_s, v_s)  

  

! Rearrange c(:) so it is non-increasing.  Move singular   

! vectors accordingly.  (The use of temporary objects sc_c and  

! x is required.)  

  

      sc_c = c(n:1:-1); c = sc_c  

      x = u_c(1:n,n:1:-1); u_c = x  

      x = v_c(1:n,n:1:-1); v_c = x  

  

! The columns of v_c and v_s have the same span.  They are   

! equivalent by taking the signs of the largest magnitude values  



     

     
 

64  Chapter 1: Linear Systems IMSL MATH LIBRARY  

     

     

 

! positive.  

  

      do i=1, n  

         sc_c(i) = sign(one,v_c(sum(maxloc(abs(v_c(1:n,i)))),i))  

         sc_s(i) = sign(one,v_s(sum(maxloc(abs(v_s(1:n,i)))),i))  

      end do  

  

      v_c = v_c*spread(sc_c,dim=1,ncopies=n)  

      u_c = u_c*spread(sc_c,dim=1,ncopies=n)  

  

      v_s = v_s*spread(sc_s,dim=1,ncopies=n)  

      u_s = u_s*spread(sc_s,dim=1,ncopies=n)  

  

! In this form of the GSVD, the matrix X can be unstable if D  

! is ill-conditioned.  

      x = matmul(v_d*spread(one/s_d,dim=1,ncopies=n),v_c)  

  

! Check residuals for GSVD, A*X = u_c*diag(c_1, ..., c_n), and  

! B*X = u_s*diag(s_1, ..., s_n).  

      err1 = sum(abs(matmul(a,x) - u_c*spread(c,dim=1,ncopies=n))) &  

              / sum(s_d)  

      err2 = sum(abs(matmul(b,x) - u_s*spread(s,dim=1,ncopies=n))) &  

              / sum(s_d)  

      if (err1 <= sqrt(epsilon(one)) .and. &  

          err2 <= sqrt(epsilon(one))) then  

 

 

 

         write (*,*) 'Example 3 for LIN_SVD is correct.'  

      end if  

  

      end   

Example 4: Ridge Regression as Cross-Validation with Weighting 

This example illustrates a particular choice for the ridge regression problem: The least-squares 

problem Ax ≅ b is modified by the addition of a regularizing term to become 

 2 22

2 2
minx Ax b x 

 

The solution to this problem, with row k deleted, is denoted by xk(). Using nonnegative weights 

(w1, …, wm), the cross-validation squared error C() is given by: 

    
2

1

m
T

k k k k

k

mC w a x b 


 
 

With the SVD A = USV
T
 and product g = U

T
b, this quantity can be written as 
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This expression is minimized. See Golub and Van Loan (1989, Chapter 12) for more details. In the 

Example 4 code, mC(), at p = 10 grid points are evaluated using a log-scale with respect to , 

1 10.1 10s s  .  Array operations and intrinsics are used to evaluate the function and then to 

choose an approximate minimum. Following the computation of the optimum , the regularized 

solutions are computed. Also, see operator_ex24, supplied with the product examples. 

 

      use lin_svd_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 4 for LIN_SVD.  

  

      integer i  

      integer, parameter :: m=32, n=16, p=10, k=4  

      real(kind(1d0)), parameter :: one=1d0  

      real(kind(1d0)) log_lamda, log_lamda_t, delta_log_lamda  

      real(kind(1d0)) a(m,n), b(m,k), w(m,k), g(m,k), t(n), s(n), &  

              s_sq(n), u(m,m), v(n,n), y(m*max(n,k)),  &  

              c_lamda(p,k), lamda(k), x(n,k), res(n,k)  

  

! Generate random rectangular matrices for A and right-hand  

! sides, b.  

      call rand_gen(y)  

      a = reshape(y,(/m,n/))  

  

      call rand_gen(y)  

      b = reshape(y,(/m,k/))  

  

! Generate random weights for each of the right-hand sides.  

      call rand_gen(y)  

      w = reshape(y,(/m,k/))  

  

! Compute the singular value decomposition.  

      call lin_svd(a, s, u, v)  

  

      g = matmul(transpose(u),b)  

      s_sq = s**2  

  

      log_lamda = log(10.*s(1)); log_lamda_t=log_lamda  

      delta_log_lamda = (log_lamda - log(0.1*s(n))) / (p-1)  

  

! Choose lamda to minimize the "cross-validation" weighted  

! square error.  First evaluate the error at a grid of points,  

! uniform in log_scale.  
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      cross_validation_error:  do i=1, p  

         t = s_sq/(s_sq+exp(log_lamda))  

         c_lamda(i,:) = sum(w*((b-matmul(u(1:m,1:n),g(1:n,1:k)* &  

                             spread(t,DIM=2,NCOPIES=k)))/ &  

                      (one-matmul(u(1:m,1:n)**2, &  

                         spread(t,DIM=2,NCOPIES=k))))**2,DIM=1)  

         log_lamda = log_lamda - delta_log_lamda  

      end do cross_validation_error  

  

! Compute the grid value and lamda corresponding to the minimum.  

      do i=1, k  

         lamda(i) = exp(log_lamda_t -  delta_log_lamda* &  

                              (sum(minloc(c_lamda(1:p,i)))-1))  

      end do  

  

! Compute the solution using the optimum "cross-validation"   

! parameter.  

      x = matmul(v,g(1:n,1:k)*spread(s,DIM=2,NCOPIES=k)/ &  

                     (spread(s_sq,DIM=2,NCOPIES=k)+ &  

                      spread(lamda,DIM=1,NCOPIES=n)))  

! Check the residuals, using normal equations.  

      res = matmul(transpose(a),b-matmul(a,x)) - &  

                    spread(lamda,DIM=1,NCOPIES=n)*x  

      if (sum(abs(res))/sum(s_sq) <= &  

              sqrt(epsilon(one))) then  

         write (*,*) 'Example 4 for LIN_SVD is correct.'  

      end if  

  

      end  

Output 
 

Example 4 for LIN_SVD is correct. 

Parallel Constrained Least-Squares Solvers 

Solving Constrained Least-Squares Systems 

The routine PARALLEL_NONNEGATIVE_LSQ is used to solve dense least-squares systems.  These 

are represented by Ax b  where A is an m n  coefficient data matrix, b is a given right-hand 

side m -vector, and x  is the solution n -vector being computed.  Further, there is a constraint 

requirement, 0x  .  The routine PARALLEL_BOUNDED_LSQ is used when the problem has lower 

and upper bounds for the solution, x   .  By making the bounds large, individual 

constraints can be eliminated.  There are no restrictions on  the relative sizes of  m  and n .  When 

n  is large,  these codes can substantially reduce computer time and storage requirements, 

compared with using a routine for solving a constrained system and a single processor. 

The user provides the matrix partitioned by blocks of columns:  
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 1 2| | ... | kA A A A
.   

An individual block of the partitioned matrix, say pA , is located entirely on the processor with 

rank MP_RANK= 1p  , where MP_RANK is packaged in the module MPI_SETUP_INT.  This 

module, and the function MP_SETUP(),define the Fortran Library MPI communicator, 

MP_LIBRARY_WORLD.  See Chapter 10, Dense Matrix Parallelism Using MPI. 

PARALLEL_NONNEGATIVE_LSQ 

 

For a detailed description of MPI Requirements see ―Dense Matrix Parallelism Using MPI‖ in 

Chapter 10 of this manual.    

Solves a linear, non-negative constrained least-squares system. 

Usage Notes 

CALL PARALLEL_NONNEGATIVE_LSQ (A, B, X, RNORM, W, INDEX, IPART, IOPT 

= IOPT) 

Required Arguments 

A(1:M,:)— (Input/Output)  Columns of the matrix with limits given by entries in the array 

IPART(1:2,1:max(1,MP_NPROCS)).  On output kA  is replaced by the product 

kQA , where Q is an orthogonal matrix.  The value SIZE(A,1) defines the value of M.  

Each processor starts and exits with its piece of the partitioned matrix. 

B(1:M) — (Input/Output)  Assumed-size array of length M containing the right-hand side 

vector, b . On output b  is replaced by the product Qb , where Q is the orthogonal 

matrix applied to A .  All processors in the communicator start and exit with the same 

vector. 

X(1:N) — (Output)  Assumed-size array of length N containing the solution, 0x  .  The 

value SIZE(X) defines the value of  N.  All processors exit with the same vector. 

RNORM — (Output) Scalar that contains the Euclidean or least-squares length of the residual 

vector, Ax b .  All processors exit with the same value. 

W(1:N) — (Output)  Assumed-size array of length N containing the dual vector, 

  0Tw A b Ax   .  All processors exit with the same vector. 
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INDEX(1:N) — (Output)  Assumed-size array of length N containing the NSETP indices of 

columns in the positive solution, and the remainder that are at their constraint.  The  

number of positive components in the solution x is given by the Fortran intrinsic 

function value,  

NSETP=COUNT(X > 0).  All processors exit with the same array. 

IPART(1:2,1:max(1,MP_NPROCS)) — (Input)  Assumed-size array containing the 

partitioning describing the matrix A .  The value MP_NPROCS is the number of 

processors in the communicator,  

except when MPI has been finalized with a call to the routine MP_SETUP(‗Final‘).  

This causes MP_NPROCS to be assigned 0.  Normally users will give the partitioning to 

processor of rank = MP_RANK by setting IPART(1,MP_RANK+1)= first column index, 

and IPART(2,MP_RANK+1)= last column index.   The number of columns per node is 

typically based on their relative computing power.  To avoid a node with rank 

MP_RANK doing any work except communication, set IPART(1,MP_RANK+1) = 0 and 

IPART(2,MP_RANK+1)= -1.  In this exceptional case there is no reference to the 

array A(:,:) at that node. 

Optional Argument 

IOPT(:)— (Input)  Assumed-size array of derived type S_OPTIONS or D_OPTIONS.  This 

argument is used to change internal parameters of the algorithm.  Normally users will 

not be concerned about this argument, so they would not include it in the argument list 

for the routine. 

 

Packaged Options for PARALLEL_NONNEGATIVE_LSQ 

Option Name Option Value 

PNLSQ_SET_TOLERANCE 1 

PNLSQ_SET_MAX_ITERATIONS 2 

PNLSQ_SET_MIN_RESIDUAL 3 

 

IOPT(IO)=?_OPTIONS(PNLSQ_SET_TOLERANCE, TOLERANCE) Replaces the 

default rank tolerance for using a column, from EPSILON(TOLERANCE) to 

TOLERANCE.  Increasing the value of TOLERANCE will cause fewer columns to 

be moved from their constraints, and may  cause the minimum residual RNORM 

to increase. 

IOPT(IO)=?_OPTIONS(PNLSQ_SET_MIN_RESIDUAL, RESID) Replaces the 

default target for the minimum residual vector length from 0 to RESID.  

Increasing the value of RESID can result in fewer iterations and thus increased 

efficiency. The descent in the optimization will stop at the first point where the 

minimum residual RNORM is smaller than RESID. Using this option may result in 

the dual vector not satisfying its optimality conditions, as noted above. 

IOPT(IO)= PNLSQ_SET_MAX_ITERATIONS 
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IOPT(IO+1)= NEW_MAX_ITERATIONS Replaces the default maximum number of 

iterations from 3*N to NEW_MAX_ITERATIONS.  Note that this option requires 

two entries in the derived type array. 

FORTRAN 90 Interface 

Generic: CALL PARALLEL_NONNEGATIVE_LSQ (A, B, X, RNORM, W, INDEX,  

IPART [,…]) 

Specific: The specific interface names are S_PARALLEL_NONNEGATIVE_LSQ and 

D_PARALLEL_NONNEGATIVE_LSQ. 

Description 

Subroutine PARALLEL_NONNEGATIVE_LSQ solves the linear least-squares system 

, 0Ax b x  , using the algorithm NNLS found in Lawson and Hanson, (1995), pages 160-161.  

The code now updates the dual vector w  of  Step 2, page 161.  The remaining new steps involve 

exchange of required data, using MPI. 

Example 1: Distributed Linear Inequality Constraint Solver 

The program PNLSQ_EX1 illustrates the computation of the minimum Euclidean length solution of 

an ' 'm n  system of linear inequality constraints , Gy h .  The solution algorithm is based on 

Algorithm LDP, page 165-166, loc. cit.  The rows of  :E G h are partitioned and assigned 

random values.  When the minimum Euclidean length solution to the inequalities has been 

calculated, the residuals 0r Gy h    are computed, with the dual variables to the NNLS 

problem indicating  the entries of  r  that are precisely zero. 

The fact that matrix products involving both E  and 
TE  are needed to compute the constrained 

solution y  and the residuals r , implies that message passing is required.  This occurs after the 

NNLS solution is computed. 
 

      PROGRAM PNLSQ_EX1 

! Use Parallel_nonnegative_LSQ to solve an inequality 

! constraint problem, Gy >= h. This algorithm uses 

! Algorithm LDP of Solving Least Squares Problems, 

! page 165. The constraints are allocated to the 

! processors, by rows, in columns of the array A(:,:). 

        USE PNLSQ_INT 

        USE MPI_SETUP_INT 

        USE RAND_INT 

        USE SHOW_INT 

 

        IMPLICIT NONE 

        INCLUDE "mpif.h" 

 

        INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1, N=MP 

 

        REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0 

        REAL(KIND(1D0)), ALLOCATABLE :: & 
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          A(:,:), B(:), X(:), Y(:), W(:), ASAVE(:,:) 

        REAL(KIND(1D0)) RNORM 

        INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:) 

 

        INTEGER K, L, DN, J, JSHIFT, IERROR 

        LOGICAL :: PRINT=.false. 

 

! Setup for MPI: 

        MP_NPROCS=MP_SETUP() 

 

        DN=N/max(1,max(1,MP_NPROCS))-1 

        ALLOCATE(IPART(2,max(1,MP_NPROCS))) 

 

! Spread constraint rows evenly to the processors. 

        IPART(1,1)=1 

        DO L=2,MP_NPROCS 

           IPART(2,L-1)=IPART(1,L-1)+DN 

           IPART(1,L)=IPART(2,L-1)+1 

        END DO 

        IPART(2,MP_NPROCS)=N 

 

! Define the constraint data using random values. 

        K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1) 

        ALLOCATE(A(M,K), ASAVE(M,K), X(N), W(N), & 

          B(M), Y(M), INDEX(N)) 

 

! The use of ASAVE can be removed by regenerating 

! the data for A(:,:) after the return from 

! Parallel_nonnegative_LSQ. 

        A=rand(A); ASAVE=A 

        IF(MP_RANK == 0 .and. PRINT) & 

          CALL SHOW(IPART, & 

            "Partition of the constraints to be solved") 

 

! Set the right-hand side to be one in the last component, zero elsewhere. 

        B=ZERO;B(M)=ONE 

 

! Solve the dual problem. 

        CALL Parallel_nonnegative_LSQ & 

          (A, B, X, RNORM, W, INDEX, IPART) 

 

! Each processor multiplies its block times the part of 

! the dual corresponding to that part of the partition. 

        Y=ZERO 

        DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1) 

           JSHIFT=J-IPART(1,MP_RANK+1)+1 

           Y=Y+ASAVE(:,JSHIFT)*X(J) 

        END DO 

 

! Accumulate the pieces from all the processors. Put sum into B(:) 

! on rank 0 processor. 

        B=Y 

        IF(MP_NPROCS > 1) & 

          CALL MPI_REDUCE(Y, B, M, MPI_DOUBLE_PRECISION,& 

           MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR) 

        IF(MP_RANK == 0) THEN 
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! Compute constrained solution at the root. 

! The constraints will have no solution if B(M) = ONE. 

! All of these example problems have solutions. 

           B(M)=B(M)-ONE;B=-B/B(M) 

        END IF 

 

! Send the inequality constraint solution to all nodes. 

      IF(MP_NPROCS > 1) & 

        CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION, & 

         0, MP_LIBRARY_WORLD, IERROR) 

 

! For large problems this printing needs to be removed. 

      IF(MP_RANK == 0 .and. PRINT) & 

 CALL SHOW(B(1:NP), & 

          "Minimal length solution of the constraints") 

 

! Compute residuals of the individual constraints. 

! If only the solution is desired, the program ends here. 

        X=ZERO 

        DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1) 

           JSHIFT=J-IPART(1,MP_RANK+1)+1 

           X(J)=dot_product(B,ASAVE(:,JSHIFT)) 

        END DO 

 

! This cleans up residuals that are about rounding 

! error unit (times) the size of the constraint 

! equation and right-hand side.  They are replaced 

! by exact zero. 

        WHERE(W == ZERO) X=ZERO; W=X 

 

! Each group of residuals is disjoint, per processor. 

! We add all the pieces together for the total set of 

! constraints. 

        IF(MP_NPROCS > 1) & 

          CALL MPI_REDUCE(X, W, N, MPI_DOUBLE_PRECISION,& 

            MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR) 

        IF(MP_RANK == 0 .and. PRINT) & 

          CALL SHOW(W, "Residuals for the constraints") 

 

! See to any errors and shut down MPI. 

        MP_NPROCS=MP_SETUP('Final') 

        IF(MP_RANK == 0) THEN 

          IF(COUNT(W < ZERO) == 0) WRITE(*,*)& 

          " Example 1 for PARALLEL_NONNEGATIVE_LSQ is correct." 

 END IF 

     END 

Output 
 

Example 1 for PARALLEL_NONNEGATIVE_LSQ is correct. 
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Additional Examples 

Example 2: Distributed Non-negative Least-Squares 

The program PNLSQ_EX2 illustrates the computation of the solution to a system of linear least-

squares equations with simple constraints: , 1,..., ,T
i ia x b i m  subject to 0x  .  In this 

example we write the row vectors :T
i ia b 

 
 on a file.  This illustrates reading the data by rows 

and arranging the data by columns, as required by PARALLEL_NONNEGATIVE_LSQ.  After reading 

the data, the right-hand side vector is broadcast to the group before computing a solution, x .  The 

block-size is chosen so that each participating processor receives the same number of columns, 

except any remaining columns sent to the processor with largest rank.  This processor contains the 

right-hand side before the broadcast. 

This example illustrates connecting a BLACS ‗context‘ handle and the Fortran Library MPI 

communicator, MP_LIBRARY_WORLD, described in Chapter 10.   
 

   PROGRAM PNLSQ_EX2 

! Use Parallel_Nonnegative_LSQ to solve a least-squares 

! problem, A x = b, with x >= 0. This algorithm uses a 

! distributed version of NNLS,  found in the book 

! Solving Least Squares Problems, page 165. The data is 

! read from a file, by rows, and sent to the processors, 

! as array columns. 

 

   USE PNLSQ_INT 

   USE SCALAPACK_IO_INT 

   USE BLACS_INT 

    

   USE MPI_SETUP_INT 

   USE RAND_INT 

   USE ERROR_OPTION_PACKET 

 

   IMPLICIT NONE 

   INCLUDE "mpif.h" 

 

   INTEGER, PARAMETER :: M=128, N=32, NP=N+1, NIN=10 

    

   real(kind(1d0)), ALLOCATABLE, DIMENSION(:) :: & 

     d_A(:,:), A(:,:), B, C, W, X, Y 

   real(kind(1d0)) RNORM, ERROR 

   INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:) 

 

   INTEGER I, J, K, L, DN, JSHIFT, IERROR, & 

     CONTXT, NPROW, MYROW, MYCOL, DESC_A(9) 

   TYPE(d_OPTIONS) IOPT(1) 

 

! Routines with the "BLACS_" prefix are from the 

! BLACS library. 

   CALL BLACS_PINFO(MP_RANK, MP_NPROCS) 

 

! Make initialization for BLACS. 

   CALL BLACS_GET(0,0, CONTXT) 
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! Define processor grid to be 1 by MP_NPROCS. 

   NPROW=1 

   CALL BLACS_GRIDINIT(CONTXT, 'N/A', NPROW, MP_NPROCS) 

 

! Get this processor's role in the process grid. 

   CALL BLACS_GRIDINFO(CONTXT, NPROW, MP_NPROCS, & 

     MYROW, MYCOL) 

 

! Connect BLACS context with communicator MP_LIBRARY_WORLD. 

   CALL BLACS_GET(CONTXT, 10, MP_LIBRARY_WORLD) 

 

! Setup for MPI: 

   MP_NPROCS=MP_SETUP() 

 

   DN=max(1,NP/MP_NPROCS) 

   ALLOCATE(IPART(2,MP_NPROCS)) 

 

! Spread columns evenly to the processors.  Any odd 

! number of columns are in the processor with highest 

! rank. 

   IPART(1,:)=1; IPART(2,:)=0 

   DO L=2,MP_NPROCS 

     IPART(2,L-1)=IPART(1,L-1)+DN 

     IPART(1,L)=IPART(2,L-1)+1 

   END DO 

   IPART(2,MP_NPROCS)=NP 

   IPART(2,:)=min(NP,IPART(2,:)) 

 

! Note which processor (L-1) receives the right-hand side. 

   DO L=1,MP_NPROCS 

     IF(IPART(1,L) <= NP .and. NP <= IPART(2,L)) EXIT 

   END DO 

 

   K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1) 

   ALLOCATE(d_A(M,K), W(N), X(N), Y(N),& 

     B(M), C(M), INDEX(N)) 

 

   IF(MP_RANK == 0 ) THEN 

     ALLOCATE(A(M,N)) 

! Define the matrix data using random values. 

     A=rand(A); B=rand(B) 

 

! Write the rows of data to an external file. 

     OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN') 

     DO I=1,M 

       WRITE(NIN,*) (A(I,J),J=1,N), B(I) 

     END DO 

     CLOSE(NIN) 

   ELSE 

 

! No resources are used where this array is not saved. 

     ALLOCATE(A(M,0))         

   END IF 

 

! Define the matrix descriptor.  This includes the 

! right-hand side as an additional column.  The row 
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! block size, on each processor, is arbitrary, but is 

! chosen here to match the column block size. 

   DESC_A=(/1, CONTXT, M, NP, DN+1, DN+1, 0, 0, M/) 

 

! Read the data by rows. 

   IOPT(1)=ScaLAPACK_READ_BY_ROWS 

   CALL ScaLAPACK_READ ("Atest.dat", DESC_A, & 

    d_A, IOPT=IOPT) 

 

! Broadcast the right-hand side to all processors. 

   JSHIFT=NP-IPART(1,L)+1 

   IF(K > 0) B=d_A(:,JSHIFT) 

   IF(MP_NPROCS > 1) & 

     CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION , L-1, & 

       MP_LIBRARY_WORLD, IERROR) 

 

! Adjust the partition of columns to ignore the 

! last column, which is the right-hand side. It is 

! now moved to B(:). 

   IPART(2,:)=min(N,IPART(2,:)) 

 

! Solve the constrained distributed problem. 

       C=B 

       CALL Parallel_Nonnegative_LSQ & 

       (d_A, B, X, RNORM, W, INDEX, IPART) 

 

! Solve the problem on one processor, with data saved 

! for a cross-check. 

       IPART(2,:)=0; IPART(2,1)=N; MP_NPROCS=1 

 

! Since all processors execute this code, all arrays 

! must be allocated in the main program. 

       CALL Parallel_Nonnegative_LSQ & 

       (A, C, Y, RNORM, W, INDEX, IPART) 

 

! See to any errors. 

       CALL e1pop("Mp_Setup") 

 

! Check the differences in the two solutions.  Unique solutions 

! may differ in the last bits, due to rounding.   

   IF(MP_RANK == 0) THEN 

     ERROR=SUM(ABS(X-Y))/SUM(Y) 

     IF(ERROR <= sqrt(EPSILON(ERROR))) write(*,*) & 

       ' Example 2 for PARALLEL_NONNEGATIVE_LSQ is correct.' 

     OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='OLD') 

     CLOSE(NIN, STATUS='Delete')       

   END IF 

 

! Exit from using this process grid. 

  CALL BLACS_GRIDEXIT( CONTXT ) 

  CALL BLACS_EXIT(0) 

  END 

Output 
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Example 2 for PARALLEL_NONNEGATIVE_LSQ is correct.' 

PARALLEL_BOUNDED_LSQ 

 

For a detailed description of MPI Requirements see ―Dense Matrix Parallelism Using MPI‖ in 

Chapter 10 of this manual.    

Solves a linear least-squares system with bounds on the unknowns. 

Usage Notes 

CALL PARALLEL_BOUNDED_LSQ (A, B, BND, X, RNORM, W, INDEX, IPART, 

NSETP, NSETZ, IOPT=IOPT) 

Required Arguments 

A(1:M,:)— (Input/Output)  Columns of the matrix with limits given by entries in the array 

IPART(1:2,1:max(1,MP_NPROCS)).  On output kA  is replaced by the product 

kQA , where Q is an orthogonal matrix.  The value SIZE(A,1) defines the value of M.  

Each processor starts and exits with its piece of the partitioned matrix. 

B(1:M) — (Input/Output)  Assumed-size array of length M containing the right-hand side 

vector, b . On output b  is replaced by the product  Q b Ag , where Q is the 

orthogonal matrix applied to A  and g  is a set of active bounds for the solution.  All 

processors in the communicator start and exit with the same vector. 

BND(1:2,1:N) — (Input)  Assumed-size array containing the bounds for x .  The lower 

bound j  is in BND(1,J), and the upper bound j  is in BND(2,J). 

X(1:N) — (Output)  Assumed-size array of length N containing the solution, x   .  

The value SIZE(X) defines the value of  N.  All processors exit with the same vector. 

RNORM — (Output) Scalar that contains the Euclidean or least-squares length of the residual 

vector, Ax b .  All processors exit with the same value. 

W(1:N) — (Output)  Assumed-size array of length N containing the dual vector, 

 Tw A b Ax  .  At a solution exactly one of the following is true for each 

,1 ,j j n   
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 All processors exit with the same vector. 

INDEX(1:N) — (Output)  Assumed-size array of length N containing the NSETP indices of 

columns in the solution interior to bounds, and the remainder that are at a constraint. 

All processors exit with the same array. 

IPART(1:2,1:max(1,MP_NPROCS)) — (Input)  Assumed-size array containing the 

partitioning describing the matrix A .  The value MP_NPROCS is the number of 

processors in the communicator, except when MPI has been finalized with a call to the 

routine MP_SETUP(‗Final‘).  This causes MP_NPROCS to be assigned 0.   Normally 

users will give the partitioning to processor of rank = MP_RANK by setting 

IPART(1,MP_RANK+1)= first column index, and IPART(2,MP_RANK+1)= last 

column index.   The number of columns per node is typically based on their relative 

computing power.  To avoid a node with rank MP_RANK doing any work except 

communication, set IPART(1,MP_RANK+1) = 0 and IPART(2,MP_RANK+1)= -1.  

In this exceptional case there is no reference to the array A(:,:) at that node. 

NSETP— (Output) An INTEGER indicating the number of solution  components not at 

constraints.  The column indices are output in the array INDEX(:). 

NSETZ— (Output) An INTEGER indicating the solution  components held at fixed values.  

The column indices are output in the array INDEX(:). 

Optional Argument 

IOPT(:)— (Input)  Assumed-size array of derived type S_OPTIONS or D_OPTIONS.  This 

argument is used to change internal parameters of the algorithm.  Normally users will 

not be concerned about this argument, so they would not include it in the argument list 

for the routine.   

 

Packaged Options for PARALLEL_BOUNDED_LSQ 

Option Name Option Value 

PBLSQ_SET_TOLERANCE 1 

PBLSQ_SET_MAX_ITERATIONS 2 

PBLSQ_SET_MIN_RESIDUAL 3 
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IOPT(IO)=?_OPTIONS(PBLSQ_SET_TOLERANCE, TOLERANCE) Replaces the 

default rank tolerance for using a column, from EPSILON(TOLERANCE) to 

TOLERANCE.  Increasing the value of TOLERANCE will cause fewer columns to 

be increased from their constraints, and may  cause the minimum residual 

RNORM to increase. 

IOPT(IO)=?_OPTIONS(PBLSQ_SET_MIN_RESIDUAL, RESID) Replaces the 

default target for the minimum residual vector length from 0 to RESID.  

Increasing the value of RESID can result in fewer iterations and thus increased 

efficiency. The descent in the optimization will stop at the first point where the 

minimum residual RNORM is smaller than RESID.  Using this option may result in 

the dual vector not satisfying its optimality conditions, as noted above. 

IOPT(IO)= PBLSQ_SET_MAX_ITERATIONS 

IOPT(IO+1)= NEW_MAX_ITERATIONS Replaces the default maximum number of 

iterations from 3*N to NEW_MAX_ITERATIONS.  Note that this option requires 

two entries in the derived type array. 

FORTRAN 90 Interface 

Generic: CALL PARALLEL_BOUNDED_LSQ (A, B, X [,…]) 

Specific: The specific interface names are S_PARALLEL_BOUNDED_LSQ and 

D_PARALLEL_BOUNDED_LSQ. 

Description 

Subroutine PARALLEL_BOUNDED_LSQ solves the least-squares linear system 

,Ax b x    , using the algorithm BVLS found in Lawson and Hanson, (1995), pages 

279-283.  The new steps involve updating the dual vector and exchange of required data, using 

MPI.  The optional changes to default tolerances, minimum residual, and the number of iterations 

are new features. 

Example 1: Distributed Equality and Inequality Constraint Solver 

The program PBLSQ_EX1 illustrates the computation of the minimum Euclidean length solution of 

an ' 'm n  system of linear inequality constraints , Gy h .  Additionally the first 0f   of the 

constraints are equalities.  The solution algorithm is based on Algorithm LDP, page 165-166, loc. 

cit.  By allowing the dual variables to be free,  the constraints become equalities.  The rows of 

 :E G h are partitioned and assigned random values.  When the minimum Euclidean length 

solution to the inequalities has been calculated, the residuals 0r Gy h    are computed, with 

the dual variables to the BVLS problem indicating  the entries of  r  that are exactly zero. 
 

      PROGRAM PBLSQ_EX1 

! Use Parallel_bounded_LSQ to solve an inequality 

! constraint problem, Gy >= h. Force F of the constraints 

! to be equalities. This algorithm uses LDP of 

! Solving Least Squares Problems, page 165. 
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! Forcing equality constraints by freeing the dual is 

! new here. The constraints are allocated to the 

! processors, by rows, in columns of the array A(:,:). 

        USE PBLSQ_INT 

        USE MPI_SETUP_INT 

        USE RAND_INT 

        USE SHOW_INT 

 

        IMPLICIT NONE 

        INCLUDE "mpif.h" 

 

        INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1, & 

          N=MP, F=NP/10 

 

        REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0 

        REAL(KIND(1D0)), ALLOCATABLE :: & 

   A(:,:), B(:), BND(:,:), X(:), Y(:), & 

          W(:), ASAVE(:,:) 

        REAL(KIND(1D0)) RNORM 

        INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:) 

 

        INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, NSETZ 

        LOGICAL :: PRINT=.false. 

 

! Setup for MPI: 

        MP_NPROCS=MP_SETUP() 

 

        DN=N/max(1,max(1,MP_NPROCS))-1 

        ALLOCATE(IPART(2,max(1,MP_NPROCS))) 

 

! Spread constraint rows evenly to the processors. 

        IPART(1,1)=1 

        DO L=2,MP_NPROCS 

           IPART(2,L-1)=IPART(1,L-1)+DN 

           IPART(1,L)=IPART(2,L-1)+1 

        END DO 

        IPART(2,MP_NPROCS)=N 

 

! Define the constraints using random data. 

        K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1) 

        ALLOCATE(A(M,K), ASAVE(M,K), BND(2,N), & 

          X(N), W(N), B(M), Y(M), INDEX(N)) 

 

! The use of ASAVE can be replaced by regenerating the 

! data for A(:,:) after the return from 

! Parallel_bounded_LSQ 

        A=rand(A); ASAVE=A 

        IF(MP_RANK == 0 .and. PRINT) & 

          call show(IPART,& 

            "Partition of the constraints to be solved") 

 

! Set the right-hand side to be one in the last 

! component, zero elsewhere. 

        B=ZERO;B(M)=ONE 

         

! Solve the dual problem. Letting the dual variable 
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! have no constraint forces an equality constraint 

! for the primal problem. 

        BND(1,1:F)=-HUGE(ONE); BND(1,F+1:)=ZERO 

        BND(2,:)=HUGE(ONE) 

        CALL Parallel_bounded_LSQ & 

          (A, B, BND, X, RNORM, W, INDEX, IPART, & 

            NSETP, NSETZ) 

 

! Each processor multiplies its block times the part 

! of the dual corresponding to that partition. 

        Y=ZERO 

        DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1) 

           JSHIFT=J-IPART(1,MP_RANK+1)+1 

           Y=Y+ASAVE(:,JSHIFT)*X(J) 

        END DO 

 

! Accumulate the pieces from all the processors. 

! Put sum into B(:) on rank 0 processor. 

        B=Y 

        IF(MP_NPROCS > 1) & 

          CALL MPI_REDUCE(Y, B, M, MPI_DOUBLE_PRECISION,& 

           MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR) 

        IF(MP_RANK == 0) THEN 

 

! Compute constraint solution at the root. 

! The constraints will have no solution if B(M) = ONE. 

! All of these example problems have solutions. 

           B(M)=B(M)-ONE;B=-B/B(M) 

        END IF 

 

! Send the inequality constraint or primal solution to all nodes. 

  IF(MP_NPROCS > 1) & 

    CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION, 0, & 

      MP_LIBRARY_WORLD, IERROR) 

 

! For large problems this printing may need to be removed. 

        IF(MP_RANK == 0 .and. PRINT) & 

          call show(B(1:NP), & 

            "Minimal length solution of the constraints") 

 

! Compute residuals of the individual constraints. 

        X=ZERO 

        DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1) 

           JSHIFT=J-IPART(1,MP_RANK+1)+1 

           X(J)=dot_product(B,ASAVE(:,JSHIFT)) 

        END DO 

 

! This cleans up residuals that are about rounding error 

! unit (times) the size of the constraint equation and 

! right-hand side.  They are replaced by exact zero. 

        WHERE(W == ZERO) X=ZERO 

        W=X 

 

! Each group of residuals is disjoint, per processor. 

! We add all the pieces together for the total set of 

! constraints. 

      IF(MP_NPROCS > 1) & 
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        CALL MPI_REDUCE(X, W, N, MPI_DOUBLE_PRECISION, & 

          MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR) 

        IF(MP_RANK == 0 .and. PRINT) & 

          call show(W, "Residuals for the constraints") 

 

! See to any errors and shut down MPI. 

        MP_NPROCS=MP_SETUP('Final') 

        IF(MP_RANK == 0) THEN 

          IF(COUNT(W < ZERO) == 0 .and.& 

     COUNT(W == ZERO) >= F) WRITE(*,*)& 

            " Example 1 for PARALLEL_BOUNDED_LSQ is correct." 

        END IF 

     END 

Output 
 

Example 1 for PARALLEL_BOUNDED_LSQ is correct. 

Additional Examples 

Example 2: Distributed Newton-Raphson Method with Step Control 

The program PBLSQ_EX2 illustrates the computation of the solution of a non-linear system of 

equations.  We use a constrained Newton-Raphson method.   

This algorithm works with the problem chosen for illustration.  The step-size control used here, 

employing only simple bounds, may not work on other non-linear systems of equations.  Therefore 

we do not recommend the simple non-linear solving technique illustrated here for an arbitrary 

problem.  The test case is Brown’s Almost Linear Problem, Moré, et al. (1982).  The components 

are given by: 

   

 

1

1

1 , 1,..., 1

... 1

n

i i j

j

n n

f x x x n i n

f x x x



      

  



 

The functions are zero at the point  1,..., ,
T

nx     , where 1   is a particular root of the 

polynomial equation   11 1 0n nn n      .   To avoid convergence to the local minimum 

 0,..., 0, 1
T

x n  , we start at the standard point  1/ 2,...,1/ 2,1/ 2
T

x  and develop the 

Newton method using the linear terms       0f x y f x J x y    , where  J x is the 

Jacobian matrix.  The update is constrained so that the first 1n   components satisfy 

1/ 2j jx y  , or 1/ 2j jy x  .  The last component is bounded from both sides, 

0 1/ 2n nx y   ,  or  1/ 2n n nx y x   .  These bounds avoid the local minimum and 

allow us to replace the last equation by   
1

ln 0
n

j

j

x


 , which is better scaled than the original.   
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The positive lower bound for n nx y  is replaced by the strict bound, EPSILON(1D0), the 

arithmetic precision, which restricts the relative accuracy of nx .  The input for routine 

PARALLEL_BOUNDED_LSQ expects each processor to obtain that part of  J x  it owns.  Those 

columns of the Jacobian matrix correspond to the partition given in the array IPART(:,:).  Here 

the columns of the matrix are evaluated, in parallel, on the nodes where they are required. 
 

      PROGRAM PBLSQ_EX2 

! Use Parallel_bounded_LSQ to solve a non-linear system 

! of equations. The example is an ACM-TOMS test problem, 

! except for the larger size.  It is "Brown's Almost Linear 

! Function." 

        USE ERROR_OPTION_PACKET 

        USE PBLSQ_INT 

        USE MPI_SETUP_INT 

        USE SHOW_INT 

        USE Numerical_Libraries, ONLY : N1RTY 

 

        IMPLICIT NONE 

         

        INTEGER, PARAMETER :: N=200, MAXIT=5 

 

        REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0,& 

          HALF=5D-1, TWO=2D0 

        REAL(KIND(1D0)), ALLOCATABLE :: & 

         A(:,:), B(:), BND(:,:), X(:), Y(:), W(:) 

        REAL(KIND(1D0)) RNORM 

        INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:) 

 

        INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, & 

          NSETZ, ITER 

        LOGICAL :: PRINT=.false. 

        TYPE(D_OPTIONS) IOPT(3) 

 

! Setup for MPI: 

        MP_NPROCS=MP_SETUP() 

 

        DN=N/max(1,max(1,MP_NPROCS))-1 

        ALLOCATE(IPART(2,max(1,MP_NPROCS))) 

 

! Spread Jacobian matrix columns evenly to the processors. 

        IPART(1,1)=1 

        DO L=2,MP_NPROCS 

           IPART(2,L-1)=IPART(1,L-1)+DN 

           IPART(1,L)=IPART(2,L-1)+1 

        END DO 

        IPART(2,MP_NPROCS)=N 

 

        K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1) 

        ALLOCATE(A(N,K), BND(2,N), & 

          X(N), W(N), B(N), Y(N), INDEX(N)) 

 

! This is Newton's method on "Brown's almost 

! linear function." 

        X=HALF 
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 ITER=0 

 

! Turn off messages and stopping for FATAL class errors. 

        CALL ERSET (4, 0, 0)   

 

NEWTON_METHOD: DO 

 

! Set bounds for the values after the step is taken.  

! All variables are positive and bounded below by HALF, 

! except for variable N, which has an upper bound of HALF. 

        BND(1,1:N-1)=-HUGE(ONE) 

        BND(2,1:N-1)=X(1:N-1)-HALF 

 BND(1,N)=X(N)-HALF 

        BND(2,N)=X(N)-EPSILON(ONE) 

 

! Compute the residual function. 

        B(1:N-1)=SUM(X)+X(1:N-1)-(N+1)  

 B(N)=LOG(PRODUCT(X)) 

 if(mp_rank == 0 .and. PRINT) THEN 

   CALL SHOW(B, & 

            "Developing non-linear function residual") 

 END IF 

        IF (MAXVAL(ABS(B(1:N-1))) <= SQRT(EPSILON(ONE)))& 

          EXIT NEWTON_METHOD 

   

! Compute the derivatives local to each processor. 

        A(1:N-1,:)=ONE 

        DO J=1,N-1 

          IF(J < IPART(1,MP_RANK+1)) CYCLE 

          IF(J > IPART(2,MP_RANK+1)) CYCLE 

   JSHIFT=J-IPART(1,MP_RANK+1)+1 

   A(J,JSHIFT)=TWO 

 END DO 

        A(N,:)=ONE/X(IPART(1,MP_RANK+1):IPART(2,MP_RANK+1)) 

 

! Reset the linear independence tolerance. 

        IOPT(1)=D_OPTIONS(PBLSQ_SET_TOLERANCE,& 

          sqrt(EPSILON(ONE))) 

 IOPT(2)=PBLSQ_SET_MAX_ITERATIONS 

 

! If N iterations was not enough on a previous iteration, reset to 2*N. 

 IF(N1RTY(1) == 0) THEN 

   IOPT(3)=N 

        ELSE 

          IOPT(3)=2*N 

   CALL E1POP('MP_SETUP') 

          CALL E1PSH('MP_SETUP') 

        END IF 

     

        CALL parallel_bounded_LSQ & 

          (A, B, BND, Y, RNORM, W, INDEX, IPART, NSETP, & 

            NSETZ,IOPT=IOPT) 

 

! The array Y(:) contains the constrained Newton step.   

! Update the variables. 

        X=X-Y 
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        IF(mp_rank == 0 .and. PRINT) THEN 

          CALL show(BND, "Bounds for the moves") 

          CALL SHOW(X, "Developing Solution") 

          CALL SHOW((/RNORM/), & 

            "Linear problem residual norm") 

        END IF 

      

! This is a safety measure for not taking too many steps.    

 ITER=ITER+1 

 IF(ITER > MAXIT) EXIT NEWTON_METHOD 

      END DO NEWTON_METHOD 

 

      IF(MP_RANK == 0) THEN 

        IF(ITER <= MAXIT) WRITE(*,*)& 

        " Example 2 for PARALLEL_BOUNDED_LSQ is correct." 

      END IF 

 

! See to any errors and shut down MPI. 

        MP_NPROCS=MP_SETUP('Final') 

         

     END 

LSARG 

 

 

 

Solves a real general system of linear equations with iterative refinement. 

Required Arguments 

A —   N by N matrix containing the coefficients of the linear system.   (Input) 

B —   Vector of length N containing the right-hand side of the linear system.   (Input) 

X —   Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N —  Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

IPATH —  Path indicator.   (Input)  
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IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
T
X = B is solved. 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LSARG (A, B, X [,…]) 

Specific: The specific interface names are S_LSARG and D_LSARG. 

FORTRAN 77 Interface 

Single: CALL LSARG (N, A, LDA, B, IPATH, X) 

Double: The double precision name is DLSARG 

ScaLAPACK Interface 

Generic: CALL LSARG (A0, B0, X0 [,…]) 

Specific: The specific interface names are S_LSARG and D_LSARG. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LSARG solves a system of linear algebraic equations having a real general coefficient 

matrix. It first uses routine LFCRG to compute an LU factorization of the coefficient matrix and to 

estimate the condition number of the matrix. The solution of the linear system is then found using 

the iterative refinement routine LFIRG. The underlying code is based on either LINPACK , 

LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during 

linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and 

EISPACK‖ in the Introduction section of this manual. 

LSARG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the 

iterative refinement algorithm fails to converge. These errors occur only if A is singular or very 

close to a singular matrix.  

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system. LSARG solves the 

problem that is represented in the computer; however, this problem may differ from the problem 

whose solution is desired.  
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Comments 

1. Workspace may be explicitly provided, if desired, by use of L2ARG/DL2ARG. The 

reference is: 

CALL L2ARG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — Work vector of length N
2
 containing the LU factorization of A on 

output. 

IPVT — Integer work vector of length N containing the pivoting information 

for the LU factorization of A on output. 

WK — Work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is singular. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —  MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the coefficients of the linear system.   (Input) 

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B. B 

contains the right-hand side of the linear system.   (Input) 

X0 —  Local vector  of length MXLDA containing the local portions of the distributed vector X. 

X contains the solution to the linear system.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call to 

SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below.  

Example 

A system of three linear equations is solved. The coefficient matrix has real general form and the 

right-hand-side vector b has three elements. 
 

      USE LSARG_INT 

      USE WRRRN_INT 

      IMPLICIT NONE 

!                                 Declare variables 
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      INTEGER  LDA, N 

      PARAMETER  (LDA=3, N=3) 

 

      REAL  A(LDA,N), B(N), X(N) 

!                                 Set values for A and B 

      A(1,:) = (/ 33.0,  16.0,  72.0/) 

      A(2,:) = (/-24.0, -10.0, -57.0/) 

      A(3,:) = (/ 18.0, -11.0,   7.0/) 

! 

      B =      (/129.0, -96.0,   8.5/) 

 

!                                 Solve the system of equations 

      CALL LSARG (A, B, X) 

!                                Print results 

      CALL WRRRN (‘X‘, X, 1, N, 1) 

      END 

Output 
 

           X 

    1       2       3 

1.000   1.500   1.000 

ScaLAPACK Example 

The same system of three linear equations is solved as a distributed computing example. The 

coefficient matrix has real general form and the right-hand-side vector b has three elements. 

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map 

and unmap arrays to and from the processor grid. They are used here for brevity.  DESCINIT is a 

ScaLAPACK tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LSARG_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  N, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXLDA, MXCOL 

      REAL, ALLOCATABLE ::        A(:,:), B(:), X(:) 

      REAL, ALLOCATABLE ::        A0(:,:), B0(:), X0(:) 

      PARAMETER   (N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF (MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(N,N), B(N), X(N)) 

!                                 Set values for A and B 

          A(1,:) = (/ 33.0,  16.0,  72.0/) 

          A(2,:) = (/-24.0, -10.0, -57.0/) 

          A(3,:) = (/ 18.0, -11.0,   7.0/) 

! 

          B = (/129.0, -96.0,  8.5/) 

      ENDIF 



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  87 

     

     

 

!                                  Set up a 1D processor grid and define 

!                                  its context id, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  AND MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      CALL SCALAPACK_MAP(B, DESCX, B0) 

!                                  Solve the system of equations 

      CALL LSARG (A0, B0, X0) 

!                                  Unmap the results from the distributed 

!                                  arrays back to a non-distributed array. 

!                                  After the unmap, only Rank=0 has the full 

!                                  array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, X. 

      IF (MP_RANK .EQ. 0) CALL WRRRN (‘X‘, X, 1, N, 1) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, X0) 

!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

           X 

    1       2       3 

1.000   1.500   1.000 

LSLRG 

 

 

 

Solves a real general system of linear equations without iterative refinement. 

Required Arguments 

A —  N by N matrix containing the coefficients of the linear system.   (Input) 

B —  Vector of length N containing the right-hand side of the linear system.   (Input) 
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X —  Vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
T
X = B is solved. 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LSLRG (A, B, X [,…]) 

Specific: The specific interface names are S_LSLRG and D_LSLRG. 

FORTRAN 77 Interface 

Single: CALL LSLRG (N, A, LDA, B, IPATH, X) 

Double: The double precision name is DLSLRG. 

ScaLAPACK Interface 

Generic: CALL LSLRG (A0, B0, X0 [,…]) 

Specific: The specific interface names are S_LSLRG and D_LSLRG. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LSLRG solves a system of linear algebraic equations having a real general coefficient 

matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code 

depending upon which supporting libraries are used during linking. For a detailed explanation see 

“Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this 

manual. LSLRG first uses the routine LFCRG to compute an LU factorization of the coefficient 

matrix based on Gauss elimination with partial pivoting. Experiments were analyzed to determine 

efficient implementations on several different computers. For some supercomputers, particularly 
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those with efficient vendor-supplied BLAS, versions that call Level 1, 2 and 3 BLAS are used. 

The remaining computers use a factorization method provided to us by Dr. Leonard J. Harding of 

the University of Michigan. Harding‘s work involves ―loop unrolling and jamming‖ techniques 

that achieve excellent performance on many computers. Using an option, LSLRG will estimate the 

condition number of the matrix. The solution of the linear system is then found using LFSRG. 

The routine LSLRG fails if U, the upper triangular part of the factorization, has a zero diagonal 

element. This occurs only if A is close to a singular matrix.  

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that small changes in A can cause large changes in the solution x. If 

the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that either 

LIN_SOL_SVD or LSARG be used. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LRG/DL2LRG. The 

reference is: 

CALL L2LRG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — N × N work array containing the LU factorization of A on output. If 

A is not needed, A and FACT can share the same storage locations. See 

Item 3 below to avoid memory bank conflicts. 

IPVT — Integer work vector of length N containing the pivoting information 

for the LU factorization of A on output. 

WK — Work vector of length N. 

2. Informational errors  

Type Code  

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2LRG the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2); respectively, in LSLRG. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSLRG. Users directly calling L2LRG can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 
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applications that use LSLRG or L2LRG. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L1 condition number is to be 

computed. Routine LSLRG temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG 

skips this computation. LSLRG restores the option. Default values for the option 

are  

IVAL(*) = 1, 2. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the coefficients of the linear system.   (Input) 

B0 —   Local vector of length MXLDA containing the local portions of the distributed vector B. 

B contains the right-hand side of the linear system.   (Input) 

X0 —   Local vector  of length MXLDA containing the local portions of the distributed vector X. 

X  contains the solution to the linear system.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 1 

A system of three linear equations is solved. The coefficient matrix has real general form and the 

right-hand-side vector b has three elements. 
 

      USE LSLRG_INT 

      USE WRRRN_INT 

      IMPLICIT NONE 

!                                 Declare variables 

      INTEGER  LDA, N 

      PARAMETER  (LDA=3, N=3) 

 

      REAL  A(LDA,N), B(N), X(N) 

!                                 Set values for A and B 

      A(1,:) = (/ 33.0,  16.0,  72.0/) 

      A(2,:) = (/-24.0, -10.0, -57.0/) 

      A(3,:) = (/ 18.0, -11.0,   7.0/) 

! 

      B = (/129.0 -96.0   8.5/) 

 

!                                 Solve the system of equations 

      CALL LSLRG (A, B, X) 

!                                Print results 
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      CALL WRRRN (‘X‘, X, 1, N, 1) 

      END 

Output 
 

           X 

    1       2       3 

1.000   1.500   1.000 

Additional Example 

Example 2 

A system of N = 16 linear equations is solved using the routine L2LRG. The option manager is used 

to eliminate memory bank conflict inefficiencies that may occur when the matrix dimension is a 

multiple of 16. The leading dimension of FACT=A is increased from N to N+IVAL(3)=17, since 

N=16=IVAL(4). The data used for the test is a nonsymmetric Hadamard matrix and a right-hand 

side generated by a known solution, xj = j,  j = 1, ..., N. 
 

      USE L2LRG_INT 

      USE IUMAG_INT 

      USE WRRRN_INT       

      USE SGEMV_INT 

      IMPLICIT NONE 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=17, N=16) 

!                                 SPECIFICATIONS FOR PARAMETERS 

      INTEGER    ICHP, IPATH, IPUT, KBANK 

      REAL       ONE, ZERO 

      PARAMETER  (ICHP=1, IPATH=1, IPUT=2, KBANK=16, ONE=1.0E0, & 

                 ZERO=0.0E0) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I, IPVT(N), J, K, NN 

      REAL       A(LDA,N), B(N), WK(N), X(N) 

!                                 SPECIFICATIONS FOR SAVE VARIABLES 

      INTEGER    IOPT(1), IVAL(4) 

      SAVE       IVAL 

!                               Data for option values. 

      DATA IVAL/1, 16, 1, 16/ 

!                                 Set values for A and B: 

      A(1,1) = ONE 

      NN     = 1 

!                                 Generate Hadamard matrix. 

      DO 20  K=1, 4 

         DO 10  J=1, NN 

            DO 10  I=1, NN 

               A(NN+I,J) = -A(I,J) 

               A(I,NN+J) = A(I,J) 

               A(NN+I,NN+J) = A(I,J) 

   10    CONTINUE 

         NN = NN + NN 

   20 CONTINUE 

!                                 Generate right-hand-side. 

      DO 30  J=1, N 
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         X(J) = J 

   30 CONTINUE 

!                                 Set B = A*X. 

      CALL SGEMV (‘N‘, N, N, ONE, A, LDA, X, 1, ZERO, B, 1) 

!                                 Clear solution array. 

         X = ZERO 

 

!                                 Set option to avoid memory 

!                                 bank conflicts. 

      IOPT(1) = KBANK 

      CALL IUMAG (‘MATH‘, ICHP, IPUT, 1, IOPT, IVAL) 

!                                 Solve A*X = B. 

      CALL L2LRG (N, A, LDA, B, IPATH, X, A, IPVT, WK) 

!                                 Print results 

      CALL WRRRN (‘X‘, X, 1, N, 1) 

      END 

Output 
 

                                        X 

   1      2       3       4       5       6       7       8       9      10 

1.00   2.00    3.00    4.00    5.00    6.00    7.00    8.00    9.00   10.00 

 

   11      12      13      14      15      16 

11.00   12.00   13.00   14.00   15.00   16.00 

ScaLAPACK Example 

The same system of three linear equations is solved as a distributed computing example. The 

coefficient matrix has real general form and the right-hand-side vector b has three elements. 

SCALAPACK_MAP and  SCALAPACK_UNMAP (see Chapter 11, ―Utilities‖)  are IMSL utility routines 

(see Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They 

are used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the 

descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LSLRG_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  N, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      REAL, ALLOCATABLE ::        A(:,:), B(:), X(:) 

      REAL, ALLOCATABLE ::        A0(:,:), B0(:), X0(:) 

      PARAMETER   (N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(N,N), B(N), X(N)) 

!                                 Set values for A and B 

          A(1,:) = (/ 33.0,  16.0,  72.0/) 

          A(2,:) = (/-24.0, -10.0, -57.0/) 
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          A(3,:) = (/ 18.0, -11.0,   7.0/) 

! 

          B = (/129.0, -96.0,  8.5/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context id, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      CALL SCALAPACK_MAP(B, DESCX, B0) 

!                                 Solve the system of equations 

      CALL LSLRG (A0, B0, X0) 

!                                 Unmap the results from the distributed 

!                                 arrays back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

!                                 Print results 

!                                 Only Rank=0 has the solution, X. 

      IF(MP_RANK .EQ. 0)CALL WRRRN (‘X‘, X, 1, N, 1) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, X0) 

!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

           X 

    1       2       3 

1.000   1.500   1.000 

LFCRG  

 

 

 

Computes the LU factorization of a real general matrix and estimates its L1 condition number. 

Required Arguments 

A —  N by N matrix to be factored.   (Input) 



     

     
 

94  Chapter 1: Linear Systems IMSL MATH LIBRARY  

     

     

 

FACT — N by N matrix containing the LU factorization of the matrix A.   (Output)  

If A is not needed, A and FACT can share the same storage locations. 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   

(Output) 

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.   

(Output) 

Optional Arguments 

N —  Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input)  

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFCRG (A, FACT, IPVT, RCOND, [,…]) 

Specific: The specific interface names are S_LFCRG and D_LFCRG. 

FORTRAN 77 Interface 

Single: CALL LFCRG (N, A, LDA, FACT, LDFACT, IPVT, RCOND) 

Double:  The double precision name is DLFCRG. 

ScaLAPACK Interface 

Generic: CALL LFCRG (A0, FACT0, IPVT0, RCOND [,…]) 

Specific: The specific interface names are S_LFCRG and D_LFCRG. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFCRG performs an LU factorization of a real general coefficient matrix. It also estimates 

the condition number of the matrix. The underlying code is based on either LINPACK , LAPACK, 
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or ScaLAPACK code depending upon which supporting libraries are used during linking. For a 

detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the 

Introduction section of this manual. The LU factorization is done using scaled partial pivoting. 

Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the same as if 

each row were scaled to have the same ∞-norm. Otherwise, partial pivoting is used. 

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to 

compute ||A
-1

||1, the condition number is only estimated. The estimation algorithm is the same as 

used by LINPACK and is described in a paper by Cline et al. (1979).  

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCRG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 

can occur only if A either is singular or is very close to a singular matrix.  

The LU factors are returned in a form that is compatible with routines LFIRG, LFSRG and LFDRG. 

To solve systems of equations with multiple right-hand-side vectors, use LFCRG followed by either 

LFIRG or LFSRG called once for each right-hand side. The routine LFDRG can be called to compute 

the determinant of the coefficient matrix after LFCRG has performed the factorization.  

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the 

upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct L  

using 

L-1
= LN-1PN-1 … L1P1 

where Pk is the identity matrix with rows k and pk interchanged and Lk is the identity with Fik for   

 i = k + 1, …, N inserted below the diagonal. The strict lower half of F can also be thought of as 

containing the negative of the multipliers. LFCRG is based on the LINPACK routine SGECO; see 

Dongarra et al. (1979). SGECO uses unscaled partial pivoting.  

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CRG/DL2CRG. The 

reference is: 

CALL L2CRG (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK) 

The additional argument is 

WK — Work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is algorithmically singular. 

4 2 The input matrix is singular. 
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ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the matrix to be factored.   (Input) 

FACT0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed 

matrix FACT.  FACT contains the LU factorization of the matrix A.   (Output) 

IPVT0 —   Local vector  of length MXLDA containing the local portions of the distributed 

vector IPVT. IPVT  contains the pivoting information for the LU factorization.   

(Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

The inverse of a 3 × 3 matrix is computed. LFCRG is called to factor the matrix and to check for 

singularity or ill-conditioning. LFIRG is called to determine the columns of the inverse. 
 

      USE LFCRG_INT 

      USE UMACH_INT 

      USE LFIRG_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      INTEGER    IPVT(N), J, NOUT 

      REAL       A(LDA,N), AINV(LDA,N), FACT(LDFACT,N), RCOND, & 

                 RES(N), RJ(N) 

!                                 Set values for A 

          A(1,:) = (/ 1.0,  3.0,  3.0/) 

          A(2,:) = (/ 1.0,  3.0,  4.0/) 

          A(3,:) = (/ 1.0,  4.0,  3.0/)! 

      CALL LFCRG (A, FACT, IPVT, RCOND) 

!                                 Print the reciprocal condition number 

!                                 and the L1 condition number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99998) RCOND, 1.0E0/RCOND 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIRG 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFIRG (A, FACT, IPVT, RJ, AINV(:,J), RES) 
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         RJ(J) = 0.0 

   10 CONTINUE 

!                                 Print results 

      CALL WRRRN (‘AINV‘, AINV)  

! 

99998 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < .02 

L1 Condition number < 100.0 

 

          AINV 

        1       2       3 

1   7.000  -3.000  -3.000 

2  -1.000   0.000   1.000 

3  -1.000   1.000   0.000 

ScaLAPACK Example 

The inverse of the same 3 × 3 matrix is computed as a distributed example. LFCRG is called to 

factor the matrix and to check for singularity or ill-conditioning. LFIRG is called to determine the 

columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see 

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are 

used here for brevity.  DESCINIT is a ScaLAPACK tools routine which initializes the descriptors 

for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFCRG_INT 

      USE UMACH_INT 

      USE LFIRG_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER     J, LDA, N, DESCA(9), DESCL(9) 

      INTEGER     INFO, MXCOL, MXLDA, NOUT 

      INTEGER, ALLOCATABLE ::     IPVT0(:) 

      REAL, ALLOCATABLE ::        A(:,:), AINV(:,:), X0(:), RJ(:) 

      REAL, ALLOCATABLE ::        A0(:,:), FACT0(:,:), RES0(:), RJ0(:) 

      REAL        RCOND 

      PARAMETER  (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), AINV(LDA,N)) 

!                                 Set values for A  

          A(1,:) = (/ 1.0,  3.0,  3.0/) 

          A(2,:) = (/ 1.0,  3.0,  4.0/) 

          A(3,:) = (/ 1.0,  4.0,  3.0/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context id, MP_ICTXT 
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      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), & 

               RJ0(MXLDA), RES0(MXLDA), IPVT0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Call the factorization routine 

      CALL LFCRG (A0, FACT0, IPVT0, RCOND) 

!                                 Print the reciprocal condition number 

!                                 and the L1 condition number 

      IF(MP_RANK .EQ. 0) THEN 

         CALL UMACH (2, NOUT) 

         WRITE (NOUT,99998) RCOND, 1.0E0/RCOND 

      ENDIF 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0 

         CALL SCALAPACK_MAP(RJ, DESCL, RJ0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIRG 

!                                 reference computes the J-th column of 

!                                 the inverse of A  

         CALL LFIRG (A0, FACT0, IPVT0, RJ0, X0, RES0) 

         RJ(J) = 0.0 

         CALL SCALAPACK_UNMAP(X0, DESCL, AINV(:,J)) 

   10 CONTINUE 

!                                 Print results 

!                                 Only Rank=0 has the solution, X. 

      IF(MP_RANK.EQ.0) CALL WRRRN (‘AINV‘, AINV) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV) 

      DEALLOCATE(A0, IPVT0, FACT0, RES0, RJ, RJ0, X0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT)  

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

99998 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < .02 

L1 Condition number < 100.0 

 

          AINV 

        1       2       3 

1   7.000  -3.000  -3.000 

2  -1.000   0.000   1.000 
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3  -1.000   1.000   0.000 

LFTRG 

 

 

 

Computes the LU factorization of a real general matrix. 

Required Arguments 

A — N by N matrix to be factored.   (Input) 

FACT — N by N matrix containing the LU factorization of the matrix A.   (Output)  

If A is not needed, A and FACT can share the same storage locations. 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   

(Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input)  

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFTRG (A, FACT, IPVT [,…]) 

Specific: The specific interface names are S_LFTRG and D_LFTRG. 

FORTRAN 77 Interface 

Single: CALL LFTRG (N, A, LDA, FACT, LDFACT, IPVT) 

Double:  The double precision name is DLFTRG. 
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ScaLAPACK Interface 

Generic: CALL LFTRG (A0, FACT0, IPVT0 [,…]) 

Specific: The specific interface names are S_LFTRG and D_LFTRG. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFTRG performs an LU factorization of a real general coefficient matrix. The underlying 

code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. The LU 

factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial 

pivoting in that the pivoting strategy is the same as if each row were scaled to have the same norm. 

Otherwise, partial pivoting is used. 

The routine LFTRG fails if U, the upper triangular part of the factorization, has a zero diagonal 

element. This can occur only if A is singular or very close to a singular matrix. 

The LU factors are returned in a form that is compatible with routines LFIRG, LFSRG and LFDRG. 

To solve systems of equations with multiple right-hand-side vectors, use LFTRG followed by either 

LFIRG or LFSRG called once for each right-hand side. The routine LFDRG can be called to compute 

the determinant of the coefficient matrix after LFTRG has performed the factorization. Let F be the 

matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the upper triangle of 

F. The strict lower triangle of F contains the information needed to reconstruct L
-1

 using 

L-1
 = LN-1PN-1 . . . L1 P1 

where Pk is the identity matrix with rows k and pk interchanged and Lk is the identity with Fik for  

i = k + 1, ..., N inserted below the diagonal. The strict lower half of F can also be thought of as 

containing the negative of the multipliers.  

Routine LFTRG is based on the LINPACK routine SGEFA. See Dongarra et al. (1979). The routine 

SGEFA uses partial pivoting. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2TRG/ DL2TRG. The 

reference is: 

CALL L2TRG (N, A, LDA, FACT, LDFACT, IPVT, WK) 

The additional argument is: 

WK — Work vector of length N used for scaling. 

2. Informational error 
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Type Code 

4 2 The input matrix is singular. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the matrix to be factored.   (Input) 

FACT0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed 

matrix FACT.  FACT contains the LU factorization of the matrix A.   (Output) 

IPVT0 —   Local vector  of length MXLDA containing the local portions of the distributed 

vector IPVT. IPVT  contains the pivoting information for the LU factorization.   

(Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below.  

Example 

A linear system with multiple right-hand sides is solved. Routine LFTRG is called to factor the 

coefficient matrix. The routine LFSRG is called to compute the two solutions for the two right-

hand sides. In this case, the coefficient matrix is assumed to be well-conditioned and correctly 

scaled. Otherwise, it would be better to call LFCRG to perform the factorization, and LFIRG to 

compute the solutions. 
 

      USE LFTRG_INT 

      USE LFSRG_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      INTEGER    IPVT(N), J 

      REAL       A(LDA,LDA), B(N,2), FACT(LDFACT,LDFACT), X(N,2) 

! 

!                                 Set values for A and B 

! 

!                                 A = (  1.0   3.0   3.0) 

!                                     (  1.0   3.0   4.0) 

!                                     (  1.0   4.0   3.0) 

! 

!                                 B = (  1.0  10.0) 

!                                     (  4.0  14.0) 

!                                     ( -1.0   9.0) 

! 

      DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/ 

      DATA B/1.0, 4.0, -1.0, 10.0, 14.0, 9.0/ 

! 

      CALL LFTRG (A,  FACT,  IPVT) 

!                                 Solve for the two right-hand sides 
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      DO 10  J=1, 2 

         CALL LFSRG (FACT, IPVT, B(:,J), X(:,J)) 

   10 CONTINUE 

!                                 Print results 

      CALL WRRRN (‘X‘, X) 

      END 

Output 
 

         X 

        1       2 

1  -2.000   1.000 

2  -2.000  -1.000 

3   3.000   4.000 

ScaLAPACK Example 

A linear system with multiple right-hand sides is solved. Routine LFTRG is called to factor the 

coefficient matrix. The routine LFSRG is called to compute the two solutions for the two right-

hand sides. In this case, the coefficient matrix is assumed to be well-conditioned and correctly 

scaled. Otherwise, it would be better to call LFCRG to perform the factorization, and LFIRG to 

compute the solutions. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see 

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are 

used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors 

for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFTRG_INT  

      USE LFSRG_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER     J, LDA, N, DESCA(9), DESCL(9) 

      INTEGER     INFO, MXCOL, MXLDA 

      INTEGER, ALLOCATABLE ::     IPVT0(:) 

      REAL, ALLOCATABLE ::        A(:,:), B(:,:), X(:,:), X0(:) 

      REAL, ALLOCATABLE ::        A0(:,:), FACT0(:,:), B0(:) 

      PARAMETER  (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N,2), X(N,2)) 

!                                 Set values for A and B 

          A(1,:) = (/ 1.0,  3.0,  3.0/) 

          A(2,:) = (/ 1.0,  3.0,  4.0/) 

          A(3,:) = (/ 1.0,  4.0,  3.0/) 

! 

          B(1,:) = (/ 1.0, 10.0/) 

          B(2,:) = (/ 4.0, 14.0/) 

          B(3,:) = (/-1.0, 9.0/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 
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!                                  its context id, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), B0(MXLDA), & 

               IPVT0(MXLDA)) 

!                                  Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Call the factorization routine 

      CALL LFTRG (A0, FACT0, IPVT0) 

!                                 Set up the columns of the B 

!                                 matrix one at a time in X0 

      DO 10  J=1, 2 

         CALL SCALAPACK_MAP(B(:,j), DESCL, B0) 

!                                 Solve for the J-th column of X 

         CALL LFSRG (FACT0, IPVT0, B0, X0) 

         CALL SCALAPACK_UNMAP(X0, DESCL, X(:,J)) 

   10 CONTINUE 

!                                 Print results. 

!                                 Only Rank=0 has the solution, X. 

      IF(MP_RANK.EQ.0) CALL WRRRN (‘X‘, X) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, IPVT0, FACT0, X0) 

!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT)  

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘)  

      END 

Output 
 

         X 

        1       2 

1  -2.000   1.000 

2  -2.000  -1.000 

3   3.000   4.000 

LFSRG 

 

 

 

Solves a real general system of linear equations given the LU factorization of the coefficient 

matrix. 
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Required Arguments 

FACT — N by N matrix containing the LU factorization of the coefficient matrix A as output 

from routine LFCRG or LFTRG.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 

as output from subroutine LFCRG or LFTRG.   (Input). 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT, 2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT, 1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
T
X = B is solved.  

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LFSRG (FACT, IPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSRG and D_LFSRG. 

FORTRAN 77 Interface 

Single: CALL LFSRG (N, FACT, LDFACT, IPVT, B, IPATH, X) 

Double:  The double precision name is DLFSRG. 

ScaLAPACK Interface 

Generic: CALL LFSRG (FACT0, IPVT0, B0, X0 [,…]) 

Specific: The specific interface names are S_LFSRG and D_LFSRG. 
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See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFSRG computes the solution of a system of linear algebraic equations having a real 

general coefficient matrix. To compute the solution, the coefficient matrix must first undergo an 

LU factorization. This may be done by calling either LFCRG or LFTRG. The solution to Ax = b is 

found by solving the triangular systems Ly = b and Ux = y. The forward elimination step consists 

of solving the system Ly = b by applying the same permutations and elimination operations to b 

that were applied to the columns of A in the factorization routine. The backward substitution step 

consists of solving the triangular system Ux = y for x.  

LFSRG and LFIRG both solve a linear system given its LU factorization. LFIRG generally takes 

more time and produces a more accurate answer than LFSRG. Each iteration of the iterative 

refinement algorithm used by LFIRG calls LFSRG. The underlying code is based on either 

LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries are used 

during linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and 

EISPACK‖ in the Introduction section of this manual. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

FACT0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed 

matrix FACT as output from routine LFCRG.  FACT contains the LU factorization of the 

matrix A.   (Input) 

IPVT0 —   Local vector  of length MXLDA containing the local portions of the distributed 

vector IPVT. IPVT  contains the pivoting information for the LU factorization as output 

from subroutine LFCRG or LFTRG/DLFTRG.   (Input) 

B0 —   Local vector of length MXLDA containing the local portions of the distributed vector B. 

B contains the right-hand side of the linear system.   (Input) 

X0 —   Local vector  of length MXLDA containing the local portions of the distributed vector X. 

X  contains the solution to the linear system.   (Output) 

If B is not needed, B and X can share the same storage locations. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

The inverse is computed for a real general 3 × 3 matrix. The input matrix is assumed to be well-

conditioned, hence, LFTRG is used rather than LFCRG. 
 

      USE LFSRG_INT 

      USE LFTRG_INT 
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      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      INTEGER    I, IPVT(N), J 

      REAL       A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N) 

! 

!                                 Set values for A 

          A(1,:) = (/ 1.0,  3.0,  3.0/) 

          A(2,:) = (/ 1.0,  3.0,  4.0/) 

          A(3,:) = (/ 1.0,  4.0,  3.0/) 

! 

      CALL LFTRG (A, FACT, IPVT) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFSRG 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFSRG (FACT, IPVT, RJ, AINV(:,J)) 

         RJ(J) = 0.0 

   10 CONTINUE 

!                                 Print results 

      CALL WRRRN (‘AINV‘, AINV) 

      END 

Output 
 

           AINV 

        1       2       3 

1   7.000  -3.000  -3.000 

2  -1.000   0.000   1.000 

3  -1.000   1.000   0.000 

ScaLAPACK Example 

The inverse of the same 3 × 3 matrix is computed as a distributed example. The input matrix is 

assumed to be well-conditioned, hence, LFTRG is used rather than LFCRG. LFSRG is called to 

determine the columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility 

routines (see Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor 

grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes 

the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFTRG_INT 

      USE UMACH_INT 

      USE LFSRG_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 
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!                                 Declare variables 

      INTEGER     J, LDA, N, DESCA(9), DESCL(9) 

      INTEGER     INFO, MXCOL, MXLDA 

      INTEGER, ALLOCATABLE ::     IPVT0(:) 

      REAL, ALLOCATABLE ::        A(:,:), AINV(:,:), X0(:), RJ(:) 

      REAL, ALLOCATABLE ::        A0(:,:), FACT0(:,:), RJ0(:) 

      PARAMETER  (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), AINV(LDA,N)) 

!                                 Set values for A  

          A(1,:) = (/ 1.0,  3.0,  3.0/) 

          A(2,:) = (/ 1.0,  3.0,  4.0/) 

          A(3,:) = (/ 1.0,  4.0,  3.0/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context id, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), & 

               RJ0(MXLDA), IPVT0(MXLDA)) 

!                                  Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                  Call the factorization routine 

      CALL LFTRG (A0, FACT0, IPVT0) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0 

         CALL SCALAPACK_MAP(RJ, DESCL, RJ0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIRG 

!                                 reference computes the J-th column of 

!                                 the inverse of A  

         CALL LFSRG (FACT0, IPVT0, RJ0, X0) 

         RJ(J) = 0.0 

         CALL SCALAPACK_UNMAP(X0, DESCL, AINV(:,J)) 

   10 CONTINUE 

!                                 Print results 

!                                 Only Rank=0 has the solution, AINV. 

      IF(MP_RANK.EQ.0) CALL WRRRN (‘AINV‘, AINV) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV) 

      DEALLOCATE(A0, IPVT0, FACT0, RJ, RJ0, X0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT)  

  

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 
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Output 
 

          AINV 

        1       2       3 

1   7.000  -3.000  -3.000 

2  -1.000   0.000   1.000 

3  -1.000   1.000   0.000 

LFIRG 

 

 

 

Uses iterative refinement to improve the solution of a real general system of linear equations. 

Required Arguments 

A — N by N matrix containing the coefficient matrix of the linear system.   (Input) 

FACT — N by N matrix containing the LU factorization of the coefficient matrix A as output 

from routine LFCRG/DLFCRG or LFTRG/DLFTRG.   (Input). 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 

as output from routine LFCRG/DLFCRG or LFTRG/DLFTRG.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input). 

X — Vector of length N containing the solution to the linear system.   (Output) 

RES — Vector of length N containing the final correction at the improved solution.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  
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IPATH = 1 means the system A * X = B is solved.  

IPATH = 2 means the system A
T
X = B is solved.  

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LFIRG (A, FACT, IPVT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIRG and D_LFIRG. 

FORTRAN 77 Interface 

Single: CALL LFIRG (N, A, LDA, FACT, LDFACT, IPVT, B, IPATH, X, RES) 

Double:  The double precision name is DLFIRG. 

ScaLAPACK Interface 

Generic: CALL LFIRG (A0, FACT0, IPVT0, B0, X0, RES0 [,…]) 

Specific: The specific interface names are S_LFIRG and D_LFIRG. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFIRG computes the solution of a system of linear algebraic equations having a real 

general coefficient matrix. Iterative refinement is performed on the solution vector to improve the 

accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is 

somewhat ill-conditioned. The underlying code is based on either LINPACK , LAPACK, or 

ScaLAPACK code depending upon which supporting libraries are used during linking. For a 

detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the 

Introduction section of this manual. 

To compute the solution, the coefficient matrix must first undergo an LU factorization. This may 

be done by calling either LFCRG or LFTRG. 

Iterative refinement fails only if the matrix is very ill-conditioned. 

Routines LFIRG and LFSRG both solve a linear system given its LU factorization. LFIRG generally 

takes more time and produces a more accurate answer than LFSRG. Each iteration of the iterative 

refinement algorithm used by LFIRG calls LFSRG. 

Comments 

Informational error 

Type Code 
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3 2 The input matrix is too ill-conditioned for iterative refinement to be 

effective. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the coefficient matrix of the linear system.   (Input) 

FACT0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed 

matrix FACT as output from routine LFCRG or LFTRG.  FACT contains the LU 

factorization of the matrix A.   (Input) 

IPVT0 —   Local vector  of length MXLDA containing the local portions of the distributed 

vector IPVT. IPVT  contains the pivoting information for the LU factorization as output 

from subroutine LFCRG or LFTRG.   (Input) 

B0 —   Local vector of length MXLDA containing the local portions of the distributed vector B. 

B contains the right-hand side of the linear system.   (Input) 

X0 —   Local vector  of length MXLDA containing the local portions of the distributed vector X. 

X  contains the solution to the linear system.   (Output) 

If B is not needed, B and X can share the same storage locations. 

RES0 —   Local vector  of length MXLDA containing the local portions of the distributed 

vector RES. RES  contains the final correction at the improved solution to the linear 

system.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving 

the system each of the first two times by adding 0.5 to the second element. 
 

      USE LFIRG_INT 

      USE LFCRG_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      INTEGER    IPVT(N), NOUT 

      REAL       A(LDA,LDA), B(N), FACT(LDFACT,LDFACT), RCOND, RES(N), X(N) 

! 

!                                 Set values for A and B 

! 

!                                 A = (  1.0   3.0   3.0) 
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!                                     (  1.0   3.0   4.0) 

!                                     (  1.0   4.0   3.0) 

! 

!                                 B = ( -0.5  -1.0   1.5) 

! 

      DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/ 

      DATA B/-0.5, -1.0, 1.5/ 

! 

      CALL LFCRG (A, FACT, IPVT, RCOND) 

!                                 Print the reciprocal condition number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

!                                 Solve the three systems 

      DO 10  J=1, 3 

         CALL LFIRG (A, FACT, IPVT, B, X, RES) 

!                                 Print results 

         CALL WRRRN (‘X‘, X, 1, N, 1) 

!                                 Perturb B by adding 0.5 to B(2) 

         B(2) = B(2) + 0.5 

 

   10 CONTINUE 

! 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.02 

L1 Condition number < 100.0 

            X 

     1       2       3 

-5.000   2.000  -0.500 

 

            X 

     1       2       3 

-6.500   2.000   0.000 

 

            X 

     1       2       3 

-8.000   2.000   0.500 

ScaLAPACK Example 

The same set of linear systems is solved successively as a distributed example. The right-hand side 

vector is perturbed after solving the system each of the first two times by adding 0.5 to the second 

element. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, 

―Utilities‖) used to map and unmap arrays to and from the processor grid. They are used here for 

brevity.  DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local 

arrays. 
 

      USE MPI_SETUP_INT 

      USE LFIRG_INT 

      USE UMACH_INT 

      USE LFCRG_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 
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      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER     J, LDA, N, DESCA(9), DESCL(9) 

      INTEGER     INFO, MXCOL, MXLDA, NOUT 

      INTEGER, ALLOCATABLE ::     IPVT0(:) 

      REAL, ALLOCATABLE ::        A(:,:), B(:), X(:), X0(:), AINV(:,:) 

      REAL, ALLOCATABLE ::        A0(:,:), FACT0(:,:), RES0(:), B0(:) 

      REAL        RCOND 

      PARAMETER  (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), AINV(LDA,N), B(N), X(N)) 

!                                 Set values for A and B 

          A(1,:) = (/ 1.0,  3.0,  3.0/) 

          A(2,:) = (/ 1.0,  3.0,  4.0/) 

          A(3,:) = (/ 1.0,  4.0,  3.0/) 

! 

          B(:) =   (/-0.5, -1.0,  1.5/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context id, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), & 

               B0(MXLDA), RES0(MXLDA), IPVT0(MXLDA)) 

!                                  Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                  Call the factorization routine 

      CALL LFCRG (A0, FACT0, IPVT0, RCOND) 

!                                 Print the reciprocal condition number 

!                                 and the L1 condition number 

      IF(MP_RANK .EQ. 0) THEN 

         CALL UMACH (2, NOUT) 

         WRITE (NOUT,99998) RCOND, 1.0E0/RCOND 

      ENDIF 

!                                 Solve the three systems 

!                                 one at a time in X 

      DO 10  J=1, 3 

         CALL SCALAPACK_MAP(B, DESCL, B0) 

         CALL LFIRG (A0, FACT0, IPVT0, B0, X0, RES0) 

         CALL SCALAPACK_UNMAP(X0, DESCL, X) 

!                                 Print results 

!                                 Only Rank=0 has the solution, X. 

         IF(MP_RANK.EQ.0) CALL WRRRN (‘X‘, X, 1, N, 1) 

         IF(MP_RANK.EQ.0) B(2) = B(2) + 0.5 

   10 CONTINUE  

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV, B) 

      DEALLOCATE(A0, B0, IPVT0, FACT0, RES0, X0) 
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!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT)  

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

99998 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.02 

L1 Condition number < 100.0 

 

            X 

     1       2       3 

-5.000   2.000  -0.500 

 

            X 

     1       2       3 

-6.500   2.000   0.000 

 

            X 

     1       2       3 

-8.000   2.000   0.500 

LFDRG 
Computes the determinant of a real general matrix given the LU factorization of the matrix. 

Required Arguments 

FACT — N by N matrix containing the LU factorization of the matrix A as output from routine 

LFTRG/DLFTRG or LFCRG/DLFCRG.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization as 

output from routine LFTRG/DLFTRG or LFCRG/DLFCRG.   (Input). 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  

The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  

The determinant is returned in the form det(A) = DET1 * 10DET2. 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 
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FORTRAN 90 Interface 

Generic: CALL LFDRG (FACT, IPVT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDRG and D_LFDRG. 

FORTRAN 77 Interface 

Single: CALL LFDRG (N, FACT, LDFACT, IPVT, DET1, DET2) 

Double:  The double precision name is DLFDRG. 

Description 

Routine LFDRG computes the determinant of a real general coefficient matrix. To compute the 

determinant, the coefficient matrix must first undergo an LU factorization. This may be done by 

calling either LFCRG or LFTRG. The formula det A = det L det U is used to compute the 

determinant. Since the determinant of a triangular matrix is the product of the diagonal elements 

1
det

N

iii
U U




 

(The matrix U is stored in the upper triangle of FACT.) Since L is the product of triangular matrices 

with unit diagonals and of permutation matrices, det L = (−1)
k
 where k is the number of pivoting 

interchanges.  

Routine LFDRG is based on the LINPACK routine SGEDI; see Dongarra et al. (1979) 

Example 

The determinant is computed for a real general 3 × 3 matrix. 
 

      USE LFDRG_INT 

      USE LFTRG_INT 

      USE UMACH_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      INTEGER    IPVT(N), NOUT 

      REAL       A(LDA,LDA), DET1, DET2, FACT(LDFACT,LDFACT) 

! 

!                                 Set values for A 

!                                 A = ( 33.0  16.0  72.0) 

!                                     (-24.0 -10.0 -57.0) 

!                                     ( 18.0 -11.0   7.0) 

! 

      DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/ 

! 

      CALL LFTRG (A, FACT, IPVT) 

!                                 Compute the determinant 

      CALL LFDRG (FACT, IPVT, DET1, DET2) 

!                                 Print the results 

      CALL UMACH (2, NOUT) 
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      WRITE (NOUT,99999) DET1, DET2 

! 

99999 FORMAT (‘ The determinant of A is ‘, F6.3, ‘ * 10**‘, F2.0) 

      END 

Output 
 

The determinant of A is -4.761 * 10**3. 

LINRG 

 

 

 

Computes the inverse of a real general matrix. 

Required Arguments 

A — N by N matrix containing the matrix to be inverted.   (Input) 

AINV — N by N matrix containing the inverse of A.   (Output)  

If A is not needed, A and AINV can share the same storage locations. 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDAINV = size (AINV,1). 

FORTRAN 90 Interface 

Generic: CALL LINRG (A, AINV [,…]) 

Specific: The specific interface names are S_LINRG and D_LINRG. 

FORTRAN 77 Interface 

Single: CALL LINRG (N, A, LDA, AINV, LDAINV) 

Double:  The double precision name is DLINRG. 
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ScaLAPACK Interface 

Generic: CALL LINRG (A0, AINV0 [,…]) 

Specific: The specific interface names are S_LINRG and D_LINRG. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LINRG computes the inverse of a real general matrix. The underlying code is based on 

either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries 

are used during linking. For a detailed explanation see ―Using ScaLAPACK, LAPACK, 

LINPACK, and EISPACK‖ in the Introduction section of this manual. LINRG first uses the routine 

LFCRG to compute an LU factorization of the coefficient matrix and to estimate the condition 

number of the matrix. Routine LFCRG computes U and the information needed to compute L
-1

. 

LINRT is then used to compute U
-1

. Finally, A
-1 

 is computed using A
-1

 = U
-1

L
-1

.  

The routine LINRG fails if U, the upper triangular part of the factorization, has a zero diagonal 

element or if the iterative refinement algorithm fails to converge. This error occurs only if A is 

singular or very close to a singular matrix. 

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in A
-1

. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2NRG/DL2NRG. The 

reference is: 

CALL L2NRG (N, A, LDA, AINV, LDAINV, WK, IWK) 

The additional arguments are as follows: 

WK — Work vector of length N+ N(N − 1)/2. 

IWK — Integer work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is too ill-conditioned. The inverse might not be 

accurate. 

4 2 The input matrix is singular. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 
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A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the matrix to be inverted.   (Input) 

AINV0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed 

matrix AINV.  AINV contains the inverse of the matrix A.   (Output) 

If A is not needed, A and AINV can share the same storage locations. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

The inverse is computed for a real general 3 × 3 matrix. 
 

      USE LINRG_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, LDAINV=3) 

      INTEGER    I, J, NOUT 

      REAL       A(LDA,LDA), AINV(LDAINV,LDAINV) 

! 

!                                 Set values for A 

!                                 A = (  1.0   3.0   3.0) 

!                                     (  1.0   3.0   4.0) 

!                                     (  1.0   4.0   3.0) 

! 

      DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/ 

! 

      CALL LINRG (A, AINV) 

!                                 Print results 

      CALL WRRRN (‘AINV‘, AINV) 

      END 

Output 
 

            AINV 

        1       2       3 

1   7.000  -3.000  -3.000 

2  -1.000   0.000   1.000 

3  -1.000   1.000   0.000 

ScaLAPACK Example 

The inverse of the same 3 × 3 matrix is computed as a distributed example. SCALAPACK_MAP and 

SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖) used to map and unmap 

arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK 

tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LINRG_INT 

      USE WRRRN_INT 
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      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER     LDA, LDAINV, N, DESCA(9)  

      INTEGER     INFO, MXCOL, MXLDA 

      REAL, ALLOCATABLE ::        A(:,:), AINV(:,:) 

      REAL, ALLOCATABLE ::        A0(:,:), AINV0(:,:) 

      PARAMETER  (LDA=3, LDAINV=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), AINV(LDAINV,N)) 

!                                 Set values for A  

          A(1,:) = (/ 1.0,  3.0,  3.0/) 

          A(2,:) = (/ 1.0,  3.0,  4.0/) 

          A(3,:) = (/ 1.0,  4.0,  3.0/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), AINV0(MXLDA,MXCOL)) 

!                                  Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                  Get the inverse 

      CALL LINRG (A0, AINV0) 

!                                  Unmap the results from the distributed 

!                                  arrays back to a non-distributed array. 

!                                  After the unmap, only Rank=0 has the full 

!                                  array. 

      CALL SCALAPACK_UNMAP(AINV0, DESCA, AINV) 

!                                  Print results 

!                                  Only Rank=0 has the solution, AINV. 

      IF(MP_RANK.EQ.0) CALL WRRRN (‘AINV‘, AINV) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV) 

      DEALLOCATE(A0, AINV0) 

!                                  Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                  Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

          AINV 

        1       2       3 

1   7.000  -3.000  -3.000 

2  -1.000   0.000   1.000 

3  -1.000   1.000   0.000 
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LSACG 

 

 

 

Solves a complex general system of linear equations with iterative refinement. 

Required Arguments 

A — Complex N by N matrix containing the coefficients of the linear system.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
H
X = B is solved 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LSACG (A, B, X [,…]) 

Specific: The specific interface names are S_LSACG and D_LSACG. 

FORTRAN 77 Interface 

Single: CALL LSACG (N, A, LDA, B, IPATH, X) 

Double:  The double precision name is DLSACG. 

ScaLAPACK Interface 

Generic: CALL LSACG (A0, B0, X0 [,…]) 

Specific: The specific interface names are S_LSACG and D_LSACG. 
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See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LSACG solves a system of linear algebraic equations with a complex general coefficient 

matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code 

depending upon which supporting libraries are used during linking. For a detailed explanation see 

―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this 

manual. LSACG first uses the routine LFCCG to compute an LU factorization of the coefficient 

matrix and to estimate the condition number of the matrix. The solution of the linear system is 

then found using the iterative refinement routine LFICG. 

LSACG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the 

iterative refinement algorithm fails to converge. These errors occur only if A is singular or very 

close to a singular matrix. 

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system. LSACG solves the 

problem that is represented in the computer; however, this problem may differ from the problem 

whose solution is desired. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2ACG/DL2ACG. The 

reference is: 

CALL L2ACG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — Complex work vector of length N
2
containing the LU factorization 

of A on output. 

IPVT — Integer work vector of length N containing the pivoting information 

for the LU factorization of A on output. 

WK — Complex work vector of length N. 

2. Informational errors  

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 
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16  This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2ACG the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2); respectively, in LSACG. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSACG. Users directly calling L2ACG can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSACG or L2ACG. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L1condition number is to be 

computed. Routine LSACG temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CCG computes the condition number if IVAL(2) = 2. Otherwise L2CCG 

skips this computation. LSACG restores the option. Default values for the option 

are  

IVAL(*) = 1, 2. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix A.  A contains the coefficients of the linear system.   (Input) 

B0 —   Complex local vector of length MXLDA containing the local portions of the distributed 

vector B. B contains the right-hand side of the linear system.   (Input) 

X0 —   Complex local vector  of length MXLDA containing the local portions of the distributed 

vector X. X  contains the solution to the linear system.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A system of three linear equations is solved. The coefficient matrix has complex general form and 

the right-hand-side vector b has three elements. 
 

      USE LSACG_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, N=3) 

      COMPLEX    A(LDA,LDA), B(N), X(N) 

!                                 Set values for  A and B 

! 

!                                 A = ( 3.0-2.0i  2.0+4.0i  0.0-3.0i) 

!                                     ( 1.0+1.0i  2.0-6.0i  1.0+2.0i) 

!                                     ( 4.0+0.0i -5.0+1.0i  3.0-2.0i) 

! 
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!                                 B = (10.0+5.0i  6.0-7.0i -1.0+2.0i) 

! 

      DATA A/(3.0,-2.0), (1.0,1.0),  (4.0,0.0), (2.0,4.0), (2.0,-6.0), & 

            (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/ 

      DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/ 

!                                 Solve AX = B     (IPATH = 1) 

      CALL LSACG (A, B, X) 

!                                 Print results 

      CALL WRCRN (‘X‘, X, 1, N, 1) 

      END 

Output 
 

                        X 

              1                2                3 

( 1.000,-1.000)  ( 2.000, 1.000)  ( 0.000, 3.000) 

ScaLAPACK Example 

The same system of three linear equations is solved as a distributed computing example. The 

coefficient matrix has complex general form and the right-hand-side vector b has three elements. 

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖)  

used to map and unmap arrays to and from the processor grid. They are used here for brevity. 

DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LSACG_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  LDA, N, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      COMPLEX, ALLOCATABLE ::        A(:,:), B(:), X(:) 

      COMPLEX, ALLOCATABLE ::        A0(:,:), B0(:), X0(:) 

      PARAMETER   (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N), X(N)) 

!                                 Set values for A and B 

          A(1,:) = (/ (3.0, -2.0), (2.0,  4.0), (0.0, -3.0)/) 

          A(2,:) = (/ (1.0,  1.0), (2.0, -6.0), (1.0,  2.0)/) 

          A(3,:) = (/ (4.0,  0.0), (-5.0, 1.0), (3.0, -2.0)/) 

! 

          B = (/(10.0, 5.0), (6.0, -7.0), (-1.0, 2.0)/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 
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!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      CALL SCALAPACK_MAP(B, DESCX, B0) 

!                                 Solve the system of equations 

      CALL LSACG (A0, B0, X0) 

!                                 Unmap the results from the distributed 

!                                 arrays back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

!                                Print results 

!                                Only Rank=0 has the solution, X. 

      IF(MP_RANK .EQ. 0)CALL WRCRN (‘X‘, X, 1, N, 1) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, X0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

                        X 

              1                2                3 

( 1.000,-1.000)  ( 2.000, 1.000)  ( 0.000, 3.000) 

LSLCG 

 

 

 

Solves a complex general system of linear equations without iterative refinement. 

Required Arguments 

A — Complex N by N matrix containing the coefficients of the linear system.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations) 
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Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
H
X = B is solved 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LSLCG (A, B, X [,…]) 

Specific: The specific interface names are S_LSLCG and D_LSLCG. 

FORTRAN 77 Interface 

Single: CALL LSLCG (N, A, LDA, B, IPATH, X) 

Double:  The double precision name is DLSLCG. 

ScaLAPACK Interface 

Generic: CALL LSLCG (A0, B0, X0 [,…]) 

Specific: The specific interface names are S_LSLCG and D_LSLCG. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LSLCG solves a system of linear algebraic equations with a complex general coefficient 

matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code 

depending upon which supporting libraries are used during linking. For a detailed explanation see 

―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this 

manual. LSLCG first uses the routine LFCCG to compute an LU factorization of the coefficient 

matrix and to estimate the condition number of the matrix. The solution of the linear system is 

then found using LFSCG.  

LSLCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 

occurs only if A either is a singular matrix or is very close to a singular matrix.  



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  125 

     

     

 

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in the 

solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that 

LSACG be used. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LCG/DL2LCG. The 

reference is: 

CALL L2LCG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — N × N work array containing the LU factorization of A on output. If 

A is not needed, A and FACT can share the same storage locations. 

IPVT — Integer work vector of length N containing the pivoting information 

for the LU factorization of A on output. 

WK — Complex work vector of length N. 

2. Informational errors  

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2LCG the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2); respectively, in LSLCG. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSLCG. Users directly calling L2LCG can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSLCG or L2LCG. Default values for the option are IVAL(*) 

= 1, 16, 0, 1. 

17  This option has two values that determine if the L1 condition number is to be 

computed. Routine LSLCG temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CCG computes the condition number if IVAL(2) = 2. Otherwise L2CCG 

skips this computation. LSLCG restores the option. Default values for the option 

are IVAL(*) = 1, 2. 
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ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix A.  A contains the coefficients of the linear system.   (Input) 

B0 —   Complex local vector of length MXLDA containing the local portions of the distributed 

vector B. B contains the right-hand side of the linear system.   (Input) 

X0 —   Complex local vector  of length MXLDA containing the local portions of the distributed 

vector X. X  contains the solution to the linear system.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A system of three linear equations is solved. The coefficient matrix has complex general form and 

the right-hand-side vector b has three elements. 
 

      USE LSLCG_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, N=3) 

      COMPLEX    A(LDA,LDA), B(N), X(N) 

!                                 Set values for  A and B 

! 

!                                 A = ( 3.0-2.0i  2.0+4.0i  0.0-3.0i) 

!                                     ( 1.0+1.0i  2.0-6.0i  1.0+2.0i) 

!                                     ( 4.0+0.0i -5.0+1.0i  3.0-2.0i) 

! 

!                                 B = (10.0+5.0i  6.0-7.0i -1.0+2.0i) 

! 

      DATA A/(3.0,-2.0), (1.0,1.0),  (4.0,0.0), (2.0,4.0), (2.0,-6.0),& 

            (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/ 

      DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/ 

!                                 Solve AX = B     (IPATH = 1) 

      CALL LSLCG (A, B, X) 

!                                 Print results 

      CALL WRCRN (‘X‘, X, 1, N, 1) 

      END 
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Output 
 

                          X 

              1                2                3 

( 1.000,-1.000)  ( 2.000, 1.000)  ( 0.000, 3.000) 

ScaLAPACK Example 

The same system of three linear equations is solved as a distributed computing example. The 

coefficient matrix has complex general form and the right-hand-side vector b has three elements. 

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖) 

used to map and unmap arrays to and from the processor grid. They are used here for brevity. 

DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LSLCG_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  LDA, N, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      COMPLEX, ALLOCATABLE ::        A(:,:), B(:), X(:) 

      COMPLEX, ALLOCATABLE ::        A0(:,:), B0(:), X0(:) 

      PARAMETER   (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N), X(N)) 

!                                 Set values for A and B 

          A(1,:) = (/ (3.0, -2.0), (2.0,  4.0), (0.0, -3.0)/) 

          A(2,:) = (/ (1.0,  1.0), (2.0, -6.0), (1.0,  2.0)/) 

          A(3,:) = (/ (4.0,  0.0), (-5.0, 1.0), (3.0, -2.0)/) 

! 

          B = (/(10.0, 5.0), (6.0, -7.0), (-1.0, 2.0)/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      CALL SCALAPACK_MAP(B, DESCX, B0) 

!                                 Solve the system of equations 

      CALL LSLCG (A0, B0, X0) 

!                                 Unmap the results from the distributed 

!                                 arrays back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 
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!                                 array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, X. 

      IF(MP_RANK .EQ. 0)CALL WRCRN (‘X‘, X, 1, N, 1) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, X0) 

!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

                        X 

              1                2                3 

( 1.000,-1.000)  ( 2.000, 1.000)  ( 0.000, 3.000) 

LFCCG 

 

 

 

Computes the LU factorization of a complex general matrix and estimate its L1 condition number. 

Required Arguments 

A — Complex N by N matrix to be factored.   (Input) 

FACT — Complex N × N matrix containing the LU factorization of the matrix A   (Output)  

If A is not needed, A and FACT can share the same storage locations 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   

(Output) 

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.   

(Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 
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LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFCCG (A, FACT, IPVT, RCOND [,…]) 

Specific: The specific interface names are S_LFCCG and D_LFCCG. 

FORTRAN 77 Interface 

Single: CALL LFCCG (N, A, LDA, FACT, LDFACT, IPVT, RCOND) 

Double:  The double precision name is DLFCCG. 

ScaLAPACK Interface 

Generic: CALL LFCCG (A0, FACT0, IPVT0, RCOND [,…]) 

Specific: The specific interface names are S_LFCCG and D_LFCCG. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFCCG performs an LU factorization of a complex general coefficient matrix. It also 

estimates the condition number of the matrix. The underlying code is based on either LINPACK, 

LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during 

linking. For a detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and 

EISPACK‖ in the Introduction section of this manual. The LU factorization is done using scaled 

partial pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is 

the same as if each row were scaled to have the same ∞-norm.  

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to 

compute ||A
-1

||1, the condition number is only estimated. The estimation algorithm is the same as 

used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 

can occur only if A either is singular or is very close to a singular matrix.  

The LU factors are returned in a form that is compatible with routines LFICG, LFSCG and LFDCG. 

To solve systems of equations with multiple right-hand-side vectors, use LFCCG followed by either 

LFICG or LFSCG called once for each right-hand side. The routine LFDCG can be called to compute 

the determinant of the coefficient matrix after LFCCG has performed the factorization.  
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Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the 

upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct L  

using 

L11= LN-1PN-1 … L1 P1 

where Pk is the identity matrix with rows k and pk interchanged and Lk is the identity with Fik for i 

= k + 1, ..., N inserted below the diagonal. The strict lower half of F can also be thought of as 

containing the negative of the multipliers.  

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CCG/DL2CCG. The 

reference is: 

CALL L2CCG (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK) 

The additional argument is: 

WK — Complex work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is algorithmically singular. 

4 2 The input matrix is singular. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix A.  A contains the matrix to be factored.   (Input) 

FACT0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix FACT.  FACT contains the LU factorization of the matrix A.   (Output) 

IPVT0 —   Local vector  of length MXLDA containing the local portions of the distributed 

vector IPVT. IPVT  contains the pivoting information for the LU factorization.   

(Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 
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Example 

The inverse of a 3 × 3 matrix is computed. LFCCG is called to factor the matrix and to check for 

singularity or ill-conditioning. LFICG is called to determine the columns of the inverse. 
 

      USE IMSL_LIBRARIES 

 

!                                 Declare variables 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      INTEGER    IPVT(N), NOUT 

      REAL       RCOND, THIRD 

      COMPLEX    A(LDA,N), AINV(LDA,N), RJ(N), FACT(LDFACT,N), RES(N) 

!                                 Declare functions 

      COMPLEX    CMPLX 

!                                 Set values for  A 

! 

!                                 A = (  1.0+1.0i  2.0+3.0i  3.0+3.0i) 

!                                     (  2.0+1.0i  5.0+3.0i  7.0+4.0i) 

!                                     ( -2.0+1.0i -4.0+4.0i -5.0+3.0i) 

! 

      DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),& 

          (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/ 

! 

!                                 Scale A by dividing by three 

      THIRD = 1.0/3.0 

      DO 10  I=1, N 

         CALL CSSCAL (N, THIRD, A(:,I), 1) 

   10 CONTINUE 

!                                 Factor A 

      CALL LFCCG (A, FACT, IPVT, RCOND) 

!                                 Print the L1 condition number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      CALL CSET (N, (0.0,0.0), RJ, 1) 

      DO 20  J=1, N 

         RJ(J) = CMPLX(1.0,0.0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIRG 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFICG (A, FACT, IPVT, RJ, AINV(:,J), RES) 

         RJ(J) = CMPLX(0.0,0.0) 

   20 CONTINUE 

!                                 Print results 

      CALL WRCRN (‘AINV‘, AINV) 

! 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < .02 

L1 Condition number < 100.0 
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                         AINV 

                 1                2                3 

1  ( 6.400,-2.800)  (-3.800, 2.600)  (-2.600, 1.200) 

2  (-1.600,-1.800)  ( 0.200, 0.600)  ( 0.400,-0.800) 

3  (-0.600, 2.200)  ( 1.200,-1.400)  ( 0.400, 0.200) 

ScaLAPACK Example 

The inverse of the same 3 × 3 matrix is computed as a distributed example. LFCCG is called to 

factor the matrix and to check for singularity or ill-conditioning. LFICG is called to determine the 

columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see 

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are 

used here for brevity.  DESCINIT is a ScaLAPACK tools routine which initializes the descriptors 

for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFCCG_INT 

      USE UMACH_INT 

      USE LFICG_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                  Declare variables 

      INTEGER     J, LDA, N, DESCA(9), DESCL(9) 

      INTEGER     INFO, MXCOL, MXLDA, NOUT 

      INTEGER, ALLOCATABLE ::     IPVT0(:) 

      COMPLEX, ALLOCATABLE ::     A(:,:), AINV(:,:), X0(:), RJ(:) 

      COMPLEX, ALLOCATABLE ::     A0(:,:), FACT0(:,:), RES0(:), RJ0(:) 

      REAL        RCOND, THIRD 

      PARAMETER  (LDA=3, N=3) 

!                            Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), AINV(LDA,N)) 

!                                  Set values for A  

          A(1,:) = (/ ( 1.0, 1.0), ( 2.0, 3.0), ( 3.0, 3.0)/) 

          A(2,:) = (/ ( 2.0, 1.0), ( 5.0, 3.0), ( 7.0, 4.0)/) 

          A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5.0, 3.0)/) 

!                                  Scale A by dividing by three 

          THIRD = 1.0/3.0 

          A = A * THIRD 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context id, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 
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!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), & 

               RJ0(MXLDA), RES0(MXLDA), IPVT0(MXLDA)) 

!                                 Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Factor A 

      CALL LFCCG (A0, FACT0, IPVT0, RCOND) 

!                                 Print the reciprocal condition number 

!                                 and the L1 condition number 

      IF(MP_RANK .EQ. 0) THEN 

         CALL UMACH (2, NOUT) 

         WRITE (NOUT,99998) RCOND, 1.0E0/RCOND 

      ENDIF 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = (0.0, 0.0) 

      DO 10  J=1, N 

         RJ(J) = (1.0, 0.0) 

         CALL SCALAPACK_MAP(RJ, DESCL, RJ0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFICG 

!                                 reference computes the J-th column of 

!                                 the inverse of A  

         CALL LFICG (A0, FACT0, IPVT0, RJ0, X0, RES0) 

         RJ(J) = (0.0, 0.0) 

         CALL SCALAPACK_UNMAP(X0, DESCL, AINV(:,J)) 

   10 CONTINUE 

!                                 Print results 

!                                 Only Rank=0 has the solution, AINV. 

      IF(MP_RANK.EQ.0) CALL WRCRN (‘AINV‘, AINV) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV) 

      DEALLOCATE(A0, FACT0, IPVT0, RJ, RJ0, RES0, X0) 

!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

99998 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < .02 

L1 Condition number < 100.0 

 

                         AINV 

                 1                2                3 

1  ( 6.400,-2.800)  (-3.800, 2.600)  (-2.600, 1.200) 

2  (-1.600,-1.800)  ( 0.200, 0.600)  ( 0.400,-0.800) 

3  (-0.600, 2.200)  ( 1.200,-1.400)  ( 0.400, 0.200) 
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LFTCG 

 

 

 

Computes the LU factorization of a complex general matrix. 

Required Arguments 

A — Complex N by N matrix to be factored.   (Input) 

FACT — Complex N × N matrix containing the LU factorization of the matrix A. (Output)  

If A is not needed, A and FACT can share the same storage locations. 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   

(Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFTCG (A, FACT, IPVT [,…]) 

Specific: The specific interface names are S_LFTCG and D_LFTCG. 

FORTRAN 77 Interface 

Single: CALL LFTCG (N, A, LDA, FACT, LDFACT, IPVT) 

Double:  The double precision name is DLFTCG. 
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ScaLAPACK Interface 

Generic: CALL LFTCG (A0, FACT0, IPVT0 [,…]) 

Specific: The specific interface names are S_LFTCG and D_LFTCG. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFTCG performs an LU factorization of a complex general coefficient matrix. The LU 

factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial 

pivoting in that the pivoting strategy is the same as if each row were scaled to have the same 

norm  . 

LFTCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 

can occur only if A either is singular or is very close to a singular matrix. 

The LU factors are returned in a form that is compatible with routines LFICG, LFSCG and LFDCG. 

To solve systems of equations with multiple right-hand-side vectors, use LFTCG followed by either 

LFICG or LFSCG called once for each right-hand side. The routine LFDCG can be called to compute 

the determinant of the coefficient matrix after LFCCG  has performed the factorization. 

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the 

upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct L 

using 

L = LN-1PN-1 … L1 P1 

where Pk is the identity matrix with rows k and Pk interchanged and Lk is the identity with Fik for i 

= k + 1, ..., N inserted below the diagonal. The strict lower half of F can also be thought of as 

containing the negative of the multipliers. 

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending 

upon which supporting libraries are used during linking. For a detailed explanation see ―Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2TCG/DL2TCG. The 

reference is: 

CALL L2TCG (N, A, LDA, FACT, LDFACT, IPVT, WK) 

The additional argument is: 

WK — Complex work vector of length N. 

2. Informational error 

Type Code 
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4 2 The input matrix is singular. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix A.  A contains the matrix to be factored.   (Input) 

FACT0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix FACT.  FACT contains the LU factorization of the matrix A.   (Output) 

If A is not needed, A and FACT can share the same storage locations. 

IPVT0 —   Local vector  of length MXLDA containing the local portions of the distributed 

vector IPVT. IPVT  contains the pivoting information for the LU factorization.   

(Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A linear system with multiple right-hand sides is solved. LFTCG is called to factor the coefficient 

matrix. LFSCG is called to compute the two solutions for the two right-hand sides. In this case the 

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be 

better to call LFCCG to perform the factorization, and LFICG to compute the solutions. 
 

      USE LFTCG_INT 

      USE LFSCG_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      INTEGER    IPVT(N) 

      COMPLEX    A(LDA,LDA), B(N,2), X(N,2), FACT(LDFACT,LDFACT) 

!                                 Set values for  A 

!                                 A = ( 1.0+1.0i  2.0+3.0i  3.0-3.0i) 

!                                     ( 2.0+1.0i  5.0+3.0i  7.0-5.0i) 

!                                     (-2.0+1.0i -4.0+4.0i  5.0+3.0i) 

! 

      DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),& 

          (-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/ 

! 

!                                 Set the right-hand sides, B 

!                                 B = (  3.0+ 5.0i  9.0+ 0.0i) 

!                                     ( 22.0+10.0i 13.0+ 9.0i) 

!                                     (-10.0+ 4.0i  6.0+10.0i) 

! 

      DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0), (9.0,0.0),& 

          (13.0,9.0), (6.0,10.0)/ 

! 
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!                                 Factor A 

      CALL LFTCG (A, FACT, IPVT) 

!                                 Solve for the two right-hand sides 

      DO 10  J=1, 2 

         CALL LFSCG (FACT, IPVT, B(:,J), X(:,J)) 

   10 CONTINUE 

!                                 Print results 

      CALL WRCRN (‘X‘, X) 

      END 

Output 
 

                X 

               1                2 

1  ( 1.000,-1.000)  ( 0.000, 2.000) 

2  ( 2.000, 4.000)  (-2.000,-1.000) 

3  ( 3.000, 0.000)  ( 1.000, 3.000) 

ScaLAPACK Example 

The same linear system with multiple right-hand sides is solved as a distributed example. LFTCG is 

called to factor the matrix. LFSCG is called to compute the two solutions for the two right-hand 

sides. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, 

―Utilities‖) used to map and unmap arrays to and from the processor grid. They are used here for 

brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local 

arrays. 
 

      USE MPI_SETUP_INT 

      USE LFTCG_INT  

      USE LFSCG_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                  Declare variables 

      INTEGER     J, LDA, N, DESCA(9), DESCL(9) 

      INTEGER     INFO, MXCOL, MXLDA 

      INTEGER, ALLOCATABLE ::     IPVT0(:) 

      COMPLEX, ALLOCATABLE ::     A(:,:), B(:,:), X(:,:), X0(:) 

      COMPLEX, ALLOCATABLE ::     A0(:,:), FACT0(:,:), B0(:) 

      PARAMETER  (LDA=3, N=3) 

!                            Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N,2), X(N,2)) 

!                                  Set values for A and B 

          A(1,:) = (/ ( 1.0, 1.0), ( 2.0, 3.0), ( 3.0,-3.0)/) 

          A(2,:) = (/ ( 2.0, 1.0), ( 5.0, 3.0), ( 7.0,-5.0)/) 

          A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), ( 5.0, 3.0)/) 

! 

          B(1,:) = (/ (  3.0,  5.0), ( 9.0,  0.0)/) 

          B(2,:) = (/ ( 22.0, 10.0), (13.0,  9.0)/) 

          B(3,:) = (/ (-10.0,  4.0), ( 6.0, 10.0)/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 
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      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), & 

               B0(MXLDA), IPVT0(MXLDA)) 

!                                 Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Factor A 

      CALL LFTCG (A0, FACT0, IPVT0) 

!                                 Solve for the two right-hand sides 

      DO 10  J=1, 2 

         CALL SCALAPACK_MAP(B(:,J), DESCL, B0)  

         CALL LFSCG (FACT0, IPVT0, B0, X0) 

         CALL SCALAPACK_UNMAP(X0, DESCL, X(:,J)) 

   10 CONTINUE 

!                                 Print results. 

!                                 Only Rank=0 has the solution, X. 

      IF(MP_RANK.EQ.0) CALL WRCRN (‘X‘, X) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, FACT0, IPVT0, X0) 

!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT)  

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

                X 

               1                2 

1  ( 1.000,-1.000)  ( 0.000, 2.000) 

2  ( 2.000, 4.000)  (-2.000,-1.000) 

3  ( 3.000, 0.000)  ( 1.000, 3.000) 

LFSCG 

 

 

 

Solves a complex general system of linear equations given the LU factorization of the coefficient 

matrix. 
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Required Arguments 

FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A 

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
H
X = B is solved. 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LFSCG (FACT, IPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSCG and D_LFSCG. 

FORTRAN 77 Interface 

Single: CALL LFSCG (N, FACT, LDFACT, IPVT, B, IPATH, X) 

Double:  The double precision name is DLFSCG. 

ScaLAPACK Interface 

Generic: CALL LFSCG (FACT0, IPVT0, B0, X0 [,…]) 

Specific: The specific interface names are S_LFSCG and D_LFSCG. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 
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Description 

Routine LFSCG computes the solution of a system of linear algebraic equations having a complex 

general coefficient matrix. To compute the solution, the coefficient matrix must first undergo an 

LU factorization. This may be done by calling either LFCCG or LFTCG. The solution to Ax = b is 

found by solving the triangular systems Ly = b and Ux = y. The forward elimination step consists 

of solving the system Ly = b by applying the same permutations and elimination operations to b 

that were applied to the columns of A in the factorization routine. The backward substitution step 

consists of solving the triangular system Ux = y for x.  

Routines LFSCG and LFICG both solve a linear system given its LU factorization. LFICG generally 

takes more time and produces a more accurate answer than LFSCG. Each iteration of the iterative 

refinement algorithm used by LFICG calls LFSCG.  

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending 

upon which supporting libraries are used during linking. For a detailed explanation see ―Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

FACT0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix FACT as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.  

FACT contains the LU factorization of the matrix A.   (Input) 

IPVT0 —   Local vector  of length MXLDA containing the local portions of the distributed 

vector IPVT. IPVT  contains the pivoting information for the LU factorization as output 

from subroutine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

B0 —   Complex local vector of length MXLDA containing the local portions of the distributed 

vector B. B contains the right-hand side of the linear system.   (Input) 

X0 —   Complex local vector  of length MXLDA containing the local portions of the distributed 

vector X. X  contains the solution to the linear system.   (Output) 

If B is not needed, B and X can share the same storage locations. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

The inverse is computed for a complex general 3 × 3 matrix. The input matrix is assumed to be 

well-conditioned, hence LFTCG is used rather than LFCCG. 
 

      USE IMSL_LIBRARIES 

!                                 Declare variables 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      INTEGER    IPVT(N) 
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      REAL       THIRD 

      COMPLEX    A(LDA,LDA), AINV(LDA,LDA), RJ(N), FACT(LDFACT,LDFACT) 

!                                 Declare functions 

      COMPLEX    CMPLX 

!                                 Set values for  A 

! 

!                                 A = (  1.0+1.0i  2.0+3.0i  3.0+3.0i) 

!                                     (  2.0+1.0i  5.0+3.0i  7.0+4.0i) 

!                                     ( -2.0+1.0i -4.0+4.0i -5.0+3.0i) 

! 

      DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),& 

          (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/ 

! 

!                                 Scale A by dividing by three 

      THIRD = 1.0/3.0 

      DO 10  I=1, N 

         CALL CSSCAL (N, THIRD, A(:,I), 1) 

   10 CONTINUE 

!                                 Factor A 

      CALL LFTCG (A, FACT, IPVT) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      CALL CSET (N, (0.0,0.0), RJ, 1) 

      DO 20  J=1, N 

         RJ(J) = CMPLX(1.0,0.0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFSCG 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFSCG (FACT, IPVT, RJ, AINV(:,J)) 

         RJ(J) = CMPLX(0.0,0.0) 

   20 CONTINUE 

!                                 Print results 

      CALL WRCRN (‘AINV‘, AINV) 

      END 

Output 
 

                          AINV 

                 1                2                3 

1  ( 6.400,-2.800)  (-3.800, 2.600)  (-2.600, 1.200) 

2  (-1.600,-1.800)  ( 0.200, 0.600)  ( 0.400,-0.800) 

3  (-0.600, 2.200)  ( 1.200,-1.400)  ( 0.400, 0.200) 

ScaLAPACK Example 

The inverse of the same 3 × 3 matrix is computed as a distributed example. The input matrix is 

assumed to be well-conditioned, hence LFTCG is used rather than LFCCG. LFSCG is called to 

determine the columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility 

routines (see Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor 

grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes 

the descriptors for the local arrays. 
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      USE MPI_SETUP_INT 

      USE LFTCG_INT 

      USE LFSCG_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                  Declare variables 

      INTEGER     J, LDA, N, DESCA(9), DESCL(9) 

      INTEGER     INFO, MXCOL, MXLDA 

      INTEGER, ALLOCATABLE ::     IPVT0(:) 

      COMPLEX, ALLOCATABLE ::     A(:,:), AINV(:,:), X0(:) 

      COMPLEX, ALLOCATABLE ::     A0(:,:), FACT0(:,:), RJ(:), RJ0(:) 

      REAL        THIRD 

      PARAMETER  (LDA=3, N=3) 

!                            Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), AINV(LDA,N)) 

!                                  Set values for A  

          A(1,:) = (/ ( 1.0, 1.0), ( 2.0, 3.0), ( 3.0, 3.0)/) 

          A(2,:) = (/ ( 2.0, 1.0), ( 5.0, 3.0), ( 7.0, 4.0)/) 

          A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5.0, 3.0)/) 

!                                  Scale A by dividing by three 

          THIRD = 1.0/3.0 

          A = A * THIRD 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), & 

               RJ0(MXLDA), IPVT0(MXLDA)) 

!                                 Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Factor A 

      CALL LFTCG (A0, FACT0, IPVT0) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = (0.0, 0.0) 

      DO 10  J=1, N 

         RJ(J) = (1.0, 0.0) 

         CALL SCALAPACK_MAP(RJ, DESCL, RJ0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFICG 

!                                 reference computes the J-th column of 

!                                 the inverse of A  

         CALL LFSCG (FACT0, IPVT0, RJ0, X0) 

         RJ(J) = (0.0, 0.0) 

         CALL SCALAPACK_UNMAP(X0, DESCL, AINV(:,J)) 
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   10 CONTINUE 

!                                 Print results. 

!                                 Only Rank=0 has the solution, AINV. 

      IF(MP_RANK.EQ.0) CALL WRCRN (‘AINV‘, AINV) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV) 

      DEALLOCATE(A0, FACT0, IPVT0, RJ, RJ0, X0) 

!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

                         AINV 

                 1                2                3 

1  ( 6.400,-2.800)  (-3.800, 2.600)  (-2.600, 1.200) 

2  (-1.600,-1.800)  ( 0.200, 0.600)  ( 0.400,-0.800) 

3  (-0.600, 2.200)  ( 1.200,-1.400)  ( 0.400, 0.200) 

LFICG 

 

 

 

Uses iterative refinement to improve the solution of a complex general system of linear equations. 

Required Arguments 

A — Complex N by N matrix containing the coefficient matrix of the linear system.   (Input) 

FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A 

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system. (Output) 

RES — Complex vector of length N containing the residual vector at the improved solution.   

(Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA  = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
H
X = B is solved. 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LFICG (A, FACT, IPVT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFICG and D_LFICG. 

FORTRAN 77 Interface 

Single: CALL LFICG (N, A, LDA, FACT, LDFACT, IPVT, B, IPATH, X, RES) 

Double:  The double precision name is DLFICG. 

ScaLAPACK Interface 

Generic: CALL LFICG (A0, FACT0, IPVT0, B0, X0, RES0 [,…]) 

Specific: The specific interface names are S_LFICG and D_LFICG. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFICG computes the solution of a system of linear algebraic equations having a complex 

general coefficient matrix. Iterative refinement is performed on the solution vector to improve the 

accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is 

somewhat ill-conditioned.  

To compute the solution, the coefficient matrix must first undergo an LU factorization. This may 

be done by calling either LFCCG, or LFTCG. 

Iterative refinement fails only if the matrix is very ill-conditioned. Routines LFICG and LFSCG 

both solve a linear system given its LU factorization. LFICG generally takes more time and 

produces a more accurate answer than LFSCG. Each iteration of the iterative refinement algorithm 

used by LFICG calls LFSCG. 
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Comments 

Informational error 

Type Code  

3 2 The input matrix is too ill-conditioned for iterative refinement to be 

effective 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix A.  A contains the coefficient matrix of the linear system.   (Input) 

FACT0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix FACT as output from routine LFCCG or LFTCG.  FACT contains the 

LU factorization of the matrix A.   (Input) 

IPVT0 —   Local vector  of length MXLDA containing the local portions of the distributed 

vector IPVT. IPVT  contains the pivoting information for the LU factorization as output 

from subroutine LFCCG or LFTCG.   (Input) 

B0 —   Complex local vector of length MXLDA containing the local portions of the distributed 

vector B. B contains the right-hand side of the linear system.   (Input) 

X0 —   Complex local vector  of length MXLDA containing the local portions of the distributed 

vector X. X  contains the solution to the linear system.   (Output) 

RES0 —   Complex local vector  of length MXLDA containing the local portions of the 

distributed vector RES. RES  contains the final correction at the improved solution to 

the linear system.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving 

the system each of the first two times by adding 0.5 + 0.5i to the second element. 
 

      USE LFICG_INT 

      USE LFCCG_INT 

      USE WRCRN_INT 

      USE UMACH_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      INTEGER    IPVT(N), NOUT 

      REAL       RCOND 

      COMPLEX    A(LDA,LDA), B(N), X(N), FACT(LDFACT,LDFACT), RES(N) 
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!                                 Declare functions 

      COMPLEX    CMPLX 

!                                 Set values for  A 

! 

!                                 A = (  1.0+1.0i  2.0+3.0i  3.0-3.0i) 

!                                     (  2.0+1.0i  5.0+3.0i  7.0-5.0i) 

!                                     ( -2.0+1.0i -4.0+4.0i  5.0+3.0i) 

! 

      DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0), & 

          (-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/ 

! 

!                                 Set values for B 

!                                 B = ( 3.0+5.0i 22.0+10.0i -10.0+4.0i) 

! 

      DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0)/ 

!                                 Factor A 

      CALL LFCCG (A, FACT, IPVT, RCOND) 

!                                 Print the L1 condition number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

!                                 Solve the three systems 

      DO 10  J=1, 3 

      CALL LFICG (A, FACT, IPVT, B, X, RES) 

!                                 Print results 

         CALL WRCRN (‘X‘, X, 1, N, 1) 

!                                 Perturb B by adding 0.5+0.5i to B(2) 

         B(2) = B(2) + CMPLX(0.5,0.5) 

   10 CONTINUE 

! 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.025 

L1 Condition number < 75.0 

                        X 

              1                2                3 

( 1.000,-1.000)  ( 2.000, 4.000)  ( 3.000, 0.000) 

 

                        X 

              1                2                3 

( 0.910,-1.061)  ( 1.986, 4.175)  ( 3.123, 0.071) 

 

                        X 

              1                2                3 

( 0.821,-1.123)  ( 1.972, 4.349)  ( 3.245, 0.142) 

ScaLAPACK Example 

The same set of linear systems is solved successively as a distributed example. The right-hand-

side vector is perturbed after solving the system each of the first two times by adding 0.5 + 0.5i to 

the second element. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines  (see 

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are 
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used here for brevity.  DESCINIT is a ScaLAPACK tools routine which initializes the descriptors 

for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFICG_INT  

      USE LFCCG_INT 

      USE WRCRN_INT 

      USE UMACH_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                  Declare variables 

      INTEGER     J, LDA, N, DESCA(9), DESCL(9) 

      INTEGER     INFO, MXCOL, MXLDA, NOUT 

      INTEGER, ALLOCATABLE ::     IPVT0(:) 

      COMPLEX, ALLOCATABLE ::     A(:,:), B(:), X(:), X0(:), RES(:) 

      COMPLEX, ALLOCATABLE ::     A0(:,:), FACT0(:,:), B0(:), RES0(:) 

      REAL        RCOND 

      PARAMETER  (LDA=3, N=3) 

!                            Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N), X(N), RES(N)) 

!                                  Set values for A and B 

          A(1,:) = (/ ( 1.0, 1.0), ( 2.0, 3.0), ( 3.0, 3.0)/) 

          A(2,:) = (/ ( 2.0, 1.0), ( 5.0, 3.0), ( 7.0, 4.0)/) 

          A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5.0, 3.0)/) 

! 

          B      = (/ (3.0,  5.0), (22.0, 10.0), (-10.0,  4.0)/) 

                ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), & 

               B0(MXLDA), IPVT0(MXLDA), RES0(MXLDA)) 

!                                 Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Factor A 

      CALL LFCCG (A0, FACT0, IPVT0, RCOND) 

!                                 Print the L1 condition number 

      IF (MP_RANK .EQ. 0) THEN 

         CALL UMACH (2, NOUT) 

         WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

      ENDIF 

!                                 Solve the three systems 

      DO 10  J=1, 3 

         CALL SCALAPACK_MAP(B, DESCL, B0)  

         CALL LFICG (A0, FACT0, IPVT0, B0, X0, RES0) 

         CALL SCALAPACK_UNMAP(X0, DESCL, X) 

!                                 Print results 
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!                                 Only Rank=0 has the solution, X. 

         IF (MP_RANK .EQ. 0) CALL WRCRN (‘X‘, X, 1, N, 1) 

!                                 Perturb B by adding 0.5+0.5i to B(2) 

         IF(MP_RANK .EQ. 0) B(2) = B(2) + (0.5,0.5) 

   10 CONTINUE 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X, RES) 

      DEALLOCATE(A0, B0, FACT0, IPVT0, X0, RES0) 

!                                 Exit Scalapack usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

  

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.025 

L1 Condition number < 75.0 

                        X 

              1                2                3 

( 1.000,-1.000)  ( 2.000, 4.000)  ( 3.000, 0.000) 

 

                        X 

              1                2                3 

( 0.910,-1.061)  ( 1.986, 4.175)  ( 3.123, 0.071) 

 

                        X 

              1                2                3 

( 0.821,-1.123)  ( 1.972, 4.349)  ( 3.245, 0.142) 

LFDCG 
Computes the determinant of a complex general matrix given the LU factorization of the matrix. 

Required Arguments 

FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A 

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

DET1 — Complex scalar containing the mantissa of the determinant.   (Output)  

The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  

The determinant is returned in the form det(A) = DET1 * 10DET. 
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Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFDCG (FACT, IPVT, DET1, DET2  [,…]) 

Specific: The specific interface names are S_LFDCG and D_LFDCG. 

FORTRAN 77 Interface 

Single: CALL LFDCG (N, FACT, LDFACT, IPVT, DET1, DET2) 

Double:  The double precision name is DLFDCG. 

Description 

Routine LFDCG computes the determinant of a complex general coefficient matrix. To compute the 

determinant the coefficient matrix must first undergo an LU factorization. This may be done by 

calling either LFCCG or LFTCG. The formula det A = det L det U is used to compute the 

determinant. Since the determinant of a triangular matrix is the product of the diagonal elements,   

1
det

N

iii
U U




 

(The matrix U is stored in the upper triangle of FACT.) Since L is the product of triangular matrices 

with unit diagonals and of permutation matrices, det L = (−1)
k
 where k is the number of pivoting 

interchanges.  

LFDCG is based on the LINPACK routine CGEDI; see Dongarra et al. (1979). 

Example 

The determinant is computed for a complex general 3 × 3 matrix. 
 

      USE LFDCG_INT 

      USE LFTCG_INT 

      USE UMACH_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      INTEGER    IPVT(N), NOUT 

      REAL       DET2 

      COMPLEX    A(LDA,LDA), FACT(LDFACT,LDFACT), DET1 

!                                 Set values for  A 

! 

!                                 A = (  3.0-2.0i  2.0+4.0i  0.0-3.0i) 
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!                                     (  1.0+1.0i  2.0-6.0i  1.0+2.0i) 

!                                     (  4.0+0.0i -5.0+1.0i  3.0-2.0i) 

! 

      DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),& 

            (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/ 

! 

!                                 Factor A 

      CALL LFTCG (A, FACT, IPVT) 

!                                 Compute the determinant for the 

!                                 factored matrix 

      CALL LFDCG (FACT, IPVT, DET1, DET2) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) DET1, DET2 

! 

99999 FORMAT (‘ The determinant of A is‘,3X,‘(‘,F6.3,‘,‘,F6.3,& 

             ‘) * 10**‘,F2.0) 

      END 

Output 
 

The determinant of A is ( 0.700, 1.100) * 10**1. 

LINCG 

 

 

 

Computes the inverse of a complex general matrix. 

Required Arguments 

A — Complex N by N matrix containing the matrix to be inverted.   (Input) 

AINV — Complex N by N matrix containing the inverse of A.   (Output)  

If A is not needed, A and AINV can share the same storage locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 
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LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDAINV = size (AINV,1). 

FORTRAN 90 Interface 

Generic: CALL LINCG (A, AINV [,…]) 

Specific: The specific interface names are S_LINCG and D_LINCG. 

FORTRAN 77 Interface 

Single: CALL LINCG (N, A, LDA, AINV, LDAINV) 

Double:  The double precision name is DLINCG. 

ScaLAPACK Interface 

Generic: CALL LINCG (A0, AINV0 [,…]) 

Specific: The specific interface names are S_LINCG and D_LINCG. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LINCG computes the inverse of a complex general matrix. The underlying code is based 

on either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries 

are used during linking. For a detailed explanation see ―Using ScaLAPACK, LAPACK, 

LINPACK, and EISPACK‖ in the Introduction section of this manual. 

LINCG first uses the routine LFCCG to compute an LU factorization of the coefficient matrix and to 

estimate the condition number of the matrix. LFCCG computes U and the information needed to 

compute L. LINCT is then used to compute U-1, i.e. use the inverse of U.  Finally A-1  is computed 

using A-1=U-1L-1.  

LINCG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the 

iterative refinement algorithm fails to converge. This errors occurs only if A is singular or very 

close to a singular matrix. 

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in A-1. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2NCG/DL2NCG. The 

reference is: 

CALL L2NCG (N, A, LDA, AINV, LDAINV, WK, IWK) 
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The additional arguments are as follows: 

WK — Complex work vector of length N + N(N − 1)/2. 

IWK — Integer work vector of length N. 

2. Informational errors 

Type  Code  

3 1 The input matrix is too ill-conditioned. The inverse might not be 

accurate. 

4 2 The input matrix is singular. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix A.  A contains the matrix to be inverted.   (Input) 

AINV0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix AINV.  AINV contains the inverse of the matrix A.   (Output) 

If A is not needed, A and AINV can share the same storage locations. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

The inverse is computed for a complex general 3 × 3 matrix. 
 

      USE LINCG_INT 

      USE WRCRN_INT 

      USE CSSCAL_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, LDAINV=3, N=3) 

      REAL       THIRD 

      COMPLEX    A(LDA,LDA), AINV(LDAINV,LDAINV) 

!                                 Set values for  A 

! 

!                                 A = (  1.0+1.0i  2.0+3.0i  3.0+3.0i) 

!                                     (  2.0+1.0i  5.0+3.0i  7.0+4.0i) 

!                                     ( -2.0+1.0i -4.0+4.0i -5.0+3.0i) 

! 

      DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),& 

          (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/ 

! 

!                                 Scale A by dividing by three 
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      THIRD = 1.0/3.0 

      DO 10  I=1, N 

         CALL CSSCAL (N, THIRD, A(:,I), 1) 

   10 CONTINUE 

!                                 Calculate the inverse of A 

      CALL LINCG (A, AINV) 

!                                 Print results 

      CALL WRCRN (‘AINV‘, AINV) 

      END 

Output 
 

                         AINV 

                 1                2                3 

1  ( 6.400,-2.800)  (-3.800, 2.600)  (-2.600, 1.200) 

2  (-1.600,-1.800)  ( 0.200, 0.600)  ( 0.400,-0.800) 

3  (-0.600, 2.200)  ( 1.200,-1.400)  ( 0.400, 0.200) 

ScaLAPACK Example 

The inverse of the same 3 × 3 matrix is computed as a distributed example. SCALAPACK_MAP and 

SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖) used to map and unmap 

arrays to and from the processor grid. They are used here for brevity.  DESCINIT is a 

ScaLAPACK tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LINCG_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                  Declare variables 

      INTEGER     J, LDA, N, DESCA(9) 

      INTEGER     INFO, MXCOL, MXLDA, NPROW, NPCOL 

      COMPLEX, ALLOCATABLE ::        A(:,:), AINV(:,:) 

      COMPLEX, ALLOCATABLE ::        A0(:,:), AINV0(:,:) 

      REAL        THIRD 

      PARAMETER  (LDA=3, N=3) 

!                            Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), AINV(LDA,N)) 

!                                  Set values for A  

          A(1,:) = (/ ( 1.0, 1.0), ( 2.0, 3.0), ( 3.0, 3.0)/) 

          A(2,:) = (/ ( 2.0, 1.0), ( 5.0, 3.0), ( 7.0, 4.0)/) 

          A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5.0, 3.0)/) 

!                                  Scale A by dividing by three 

          THIRD = 1.0/3.0 

          A = A * THIRD 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 
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!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), AINV0(MXLDA,MXCOL)) 

!                                 Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Factor A 

      CALL LINCG (A0, AINV0) 

!                                 Unmap the results from the distributed 

!                                 arrays back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(AINV0, DESCA, AINV) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, X. 

      IF(MP_RANK.EQ.0) CALL WRCRN (‘AINV‘, AINV) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV) 

      DEALLOCATE(A0, AINV0) 

!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT)  

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

                         AINV 

                 1                2                3 

1  ( 6.400,-2.800)  (-3.800, 2.600)  (-2.600, 1.200) 

2  (-1.600,-1.800)  ( 0.200, 0.600)  ( 0.400,-0.800) 

3  (-0.600, 2.200)  ( 1.200,-1.400)  ( 0.400, 0.200) 

LSLRT 

 

 

 

Solves a real triangular system of linear equations. 

Required Arguments 

A — N by N matrix containing the coefficient matrix for the triangular linear system.   (Input)  

For a lower triangular system, only the lower triangular part and diagonal of A are 

referenced. For an upper triangular system, only the upper triangular part and diagonal 

of A are referenced. 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 
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X — Vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means solve AX = B, A lower triangular.  

IPATH = 2 means solve AX = B, A upper triangular.  

IPATH = 3 means solve A
T
X = B, A lower triangular.  

IPATH = 4 means solve A
T
X = B, A upper triangular. 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LSLRT (A, B, X [,…]) 

Specific: The specific interface names are S_LSLRT and D_LSLRT. 

FORTRAN 77 Interface 

Single: CALL LSLRT (N, A, LDA, B, IPATH, X) 

Double:  The double precision name is DLSLRT. 

ScaLAPACK Interface 

Generic: CALL LSLRT (A0, B0, X0 [,…]) 

Specific: The specific interface names are S_LSLRT and D_LSLRT. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LSLRT solves a system of linear algebraic equations with a real triangular coefficient 

matrix. LSLRT fails if the matrix A has a zero diagonal element, in which case A is singular. The 

underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon 

which supporting libraries are used during linking. For a detailed explanation see ―Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 
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ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the coefficients of the linear system.   (Input) 

For a lower triangular system, only the lower triangular part and diagonal of A are 

referenced. For an upper triangular system, only the upper triangular part and diagonal 

of A are referenced. 

B0 —   Local vector of length MXLDA containing the local portions of the distributed vector B. 

B contains the right-hand side of the linear system.   (Input) 

X0 —   Local vector  of length MXLDA containing the local portions of the distributed vector X. 

X  contains the solution to the linear system.   (Output) 

If B is not needed, B and X can share the same storage locations. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A system of three linear equations is solved. The coefficient matrix has lower triangular form and 

the right-hand-side vector, b, has three elements. 
 

      USE LSLRT_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3) 

      REAL       A(LDA,LDA), B(LDA), X(LDA) 

!                                 Set values for A and B 

! 

!                                 A = (  2.0               ) 

!                                     (  2.0    -1.0       ) 

!                                     ( -4.0     2.0    5.0) 

! 

!                                 B = (  2.0     5.0    0.0) 

! 

      DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/ 

      DATA B/2.0, 5.0, 0.0/ 

! 

!                                 Solve AX = B     (IPATH = 1) 

      CALL LSLRT (A, B, X) 

!                                 Print results 

      CALL WRRRN (‘X‘, X, 1, 3, 1) 

      END 
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Output 
 

           X 

    1       2       3 

1.000  -3.000   2.000 

ScaLAPACK Example 

The same system of three linear equations is solved as a distributed computing example. The 

coefficient matrix has lower triangular form and the right-hand-side vector b has three elements. 

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖) 

used to map and unmap arrays to and from the processor grid. They are used here for brevity. 

DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LSLRT_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  LDA, N, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      REAL, ALLOCATABLE ::        A(:,:), B(:), X(:) 

      REAL, ALLOCATABLE ::        A0(:,:), B0(:), X0(:) 

      PARAMETER   (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N), X(N)) 

!                                 Set values for A and B 

          A(1,:) = (/ 2.0,  0.0,  0.0/) 

          A(2,:) = (/ 2.0, -1.0,  0.0/) 

          A(3,:) = (/-4.0,  2.0,  5.0/) 

! 

          B =      (/ 2.0,  5.0,  0.0/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      CALL SCALAPACK_MAP(B, DESCX, B0) 

!                                 Solve AX = B   (IPATH = 1) 

      CALL LSLRT (A0, B0, X0) 

!                                 Unmap the results from the distributed 

!                                 arrays back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 
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!                                 array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, X. 

      IF(MP_RANK .EQ. 0)CALL WRRRN (‘X‘, X, 1, N, 1) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, X0) 

!                                 Exit Scalapack usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

           X 

    1       2       3 

1.000  -3.000   2.000 

LFCRT 

 

 

 

Estimates the condition number of a real triangular matrix. 

Required Arguments 

A — N by N matrix containing the coefficient matrix for the triangular linear system.   (Input)  

For a lower triangular system, only the lower triangular part and diagonal of A are 

referenced. For an upper triangular system, only the upper triangular part and diagonal 

of A are referenced. 

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.   

(Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means A is lower triangular.  
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IPATH = 2 means A is upper triangular. 

Default: IPATH =1. 

FORTRAN 90 Interface 

Generic: CALL LFCRT (A, RCOND [,…]) 

Specific: The specific interface names are S_LFCRT and D_LFCRT. 

FORTRAN 77 Interface 

Single: CALL LFCRT (N, A, LDA, IPATH, RCOND) 

Double:  The double precision name is DLFCRT. 

ScaLAPACK Interface 

Generic: CALL LFCRT (A0, RCOND [,…]) 

Specific: The specific interface names are S_LFCRT and D_LFCRT. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFCRT estimates the condition number of a real triangular matrix. The L1 condition 

number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to compute ||A
-1

||1, 

the condition number is only estimated. The estimation algorithm is the same as used by 

LINPACK and is described by Cline et al. (1979). 

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in the 

solution x.  

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending 

upon which supporting libraries are used during linking. For a detailed explanation see ―Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CRT/ DL2CRT. The 

reference is: 

CALL L2CRT (N, A, LDA, IPATH, RCOND, WK) 

The additional argument is: 

WK — Work vector of length N. 
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2. Informational error 

Type Code 

3 1 The input triangular matrix is algorithmically singular. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the coefficient matrix for the triangular linear system.   (Input)  

For a lower triangular system, only the lower triangular part and diagonal of A are 

referenced. For an upper triangular system, only the upper triangular part and diagonal 

of A are referenced. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

An estimate of the reciprocal condition number is computed for a 3 × 3 lower triangular 

coefficient matrix. 
 

      USE LFCRT_INT 

      USE UMACH_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3) 

      REAL       A(LDA,LDA), RCOND 

      INTEGER    NOUT 

!                                 Set values for A and B 

!                                 A = (  2.0               ) 

!                                     (  2.0    -1.0       ) 

!                                     ( -4.0     2.0    5.0) 

! 

      DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/ 

! 

!                                 Compute the reciprocal condition 

!                                 number  (IPATH=1) 

      CALL LFCRT (A, RCOND) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 
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Output 
 

RCOND < 0.1  

L1 Condition number < 15.0 

ScaLAPACK Example 

The same lower triangular matrix as in the example above is used in this distributed computing 

example. An estimate of the reciprocal condition number is computed for the 3 × 3 lower 

triangular coefficient matrix. SCALAPACK_MAP is an IMSL utility routine (see Chapter 11, 

―Utilities‖)  used to map an array to the processor grid. It is used here for brevity. DESCINIT is a 

ScaLAPACK tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFCRT_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  LDA, N, NOUT, DESCA(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      REAL          RCOND 

      REAL, ALLOCATABLE ::        A(:,:) 

      REAL, ALLOCATABLE ::        A0(:,:) 

      PARAMETER   (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N)) 

!                                 Set values for A 

          A(1,:) = (/ 2.0,  0.0,  0.0/) 

          A(2,:) = (/ 2.0, -1.0,  0.0/) 

          A(3,:) = (/-4.0,  2.0,  5.0/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptor 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL)) 

!                                 Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Compute the reciprocal condition 

!                                 number  (IPATH=1) 

      CALL LFCRT (A0, RCOND) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, RCOND. 

      IF(MP_RANK .EQ. 0) THEN 

         CALL UMACH (2, NOUT) 

         WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

      ENDIF 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A) 
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      DEALLOCATE(A0) 

!                                 Exit Scalapack usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.1  

L1 Condition number < 15.0 

LFDRT 
Computes the determinant of a real triangular matrix. 

Required Arguments 

A — N by N matrix containing the triangular matrix.   (Input)  

The matrix can be either upper or lower triangular. 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  

The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  

The determinant is returned in the form det(A) = DET1 * 10DET2. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LFDRT (A, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDRT and D_LFDRT. 

FORTRAN 77 Interface 

Single: CALL LFDRT (N, A, LDA, DET1, DET2) 

Double:  The double precision name is DLFDRT. 
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Description 

Routine LFDRT computes the determinant of a real triangular coefficient matrix. The determinant 

of a triangular matrix is the product of the diagonal elements  

1
det

N

iii
A A




 

LFDRT is based on the LINPACK routine STRDI; see Dongarra et al. (1979). 

Comments 

Informational error 

Type Code 

3 1 The input triangular matrix is singular. 

Example 

The determinant is computed for a 3 × 3 lower triangular matrix. 
 

      USE LFDRT_INT 

      USE UMACH_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3) 

      REAL       A(LDA,LDA), DET1, DET2 

      INTEGER    NOUT 

!                                 Set values for  A 

!                                 A = (  2.0               ) 

!                                     (  2.0    -1.0       ) 

!                                     ( -4.0     2.0    5.0) 

! 

      DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/ 

! 

!                                 Compute the determinant of A 

      CALL LFDRT (A, DET1, DET2) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) DET1, DET2 

99999 FORMAT (‘ The determinant of A is ‘, F6.3, ‘ * 10**‘, F2.0) 

      END 

Output 
 

The determinant of A is -1.000 * 10**1. 

LINRT 
Computes the inverse of a real triangular matrix. 

Required Arguments 

A — N by N matrix containing the triangular matrix to be inverted.   (Input)  

For a lower triangular matrix, only the lower triangular part and diagonal of A are 
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referenced. For an upper triangular matrix, only the upper triangular part and diagonal 

of A are referenced. 

AINV — N by N matrix containing the inverse of A.   (Output)  

If A is lower triangular, AINV is also lower triangular. If A is upper triangular, AINV is 

also upper triangular. If A is not needed, A and AINV can share the same storage 

locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means A is lower triangular.  

IPATH = 2 means A is upper triangular. 

Default: IPATH = 1. 

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDAINV = size (AINV,1). 

FORTRAN 90 Interface 

Generic: CALL LINRT (A, AINV [,…]) 

Specific: The specific interface names are S_LINRT and D_LINRT. 

FORTRAN 77 Interface 

Single: CALL LINRT (N, A, LDA, IPATH, AINV, LDAINV) 

Double: The double precision name is DLINRT. 

Description 

Routine LINRT computes the inverse of a real triangular matrix. It fails if A has a zero diagonal 

element. 

Example 

The inverse is computed for a 3 × 3 lower triangular matrix. 
 



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  165 

     

     

 

      USE LINRT_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3) 

      REAL       A(LDA,LDA), AINV(LDA,LDA) 

!                                 Set values for  A 

!                                 A = (  2.0               ) 

!                                     (  2.0    -1.0       ) 

!                                     ( -4.0     2.0    5.0) 

! 

      DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/ 

! 

!                                 Compute the inverse of A 

      CALL LINRT (A, AINV) 

!                                 Print results 

      CALL WRRRN (‘AINV‘, AINV) 

      END 

Output 
 

           AINV 

        1       2       3 

1   0.500   0.000   0.000 

2   1.000  -1.000   0.000 

3   0.000   0.400   0.200 

LSLCT 

 

 

 

Solves a complex triangular system of linear equations. 

Required Arguments 

A — Complex N by N matrix containing the coefficient matrix of the triangular linear system.   

(Input)  

For a lower triangular system, only the lower triangle of A is referenced. For an upper 

triangular system, only the upper triangle of A is referenced. 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means solve AX = B, A lower triangular  

IPATH = 2 means solve AX = B, A upper triangular  

IPATH = 3 means solve A
H
X = B, A lower triangular  

IPATH = 4 means solve A
H
X = B, A upper triangular 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LSLCT (A, B, X [,…]) 

Specific: The specific interface names are S_LSLCT and D_LSLCT. 

FORTRAN 77 Interface 

Single: CALL LSLCT (N, A, LDA, B, IPATH, X) 

Double:  The double precision name is DLSLCT. 

ScaLAPACK Interface 

Generic: CALL LSLCT (A0, B0, X0 [,…]) 

Specific: The specific interface names are S_LSLCT and D_LSLCT. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LSLCT solves a system of linear algebraic equations with a complex triangular coefficient 

matrix. LSLCT fails if the matrix A has a zero diagonal element, in which case A is singular. The 

underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon 

which supporting libraries are used during linking. For a detailed explanation see ―Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

Informational error 

Type  Code 

4  1 The input triangular matrix is singular. Some of its diagonal 

elements are near zero. 
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ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL complex local matrix containing the local portions of the distributed 

matrix A.  A contains the coefficient matrix of the triangular linear system.   (Input) 

For a lower triangular system, only the lower triangular part and diagonal of A are 

referenced. For an upper triangular system, only the upper triangular part and diagonal 

of A are referenced. 

B0 —   Local complex vector of length MXLDA containing the local portions of the distributed 

vector B. B contains the right-hand side of the linear system.   (Input) 

X0 —   Local complex vector  of length MXLDA containing the local portions of the distributed 

vector X. X  contains the solution to the linear system.   (Output) 

If B is not needed, B and X can share the same storage locations. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call to 

SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A system of three linear equations is solved. The coefficient matrix has lower triangular form and 

the right-hand-side vector, b, has three elements. 
 

      USE LSLCT_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER      LDA 

      PARAMETER    (LDA=3) 

      COMPLEX      A(LDA,LDA), B(LDA), X(LDA) 

!                                Set values for A and B 

! 

!                                A = ( -3.0+2.0i                     ) 

!                                    ( -2.0-1.0i  0.0+6.0i           ) 

!                                    ( -1.0+3.0i  1.0-5.0i -4.0+0.0i ) 

! 

!                                B = (-13.0+0.0i -10.0-1.0i -11.0+3.0i) 

! 

      DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),& 

            (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/ 

      DATA B/(-13.0,0.0), (-10.0,-1.0), (-11.0,3.0)/ 

! 

!                                 Solve AX = B 

      CALL LSLCT (A, B, X) 

!                                 Print results 

      CALL WRCRN (‘X‘, X, 1, 3, 1) 

      END 
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Output 
 

                           X 

              1                2                3 

( 3.000, 2.000)  ( 1.000, 1.000)  ( 2.000, 0.000) 

ScaLAPACK Example 

The same lower triangular matrix as in the example above is used in this distributed computing 

example. The system of three linear equations is solved. SCALAPACK_MAP and 

SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖) used to map and unmap 

arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK 

tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LSLCT_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  LDA, N, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      COMPLEX, ALLOCATABLE ::        A(:,:), B(:), X(:) 

      COMPLEX, ALLOCATABLE ::        A0(:,:), B0(:), X0(:) 

      PARAMETER   (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N), X(N)) 

!                                 Set values for A 

          A(1,:) = (/ (-3.0,  2.0), (0.0,  0.0), ( 0.0, 0.0)/) 

          A(2,:) = (/ (-2.0, -1.0), (0.0,  6.0), ( 0.0, 0.0)/) 

          A(3,:) = (/ (-1.0,  3.0), (1.0, -5.0), (-4.0, 0.0)/) 

!          

          B      = (/ (-13.0, 0.0), (-10.0, -1.0), (-11.0, 3.0) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptor 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      CALL SCALAPACK_MAP(B, DESCX, B0) 

!                                 Solve AX = B 

      CALL LSLCT (A0, B0, X0) 

!                                 Unmap the results from the distributed 
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!                                 arrays back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, X. 

      IF(MP_RANK .EQ. 0) CALL WRCRN (‗X‘, X, 1, 3, 1) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, X0) 

!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

                           X 

              1                2                3 

( 3.000, 2.000)  ( 1.000, 1.000)  ( 2.000, 0.000) 

LFCCT 

 

 

 

Estimates the condition number of a complex triangular matrix. 

Required Arguments 

A — Complex N by N matrix containing the triangular matrix.   (Input)  

For a lower triangular system, only the lower triangle of A is referenced. For an upper 

triangular system, only the upper triangle of A is referenced. 

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.   

(Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means A is lower triangular.  
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IPATH = 2 means A is upper triangular. 

Default: IPATH =1. 

FORTRAN 90 Interface 

Generic: CALL LFCCT (A, RCOND [,…]) 

Specific: The specific interface names are S_LFCCT and D_LFCCT. 

FORTRAN 77 Interface 

Single: CALL LFCCT (N, A, LDA, IPATH, RCOND) 

Double:  The double precision name is DLFCCT. 

ScaLAPACK Interface 

Generic: CALL LFCCT (A0, RCOND [,…]) 

Specific: The specific interface names are S_LFCCT and D_LFCCT. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFCCT estimates the condition number of a complex triangular matrix. The L1condition 

number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to compute ||A
-1

|1, 

the condition number is only estimated. The estimation algorithm is the same as used by 

LINPACK and is described by Cline et al. (1979). If the estimated condition number is greater 

than 1/ɛ (where ɛ is machine precision), a warning error is issued. This indicates that very small 

changes in A can cause very large changes in the solution x. The underlying code is based on 

either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries 

are used during linking. For a detailed explanation see ―Using ScaLAPACK, LAPACK, 

LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CCT/DL2CCT. The 

reference is: 

CALL L2CCT (N, A, LDA, IPATH, RCOND, CWK) 

The additional argument is: 

CWK — Complex work vector of length N. 

2. Informational error 
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Type Code 

3 1 The input triangular matrix is algorithmically singular. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix A.  A contains the coefficient matrix of the triangular linear system.   

(Input) 

For a lower triangular system, only the lower triangular part and diagonal of A are 

referenced. For an upper triangular system, only the upper triangular part and diagonal 

of A are referenced. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

An estimate of the reciprocal condition number is computed for a 3 × 3 lower triangular 

coefficient matrix. 
 

      USE LFCCT_INT 

      USE UMACH_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3) 

      INTEGER    NOUT 

      REAL       RCOND 

      COMPLEX    A(LDA,LDA) 

!                                Set values for A 

! 

!                                A = ( -3.0+2.0i                     ) 

!                                    ( -2.0-1.0i  0.0+6.0i           ) 

!                                    ( -1.0+3.0i  1.0-5.0i -4.0+0.0i ) 

! 

      DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),& 

            (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/ 

! 

!                                 Compute the reciprocal condition 

!                                 number 

      CALL LFCCT (A, RCOND) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 
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Output 
 

RCOND < 0.2  

L1 Condition number < 10.0 

ScaLAPACK Example 

The same lower triangular matrix as in the example above is used in this distributed computing 

example. An estimate of the reciprocal condition number is computed for a 3 × 3 lower triangular 

coefficient matrix. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines  (see 

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are 

used here for brevity.  DESCINIT is a ScaLAPACK tools routine which initializes the descriptors 

for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFCCT_INT 

      USE UMACH_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  LDA, N, NOUT, DESCA(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      REAL          RCOND 

      COMPLEX, ALLOCATABLE ::        A(:,:) 

      COMPLEX, ALLOCATABLE ::        A0(:,:) 

      PARAMETER   (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N)) 

!                                 Set values for A 

          A(1,:) = (/ (-3.0,  2.0), (0.0,  0.0), ( 0.0, 0.0)/) 

          A(2,:) = (/ (-2.0, -1.0), (0.0,  6.0), ( 0.0, 0.0)/) 

          A(3,:) = (/ (-1.0,  3.0), (1.0, -5.0), (-4.0, 0.0)/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptor 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Compute the reciprocal condition 

!                                 number 

      CALL LFCCT (A0, RCOND) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, RCOND. 

      IF (MP_RANK .EQ. 0) THEN 
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         CALL UMACH (2, NOUT) 

         WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

      ENDIF 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A) 

      DEALLOCATE(A0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.2  

L1 Condition number < 10.0 

LFDCT 
Computes the determinant of a complex triangular matrix. 

Required Arguments 

A — Complex N by N matrix containing the triangular matrix.(Input) 

DET1 — Complex scalar containing the mantissa of the determinant.   (Output) 

The value DET1 is normalized so that 1.0 ≤ DET1 <10.0 or DET1= 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output) 

The determinant is returned in the form det(A) = DET1 *10
DET2

.
 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LFDCT (A, DET1, DET2[,…]) 

Specific: The specific interface names are S_LFDCT and D_LFDCT. 

FORTRAN 77 Interface 

Single: CALL LFDCT (N, A, LDA, DET1, DET2) 
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Double:  The double precision name is DLFDCT. 

Description 

Routine LFDCT computes the determinant of a complex triangular coefficient matrix. The 

determinant of a triangular matrix is the product of the diagonal elements  

1
det

N

iii
A A




 

LFDCT is based on the LINPACK routine CTRDI; see Dongarra et al. (1979). 

Comments 

Informational error 

Type Code  

3 1  The input triangular matrix is singular. 

Example 

The determinant is computed for a 3 × 3 complex lower triangular matrix. 
 

      USE LFDCT_INT 

      USE UMACH_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

      INTEGER    NOUT 

      REAL       DET2 

      COMPLEX    A(LDA,LDA), DET1 

!                                Set values for A 

! 

!                                A = ( -3.0+2.0i                     ) 

!                                    ( -2.0-1.0i  0.0+6.0i           ) 

!                                    ( -1.0+3.0i  1.0-5.0i -4.0+0.0i ) 

! 

      DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),& 

            (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/ 

! 

!                                 Compute the determinant of A 

      CALL LFDCT (A, DET1, DET2) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) DET1, DET2 

99999 FORMAT (‘ The determinant of A is (‘,F4.1,‘,‘,F4.1,‘) * 10**‘,& 

             F2.0) 

      END 

Output 
 

The determinant of A is ( 0.5, 0.7) * 10**2. 
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LINCT 
Computes the inverse of a complex triangular matrixs. 

Required Arguments 

A — Complex N by N matrix containing the triangular matrix to be inverted.   (Input)  

For a lower triangular matrix, only the lower triangle of A is referenced. For an upper 

triangular matrix, only the upper triangle of A is referenced. 

AINV — Complex N by N matrix containing the inverse of A.   (Output)  

If A is lower triangular, AINV is also lower triangular. If A is upper triangular, AINV is 

also upper triangular. If A is not needed, A and AINV can share the same storage 

locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means A is lower triangular.  

IPATH = 2 means A is upper triangular. 

Default: IPATH = 1. 

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDAINV = size (AINV,1). 

FORTRAN 90 Interface 

Generic: CALL LINCT (A, AINV [,…]) 

Specific: The specific interface names are S_LINCT and D_LINCT. 

FORTRAN 77 Interface 

Single: CALL LINCT (N, A, LDA, IPATH, AINV, LDAINV) 

Double:  The double precision name is DLINCT. 
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Description 

Routine LINCT computes the inverse of a complex triangular matrix. It fails if A has a zero 

diagonal element. 

Comments 

Informational error 

Type Code 

4  1 The input triangular matrix is singular. Some of its diagonal 

elements are close to zero. 

Example 

The inverse is computed for a 3 × 3 lower triangular matrix. 
 

      USE LINCT_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA 

      PARAMETER  (LDA=3) 

      COMPLEX    A(LDA,LDA), AINV(LDA,LDA) 

!                                Set values for A 

! 

!                                A = ( -3.0+2.0i                     ) 

!                                    ( -2.0-1.0i  0.0+6.0i           ) 

!                                    ( -1.0+3.0i  1.0-5.0i -4.0+0.0i ) 

! 

      DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),& 

            (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/ 

! 

!                                 Compute the inverse of A 

      CALL LINCT (A, AINV) 

!                                 Print results 

      CALL WRCRN (‘AINV‘, AINV) 

      END 

Output 
 

                           AINV 

                   1                  2                  3 

1  (-0.2308,-0.1538)  ( 0.0000, 0.0000)  ( 0.0000, 0.0000) 

2  (-0.0897, 0.0513)  ( 0.0000,-0.1667)  ( 0.0000, 0.0000) 

3  ( 0.2147,-0.0096)  (-0.2083,-0.0417)  (-0.2500, 0.0000) 
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LSADS 

 

 

 

Solves a real symmetric positive definite system of linear equations with iterative refinement. 

Required Arguments 

A — N by N matrix containing the coefficient matrix of the symmetric positive definite linear 

system.   (Input)  

Only the upper triangle of A is referenced. 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LSADS (A, B, X [,…]) 

Specific: The specific interface names are S_LSADS and D_LSADS. 

FORTRAN 77 Interface 

Single: CALL LSADS (N, A, LDA, B, X) 

Double:  The double precision name is DLSADS. 

ScaLAPACK Interface 

Generic: CALL LSADS (A0, B0, X0 [,…]) 

Specific: The specific interface names are S_LSADS and D_LSADS. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 
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Description 

Routine LSADS solves a system of linear algebraic equations having a real symmetric positive 

definite coefficient matrix. The underlying code is based on either LINPACK , LAPACK, or 

ScaLAPACK code depending upon which supporting libraries are used during linking. For a 

detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the 

Introduction section of this manual. LSADS first uses the routine LFCDS to compute an R
T
R 

Cholesky factorization of the coefficient matrix and to estimate the condition number of the 

matrix. The matrix R is upper triangular. The solution of the linear system is then found using the 

iterative refinement routine LFIDS. LSADS fails if any submatrix of R is not positive definite, if R 

has a zero diagonal element or if the iterative refinement algorithm fails to converge. These errors 

occur only if A is either very close to a singular matrix or a matrix which is not positive definite. If 

the estimated condition number is greater than 1/ε (where ε is machine precision), a warning error 

is issued. This indicates that very small changes in A can cause very large changes in the solution 

x. Iterative refinement can sometimes find the solution to such a system. LSADS solves the 

problem that is represented in the computer; however, this problem may differ from the problem 

whose solution is desired. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2ADS/DL2ADS. The 

reference is: 

CALL L2ADS (N, A, LDA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT— Work vector of length N2 containing the R
T
R factorization of A on 

output. 

WK — Work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is not positive definite. 

3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2ADS the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSADS. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSADS. Users directly calling L2ADS can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
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longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSADS or L2ADS. Default values for the option are IVAL(*) 

= 1, 16, 0, 1. 

17  This option has two values that determine if the L1 condition number is to be 

computed. Routine LSADS temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CDS computes the condition number if IVAL(2) = 2. Otherwise L2CDS 

skips this computation. LSADS restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A.  

A contains the coefficient matrix of the symmetric positive definite linear system.   

(Input) 

B0 —   Local vector of length MXLDA containing the local portions of the distributed vector B. 

B contains the right-hand side of the linear system.   (Input) 

X0 —   Local vector  of length MXLDA containing the local portions of the distributed vector X. 

X  contains the solution to the linear system.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A system of three linear equations is solved. The coefficient matrix has real positive definite form 

and the right-hand-side vector b has three elements. 
 

      USE LSADS_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

      REAL       A(LDA,LDA), B(N), X(N) 

! 

!                                 Set values for A and B 

! 

!                                 A = (  1.0  -3.0   2.0) 

!                                     ( -3.0  10.0  -5.0) 

!                                     (  2.0  -5.0   6.0) 

! 

!                                 B = ( 27.0 -78.0  64.0) 

! 

      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 

      DATA B/27.0, -78.0, 64.0/ 

! 

      CALL LSADS (A, B, X) 
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!                                 Print results 

      CALL WRRRN (‘X‘, X, 1, N, 1) 

! 

      END 

Output 
 

          X 

    1       2       3 

1.000  -4.000   7.000 

ScaLAPACK Example 

The same system of three linear equations is solved as a distributed computing example. The 

coefficient matrix has real positive definite form and the right-hand-side vector b has three 

elements. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, 

―Utilities‖) used to map and unmap arrays to and from the processor grid. They are used here for 

brevity.  DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local 

arrays. 
 

      USE MPI_SETUP_INT 

      USE LSADS_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  LDA, N, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      REAL, ALLOCATABLE ::        A(:,:), B(:), X(:) 

      REAL, ALLOCATABLE ::        A0(:,:), B0(:), X0(:) 

      PARAMETER   (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N), X(N)) 

!                                 Set values for A and B 

          A(1,:) = (/  1.0,  -3.0,  2.0/) 

          A(2,:) = (/ -3.0,  10.0, -5.0/) 

          A(3,:) = (/  2.0,  -5.0,  6.0/) 

! 

          B = (/27.0, -78.0,  64.0/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA)) 



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  181 

     

     

 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      CALL SCALAPACK_MAP(B, DESCX, B0) 

!                                 Solve the system of equations 

      CALL LSADS (A0, B0, X0) 

!                                 Unmap the results from the distributed 

!                                 arrays back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, X. 

      IF(MP_RANK .EQ. 0)CALL WRRRN (‘X‘, X, 1, N, 1) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, X0) 

!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

           X 

    1       2       3 

1.000   -4.000   7.000 

LSLDS 

 

 

 

Solves a real symmetric positive definite system of linear equations without iterative refinement . 

Required Arguments 

A — N by N matrix containing the coefficient matrix of the symmetric positive definite linear 

system.   (Input)  

Only the upper triangle of A is referenced. 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LSLDS (A, B, X [,…]) 

Specific: The specific interface names are S_LSLDS and D_LSLDS. 

FORTRAN 77 Interface 

Single: CALL LSLDS (N, A, LDA, B, X) 

Double:  The double precision name is DLSLDS. 

ScaLAPACK Interface 

Generic: CALL LSLDS (A0, B0, X0 [,…]) 

Specific: The specific interface names are S_LSLDS and D_LSLDS. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LSLDS solves a system of linear algebraic equations having a real symmetric positive 

definite coefficient matrix. The underlying code is based on either LINPACK , LAPACK, or 

ScaLAPACK code depending upon which supporting libraries are used during linking. For a 

detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the 

Introduction section of this manual. LSLDS first uses the routine LFCDS to compute an R
T
R 

Cholesky factorization of the coefficient matrix and to estimate the condition number of the 

matrix. The matrix R is upper triangular. The solution of the linear system is then found using the 

routine LFSDS. LSLDS fails if any submatrix of R is not positive definite or if R has a zero 

diagonal element. These errors occur only if A either is very close to a singular matrix or to a 

matrix which is not positive definite. If the estimated condition number is greater than 1/ε (where ε 

is machine precision), a warning error is issued. This indicates that very small changes in A can 

cause very large changes in the solution x. If the coefficient matrix is ill-conditioned, it is 

recommended that LSADS be used. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LDS/DL2LDS. The 

reference is: 

CALL L2LDS (N, A, LDA, B, X, FACT, WK) 
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The additional arguments are as follows: 

FACT — N × N work array containing the R
T
R factorization of A on output. If 

A is not needed, A can share the same storage locations as FACT. 

WK — Work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is not positive definite. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2LDS the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLDS. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSLDS. Users directly calling L2LDS can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSLDS or L2LDS. Default values for the option are IVAL(*) 

= 1, 16, 0, 1. 

17 This option has two values that determine if the L1 condition number is to be 

computed. Routine LSLDS temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CDS computes the condition number if IVAL(2) = 2. Otherwise L2CDS 

skips this computation. LSLDS restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A.  

A contains the coefficient matrix of the symmetric positive definite linear system.   

(Input) 

B0 —   Local vector of length MXLDA containing the local portions of the distributed vector B. 

B contains the right-hand side of the linear system.   (Input) 

X0 —   Local vector  of length MXLDA containing the local portions of the distributed vector X. 

X  contains the solution to the linear system.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 
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to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A system of three linear equations is solved. The coefficient matrix has real positive definite form 

and the right-hand-side vector b has three elements. 
 

      USE LSLDS_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

      REAL       A(LDA,LDA), B(N), X(N) 

! 

!                                 Set values for A and B 

! 

!                                 A = (  1.0  -3.0   2.0) 

!                                     ( -3.0  10.0  -5.0) 

!                                     (  2.0  -5.0   6.0) 

! 

!                                 B = ( 27.0 -78.0  64.0) 

! 

      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 

      DATA B/27.0, -78.0, 64.0/ 

! 

      CALL LSLDS (A, B, X) 

 

!                                 Print results 

      CALL WRRRN (‘X‘, X, 1, N, 1) 

! 

      END 

Output 
 

          X 

    1       2       3 

1.000  -4.000   7.000 

ScaLAPACK Example 

The same system of three linear equations is solved as a distributed computing example. The 

coefficient matrix has real positive definite form and the right-hand-side vector b has three 

elements. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, 

―Utilities‖) used to map and unmap arrays to and from the processor grid. They are used here for 

brevity.  DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local 

arrays. 
 

      USE MPI_SETUP_INT 

      USE LSLDS_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 
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!                                 Declare variables 

      INTEGER  LDA, N, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      REAL, ALLOCATABLE ::        A(:,:), B(:), X(:) 

      REAL, ALLOCATABLE ::        A0(:,:), B0(:), X0(:) 

      PARAMETER   (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N), X(N)) 

!                                 Set values for A and B 

          A(1,:) = (/  1.0,  -3.0,  2.0/) 

          A(2,:) = (/ -3.0,  10.0, -5.0/) 

          A(3,:) = (/  2.0,  -5.0,  6.0/) 

! 

          B = (/27.0, -78.0,  64.0/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      CALL SCALAPACK_MAP(B, DESCX, B0) 

!                                 Solve the system of equations 

      CALL LSLDS (A0, B0, X0) 

!                                 Unmap the results from the distributed 

!                                 arrays back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, X. 

      IF(MP_RANK .EQ. 0)CALL WRRRN (‘X‘, X, 1, N, 1) 

!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                 Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 
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Output 
 

           X 

    1       2       3 

1.000   -4.000   7.000 

LFCDS 

 

 

 

Computes the R
T
R Cholesky factorization of a real symmetric positive definite matrix and estimate 

its L1condition number. 

Required Arguments 

A — N by N symmetric positive definite matrix to be factored.   (Input)  

Only the upper triangle of A is referenced. 

FACT — N by N matrix containing the upper triangular matrix R of the factorization of A in 

the upper triangular part.   (Output) 

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share 

the same storage locations. 

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.   

(Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFCDS (A, FACT, RCOND [,…]) 

Specific: The specific interface names are S_LFCDS and D_LFCDS. 
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FORTRAN 77 Interface 

Single: CALL LFCDS (N, A, LDA, FACT, LDFACT, RCOND) 

Double:  The double precision name is DLFCDS. 

ScaLAPACK Interface 

Generic: CALL LFCDS (A0, FACT0, RCOND [,…]) 

Specific: The specific interface names are S_LFCDS and D_LFCDS. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFCDS computes an R
T
R Cholesky factorization and estimates the condition number of a 

real symmetric positive definite coefficient matrix. The matrix R is upper triangular. 

The L1condition number of the matrix A is defined to be κ(A) = ||A||1 ||A
-1

||1. Since it is expensive 

to compute ||A
-1

||1  ,the condition number is only estimated. The estimation algorithm is the same 

as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive 

definite.  

The R
T
R factors are returned in a form that is compatible with routines LFIDS, LFSDS and LFDDS. 

To solve systems of equations with multiple right-hand-side vectors, use LFCDS followed by either 

LFIDS or LFSDS called once for each right-hand side. The routine LFDDS can be called to compute 

the determinant of the coefficient matrix after LFCDS has performed the factorization. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CDS/DL2CDS. The 

reference is: 

CALL L2CDS (N, A, LDA, FACT, LDFACT, RCOND, WK) 

The additional argument is: 

WK — Work vector of length N. 

2. Informational errors 

Type Code  
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3 1 The input matrix is algorithmically singular. 

4 2 The input matrix is not positive definite. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the symmetric positive definite matrix to be factored.   (Input) 

FACT0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed 

matrix FACT.  FACT contains the upper triangular matrix R of the factorization of A in 

the upper triangular part.   (Output) 

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share 

the same storage locations. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

The inverse of a 3 × 3 matrix is computed. LFCDS is called to factor the matrix and to check for 

nonpositive definiteness or ill-conditioning. LFIDS is called to determine the columns of the 

inverse. 
 

      USE LFCDS_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

      USE LFIDS_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NOUT 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      REAL       A(LDA,LDA), AINV(LDA,LDA), RCOND, FACT(LDFACT,LDFACT),& 

                 RES(N), RJ(N) 

! 

!                                 Set values for A 

!                                 A = (  1.0  -3.0   2.0) 

!                                     ( -3.0  10.0  -5.0) 

!                                     (  2.0  -5.0   6.0) 

! 

      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 

!                                 Factor the matrix A 

      CALL LFCDS (A, FACT, RCOND) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0E0 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIDS 
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!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFIDS (A, FACT, RJ, AINV(:,J), RES) 

         RJ(J) = 0.0E0 

   10 CONTINUE 

!                                 Print the results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

      CALL WRRRN (‘AINV‘, AINV) 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F9.3) 

      END 

Output 
 

RCOND < 0.005 

L1 Condition number < 875.0 

 

          AINV 

        1       2       3 

1   35.00    8.00   -5.00 

2    8.00    2.00   -1.00 

3   -5.00   -1.00    1.00 

ScaLAPACK Example 

The inverse of the same 3 × 3 matrix is computed as a distributed example. LFCDS is called to 

factor the matrix and to check for singularity or ill-conditioning. LFIDS is called to determine the 

columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see 

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are 

used here for brevity.  DESCINIT is a ScaLAPACK tools routine which initializes the descriptors 

for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFCDS_INT 

      USE UMACH_INT 

      USE LFIDS_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER     J, LDA, N, NOUT, DESCA(9), DESCL(9) 

      INTEGER     INFO, MXCOL, MXLDA 

      REAL, ALLOCATABLE ::        A(:,:), AINV(:,:), X0(:), RJ(:) 

      REAL, ALLOCATABLE ::        A0(:,:), FACT0(:,:), RES0(:), RJ0(:) 

      REAL        RCOND 

      PARAMETER  (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), AINV(LDA,N)) 

!                                 Set values for A  

          A(1,:) = (/  1.0,  -3.0,  2.0/) 

          A(2,:) = (/ -3.0,  10.0, -5.0/) 
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          A(3,:) = (/  2.0,  -5.0,  6.0/) 

 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), & 

               RJ0(MXLDA), RES0(MXLDA)) 

!                                  Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                  Call the factorization routine 

      CALL LFCDS (A0, FACT0, RCOND) 

!                                 Print the reciprocal condition number 

!                                 and the L1 condition number 

      IF(MP_RANK .EQ. 0) THEN 

         CALL UMACH (2, NOUT) 

         WRITE (NOUT,99998) RCOND, 1.0E0/RCOND 

      ENDIF 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0 

!                                 Map input array to the processor grid 

         CALL SCALAPACK_MAP(RJ, DESCL, RJ0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIDS 

!                                 reference computes the J-th column of 

!                                 the inverse of A  

         CALL LFIDS (A0, FACT0, RJ0, X0, RES0) 

         RJ(J) = 0.0 

         CALL SCALAPACK_UNMAP(X0, DESCL, AINV(:,J)) 

   10 CONTINUE 

!                                 Print results. 

!                                 Only Rank=0 has the solution, AINV. 

      IF(MP_RANK.EQ.0) CALL WRRRN (‘AINV‘, AINV) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV) 

      DEALLOCATE(A0, FACT0, RJ, RJ0, RES0, X0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT)  

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

99998 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F9.3) 

      END 
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Output 
 

RCOND < 0.005 

L1 Condition number < 875.0 

 

          AINV 

        1       2       3 

1   35.00    8.00   -5.00 

2    8.00    2.00   -1.00 

3   -5.00   -1.00    1.00 

LFTDS 

 

 

 

Computes the R
T
R Cholesky factorization of a real symmetric positive definite matrix. 

Required Arguments 

A — N by N symmetric positive definite matrix to be factored.   (Input)  

Only the upper triangle of A is referenced. 

FACT — N by N matrix containing the upper triangular matrix R of the factorization of A in 

the upper triangle, and the lower triangular matrix R
T
 in the lower triangle.   (Output)  

If A is not needed, A and FACT can share the same storage location. 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

 Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFTDS (A, FACT [,…]) 

Specific: The specific interface names are S_LFTDS and D_LFTDS. 
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FORTRAN 77 Interface 

Single: CALL LFTDS (N, A, LDA, FACT, LDFACT) 

Double:  The double precision name is DLFTDS. 

ScaLAPACK Interface 

Generic: CALL LFTDS (A0, FACT0 [,…]) 

Specific: The specific interface names are S_LFTDS and D_LFTDS. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFTDS computes an R
T
R Cholesky factorization of a real symmetric positive definite 

coefficient matrix. The matrix R is upper triangular. 

LFTDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive 

definite. 

The R
T
R factors are returned in a form that is compatible with routines LFIDS, LFSDS and LFDDS. 

To solve systems of equations with multiple right-hand-side vectors, use LFTDS followed by either 

LFIDS or LFSDS called once for each right-hand side. The routine LFDDS can be called to compute 

the determinant of the coefficient matrix after LFTDS has performed the factorization. 

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending 

upon which supporting libraries are used during linking. For a detailed explanation see ―Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

Informational error 

Type Code 

4 2 The input matrix is not positive definite. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the symmetric positive definite matrix to be factored.   (Input) 

FACT0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed 

matrix FACT.  FACT contains the upper triangular matrix R of the factorization of A in 

the upper triangular part.   (Output) 
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Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share 

the same storage locations. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

The inverse of a 3 × 3 matrix is computed. LFTDS is called to factor the matrix and to check for 

nonpositive definiteness. LFSDS is called to determine the columns of the inverse. 
 

      USE LFTDS_INT 

      USE LFSDS_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      REAL       A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N) 

! 

!                                 Set values for A 

!                                 A = (  1.0  -3.0   2.0) 

!                                     ( -3.0  10.0  -5.0) 

!                                     (  2.0  -5.0   6.0) 

! 

      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 

!                                 Factor the matrix A 

      CALL LFTDS (A, FACT) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0E0 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFSDS 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFSDS (FACT, RJ, AINV(:,J)) 

         RJ(J) = 0.0E0 

   10 CONTINUE 

!                                 Print the results 

      CALL WRRRN (‘AINV‘, AINV) 

! 

      END 

Output 
 

           AINV 

        1       2       3 

1   35.00    8.00   -5.00 

2    8.00    2.00   -1.00 

3   -5.00   -1.00    1.00 
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ScaLAPACK Example 

The inverse of the same 3 × 3 matrix is computed as a distributed example. LFTDS is called to 

factor the matrix and to check for nonpositive definiteness. LFSDS is called to determine the 

columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see 

Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are 

used here for brevity.  DESCINIT is a ScaLAPACK tools routine which initializes the descriptors 

for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFTDS_INT 

      USE UMACH_INT 

      USE LFSDS_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER     J, LDA, N, DESCA(9), DESCL(9) 

      INTEGER     INFO, MXCOL, MXLDA 

      REAL, ALLOCATABLE ::        A(:,:), AINV(:,:), X0(:) 

      REAL, ALLOCATABLE ::        A0(:,:), FACT0(:,:), RES0(:), RJ0(:) 

      PARAMETER  (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), AINV(LDA,N)) 

!                                 Set values for A  

          A(1,:) = (/  1.0,  -3.0,  2.0/) 

          A(2,:) = (/ -3.0,  10.0, -5.0/) 

          A(3,:) = (/  2.0,  -5.0,  6.0/) 

 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), & 

               RJ0(MXLDA), RES0(MXLDA), IPVT0(MXLDA)) 

!                                  Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                  Call the factorization routine 

      CALL LFTDS (A0, FACT0) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0 
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         CALL SCALAPACK_MAP(RJ, DESCL, RJ0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFSDS 

!                                 reference computes the J-th column of 

!                                 the inverse of A  

         CALL LFSDS (FACT0, RJ0, X0) 

         RJ(J) = 0.0 

         CALL SCALAPACK_UNMAP(X0, DESCL, AINV(:,J)) 

   10 CONTINUE 

!                                 Print results. 

!                                 Only Rank=0 has the solution, AINV. 

      IF(MP_RANK.EQ.0) CALL WRRRN (‘AINV‘, AINV) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV) 

      DEALLOCATE(A0, FACT0, IPVT0, RJ, RJ0, RES0, X0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT)  

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

RCOND < 0.005 

L1 Condition number < 875.0 

 

          AINV 

        1       2       3 

1   35.00    8.00   -5.00 

2    8.00    2.00   -1.00 

3   -5.00   -1.00    1.00 

LFSDS 

 

 

 

Solves a real symmetric positive definite system of linear equations given the R
T
 R Cholesky 

factorization of the coefficient matrix. 

Required Arguments 

FACT — N by N matrix containing the R
T
 R factorization of the coefficient matrix A as output 

from routine LFCDS/DLFCDS or LFTDS/DLFTDS.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 
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Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFSDS (FACT, B, X [,…]) 

Specific: The specific interface names are S_LFSDS and D_LFSDS. 

FORTRAN 77 Interface 

Single: CALL LFSDS (N, FACT, LDFACT, B, X) 

Double:  The double precision name is DLFSDS. 

ScaLAPACK Interface 

Generic: CALL LFSDS (FACT0, B0, X0 [,…]) 

Specific: The specific interface names are S_LFSDS and D_LFSDS. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFSDS computes the solution for a system of linear algebraic equations having a real 

symmetric positive definite coefficient matrix. To compute the solution, the coefficient matrix 

must first undergo an R
T
R factorization. This may be done by calling either LFCDS or LFTDS. R is 

an upper triangular matrix.  

The solution to Ax = b is found by solving the triangular systems R
T
y = b and Rx = y.  

LFSDS and LFIDS both solve a linear system given its R
T
R factorization. LFIDS generally takes 

more time and produces a more accurate answer than LFSDS. Each iteration of the iterative 

refinement algorithm used by LFIDS calls LFSDS.  

The underlying code is based on either LINPACK, LAPACK, or ScaLAPACK code depending 

upon which supporting libraries are used during linking. For a detailed explanation see “Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

Informational error  
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Type Code 

4 1 The input matrix is singular. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

FACT0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed 

matrix FACT.  FACT contains the R
T
 R factorization of the coefficient matrix A as output 

from routine LFCDS/DLFCDS or LFTDS/DLFTDS.   (Input) 

B0 —   Local vector of length MXLDA containing the local portions of the distributed vector B. 

B contains the right-hand side of the linear system.   (Input) 

X0 —   Local vector  of length MXLDA containing the local portions of the distributed vector X. 

X  contains the solution to the linear system.   (Output) 

If B is not needed, B and X can share the same storage locations. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A set of linear systems is solved successively. LFTDS is called to factor the coefficient matrix. 

LFSDS is called to compute the four solutions for the four right-hand sides. In this case the 

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be 

better to call LFCDS to perform the factorization, and LFIDS to compute the solutions. 
 

      USE LFSDS_INT 

      USE LFTDS_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      REAL       A(LDA,LDA), B(N,4), FACT(LDFACT,LDFACT), X(N,4) 

! 

!                                 Set values for A and B 

! 

!                                 A = (  1.0  -3.0   2.0) 

!                                     ( -3.0  10.0  -5.0) 

!                                     (  2.0  -5.0   6.0) 

! 

!                                 B = ( -1.0   3.6  -8.0  -9.4) 

!                                     ( -3.0  -4.2  11.0  17.6) 

!                                     ( -3.0  -5.2  -6.0 -23.4) 

! 

      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 

      DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,& 

          -9.4, 17.6, -23.4/ 

!                                 Factor the matrix A 

      CALL LFTDS (A, FACT) 
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!                                 Compute the solutions 

      DO 10  I=1, 4 

         CALL LFSDS (FACT, B(:,I), X(:,I)) 

   10 CONTINUE 

!                                 Print solutions 

      CALL WRRRN (‘The solution vectors are‘, X) 

! 

      END 

Output 
 

     The solution vectors are 

        1       2       3       4 

1   -44.0   118.4  -162.0   -71.2 

2   -11.0    25.6   -36.0   -16.6 

3     5.0   -19.0    23.0     6.0 

ScaLAPACK Example 

The same set of linear systems is solved successively as a distributed example. Routine LFTDS is 

called to factor the coefficient matrix. The routine LFSDS is called to compute the four solutions 

for the four right-hand sides. In this case, the coefficient matrix is assumed to be well-conditioned 

and correctly scaled. Otherwise, it would be better to call LFCDS to perform the factorization, and 

LFIDS to compute the solutions. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility 

routines (see Chapter 11, ―Utilities‖) used to map and unmap arrays to and from the processor 

grid. They are used here for brevity.  DESCINIT is a ScaLAPACK tools routine which initializes 

the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFSDS_INT  

      USE LFTDS_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER     J, LDA, N, DESCA(9), DESCL(9) 

      INTEGER     INFO, MXCOL, MXLDA 

      REAL, ALLOCATABLE ::        A(:,:), B(:,:), X(:,:), X0(:) 

      REAL, ALLOCATABLE ::        A0(:,:), FACT0(:,:), B0(:) 

      PARAMETER  (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N,4), X(N,4)) 

!                                 Set values for A and B 

          A(1,:) = (/  1.0,  -3.0,  2.0/) 

          A(2,:) = (/ -3.0,  10.0, -5.0/) 

          A(3,:) = (/  2.0,  -5.0,  6.0/) 

! 

          B(1,:) = (/ -1.0,  3.6, -8.0,  -9.4/) 

          B(2,:) = (/ -3.0, -4.2, 11.0,  17.6/) 

          B(3,:) = (/ -3.0, -5.2, -6.0, -23.4/) 

      ENDIF 
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!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), B0(MXLDA))             

!                                  Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                  Call the factorization routine 

      CALL LFTDS (A0, FACT0) 

!                                  Set up the columns of the B 

!                                  matrix one at a time in X0 

      DO 10  J=1, 4 

         CALL SCALAPACK_MAP(B(:,j), DESCL, B0) 

!                                  Solve for the J-th column of X 

         CALL LFSDS (FACT0, B0, X0) 

         CALL SCALAPACK_UNMAP(X0, DESCL, X(:,J)) 

   10 CONTINUE 

!                                  Print results. 

!                                  Only Rank=0 has the solution, X. 

      IF(MP_RANK.EQ.0) CALL WRRRN (‘The solution vectors are‘, X) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, FACT0, B0, X0) 

!                                  Exit Scalapack usage 

      CALL SCALAPACK_EXIT(MP_ICTXT)  

!                                  Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘)  

      END 

Output 
 

     The solution vectors are 

        1       2       3       4 

1   -44.0   118.4  -162.0   -71.2 

2   -11.0    25.6   -36.0   -16.6 

3     5.0   -19.0    23.0     6.0 

LFIDS 

 

 

 

Uses iterative refinement to improve the solution of a real symmetric positive definite system of 

linear equations. 
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Required Arguments 

A — N by N matrix containing the symmetric positive definite coefficient matrix of the linear 

system.   (Input)  

Only the upper triangle of A is referenced. 

FACT — N by N matrix containing the R
T
 R factorization of the coefficient matrix A as output 

from routine LFCDS/DLFCDS or LFTDS/DLFTDS.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 

RES — Vector of length N containing the residual vector at the improved solution.   (Output)  

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimesion statement of the calling 

program.  (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

 Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFIDS (A, FACT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIDS and D_LFIDS. 

FORTRAN 77 Interface 

Single: CALL LFIDS (N, A, LDA, FACT, LDFACT, B, X, RES) 

Double:  The double precision name is DLFIDS. 

ScaLAPACK Interface 

Generic: CALL LFIDS (A0, FACT0, B0, X0, RES0 [,…]) 

Specific: The specific interface names are S_LFIDS and D_LFIDS. 
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See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFIDS computes the solution of a system of linear algebraic equations having a real 

symmetric positive definite coefficient matrix. Iterative refinement is performed on the solution 

vector to improve the accuracy. Usually almost all of the digits in the solution are accurate, even if 

the matrix is somewhat ill-conditioned. The underlying code is based on either LINPACK , 

LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during 

linking. For a detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and 

EISPACK‖ in the Introduction section of this manual. 

To compute the solution, the coefficient matrix must first undergo an R
T
R factorization. This may 

be done by calling either LFCDS or LFTDS. 

Iterative refinement fails only if the matrix is very ill-conditioned. 

LFIDS and LFSDS both solve a linear system given its R
T
R factorization. LFIDS generally takes 

more time and produces a more accurate answer than LFSDS. Each iteration of the iterative 

refinement algorithm used by LFIDS calls LFSDS. 

Comments 

Informational error 

Type Code  

3 2 The input matrix is too ill-conditioned for iterative refinement to be 

effective. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the symmetric positive definite coefficient matrix of the linear system.   

(Input) 

FACT0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed 

matrix FACT.  FACT contains the R
T
 R factorization of the coefficient matrix A as output 

from routine LFCDS/DLFCDS or LFTDS/DLFTDS.   (Input) 

B0 —   Local vector of length MXLDA containing the local portions of the distributed vector B. 

B contains the right-hand side of the linear system.   (Input) 

X0 —   Local vector  of length MXLDA containing the local portions of the distributed vector X. 

X  contains the solution to the linear system.   (Output) 

If B is not needed, B and X can share the same storage locations. 

RES0 —   Local vector  of length MXLDA containing the local portions of the distributed 

vector RES. RES  contains the residual vector at the improved solution to the linear 

system.   (Output) 
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All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving 

the system each of the first two times by adding 0.2 to the second element. 
 

      USE LFIDS_INT 

      USE LFCDS_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      REAL       A(LDA,LDA), B(N), RCOND, FACT(LDFACT,LDFACT), RES(N,3),& 

                X(N,3) 

! 

!                                 Set values for A and B 

! 

!                                 A = (  1.0  -3.0   2.0) 

!                                     ( -3.0  10.0  -5.0) 

!                                     (  2.0  -5.0   6.0) 

! 

!                                 B = (  1.0  -3.0   2.0) 

! 

      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 

      DATA B/1.0, -3.0, 2.0/ 

!                                 Factor the matrix A 

      CALL LFCDS (A, FACT, RCOND) 

!                                 Print the estimated condition number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

!                                 Compute the solutions 

      DO 10  I=1, 3 

         CALL LFIDS (A, FACT, B, X(:,I), RES(:,I)) 

         B(2) = B(2) + .2E0 

   10 CONTINUE 

!                                 Print solutions and residuals 

      CALL WRRRN (‘The solution vectors are‘, X) 

      CALL WRRRN (‘The residual vectors are‘, RES) 

! 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F9.3) 

      END 

Output 
 

RCOND = 0.001 

L1 Condition number =   674.727 

 

The solution vectors are 

        1       2       3 
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1   1.000   2.600   4.200 

2   0.000   0.400   0.800 

3   0.000  -0.200  -0.400 

 

The residual vectors are 

         1        2        3 

1   0.0000   0.0000   0.0000 

2   0.0000   0.0000   0.0000 

3   0.0000   0.0000   0.0000 

ScaLAPACK Example 

The same set of linear systems is solved successively as a distributed example. The right-hand-

side vector is perturbed after solving the system each of the first two times by adding 0.2 to the 

second element. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 

11, ―Utilities‖) used to map and unmap arrays to and from the processor grid. They are used here 

for brevity.  DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the 

local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFIDS_INT  

      USE LFCDS_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER     J, LDA, N, NOUT, DESCA(9), DESCL(9) 

      INTEGER     INFO, MXCOL, MXLDA 

      REAL        RCOND 

      REAL, ALLOCATABLE ::        A(:,:), B(:), X(:,:), RES(:,:), X0(:) 

      REAL, ALLOCATABLE ::        A0(:,:), FACT0(:,:), B0(:), RES0(:) 

      PARAMETER  (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N), X(N,3), RES(N,3)) 

!                                 Set values for A and B 

          A(1,:) = (/ 1.0,  -3.0,  2.0/) 

          A(2,:) = (/-3.0,  10.0, -5.0/) 

          A(3,:) = (/ 2.0,  -5.0,  6.0/) 

! 

          B      = (/ 1.0,  -3.0,  2.0/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA), FACT0(MXLDA,MXCOL), B0(MXLDA), & 
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               RES0(MXLDA)) 

!                                  Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                  Call the factorization routine 

      CALL LFCDS (A0, FACT0, RCOND) 

!                                  Print the estimated condition number 

      CALL UMACH (2, NOUT) 

      IF(MP_RANK .EQ. 0) WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

!                                  Set up the columns of the B 

!                                  matrix one at a time in X0 

      DO 10  J=1, 3 

         CALL SCALAPACK_MAP(B, DESCL, B0) 

!                                  Solve for the J-th column of X 

         CALL LFIDS (A0, FACT0, B0, X0, RES0) 

         CALL SCALAPACK_UNMAP(X0, DESCL, X(:,J)) 

         CALL SCALAPACK_UNMAP(RES0, DESCL, RES(:,J)) 

         IF(MP_RANK .EQ. 0) B(2) = B(2) + .2E0 

   10 CONTINUE 

!                                 Print results. 

!                                 Only Rank=0 has the full arrays 

      IF(MP_RANK.EQ.0) CALL WRRRN (‘The solution vectors are‘, X) 

      IF(MP_RANK.EQ.0) CALL WRRRN (‘The residual vectors are‘, RES) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X, RES) 

      DEALLOCATE(A0, B0, FACT0, RES0, X0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT)  

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F9.3)  

      END 

Output 
 

RCOND = 0.001 

L1 Condition number =   674.727 

 

The solution vectors are 

        1       2       3 

1   1.000   2.600   4.200 

2   0.000   0.400   0.800 

3   0.000  -0.200  -0.400 

 

The residual vectors are 

         1        2        3 

1   0.0000   0.0000   0.0000 

2   0.0000   0.0000   0.0000 

3   0.0000   0.0000   0.0000 

LFDDS 

Computes the determinant of a real symmetric positive definite matrix given the R
T
R Cholesky 

factorization of the matrix . 
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Required Arguments 

FACT — N by N matrix containing the R
T
 R factorization of the coefficient matrix A as output 

from routine LFCDS/DLFCDS or LFTDS/DLFTDS.   (Input) 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  

The value DET1 is normalized so that, 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  

The determinant is returned in the form, det(A) = DET1 * 10DET2. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFDDS (FACT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDDS and D_LFDDS. 

FORTRAN 77 Interface 

Single: CALL LFDDS (N, FACT, LDFACT, DET1, DET2) 

Double:  The double precision name is DLFDDS. 

Description 

Routine LFDDS computes the determinant of a real symmetric positive definite coefficient matrix. 

To compute the determinant, the coefficient matrix must first undergo an R
T
R factorization. This 

may be done by calling either LFCDS or LFTDS. The formula det A = det R
T
 det R = (det R)

2
 is 

used to compute the determinant. Since the determinant of a triangular matrix is the product of the 

diagonal elements,  

1
det

N

iii
R R




 

(The matrix R is stored in the upper triangle of FACT.) 

LFDDS is based on the LINPACK routine SPODI; see Dongarra et al. (1979). 

Example 

The determinant is computed for a real positive definite 3 × 3 matrix. 
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      USE LFDDS_INT 

      USE LFTDS_INT 

      USE UMACH_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, NOUT 

      PARAMETER  (LDA=3, LDFACT=3) 

      REAL       A(LDA,LDA), DET1, DET2, FACT(LDFACT,LDFACT) 

! 

!                                 Set values for A 

!                                 A = (  1.0  -3.0   2.0) 

!                                     ( -3.0  20.0  -5.0) 

!                                     (  2.0  -5.0   6.0) 

! 

      DATA A/1.0, -3.0, 2.0, -3.0, 20.0, -5.0, 2.0, -5.0, 6.0/ 

!                                 Factor the matrix 

      CALL LFTDS (A, FACT) 

!                                 Compute the determinant 

      CALL LFDDS (FACT, DET1, DET2) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) DET1, DET2 

! 

99999 FORMAT (‘ The determinant of A is ‘,F6.3,‘ * 10**‘,F2.0) 

      END 

Output 
 

The determinant of A is 2.100 * 10**1. 

LINDS 

 

 

 

Computes the inverse of a real symmetric positive definite matrix. 

Required Arguments 

A — N by N matrix containing the symmetric positive definite matrix to be inverted.   (Input)  

Only the upper triangle of A is referenced. 

AINV — N by N matrix containing the inverse of A.  (Output)  

If A is not needed, A and AINV can share the same storage locations. 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDAINV = size (AINV,1). 

FORTRAN 90 Interface 

Generic: CALL LINDS (A, AINV [,…]) 

Specific: The specific interface names are S_LINDS and D_LINDS. 

FORTRAN 77 Interface 

Single: CALL LINDS (N, A, LDA, AINV, LDAINV) 

Double:  The double precision name is DLINDS. 

ScaLAPACK Interface 

Generic: CALL LINDS (A0, AINV0 [,…]) 

Specific: The specific interface names are S_LINDS and D_LINDS. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LINDS computes the inverse of a real symmetric positive definite matrix. The underlying 

code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation see  

―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this 

manual.  LINDS first uses the routine LFCDS to compute an R
T
R factorization of the coefficient 

matrix and to estimate the condition number of the matrix. LINRT is then used to compute R
-1

. 

Finally A
-1 

is computed using A
-1

 = R
-1

  R
-T

.  

LINDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive 

definite. 

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in A. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2NDS/DL2NDS. The 

reference is: 
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CALL L2NDS (N, A, LDA, AINV, LDAINV, WK) 

The additional argument is: 

WK — Work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is not positive definite. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the symmetric positive definite matrix to be inverted.   (Input) 

AINV0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed 

matrix AINV.  AINV contains the inverse of the matrix A.   (Output) 

If A is not needed, A and AINV can share the same storage locations. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

The inverse is computed for a real positive definite 3 × 3 matrix. 
 

      USE LINDS_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDAINV 

      PARAMETER  (LDA=3, LDAINV=3) 

      REAL       A(LDA,LDA), AINV(LDAINV,LDAINV) 

! 

!                                 Set values for A 

!                                 A = (  1.0  -3.0   2.0) 

!                                     ( -3.0  10.0  -5.0) 

!                                     (  2.0  -5.0   6.0) 

! 

      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 

! 

      CALL LINDS (A, AINV) 

!                                 Print results 

      CALL WRRRN (‘AINV‘, AINV) 

! 
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      END 

Output 
 

           AINV 

        1       2       3 

1   35.00    8.00   -5.00 

2    8.00    2.00   -1.00 

3   -5.00   -1.00    1.00 

ScaLAPACK Example 

The inverse of the same 3 × 3 matrix is computed as a distributed example. SCALAPACK_MAP and 

SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, ―Utilities‖) used to map and unmap 

arrays to and from the processor grid. They are used here for brevity.  DESCINIT is a 

ScaLAPACK tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LINDS_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER     J, LDA, LDFACT, N, DESCA(9) 

      INTEGER     INFO, MXCOL, MXLDA 

      REAL, ALLOCATABLE ::        A(:,:), AINV(:,:) 

      REAL, ALLOCATABLE ::        A0(:,:), AINV0(:,:) 

      PARAMETER  (LDA=3, N=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), AINV(LDA,N)) 

!                                 Set values for A  

          A(1,:) = (/  1.0,  -3.0,  2.0/) 

          A(2,:) = (/ -3.0,  10.0, -5.0/) 

          A(3,:) = (/  2.0,  -5.0,  6.0/) 

 

      ENDIF 

 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), AINV0(MXLDA,MXCOL)) 

!                                  Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                  Call the routine to get the inverse 

      CALL LINDS (A0, AINV0) 

!                                  Unmap the results from the distributed 

!                                  arrays back to a nondistributed array. 
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!                                  After the unmap, only Rank=0 has the full 

!                                  array. 

      CALL SCALAPACK_UNMAP(AINV0, DESCA, AINV) 

!                                  Print results. 

!                                  Only Rank=0 has the solution, AINV. 

      IF(MP_RANK.EQ.0) CALL WRRRN (‘AINV‘, AINV) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV) 

      DEALLOCATE(A0, AINV0) 

!                                  Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                  Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

          AINV 

        1       2       3 

1   35.00    8.00   -5.00 

2    8.00    2.00   -1.00 

3   -5.00   -1.00    1.00 

LSASF 

 

 

 

Solves a real symmetric system of linear equations with iterative refinement. 

Required Arguments 

A — N by N matrix containing the coefficient matrix of the symmetric linear system.   (Input)  

Only the upper triangle of A is referenced. 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 
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FORTRAN 90 Interface 

Generic: CALL LSASF (A, B, X [,…]) 

Specific: The specific interface names are S_LSASF and D_LSASF. 

FORTRAN 77 Interface 

Single: CALL LSASF (N, A, LDA, B, X) 

Double:  The double precision name is DLSASF. 

Description 

Routine LSASF solves systems of linear algebraic equations having a real symmetric indefinite 

coefficient matrix. It first uses the routine LFCSF to compute a U DU
T
 factorization of the 

coefficient matrix and to estimate the condition number of the matrix. D is a block diagonal matrix 

with blocks of order 1 or 2, and U is a matrix composed of the product of a permutation matrix 

and a unit upper triangular matrix. The solution of the linear system is then found using the 

iterative refinement routine LFISF.  

LSASF fails if a block in D is singular or if the iterative refinement algorithm fails to converge. 

These errors occur only if A is singular or very close to a singular matrix.  

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning 

error is issued. This indicates that very small changes in A  can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system. LSASF solves the 

problem that is represented in the computer; however, this problem may differ from the problem 

whose solution is desired. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2ASF/DL2ASF. The 

reference is 

CALL L2ASF (N, A, LDA, B, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — N × N work array containing information about the U DU
T
 

factorization of A on output. If A is not needed, A and FACT can share 

the same storage location. 

IPVT — Integer work vector of length N containing the pivoting information 

for the factorization of A on output. 

WK — Work vector of length N. 

2. Informational errors 

Type  Code  
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3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2ASF the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSASF. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSASF. Users directly calling L2ASF can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSASF or L2ASF. Default values for the option are IVAL(*) 

= 1, 16, 0, 1. 

17 This option has two values that determine if the L1  condition number is to be 

computed. Routine LSASF temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CSF computes the condition number if IVAL(2) = 2. Otherwise L2CSF 

skips this computation. LSASF restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

Example 

A system of three linear equations is solved. The coefficient matrix has real symmetric form and 

the right-hand-side vector b has three elements. 
 

      USE LSASF_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, N=3) 

      REAL       A(LDA,LDA), B(N), X(N) 

! 

!                                 Set values for A and B 

! 

!                                 A = (  1.0  -2.0   1.0) 

!                                     ( -2.0   3.0  -2.0) 

!                                     (  1.0  -2.0   3.0) 

! 

!                                 B = (  4.1  -4.7   6.5) 

! 

      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 

      DATA B/4.1, -4.7, 6.5/ 

! 

      CALL LSASF (A, B, X) 

!                                 Print results 

      CALL WRRRN (‘X‘, X, 1, N, 1) 

      END 
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Output 
 

            X 

     1       2       3 

-4.100  -3.500   1.200 

LSLSF 

 

 

 

Solves a real symmetric system of linear equations without iterative refinement . 

Required Arguments 

A — N by N matrix containing the coefficient matrix of the symmetric linear system.   (Input)  

Only the upper triangle of A is referenced. 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

 Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LSLSF (A, B, X [,…]) 

Specific: The specific interface names are S_LSLSF and D_LSLSF. 

FORTRAN 77 Interface 

Single: CALL LSLSF (N, A, LDA, B, X) 

Double:  The double precision name is DLSLSF. 
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Description 

Routine LSLSF solves systems of linear algebraic equations having a real symmetric indefinite 

coefficient matrix. It first uses the routine LFCSF to compute a U DU
T
 factorization of the 

coefficient matrix. D is a block diagonal matrix with blocks of order 1 or 2, and U is a matrix 

composed of the product of a permutation matrix and a unit upper triangular matrix.  

The solution of the linear system is then found using the routine LFSSF.  

LSLSF fails if a block in D is singular. This occurs only if A either is singular or is very close to a 

singular matrix. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LSF/DL2LSF. The 

reference is: 

CALL L2LSF (N, A, LDA, B, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — N × N work array containing information about the U DU
T
 

factorization of A on output. If A is not needed, A and FACT can share 

the same storage locations. 

IPVT — Integer work vector of length N containing the pivoting information 

for the factorization of A on output. 

WK — Work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine LSLSF the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLSF. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSLSF. Users directly calling LSLSF can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSLSF or LSLSF. Default values for the option are IVAL(*) 

= 1, 16, 0, 1. 
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17 This option has two values that determine if the L1 condition number is to be 

computed. Routine LSLSF temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CSF computes the condition number if IVAL(2) = 2. Otherwise L2CSF 

skips this computation. LSLSF restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

Example 

A system of three linear equations is solved. The coefficient matrix has real symmetric form and 

the right-hand-side vector b has three elements. 
 

      USE LSLSF_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, N=3) 

      REAL       A(LDA,LDA), B(N), X(N) 

! 

!                                 Set values for A and B 

! 

!                                 A = (  1.0  -2.0   1.0) 

!                                     ( -2.0   3.0  -2.0) 

!                                     (  1.0  -2.0   3.0) 

! 

!                                 B = (  4.1  -4.7   6.5) 

! 

      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 

      DATA B/4.1, -4.7, 6.5/ 

! 

      CALL LSLSF (A, B, X) 

!                                 Print results 

      CALL WRRRN (‘X‘, X, 1, N, 1) 

      END 

Output 
 

            X 

     1       2       3 

-4.100  -3.500   1.200 

LFCSF 

 

 

 

Computes the U DU
T
 factorization of a real symmetric matrix and estimate its L1 condition 

number. 
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Required Arguments 

A — N by N symmetric matrix to be factored.   (Input)  

Only the upper triangle of A is referenced. 

FACT — N by N matrix containing information about the factorization of the symmetric 

matrix A.   (Output)  

Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the 

same storage locations. 

IPVT — Vector of length N containing the pivoting information for the factorization.   

(Output) 

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.   

(Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFCSF (A, FACT, IPVT, RCOND [,…]) 

Specific: The specific interface names are S_LFCSF and D_LFCSF. 

FORTRAN 77 Interface 

Single: CALL LFCSF (N, A, LDA, FACT, LDFACT, IPVT, RCOND) 

Double:  The double precision name is DLFCSF. 

Description 

Routine LFCSF performs a U DU
T
 factorization of a real symmetric indefinite coefficient matrix. 

It also estimates the condition number of the matrix. The U DU
T
 factorization is called the 

diagonal pivoting factorization.  
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The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to 

compute ||A
-1

||1, the condition number is only estimated. The estimation algorithm is the same as 

used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCSF fails if A is singular or very close to a singular matrix.  

The U DU
T
 factors are returned in a form that is compatible with routines LFISF, LFSSF and 

LFDSF. To solve systems of equations with multiple right-hand-side vectors, use LFCSF followed 

by either LFISF or LFSSF called once for each right-hand side. The routine LFDSF can be called 

to compute the determinant of the coefficient matrix after LFCSF has performed the factorization.  

The underlying code is based on either LINPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CSF/DL2CSF. The 

reference is: 

CALL L2CSF (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK) 

The additional argument is: 

WK — Work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is algorithmically singular. 

4 2 The input matrix is singular. 

Example 

The inverse of a 3 × 3 matrix is computed. LFCSF is called to factor the matrix and to check for 

singularity or ill-conditioning. LFISF is called to determine the columns of the inverse. 
 

      USE LFCSF_INT 

      USE UMACH_INT 

      USE LFISF_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, N=3) 

      INTEGER    IPVT(N), NOUT 

      REAL       A(LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N), RES(N),& 

                 RCOND 

! 

!                                 Set values for A 
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! 

!                                 A = (  1.0  -2.0   1.0) 

!                                     ( -2.0   3.0  -2.0) 

!                                     (  1.0  -2.0   3.0) 

! 

      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 

!                                 Factor A and return the reciprocal 

!                                 condition number estimate 

      CALL LFCSF (A, FACT, IPVT, RCOND) 

!                                 Print the estimate of the condition 

!                                 number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

! 

!                                 matrix one at a time in RJ 

      RJ = 0.E0 

      DO 10  J=1, N 

         RJ(J) = 1.0E0 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFISF 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFISF (A, FACT, IPVT, RJ, AINV(:,J), RES) 

         RJ(J) = 0.0E0 

   10 CONTINUE 

!                                 Print the inverse 

      CALL WRRRN (‘AINV‘, AINV) 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.05 

L1 Condition number < 40.0 

 

          AINV 

        1       2       3 

1  -2.500  -2.000  -0.500 

2  -2.000  -1.000   0.000 

3  -0.500   0.000   0.500 

LFTSF 

 

 

 

Computes the U DU
T
 factorization of a real symmetric matrix. 
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Required Arguments 

A — N by N symmetric matrix to be factored.   (Input)  

Only the upper triangle of A is referenced. 

FACT — N by N matrix containing information about the factorization of the symmetric 

matrix A.   (Output)  

Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the 

same storage locations. 

IPVT — Vector of length N containing the pivoting information for the factorization.   

(Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFTSF (A, FACT, IPVT [,…]) 

Specific: The specific interface names are S_LFTSF and D_LFTSF. 

FORTRAN 77 Interface 

Single: CALL LFTSF (N, A, LDA, FACT, LDFACT, IPVT) 

Double:  The double precision name is DLFTSF. 

Description 

Routine LFTSF performs a U DU
T
 factorization of a real symmetric indefinite coefficient matrix. 

The U DU
T
 factorization is called the diagonal pivoting factorization.  

LFTSF fails if A is singular or very close to a singular matrix.  

The U DU
T
 factors are returned in a form that is compatible with routines LFISF, LFSSF and 

LFDSF. To solve systems of equations with multiple right-hand-side vectors, use LFTSF followed 

by either LFISF or LFSSF called once for each right-hand side. The routine LFDSF can be called 

to compute the determinant of the coefficient matrix after LFTSF has performed the factorization.  
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The underlying code is based on either LINPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

Informational error 

Type Code 

4 2 The input matrix is singular. 

Example 

The inverse of a 3 × 3 matrix is computed. LFTSF is called to factor the matrix and to check for 

singularity. LFSSF is called to determine the columns of the inverse. 
 

      USE LFTSF_INT 

      USE LFSSF_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, N=3) 

      INTEGER    IPVT(N) 

      REAL       A(LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N) 

! 

!                                 Set values for A 

!                                 A = (  1.0  -2.0   1.0) 

!                                     ( -2.0   3.0  -2.0) 

!                                     (  1.0  -2.0   3.0) 

! 

      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 

!                                 Factor A 

      CALL LFTSF (A, FACT, IPVT) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0E0 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFSSF 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFSSF (FACT, IPVT, RJ, AINV(:,J)) 

         RJ(J) = 0.0E0 

   10 CONTINUE 

!                                 Print the inverse 

      CALL WRRRN (‘AINV‘, AINV) 

      END 

Output 
 

            AINV 

        1       2       3 
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1  -2.500  -2.000  -0.500 

2  -2.000  -1.000   0.000 

3  -0.500   0.000   0.500 

LFSSF 

 

 

 

Solves a real symmetric system of linear equations given the U DU
T
 factorization of the 

coefficient matrix. 

Required Arguments 

FACT — N by N matrix containing the factorization of the coefficient matrix A as output from 

routine LFCSF/DLFCSF or LFTSF/DLFTSF.   (Input)  

Only the upper triangle of FACT is used. 

IPVT — Vector of length N containing the pivoting information for the factorization of A as 

output from routine LFCSF/DLFCSF or LFTSF/DLFTSF.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of A exactly as specified in the dimension statement of the 

calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFSSF (FACT, IPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSSF and D_LFSSF. 

FORTRAN 77 Interface 

Single: CALL LFSSF (N, FACT, LDFACT, IPVT, B, X) 

Double:  The double precision name is DLFSSF. 
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Description 

Routine LFSSF computes the solution of a system of linear algebraic equations having a real 

symmetric indefinite coefficient matrix.  

To compute the solution, the coefficient matrix must first undergo a U DU
T
 factorization. This 

may be done by calling either LFCSF or LFTSF.  

LFSSF and LFISF both solve a linear system given its U DU
T
 factorization. LFISF generally takes 

more time and produces a more accurate answer than LFSSF. Each iteration of the iterative 

refinement algorithm used by LFISF calls LFSSF.  

The underlying code is based on either LINPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Example 

A set of linear systems is solved successively. LFTSF is called to factor the coefficient matrix. 

LFSSF is called to compute the four solutions for the four right-hand sides. In this case the 

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be 

better to call LFCSF to perform the factorization, and LFISF to compute the solutions. 
 

      USE LFSSF_INT 

      USE LFTSF_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, N=3) 

      INTEGER    IPVT(N) 

      REAL       A(LDA,LDA), B(N,4), X(N,4), FACT(LDA,LDA) 

! 

!                                 Set values for A and B 

! 

!                                 A = (  1.0  -2.0   1.0) 

!                                     ( -2.0   3.0  -2.0) 

!                                     (  1.0  -2.0   3.0) 

! 

!                                 B = ( -1.0   3.6  -8.0  -9.4) 

!                                     ( -3.0  -4.2  11.0  17.6) 

!                                     ( -3.0  -5.2  -6.0 -23.4) 

! 

      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 

      DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,& 

          -9.4, 17.6, -23.4/ 

!                                 Factor A 

      CALL LFTSF (A, FACT, IPVT) 

!                                 Solve for the four right-hand sides 

      DO 10  I=1, 4 

         CALL LFSSF (FACT, IPVT, B(:,I), X(:,I)) 

   10 CONTINUE 

 

!                                 Print results 

      CALL WRRRN (‘X‘, X) 

      END 
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Output 
 

                   X 

        1       2       3       4 

1   10.00    2.00    1.00    0.00 

2    5.00   -3.00    5.00    1.20 

3   -1.00   -4.40    1.00   -7.00 

LFISF 

 

 

 

Uses iterative refinement to improve the solution of a real symmetric system of linear equations. 

Required Arguments 

A — N by N matrix containing the coefficient matrix of the symmetric linear system.   (Input)  

Only the upper triangle of A is referenced 

FACT — N by N matrix containing the factorization of the coefficient matrix A as output from 

routine LFCSF/DLFCSF or LFTSF/DLFTSF.   (Input)  

Only the upper triangle of FACT is used. 

IPVT — Vector of length N containing the pivoting information for the factorization of A as 

output from routine LFCSF/DLFCSF or LFTSF/DLFTSF.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 

RES — Vector of length N containing the residual vector at the improved solution.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 
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FORTRAN 90 Interface 

Generic: CALL LFISF (A, FACT, IPVT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFISF and D_LFISF. 

FORTRAN 77 Interface 

Single: CALL LFISF (N, A, LDA, FACT, LDFACT, IPVT, B, X, RES) 

Double:  The double precision name is DLFISF. 

Description 

Routine LFISF computes the solution of a system of linear algebraic equations having a real 

symmetric indefinite coefficient matrix. Iterative refinement is performed on the solution vector to 

improve the accuracy. Usually almost all of the digits in the solution are accurate, even if the 

matrix is somewhat ill-conditioned.  

To compute the solution, the coefficient matrix must first undergo a U DU
T
 factorization. This 

may be done by calling either LFCSF or LFTSF.  

Iterative refinement fails only if the matrix is very ill-conditioned.  

LFISF and LFSSF both solve a linear system given its U DU
T
 factorization. LFISF generally takes 

more time and produces a more accurate answer than LFSSF. Each iteration of the iterative 

refinement algorithm used by LFISF calls LFSSF. 

Comments 

Informational error 

Type Code 

3 2 The input matrix is too ill-conditioned for iterative refinement to be 

effective. 

Example 

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving 

the system each of the first two times by adding 0.2 to the second element. 
 

      USE LFISF_INT 

      USE UMACH_INT 

      USE LFCSF_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, N=3) 

      INTEGER    IPVT(N), NOUT 

      REAL       A(LDA,LDA), B(N), X(N), FACT(LDA,LDA), RES(N), RCOND 

! 

!                                 Set values for A and B 

!                                 A = (  1.0  -2.0   1.0) 
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!                                     ( -2.0   3.0  -2.0) 

!                                     (  1.0  -2.0   3.0) 

! 

!                                 B = (  4.1  -4.7   6.5) 

! 

      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 

      DATA B/4.1, -4.7, 6.5/ 

!                                 Factor A and compute the estimate 

!                                 of the reciprocal condition number 

      CALL LFCSF (A, FACT, IPVT, RCOND) 

!                                 Print condition number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

!                                 Solve, then perturb right-hand side 

      DO 10  I=1, 3 

         CALL LFISF (A, FACT, IPVT, B, X, RES) 

!                                 Print results 

         CALL WRRRN (‘X‘, X, 1, N, 1) 

         CALL WRRRN (‘RES‘, RES, 1, N, 1) 

         B(2) = B(2) + .20E0 

   10 CONTINUE 

! 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.035 

L1 Condition number < 40.0 

 

           X 

     1       2       3 

-4.100  -3.500   1.200 

 

               RES 

         1           2           3 

-2.384E-07  -2.384E-07   0.000E+00 

 

            X 

     1       2       3 

-4.500  -3.700   1.200 

 

               RES 

         1           2           3 

-2.384E-07  -2.384E-07   0.000E+00 

 

            X 

     1       2       3 

-4.900  -3.900   1.200 

 

               RES 

         1           2           3 

-2.384E-07  -2.384E-07   0.000E+00 
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LFDSF 

Computes the determinant of a real symmetric matrix given the U DU
T
 factorization of the matrix. 

Required Arguments 

FACT — N by N matrix containing the factored matrix A as output from subroutine 

LFTSF/DLFTSF or LFCSF/DLFCSF.   (Input) 

IPVT — Vector of length N containing the pivoting information for the U DU
T
 factorization 

as output from routine LFTSF/DLFTSF or LFCSF/DLFCSF.   (Input) 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  

The value DET1 is normalized so that, 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  

The determinant is returned in the form, det(A) = DET1 * 10DET2. 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFDSF (FACT, IPVT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDSF and D_LFDSF. 

FORTRAN 77 Interface 

Single: CALL LFDSF (N, FACT, LDFACT, IPVT, DET1, DET2) 

Double:  The double precision name is DLFDSF. 

Description 

Routine LFDSF computes the determinant of a real symmetric indefinite coefficient matrix. To 

compute the determinant, the coefficient matrix must first undergo a U DU
T
 factorization. This 

may be done by calling either LFCSF or LFTSF. Since det U = ±1, the formula  

det A = det U det D det U
T
 = det D is used to compute the determinant. Next det D is computed as 

the product of the determinants of its blocks.  
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LFDSF is based on the LINPACK routine SSIDI; see Dongarra et al. (1979). 

Example 

The determinant is computed for a real symmetric 3 × 3 matrix. 
 

      USE LFDSF_INT 

      USE LFTSF_INT 

      USE UMACH_INT 

!                                 Declare variables 

      PARAMETER  (LDA=3, N=3) 

      INTEGER    IPVT(N), NOUT 

      REAL       A(LDA,LDA), FACT(LDA,LDA), DET1, DET2 

! 

!                                 Set values for A 

!                                 A = (  1.0  -2.0   1.0) 

!                                     ( -2.0   3.0  -2.0) 

!                                     (  1.0  -2.0   3.0) 

! 

      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 

!                                 Factor A 

      CALL LFTSF (A, FACT, IPVT) 

!                                 Compute the determinant 

      CALL LFDSF (FACT, IPVT, DET1, DET2) 

!                                 Print the results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) DET1, DET2 

99999 FORMAT (‘ The determinant of A is ‘, F6.3, ‘ * 10**‘, F2.0) 

      END 

Output 
 

The determinant of A is -2.000 * 10**0. 

LSADH 

 

 

 

Solves a Hermitian positive definite system of linear equations with iterative refinement. 

Required Arguments 

A — Complex N by N matrix containing the coefficient matrix of the Hermitian positive 

definite linear system.   (Input)  

Only the upper triangle of A is referenced. 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution of the linear system.   (Output) 
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Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LSADH (A, B, X [,…]) 

Specific: The specific interface names are S_LSADH and D_LSADH. 

FORTRAN 77 Interface 

Single: CALL LSADH (N, A, LDA, B, X) 

Double:  The double precision name is DLSADH. 

ScaLAPACK Interface 

Generic: CALL LSADH (A0, B0, X0 [,…]) 

Specific: The specific interface names are S_LSADH and D_LSADH. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LSADH solves a system of linear algebraic equations having a complex Hermitian positive 

definite coefficient matrix. It first uses the routine LFCDH to compute an R
H

 R Cholesky 

factorization of the coefficient matrix and to estimate the condition number of the matrix. The 

matrix R is upper triangular. The solution of the linear system is then found using the iterative 

refinement routine LFIDH.  

LSADH fails if any submatrix of R is not positive definite, if R has a zero diagonal element or if the 

iterative refinement algorithm fails to converge. These errors occur only if A either is very close to 

a singular matrix or is a matrix that is not positive definite.  

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system. LSADH solves the 

problem that is represented in the computer; however, this problem may differ from the problem 

whose solution is desired. 
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The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending 

upon which supporting libraries are used during linking. For a detailed explanation see ―Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2ADH/DL2ADH. The 

reference is: 

CALL L2ADH (N, A, LDA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT — N × N work array
 
containing the R

H
 R factorization of A on output. 

WK — Complex work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

3 4 The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 

4 2 The input matrix is not positive definite. 

4 4 The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2ADH the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSADH. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSADH. Users directly calling L2ADH can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSADH or L2ADH. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L1condition number is to be 

computed. Routine LSADH temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CDH computes the condition number if IVAL(2) = 2. Otherwise L2CDH 

skips this computation. LSADH restores the option. Default values for the option 

are IVAL(*) = 1, 2. 
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ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —  Complex MXLDA by MXCOL local matrix containing the local portions of the 

distributed matrix A.  A contains the coefficient matrix of the Hermitian positive 

definite linear system.   (Input)  

Only the upper triangle of A is referenced. 

B0 —   Complex local vector of length MXLDA containing the local portions of the distributed 

vector B. B contains the right-hand side of the linear system.   (Input) 

X0 —   Complex local vector  of length MXLDA containing the local portions of the distributed 

vector X. X  contains the solution to the linear system.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A system of five linear equations is solved. The coefficient matrix has complex positive definite 

form and the right-hand-side vector b has five elements. 
 

      USE LSADH_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=5, N=5) 

      COMPLEX    A(LDA,LDA), B(N), X(N) 

! 

!                                 Set values for A and B 

! 

!        A =   (  2.0+0.0i  -1.0+1.0i   0.0+0.0i   0.0+0.0i   0.0+0.0i ) 

!              (             4.0+0.0i   1.0+2.0i   0.0+0.0i   0.0+0.0i ) 

!              (                       10.0+0.0i   0.0+4.0i   0.0+0.0i ) 

!              (                                  6.0+0.0i   1.0+1.0i ) 

!              (                                             9.0+0.0i ) 

! 

!        B =   ( 1.0+5.0i  12.0-6.0i  1.0-16.0i  -3.0-3.0i  25.0+16.0i ) 

! 

      DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),& 

             4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),& 

             (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/ 

      DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),& 

             (25.0,16.0)/ 

! 

      CALL LSADH (A, B, X) 

!                                 Print results 

 

      CALL WRCRN (‘X‘, X, 1, N, 1) 

! 
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      END 

Output 
 

                                  X 

              1                2                3                4 

( 2.000, 1.000)  ( 3.000, 0.000)  (-1.000,-1.000)  ( 0.000,-2.000) 

              5 

( 3.000, 2.000) 

ScaLAPACK Example 

The same system of five linear equations is solved as a distributed computing example. The 

coefficient matrix has complex positive definite form and the right-hand-side vector b has five 

elements. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used 

to map and unmap arrays to and from the processor grid. They are used here for brevity.  

DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LSADH_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  LDA, N, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      COMPLEX, ALLOCATABLE ::        A(:,:), B(:), X(:) 

      COMPLEX, ALLOCATABLE ::        A0(:,:), B0(:), X0(:) 

      PARAMETER   (LDA=5, N=5) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N), X(N)) 

!                                 Set values for A and B 

      A(1,:) = (/(2.0, 0.0),(-1.0, 1.0),( 0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/) 

      A(2,:) = (/(0.0, 0.0),( 4.0, 0.0),( 1.0, 2.0),(0.0, 0.0),(0.0, 0.0)/) 

      A(3,:) = (/(0.0, 0.0),( 0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/) 

      A(4,:) = (/(0.0, 0.0),( 0.0, 0.0),( 0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/) 

      A(5,:) = (/(0.0, 0.0),( 0.0, 0.0),( 0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/) 

! 

      B = (/(1.0, 5.0),(12.0, -6.0),(1.0, -16.0),(-3.0, -3.0),(25.0, 16.0)/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA)) 

!                                  Map input arrays to the processor grid 
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      CALL SCALAPACK_MAP(A, DESCA, A0) 

      CALL SCALAPACK_MAP(B, DESCX, B0) 

!                                  Solve the system of equations 

      CALL LSADH (A0, B0, X0) 

!                                  Unmap the results from the distributed 

!                                  arrays back to a non-distributed array. 

!                                  After the unmap, only Rank=0 has the full 

!                                  array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

!                                  Print results. 

!                                  Only Rank=0 has the solution, X. 

      IF(MP_RANK .EQ. 0)CALL WRCRN (‘X‘, X, 1, N, 1) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, X0) 

!                                  Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                  Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

                                  X 

              1                2                3                4 

( 2.000, 1.000)  ( 3.000, 0.000)  (-1.000,-1.000)  ( 0.000,-2.000) 

              5 

( 3.000, 2.000) 

LSLDH 

 

 

 

Solves a complex Hermitian positive definite system of linear equations without iterative 

refinement. 

Required Arguments 

A — Complex N by N matrix containing the coefficient matrix of the Hermitian positive 

definite linear system.   (Input)  

Only the upper triangle of A is referenced. 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 
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Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LSLDH (A, B, X [,…]) 

Specific: The specific interface names are S_LSLDH and D_LSLDH. 

FORTRAN 77 Interface 

Single: CALL LSLDH (N, A, LDA, B, X) 

Double:  The double precision name is DLSLDH. 

ScaLAPACK Interface 

Generic: CALL LSLDH (A0, B0, X0 [,…]) 

Specific: The specific interface names are S_LSLDH and D_LSLDH. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LSLDH solves a system of linear algebraic equations having a complex Hermitian positive 

definite coefficient matrix. The underlying code is based on either LINPACK , LAPACK, or 

ScaLAPACK code depending upon which supporting libraries are used during linking. For a 

detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the 

Introduction section of this manual. LSLDH first uses the routine LFCDH to compute an R
H

 R 

Cholesky factorization of the coefficient matrix and to estimate the condition number of the 

matrix. The matrix R is upper triangular. The solution of the linear system is then found using the 

routine LFSDH. 

LSLDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive 

definite. 

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in the 

solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that 

LSADH be used. 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LDH/ DL2LDH. The 

reference is: 

CALL L2LDH (N, A, LDA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT — N × N work array containing the R
H

 R factorization of A on output. 

If A is not needed, A can share the same storage locations as FACT. 

WK — Complex work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

3 4 The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 

4 2 The input matrix is not positive definite. 

4 4 The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2LDH the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLDH. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSLDH. Users directly calling L2LDH can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSLDH or L2LDH. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L1 condition number is to be 

computed. Routine LSLDH temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CDH computes the condition number if IVAL(2) = 2. Otherwise L2CDH 

skips this computation. LSLDH restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 
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A0 —  Complex MXLDA by MXCOL local matrix containing the local portions of the 

distributed matrix A.  A contains the coefficient matrix of the Hermitian positive 

definite linear system.   (Input)  

Only the upper triangle of A is referenced. 

B0 —   Complex local vector of length MXLDA containing the local portions of the distributed 

vector B. B contains the right-hand side of the linear system.   (Input) 

X0 —   Complex local vector  of length MXLDA containing the local portions of the distributed 

vector X. X  contains the solution to the linear system.   (Output) 

If B is not needed, B and X can share the same storage locations. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A system of five linear equations is solved. The coefficient matrix has complex Hermitian positive 

definite form and the right-hand-side vector b has five elements. 
 

      USE LSLDH_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=5, N=5) 

      COMPLEX    A(LDA,LDA), B(N), X(N) 

! 

!                                 Set values for A and B 

! 

!        A =   (  2.0+0.0i  -1.0+1.0i   0.0+0.0i   0.0+0.0i   0.0+0.0i ) 

!              (             4.0+0.0i   1.0+2.0i   0.0+0.0i   0.0+0.0i ) 

!              (                       10.0+0.0i   0.0+4.0i   0.0+0.0i ) 

!              (                                  6.0+0.0i    1.0+1.0i ) 

!              (                                              9.0+0.0i ) 

! 

!        B =   ( 1.0+5.0i  12.0-6.0i  1.0-16.0i  -3.0-3.0i  25.0+16.0i ) 

! 

      DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),& 

             4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),& 

             (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/ 

      DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),& 

             (25.0,16.0)/ 

! 

      CALL LSLDH (A, B, X) 

!                                 Print results 

      CALL WRCRN (‘X‘, X, 1, N, 1) 

! 

      END 
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Output 
 

                                       X 

              1                2                3                4 

( 2.000, 1.000)  ( 3.000, 0.000)  (-1.000,-1.000)  ( 0.000,-2.000) 

              5 

( 3.000, 2.000) 

ScaLAPACK Example 

The same system of five linear equations is solved as a distributed computing example. The 

coefficient matrix has complex positive definite form and the right-hand-side vector b has five 

elements. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used 

to map and unmap arrays to and from the processor grid. They are used here for brevity.  

DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LSLDH_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  LDA, N, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      COMPLEX, ALLOCATABLE ::        A(:,:), B(:), X(:) 

      COMPLEX, ALLOCATABLE ::        A0(:,:), B0(:), X0(:) 

      PARAMETER   (LDA=5, N=5) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N), X(N)) 

!                                 Set values for A and B 

      A(1,:) = (/(2.0, 0.0),(-1.0, 1.0),( 0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/) 

      A(2,:) = (/(0.0, 0.0),( 4.0, 0.0),( 1.0, 2.0),(0.0, 0.0),(0.0, 0.0)/) 

      A(3,:) = (/(0.0, 0.0),( 0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/) 

      A(4,:) = (/(0.0, 0.0),( 0.0, 0.0),( 0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/) 

      A(5,:) = (/(0.0, 0.0),( 0.0, 0.0),( 0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/) 

! 

      B = (/(1.0, 5.0),(12.0, -6.0),(1.0, -16.0),(-3.0, -3.0),(25.0, 16.0)/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      CALL SCALAPACK_MAP(B, DESCX, B0) 
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!                                 Solve the system of equations 

      CALL LSLDH (A0, B0, X0) 

!                                 Unmap the results from the distributed 

!                                 arrays back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, X. 

      IF(MP_RANK .EQ. 0)CALL WRCRN (‘X‘, X, 1, N, 1) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, X0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

                                  X 

              1                2                3                4 

( 2.000, 1.000)  ( 3.000, 0.000)  (-1.000,-1.000)  ( 0.000,-2.000) 

              5 

( 3.000, 2.000) 

LFCDH 

 

 

 

Computes the R
H

 R factorization of a complex Hermitian positive definite matrix and estimate its 

L1 condition number. 

Required Arguments 

A — Complex N by N Hermitian positive definite matrix to be factored.   (Input) Only the 

upper triangle of A is referenced. 

FACT — Complex N by N matrix containing the upper triangular matrix R of the factorization 

of A in the upper triangle.   (Output)  

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share 

the same storage locations. 

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.   

(Output) 
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Optional Arguments 

N — Order of the matrix.      (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT --- Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.  (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFCDH (A, FACT, RCOND [,…]) 

Specific: The specific interface names are S_LFCDH and D_LFCDH. 

FORTRAN 77 Interface 

Single: CALL LFCDH (N, A, LDA, FACT, LDFACT, RCOND) 

Double:  The double precision name is DLFCDH. 

ScaLAPACK Interface 

Generic: CALL LFCDH (A0, FACT0, RCOND [,…]) 

Specific: The specific interface names are S_LFCDH and D_LFCDH. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFCDH computes an R
H

 R Cholesky factorization and estimates the condition number of a 

complex Hermitian positive definite coefficient matrix. The matrix R is upper triangular.  

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to 

compute ||A
-1

||1, the condition number is only estimated. The estimation algorithm is the same as 

used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system.  
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LFCDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive 

definite.  

The R
H

 R factors are returned in a form that is compatible with routines LFIDH, LFSDH and 

LFDDH. To solve systems of equations with multiple right-hand-side vectors, use LFCDH followed 

by either LFIDH or LFSDH called once for each right-hand side. The routine LFDDH can be called 

to compute the determinant of the coefficient matrix after LFCDH has performed the factorization.  

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending 

upon which supporting libraries are used during linking. For a detailed explanation see ―Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CDH/DL2CDH. The 

reference is:  

CALL L2CDH (N, A, LDA, FACT, LDFACT, RCOND, WK) 

The additional argument is 

WK — Complex work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is algorithmically singular. 

3 4 The input matrix is not Hermitian. It has a diagonal entry with a small 

imaginary part. 

4 4 The input matrix is not Hermitian. 

4 2 The input matrix is not positive definite. It has a diagonal entry with an 

imaginary part 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —  Complex MXLDA by MXCOL local matrix containing the local portions of the 

distributed matrix A.  A contains the Hermitian positive definite matrix to be factored.   

(Input) 

Only the upper triangle of A is referenced. 

FACT0 —  Complex MXLDA by MXCOL local matrix containing the local portions of the 

distributed matrix FACT.  FACT contains the upper triangular matrix R of the 

factorization of A in the upper triangle.   (Output) 

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share 

the same storage locations. 
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All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

The inverse of a 5 × 5 Hermitian positive definite matrix is computed. LFCDH is called to factor 

the matrix and to check for nonpositive definiteness or ill-conditioning. LFIDH is called to 

determine the columns of the inverse. 
 

      USE LFCDH_INT 

      USE LFIDH_INT 

      USE UMACH_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NOUT 

      PARAMETER  (LDA=5, LDFACT=5, N=5) 

      REAL       RCOND 

      COMPLEX    A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT),& 

                RES(N), RJ(N) 

! 

!                                 Set values for A 

! 

!        A =   (  2.0+0.0i  -1.0+1.0i   0.0+0.0i   0.0+0.0i   0.0+0.0i ) 

!              (             4.0+0.0i   1.0+2.0i   0.0+0.0i   0.0+0.0i ) 

!              (                       10.0+0.0i   0.0+4.0i   0.0+0.0i ) 

!              (                                  6.0+0.0i    1.0+1.0i ) 

!              (                                              9.0+0.0i ) 

! 

      DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),& 

             4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),& 

             (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/ 

!                                 Factor the matrix A 

      CALL LFCDH (A, FACT, RCOND) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = (0.0E0, 0.0E0) 

      DO 10  J=1, N 

         RJ(J) = (1.0E0,0.0E0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIDH 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFIDH (A, FACT, RJ, AINV(:,J), RES) 

         RJ(J) = (0.0E0,0.0E0) 

   10 CONTINUE 

!                                 Print the results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

      CALL WRCRN (‘AINV‘, AINV) 

 

! 
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99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.075 

L1 Condition number < 25.0 

 

                                   AINV 

                  1                  2                  3                 4 

1 ( 0.7166, 0.0000) ( 0.2166,-0.2166)  (-0.0899,-0.0300)  (-0.0207, 0.0622) 

2 ( 0.2166, 0.2166) ( 0.4332, 0.0000)  (-0.0599,-0.1198)  (-0.0829, 0.0415) 

3 (-0.0899, 0.0300) (-0.0599, 0.1198)  ( 0.1797, 0.0000)  ( 0.0000,-0.1244) 

4 (-0.0207,-0.0622) (-0.0829,-0.0415)  ( 0.0000, 0.1244)  ( 0.2592, 0.0000) 

5 ( 0.0092, 0.0046) ( 0.0138,-0.0046)  (-0.0138,-0.0138)  (-0.0288, 0.0288) 

                   5 

1  ( 0.0092,-0.0046) 

2  ( 0.0138, 0.0046) 

3  (-0.0138, 0.0138) 

4  (-0.0288,-0.0288) 

5 ( 0.1175, 0.0000) 

ScaLAPACK Example 

The inverse of the same 5 × 5 Hermitian positive definite matrix in the preceding example is 

computed as a distributed computing example. LFCDH is called to factor the matrix and to check 

for nonpositive definiteness or ill-conditioning. LFIDH (page 187) is called to determine the 

columns of the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see 

Utilities) used to map and unmap arrays to and from the processor grid. They are used here for 

brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local 

arrays. 
 

      USE MPI_SETUP_INT 

      USE LFCDH_INT 

      USE LFIDH_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  J, LDA, N, NOUT, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      REAL          RCOND 

      COMPLEX, ALLOCATABLE ::        A(:,:), AINV(:,:), RJ(:), RJ0(:) 

      COMPLEX, ALLOCATABLE ::        A0(:,:), FACT0(:,:), RES0(:), X0(:) 

      PARAMETER   (LDA=5, N=5) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), AINV(LDA,N)) 

!                                 Set values for A and B 

      A(1,:) = (/(2.0, 0.0),(-1.0, 1.0),( 0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/) 

      A(2,:) = (/(0.0, 0.0),( 4.0, 0.0),( 1.0, 2.0),(0.0, 0.0),(0.0, 0.0)/) 

      A(3,:) = (/(0.0, 0.0),( 0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/) 

      A(4,:) = (/(0.0, 0.0),( 0.0, 0.0),( 0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/) 
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      A(5,:) = (/(0.0, 0.0),( 0.0, 0.0),( 0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), & 

               RJ0(MXLDA), RES0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Factor the matrix A 

      CALL LFCDH (A0, FACT0, RCOND) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = (0.0E0, 0.0E0) 

      DO 10  J=1, N 

         RJ(J) = (1.0E0,0.0E0) 

         CALL SCALAPACK_MAP(RJ, DESCX, RJ0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIDH 

!                                 reference solves for the J-th column of 

!                                 the inverse of A  

         CALL LFIDH (A0, FACT0, RJ0, X0, RES0) 

!                                 Unmap the results from the distributed 

!                                 array back to a non-distributed array 

         CALL SCALAPACK_UNMAP(X0, DESCX, AINV(:,J)) 

         RJ(J) = (0.0E0,0.0E0) 

   10 CONTINUE 

!                                 Print the results. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      IF(MP_RANK .EQ. 0) THEN 

         CALL UMACH (2, NOUT) 

         WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

         CALL WRCRN (‘AINV‘, AINV) 

      ENDIF 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV) 

      DEALLOCATE(A0, FACT0, RJ, RJ0, RES0, X0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.075 

L1 Condition number < 25.0 
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                                   AINV 

                  1                  2                  3                 4 

1 ( 0.7166, 0.0000) ( 0.2166,-0.2166)  (-0.0899,-0.0300)  (-0.0207, 0.0622) 

2 ( 0.2166, 0.2166) ( 0.4332, 0.0000)  (-0.0599,-0.1198)  (-0.0829, 0.0415) 

3 (-0.0899, 0.0300) (-0.0599, 0.1198)  ( 0.1797, 0.0000)  ( 0.0000,-0.1244) 

4 (-0.0207,-0.0622) (-0.0829,-0.0415)  ( 0.0000, 0.1244)  ( 0.2592, 0.0000) 

5 ( 0.0092, 0.0046) ( 0.0138,-0.0046)  (-0.0138,-0.0138)  (-0.0288, 0.0288) 

                   5 

1  ( 0.0092,-0.0046) 

2  ( 0.0138, 0.0046) 

3  (-0.0138, 0.0138) 

4 (-0.0288,-0.0288) 

5 ( 0.1175, 0.0000) 

LFTDH 

 

 

 

Computes the R
H

R  factorization of  a complex Hermitian positive definite matrix. 

Required Arguments 

A — Complex N by N Hermitian positive definite matrix to be factored.   (Input) Only the 

upper triangle of A is referenced. 

FACT — Complex N by N matrix containing the upper triangular matrix R of the factorization 

of A in the upper triangle.   (Output)  

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share 

the same storage locations. 

Optional Arguments 

N — Order of the matrix.      (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFTDH (A, FACT [,…]) 
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Specific: The specific interface names are S_LFTDH and D_LFTDH. 

FORTRAN 77 Interface 

Single: CALL LFTDH (N, A, LDA, FACT, LDFACT) 

Double:  The double precision name is DLFTDH. 

ScaLAPACK Interface 

Generic: CALL LFTDH (A0, FACT0 [,…]) 

Specific: The specific interface names are S_LFTDH and D_LFTDH. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFTDH computes an R
H

 R Cholesky factorization of a complex Hermitian positive definite 

coefficient matrix. The matrix R is upper triangular. 

LFTDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive 

definite. 

The R
H

 R factors are returned in a form that is compatible with routines LFIDH, LFSDH and 

LFDDH. To solve systems of equations with multiple right-hand-side vectors, use LFCDH followed 

by either LFIDH or LFSDH called once for each right-hand side. The IMSL routine LFDDH can be 

called to compute the determinant of the coefficient matrix after LFCDH has performed the 

factorization. 

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending 

upon which supporting libraries are used during linking. For a detailed explanation see ―Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

Informational errors 

Type Code 

3 4 The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 

4 2 The input matrix is not positive definite. 

4 4 The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 
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ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   Complex MXLDA by MXCOL local matrix containing the local portions of the 

distributed matrix A.  A contains the Hermitian positive definite matrix to be factored.   

(Input) 

Only the upper triangle of A is referenced. 

FACT0 —   Complex MXLDA by MXCOL local matrix containing the local portions of the 

distributed matrix FACT.  FACT contains the upper triangular matrix R of the 

factorization of A in the upper triangle.   (Output) 

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share 

the same storage locations. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

The inverse of a 5 × 5 matrix is computed. LFTDH is called to factor the matrix and to check for 

nonpositive definiteness. LFSDH is called to determine the columns of the inverse. 
 

      USE LFTDH_INT 

      USE LFSDH_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N 

      PARAMETER  (LDA=5, LDFACT=5, N=5) 

      COMPLEX    A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N) 

! 

!                                 Set values for A 

! 

!        A =   (  2.0+0.0i  -1.0+1.0i   0.0+0.0i   0.0+0.0i   0.0+0.0i ) 

!              (             4.0+0.0i   1.0+2.0i   0.0+0.0i   0.0+0.0i ) 

!              (                       10.0+0.0i   0.0+4.0i   0.0+0.0i ) 

!              (                                  6.0+0.0i    1.0+1.0i ) 

!              (                                              9.0+0.0i ) 

! 

      DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),& 

             4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),& 

             (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/ 

!                                 Factor the matrix A 

      CALL LFTDH (A, FACT) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = (0.0E0,0.0E0) 

      DO 10  J=1, N 

         RJ(J) = (1.0E0,0.0E0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFSDH 

!                                 reference places the J-th column of 
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!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFSDH (FACT, RJ, AINV(:,J)) 

         RJ(J) = (0.0E0,0.0E0) 

   10 CONTINUE 

!                                 Print the results 

 

 

      CALL WRCRN (‘AINV‘, AINV, ITRING=1) 

! 

      END 

Output 
 

                                     AINV 

                  1                  2                  3                 4 

1 ( 0.7166, 0.0000) ( 0.2166,-0.2166)  (-0.0899,-0.0300)  (-0.0207, 0.0622) 

2                   ( 0.4332, 0.0000)  (-0.0599,-0.1198)  (-0.0829, 0.0415) 

3                                      ( 0.1797, 0.0000)  ( 0.0000,-0.1244) 

4                                                         ( 0.2592, 0.0000) 

                   5 

1  ( 0.0092,-0.0046) 

2  ( 0.0138, 0.0046) 

3  (-0.0138, 0.0138) 

4  (-0.0288,-0.0288) 

5  ( 0.1175, 0.0000) 

ScaLAPACK Example 

The inverse of the same 5 × 5 Hermitian positive definite matrix in the preceding example is 

computed as a distributed computing example. LFTDH is called to factor the matrix and to check 

for nonpositive definiteness. LFSDH (page 192) is called to determine the columns of the inverse. 

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map 

and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a 

ScaLAPACK tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFTDH_INT 

      USE LFSDH_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  J, LDA, N, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      COMPLEX, ALLOCATABLE ::        A(:,:), AINV(:,:), RJ(:), RJ0(:) 

      COMPLEX, ALLOCATABLE ::        A0(:,:), FACT0(:,:), X0(:) 

      PARAMETER   (LDA=5, N=5) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), AINV(LDA,N)) 

!                                 Set values for A and B 
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      A(1,:) = (/(2.0, 0.0),(-1.0, 1.0),( 0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/) 

      A(2,:) = (/(0.0, 0.0),( 4.0, 0.0),( 1.0, 2.0),(0.0, 0.0),(0.0, 0.0)/) 

      A(3,:) = (/(0.0, 0.0),( 0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/) 

      A(4,:) = (/(0.0, 0.0),( 0.0, 0.0),( 0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/) 

      A(5,:) = (/(0.0, 0.0),( 0.0, 0.0),( 0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), RJ(N), & 

               RJ0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Factor the matrix A 

      CALL LFTDH (A0, FACT0) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = (0.0E0, 0.0E0) 

      DO 10  J=1, N 

         RJ(J) = (1.0E0,0.0E0) 

         CALL SCALAPACK_MAP(RJ, DESCX, RJ0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIDH 

!                                 reference solves for the J-th column of 

!                                 the inverse of A  

         CALL LFSDH (FACT0, RJ0, X0) 

!                                 Unmap the results from the distributed 

!                                 array back to a non-distributed array 

         CALL SCALAPACK_UNMAP(X0, DESCX, AINV(:,J)) 

         RJ(J) = (0.0E0,0.0E0) 

   10 CONTINUE 

!                                 Print the results. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      IF(MP_RANK .EQ. 0) CALL WRCRN (‘AINV‘, AINV) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV) 

      DEALLOCATE(A0, FACT0, RJ, RJ0, X0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

                                   AINV 

                  1                  2                  3                 4 

1 ( 0.7166, 0.0000) ( 0.2166,-0.2166)  (-0.0899,-0.0300)  (-0.0207, 0.0622) 

2 ( 0.2166, 0.2166) ( 0.4332, 0.0000)  (-0.0599,-0.1198)  (-0.0829, 0.0415) 

3 (-0.0899, 0.0300) (-0.0599, 0.1198)  ( 0.1797, 0.0000)  ( 0.0000,-0.1244) 
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4 (-0.0207,-0.0622) (-0.0829,-0.0415)  ( 0.0000, 0.1244)  ( 0.2592, 0.0000) 

5 ( 0.0092, 0.0046) ( 0.0138,-0.0046)  (-0.0138,-0.0138)  (-0.0288, 0.0288) 

                   5 

1  ( 0.0092,-0.0046) 

2  ( 0.0138, 0.0046) 

3  (-0.0138, 0.0138) 

6 (-0.0288,-0.0288) 

7 ( 0.1175, 0.0000) 

LFSDH 

 

 

 

Solves a complex Hermitian positive definite system of linear equations given the R
H

 R 

factorization of the coefficient matrix. 

Required Arguments 

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as 

output from routine LFCDH/DLFCDH or LFTDH/DLFTDH.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFSDH (FACT, B, X [,…]) 

Specific: The specific interface names are S_LFSDH and D_LFSDH. 

FORTRAN 77 Interface 

Single: CALL LFSDH (N, FACT, LDFACT, B, X) 
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Double:  The double precision name is DLFSDH. 

ScaLAPACK Interface 

Generic: CALL LFSDH (FACT0, B0, X0 [,…]) 

Specific: The specific interface names are S_LFSDH and D_LFSDH. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LFSDH computes the solution for a system of linear algebraic equations having a complex 

Hermitian positive definite coefficient matrix. To compute the solution, the coefficient matrix 

must first undergo an R
H

 R factorization. This may be done by calling either LFCDH or LFTDH. R is 

an upper triangular matrix.  

The solution to Ax = b is found by solving the triangular systems R
H

 y = b and Rx = y.  

LFSDH and LFIDH both solve a linear system given its R
H

 R factorization. LFIDH generally takes 

more time and produces a more accurate answer than LFSDH. Each iteration of the iterative 

refinement algorithm used by LFIDH calls LFSDH.  

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending 

upon which supporting libraries are used during linking. For a detailed explanation see  

―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this 

manual. 

Comments 

Informational error  

Type Code 

4 1 The input matrix is singular. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

FACT0 —   MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix FACT as output from routine LFCDH/DLFCDH or LFTDH/DLFTDH.  

FACT contains the  factorization of the matrix A.   (Input) 

B0 —   Complex local vector of length MXLDA containing the local portions of the distributed 

vector B. B contains the right-hand side of the linear system.   (Input) 

X0 —   Complex local vector  of length MXLDA containing the local portions of the distributed 

vector X. X  contains the solution to the linear system.   (Output) 

If B is not needed, B and X can share the same storage locations. 
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All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

A set of linear systems is solved successively. LFTDH is called to factor the coefficient matrix. 

LFSDH is called to compute the four solutions for the four right-hand sides. In this case, the 

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be 

better to call LFCDH to perform the factorization, and LFIDH to compute the solutions. 
 

      USE LFSDH_INT 

      USE LFTDH_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N 

      PARAMETER  (LDA=5, LDFACT=5, N=5) 

      COMPLEX    A(LDA,LDA), B(N,3), FACT(LDFACT,LDFACT), X(N,3) 

 

!                                Set values for A and B 

! 

!        A =   (  2.0+0.0i  -1.0+1.0i   0.0+0.0i   0.0+0.0i   0.0+0.0i ) 

!              (             4.0+0.0i   1.0+2.0i   0.0+0.0i   0.0+0.0i ) 

!              (                       10.0+0.0i   0.0+4.0i   0.0+0.0i ) 

!              (                                  6.0+0.0i   1.0+1.0i ) 

!              (                                             9.0+0.0i ) 

! 

!        B =   (  3.0+3.0i    4.0+0.0i    29.0-9.0i ) 

!              (  5.0-5.0i   15.0-10.0i  -36.0-17.0i ) 

!              (  5.0+4.0i  -12.0-56.0i  -15.0-24.0i ) 

!              (  9.0+7.0i  -12.0+10.0i  -23.0-15.0i ) 

!              (-22.0+1.0i    3.0-1.0i   -23.0-28.0i ) 

 

      DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),& 

             4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),& 

             (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/ 

      DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0),& 

             (4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.0,10.0),& 

             (3.0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),& 

             (-23.0,-15.0), (-23.0,-28.0)/ 

 

!                                 Factor the matrix A 

      CALL LFTDH (A, FACT) 

!                                 Compute the solutions 

      DO 10  I=1, 3 

         CALL LFSDH (FACT, B(:,I), X(:,I)) 

   10 CONTINUE 

!                                 Print solutions 

      CALL WRCRN (‘X‘, X) 

! 

      END 
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Output 
 

                           X 

                 1                2                3 

1  (  1.00,  0.00)  (  3.00, -1.00)  ( 11.00, -1.00) 

2  (  1.00, -2.00)  (  2.00,  0.00)  ( -7.00,  0.00) 

3  (  2.00,  0.00)  ( -1.00, -6.00)  ( -2.00, -3.00) 

4  (  2.00,  3.00)  (  2.00,  1.00)  ( -2.00, -3.00) 

5  ( -3.00,  0.00)  (  0.00,  0.00)  ( -2.00, -3.00) 

ScaLAPACK Example 

The same set of linear systems as in in the preceding example is solved successively as a 

distributed computing example. LFTDH is called to factor the matrix. LFSDH  is called to compute 

the four solutions for the four right-hand sides. In this case, the coefficient matrix is assumed to be 

well-conditioned and correctly scaled. Otherwise, it would be better to call LFCDH to perform the 

factorization, and LFIDH to compute the solutions. 

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map 

and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a 

ScaLAPACK tools routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFTDH_INT 

      USE LFSDH_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  J, LDA, N, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      COMPLEX, ALLOCATABLE ::        A(:,:), B(:,:), B0(:), X(:,:) 

      COMPLEX, ALLOCATABLE ::        A0(:,:), FACT0(:,:), X0(:) 

      PARAMETER   (LDA=5, N=5) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

       ALLOCATE (A(LDA,N), B(LDA,3), X(LDA,3)) 

!                                 Set values for A and B 

       A(1,:) = (/(2.0, 0.0),(-1.0, 1.0),( 0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/) 

       A(2,:) = (/(0.0, 0.0),( 4.0, 0.0),( 1.0, 2.0),(0.0, 0.0),(0.0, 0.0)/) 

       A(3,:) = (/(0.0, 0.0),( 0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/) 

       A(4,:) = (/(0.0, 0.0),( 0.0, 0.0),( 0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/) 

       A(5,:) = (/(0.0, 0.0),( 0.0, 0.0),( 0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/) 

! 

       B(1,:) = (/(3.0,  3.0), (  4.0,  0.0), ( 29.0, -9.0)/) 

       B(2,:) = (/(5.0, -5.0), ( 15.0,-10.0), (-36.0,-17.0)/) 

       B(3,:) = (/(5.0,  4.0), (-12.0,-56.0), (-15.0,-24.0)/) 

       B(4,:) = (/(9.0,  7.0), (-12.0, 10.0), (-23.0,-15.0)/) 

       B(5,:) = (/(-22.0,1.0), (  3.0, -1.0), (-23.0,-28.0)/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 
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!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), & 

               B0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Factor the matrix A 

      CALL LFTDH (A0, FACT0) 

!                                 Compute the solutions 

      DO 10  J=1, 3 

         CALL SCALAPACK_MAP(B(:,J), DESCX, B0) 

         CALL LFSDH (FACT0, B0, X0) 

!                                 Unmap the results from the distributed 

!                                 array back to a non-distributed array 

         CALL SCALAPACK_UNMAP(X0, DESCX, X(:,J)) 

   10 CONTINUE 

!                                 Print the results. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      IF(MP_RANK .EQ. 0) CALL WRCRN (‘X‘, X) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, FACT0, X0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

                           X 

                 1                2                3 

1  (  1.00,  0.00)  (  3.00, -1.00)  ( 11.00, -1.00) 

2  (  1.00, -2.00)  (  2.00,  0.00)  ( -7.00,  0.00) 

3  (  2.00,  0.00)  ( -1.00, -6.00)  ( -2.00, -3.00) 

4  (  2.00,  3.00)  (  2.00,  1.00)  ( -2.00, -3.00) 

5  ( -3.00,  0.00)  (  0.00,  0.00)  ( -2.00, -3.00) 

LFIDH 

 

 

 

Uses iterative refinement to improve the solution of a complex Hermitian positive definite system 

of linear equations. 
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Required Arguments 

A — Complex N by N matrix containing the coefficient matrix of the linear system.   (Input)  

Only the upper triangle of A is referenced. 

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as 

output from routine LFCDH/DLFCDH or LFTDH/DLFTDH.   (Input)  

Only the upper triangle of FACT is used. 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution.   (Output) 

RES — Complex vector of length N containing the residual vector at the improved solution.   

(Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFIDH (A, FACT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIDH and D_LFIDH. 

FORTRAN 77 Interface 

Single: CALL LFIDH (N, A, LDA, FACT, LDFACT, B, X, RES) 

Double:  The double precision name is DLFIDH. 

ScaLAPACK Interface 

Generic: CALL LFIDH (A0, FACT0, B0, X0, RES0 [,…]) 

Specific: The specific interface names are S_LFIDH and D_LFIDH. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 
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Description 

Routine LFIDH computes the solution of a system of linear algebraic equations having a complex 

Hermitian positive definite coefficient matrix. Iterative refinement is performed on the solution 

vector to improve the accuracy. Usually almost all of the digits in the solution are accurate, even if 

the matrix is somewhat ill-conditioned. 

To compute the solution, the coefficient matrix must first undergo an R
H

 R factorization. This may 

be done by calling either LFCDH or LFTDH. 

Iterative refinement fails only if the matrix is very ill-conditioned. 

LFIDH and LFSDH both solve a linear system given its R
H

 R factorization. LFIDH generally takes 

more time and produces a more accurate answer than LFSDH. Each iteration of the iterative 

refinement algorithm used by LFIDH calls LFSDH. 

Comments 

Informational error 

Type Code 

3 3 The input matrix is too ill-conditioned for iterative refinement to be 

effective. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —  MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix A.  A contains the coefficient matrix of the linear system.   (Input) 

Only the upper triangle of A is referenced. 

FACT0 —  MXLDA by MXCOL complex local matrix containing the local portions of the 

distributed matrix FACT as output from routine LFCDH or LFTDH.  FACT contains the 

factorization of the matrix A.   (Input) 

Only the upper triangle of FACT is referenced. 

B0 —   Complex local vector of length MXLDA containing the local portions of the distributed 

vector B. B contains the right-hand side of the linear system.   (Input) 

X0 —  Complex local vector  of length MXLDA containing the local portions of the distributed 

vector X. X  contains the solution to the linear system.   (Output) 

RES0 —  Complex local vector  of length MXLDA containing the local portions of the 

distributed vector RES. RES  contains the residual vector at the improved solution to the 

linear system.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call to 

SCALAPACK_GETDIM (Utilities) after a call to  SCALAPACK_SETUP  

(Chapter 11, Utilities) has been made. See the ScaLAPACK Example below. 
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Example 

A set of linear systems is solved successively. The right-hand-side vector is perturbed by adding 

(1 + i)/2 to the second element after each call to LFIDH. 
 

      USE LFIDH_INT 

      USE LFCDH_INT 

      USE UMACH_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N 

      PARAMETER  (LDA=5, LDFACT=5, N=5) 

      REAL       RCOND 

      COMPLEX    A(LDA,LDA), B(N), FACT(LDFACT,LDFACT), RES(N,3), X(N,3) 

! 

!                                 Set values for A and B 

! 

!        A =   (  2.0+0.0i  -1.0+1.0i   0.0+0.0i   0.0+0.0i   0.0+0.0i ) 

!              (             4.0+0.0i   1.0+2.0i   0.0+0.0i   0.0+0.0i ) 

!              (                       10.0+0.0i   0.0+4.0i   0.0+0.0i ) 

!              (                                  6.0+0.0i    1.0+1.0i ) 

!              (                                              9.0+0.0i ) 

! 

!        B =   ( 3.0+3.0i  5.0-5.0i  5.0+4.0i  9.0+7.0i  -22.0+1.0i ) 

! 

      DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),& 

             4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),& 

             (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/ 

      DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/ 

!                                 Factor the matrix A 

      CALL LFCDH (A, FACT, RCOND) 

!                                 Print the estimated condition number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

!                                 Compute the solutions, then perturb B 

      DO 10  I=1, 3 

         CALL LFIDH (A, FACT, B, X(:,I), RES(:,I)) 

         B(2) = B(2) + (0.5E0,0.5E0) 

   10 CONTINUE 

!                                 Print solutions and residuals 

      CALL WRCRN (‘X‘, X) 

      CALL WRCRN (‘RES‘, RES) 

! 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.07 

L1 Condition number < 25.0 

 

                       X 

                 1                2                3 

1  ( 1.000, 0.000)  ( 1.217, 0.000)  ( 1.433, 0.000) 

2  ( 1.000,-2.000)  ( 1.217,-1.783)  ( 1.433,-1.567) 

3  ( 2.000, 0.000)  ( 1.910, 0.030)  ( 1.820, 0.060) 
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4  ( 2.000, 3.000)  ( 1.979, 2.938)  ( 1.959, 2.876) 

5  (-3.000, 0.000)  (-2.991, 0.005)  (-2.982, 0.009) 

 

                                 RES 

                        1                        2                        3 

1 ( 1.192E-07, 0.000E+00)  ( 6.592E-08, 1.686E-07)  ( 1.318E-07, 2.010E-14) 

2 ( 1.192E-07,-2.384E-07)  (-5.329E-08,-5.329E-08)  ( 1.318E-07,-2.258E-07) 

3 ( 2.384E-07, 8.259E-08)  ( 2.390E-07,-3.309E-08)  ( 2.395E-07, 1.015E-07) 

4 (-2.384E-07, 2.814E-14)  (-8.240E-08,-8.790E-09)  (-1.648E-07,-1.758E-08) 

5 (-2.384E-07,-1.401E-08)  (-2.813E-07, 6.981E-09)  (-3.241E-07,-2.795E-08) 

ScaLAPACK Example 

As in the preceding example, a set of linear systems is solved successively as a distributed 

computing example. The right-hand-side vector is perturbed by adding (1 + i)/2 to the second 

element after each call to LFIDH. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility 

routines (see Utilities) used to map and unmap arrays to and from the processor grid. They are 

used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors 

for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LFCDH_INT 

      USE LFIDH_INT 

      USE UMACH_INT 

      USE WRCRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  J, LDA, N, NOUT, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 

      REAL          RCOND 

      COMPLEX, ALLOCATABLE ::        A(:,:), B(:), B0(:), RES(:,:), X(:,:) 

      COMPLEX, ALLOCATABLE ::        A0(:,:), FACT0(:,:), X0(:), RES0(:) 

      PARAMETER   (LDA=5, N=5) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

       ALLOCATE (A(LDA,N), B(N), RES(N,3), X(N,3)) 

!                                 Set values for A and B 

       A(1,:) = (/(2.0, 0.0),(-1.0, 1.0),( 0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/) 

       A(2,:) = (/(0.0, 0.0),( 4.0, 0.0),( 1.0, 2.0),(0.0, 0.0),(0.0, 0.0)/) 

       A(3,:) = (/(0.0, 0.0),( 0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/) 

       A(4,:) = (/(0.0, 0.0),( 0.0, 0.0),( 0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/) 

       A(5,:) = (/(0.0, 0.0),( 0.0, 0.0),( 0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/) 

! 

       B     = (/(3.0, 3.0),( 5.0,-5.0),( 5.0, 4.0),(9.0, 7.0),(-22.0,1.0)/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 
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      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE(A0(MXLDA,MXCOL), X0(MXLDA),FACT0(MXLDA,MXCOL), & 

               B0(MXLDA), RES0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Factor the matrix A 

      CALL LFCDH (A0, FACT0, RCOND) 

!                                 Print the estimated condition number 

      IF(MP_RANK .EQ. 0) THEN 

         CALL UMACH (2, NOUT) 

         WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

      ENDIF 

!                                 Compute the solutions 

      DO 10  J=1, 3 

         CALL SCALAPACK_MAP(B, DESCX, B0) 

         CALL LFIDH (A0, FACT0, B0, X0, RES0) 

!                                 Unmap the results from the distributed 

!                                 array back to a non-distributed array 

         CALL SCALAPACK_UNMAP(X0, DESCX, X(:,J)) 

         CALL SCALAPACK_UNMAP(RES0, DESCX, RES(:,J)) 

         IF(MP_RANK .EQ. 0) B(2) = B(2) + (0.5E0, 0.5E0) 

   10 CONTINUE 

!                                 Print the results. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      IF(MP_RANK .EQ. 0) THEN 

         CALL WRCRN (‘X‘, X) 

         CALL WRCRN (‘RES‘, RES) 

      ENDIF 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, RES, X) 

      DEALLOCATE(A0, B0, FACT0, RES0, X0) 

 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.07 

L1 Condition number < 25.0 

 

                       X 

                 1                2                3 

1  ( 1.000, 0.000)  ( 1.217, 0.000)  ( 1.433, 0.000) 

2  ( 1.000,-2.000)  ( 1.217,-1.783)  ( 1.433,-1.567) 

3  ( 2.000, 0.000)  ( 1.910, 0.030)  ( 1.820, 0.060) 

4  ( 2.000, 3.000)  ( 1.979, 2.938)  ( 1.959, 2.876) 

5  (-3.000, 0.000)  (-2.991, 0.005)  (-2.982, 0.009) 

 

                                 RES 

                        1                        2                        3 

1 ( 1.192E-07, 0.000E+00)  ( 6.592E-08, 1.686E-07)  ( 1.318E-07, 2.010E-14) 
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2 ( 1.192E-07,-2.384E-07)  (-5.329E-08,-5.329E-08)  ( 1.318E-07,-2.258E-07) 

3 ( 2.384E-07, 8.259E-08)  ( 2.390E-07,-3.309E-08)  ( 2.395E-07, 1.015E-07) 

4 (-2.384E-07, 2.814E-14)  (-8.240E-08,-8.790E-09)  (-1.648E-07,-1.758E-08) 

5 (-2.384E-07,-1.401E-08)  (-2.813E-07, 6.981E-09)  (-3.241E-07,-2.795E-08) 

LFDDH 

Computes the determinant of a complex Hermitian positive definite matrix given the R
H

R 

Cholesky factorization of the matrix. 

Required Arguments 

FACT — Complex N by N matrix containing the R
H

R factorization of the coefficient matrix A 

as output from routine LFCDH/DLFCDH or LFTDH/DLFTDH.   (Input) 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  

The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  

The determinant is returned in the form det(A) = DET1 * 10DET2. 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFDDH (FACT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDDH and D_LFDDH. 

FORTRAN 77 Interface 

Single: CALL LFDDH (N, FACT, LDFACT, DET1, DET2) 

Double:  The double precision name is DLFDDH. 

Description 

Routine LFDDH computes the determinant of a complex Hermitian positive definite coefficient 

matrix. To compute the determinant, the coefficient matrix must first undergo an R
H

 R 

factorization. This may be done by calling either LFCDH or LFTDH. The formula det A = det R
H

 det 
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R = (det R)
2
 is used to compute the determinant. Since the determinant of a triangular matrix is the 

product of the diagonal elements,  

1
det

N

iii
R R




 

(The matrix R is stored in the upper triangle of FACT.) 

LFDDH is based on the LINPACK routine CPODI; see Dongarra et al. (1979). 

Example 

The determinant is computed for a complex Hermitian positive definite 3 × 3 matrix. 
 

      USE LFDDH_INT 

      USE LFTDH_INT 

      USE UMACH_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, NOUT 

      PARAMETER  (LDA=3, LDFACT=3) 

      REAL       DET1, DET2 

      COMPLEX    A(LDA,LDA), FACT(LDFACT,LDFACT) 

! 

!                                 Set values for A 

! 

!        A =   (  6.0+0.0i   1.0-1.0i   4.0+0.0i ) 

!              (  1.0+1.0i   7.0+0.0i  -5.0+1.0i ) 

!              (  4.0+0.0i  -5.0-1.0i  11.0+0.0i ) 

! 

      DATA A /(6.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (7.0,0.0),& 

             (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (11.0,0.0)/ 

!                                 Factor the matrix 

      CALL LFTDH (A, FACT) 

!                                 Compute the determinant 

      CALL LFDDH (FACT, DET1, DET2) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) DET1, DET2 

! 

99999 FORMAT (‘ The determinant of A is ‘,F6.3,‘ * 10**‘,F2.0) 

      END 

Output 
 

The determinant of A is  1.400 * 10**2. 

LSAHF 

 

 

 

Solves a complex Hermitian system of linear equations with iterative refinement. 
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Required Arguments 

A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.   

(Input)  

Only the upper triangle of A is referenced. 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA  = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LSAHF (A, B, X [,…]) 

Specific: The specific interface names are S_LSAHF and D_LSAHF. 

FORTRAN 77 Interface 

Single: CALL LSAHF (N, A, LDA, B, X) 

Double:  The double precision name is DLSAHF. 

Description 

Routine LSAHF solves systems of linear algebraic equations having a complex Hermitian 

indefinite coefficient matrix. It first uses the routine LFCHF to compute a U DU
H 

factorization of 

the coefficient matrix and to estimate the condition number of the matrix. D is a block diagonal 

matrix with blocks of order 1 or 2 and U is a matrix composed of the product of a permutation 

matrix and a unit upper triangular matrix. The solution of the linear system is then found using the 

iterative refinement routine LFIHF. 

LSAHF fails if a block in D is singular or if the iterative refinement algorithm fails to converge. 

These errors occur only if A is singular or very close to a singular matrix. 

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system. LSAHF solves the 

problem that is represented in the computer; however, this problem may differ from the problem 

whose solution is desired. 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of L2AHF/DL2AHF. The 

reference is:  

CALL L2AHF (N, A, LDA, B, X, FACT, IPVT, CWK) 

The additional arguments are as follows: 

FACT — Complex work vector of length N
2
 containing information about the 

U DU
H

 factorization of A on output. 

IPVT — Integer work vector of length N containing the pivoting information 

for the factorization of A on output. 

CWK — Complex work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is algorithmically singular. 

3 4 The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 

4 2 The input matrix singular. 

4 4 The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2AHF the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSAHF. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSAHF. Users directly calling L2AHF can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSAHF or L2AHF. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L1 condition number is to be 

computed. Routine LSAHF temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CHF computes the condition number if IVAL(2) = 2. Otherwise L2CHF 

skips this computation. LSAHF restores the option. Default values for the option 

are  

IVAL(*) = 1, 2. 
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Example 

A system of three linear equations is solved. The coefficient matrix has complex Hermitian form 

and the right-hand-side vector b has three elements. 
 

      USE LSAHF_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

      COMPLEX    A(LDA,LDA), B(N), X(N) 

! 

!                               Set values for A and B 

! 

!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 

!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 

!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 

! 

!                               B = ( 7.0+32.0i -39.0-21.0i 51.0+9.0i ) 

! 

      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 

            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 

      DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/ 

! 

      CALL LSAHF (A, B, X) 

!                                 Print results 

      CALL WRCRN (‘X‘, X, 1, N, 1) 

      END 

Output 
 

                        X 

              1                2                3 

(  2.00,  1.00)  (-10.00, -1.00)  (  3.00,  5.00) 

LSLHF 

 

 

 

Solves a complex Hermitian system of linear equations without iterative refinement. 

Required Arguments 

A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.   

(Input)  

Only the upper triangle of A is referenced. 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 
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X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LSLHF (A, B, X [,…]) 

Specific: The specific interface names are S_LSLHF and D_LSLHF. 

FORTRAN 77 Interface 

Single: CALL LSLHF (N, A, LDA, B, X) 

Double:  The double precision name is DLSLHF. 

Description 

Routine LSLHF solves systems of linear algebraic equations having a complex Hermitian 

indefinite coefficient matrix. It first uses the routine LFCHF to compute a UDU
H

 factorization of 

the coefficient matrix. D is a block diagonal matrix with blocks of order 1 or 2 and U is a matrix 

composed of the product of a permutation matrix and a unit upper triangular matrix.  

The solution of the linear system is then found using the routine LFSHF. LSLHF fails if a block in 

D is singular. This occurs only if A is singular or very close to a singular matrix. If the coefficient 

matrix is ill-conditioned or poorly scaled, it is recommended that LSAHF be used. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LHF/DL2LHF. The 

reference is:  

CALL L2LHF (N, A, LDA, B, X, FACT, IPVT, CWK) 

The additional arguments are as follows: 

FACT — Complex work vector of length N
2
 containing information about the 

UDU
H

 factorization of A on output. 

IPVT — Integer work vector of length N containing the pivoting information 

for the factorization of A on output. 
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CWK — Complex work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is algorithmically singular. 

3 4 The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 

4 2 The input matrix singular. 

4  4 The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2LHF the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLHF. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSLHF. Users directly calling L2LHF can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSLHF or L2LHF. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L1 condition number is to be 

computed. Routine LSLHF temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CHF computes the condition number if IVAL(2) = 2. Otherwise L2CHF 

skips this computation. LSLHF restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

Example 

A system of three linear equations is solved. The coefficient matrix has complex Hermitian form 

and the right-hand-side vector b has three elements. 
 

      USE LSLHF_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

      COMPLEX    A(LDA,LDA), B(N), X(N) 

! 

!                               Set values for A and B 

! 

!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 

!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 

!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 
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! 

!                               B = ( 7.0+32.0i -39.0-21.0i 51.0+9.0i ) 

! 

      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 

            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 

      DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/ 

! 

      CALL LSLHF (A, B, X) 

!                                 Print results 

      CALL WRCRN (‘X‘, X, 1, N, 1) 

      END 

Output 
 

                        X 

              1                2                3 

(  2.00,  1.00)  (-10.00, -1.00)  (  3.00,  5.00) 

LFCHF 

 

 

 

Computes the UDU
H

 factorization of a complex Hermitian matrix and estimate its L1 condition 

number. 

Required Arguments 

A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.   

(Input)  

Only the upper triangle of A is referenced. 

FACT — Complex N by N matrix containing the information about the factorization of the 

Hermitian matrix A.   (Output)  

Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the 

same storage locations. 

IPVT — Vector of length N containing the pivoting information for the factorization.   

(Output) 

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.   

(Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFCHF (A, FACT, IPVT, RCOND [,…]) 

Specific: The specific interface names are S_LFCHF and D_LFCHF. 

FORTRAN 77 Interface 

Single: CALL LFCHF (N, A, LDA, FACT, LDFACT, IPVT, RCOND) 

Double:  The double precision name is DLFCHF. 

Description 

Routine LFCHF performs a U DU
H

 factorization of a complex Hermitian indefinite coefficient 

matrix. It also estimates the condition number of the matrix. The U DU
H

 factorization is called the 

diagonal pivoting factorization.  

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A
-1

||1. Since it is expensive to 

compute ||A
-1

||1,  the condition number is only estimated. The estimation algorithm is the same as 

used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCHF fails if A is singular or very close to a singular matrix.  

The U DU
H

 factors are returned in a form that is compatible with routines LFIHF, LFSHF and 

LFDHF. To solve systems of equations with multiple right-hand-side vectors, use LFCHF followed 

by either LFIHF or LFSHF called once for each right-hand side. The routine LFDHF can be called 

to compute the determinant of the coefficient matrix after LFCHF has performed the factorization.  

The underlying code is based on either LINPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CHF/DL2CHF. The 

reference is: 
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CALL L2CHF (N, A, LDA, FACT, LDFACT, IPVT, RCOND, CWK) 

The additional argument is: 

CWK — Complex work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is algorithmically singular. 

3 4 The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 

4 2 The input matrix is singular. 

4 4 The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

Example 

The inverse of a 3 × 3 complex Hermitian matrix is computed. LFCHF is called to factor the 

matrix and to check for singularity or ill-conditioning. LFIHF is called to determine the columns 

of the inverse. 
 

      USE LFCHF_INT 

      USE UMACH_INT 

      USE LFIHF_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

      INTEGER    IPVT(N), NOUT 

      REAL       RCOND 

      COMPLEX    A(LDA,LDA), AINV(LDA,N), FACT(LDA,LDA), RJ(N), RES(N) 

!                               Set values for A 

! 

!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 

!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 

!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 

! 

      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 

            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 

!                                 Set output unit number 

      CALL UMACH (2, NOUT) 

!                                 Factor A and return the reciprocal 

!                                 condition number estimate 

      CALL LFCHF (A, FACT, IPVT, RCOND) 

!                                 Print the estimate of the condition 

!                                 number 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = (0.0E0,0.0E0) 

      DO 10  J=1, N 



     

     
 

268  Chapter 1: Linear Systems IMSL MATH LIBRARY  

     

     

 

         RJ(J) = (1.0E0, 0.0E0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIHF 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFIHF (A, FACT, IPVT, RJ, AINV(:,J), RES) 

         RJ(J) = (0.0E0, 0.0E0) 

   10 CONTINUE 

!                                 Print the inverse 

      CALL WRCRN (‘AINV‘, AINV) 

! 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < 0.25 

L1 Condition number <  6.0 

 

                           AINV 

                   1                  2                  3 

1  ( 0.2000, 0.0000)  ( 0.1200, 0.0400)  ( 0.0800,-0.0400) 

2  ( 0.1200,-0.0400)  ( 0.1467, 0.0000)  (-0.1267,-0.0067) 

3  ( 0.0800, 0.0400)  (-0.1267, 0.0067)  (-0.0267, 0.0000) 

LFTHF 

 

 

 

Computes the U DU
H

 factorization of a complex Hermitian matrix. 

Required Arguments 

A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.   

(Input)  

Only the upper triangle of A is referenced. 

FACT — Complex N by N matrix containing the information about the factorization of the 

Hermitian matrix A.   (Output)  

Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the 

same storage locations. 

IPVT — Vector of length N containing the pivoting information for the factorization.   

(Output) 
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Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFTHF (A, FACT, IPVT [,…]) 

Specific: The specific interface names are S_LFTHF and D_LFTHF. 

FORTRAN 77 Interface 

Single: CALL LFTHF (N, A, LDA, FACT, LDFACT, IPVT) 

Double:  The double precision name is DLFTHF. 

Description 

Routine LFTHF performs a U DU
H

 factorization of a complex Hermitian indefinite coefficient 

matrix. The U DU
H

 factorization is called the diagonal pivoting factorization. 

LFTHF fails if A is singular or very close to a singular matrix. 

The U DU
H

 factors are returned in a form that is compatible with routines LFIHF, LFSHF and 

LFDHF. To solve systems of equations with multiple right-hand-side vectors, use LFTHF followed 

by either LFIHF or LFSHF called once for each right-hand side. The routine LFDHF can be called 

to compute the determinant of the coefficient matrix after LFTHF has performed the factorization. 

The underlying code is based on either LINPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

Informational errors 

Type Code 

3 4 The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 

4 2 The input matrix is singular. 
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4 4 The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

Example 

The inverse of a 3 × 3 matrix is computed. LFTHF is called to factor the matrix and check for 

singularity. LFSHF is called to determine the columns of the inverse. 
 

      USE LFTHF_INT 

      USE LFSHF_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

      INTEGER    IPVT(N) 

      COMPLEX    A(LDA,LDA), AINV(LDA,N), FACT(LDA,LDA), RJ(N) 

! 

!                               Set values for A 

! 

!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 

!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 

!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 

! 

      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 

            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 

!                                 Factor A 

      CALL LFTHF (A, FACT, IPVT) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = (0.0E0,0.0E0) 

      DO 10  J=1, N 

         RJ(J) = (1.0E0, 0.0E0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFSHF 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFSHF (FACT, IPVT, RJ, AINV(:,J)) 

         RJ(J) = (0.0E0, 0.0E0) 

   10 CONTINUE 

!                                 Print the inverse 

      CALL WRCRN (‘AINV‘, AINV) 

      END 

Output 
 

                            AINV 

                   1                  2                  3 

1  ( 0.2000, 0.0000)  ( 0.1200, 0.0400)  ( 0.0800,-0.0400) 

2  ( 0.1200,-0.0400)  ( 0.1467, 0.0000)  (-0.1267,-0.0067) 

3  ( 0.0800, 0.0400)  (-0.1267, 0.0067)  (-0.0267, 0.0000) 
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LFSHF 

 

 

 

Solves a complex Hermitian system of linear equations given the U DU
H

 factorization of the 

coefficient matrix. 

Required Arguments 

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as 

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.   (Input) 

Only the upper triangle of FACT is used. 

IPVT — Vector of length N containing the pivoting information for the factorization of A as 

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFSHF (FACT, IPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSHF and D_LFSHF. 

FORTRAN 77 Interface 

Single: CALL LFSHF (N, FACT, LDFACT, IPVT, B, X) 

Double:  The double precision name is DLFSHF. 
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Description 

Routine LFSHF computes the solution of a system of linear algebraic equations having a complex 

Hermitian indefinite coefficient matrix.  

To compute the solution, the coefficient matrix must first undergo a U DU
H

 factorization. This 

may be done by calling either LFCHF or LFTHF.  

LFSHF and LFIHF both solve a linear system given its U DU
H

 factorization. LFIHF generally takes 

more time and produces a more accurate answer than LFSHF. Each iteration of the iterative 

refinement algorithm used by LFIHF calls LFSHF.  

The underlying code is based on either LINPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Example 

A set of linear systems is solved successively. LFTHF is called to factor the coefficient matrix. 

LFSHF is called to compute the three solutions for the three right-hand sides. In this case the 

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be 

better to call LFCHF to perform the factorization, and LFIHF to compute the solutions. 
 

      USE LFSHF_INT 

      USE WRCRN_INT 

      USE LFTHF_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

      INTEGER    IPVT(N), I 

      COMPLEX    A(LDA,LDA), B(N,3), X(N,3), FACT(LDA,LDA) 

! 

!                               Set values for A and B 

! 

!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 

!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 

!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 

! 

!                               B = (  7.0+32.0i -6.0+11.0i -2.0-17.0i ) 

!                                   (-39.0-21.0i -5.5-22.5i  4.0+10.0i ) 

!                                   ( 51.0+ 9.0i 16.0+17.0i -2.0+12.0i ) 

! 

      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 

            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 

      DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0), (-6.0,11.0),& 

            (-5.5,-22.5), (16.0,17.0), (-2.0,-17.0), (4.0,10.0),& 

            (-2.0,12.0)/ 

!                                 Factor A 

      CALL LFTHF (A, FACT, IPVT) 

!                                 Solve for the three right-hand sides 

      DO 10  I=1, 3 

         CALL LFSHF (FACT, IPVT, B(:,I), X(:,I)) 

   10 CONTINUE 

!                                 Print results 

      CALL WRCRN (‘X‘, X) 
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      END 

Output 
 

                           X 

                 1                2                3 

1  (  2.00,  1.00)  (  1.00,  0.00)  (  0.00, -1.00) 

2  (-10.00, -1.00)  ( -3.00, -4.00)  (  0.00, -2.00) 

3  (  3.00,  5.00)  ( -0.50,  3.00)  (  0.00, -3.00) 

LFIHF 

 

 

 

Uses iterative refinement to improve the solution of a complex Hermitian system of linear 

equations. 

Required Arguments 

A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.   

(Input)  

Only the upper triangle of A is referenced. 

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as 

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.   (Input) 

Only the upper triangle of FACT is used. 

IPVT — Vector of length N containing the pivoting information for the factorization of A as 

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution.   (Output) 

RES — Complex vector of length N containing the residual vector at the improved solution.   

(Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 
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LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFIHF (A, FACT, IPVT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIHF and D_LFIHF. 

FORTRAN 77 Interface 

Single: CALL LFIHF (N, A, LDA, FACT, LDFACT, IPVT, B, X, RES) 

Double:  The double precision name is DLFIHF. 

Description 

Routine LFIHF computes the solution of a system of linear algebraic equations having a complex 

Hermitian indefinite coefficient matrix. 

Iterative refinement is performed on the solution vector to improve the accuracy. Usually almost 

all of the digits in the solution are accurate, even if the matrix is somewhat ill-conditioned. 

To compute the solution, the coefficient matrix must first undergo a U DU
H

 factorization. This 

may be done by calling either LFCHF or LFTHF. 

Iterative refinement fails only if the matrix is very ill-conditioned. 

LFIHF and LFSHF both solve a linear system given its U DU
H

 factorization. LFIHF generally takes 

more time and produces a more accurate answer than LFSHF. Each iteration of the iterative 

refinement algorithm used by LFIHF calls LFSHF. 

Comments 

Informational error 

Type Code 

3 3 The input matrix is too ill-conditioned for iterative refinement to be 

effective. 

Example 

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving 

the system each of the first two times by adding 0.2 + 0.2i to the second element. 
 

      USE LFIHF_INT 

      USE UMACH_INT 

      USE LFCHF_INT 

      USE WRCRN_INT 

!                                 Declare variables 
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      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

      INTEGER    IPVT(N), NOUT 

      REAL       RCOND 

      COMPLEX    A(LDA,LDA), B(N), X(N), FACT(LDA,LDA), RES(N) 

! 

! 

!                               Set values for A and B 

! 

!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 

!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 

!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 

! 

!                               B = ( 7.0+32.0i -39.0-21.0i 51.0+9.0i ) 

! 

      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 

            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 

      DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/ 

!                                 Set output unit number 

      CALL UMACH (2, NOUT) 

!                                 Factor A and compute the estimate 

!                                 of the reciprocal condition number 

      CALL LFCHF (A, FACT, IPVT, RCOND) 

      WRITE (NOUT,99998) RCOND, 1.0E0/RCOND 

!                                 Solve, then perturb right-hand side 

      DO 10  I=1, 3 

         CALL LFIHF (A, FACT, IPVT, B, X, RES) 

!                                 Print results 

         WRITE (NOUT,99999) I 

         CALL WRCRN (‘X‘, X, 1, N, 1) 

         CALL WRCRN (‘RES‘, RES, 1, N, 1) 

         B(2) = B(2) + (0.2E0, 0.2E0) 

   10 CONTINUE 

! 

99998 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

99999 FORMAT (//,‘  For problem ‘, I1) 

      END 

Output 
 

RCOND < 0.25 

L1 Condition number <  5.0 

For problem 1 

                        X 

              1                2                3 

(  2.00,  1.00)  (-10.00, -1.00)  (  3.00,  5.00) 

 

                                    RES 

                      1                        2                        3 

( 2.384E-07,-4.768E-07)  ( 0.000E+00,-3.576E-07)  (-1.421E-14, 1.421E-14) 

 

For problem 2 

                        X 

              1                2                3 

( 2.016, 1.032)  (-9.971,-0.971)  ( 2.973, 4.976) 

 

                                   RES 
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                      1                        2                        3 

( 2.098E-07,-1.764E-07)  ( 6.231E-07,-1.518E-07)  ( 1.272E-07, 4.005E-07) 

 

For problem 3 

                        X 

              1                2                3 

( 2.032, 1.064)  (-9.941,-0.941)  ( 2.947, 4.952) 

 

                                   RES 

                      1                        2                        3 

( 4.196E-07,-3.529E-07)  ( 2.925E-07,-3.632E-07)  ( 2.543E-07, 3.242E-07) 

LFDHF 

Computes the determinant of a complex Hermitian matrix given the U DU
H

 factorization of the 

matrix. 

Required Arguments 

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as 

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.   (Input) 

Only the upper triangle of FACT is used. 

IPVT — Vector of length N containing the pivoting information for the factorization of A as 

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.   (Input) 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  

The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  

The determinant is returned in the form det(A) = DET1 * 10DET2. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFDHF (FACT, IPVT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDHF and D_LFDHF. 
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FORTRAN 77 Interface 

Single: CALL LFDHF (N, FACT, LDFACT, IPVT, DET1, DET2) 

Double:  The double precision name is DLFDHF. 

Description 

Routine LFDHF computes the determinant of a complex Hermitian indefinite coefficient matrix. To 

compute the determinant, the coefficient matrix must first undergo a U DU
H

 factorization. This 

may be done by calling either LFCHF or LFTHF since det U = ±1, the formula  

det A = det U det D det U
H

 = det D is used to compute the determinant. det D is computed as the 

product of the determinants of its blocks.  

LFDHF is based on the LINPACK routine CSIDI; see Dongarra et al. (1979). 

Example 

The determinant is computed for a complex Hermitian 3 × 3 matrix. 
 

      USE LFDHF_INT 

      USE LFTHF_INT 

      USE UMACH_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

      INTEGER    IPVT(N), NOUT 

      REAL       DET1, DET2 

      COMPLEX    A(LDA,LDA), FACT(LDA,LDA) 

! 

!                               Set values for A 

! 

!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 

!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 

!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 

! 

      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 

            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 

!                                 Factor A 

      CALL LFTHF (A, FACT, IPVT) 

!                                 Compute the determinant 

      CALL LFDHF (FACT, IPVT, DET1, DET2) 

!                                 Print the results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) DET1, DET2 

! 

99999 FORMAT (‘ The determinant is‘, F5.1, ‘ * 10**‘, F2.0) 

      END 

Output 
 

The determinant is -1.5 * 10**2. 
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LSLTR 
Solves a real tridiagonal system of linear equations. 

Required Arguments 

C — Vector of length N containing the subdiagonal of the tridiagonal matrix in C(2) through 

C(N).   (Input/Output)  

On output C is destroyed. 

D — Vector of length N containing the diagonal of the tridiagonal matrix.   (Input/Output)  

On output D is destroyed. 

E — Vector of length N containing the superdiagonal of the tridiagonal matrix in E(1) through 

E(N − 1).   (Input/Output)  

On output E is destroyed. 

B — Vector of length N containing the right-hand side of the linear system on entry and the 

solution vector on return.   (Input/Output) 

Optional Arguments 

N — Order of the tridiagonal matrix.   (Input) 

Default: N = size (C,1). 

FORTRAN 90 Interface 

Generic: CALL LSLTR (C, D, E, B [,…]) 

Specific: The specific interface names are S_LSLTR and D_LSLTR. 

FORTRAN 77 Interface 

Single: CALL LSLTR (N, C, D, E, B) 

Double:  The double precision name is DLSLTR. 

Description 

Routine LSLTR factors and solves the real tridiagonal linear system  Ax = b.  LSLTR is intended 

just for tridiagonal systems. The coefficient matrix does not have to be symmetric. The algorithm 

is Gaussian elimination with partial pivoting for numerical stability. See Dongarra (1979), 

LINPACK subprograms SGTSL/DGTSL, for details. When computing on vector or parallel 

computers the cyclic reduction algorithm, LSLCR, should be considered as an alternative method 

to solve the system. 
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Comments 

Informational error 

Type Code 

4 2 An element along the diagonal became exactly zero during 

execution. 

Example 

A system of n = 4 linear equations is solved. 
 

      USE LSLTR_INT 

      USE WRRRL_INT 

!                                 Declaration of variables 

      INTEGER    N 

      PARAMETER  (N=4) 

! 

      REAL       B(N), C(N), D(N), E(N) 

      CHARACTER  CLABEL(1)*6, FMT*8, RLABEL(1)*4 

! 

      DATA FMT/‘(E13.6)‘/ 

      DATA CLABEL/‘NUMBER‘/ 

      DATA RLABEL/‘NONE‘/ 

!                                 C(*), D(*), E(*), and B(*) 

!                                 contain the subdiagonal, diagonal, 

!                                 superdiagonal and right hand side. 

      DATA C/0.0, 0.0, -4.0, 9.0/, D/6.0, 4.0, -4.0, -9.0/ 

      DATA E/-3.0, 7.0, -8.0, 0.0/, B/48.0, -81.0, -12.0, -144.0/ 

! 

! 

      CALL LSLTR (C, D, E, B) 

!                                 Output the solution. 

      CALL WRRRL (‘Solution:‘, B, RLABEL, CLABEL, 1, N, 1, FMT=FMT) 

      END 

Output 
 

Solution: 

        1              2              3              4 

0.400000E+01  -0.800000E+01  -0.700000E+01   0.900000E+01 

LSLCR 
Computes the L DU factorization of a real tridiagonal matrix  A using a cyclic reduction algorithm. 

Required Arguments 

C — Array of size 2N containing the upper codiagonal of the N by N tridiagonal matrix in the 

entries C(1), …, C(N − 1).   (Input/Output) 

A — Array of size 2N containing the diagonal of the N by N tridiagonal matrix in the entries 

A(1), …, A(N).   (Input/Output) 
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B — Array of size 2N containing the lower codiagonal of the N by N tridiagonal matrix in the 

entries B(1), …, B(N − 1).   (Input/Output) 

Y — Array of size 2N containing the right hand side for the system Ax = y in the order Y(1), 

…, Y(N).   (Input/Output)  The vector x overwrites Y in storage. 

U — Array of size 2N of flags that indicate any singularities of A.   (Output)  

A value U(I) = 1. means that a divide by zero would have occurred during the factoring. 

Otherwise U(I) = 0. 

IR — Array of integers that determine the sizes of loops performed in the cyclic reduction 

algorithm.   (Output) 

IS — Array of integers that determine the sizes of loops performed in the cyclic reduction 

algorithm.   (Output)  

The sizes of IR and IS must be at least log2 (N) + 3. 

Optional Arguments 

N — Order of the matrix.   (Input)  

N must be greater than zero 

Default: N = size (C,1). 

IJOB — Flag to direct the desired factoring or solving step.   (Input)  

Default: IJOB = 1. 

IJOB Action 

1 Factor the matrix A and solve the system Ax = y, where y 

is stored in array Y. 

2 Do the solve step only. Use y from array Y. (The 

factoring step has already been done.) 

3 Factor the matrix A but do not solve a system. 

4, 5, 6 Same meaning as with the value IJOB = 3. For 

efficiency, no error checking is done on the validity of 

any input value. 

FORTRAN 90 Interface 

Generic: CALL LSLCR (C, A, B, Y, U, IR, IS [,…]) 

Specific: The specific interface names are S_LSLCR and D_LSLCR. 
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FORTRAN 77 Interface 

Single: CALL LSLCR (N, C, A, B, IJOB, Y, U, IR, IS) 

Double:  The double precision name is DLSLCR. 

Description 

Routine LSLCR factors and solves the real tridiagonal linear system Ax = y. The matrix is 

decomposed in the form A = L DU, where L is unit lower triangular, U is unit upper triangular, 

and D is diagonal. The algorithm used for the factorization is effectively that described in Kershaw 

(1982). More details, tests and experiments are reported in Hanson (1990). 

LSLCR is intended just for tridiagonal systems. The coefficient matrix does not have to be 

symmetric. The algorithm amounts to Gaussian elimination, with no pivoting for numerical 

stability, on the matrix whose rows and columns are permuted to a new order. See Hanson (1990) 

for details. The expectation is that LSLCR will outperform either LSLTR or LSLPB on vector or 

parallel computers. Its performance may be inferior for small values of n, on scalar computers, or 

high-performance computers with non-optimizing compilers. 

Example 

A system of n = 1000 linear equations is solved. The coefficient matrix is the symmetric matrix of 

the second difference operation, and the right-hand-side vector y is the first column of the identity 

matrix. Note that an, n= 1. The solution vector will be the first column of the inverse matrix of A. 

Then a new system is solved where y is now the last column of the identity matrix. The solution 

vector for this system will be the last column of the inverse matrix. 
 

      USE LSLCR_INT 

      USE UMACH_INT 

!                                 Declare variables 

      INTEGER    LP, N, N2 

      PARAMETER  (LP=12, N=1000, N2=2*N) 

! 

      INTEGER    I, IJOB, IR(LP), IS(LP), NOUT 

      REAL       A(N2), B(N2), C(N2), U(N2), Y1(N2), Y2(N2) 

! 

!                                 Define matrix entries: 

      DO 10  I=1, N - 1 

         C(I)    = -1.E0 

         A(I)    = 2.E0 

         B(I)    = -1.E0 

         Y1(I+1) = 0.E0 

         Y2(I)   = 0.E0 

   10 CONTINUE 

      A(N)  = 1.E0 

      Y1(1) = 1.E0 

      Y2(N) = 1.E0 

! 

!                                 Obtain decomposition of matrix and 

!                                 solve the first system: 

      IJOB = 1 

      CALL LSLCR (C, A, B, Y1, U, IR, IS, IJOB=IJOB) 

! 
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!                                 Solve the second system with the 

!                                 decomposition ready: 

      IJOB = 2 

      CALL LSLCR (C, A, B, Y2, U, IR, IS, IJOB=IJOB) 

      CALL UMACH (2, NOUT) 

 

 

      WRITE (NOUT,*) ‘ The value of n is:  ‘, N 

      WRITE (NOUT,*) ‘ Elements 1, n of inverse matrix columns 1 ‘//& 

                    ‘and   n:‘, Y1(1), Y2(N) 

      END 

Output 
 

The value of n is:    1000 

Elements 1, n of inverse matrix columns 1 and   n:    1.00000   1000.000 

LSARB  

 

 

 

Solves a real system of linear equations in band storage mode with iterative refinement. 

Required Arguments 

A — (NLCA + NUCA + 1) by N array containing the N by N banded coefficient matrix in band 

storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 
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IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX= B is solved. 

IPATH = 2 means the system A
T
X = B is solved. 

Default: IPATH =1. 

FORTRAN 90 Interface 

Generic: CALL LSARB (A, NLCA, NUCA, B, X [,…]) 

Specific: The specific interface names are S_LSARB and D_LSARB. 

FORTRAN 77 Interface 

Single: CALL LSARB (N, A, LDA, NLCA, NUCA, B, IPATH, X) 

Double:  The double precision name is DLSARB. 

Description 

Routine LSARB solves a system of linear algebraic equations having a real banded coefficient 

matrix. It first uses the routine LFCRB to compute an LU factorization of the coefficient matrix and 

to estimate the condition number of the matrix. The solution of the linear system is then found 

using the iterative refinement routine LFIRB. 

LSARB fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the 

iterative refinement algorithm fails to converge. These errors occur only if A is singular or very 

close to a singular matrix. 

If the estimated condition number is greater than 1∕ ɛ (where ε is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system. LSARB solves the 

problem that is represented in the computer; however, this problem may differ from the problem 

whose solution is desired. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2ARB/DL2ARB. The 

reference is: 

CALL L2ARB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — Work vector of length (2 * NLCA + NUCA + 1) × N containing the LU 

factorization of A on output. 

IPVT — Work vector of length N containing the pivoting information for the 

LU factorization of A on output. 

WK — Work vector of length N. 
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2. Informational errors 

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2ARB the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSARB. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSARB. Users directly calling L2ARB can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSARB or L2ARB. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17  This option has two values that determine if the L1 condition number is to be 

computed. Routine LSARB temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CRB computes the condition number if IVAL(2) = 2. Otherwise L2CRB 

skips this computation. LSARB restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

Example 

A system of four linear equations is solved. The coefficient matrix has real banded form with 1 

upper and 1 lower codiagonal. The right-hand-side vector b has four elements. 
 

      USE LSARB_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N, NLCA, NUCA 

      PARAMETER  (LDA=3, N=4, NLCA=1, NUCA=1) 

      REAL       A(LDA,N), B(N), X(N) 

!                                 Set values for A in band form, and B 

! 

!                                 A = (  0.0  -1.0  -2.0   2.0) 

!                                     (  2.0   1.0  -1.0   1.0) 

!                                     ( -3.0   0.0   2.0   0.0) 

! 

!                                 B = (  3.0   1.0  11.0  -2.0) 

! 

      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 

            2.0, 1.0, 0.0/ 

      DATA B/3.0, 1.0, 11.0, -2.0/ 

! 

      CALL LSARB (A, NLCA, NUCA, B, X) 
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!                                 Print results 

      CALL WRRRN (‘X‘, X, 1, N, 1) 

! 

      END 

Output 
 

               X 

    1       2       3       4 

2.000   1.000  -3.000   4.000 

LSLRB  

 

 

 

Solves a real system of linear equations in band storage mode without iterative refinement. 

Required Arguments 

A — (NLCA + NUCA + 1) by N array containing the N by N banded coefficient matrix in band 

storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX= B is solved. 

IPATH = 2 means the system A
T
X = B is solved. 

Default: IPATH = 1. 
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FORTRAN 90 Interface 

Generic: CALL LSLRB (A, NLCA, NUCA, B, X [,…]) 

Specific: The specific interface names are S_LSLRB and D_LSLRB. 

FORTRAN 77 Interface 

Single: CALL LSLRB (N, A, LDA, NLCA, NUCA, B, IPATH, X) 

Double:  The double precision name is DLSLRB. 

ScaLAPACK Interface 

Generic: CALL LSLRB (A0, NLCA, NUCA, B0, X0 [,…]) 

Specific: The specific interface names are S_LSLRB and D_LSLRB. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LSLRB solves a system of linear algebraic equations having a real banded coefficient 

matrix. It first uses the routine LFCRB to compute an LU factorization of the coefficient matrix and 

to estimate the condition number of the matrix. The solution of the linear system is then found 

using LFSRB. LSLRB fails if U, the upper triangular part of the factorization, has a zero diagonal 

element. This occurs only if A is singular or very close to a singular matrix. If the estimated 

condition number is greater than 1/ε (where ε is machine precision), a warning error is issued. This 

indicates that very small changes in A can cause very large changes in the solution x. If the 

coefficient matrix is ill-conditioned or poorly scaled, it is recommended that LSARB be used. 

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending 

upon which supporting libraries are used during linking.  For a detailed explanation see “Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LRB/DL2LRB. The 

reference is: 

CALL L2LRB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — (2 × NLCA + NUCA + 1) × N containing the LU factorization of A on 

output. If A is not needed, A can share the first (NLCA + NUCA + 1) * N 

storage locations with FACT. 
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IPVT — Work vector of length N containing the pivoting information for the 

LU factorization of A on output. 

WK — Work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2LRB the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLRB. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSLRB. Users directly calling L2LRB can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSLRB or L2LRB. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L1 condition number is to be 

computed. Routine LSLRB temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CRB computes the condition number if IVAL(2) = 2. Otherwise L2CRB 

skips this computation. LSLRB restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   (2*NLCA + 2*NUCA+1) by MXCOL local matrix containing the local portions of the 

distributed matrix A.  A contains the N by N banded coefficient matrix in band storage 

mode.   (Input) 

B0 —   Local vector of length MXCOL containing the local portions of the distributed vector B. 

B contains the right-hand side of the linear system.   (Input) 

X0 —   Local vector  of length MXCOL containing the local portions of the distributed vector X. 

X  contains the solution to the linear system.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above, MXCOL can be obtained through a call to 

SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 
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Example 

A system of four linear equations is solved. The coefficient matrix has real banded form with 1 

upper and 1 lower codiagonal. The right-hand-side vector b has four elements. 
 

      USE LSLRB_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N, NLCA, NUCA 

      PARAMETER  (LDA=3, N=4, NLCA=1, NUCA=1) 

      REAL       A(LDA,N), B(N), X(N) 

!                                 Set values for A in band form, and B 

! 

!                                 A = (  0.0  -1.0  -2.0   2.0) 

!                                     (  2.0   1.0  -1.0   1.0) 

!                                     ( -3.0   0.0   2.0   0.0) 

! 

!                                 B = (  3.0   1.0  11.0  -2.0) 

! 

      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 

            2.0, 1.0, 0.0/ 

      DATA B/3.0, 1.0, 11.0, -2.0/ 

! 

      CALL LSLRB (A, NLCA, NUCA, B, X) 

!                                 Print results 

      CALL WRRRN (‘X‘, X, 1, N, 1) 

! 

      END 

Output 
 

              X 

    1       2       3       4 

2.000   1.000  -3.000   4.000 

ScaLAPACK Example 

The same system of four linear equations is solved as a distributed computing example. The 

coefficient matrix has real banded form with 1 upper and 1 lower codiagonal. The right-hand-side 

vector b has four elements. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines 

(see Utilities) used to map and unmap arrays to and from the processor grid. They are used here 

for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the 

local arrays. 

 

      USE MPI_SETUP_INT 

      USE LSLRB_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  LDA, M, N, NLCA, NUCA, NRA, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA 
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      REAL, ALLOCATABLE ::        A(:,:), B(:), X(:) 

      REAL, ALLOCATABLE ::        A0(:,:), B0(:), X0(:) 

      PARAMETER   (LDA=3, N=6, NLCA=1, NUCA=1) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,N), B(N), X(N)) 

!                                 Set values for A and B 

          A(1,:) = (/  0.0,   0.0,  -3.0,   0.0, -1.0, -3.0/) 

          A(2,:) = (/ 10.0,  10.0,  15.0,  10.0,  1.0,  6.0/) 

          A(3,:) = (/  0.0,   0.0,   0.0,  -5.0,  0.0,  0.0/) 

! 

          B      = (/ 10.0,   7.0,  45.0,  33.0, -34.0, 31.0/) 

      ENDIF 

      NRA = NLCA + NUCA + 1 

      M = 2*NLCA + 2*NUCA + 1 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

CALL SCALAPACK_SETUP(M, N, .FALSE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

CALL SCALAPACK_GETDIM(M, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Reset MXLDA to M 

MXLDA = M 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA,NRA,N,MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO) 

      CALL DESCINIT(DESCX, 1, N, 1, MP_NB, 0, 0, MP_ICTXT, 1, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), B0(MXCOL), X0(MXCOL)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      CALL SCALAPACK_MAP(B, DESCX, B0, 1, .FALSE.) 

!                                 Solve the system of equations 

      CALL LSLRB (A0, NLCA, NUCA, B0, X0) 

!                                 Unmap the results from the distributed 

!                                 arrays back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X, 1, .FALSE.) 

!                                Print results. 

!                                Only Rank=0 has the solution, X. 

      IF(MP_RANK .EQ. 0)CALL WRRRN (‘X‘, X, 1, N, 1) 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X) 

      DEALLOCATE(A0, B0, X0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 
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Output 
 

              X 

    1       2       3       4        5       6 

1.000   1.600   3.000   2.900   -4.000   5.167 

LFCRB  

 

 

 

Computes the LU factorization of a real matrix in band storage mode and estimate its L1 condition 

number. 

Required Arguments 

A — (NLCA + NUCA + 1) by N array containing the N by N matrix in band storage mode to be 

factored.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the matrix A.   

(Output)  

If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT. 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   

(Output) 

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.   

(Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  291 

     

     

 

FORTRAN 90 Interface 

Generic: CALL LFCRB (A, NLCA, NUCA, FACT, IPVT, RCOND [,…]) 

Specific: The specific interface names are S_LFCRB and D_LFCRB. 

FORTRAN 77 Interface 

Single: CALL LFCRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND) 

Double:  The double precision name is DLFCRB. 

Description 

Routine LFCRB performs an LU factorization of a real banded coefficient matrix. It also estimates 

the condition number of the matrix. The LU factorization is done using scaled partial pivoting. 

Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the same as if 

each row were scaled to have the same ∞-norm.  

The L1 condition number of the matrix A is defined to be 

κ(A) = ǀǀAǀǀ1ǀǀA
-1ǀǀ1 

Since it is expensive to compute 

ǀǀA-1ǀǀ1 

 the condition number is only estimated. The estimation algorithm is the same as used by 

LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system.  

LSCRB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 

can occur only if A is singular or very close to a singular matrix. The LU factors are returned in a 

form that is compatible with routines LFIRB, LFSRB and LFDRB. To solve systems of equations 

with multiple right-hand-side vectors, use LFCRB followed by either LFIRB or LFSRB called once 

for each right-hand side. The routine LFDRB can be called to compute the determinant of the 

coefficient matrix after LFCRB has performed the factorization.  

Let F be the matrix FACT, let ml= NLCA and let mu = NUCA. The first ml+ mu + 1 rows of F contain 

the triangular matrix U in band storage form. The lower ml rows of F contain the multipliers 

needed to reconstruct L-1
 .  

The underlying code is based on either LINPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CRB/DL2CRB. The 

reference is: 
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CALL L2CRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND, WK) 

The additional argument is: 

WK — Work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is algorithmically singular. 

4 2 The input matrix is singular. 

Example 

The inverse of a 4 × 4 band matrix with one upper and one lower codiagonal is computed. LFCRB 

is called to factor the matrix and to check for singularity or ill-conditioning. LFIRB is called to 

determine the columns of the inverse. 
 

      USE LFCRB_INT 

      USE UMACH_INT 

      USE LFIRB_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NLCA, NUCA, NOUT 

      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 

      INTEGER    IPVT(N) 

      REAL       A(LDA,N), AINV(N,N), FACT(LDFACT,N), RCOND, RJ(N), RES(N) 

!                                 Set values for A in band form 

!                                 A = (  0.0  -1.0  -2.0   2.0) 

!                                     (  2.0   1.0  -1.0   1.0) 

!                                     ( -3.0   0.0   2.0   0.0) 

! 

      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 

            2.0, 1.0, 0.0/ 

! 

      CALL LFCRB (A, NLCA, NUCA, FACT, IPVT, RCOND) 

!                                 Print the reciprocal condition number 

!                                 and the L1 condition number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0E0 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIRB 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFIRB (A, NLCA, NUCA, FACT, IPVT, RJ, AINV(:,J), RES) 
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         RJ(J) = 0.0E0 

   10 CONTINUE 

!                                 Print results 

      CALL WRRRN (‘AINV‘, AINV) 

 

 

! 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND < .07 

L1 Condition number = 25.0 

 

               AINV 

        1       2       3       4 

1  -1.000  -1.000   0.400  -0.800 

2  -3.000  -2.000   0.800  -1.600 

3   0.000   0.000  -0.200   0.400 

4   0.000   0.000   0.400   0.200 

LFTRB  

 

 

 

Computes the LU factorization of a real matrix in band storage mode. 

Required Arguments 

A — (NLCA + NUCA + 1) by N array containing the N by N matrix in band storage mode to be 

factored.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the matrix A.   

(Output)  

If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT. 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   

(Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFTRB (A, NLCA, NUCA, FACT [,…]) 

Specific: The specific interface names are S_LFTRB and D_LFTRB. 

FORTRAN 77 Interface 

Single: CALL LFTRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT) 

Double:  The double precision name is DLFTRB. 

Description 

Routine LFTRB performs an LU factorization of a real banded coefficient matrix using Gaussian 

elimination with partial pivoting. A failure occurs if U, the upper triangular factor, has a zero 

diagonal element. This can happen if A is close to a singular matrix. The LU factors are returned in 

a form that is compatible with routines LFIRB, LFSRB and LFDRB. To solve systems of equations 

with multiple right-hand-side vectors, use LFTRB followed by either LFIRB or LFSRB called once 

for each right-hand side. The routine LFDRB can be called to compute the determinant of the 

coefficient matrix after LFTRB has performed the factorization  

Let ml = NLCA, and let mu = NUCA. The first ml + mu + 1 rows of FACT contain the triangular 

matrix U in band storage form. The next ml rows of FACT contain the multipliers needed to 

produce L.  

The routine LFTRB is based on the the blocked LU factorization algorithm for banded linear 

systems given in Du Croz, et al. (1990). Level-3 BLAS invocations were replaced by in-line loops. 

The blocking factor nb has the default value 1 in LFTRB. It can be reset to any positive value not 

exceeding 32. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2TRB/DL2TRB. The 

reference is: 

CALL L2TRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, WK) 

The additional argument is: 

WK — Work vector of length N used for scaling. 
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2 Informational error 

Type Code 

4 2 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

21  The performance of the LU factorization may improve on high-performance 

computers if the blocking factor, NB, is increased. The current version of the 

routine allows NB to be reset to a value no larger than 32. Default value is  

NB = 1. 

Example 

A linear system with multiple right-hand sides is solved. LFTRB is called to factor the coefficient 

matrix. LFSRB is called to compute the two solutions for the two right-hand sides. In this case the 

coefficient matrix is assumed to be appropriately scaled. Otherwise, it may be better to call routine 

LFCRB to perform the factorization, and LFIRB to compute the solutions. 
 

      USE LFTRB_INT 

      USE LFSRB_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NLCA, NUCA 

      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 

      INTEGER    IPVT(N) 

      REAL       A(LDA,N), B(N,2), FACT(LDFACT,N), X(N,2) 

!                                 Set values for A in band form, and B 

! 

!                                 A = (  0.0  -1.0  -2.0   2.0) 

!                                     (  2.0   1.0  -1.0   1.0) 

!                                     ( -3.0   0.0   2.0   0.0) 

! 

!                                 B = ( 12.0 -17.0) 

!                                     (-19.0  23.0) 

!                                     (  6.0   5.0) 

!                                     (  8.0   5.0) 

! 

      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 

            2.0, 1.0, 0.0/ 

      DATA B/12.0, -19.0, 6.0, 8.0, -17.0, 23.0, 5.0, 5.0/ 

!                                 Compute factorization 

      CALL LFTRB (A, NLCA, NUCA, FACT, IPVT) 

!                                 Solve for the two right-hand sides 

      DO 10  J=1, 2 

         CALL LFSRB (FACT, NLCA, NUCA, IPVT, B(:,J), X(:,J)) 

   10 CONTINUE 

!                                 Print results 

      CALL WRRRN (‘X‘, X) 

! 

      END 

Output 
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        X 

        1       2 

1   3.000  -8.000 

2  -6.000   1.000 

3   2.000   1.000 

4   4.000   3.000 

LFSRB  

 

 

 

Solves a real system of linear equations given the LU factorization of the coefficient matrix in 

band storage mode. 

Required Arguments 

FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the coefficient 

matrix A as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 

as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
T
X = B is solved. 

Default: IPATH = 1. 
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FORTRAN 90 Interface 

Generic: CALL LFSRB (FACT, NLCA, NUCA, IPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSRB and D_LFSRB. 

FORTRAN 77 Interface 

Single: CALL LFSRB (N, FACT, LDFACT, NLCA, NUCA, IPVT, B, IPATH, X) 

Double:  The double precision name is DLFSRB. 

Description 

Routine LFSRB computes the solution of a system of linear algebraic equations having a real 

banded coefficient matrix. To compute the solution, the coefficient matrix must first undergo an 

LU factorization. This may be done by calling either LFCRB or LFTRB. The solution to Ax = b is 

found by solving the banded triangular systems Ly = b and Ux = y. The forward elimination step 

consists of solving the system Ly = b by applying the same permutations and elimination 

operations to b that were applied to the columns of A in the factorization routine. The backward 

substitution step consists of solving the banded triangular system Ux = y for x.  

LFSRB and LFIRB both solve a linear system given its LU factorization. LFIRB generally takes 

more time and produces a more accurate answer than LFSRB. Each iteration of the iterative 

refinement algorithm used by LFIRB calls LFSRB.  

The underlying code is based on either LINPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Example 

The inverse is computed for a real banded 4 × 4 matrix with one upper and one lower codiagonal. 

The input matrix is assumed to be well-conditioned, hence LFTRB is used rather than LFCRB. 
 

    USE LFSRB_INT 

      USE LFTRB_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NLCA, NUCA 

      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 

      INTEGER    IPVT(N) 

      REAL       A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N) 

!                                 Set values for A in band form 

!                                 A = (  0.0  -1.0  -2.0   2.0) 

!                                     (  2.0   1.0  -1.0   1.0) 

!                                     ( -3.0   0.0   2.0   0.0) 

! 

      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 

            2.0, 1.0, 0.0/ 

! 

      CALL LFTRB (A, NLCA, NUCA, FACT, IPVT) 

!                                 Set up the columns of the identity 
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!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0E0 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFSRB 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFSRB (FACT, NLCA, NUCA, IPVT, RJ, AINV(:,J)) 

         RJ(J) = 0.0E0 

   10 CONTINUE 

!                                 Print results 

      CALL WRRRN (‘AINV‘, AINV) 

! 

      END 

Output 
 

              AINV 

        1       2       3       4 

1  -1.000  -1.000   0.400  -0.800 

2  -3.000  -2.000   0.800  -1.600 

3   0.000   0.000  -0.200   0.400 

4   0.000   0.000   0.400   0.200 

LFIRB  

 

 

 

Uses iterative refinement to improve the solution of a real system of linear equations in band 

storage mode. 

Required Arguments 

A — (NUCA +NLCA +1) by N array containing the N by N banded coefficient matrix in band 

storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

FACT — (2 * NLCA +NUCA +1) by N array containing the LU factorization of the matrix A as 

output from routines LFCRB/DLFCRB or LFTRB/DLFTRB.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 

as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB.   (Input) 
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B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

RES — Vector of length N containing the residual vector at the improved  

solution . (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
T
X = B is solved. 

Default: IPATH =1. 

FORTRAN 90 Interface 

Generic: CALL LFIRB (A, NLCA, NUCA, FACT, IPVT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIRB and D_LFIRB. 

FORTRAN 77 Interface 

Single: CALL LFIRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, B, IPATH, X, 
RES) 

Double:  The double precision name is DLFIRB. 

Description 

Routine LFIRB computes the solution of a system of linear algebraic equations having a real 

banded coefficient matrix. Iterative refinement is performed on the solution vector to improve the 

accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is 

somewhat ill-conditioned. 

To compute the solution, the coefficient matrix must first undergo an LU factorization. This may 

be done by calling either LFCRB or LFTRB. 

Iterative refinement fails only if the matrix is very ill-conditioned. 
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LFIRB and LFSRB both solve a linear system given its LU factorization. LFIRB generally takes 

more time and produces a more accurate answer than LFSRB. Each iteration of the iterative 

refinement algorithm used by LFIRB calls LFSRB. 

Comments 

Informational error 

Type Code 

3 2 The input matrix is too ill-conditioned for iterative refinement to be 

effective 

Example 

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving 

the system each of the first two times by adding 0.5 to the second element. 
 

      USE LFIRB_INT 

      USE LFCRB_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NLCA, NUCA, NOUT 

      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 

      INTEGER    IPVT(N) 

      REAL       A(LDA,N), B(N), FACT(LDFACT,N), RCOND, RES(N), X(N) 

!                                 Set values for A in band form, and B 

! 

!                                 A = (  0.0  -1.0  -2.0   2.0) 

!                                     (  2.0   1.0  -1.0   1.0) 

!                                     ( -3.0   0.0   2.0   0.0) 

! 

!                                 B = (  3.0   5.0   7.0  -9.0) 

! 

      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 

            2.0, 1.0, 0.0/ 

      DATA B/3.0, 5.0, 7.0, -9.0/ 

! 

      CALL LFCRB (A, NLCA, NUCA, FACT, IPVT, RCOND) 

!                                 Print the reciprocal condition number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

!                                 Solve the three systems 

      DO 10  J=1, 3 

         CALL LFIRB (A, NLCA, NUCA, FACT, IPVT, B, X, RES) 

!                                 Print results 

         CALL WRRRN (‘X‘, X, 1, N, 1) 

!                                 Perturb B by adding 0.5 to B(2) 

         B(2) = B(2) + 0.5E0 

   10 CONTINUE 

! 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 
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Output 
 

RCOND < .07 

L1 Condition number = 25.0 

                X 

    1       2       3       4 

2.000   1.000  -5.000   1.000 

 

                X 

    1       2       3       4 

1.500   0.000  -5.000   1.000 

 

                X 

    1       2       3       4 

1.000  -1.000  -5.000   1.000 

LFDRB  
Computes the determinant of a real matrix in band storage mode given the LU factorization of the 

matrix. 

Required Arguments 

FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the matrix A as 

output from routine LFTRB/DLFTRB or LFCRB/DLFCRB.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization as 

output from routine LFTRB/DLFTRB or LFCRB/DLFCRB.   (Input) 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  

The value DET1 is normalized so that 1.0 ≤ ǀDET1ǀ < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  

The determinant is returned in the form det(A) = DET1 * 10DET2. 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 
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FORTRAN 90 Interface 

Generic: CALL LFDRB (FACT, NLCA, NUCA, IPVT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDRB and D_LFDRB. 

FORTRAN 77 Interface 

Single:  CALL LFDRB (N, FACT, LDFACT, NLCA, NUCA, IPVT, DET1, DET2) 

Double:  The double precision name is DLFDRB. 

Description 

Routine LFDRB computes the determinant of a real banded coefficient matrix. To compute the 

determinant, the coefficient matrix must first undergo an LU factorization. This may be done by 

calling either LFCRB or LFTRB. The formula det A = det L det U is used to compute the 

determinant. Since the determinant of a triangular matrix is the product of the diagonal elements,  

1
det

N

i iiU U



 

(The matrix U is stored in the upper NUCA + NLCA + 1 rows of FACT as a banded matrix.) Since L 

is the product of triangular matrices with unit diagonals and of permutation matrices, det L = (−1)
k
, 

where k is the number of pivoting interchanges.  

LFDRB is based on the LINPACK routine CGBDI; see Dongarra et al. (1979). 

Example 

The determinant is computed for a real banded 4 × 4 matrix with one upper and one lower 

codiagonal. 
 

      USE LFDRB_INT 

      USE LFTRB_INT 

      USE UMACH_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NLCA, NUCA, NOUT 

      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 

      INTEGER    IPVT(N) 

      REAL       A(LDA,N), DET1, DET2, FACT(LDFACT,N) 

!                                 Set values for A in band form 

!                                 A = (  0.0  -1.0  -2.0   2.0) 

!                                     (  2.0   1.0  -1.0   1.0) 

!                                     ( -3.0   0.0   2.0   0.0) 

! 

      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 

            2.0, 1.0, 0.0/ 

! 

      CALL LFTRB (A, NLCA, NUCA, FACT, IPVT) 

!                                 Compute the determinant 

      CALL LFDRB (FACT, NLCA, NUCA, IPVT, DET1, DET2) 
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!                                 Print the results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) DET1, DET2 

99999 FORMAT (‘ The determinant of A is ‘, F6.3, ‘ * 10**‘, F2.0) 

      END 

Output 
 

The determinant of A is  5.000 * 10**0. 

LSAQS  
Solves a real symmetric positive definite system of linear equations in band symmetric storage 

mode with iterative refinement. 

Required Arguments 

A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in 

band symmetric storage mode.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LSAQS (A, NCODA, B, X [,…]) 

Specific: The specific interface names are S_LSAQS and D_LSAQS. 

FORTRAN 77 Interface 

Single:  CALL LSAQS (N, A, LDA, NCODA, B, X) 

Double:  The double precision name is DLSAQS. 



     

     
 

304  Chapter 1: Linear Systems IMSL MATH LIBRARY  

     

     

 

Description 

Routine LSAQS solves a system of linear algebraic equations having a real symmetric positive 

definite band coefficient matrix. It first uses the routine LFCQS to compute an R
T
R Cholesky 

factorization of the coefficient matrix and to estimate the condition number of the matrix. R is an 

upper triangular band matrix. The solution of the linear system is then found using the iterative 

refinement routine LFIQS.  

LSAQS fails if any submatrix of R is not positive definite, if R has a zero diagonal element or if the 

iterative refinement algorithm fails to converge. These errors occur only if A is very close to a 

singular matrix or to a matrix which is not positive definite.  

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system. LSAQS solves the 

problem that is represented in the computer; however, this problem may differ from the problem 

whose solution is desired. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2AQS/DL2AQS. The 

reference is: 

CALL L2AQS (N, A, LDA, NCODA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT — Work vector of length NCODA + 1 by N containing the R
T
 R 

factorization of A in band symmetric storage form on output. 

WK — Work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is not positive definite. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2AQS the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSAQS. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSAQS. 
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 Users directly calling L2AQS can allocate additional space for FACT and set 

IVAL(3) and IVAL(4) so that memory bank conflicts no longer cause 

inefficiencies. There is no requirement that users change existing applications 

that use LSAQS or L2AQS. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L1 condition number is to be 

computed. Routine LSAQS temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CQS computes the condition number if IVAL(2) = 2. Otherwise L2CQS 

skips this computation. LSAQS restores the option. Default values for the option 

are IVAL(*) = 1,2. 

Example 

A system of four linear equations is solved. The coefficient matrix has real positive definite 

band form, and the right-hand-side vector b has four elements. 
 

      USE LSAQS_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N, NCODA 

      PARAMETER  (LDA=3, N=4, NCODA=2) 

      REAL       A(LDA,N), B(N), X(N) 

! 

!                       Set values for A in band symmetric form, and B 

! 

!                                 A = (  0.0   0.0  -1.0   1.0 ) 

!                                     (  0.0   0.0   2.0  -1.0 ) 

!                                     (  2.0   4.0   7.0   3.0 ) 

! 

!                                 B = (  6.0 -11.0 -11.0  19.0 ) 

! 

      DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/ 

      DATA B/6.0, -11.0, -11.0, 19.0/ 

!                                 Solve A*X = B 

      CALL LSAQS (A, NCODA, B, X) 

!                                 Print results 

      CALL WRRRN (‘X‘, X, 1, N, 1) 

! 

      END 

Output 
 

                   X 

      1       2       3       4 

     4.000  -6.000   2.000   9.000 

LSLQS  
Solves a real symmetric positive definite system of linear equations in band symmetric storage 

mode without iterative refinement. 
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Required Arguments 

A — NCODA + 1 by N array containing the N by N positive definite band symmetric coefficient 

matrix in band symmetric storage mode.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LSLQS (A, NCODA, B, X [,…]) 

Specific: The specific interface names are S_LSLQS and D_LSLQS. 

FORTRAN 77 Interface 

Single:  CALL LSLQS (N, A, LDA, NCODA, B, X) 

Double:  The double precision name is DLSLQS. 

Description 

Routine LSLQS solves a system of linear algebraic equations having a real symmetric positive 

definite band coefficient matrix. It first uses the routine LFCQS to compute an R
T
R Cholesky 

factorization of the coefficient matrix and to estimate the condition number of the matrix. R is an 

upper triangular band matrix. The solution of the linear system is then found using the routine 

LFSQS.  

LSLQS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive 

definite.  

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in the 

solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that 

LSAQS be used. 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LQS/DL2LQS. The 

reference is: 

CALL L2LQS (N, A, LDA, NCODA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT — NCODA + 1 by N work array containing the R
T
R factorization of A in 

band symmetric form on output. If A is not needed, A and FACT can 

share the same storage locations. 

WK — Work vector of length N. 

2. Informational errors 

Type Code 

3 1 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is not positive definite. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2LQS the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLQS. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSLQS. Users directly calling L2LQS can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSLQS or L2LQS. Default values for the option are  

IVAL(*) = 1,16,0,1. 

17 This option has two values that determine if the L1 condition number is to be 

computed. Routine LSLQS temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CQS computes the condition number if IVAL(2) = 2. Otherwise L2CQS 

skips this computation. LSLQS restores the option. Default values for the option 

are IVAL(*) = 1,2. 

Example 

A system of four linear equations is solved. The coefficient matrix has real positive definite band 

form and the right-hand-side vector b has four elements. 
 

      USE LSLQS_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N, NCODA 
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      PARAMETER  (LDA=3, N=4, NCODA=2) 

      REAL       A(LDA,N), B(N), X(N) 

! 

!                       Set values for A in band symmetric form, and B 

! 

!                                 A = (  0.0   0.0  -1.0   1.0 ) 

!                                     (  0.0   0.0   2.0  -1.0 ) 

!                                     (  2.0   4.0   7.0   3.0 ) 

! 

!                                 B = (  6.0 -11.0 -11.0  19.0 ) 

! 

      DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/ 

      DATA B/6.0, -11.0, -11.0, 19.0/ 

!                                 Solve A*X = B 

      CALL LSLQS (A, NCODA, B, X) 

 

 

!                                 Print results 

      CALL WRRRN (‘X‘, X, 1, N, 1) 

      END 

Output 
 

                 X 

      1       2       3       4 

     4.000  -6.000   2.000   9.000 

LSLPB  

Computes the R
T
DR Cholesky factorization of a real symmetric positive definite matrix A in 

codiagonal band symmetric storage mode. Solve a system Ax = b. 

Required Arguments 

A — Array containing the N by N positive definite band coefficient matrix and right hand 

side in codiagonal band symmetric storage mode. (Input/Output) 

The number of array columns must be at least NCODA + 2. The number of column is 

not an input to this subprogram. 

On output, A contains the solution and factors. See Comments section for details.  

NCODA — Number of upper codiagonals of matrix A.   (Input)  

Must satisfy NCODA ≥ 0 and NCODA < N. 

U — Array of flags that indicate any singularities of A, namely loss of positive-definiteness of 

a leading minor.   (Output) 

A value U(I) = 0. means that the leading minor of dimension I is not positive-definite. 

Otherwise, U(I) = 1. 
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Optional Arguments 

N — Order of the matrix.   (Input)  

Must satisfy N > 0. 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input)  

Must satisfy LDA ≥ N + NCODA. 

Default: LDA = size (A,1). 

IJOB — Flag to direct the desired factorization or solving step.   (Input)  

Default: IJOB = 1. 

IJOB Meaning 

1 factor the matrix A and solve the system Ax = b, where b is stored in column 

NCODA + 2 of array A. The vector x overwrites b in storage. 

2 solve step only. Use b as column NCODA + 2 of A. (The factorization step has 

already been done.) The vector x overwrites b in storage. 

3 factor the matrix A but do not solve a system. 

4,5,6 same meaning as with the value IJOB - 3. For efficiency, no error checking is 

done on values LDA, N, NCODA, and U(*). 

FORTRAN 90 Interface 

Generic: CALL LSLPB (A, NCODA, U [,…]) 

Specific: The specific interface names are S_LSLPB and D_LSLPB. 

FORTRAN 77 Interface 

Single:  CALL LSLPB (N, A, LDA, NCODA, IJOB, U) 

Double:  The double precision name is DLSLPB. 

Description 

Routine LSLPB factors and solves the symmetric positive definite banded linear system Ax = b. 

The matrix is factored so that A = R
T
DR, where R is unit upper triangular and D is diagonal. The 

reciprocals of the diagonal entries of D are computed and saved to make the solving step more 

efficient. Errors will occur if D has a non-positive diagonal element. Such events occur only if A is 

very close to a singular matrix or is not positive definite. 

LSLPB is efficient for problems with a small band width. The particular cases NCODA = 0, 1, 2 are 

done with special loops within the code. These cases will give good performance. See Hanson 
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(1989) for details. When solving tridiagonal systems, NCODA = 1 , the cyclic reduction code LSLCR 

should be considered as an alternative. The expectation is that LSLCR will outperform LSLPB on 

vector or parallel computers. It may be inferior on scalar computers or even parallel computers 

with non-optimizing compilers. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LPB/DL2LPB. The 

reference is: 

CALL L2LPB (N, A, LDA, NCODA, IJOB, U, WK) 

The additional argument is: 

WK — Work vector of length NCODA. 

2. If IJOB=1, 3, 4, or 6, A contains the factors R and D on output. These are stored in 

codiagonal band symmetric storage mode. Column 1 of A contains the reciprocal of 

diagonal matrix D. Columns 2 through NCODA+1 contain the upper diagonal values for 

upper unit diagonal matrix R.  If IJOB=1,2, 4, or 5, the last column of A contains the 

solution on output, replacing b. 

3. Informational error 

Type Code  

4 2 The input matrix is not positive definite. 

Example 

A system of four linear equations is solved. The coefficient matrix has real positive definite 

codiagonal band form and the right-hand-side vector b has four elements. 
 

      USE LSLPB_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER LDA, N, NCODA 

      PARAMETER (N=4, NCODA=2, LDA=N+NCODA) 

! 

      INTEGER IJOB 

      REAL A(LDA,NCODA+2), U(N) 

      REAL R(N,N), RT(N,N), D(N,N), WK(N,N), AA(N,N) 

! 

! 

 

!                                 Set values for A and right side in 

!                                 codiagonal band symmetric form: 

! 

!                            A    =   (  *     *      *       * ) 

!                                     (  *     *      *       * ) 

!                                     (2.0     *      *      6.0) 

!                                     (4.0    0.0     *    -11.0) 
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!                                     (7.0    2.0   -1.0   -11.0) 

!                                     (3.0   -1.0    1.0    19.0) 

! 

      DATA ((A(I+NCODA,J),I=1,N),J=1,NCODA+2)/2.0, 4.0, 7.0, 3.0, 0.0,& 

      0.0, 2.0, -1.0, 0.0, 0.0, -1.0, 1.0, 6.0, -11.0, -11.0,& 

      19.0/ 

      DATA R/16*0.0/, D/16*0.0/, RT/16*0.0/ 

!                                 Factor and solve A*x = b. 

      CALL LSLPB(A, NCODA, U) 

!                                 Print results 

      CALL WRRRN ('X', A((NCODA+1):,(NCODA+2):), NRA=1, NCA=N, LDA=1) 

  

      END 

Output 
 

                 X 

      1       2       3       4 

  4.000  -6.000   2.000   9.000   

LFCQS  

Computes the R
T
 R Cholesky factorization of a real symmetric positive definite matrix in band 

symmetric storage mode and estimate its L1condition number. 

Required Arguments 

A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in 

band symmetric storage mode to be factored.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 

FACT — NCODA + 1 by N array containing the R
T
R factorization of the matrix A in band 

symmetric form.   (Output)  

If A is not needed, A and FACT can share the same storage locations. 

RCOND — Scalar containing an estimate of the reciprocal of the L1condition number of A.   

(Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 
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FORTRAN 90 Interface 

Generic: CALL LFCQS (A, NCODA, FACT, RCOND [,…]) 

Specific: The specific interface names are S_LFCQS and D_LFCQS. 

FORTRAN 77 Interface 

Single:  CALL LFCQS (N, A, LDA, NCODA, FACT, LDFACT, RCOND) 

Double:  The double precision name is DLFCQS. 

Description 

Routine LFCQS computes an R
T
R Cholesky factorization and estimates the condition number of a 

real symmetric positive definite band coefficient matrix. R is an upper triangular band matrix.  

The L1condition number of the matrix A is defined to be κ(A) = ǀǀAǀǀ1ǀǀA
-1ǀǀ1. Since it is expensive 

to compute ǀǀA-1ǀǀ1, the condition number is only estimated. The estimation algorithm is the same 

as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCQS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive 

definite.  

The R
T
R factors are returned in a form that is compatible with routines LFIQS, LFSQS and LFDQS. 

To solve systems of equations with multiple right-hand-side vectors, use LFCQS followed by either 

LFIQS or LFSQS called once for each right-hand side. The routine LFDQS can be called to compute 

the determinant of the coefficient matrix after LFCQS has performed the factorization. 

LFCQS is based on the LINPACK routine SPBCO; see Dongarra et al. (1979). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CQS/DL2CQS. The 

reference is: 

CALL L2CQS (N, A, LDA, NCODA, FACT, LDFACT, RCOND, WK) 

The additional argument is: 

WK — Work vector of length N. 

2. Informational errors 

Type Code  
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3 3 The input matrix is algorithmically singular. 

4 2 The input matrix is not positive definite. 

Example 

The inverse of a 4 × 4 symmetric positive definite band matrix with one codiagonal is computed. 

LFCQS is called to factor the matrix and to check for nonpositive definiteness or ill-conditioning. 

LFIQS is called to determine the columns of the inverse. 
 

      USE LFCQS_INT 

      USE LFIQS_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NCODA, NOUT 

      PARAMETER  (LDA=2, LDFACT=2, N=4, NCODA=1) 

      REAL       A(LDA,N), AINV(N,N), RCOND, FACT(LDFACT,N),& 

                RES(N), RJ(N) 

! 

!                              Set values for A in band symmetric form 

! 

!                                 A = (  0.0   1.0   1.0   1.0 ) 

!                                     (  2.0   2.5   2.5   2.0 ) 

! 

      DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/ 

!                                 Factor the matrix A 

      CALL LFCQS (A, NCODA, FACT, RCOND) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0E0 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIQS 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFIQS (A, NCODA, FACT, RJ, AINV(:,J), RES) 

         RJ(J) = 0.0E0 

   10 CONTINUE 

!                                 Print the results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

      CALL WRRRN (‘AINV‘, AINV) 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND = 0.160 

L1 Condition number =  6.239 

                 AINV 

          1        2        3        4 

    1   0.6667  -0.3333   0.1667  -0.0833 

    2  -0.3333   0.6667  -0.3333   0.1667 
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    3   0.1667  -0.3333   0.6667  -0.3333 

    4  -0.0833   0.1667  -0.3333   0.6667 

LFTQS  

Computes the R
T
R Cholesky factorization of a real symmetric positive definite matrix in band 

symmetric storage mode. 

Required Arguments 

A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in 

band symmetric storage mode to be factored.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 

FACT — NCODA + 1 by N array containing the R
T 

R factorization of the matrix A.   (Output)  

If A s not needed, A and FACT can share the same storage locations. 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFTQS (A, NCODA, FACT [,…]) 

Specific: The specific interface names are S_LFTQS and D_LFTQS. 

FORTRAN 77 Interface 

Single:  CALL LFTQS (N, A, LDA, NCODA, FACT, LDFACT) 

Double:  The double precision name is DLFTQS. 

Description 

Routine LFTQS computes an R
T
 R Cholesky factorization of a real symmetric positive definite 

band coefficient matrix. R is an upper triangular band matrix. 
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LFTQS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 

These errors occur only if A is very close to a singular matrix or to a matrix which is not positive 

definite. 

The R
T
 R factors are returned in a form that is compatible with routines LFIQS, LFSQS and LFDQS. 

To solve systems of equations with multiple right hand-side vectors, use LFTQS followed by either 

LFIQS or LFSQS called once for each right-hand side. The routine LFDQS can be called to compute 

the determinant of the coefficient matrix after LFTQS has performed the factorization. 

LFTQS is based on the LINPACK routine CPBFA; see Dongarra et al. (1979). 

Comments 

Informational error 

Type Code 

4 2 The input matrix is not positive definite. 

Example 

The inverse of a 3 × 3 matrix is computed. LFTQS is called to factor the matrix and to check for 

nonpositive definiteness. LFSQS is called to determine the columns of the inverse. 
 

      USE LFTQS_INT 

      USE WRRRN_INT 

      USE LFSQS_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NCODA 

      PARAMETER  (LDA=2, LDFACT=2, N=4, NCODA=1) 

      REAL       A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N) 

! 

!                              Set values for A in band symmetric form 

! 

!                                 A = (  0.0   1.0   1.0   1.0 ) 

!                                     (  2.0   2.5   2.5   2.0 ) 

! 

      DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/ 

!                                 Factor the matrix A 

      CALL LFTQS (A, NCODA, FACT) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = 0.0E0 

      DO 10  J=1, N 

         RJ(J) = 1.0E0 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFSQS 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFSQS (FACT, NCODA, RJ, AINV(:,J)) 

         RJ(J) = 0.0E0 

   10 CONTINUE 

!                                 Print the results 

      CALL WRRRN (‘AINV‘, AINV, ITRING=1) 

      END 
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Output 
 

                 AINV 

         1        2        3        4 

1   0.6667  -0.3333   0.1667  -0.0833 

2            0.6667  -0.3333   0.1667 

3                     0.6667  -0.3333 

4                              0.6667 

LFSQS  
Solves a real symmetric positive definite system of linear equations given the factorization of the 

coefficient matrix in band symmetric storage mode. 

Required Arguments 

FACT — NCODA + 1 by N array containing the R
T
 R factorization of the positive definite band 

matrix A in band symmetric storage mode as output from subroutine LFCQS/DLFCQS or 

LFTQS/DLFTQS.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X an share the same storage locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFSQS (FACT, NCODA, B, X [,…]) 

Specific: The specific interface names are S_LFSQS and D_LFSQS. 

FORTRAN 77 Interface 

Single:  CALL LFSQS (N, FACT, LDFACT, NCODA, B, X) 

Double: The double precision name is DLFSQS. 
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Description 

Routine LFSQS computes the solution for a system of linear algebraic equations having a real 

symmetric positive definite band coefficient matrix. To compute the solution, the coefficient 

matrix must first undergo an R
T
 R factorization. This may be done by calling either LFCQS or 

LFTQS. R is an upper triangular band matrix. 

The solution to Ax = b is found by solving the triangular systems R
T
y = b and Rx = y. 

LFSQS and LFIQS both solve a linear system given its R
T
 R factorization. LFIQS generally takes 

more time and produces a more accurate answer than LFSQS. Each iteration of the iterative 

refinement algorithm used by LFIQS calls LFSQS. 

LFSQS is based on the LINPACK routine SPBSL; see Dongarra et al. (1979). 

Comments 

Informational error 

Type Code 

4 1 The factored matrix is singular. 

Example 

A set of linear systems is solved successively. LFTQS is called to factor the coefficient matrix. 

LFSQS is called to compute the four solutions for the four right-hand sides. In this case the 

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be 

better to call LFCQS to perform the factorization, and LFIQS to compute the solutions. 
 

      USE LFSQS_INT 

      USE LFTQS_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NCODA 

      PARAMETER  (LDA=3, LDFACT=3, N=4, NCODA=2) 

      REAL       A(LDA,N), B(N,4), FACT(LDFACT,N), X(N,4) 

! 

! 

!                       Set values for A in band symmetric form, and B 

! 

!                                 A = (  0.0   0.0  -1.0   1.0 ) 

!                                     (  0.0   0.0   2.0  -1.0 ) 

!                                     (  2.0   4.0   7.0   3.0 ) 

! 

!                                 B = (  4.0  -3.0   9.0  -1.0 ) 

!                                     (  6.0  10.0  29.0   3.0 ) 

!                                     ( 15.0  12.0  11.0   6.0 ) 

!                                     ( -7.0   1.0  14.0   2.0 ) 

! 

      DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/ 

      DATA B/4.0, 6.0, 15.0, -7.0, -3.0, 10.0, 12.0, 1.0, 9.0, 29.0,& 

            11.0, 14.0, -1.0, 3.0, 6.0, 2.0/ 

!                                 Factor the matrix A 

      CALL LFTQS (A, NCODA, FACT) 

!                                 Compute the solutions 

      DO 10  I=1, 4 
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         CALL LFSQS (FACT, NCODA, B(:,I), X(:,I)) 

   10 CONTINUE 

!                                 Print solutions 

      CALL WRRRN (‘X‘, X) 

! 

      END 

Output 
 

                X 

        1       2       3       4 

1   3.000  -1.000   5.000   0.000 

2   1.000   2.000   6.000   0.000 

3   2.000   1.000   1.000   1.000 

4  -2.000   0.000   3.000   1.000 

LFIQS  
Uses iterative refinement to improve the solution of a real symmetric positive definite system of 

linear equations in band symmetric storage mode. 

Required Arguments 

A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in 

band symmetric storage mode.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 

FACT — NCODA + 1 by N array containing the R
T 

R factorization of the matrix A from routine 

LFCQS/DLFCQS or LFTQS/DLFTQS.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the system.   (Output) 

RES — Vector of length N containing the residual vector at the improved solution.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 
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FORTRAN 90 Interface 

Generic: CALL LFIQS (A, NCODA, FACT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIQS and D_LFIQS. 

FORTRAN 77 Interface 

Single:  CALL LFIQS (N, A, LDA, NCODA, FACT, LDFACT, B, X, RES) 

Double:  The double precision name is DLFIQS. 

Description 

Routine LFIQS computes the solution of a system of linear algebraic equations having a real 

symmetric positive-definite band coefficient matrix. Iterative refinement is performed on the 

solution vector to improve the accuracy. Usually almost all of the digits in the solution are 

accurate, even if the matrix is somewhat ill-conditioned. 

To compute the solution, the coefficient matrix must first undergo an R
T
 R factorization. This may 

be done by calling either IMSL routine LFCQS or LFTQS. 

Iterative refinement fails only if the matrix is very ill-conditioned. 

LFIQS and LFSQS both solve a linear system given its R
T
 R factorization. LFIQS generally takes 

more time and produces a more accurate answer than LFSQS. Each iteration of the iterative 

refinement algorithm used by LFIQS calls LFSQS. 

Comments 

Informational error 

Type Code 

3 4 The input matrix is too ill-conditioned for iterative refinement to be 

effective. 

Example 

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving 

the system each of the first two times by adding 0.5 to the second element. 
 

      USE LFIQS_INT 

      USE UMACH_INT 

      USE LFCQS_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NCODA, NOUT 

      PARAMETER  (LDA=2, LDFACT=2, N=4, NCODA=1) 

      REAL       A(LDA,N), B(N), RCOND, FACT(LDFACT,N), RES(N,3),& 

                X(N,3) 

! 

!                       Set values for A in band symmetric form, and B 

! 

!                                 A = (  0.0   1.0   1.0   1.0 ) 
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!                                     (  2.0   2.5   2.5   2.0 ) 

! 

!                                 B = (  3.0   5.0   7.0   4.0 ) 

! 

      DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/ 

      DATA B/3.0, 5.0, 7.0, 4.0/ 

!                                 Factor the matrix A 

      CALL LFCQS (A, NCODA, FACT, RCOND) 

!                                 Print the estimated condition number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

!                                 Compute the solutions 

      DO 10  I=1, 3 

         CALL LFIQS (A, NCODA, FACT, B, X(:,I), RES(:,I)) 

         B(2) = B(2) + 0.5E0 

   10 CONTINUE 

!                                 Print solutions and residuals 

      CALL WRRRN (‘X‘, X) 

      CALL WRRRN (‘RES‘, RES) 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND = 0.160 

L1 Condition number =  6.239 

             X 

        1       2       3 

1   1.167   1.000   0.833 

2   0.667   1.000   1.333 

3   2.167   2.000   1.833 

4   0.917   1.000   1.083 

 

                 RES 

            1           2           3 

1   7.947E-08   0.000E+00   9.934E-08 

2   7.947E-08   0.000E+00   3.974E-08 

3   7.947E-08   0.000E+00   1.589E-07 

4  -3.974E-08   0.000E+00  -7.947E-08 

LFDQS  

Computes the determinant of a real symmetric positive definite matrix given the R
T
R Cholesky 

factorization of the band symmetric storage mode. 

Required Arguments 

FACT — NCODA + 1 by N array containing the R
T
 R factorization of the positive definite band 

matrix, A, in band symmetric storage mode as output from subroutine LFCQS/DLFCQS 

or LFTQS/DLFTQS.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 
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DET1 — Scalar containing the mantissa of the determinant.   (Output)  

The value DET1 is normalized so that 1.0 ≤ ǀDET1ǀ < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  

The determinant is returned in the form det(A) = DET1 * 10DET2. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFDQS (FACT, NCODA, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDQS and D_LFDQS. 

FORTRAN 77 Interface 

Single:  CALL LFDQS (N, FACT, LDFACT, NCODA, DET1, DET2) 

Double:  The double precision name is DLFDQS. 

Description 

Routine LFDQS computes the determinant of a real symmetric positive-definite band coefficient 

matrix. To compute the determinant, the coefficient matrix must first undergo an R
T
 R 

factorization. This may be done by calling either IMSL routine LFCQS or LFTQS. The formula  

det A = det R
T 

det R = (det R)
2
 is used to compute the determinant. Since the determinant of a 

triangular matrix is the product of the diagonal elements,  

1
det

N

i iiR R



 

LFDQS is based on the LINPACK routine SPBDI; see Dongarra et al. (1979). 

Example 

The determinant is computed for a real positive definite 4 × 4 matrix with 2 codiagonals. 
 

      USE LFDQS_INT 

      USE LFTQS_INT 

      USE UMACH_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NCODA, NOUT 

      PARAMETER  (LDA=3, N=4, LDFACT=3, NCODA=2) 
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      REAL       A(LDA,N), DET1, DET2, FACT(LDFACT,N) 

! 

!                       Set values for A in band symmetric form 

! 

!                                 A = (  0.0   0.0   1.0  -2.0 ) 

!                                     (  0.0   2.0   1.0   3.0 ) 

!                                     (  7.0   6.0   6.0   8.0 ) 

! 

      DATA A/2*0.0, 7.0, 0.0, 2.0, 6.0, 1.0, 1.0, 6.0, -2.0, 3.0, 8.0/ 

!                                 Factor the matrix 

      CALL LFTQS (A, NCODA, FACT) 

!                                 Compute the determinant 

      CALL LFDQS (FACT, NCODA, DET1, DET2) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) DET1, DET2 

! 

99999 FORMAT (‘ The determinant of A is ‘,F6.3,‘ * 10**‘,F2.0) 

      END 

Output 
 

The determinant of A is 1.186 * 10**3. 

LSLTQ  
Solves a complex tridiagonal system of linear equations. 

Required Arguments 

C — Complex vector of length N containing the subdiagonal of the tridiagonal matrix in C(2) 

through C(N).   (Input/Output)  

On output C is destroyed. 

D — Complex vector of length N containing the diagonal of the tridiagonal matrix.   

(Input/Output)  

On output D is destroyed. 

E — Complex vector of length N containing the superdiagonal of the tridiagonal matrix in 

E(1) through E(N − 1).   (Input/Output)  

On output E is destroyed. 

B — Complex vector of length N containing the right-hand side of the linear system on entry 

and the solution vector on return.   (Input/Output) 

Optional Arguments 

N — Order of the tridiagonal matrix.   (Input) 

Default: N = size (C,1). 



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  323 

     

     

 

FORTRAN 90 Interface 

Generic: CALL LSLTQ (C, D, E, B [,…]) 

Specific: The specific interface names are S_LSLTQ and D_LSLTQ. 

FORTRAN 77 Interface 

Single:  CALL LSLTQ (N, C, D, E, B) 

Double:  The double precision name is DLSLTQ. 

Description 

Routine LSLTQ factors and solves the complex tridiagonal linear system Ax = b. LSLTQ is intended 

just for tridiagonal systems. The coefficient matrix does not have to be symmetric. The algorithm 

is Gaussian elimination with pivoting for numerical stability. See Dongarra et al. (1979), 

LINPACK subprograms CGTSL/ZGTSL, for details. When computing on vector or parallel 

computers the cyclic reduction algorithm, LSLCQ, should be considered as an alternative method 

to solve the system. 

Comments 

Informational error 

Type Code 

4 2 An element along the diagonal became exactly zero during 

execution. 

Example 

A system of n = 4 linear equations is solved. 
 

      USE LSLTQ_INT 

      USE WRCRL_INT 

!                                 Declaration of variables 

      INTEGER    N 

      PARAMETER  (N=4) 

! 

      COMPLEX    B(N), C(N), D(N), E(N) 

      CHARACTER  CLABEL(1)*6, FMT*8, RLABEL(1)*4 

! 

      DATA FMT/‘(E13.6)‘/ 

      DATA CLABEL/‘NUMBER‘/ 

      DATA RLABEL/‘NONE‘/ 

!                                C(*), D(*), E(*) and B(*) 

!                                contain the subdiagonal, 

!                                diagonal, superdiagonal and 

!                                right hand side. 

      DATA C/(0.0,0.0), (-9.0,3.0), (2.0,7.0), (7.0,-4.0)/ 

      DATA D/(3.0,-5.0), (4.0,-9.0), (-5.0,-7.0), (-2.0,-3.0)/ 

      DATA E/(-9.0,8.0), (1.0,8.0), (8.0,3.0), (0.0,0.0)/ 

      DATA B/(-16.0,-93.0), (128.0,179.0), (-60.0,-12.0), (9.0,-108.0)/ 
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! 

! 

      CALL LSLTQ (C, D, E, B) 

!                                 Output the solution. 

      CALL WRCRL (‘Solution:‘, B, RLABEL, CLABEL, 1, N, 1, FMT=FMT) 

      END 

Output 
 

Solution: 

                           1                              2 

(-0.400000E+01,-0.700000E+01)  (-0.700000E+01, 0.400000E+01) 

                           3                              4 

( 0.700000E+01,-0.700000E+01)  ( 0.900000E+01, 0.200000E+01) 

LSLCQ  
Computes the LDU factorization of a complex tridiagonal matrix A using a cyclic reduction 

algorithm. 

Required Arguments 

C — Complex array of size 2N containing the upper codiagonal of the N by N tridiagonal 

matrix in the entries C(1),…, C(N − 1).   (Input/Output) 

A — Complex array of size 2N containing the diagonal of the N by N tridiagonal matrix in the 

entries A(1), …, A(N).   (Input/Output) 

B — Complex array of size 2N containing the lower codiagonal of the N by N tridiagonal 

matrix in the entries B(1), …, B(N − 1).   (Input/Output) 

Y — Complex array of size 2N containing the right-hand side of the system Ax = y in the order 

Y(1),…,Y(N).   (Input/Output)  

The vector x overwrites Y in storage. 

U — Real array of size 2N of flags that indicate any singularities of A.   (Output) 

A value U(I) = 1. means that a divide by zero would have occurred during the 

factoring. Otherwise U(I) = 0. 

IR — Array of integers that determine the sizes of loops performed in the cyclic reduction 

algorithm.   (Output) 

IS — Array of integers that determine the sizes of loops performed in the cyclic reduction 

algorithm.   (Output)  

The sizes of these arrays must be at least log2 (N) + 3. 
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Optional Arguments 

N — Order of the matrix.   (Input) 

N must be greater than zero. 

Default: N = size (C,1). 

IJOB — Flag to direct the desired factoring or solving step.   (Input)  

Default: IJOB =1. 

IJOB Action 

1 Factor the matrix A and solve the system Ax = y, where y is 

stored in array Y. 

2 Do the solve step only. Use y from array Y. (The factoring 

step has already been done.) 

3 Factor the matrix A but do not solve a system. 

4 Same meaning as with the value IJOB = 3. For efficiency, no 

error checking is done on the validity of any input value. 

FORTRAN 90 Interface 

Generic: CALL LSLCQ (C, A, B, Y, U, IR, IS [,…]) 

Specific: The specific interface names are S_LSLCQ and D_LSLCQ. 

FORTRAN 77 Interface 

Single:  CALL LSLCQ (N, C, A, B, IJOB, Y, U, IR, IS) 

Double:  The double precision name is DLSLCQ. 

Description 

Routine LSLCQ factors and solves the complex tridiagonal linear system Ax = y. The matrix is 

decomposed in the form A = LDU, where L is unit lower triangular, U is unit upper triangular, and 

D is diagonal. The algorithm used for the factorization is effectively that described in Kershaw 

(1982). More details, tests and experiments are reported in Hanson (1990). 

LSLCQ is intended just for tridiagonal systems. The coefficient matrix does not have to be 

Hermitian. The algorithm amounts to Gaussian elimination, with no pivoting for numerical 

stability, on the matrix whose rows and columns are permuted to a new order. See Hanson (1990) 

for details. The expectation is that LSLCQ will outperform either LSLTQ or LSLQB on vector or 

parallel computers. Its performance may be inferior for small values of n, on scalar computers, or 

high-performance computers with non-optimizing compilers. 
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Example 

A real skew-symmetric tridiagonal matrix, A, of dimension n = 1000 is given by ck = −k, ak = 0, 

and bk = k, k = 1,…, n − 1, an = 0. This matrix will have eigenvalues that are purely imaginary. 

The eigenvalue closest to the imaginary unit is required. This number is obtained by using inverse 

iteration to approximate a complex eigenvector y. The eigenvalue is approximated  by  

/
H H

y Ay y y  . (This example is contrived in the sense that the given tridiagonal skew-

symmetric matrix eigenvalue problem is essentially equivalent to the tridiagonal symmetic 

eigenvalue problem where the ck = k and the other data are unchanged.) 
 

      USE LSLCQ_INT 

      USE UMACH_INT 

!                                 Declare variables 

      INTEGER    LP, N, N2 

      PARAMETER  (LP=12, N=1000, N2=2*N) 

! 

      INTEGER    I, IJOB, IR(LP), IS(LP), K, NOUT 

      REAL       AIMAG, U(N2) 

      COMPLEX    A(N2), B(N2), C(N2), CMPLX, CONJG, S, T, Y(N2) 

      INTRINSIC  AIMAG, CMPLX, CONJG 

!                                 Define entries of skew-symmetric 

!                                 matrix, A: 

      DO 10  I=1, N - 1 

         C(I) = -I 

!                                 This amounts to subtracting the 

!                                 positive imaginary unit from the 

!                                 diagonal.  (The eigenvalue closest 

!                                 to this value is desired.) 

         A(I) = CMPLX(0.E0,-1.0E0) 

         B(I) = I 

!                                 This initializes the approximate 

!                                 eigenvector. 

         Y(I) = 1.E0 

   10 CONTINUE 

      A(N) = CMPLX(0.E0,-1.0E0) 

      Y(N) = 1.E0 

!                                 First step of inverse iteration 

!                                 follows. Obtain decomposition of 

!                                 matrix and solve the first system: 

      IJOB = 1 

      CALL LSLCQ (C, A, B, Y, U, IR, IS, N=N, IJOB=IJOB) 

! 

!                                 Next steps of inverse iteration 

!                                 follow. Solve the system again with 

!                                 the decomposition ready: 

      IJOB = 2 

      DO 20  K=1, 3 

         CALL LSLCQ (C, A, B, Y, U, IR, IS, N=N, IJOB=IJOB) 

   20 CONTINUE 

! 

!                                 Compute the Raleigh quotient to 

!                                 estimate the eigenvalue closest to 

!                                 the positive imaginary unit. After 
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!                                 the approximate eigenvector, y, is 

!                                 computed, the estimate of the 

!                                 eigenvalue is ctrans(y)*A*y/t, 

!                                 where t = ctrans(y)*y. 

      S = -CONJG(Y(1))*Y(2) 

      T = CONJG(Y(1))*Y(1) 

      DO 30  I=2, N - 1 

         S = S + CONJG(Y(I))*((I-1)*Y(I-1)-I*Y(I+1)) 

         T = T + CONJG(Y(I))*Y(I) 

   30 CONTINUE 

      S = S + CONJG(Y(N))*(N-1)*Y(N-1) 

      T = T + CONJG(Y(N))*Y(N) 

      S = S/T 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) ‘ The value of n is:  ‘, N 

      WRITE (NOUT,*) ‘ Value of approximate imaginary eigenvalue:‘,& 

                   AIMAG(S) 

      STOP 

      END 

Output 
 

The value of n is:    1000 

Value of approximate imaginary eigenvalue:    1.03811 

LSACB  
Solves a complex system of linear equations in band storage mode with iterative refinement. 

Required Arguments 

A — Complex NLCA + NUCA + 1 by N array containing the N by N banded coefficient matrix in 

band storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 
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IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
H
X = B is solved. 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LSACB (A, NLCA, NUCA, B, X [,…]) 

Specific: The specific interface names are S_LSACB and D_LSACB. 

FORTRAN 77 Interface 

Single:  CALL LSACB (N, A, LDA, NLCA, NUCA, B, IPATH, X) 

Double: The double precision name is DLSACB. 

Description 

Routine LSACB solves a system of linear algebraic equations having a complex banded coefficient 

matrix. It first uses the routine LFCCB to compute an LU factorization of the coefficient matrix and 

to estimate the condition number of the matrix. The solution of the linear system is then found 

using the iterative refinement routine LFICB. 

LSACB fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the 

iterative refinement algorithm fails to converge. These errors occur only if A is singular or very 

close to a singular matrix. 

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system. LSACB solves the 

problem that is represented in the computer; however, this problem may differ from the problem 

whose solution is desired. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2ACB/DL2ACB. The 

reference is: 

CALL L2ACB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — Complex work vector of length (2 * NLCA + NUCA + 1) * N 

containing the LU factorization of A on output. 

IPVT — Integer work vector of length N containing the pivoting information 

for the LU factorization of A on output. 
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WK — Complex work vector of length N. 

2. Informational errors 

Type Code 

3 3 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2ACB the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSACB. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSACB. Users directly calling L2ACB can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSACB or L2ACB. Default values for the option are  

IVAL(*) = 1,16,0,1. 

17  This option has two values that determine if the L1 condition number is to be 

computed. Routine LSACB temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CCB computes the condition number if IVAL(2) = 2. Otherwise 

L2CCB skips this computation. LSACB restores the option. Default values for 

the option are IVAL(*) = 1,2. 

Example 

A system of four linear equations is solved. The coefficient matrix has complex banded form with 

one upper and one lower codiagonal. The right-hand-side vector b has four elements. 
 

      USE LSACB_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N, NLCA, NUCA 

      PARAMETER  (LDA=3, N=4, NLCA=1, NUCA=1) 

      COMPLEX    A(LDA,N), B(N), X(N) 

! 

!                Set values for A in band form, and B 

! 

!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 

!                    ( -2.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 

!                    (  6.0+1.0i  1.0+1.0i  0.0+2.0i  0.0+0.0i ) 

! 

!                B = ( -10.0-5.0i  9.5+5.5i  12.0-12.0i  0.0+8.0i ) 

! 

      DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 

            (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 

            (1.0,-1.0), (0.0,0.0)/ 

      DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/ 
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!                                 Solve A*X = B 

      CALL LSACB (A, NLCA, NUCA, B, X) 

!                                 Print results 

      CALL WRCRN (‘X‘, X, 1, N, 1) 

! 

      END 

Output 
 

                                   X 

             1                2                3                4 

( 3.000, 0.000)  (-1.000, 1.000)  ( 3.000, 0.000)  (-1.000, 1.000) 

LSLCB  
Solves a complex system of linear equations in band storage mode without iterative refinement. 

Required Arguments 

A — Complex NLCA + NUCA + 1 by N array containing the N by N banded coefficient matrix in 

band storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, then B and X may share the same storage locations) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
H
X = B is solved. 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LSLCB (A, NLCA, NUCA, B, X [,…]) 
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Specific: The specific interface names are S_LSLCB and D_LSLCB. 

FORTRAN 77 Interface 

Single:  CALL LSLCB (N, A, LDA, NLCA, NUCA, B, IPATH, X) 

Double:  The double precision name is DLSLCB. 

Description 

Routine LSLCB solves a system of linear algebraic equations having a complex banded coefficient 

matrix. It first uses the routine LFCCB to compute an LU factorization of the coefficient matrix and 

to estimate the condition number of the matrix. The solution of the linear system is then found 

using LFSCB. 

LSLCB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 

occurs only if A is singular or very close to a singular matrix.  

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in the 

solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that 

LSACB be used. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LCB/DL2LCB The 

reference is: 

CALL L2LCB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — (2 * NLCA + NUCA + 1) × N complex work array containing the LU 

factorization of A on output. If A is not needed, A can share the first  

(NLCA + NUCA + 1) * N locations with FACT. 

IPVT — Integer work vector of length N containing the pivoting information 

for the LU factorization of A on output. 

WK — Complex work vector of length N. 

2. Informational errors 

Type Code 

3 3 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

4 2 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 
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16  This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2LCB the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLCB. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSLCB. Users directly calling L2LCB can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSLCB or L2LCB. Default values for the option are  

IVAL(*) = 1,16,0,1. 

17  This option has two values that determine if the L1 condition number is to be 

computed. Routine LSLCB temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CCB computes the condition number if IVAL(2) = 2. Otherwise L2CCB 

skips this computation. LSLCB restores the option. Default values for the option 

are IVAL(*) = 1,2. 

Example 

A system of four linear equations is solved. The coefficient matrix has complex banded form with 

one upper and one lower codiagonal. The right-hand-side vector b has four elements. 
 

      USE LSLCB_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N, NLCA, NUCA 

      PARAMETER  (LDA=3, N=4, NLCA=1, NUCA=1) 

      COMPLEX    A(LDA,N), B(N), X(N) 

! 

!                Set values for A in band form, and B 

! 

!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 

!                    ( -2.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 

!                    (  6.0+1.0i  1.0+1.0i  0.0+2.0i  0.0+0.0i ) 

! 

!                B = ( -10.0-5.0i  9.5+5.5i  12.0-12.0i  0.0+8.0i ) 

! 

      DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 

            (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 

            (1.0,-1.0), (0.0,0.0)/ 

      DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/ 

!                                 Solve A*X = B 

      CALL LSLCB (A, NLCA, NUCA, B, X) 

!                                 Print results 

      CALL WRCRN (‘X‘, X, 1, N, 1) 

! 

      END 



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  333 

     

     

 

Output 
 

                                   X 

             1                2                3                4 

( 3.000, 0.000)  (-1.000, 1.000)  ( 3.000, 0.000)  (-1.000, 1.000) 

LFCCB  
Computes the LU factorization of a complex matrix in band storage mode and estimate its L1 

condition number. 

Required Arguments 

A — Complex NLCA + NUCA + 1 by N array containing the N by N matrix in band storage 

mode to be factored.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the 

matrix A.   (Output)  

If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT . 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   

(Output) 

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.   

(Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFCCB (A, NLCA, NUCA, FACT, IPVT, RCOND [,…]) 

Specific: The specific interface names are S_LFCCB and D_LFCCB. 
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FORTRAN 77 Interface 

Single:  CALL LFCCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND) 

Double:  The double precision name is DLFCCB. 

Description 

Routine LFCCB performs an LU factorization of a complex banded coefficient matrix. It also 

estimates the condition number of the matrix. The LU factorization is done using scaled partial 

pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the 

same as if each row were scaled to have the same ∞-norm.  

The L1 condition number of the matrix A is defined to be κ(A) = ǀǀAǀǀ1ǀǀA
-1ǀǀ1 Since it is expensive 

to compute ǀǀA-1ǀǀ1, the condition number is only estimated. The estimation algorithm is the same 

as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCCB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 

can occur only if A is singular or very close to a singular matrix.  

The LU factors are returned in a form that is compatible with IMSL routines LFICB, LFSCB and 

LFDCB. To solve systems of equations with multiple right-hand-side vectors, use LFCCB followed 

by either LFICB or LFSCB called once for each right-hand side. The routine LFDCB can be called 

to compute the determinant of the coefficient matrix after LFCCB has performed the factorization.  

Let F be the matrix FACT, let ml = NLCA and let mu = NUCA. The first ml  + mu + 1 rows of F 

contain the triangular matrix U in band storage form. The lower ml  rows of F contain the 

multipliers needed to reconstruct L. 

LFCCB is based on the LINPACK routine CGBCO; see Dongarra et al. (1979). CGBCO uses unscaled 

partial pivoting. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CCB/DL2CCB. The 

reference is: 

CALL L2CCB  (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND, WK) 

The additional argument is 

WK — Complex work vector of length N. 

2. Informational errors 

Type Code 
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3 1 The input matrix is algorithmically singular. 

4 2 The input matrix is singular. 

Example 

The inverse of a 4 × 4 band matrix with one upper and one lower codiagonal is computed. 

LFCCB is called to factor the matrix and to check for singularity or ill-conditioning. LFICB is 

called to determine the columns of the inverse. 
 

      USE LFCCB_INT 

      USE UMACH_INT 

      USE LFICB_INT 

      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA, NOUT 

      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 

      INTEGER    IPVT(N) 

      REAL       RCOND 

      COMPLEX    A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N), RES(N) 

! 

!                Set values for A in band form 

! 

!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 

!                    (  0.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 

!                    (  6.0+1.0i  4.0+1.0i  0.0+2.0i  0.0+0.0i ) 

! 
      DATA A/(0.0,0.0), (0.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 

            (4.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 

            (1.0,-1.0), (0.0,0.0)/ 

! 
      CALL LFCCB (A, NLCA, NUCA, FACT, IPVT, RCOND) 

!                                 Print the reciprocal condition number 

!                                 and the L1 condition number 
      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 
      RJ = (0.0E0,0.0E0) 

      DO 10  J=1, N 

         RJ(J) = (1.0E0,0.0E0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFICB 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 
         CALL LFICB (A, NLCA, NUCA, FACT, IPVT, RJ, AINV(:,J), RES) 

         RJ(J) = (0.0E0,0.0E0) 

   10 CONTINUE 

!                                 Print results 
      CALL WRCRN (‘AINV‘, AINV) 

 

! 
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99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 condition number = ‘,F6.3) 

      END 

Output 
 

RCOND = 0.022 

L1 condition number = 45.933 

                                 AINV 

                  1                2                3                4 

    1  ( 0.562, 0.170)  ( 0.125, 0.260)  (-0.385,-0.135)  (-0.239,-1.165) 

    2  ( 0.122, 0.421)  (-0.195, 0.094)  ( 0.101,-0.289)  ( 0.874,-0.179) 

    3  ( 0.034, 0.904)  (-0.437, 0.090)  (-0.153,-0.527)  ( 1.087,-1.172) 

    4  ( 0.938, 0.870)  (-0.347, 0.527)  (-0.679,-0.374)  ( 0.415,-1.759) 

LFTCB  
Computes the LU factorization of a complex matrix in band storage mode. 

Required Arguments 

A — Complex NLCA + NUCA + 1 by N array containing the N by N matrix in band storage 

mode to be factored.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the 

matrix A.   (Output)  

If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT. 

IPVT — Integer vector of length N containing the pivoting information for the LU 

factorization.   (Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 
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FORTRAN 90 Interface 

Generic: CALL LFTCB (A, NLCA, NUCA, FACT, IPVT [,…]) 

Specific: The specific interface names are S_LFTCB and D_LFTCB. 

FORTRAN 77 Interface 

Single:  CALL LFTCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT) 

Double:  The double precision name is DLFTCB. 

Description 

Routine LFTCB performs an LU factorization of a complex banded coefficient matrix. The LU 

factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial 

pivoting in that the pivoting strategy is the same as if each row were scaled to have the same  

∞-norm.  

LFTCB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 

can occur only if A is singular or very close to a singular matrix.  

The LU factors are returned in a form that is compatible with routines LFICB, LFSCB and LFDCB. 

To solve systems of equations with multiple right-hand-side vectors, use LFTCB followed by either 

LFICB or LFSCB called once for each right-hand side. The routine LFDCB can be called to compute 

the determinant of the coefficient matrix after LFTCB has performed the factorization.  

Let F be the matrix FACT, let ml = NLCA and let mu = NUCA. The first ml + mu + 1 rows of F 

contain the triangular matrix U in band storage form. The lower ml rows of F contain the 

multipliers needed to reconstruct L-1
. LFTCB is based on the LINPACK routine CGBFA; see 

Dongarra et al. (1979). CGBFA uses unscaled partial pivoting. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2TCB/DL2TCB The 

reference is: 

CALL L2TCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, WK) 

The additional argument is: 

WK — Complex work vector of length N used for scaling. 

2. Informational error 

Type Code 

4 2 The input matrix is singular. 
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Example 

A linear system with multiple right-hand sides is solved. LFTCB is called to factor the coefficient 

matrix. LFSCB is called to compute the two solutions for the two right-hand sides. In this case the 

coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be 

better to call LFCCB to perform the factorization, and LFICB to compute the solutions. 
 

      USE LFTCB_INT 

      USE LFSCB_INT 

      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA 

      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 

      INTEGER    IPVT(N) 

      COMPLEX    A(LDA,N), B(N,2), FACT(LDFACT,N), X(N,2) 

! 

!                Set values for A in band form, and B 

! 

!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 

!                    (  0.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 

!                    (  6.0+1.0i  4.0+1.0i  0.0+2.0i  0.0+0.0i ) 

! 

!                B = (  -4.0-5.0i  16.0-4.0i ) 

!                    (   9.5+5.5i  -9.5+19.5i ) 

!                    (   9.0-9.0i  12.0+12.0i ) 

!                    (   0.0+8.0i  -8.0-2.0i  ) 

! 
      DATA A/(0.0,0.0), (0.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 

            (4.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 

            (1.0,-1.0), (0.0,0.0)/ 

      DATA B/(-4.0,-5.0), (9.5,5.5), (9.0,-9.0), (0.0,8.0),& 

            (16.0,-4.0), (-9.5,19.5), (12.0,12.0), (-8.0,-2.0)/ 

! 
      CALL LFTCB (A, NLCA, NUCA, FACT, IPVT) 

!                                 Solve for the two right-hand sides 
      DO 10  J=1, 2 

         CALL LFSCB (FACT, NLCA, NUCA, IPVT, B(:,J), X(:,J)) 

   10 CONTINUE 

!                                 Print results 
      CALL WRCRN (‘X‘, X) 

! 
      END 
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Output 
 

                   X 

                1                2 

1  ( 3.000, 0.000)  ( 0.000, 4.000) 

2  (-1.000, 1.000)  ( 1.000,-1.000) 

3  ( 3.000, 0.000)  ( 0.000, 4.000) 

4  (-1.000, 1.000)  ( 1.000,-1.000) 

LFSCB  
Solves a complex system of linear equations given the LU factorization of the coefficient matrix in 

band storage mode. 

Required Arguments 

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the 

coefficient matrix A as output from subroutine LFCCB/DLFCCB or LFTCB/DLFTCB.   

(Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 

as output from subroutine LFCCB/DLFCCB or LFTCB/DLFTCB.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
H
X = B is solved. 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LFSCB (FACT, NLCA, NUCA, IPVT, B, X [,…]) 
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Specific: The specific interface names are S_LFSCB and D_LFSCB. 

FORTRAN 77 Interface 

Single:  CALL LFSCB (N, FACT, LDFACT, NLCA, NUCA, IPVT, B, IPATH, X) 

Double:  The double precision name is DLFSCB. 

Description 

Routine LFSCB computes the solution of a system of linear algebraic equations having a complex 

banded coefficient matrix. To compute the solution, the coefficient matrix must first undergo an 

LU factorization. This may be done by calling either LFCCB or LFTCB. The solution to Ax = b is 

found by solving the banded triangular systems Ly = b and Ux = y. The forward elimination step 

consists of solving the system Ly = b by applying the same permutations and elimination 

operations to b that were applied to the columns of A in the factorization routine. The backward 

substitution step consists of solving the banded triangular system Ux = y for x. 

LFSCB and LFICB both solve a linear system given its LU factorization. LFICB generally takes 

more time and produces a more accurate answer than LFSCB. Each iteration of the iterative 

refinement algorithm used by LFICB calls LFSCB. 

LFSCB is based on the LINPACK routine CGBSL; see Dongarra et al. (1979). 

Example 

The inverse is computed for a real banded 4 × 4 matrix with one upper and one lower codiagonal. 

The input matrix is assumed to be well-conditioned; hence LFTCB is used rather than LFCCB. 
 

      USE LFSCB_INT 

      USE LFTCB_INT 

      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA 

      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 

      INTEGER    IPVT(N) 

      COMPLEX    A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N) 

! 

!                Set values for A in band form 

! 

!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 

!                    ( -2.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 

!                    (  6.0+1.0i  1.0+1.0i  0.0+2.0i  0.0+0.0i ) 

! 
      DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 

            (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 

            (1.0,-1.0), (0.0,0.0)/ 

! 
      CALL LFTCB (A, NLCA, NUCA, FACT, IPVT) 

!                                 Set up the columns of the identity 
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!                                 matrix one at a time in RJ 
      RJ = (0.0E0,0.0E0) 

      DO 10  J=1, N 

         RJ(J) = (1.0E0,0.0E0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFSCB 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 
         CALL LFSCB (FACT, NLCA, NUCA, IPVT, RJ, AINV(:,J)) 

         RJ(J) = (0.0E0,0.0E0) 

   10 CONTINUE 

!                                 Print results 
      CALL WRCRN (‘AINV‘, AINV) 

! 
      END 

Output 
 

                1                2                3                4 

1  ( 0.165,-0.341)  ( 0.376,-0.094)  (-0.282, 0.471)  (-1.600, 0.000) 

2  ( 0.588,-0.047)  ( 0.259, 0.235)  (-0.494, 0.024)  (-0.800,-1.200) 

3  ( 0.318, 0.271)  ( 0.012, 0.247)  (-0.759,-0.235)  (-0.550,-2.250) 

4  ( 0.588,-0.047)  ( 0.259, 0.235)  (-0.994, 0.524)  (-2.300,-1.200) 

LFICB  
Uses iterative refinement to improve the solution of a complex system of linear equations in band 

storage mode. 

Required Arguments 

A — Complex NLCA + NUCA + 1 by N array containing the N by N coefficient matrix in band 

storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the 

matrix A as output from routine LFCCB/DLFCCB or LFTCB/DLFTCB.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 

as output from routine LFCCB/DLFCCB or LFTCB/DLFTCB.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution.   (Output) 

RES — Complex vector of length N containing the residual vector at the improved solution.   

(Output) 
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Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system A
H
X = B is solved. 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LFICB (A, NLCA, NUCA, FACT, IPVT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFICB and D_LFICB. 

FORTRAN 77 Interface 

Single: CALL LFICB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, B, IPATH, X, 
RES) 

Double:  The double precision name is DLFICB. 

Description 

Routine LFICB computes the solution of a system of linear algebraic equations having a complex 

banded coefficient matrix. Iterative refinement is performed on the solution vector to improve the 

accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is 

somewhat ill-conditioned. 

To compute the solution, the coefficient matrix must first undergo an LU factorization. This may 

be done by calling either LFCCB or LFTCB.  

Iterative refinement fails only if the matrix is very ill-conditioned.  

LFICB and LFSCB both solve a linear system given its LU factorization. LFICB generally takes 

more time and produces a more accurate answer than LFSCB. Each iteration of the iterative 

refinement algorithm used by LFICB calls LFSCB. 

Comments 

Informational error 
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Type Code 

3 3 The input matrix is too ill-conditioned for iterative refinement be 

effective. 

Example 

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving 

the system each of the first two times by adding (1 + i)/2 to the second element. 
 

      USE LFICB_INT 

      USE LFCCB_INT 

      USE WRCRN_INT 

      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA, NOUT 

      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 

      INTEGER    IPVT(N) 

      REAL       RCOND 

      COMPLEX    A(LDA,N), B(N), FACT(LDFACT,N), RES(N), X(N) 

! 

!                Set values for A in band form, and B 

! 

!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 

!                    ( -2.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 

!                    (  6.0+1.0i  1.0+1.0i  0.0+2.0i  0.0+0.0i ) 

! 

!                B = ( -10.0-5.0i  9.5+5.5i  12.0-12.0i  0.0+8.0i ) 

! 
      DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 

            (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 

            (1.0,-1.0), (0.0,0.0)/ 

      DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/ 

! 
      CALL LFCCB (A, NLCA, NUCA, FACT, IPVT, RCOND) 

!                                 Print the reciprocal condition number 
      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99998) RCOND, 1.0E0/RCOND 

!                                 Solve the three systems 
      DO 10  J=1, 3 

         CALL LFICB (A, NLCA, NUCA, FACT, IPVT, B, X, RES) 

!                                 Print results 
         WRITE (NOUT, 99999) J 

         CALL WRCRN (‘X‘, X, 1, N, 1) 

         CALL WRCRN (‘RES‘, RES, 1, N, 1) 

!                                 Perturb B by adding 0.5+0.5i to B(2) 
         B(2) = B(2) + (0.5E0,0.5E0) 

   10 CONTINUE 

! 
99998 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

99999 FORMAT (//,‘  For system ‘,I1) 

      END 
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Output 
 

RCOND = 0.014 

L1 Condition number = 72.414 

 

For system 1 

                                  X 

            1                2                3                4 

( 3.000, 0.000)  (-1.000, 1.000)  ( 3.000, 0.000)  (-1.000, 1.000) 

 

                                    RES 

                      1                        2                        3 

( 0.000E+00, 0.000E+00)  ( 0.000E+00, 0.000E+00)  ( 0.000E+00, 5.684E-14) 

                      4 

( 3.494E-22,-6.698E-22) 

 

For system 2 

                                  X 

              1                2                3                4 

( 3.235, 0.141)  (-0.988, 1.247)  ( 2.882, 0.129)  (-0.988, 1.247) 

 

 

                                    RES 

                      1                        2                        3 

(-1.402E-08, 6.486E-09)  (-7.012E-10, 4.488E-08)  (-1.122E-07, 7.188E-09) 

                      4 

(-7.012E-10, 4.488E-08) 

 

 

 

For system 3 

                                  X 

              1                2                3                4 

( 3.471, 0.282)  (-0.976, 1.494)  ( 2.765, 0.259)  (-0.976, 1.494) 

 

 

                                    RES 

                      1                        2                        3 

(-2.805E-08, 1.297E-08)  (-1.402E-09,-2.945E-08)  ( 1.402E-08, 1.438E-08) 

                      4 

(-1.402E-09,-2.945E-08) 

LFDCB  
Computes the determinant of a complex matrix given the LU factorization of the matrix in band 

storage mode. 

Required Arguments 

FACT — Complex (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the 

matrix A as output from routine LFTCB/DLFTCB or LFCCB/DLFCCB.   (Input) 

NLCA — Number of lower codiagonals in matrix A.   (Input) 
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NUCA — Number of upper codiagonals in matrix A.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization as 

output from routine LFTCB/DLFTCB or LFCCB/DLFCCB.   (Input) 

DET1 — Complex scalar containing the mantissa of the determinant.   (Output)  

The value DET1 is normalized so that 1.0 ≤ ǀDET1 ǀ < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  

The determinant is returned in the form det (A) = DET1 * 10DET2. 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFDCB (FACT, NLCA, NUCA, IPVT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDCB and D_LFDCB. 

FORTRAN 77 Interface 

Single: CALL LFDCB (N, FACT, LDFACT, NLCA, NUCA, IPVT, DET1, DET2) 

Double:  The double precision name is DLFDCB. 

Description 

Routine LFDCB computes the determinant of a complex banded coefficient matrix. To compute the 

determinant, the coefficient matrix must first undergo an LU factorization. This may be done by 

calling either LFCCB or LFTCB. The formula det A = det L det U is used to compute the 

determinant. Since the determinant of a triangular matrix is the product of the diagonal elements,  

1
det

N

i iiU U



 

(The matrix U is stored in the upper NUCA + NLCA + 1 rows of FACT as a banded matrix.) Since L 

is the product of triangular matrices with unit diagonals and of permutation matrices, det L = (−1)
k
, 

where k is the number of pivoting interchanges. 

LFDCB is based on the LINPACK routine CGBDI; see Dongarra et al. (1979). 
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Example 

The determinant is computed for a complex banded 4 × 4 matrix with one upper and one lower 

codiagonal. 
 

      USE LFDCB_INT 

      USE LFTCB_INT 

      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA, NOUT 

      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 

      INTEGER    IPVT(N) 

      REAL       DET2 

      COMPLEX    A(LDA,N), DET1, FACT(LDFACT,N) 

! 

!                Set values for A in band form 

! 

!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 

!                    ( -2.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 

!                    (  6.0+1.0i  1.0+1.0i  0.0+2.0i  0.0+0.0i ) 

! 
      DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 

            (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 

            (1.0,-1.0), (0.0,0.0)/ 

! 
      CALL LFTCB (A, NLCA, NUCA, FACT, IPVT) 

!                                 Compute the determinant 
      CALL LFDCB (FACT, NLCA, NUCA, IPVT, DET1, DET2) 

!                                 Print the results 
      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) DET1, DET2 

! 
99999 FORMAT (‘ The determinant of A is (‘, F6.3, ‘,‘, F6.3, ‘) * 10**‘,& 

             F2.0) 

      END 

Output 
 

The determinant of A is ( 2.500,-1.500) * 10**1. 

LSAQH  
Solves a complex Hermitian positive definite system of linear equations in band Hermitian storage 

mode with iterative refinement. 

Required Arguments 

A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian 

coefficient matrix in band Hermitian storage mode.   (Input) 
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NCODA — Number of upper or lower codiagonals of A.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LSAQH (A, NCODA, B, X [,…]) 

Specific: The specific interface names are S_LSAQH and D_LSAQH. 

FORTRAN 77 Interface 

Single: CALL LSAQH (N, A, LDA, NCODA, B, X) 

Double:  The double precision name is DLSAQH. 

Description 

Routine LSAQH solves a system of linear algebraic equations having a complex Hermitian positive 

definite band coefficient matrix. It first uses the IMSL routine LFCQH to compute an R
H

 R 

Cholesky factorization of the coefficient matrix and to estimate the condition number of the 

matrix. R is an upper triangular band matrix. The solution of the linear system is then found using 

the iterative refinement IMSL routine LFIQH.  

LSAQH fails if any submatrix of R is not positive definite, if R has a zero diagonal element, or if the 

iterative refinement agorithm fails to converge. These errors occur only if the matrix A either is 

very close to a singular matrix or is a matrix that is not positive definite.  

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system. LSAQH solves the 

problem that is represented in the computer; however, this problem may differ from the problem 

whose solution is desired. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2AQH/DL2AQH The 

reference is: 
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CALL L2AQH (N, A, LDA, NCODA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT — Complex work vector of length (NCODA + 1) * N containing the 

R
H

 R factorization of A in band Hermitian storage form on output. 

WK — Complex work vector of length N. 

2. Informational errors 

Type Code 

3 3 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

3 4 The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 

4 2 The input matrix is not positive definite. 

4  4 The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2AQH the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSAQH. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSAQH. Users directly calling L2AQH can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSAQH or L2AQH. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17  This option has two values that determine if the L1 condition number is to be 

computed. Routine LSAQH temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CQH computes the condition number if IVAL(2) = 2. Otherwise L2CQH 

skips this computation. LSAQH restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

Example 

A system of five linear equations is solved. The coefficient matrix has complex Hermitian positive 

definite band form with one codiagonal and the right-hand-side vector b has five elements. 
 

      USE LSAQH_INT 

      USE WRCRN_INT 

!                                 Declare variables 
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      INTEGER    LDA, N, NCODA 

      PARAMETER  (LDA=2, N=5, NCODA=1) 

      COMPLEX    A(LDA,N), B(N), X(N) 

! 

!            Set values for A in band Hermitian form, and B 

! 

!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 

!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 

! 

!            B = ( 1.0+5.0i 12.0-6.0i  1.0-16.0i -3.0-3.0i 25.0+16.0i ) 

! 
      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),& 

            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 

      DATA B/(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),& 

            (25.0,16.0)/ 

!                                 Solve A*X = B 
      CALL LSAQH (A, NCODA, B, X) 

!                                 Print results 
      CALL WRCRN (‘X‘, X, 1, N, 1) 

! 
      END 

Output 
 

                                   X 

              1                2                3                4 

( 2.000, 1.000)  ( 3.000, 0.000)  (-1.000,-1.000)  ( 0.000,-2.000) 

              5 

( 3.000, 2.000) 

LSLQH  
Solves a complex Hermitian positive definite system of linear equations in band Hermitian storage 

mode without iterative refinement. 

Required Arguments 

A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian 

coefficient matrix in band Hermitian storage mode.   (Input) 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL LSLQH (A, NCODA, B, X [,…]) 

Specific: The specific interface names are S_LSLQH and D_LSLQH. 

FORTRAN 77 Interface 

Single: CALL LSLQH (N, A, LDA, NCODA, B, X) 

Double:  The double precision name is DLSLQH. 

Description 

Routine LSLQH solves a system of linear algebraic equations having a complex Hermitian positive 

definite band coefficient matrix. It first uses the routine LFCQH to compute an R
H

 R Cholesky 

factorization of the coefficient matrix and to estimate the condition number of the matrix. R is an 

upper triangular band matrix. The solution of the linear system is then found using the routine 

LFSQH. 

LSLQH fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 

These errors occur only if A either is very close to a singular matrix or is a matrix that is not 

positive definite. 

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in A can cause very large changes in the 

solution x. If the coefficient matrix is ill-conditioned or poorly sealed, it is recommended that 

LSAQH be used. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LQH/DL2LQH The 

reference is: 

CALL L2LQH (N, A, LDA, NCODA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT — (NCODA + 1) × N complex work array containing the R
H

 R 

factorization of A in band Hermitian storage form on output. If A is not 

needed, A and FACT can share the same storage locations. 

WK — Complex work vector of length N. 
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2. Informational errors 

Type Code  

3 3 The input matrix is too ill-conditioned. The solution might not be 

accurate. 

3 4 The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 

4 2 The input matrix is not positive definite. 

4 4 The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2LQH the leading dimension of FACT is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLQH. 

Additional memory allocation for FACT and option value restoration are done 

automatically in LSLQH. Users directly calling L2LQH can allocate additional 

space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSLQH or L2LQH. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17  This option has two values that determine if the L1 condition number is to be 

computed. Routine LSLQH temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CQH computes the condition number if IVAL(2) = 2. Otherwise L2CQH 

skips this computation. LSLQH restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

Example 

A system of five linear equations is solved. The coefficient matrix has complex Hermitian positive 

definite band form with one codiagonal and the right-hand-side vector b has five elements. 
 

      USE LSLQH_INT 

      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    N, NCODA, LDA 

      PARAMETER  (N=5, NCODA=1, LDA=NCODA+1) 

      COMPLEX    A(LDA,N), B(N), X(N) 

! 

!            Set values for A in band Hermitian form, and B 

! 

!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 

!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 
! 

!            B = ( 1.0+5.0i 12.0-6.0i  1.0-16.0i -3.0-3.0i 25.0+16.0i ) 

! 
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      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),& 

            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 

      DATA B/(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),& 

            (25.0,16.0)/ 

!                                 Solve A*X = B 

      CALL LSLQH (A, NCODA, B, X) 

!                                 Print results 

      CALL WRCRN (‘X‘, X, 1, N, 1) 

! 

      END 

Output 
 

                                  X 

              1                2                3                4 

( 2.000, 1.000)  ( 3.000, 0.000)  (-1.000,-1.000)  ( 0.000,-2.000) 

 

              5 

( 3.000, 2.000) 

LSLQB  

Computes the R
H

 DR Cholesky factorization of a complex Hermitian positive-definite matrix A in 

codiagonal band Hermitian storage mode. Solve a system Ax = b. 

Required Arguments 

A — Array containing the N by N positive-definite band coefficient matrix and the right hand 

side in codiagonal band Hermitian storage mode.   (Input/Output)  

The number of array columns must be at least 2 * NCODA + 3. The number of columns 

is not an input to this subprogram. 

NCODA — Number of upper codiagonals of matrix A.   (Input)  

Must satisfy NCODA ≥ 0 and NCODA < N. 

U — Array of flags that indicate any singularities of A, namely loss of positive-definiteness of 

a leading minor.   (Output)  

A value U(I) = 0. means that the leading minor of dimension I is not positive-definite. 

Otherwise, U(I) = 1. 

Optional Arguments 

N — Order of the matrix.   (Input)  

Must satisfy N > 0. 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input)  
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Must satisfy LDA ≥ N + NCODA. 

Default: LDA = size (A,1). 

IJOB — flag to direct the desired factorization or solving step.   (Input)  

Default: IJOB =1. 

IJOB Meaning 

1 factor the matrix A and solve the system Ax = b; where the real part of b is 

stored in column 2 * NCODA + 2 and the imaginary part of b is stored in column 

2 * NCODA + 3 of array A. The real and imaginary parts of b are overwritten by 

the real and imaginary parts of x. 

2 solve step only. Use the real part of b as column 2 * NCODA + 2 and the 

imaginary part of b as column 2 * NCODA + 3 of A. (The factorization step has 

already been done.) The real and imaginary parts of b are overwritten by the real 

and imaginary parts of x. 

3 factor the matrix A but do not solve a system. 

4,5,6  same meaning as with the value IJOB = 3. For efficiency, no error checking is 

done on values LDA, N, NCODA, and U(*). 

FORTRAN 90 Interface 

Generic: CALL LSLQB (A, NCODA, U [,…]) 

Specific: The specific interface names are S_LSLQB and D_LSLQB. 

FORTRAN 77 Interface 

Single: CALL LSLQB (N, A, LDA, NCODA, IJOB, U) 

Double:  The double precision name is DLSLQB. 

Description 

Routine LSLQB factors and solves the Hermitian positive definite banded linear system Ax = b. 

The matrix is factored so that A = R
H

 DR, where R is unit upper triangular and D is diagonal and 

real. The reciprocals of the diagonal entries of D are computed and saved to make the solving step 

more efficient. Errors will occur if D has a nonpositive diagonal element. Such events occur only 

if A is very close to a singular matrix or is not positive definite.  

LSLQB is efficient for problems with a small band width. The particular cases NCODA = 0, 1 are 

done with special loops within the code. These cases will give good performance. See Hanson 

(1989) for more on the algorithm. When solving tridiagonal systems, NCODA = 1, the cyclic 

reduction code LSLCQ should be considered as an alternative. The expectation is that LSLCQ will 

outperform LSLQB on vector or parallel computers. It may be inferior on scalar computers or even 

parallel computers with non-optimizing compilers. 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LQB/DL2LQB The 

reference is: 

CALL L2LQB (N, A, LDA, NCODA, IJOB, U, WK1, WK2) 

The additional arguments are as follows: 

WK1 — Work vector of length NCODA. 

WK2 — Work vector of length NCODA. 

2. Informational error 

Type Code  

4 2 The input matrix is not positive definite. 

Example 

A system of five linear equations is solved. The coefficient matrix has real positive definite 

codiagonal Hermitian band form and the right-hand-side vector b has five elements. 
 

      USE LSLQB_INT 

      USE WRRRN_INT 

      INTEGER    LDA, N, NCODA 

      PARAMETER  (N=5, NCODA=1, LDA=N+NCODA) 

! 

      INTEGER    I, IJOB, J 

      REAL       A(LDA,2*NCODA+3), U(N) 

! 

!                                 Set values for A and right hand side 

!                                 in codiagonal band Hermitian form: 

! 

!                           (  *     *     *     *     * ) 

!                           ( 2.0    *     *    1.0   5.0) 

!                  A   =    ( 4.0  -1.0   1.0  12.0  -6.0) 

!                           (10.0   1.0   2.0   1.0 -16.0) 

!                           ( 6.0   0.0   4.0  -3.0  -3.0) 

!                           ( 9.0   1.0   1.0  25.0  16.0) 

! 

      DATA ((A(I+NCODA,J),I=1,N),J=1,2*NCODA+3)/2.0, 4.0, 10.0, 6.0,& 

          9.0, 0.0, -1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 2.0, 4.0, 1.0,& 

          1.0, 12.0, 1.0, -3.0, 25.0, 5.0, -6.0, -16.0, -3.0, 16.0/ 

! 

!                                 Factor and solve A*x = b. 

! 

      IJOB = 1 

      CALL LSLQB (A, NCODA, U) 

! 

!                                 Print results 

! 

      CALL WRRRN (‘REAL(X)‘, A((NCODA+1):,(2*NCODA+2):), 1, N, 1) 
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      CALL WRRRN (‘IMAG(X)‘, A((NCODA+1):,(2*NCODA+3):), 1, N, 1) 

      END 

Output 
 

                  REAL(X) 

    1       2       3       4       5 

2.000   3.000  -1.000   0.000   3.000 

 

                 IMAG(X) 

    1       2       3       4       5 

1.000   0.000  -1.000  -2.000   2.000 

LFCQH 

Computes the R
H

 R factorization of a complex Hermitian positive definite matrix in band 

Hermitian storage mode and estimate its L1 condition number. 

Required Arguments 

A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian 

matrix to be factored in band Hermitian storage mode.   (Input) 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

FACT — Complex NCODA + 1 by N array containing the R
H

 R factorization of the matrix A.   

(Output)  

If A is not needed, A and FACT can share the same storage locations. 

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition number of A.   

(Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFCQH (A, NCODA, FACT, RCOND [,…]) 

Specific: The specific interface names are S_LFCQH and D_LFCQH. 
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FORTRAN 77 Interface 

Single: CALL LFCQH (N, A, LDA, NCODA, FACT, LDFACT, RCOND) 

Double:  The double precision name is DLFCQH. 

Description 

Routine LFCQH computes an R
H

 R Cholesky factorization and estimates the condition number of a 

complex Hermitian positive definite band coefficient matrix. R is an upper triangular band matrix.  

The L1 condition number of the matrix A is defined to be κ(A) = ǀǀA ǀǀ1ǀǀA
-1ǀǀ1. Since it is expensive 

to compute ǀǀA-1ǀǀ1, the condition number is only estimated. The estimation algorithm is the same 

as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/ɛ (where ɛ is machine precision), a warning 

error is issued. This indicates that very small changes in  A can cause very large changes in the 

solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCQH fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 

These errors occur only if A either is very close to a singular matrix or is a matrix which is not 

positive definite.  

The R
H

 R factors are returned in a form that is compatible with routines LFIQH, LFSQH and 

LFDQH. To solve systems of equations with multiple right-hand-side vectors, use LFCQH followed 

by either LFIQH or LFSQH called once for each right-hand side. The routine LFDQH can be called 

to compute the determinant of the coefficient matrix after LFCQH has performed the factorization.  

LFCQH is based on the LINPACK routine CPBCO; see Dongarra et al. (1979). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CQH/DL2CQH. The 

reference is: 

CALL L2CQH (N, A, LDA, NCODA, FACT, LDFACT, RCOND, WK) 

The additional argument is: 

WK — Complex work vector of length N. 

2. Informational errors 

Type  Code  

3 1 The input matrix is algorithmically singular. 

3 4 The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 

4 2 The input matrix is not positive definite. 
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4 4 The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part 

Example 

The inverse of a 5 × 5 band Hermitian matrix with one codiagonal is computed. LFCQH is called 

to factor the matrix and to check for nonpositive definiteness or ill-conditioning. LFIQH is called 

to determine the columns of the inverse. 
 

      USE LFCQH_INT 

      USE LFIQH_INT 

      USE UMACH_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    N, NCODA, LDA, LDFACT, NOUT 

      PARAMETER  (N=5, NCODA=1, LDA=NCODA+1, LDFACT=LDA) 

      REAL       RCOND 

      COMPLEX    A(LDA,N), AINV(N,N), FACT(LDFACT,N), RES(N), RJ(N) 

! 

!            Set values for A in band Hermitian form 

! 

!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 

!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 

! 

      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0), & 

            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 

!                                 Factor the matrix A 

      CALL LFCQH (A, NCODA, FACT, RCOND) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = (0.0E0,0.0E0) 

      DO 10  J=1, N 

         RJ(J) = (1.0E0,0.0E0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFIQH 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFIQH (A, NCODA, FACT, RJ, AINV(:,J), RES) 

         RJ(J) = (0.0E0,0.0E0) 

   10 CONTINUE 

!                                 Print the results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 

      CALL WRCRN (‘AINV‘, AINV) 

! 

99999 FORMAT (‘  RCOND = ‘,F5.3,/,‘  L1 Condition number = ‘,F6.3) 

      END 

Output 
 

RCOND = 0.067 

L1 Condition number = 14.961 

 

                                     AINV 
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                  1                  2                  3                 4 

1 ( 0.7166, 0.0000)  ( 0.2166,-0.2166)  (-0.0899,-0.0300) (-0.0207, 0.0622) 

2 ( 0.2166, 0.2166)  ( 0.4332, 0.0000)  (-0.0599,-0.1198) (-0.0829, 0.0415) 

3 (-0.0899, 0.0300)  (-0.0599, 0.1198)  ( 0.1797, 0.0000) ( 0.0000,-0.1244) 

4 (-0.0207,-0.0622)  (-0.0829,-0.0415)  ( 0.0000, 0.1244) ( 0.2592, 0.0000) 

5 ( 0.0092, 0.0046)  ( 0.0138,-0.0046)  (-0.0138,-0.0138) (-0.0288, 0.0288) 

                   5 

1  ( 0.0092,-0.0046) 

2  ( 0.0138, 0.0046) 

3  (-0.0138, 0.0138) 

4  (-0.0288,-0.0288) 

5  ( 0.1175, 0.0000) 

LFTQH 

Computes the R
H

 R factorization of a complex Hermitian positive definite matrix in band 

Hermitian storage mode. 

Required Arguments 

A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian 

matrix to be factored in band Hermitian storage mode.   (Input) 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

FACT — Complex NCODA + 1 by N array containing the R
H

 R factorization of the matrix A.   

(Output)  

If A is not needed, A and FACT can share the same storage locations. 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFTQH (A, NCODA, FACT [,…]) 

Specific: The specific interface names are S_LFTQH and D_LFTQH. 
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FORTRAN 77 Interface 

Single: CALL LFTQH (N, A, LDA, NCODA, FACT, LDFACT) 

Double:  The double precision name is DLFTQH. 

Description 

Routine LFTQH computes an R
H

R Cholesky factorization of a complex Hermitian positive definite 

band coefficient matrix. R is an upper triangular band matrix. 

LFTQH fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 

These errors occur only if A either is very close to a singular matrix or is a matrix which is not 

positive definite. 

The R
H

 R factors are returned in a form that is compatible with routines LFIQH, LFSQH and 

LFDQH. To solve systems of equations with multiple right-hand-side vectors, use LFTQH followed 

by either LFIQH or LFSQH called once for each right-hand side. The routine LFDQH can be called 

to compute the determinant of the coefficient matrix after LFTQH has performed the factorization. 

LFTQH is based on the LINPACK routine SPBFA; see Dongarra et al. (1979). 

Comments 

Informational errors 

Type Code  

3 4 The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 

4 2 The input matrix is not positive definite. 

4 4 The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary  part. 

Example 

The inverse of a 5 × 5 band Hermitian matrix with one codiagonal is computed. LFTQH is called 

to factor the matrix and to check for nonpositive definiteness. LFSQH is called to determine the 

columns of the inverse. 
 

      USE LFTQH_INT 

      USE LFSQH_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NCODA 

      PARAMETER  (LDA=2, LDFACT=2, N=5, NCODA=1) 

      COMPLEX    A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N) 

! 

!            Set values for A in band Hermitian form 

! 

!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 

!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 

! 

      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),& 
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            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 

!                                 Factor the matrix A 

      CALL LFTQH (A, NCODA, FACT) 

!                                 Set up the columns of the identity 

!                                 matrix one at a time in RJ 

      RJ = (0.0E0,0.0E0) 

      DO 10  J=1, N 

         RJ(J) = (1.0E0,0.0E0) 

!                                 RJ is the J-th column of the identity 

!                                 matrix so the following LFSQH 

!                                 reference places the J-th column of 

!                                 the inverse of A in the J-th column 

!                                 of AINV 

         CALL LFSQH (FACT, NCODA, RJ, AINV(:,J)) 

         RJ(J) = (0.0E0,0.0E0) 

   10 CONTINUE 

!                                 Print the results 

      CALL WRCRN (‘AINV‘, AINV) 

! 

      END 

Output 
 

                                      AINV 

                  1                  2                  3                 4 

1 ( 0.7166, 0.0000) ( 0.2166,-0.2166)  (-0.0899,-0.0300)  (-0.0207, 0.0622) 

2 ( 0.2166, 0.2166) ( 0.4332, 0.0000)  (-0.0599,-0.1198)  (-0.0829, 0.0415) 

3 (-0.0899, 0.0300) (-0.0599, 0.1198)  ( 0.1797, 0.0000)  ( 0.0000,-0.1244) 

4 (-0.0207,-0.0622) (-0.0829,-0.0415)  ( 0.0000, 0.1244)  ( 0.2592, 0.0000) 

5 ( 0.0092, 0.0046) ( 0.0138,-0.0046)  (-0.0138,-0.0138)  (-0.0288, 0.0288) 

                   5 

1  ( 0.0092,-0.0046) 

2  ( 0.0138, 0.0046) 

3  (-0.0138, 0.0138) 

4  (-0.0288,-0.0288) 

5  ( 0.1175, 0.0000) 

LFSQH 
Solves a complex Hermitian positive definite system of linear equations given the factorization of 

the coefficient matrix in band Hermitian storage mode. 

Required Arguments 

FACT — Complex NCODA + 1 by N array containing the R
H

 R factorization of the Hermitian 

positive definite band matrix A.   (Input)  

FACT is obtained as output from routine LFCQH/DLFCQH or LFTQH/DLFTQH . 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

B — Complex vector of length N containing the right-hand-side of the linear system.   (Input) 
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X — Complex vector of length N containing the solution to the linear system.   (Output)  

If B is not needed, B and X can share the same storage locations. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFSQH (FACT, NCODA, B, X [,…]) 

Specific: The specific interface names are S_LFSQH and D_LFSQH. 

FORTRAN 77 Interface 

Single: CALL LFSQH (N, FACT, LDFACT, NCODA, B, X) 

Double:  The double precision name is DLFSQH. 

Description 

Routine LFSQH computes the solution for a system of linear algebraic equations having a complex 

Hermitian positive definite band coefficient matrix. To compute the solution, the coefficient 

matrix must first undergo an R
H

 R factorization. This may be done by calling either IMSL routine 

LFCQH or LFTQH. R is an upper triangular band matrix.  

The solution to Ax = b is found by solving the triangular systems R
H

 y = b and Rx = y.  

LFSQH and LFIQH both solve a linear system given its R
H

 R factorization. LFIQH generally takes 

more time and produces a more accurate answer than LFSQH. Each iteration of the iterative 

refinement algorithm used by LFIQH calls LFSQH.  

LFSQH is based on the LINPACK routine CPBSL; see Dongarra et al. (1979). 

Comments 

Informational error 

Type Code  

4 1 The factored matrix has a diagonal element close to zero. 

Example 

A set of linear systems is solved successively. LFTQH is called to factor the coefficient matrix. 

LFSQH is called to compute the three solutions for the three right-hand sides. In this case the 
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coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be 

better to call LFCQH to perform the factorization, and LFIQH to compute the solutions. 
 

      USE LFSQH_INT 

      USE LFTQH_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NCODA 

      PARAMETER  (LDA=2, LDFACT=2, N=5, NCODA=1) 

      COMPLEX    A(LDA,N), B(N,3), FACT(LDFACT,N), X(N,3) 

! 

!            Set values for A in band Hermitian form, and B 

! 

!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 

!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 

! 

!            B = (  3.0+3.0i   4.0+0.0i   29.0-9.0i  ) 

!                (  5.0-5.0i  15.0-10.0i -36.0-17.0i ) 

!                (  5.0+4.0i -12.0-56.0i -15.0-24.0i ) 

!                (  9.0+7.0i -12.0+10.0i -23.0-15.0i ) 

!                (-22.0+1.0i   3.0-1.0i  -23.0-28.0i ) 

! 

      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),& 

            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 

      DATA B/(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0),& 

            (4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.0,10.0),& 

            (3.0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),& 

            (-23.0,-15.0), (-23.0,-28.0)/ 

!                                 Factor the matrix A 

      CALL LFTQH (A, NCODA, FACT) 

!                                 Compute the solutions 

      DO 10  I=1, 3 

         CALL LFSQH (FACT, NCODA, B(:,I), X(:,I)) 

   10 CONTINUE 

!                                 Print solutions 

      CALL WRCRN (‘X‘, X) 

      END 

Output 
 

                           X 

                 1                2                3 

1  (  1.00,  0.00)  (  3.00, -1.00)  ( 11.00, -1.00) 

2  (  1.00, -2.00)  (  2.00,  0.00)  ( -7.00,  0.00) 

3  (  2.00,  0.00)  ( -1.00, -6.00)  ( -2.00, -3.00) 

4  (  2.00,  3.00)  (  2.00,  1.00)  ( -2.00, -3.00) 

5  ( -3.00,  0.00)  (  0.00,  0.00)  ( -2.00, -3.00) 

LFIQH 
Uses iterative refinement to improve the solution of a complex Hermitian positive definite system 

of linear equations in band Hermitian storage mode. 



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  363 

     

     

 

Required Arguments 

A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian 

coefficient matrix in band Hermitian storage mode.   (Input) 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

FACT — Complex NCODA + 1 by N array containing the R
H

 R factorization of the matrix A as 

output from routine LFCQH/DLFCQH or LFTQH/DLFTQH.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

RES — Complex vector of length N containing the residual vector at the improved solution.   

(Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFIQH (A, NCODA, FACT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIQH and D_LFIQH. 

FORTRAN 77 Interface 

Single: CALL LFIQH (N, A, LDA, NCODA, FACT, LDFACT, B, X, RES) 

Double:  The double precision name is DLFIQH. 

Description 

Routine LFIQH computes the solution for a system of linear algebraic equations having a complex 

Hermitian positive definite band coefficient matrix. To compute the solution, the coefficient 

matrix must first undergo an R
H

 R factorization. This may be done by calling either IMSL routine 

LFCQH or LFTQH. R is an upper triangular band matrix.  
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The solution to Ax = b is found by solving the triangular systems R
H

 y = b and Rx = y.  

LFSQH and LFIQH both solve a linear system given its R
H

 R factorization. LFIQH generally takes 

more time and produces a more accurate answer than LFSQH. Each iteration of the iterative 

refinement algorithm used by LFIQH calls LFSQH. 

Comments 

Informational error 

Type Code 

4 1 The factored matrix has a diagonal element close to zero. 

Example 

A set of linear systems is solved successively. The right-hand side vector is perturbed after solving 

the system each of the fisrt two times by adding (1 + i)/2 to the second element. 
 

      USE IMSL_LIBRARIES 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NCODA 

      PARAMETER  (LDA=2, LDFACT=2, N=5, NCODA=1) 

      REAL       RCOND 

      COMPLEX    A(LDA,N), B(N), FACT(LDFACT,N), RES(N,3), X(N,3) 

! 

!            Set values for A in band Hermitian form, and B 

! 

!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 

!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 

! 

!            B = (  3.0+3.0i 5.0-5.0i  5.0+4.0i 9.0+7.0i -22.0+1.0i ) 

! 

      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),& 

            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 

      DATA B/(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/ 

!                                 Factor the matrix A 

      CALL LFCQH (A, NCODA, FACT, RCOND=RCOND) 

!                                 Print the estimated condition number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT, 99999) RCOND, 1.0E0/RCOND 

!                                 Compute the solutions 

      DO 10  I=1, 3 

         CALL LFIQH (A, NCODA, FACT,  B, X(:,I), RES(:,I)) 

         B(2) = B(2) + (0.5E0, 0.5E0) 

   10 CONTINUE 

!                                 Print solutions 

      CALL WRCRN ('X', X) 

      CALL WRCRN ('RES', RES) 

99999 FORMAT ('  RCOND = ', F5.3, /, '  L1 Condition number = ', F6.3) 

      END 
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Output 
 

                           X 

                 1                2                3 

1  (  1.00,  0.00)  (  3.00, -1.00)  ( 11.00, -1.00) 

2  (  1.00, -2.00)  (  2.00,  0.00)  ( -7.00,  0.00) 

3  (  2.00,  0.00)  ( -1.00, -6.00)  ( -2.00, -3.00) 

4  (  2.00,  3.00)  (  2.00,  1.00)  ( -2.00, -3.00) 

5  ( -3.00,  0.00)  (  0.00,  0.00)  ( -2.00, -3.00) 

LFDQH 

Computes the determinant of a complex Hermitian positive definite matrix given the R
H

R 

Cholesky factorization in band Hermitian storage mode. 

Required Arguments 

FACT — Complex NCODA + 1 by N array containing the R
H

R factorization of the Hermitian 

positive definite band matrix A.   (Input)  

FACT is obtained as output from routine LFCQH/DLFCQH or LFTQH/DLFTQH. 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  

The value DET1 is normalized so that 1.0 ≤ ǀDET1 ǀ < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  

The determinant is returned in the form det (A) = DET1 * 10DET2. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LFDQH (FACT, NCODA, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDQH and D_LFDQH. 

FORTRAN 77 Interface 

Single: CALL LFDQH (N, FACT, LDFACT, NCODA, DET1, DET2) 

Double:  The double precision name is DLFDQH. 
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Description 

Routine LFDQH computes the determinant of a complex Hermitian positive definite band 

coefficient matrix. To compute the determinant, the coefficient matrix must first undergo an  

R
H

 R factorization. This may be done by calling either LFCQH or LFTQH. The formula  

det A = det R
H

 det R = (det R)
2
 is used to compute the determinant. Since the determinant of a 

triangular matrix is the product of the diagonal elements,  

1
det

N

i iiR R



  

LFDQH is based on the LINPACK routine CPBDI; see Dongarra et al. (1979). 

Example 

The determinant is computed for a 5 × 5 complex Hermitian positive definite band matrix with 

one codiagonal. 
 

      USE LFDQH_INT 

      USE LFTQH_INT 

      USE UMACH_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NCODA, NOUT 

      PARAMETER  (LDA=2, N=5, LDFACT=2, NCODA=1) 

      REAL       DET1, DET2 

      COMPLEX    A(LDA,N), FACT(LDFACT,N) 

! 

!            Set values for A in band Hermitian form 

! 

!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 

!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 

! 

      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),& 

            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 

!                                 Factor the matrix 

      CALL LFTQH (A, NCODA, FACT) 

!                                 Compute the determinant 

      CALL LFDQH (FACT, NCODA, DET1, DET2) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) DET1, DET2 

! 

99999 FORMAT (‘ The determinant of A is ‘,F6.3,‘ * 10**‘,F2.0) 

      END 

Output 
 

The determinant of A is  1.736 * 10**3. 

LSLXG 
Solves a sparse system of linear algebraic equations by Gaussian elimination. 
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Required Arguments 

A — Vector of length NZ containing the nonzero coefficients of the linear system.   (Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 

A.   (Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 

in A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (B,1). 

NZ — The number of nonzero coefficients in the linear system.   (Input) 

Default: NZ = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system Ax = b is solved.  

IPATH = 2 means the system A
T
x = b is solved. 

Default: IPATH = 1. 

IPARAM — Parameter vector of length 6.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM.  

Default: IPARAM(1) = 0. 

See Comment 3. 

RPARAM — Parameter vector of length 5.   (Input/Output)  

See Comment 3. 

FORTRAN 90 Interface 

Generic: CALL LSLXG (A, IROW, JCOL, B, X [,…]) 

Specific: The specific interface names are S_LSLXG and D_LSLXG. 

FORTRAN 77 Interface 

Single: CALL LSLXG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X) 

Double:  The double precision name is DLSLXG. 



     

     
 

368  Chapter 1: Linear Systems IMSL MATH LIBRARY  

     

     

 

Description 

Consider the linear equation 

Ax b  

where A is a n × n sparse matrix. The sparse coordinate format for the matrix A requires one real 

and two integer vectors. The real array a contains all the nonzeros in A. Let the number of 

nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the row and 

column numbers for these entries in A. That is 

      , 1, ,i iA a i i 
irow icol

nz

 

with all other entries in A zero. 

The routine LSLXG solves a system of linear algebraic equations having a real sparse coefficient 

matrix. It first uses the routine LFTXG to perform an LU factorization of the coefficient matrix. The 

solution of the linear system is then found using LFSXG.  

The routine LFTXG by default uses a symmetric Markowitz strategy (Crowe et al. 1990) to choose 

pivots that most likely would reduce fill-ins while maintaining numerical stability. Different 

strategies are also provided as options for row oriented or column oriented problems. The 

algorithm can be expressed as 

P AQ = LU 

where P and Q are the row and column permutation matrices determined by the Markowitz 

strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively. 

Finally, the solution x is obtained by the following calculations: 

1) Lz = Pb 

2) Uy = z 

3) x = Qy 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LXG/DL2LXG. The 

reference is: 

CALL L2LXG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X, WK, LWK, IWK, 
LIWK) 

The additional arguments are as follows: 

WK — Real work vector of length LWK. 

LWK — The length of WK, LWK should be at least 2N + MAXNZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 17N + 4 * MAXNZ. 
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The workspace limit is determined by MAXNZ, where 

MAXNZ = MIN0(LWK-2N, INT(0.25(LIWK-17N))) 

2. Informational errors 

Type Code 

3 1 The coefficient matrix is numerically singular. 

3 2 The growth factor is too large to continue. 

3 3 The matrix is too ill-conditioned for iterative refinement. 

3. If the default parameters are desired for LSLXG, then set IPARAM(1) to zero and call the 

routine LSLXG. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM. then the following steps should be taken before calling LSLXG. 

 CALL L4LXG (IPARAM, RPARAM)  

Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to L4LXG will set IPARAM and RPARAM to their default values, so only 

nondefault values need to be set above. 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = The pivoting strategy 

IPARAM(2) Action 

1 Markowitz row search 

2 Markowitz column search 

3 Symmetric Markowitz search 

 

Default: 3. 

IPARAM(3) = The number of rows which have least numbers of nonzero 

elements that will be searched for a pivotal element. 

Default: 3. 

IPARAM(4) = The maximal number of nonzero elements in A at any stage of 

the Gaussian elimination.   (Output)  

IPARAM(5) = The workspace limit. 

IPARAM(5) Action 

0 Default limit, see Comment 1. 

integer This integer value replaces the default workspace limit. 
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 When L2LXG is called, the values of LWK and LIWK are used instead of 

IPARAM(5). 

Default: 0. 

IPARAM(6) = Iterative refinement is done when this is nonzero.  

Default: 0. 

RPARAM — Real vector of length 5.  

RPARAM(1) = The upper limit on the growth factor. The computation stops 

when the growth factor exceeds the limit.  

Default: 10
16 

RPARAM(2) = The stability factor. The absolute value of the pivotal element 

must be bigger than the largest element in absolute value in its row 

divided by RPARAM(2).  

Default: 10.0. 

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor L 

will be removed if its absolute value becomes smaller than the drop-

tolerance at any stage of the Gaussian elimination. 

Default: 0.0. 

RPARAM(4) = The growth factor. It is calculated as the largest element in 

absolute value in A at any stage of the Gaussian elimination divided by 

the largest element in absolute value in the original A matrix.   (Output) 

Large value of the growth factor indicates that an appreciable error in 

the computed solution is possible. 

RPARAM(5) = The value of the smallest pivotal element in absolute value.   

(Output) 

 If double precision is required, then DL4LXG is called and RPARAM is declared double 

precision. 

Example 

As an example consider the 6× 6 linear system: 
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10 0 0 0 0 0

0 10 3 1 0 0

0 0 15 0 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

A

 
 

 
 
 

  
  
   
 
  

 

10 0 0 0 0 0

0 10 3 1 0 0

0 0 1 50 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

A

 
 

 
 
 

  
  
   
 
    

Let x
T
 = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33,−34, 31)

T
. The number of nonzeros in A is  

nz = 15. The sparse coordinate form for A is given by: 

 

irow 6 2 3 2 4 4 5 5 5 5 1 6 6 2 4

jcol 6 2 3 3 4 5 1 6 4 4 1 1 2 4 1

a 6 10 15 3 10 1 1 3 5 1 10 1 2 1 2        
 

 

 

      USE LSLXG_INT 

      USE WRRRN_INT 

      USE L4LXG_INT 

      INTEGER    N, NZ 

      PARAMETER  (N=6, NZ=15) 

! 

      INTEGER    IPARAM(6), IROW(NZ), JCOL(NZ) 

      REAL       A(NZ), B(N), RPARAM(5), X(N) 

! 

      DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,& 

          -2., -1., -2./ 

      DATA B/10., 7., 45., 33., -34., 31./ 

      DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/ 

      DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/ 

! 

!                                 Change a default parameter 

      CALL L4LXG (IPARAM, RPARAM) 

      IPARAM(5) = 203 

!                                 Solve for X 

      CALL LSLXG (A, IROW, JCOL, B, X, IPARAM=IPARAM) 

! 
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      CALL WRRRN (‘ x ‘, X, 1, N, 1) 

      END 

Output 
 

                         x 

    1       2       3       4       5       6 

1.000   2.000   3.000   4.000   5.000   6.000 

LFTXG 
Computes the LU factorization of a real general sparse matrix.. 

Required Arguments 

A — Vector of length NZ containing the nonzero coefficients of the linear system.   (Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 

A.   (Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 

in A.   (Input) 

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal 

elements.   (Output) 

NFAC — On input, the dimension of vector FACT.   (Input/Output)  

On output, the number of nonzero coefficients in the triangular matrix L and U. 

FACT — Vector of length NFAC containing the nonzero elements of L (excluding the 

diagonals) in the first NL locations and the nonzero elements of U in NL + 1 to NFAC 

locations.   (Output) 

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements 

in FACT.   (Output) 

JCFAC — Vector of length NFAC containing the column numbers of the corresponding 

elements in FACT.   (Output) 

IPVT — Vector of length N containing the row pivoting information for the LU factorization.   

(Output) 

JPVT — Vector of length N containing the column pivoting information for the LU 

factorization.   (Output) 
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Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (IPVT,1). 

NZ — The number of nonzero coefficients in the linear system.   (Input) 

Default: NZ = size (A,1). 

IPARAM — Parameter vector of length 6.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM.  

Default: IPARAM(1) = 0. 

See Comment 3. 

RPARAM — Parameter vector of length 5.   (Input/Output) 

See Comment 3. 

FORTRAN 90 Interface 

Generic: CALL LFTXG (A, IROW, JCOL, NL, NFAC, FACT, IRFAC, JCFAC, IPVT,  
JPVT [,…]) 

Specific: The specific interface names are S_LFTXG and D_LFTXG. 

FORTRAN 77 Interface 

Single: CALL LFTXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT, 

IRFAC, JCFAC, IPVT, JPVT) 

Double:  The double precision name is DLFTXG. 

Description 

Consider the linear equation  

Ax b  

where A is a n × n sparse matrix. The sparse coordinate format for the matrix A requires one real 

and two integer vectors. The real array a contains all the nonzeros in A. Let the number of 

nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the row and 

column numbers for these entries in A. That is 

      , 1, ,i iA a i i 
irow icol

nz

 

with all other entries in A zero. 

The routine LFTXG performs an LU factorization of the coefficient matrix A. It by default uses a 

symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots that most likely would reduce 

fillins while maintaining numerical stability. Different strategies are also provided as options for 

row oriented or column oriented problems. The algorithm can be expressed as  

P AQ = LU 
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where P and Q are the row and column permutation matrices determined by the Markowitz 

strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively. 

Finally, the solution x is obtained using LFSXG by the following calculations: 

1) Lz = Pb 

2) Uy = z 

3) x = Qy 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2TXG/DL2TXG. The 

reference is: 

CALL L2TXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT, 

IRFAC, JCFAC, IPVT, JPVT, WK, LWK, IWK, LIWK) 

The additional arguments are as follows: 

WK — Real work vector of length LWK. 

LWK — The length of WK, LWK should be at least MAXNZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 15N + 4 * MAXNZ. 

The workspace limit is determined by MAXNZ, where 

MAXNZ = MIN0(LWK, INT(0.25(LIWK-15N))) 

2. Informational errors 

Type Code 

3 1 The coefficient matrix is numerically singular. 

3 2 The growth factor is too large to continue. 

3. If the default parameters are desired for LFTXG, then set IPARAM(1) to zero and call the 

routine LFTXG. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling LFTXG. 

 CALL L4LXG (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to L4LXG will set IPARAM and RPARAM to their default values, so 

only nondefault values need to be set above. 
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 The arguments are as follows: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = The pivoting strategy. 

IPARAM(2) Action 

1 Markowitz row search 

2 Markowitz column search 

3 Symmetric Markowitz search 

 Default: 3. 

IPARAM(3) = The number of rows which have least numbers of nonzero 

elements that will be searched for a pivotal element.  

Default: 3. 

IPARAM(4) = The maximal number of nonzero elements in A at any stage of 

the Gaussian elimination.   (Output)  

IPARAM(5) = The workspace limit.  

IPARAM(5) Action 

0 Default limit, see Comment 1. 

integer This integer value replaces the default workspace 

limit. 

 When L2TXG is called, the values of LWK and LIWK are used  instead of 

IPARAM(5). 

IPARAM(6) = Not used in LFTXG. 

RPARAM — Real vector of length 5. 

RPARAM(1) = The upper limit on the growth factor. The computation stops 

when the growth factor exceeds the limit. 

Default: 10. 

RPARAM(2) = The stability factor. The absolute value of the pivotal element 

must be bigger than the largest element in absolute value in its row 

divided by RPARAM(2). 

Default: 10.0. 

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor L 

will be removed if its absolute value becomes smaller than the drop-

tolerance at any stage of the Gaussian elimination. 

Default: 0.0. 
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RPARAM(4) = The growth factor. It is calculated as the largest element in 

absolute value in A at any stage of the Gaussian elimination divided by 

the largest element in absolute value in the original A matrix.   (Output) 

Large value of the growth factor indicates that an appreciable error in 

the computed solution is possible. 

RPARAM(5) = The value of the smallest pivotal element in absolute value.   

(Output) 

 If double precision is required, then DL4LXG is called and RPARAM is declared double 

precision. 

Example 

As an example, consider the 6 × 6 matrix of a linear system: 

10 0 0 0 0 0

0 10 3 1 0 0

0 0 15 0 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

A

 
 

 
 
 

  
  
   
 
    

The sparse coordinate form for A is given by: 

irow 6 2 3 2 4 4 5 5 5 5 1 6 6 2 4

jcol 6 2 3 3 4 5 1 6 4 5 1 1 2 4 1

a   6 10 15 3 10 1 1 3 5 1 10 1 2 1 2        
 

 

      USE LFTXG_INT 

      USE WRRRN_INT 

      USE WRIRN_INT 

      INTEGER    N, NZ 

      PARAMETER  (N=6, NZ=15) 

      INTEGER    IROW(NZ), JCOL(NZ), NFAC, NL,& 

                 IRFAC(3*NZ), JCFAC(3*NZ), IPVT(N), JPVT(N) 

      REAL       A(NZ), FACT(3*NZ) 

! 

      DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,& 

            -2., -1., -2./ 

      DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/ 

      DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/ 

! 

      NFAC = 3*NZ 

!                                 Use default options 

      CALL LFTXG (A, IROW, JCOL, NL, NFAC, FACT, IRFAC, JCFAC, IPVT, JPVT) 

! 
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      CALL WRRRN (‘ fact ‘, FACT, 1, NFAC, 1) 

      CALL WRIRN (‘ irfac ‘, IRFAC, 1, NFAC, 1) 

      CALL WRIRN (‘ jcfac ‘, JCFAC, 1, NFAC, 1) 

      CALL WRIRN (‘ p ‘, IPVT, 1, N, 1) 

      CALL WRIRN (‘ q ‘, JPVT, 1, N, 1) 

 

! 

      END 

Output 
 

                                       fact 

    1      2       3       4       5       6       7       8       9    10 

-0.10  -5.00   -0.20   -0.10   -0.10   -1.00   -0.20    4.90   -5.10   1.00 

   11      12      13      14      15      16 

-1.00   30.00    6.00   -2.00   10.00   15.00 

 

                              irfac 

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 

3   4   4   5   5   6   6   6   5   5   4   4   3   3   2   1 

 

                              jcfac 

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 

2   3   1   4   2   5   2   6   6   5   6   4   4   3   2   1 

 

            p 

1   2   3   4   5   6 

3   1   6   2   5   4 

 

            q 

1   2   3   4   5   6 

3   1   2   6   5   4 

LFSXG 
Solves a sparse system of linear equations given the LU factorization of the coefficient matrix.. 

Required Arguments 

NFAC — The number of nonzero coefficients in FACT as output from subroutine 

LFTXG/DLFTXG.   (Input) 

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal 

elements as output from subroutine LFTXG/DLFTXG.   (Input) 

FACT — Vector of length NFAC containing the nonzero elements of L (excluding the 

diagonals) in the first NL locations and the nonzero elements of U in NL + 1 to NFAC 

locations as output from subroutine LFTXG/DLFTXG.   (Input) 

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements 

in FACT as output from subroutine LFTXG/DLFTXG.   (Input) 



     

     
 

378  Chapter 1: Linear Systems IMSL MATH LIBRARY  

     

     

 

JCFAC — Vector of length NFAC containing the column numbers of the corresponding 

elements in FACT as output from subroutine LFTXG/DLFTXG.   (Input) 

IPVT — Vector of length N containing the row pivoting information for the LU factorization 

as output from subroutine LFTXG/DLFTXG.   (Input) 

JPVT — Vector of length N containing the column pivoting information for the LU 

factorization as output from subroutine LFTXG/DLFTXG.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (B,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system Ax = B is solved.  

IPATH = 2 means the system A
T
x = B is solved. 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LFSXG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSXG and D_LFSXG. 

FORTRAN 77 Interface 

Single: CALL LFSXG (N, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, IPATH, X) 

Double:  The double precision name is DLFSXG. 

Description 

Consider the linear equation 

Ax b  

where A is a n× n sparse matrix. The sparse coordinate format for the matrix A requires one real 

and two integer vectors. The real array a contains all the nonzeros in A. Let the number of 

nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the row and 

column numbers for these entries in A. That is 

      , 1, ,i iA a i i 
irow icol

nz
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with all other entries in A zero. The routine LFSXG computes the solution of the linear equation 

given its LU factorization. The factorization is performed by calling LFTXG. The solution of the 

linear system is then found by the forward and backward substitution. The algorithm can be 

expressed as  

P AQ = LU 

where P and Q are the row and column permutation matrices determined by the Markowitz 

strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively. 

Finally, the solution x is obtained by the following calculations: 

1) Lz = Pb 

2) Uy = z 

3) x = Qy 

For more details, see Crowe et al. (1990). 

Example 

As an example, consider the 6 × 6 linear system: 

10 0 0 0 0 0

0 10 3 1 0 0

0 0 15 0 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

A

 
 

 
 
 

  
  
   
 
    

Let  

 1 1,2,3,4,5,6Tx 
 

so that Ax1 = (10, 7, 45, 33,−34, 31)
T
, and  

 2 6,5,4,3,2,1Tx 
 

so that Ax2 = (60, 35, 60, 16, −22, 10)
T
. The sparse coordinate form for A is given by: 

irow 6 2 3 2 4 4 5 5 5 5 1 6 6 2 4

jcol 6 2 3 3 4 5 1 6 4 5 1 1 2 4 1

a   6 10 15 3 10 1 1 3 5 1 10 1 2 1 2        
 

 

      USE LFSXG_INT 

      USE WRRRL_INT 

      USE LFTXG_INT 

      INTEGER    N, NZ 

      PARAMETER  (N=6, NZ=15) 

      INTEGER    IPATH, IROW(NZ), JCOL(NZ), NFAC,& 

                 NL, IRFAC(3*NZ), JCFAC(3*NZ), IPVT(N), JPVT(N) 
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      REAL       X(N), A(NZ), B(N,2), FACT(3*NZ) 

      CHARACTER  TITLE(2)*2, RLABEL(1)*4, CLABEL(1)*6 

      DATA RLABEL(1)/‘NONE‘/, CLABEL(1)/‘NUMBER‘/ 

! 

      DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,& 

            -2., -1., -2./ 

      DATA B/10., 7., 45., 33., -34., 31.,& 

            60., 35., 60., 16., -22., -10./ 

      DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/ 

      DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/ 

      DATA TITLE/‘x1‘, ‘x2‘/ 

! 

      NFAC = 3*NZ 

!                                 Perform LU factorization 

      CALL LFTXG (A, IROW, JCOL, NL, NFAC, FACT, IRFAC, JCFAC, IPVT, JPVT) 

! 

      DO 10 I = 1, 2 

!                                 Solve A * X(i) = B(i) 

         CALL LFSXG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B(:,I), X) 

! 

         CALL WRRRL (TITLE(I), X,  RLABEL, CLABEL, 1, N, 1) 

   10 CONTINUE 

      END 

Output 
 

                  x1 

  1     2     3     4     5     6 

1.0   2.0   3.0   4.0   5.0   6.0 

 

                 x2 

  1     2     3     4     5     6 

6.0   5.0   4.0   3.0   2.0   1.0 

LSLZG 
Solves a complex sparse system of linear equations by Gaussian elimination. 

Required Arguments 

A — Complex vector of length NZ containing the nonzero coefficients of the linear system.   

(Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 

A.   (Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 

in A.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 
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Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (B,1). 

NZ — The number of nonzero coefficients in the linear system.   (Input) 

Default: NZ = size (A,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system Ax = b is solved.  

IPATH = 2 means the system A
H

 x = b is solved. 

Default: IPATH =1. 

IPARAM — Parameter vector of length 6.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 3. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 5.   (Input/Output)  

See Comment 3 

FORTRAN 90 Interface 

Generic: CALL LSLZG (A, IROW, JCOL, B, X [,…]) 

Specific: The specific interface names are S_LSLZG and D_LSLZG. 

FORTRAN 77 Interface 

Single: CALL LSLZG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X) 

Double:  The double precision name is DLSLZG. 

Description 

Consider the linear equation  

Ax b  

where A is a n × n complex sparse matrix. The sparse coordinate format for the matrix A requires 

one complex and two integer vectors. The complex array a contains all the nonzeros in A. Let the 

number of nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the 

row and column numbers for these entries in A. That is 

      , 1, ,i iA a i i 
irow icol

nz

 

with all other entries in A zero. 

The subroutine LSLZG solves a system of linear algebraic equations having a complex sparse 

coefficient matrix. It first uses the routine LFTZG to perform an LU factorization of the coefficient 

matrix. The solution of the linear system is then found using LFSZG. The routine LFTZG by default 
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uses a symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots that most likely would 

reduce fill-ins while maintaining numerical stability. Different strategies are also provided as 

options for row oriented or column oriented problems. The algorithm can be expressed as 

P AQ = LU 

where P and Q are the row and column permutation matrices determined by the Markowitz 

strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively. 

Finally, the solution x is obtained by the following calculations: 

1) Lz = Pb 

2) Uy = z 

3) x = Qy 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LZG/DL2LZG. The 

reference is: 

CALL L2LZG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X, WK, 

LWK, IWK, LIWK) 

The additional arguments are as follows: 

WK — Complex work vector of length LWK. 

LWK — The length of WK, LWK should be at least 2N+ MAXNZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 17N + 4 * MAXNZ. 

The workspace limit is determined by MAXNZ, where 

MAXNZ = MIN0(LWK-2N, INT(0.25(LIWK-17N))) 

2. Informational errors 

Type Code  

3 1 The coefficient matrix is numerically singular. 

3 2 The growth factor is too large to continue. 

3 3 The matrix is too ill-conditioned for iterative refinement. 

3. If the default parameters are desired for LSLZG, then set IPARAM(1) to zero and call the 

routine LSLZG. Otherwise, if any nondefault parameters  are desired for IPARAM or 

RPARAM. then the following steps should be taken before calling LSLZG. 

 CALL L4LZG (IPARAM, RPARAM) 
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 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to L4LZG will set IPARAM and RPARAM to their default values, so only 

nondefault values need to be set above. The arguments are as follows: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = The pivoting strategy.  

IPARAM(2) Action 

1 Markowitz row search 

2 Markowitz column search 

3 Symmetric Markowitz search 

 Default: 3. 

IPARAM(3) = The number of rows which have least numbers of nonzero 

elements that will be searched for a pivotal element. 

Default: 3. 

IPARAM(4) = The maximal number of nonzero elements in A at any stage of 

the Gaussian elimination.   (Output) 

IPARAM(5) = The workspace limit. 

IPARAM(5) Action 

0 Default limit, see Comment 1. 

integer This integer value replaces the default workspace 

limit. 

 When L2LZG is called, the values of LWK and LIWK are used instead of 

IPARAM(5). 

 Default: 0. 

IPARAM(6) = Iterative refinement is done when this is nonzero. 

Default: 0. 

RPARAM — Real vector of length 5. 

RPARAM(1) = The upper limit on the growth factor. The computation stops 

when the growth factor exceeds the limit.  

Default: 10. 

RPARAM(2) = The stability factor. The absolute value of the pivotal element 

must be bigger than the largest element in absolute value in its row 
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divided by RPARAM(2). 

Default: 10.0. 

RPARAM(3) = Drop-tolerance. Any element in A will be removed if its absolute 

value becomes smaller than the drop-tolerance at any stage of the 

Gaussian elimination.  

Default: 0.0. 

RPARAM(4) = The growth factor. It is calculated as the largest element in 

absolute value in A at any stage of the Gaussian elimination divided by 

the largest element in absolute value in the original A matrix.   (Output) 

Large value of the growth factor indicates that an appreciable error in 

the computed solution is possible. 

RPARAM(5) = The value of the smallest pivotal element in absolute value.   

(Output) 

 If double precision is required, then DL4LZG is called and RPARAM is declared double 

precision. 

Example 

As an example, consider the 6× 6 linear system: 

10 7 0 0 0 0 0

0 3 2 3 0 1 2 0 0

0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0

5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

i

i i i

i
A

i i i

i i i i

i i i

 
 

    
 
 

  
     

       
 
       

Let  

x
T
 = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i) 

so that 

Ax = (3 + 17i, −19 + 5i, 6 + 18i, −38 + 32i, −63 + 49i, −57 + 83i)
T
 

The number of nonzeros in A is nz = 15. The sparse coordinate form for A is given by: 

irow 6 2 2 4 3 1 5 4 6 5 5 6 4 2 5

jcol 6 2 3 5 3 1 1 4 1 4 5 2 1 4 6
 

 

      USE LSLZG_INT 

      USE WRCRN_INT 

      INTEGER    N, NZ 

      PARAMETER  (N=6, NZ=15) 
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! 

      INTEGER    IROW(NZ), JCOL(NZ) 

      COMPLEX    A(NZ), B(N), X(N) 

! 

      DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),& 

          (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),& 

          (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/ 

      DATA B/(3.0,17.0), (-19.0,5.0), (6.0,18.0), (-38.0,32.0),& 

          (-63.0,49.0), (-57.0,83.0)/ 

      DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/ 

      DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/ 

! 

!                                 Use default options 

      CALL LSLZG (A, IROW, JCOL, B, X) 

! 

      CALL WRCRN (‘X‘, X) 

      END 

Output 
 

           X 

1  ( 1.000, 1.000) 

2  ( 2.000, 2.000) 

3  ( 3.000, 3.000) 

4  ( 4.000, 4.000) 

5  ( 5.000, 5.000) 

6  ( 6.000, 6.000) 

LFTZG 
Computes the LU factorization of a complex general sparse matrix. 

Required Arguments 

A — Complex vector of length NZ containing the nonzero coefficients of the linear system.   

(Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 

A.   (Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 

in A.   (Input) 

NFAC — On input, the dimension of vector FACT.   (Input/Output)  

On output, the number of nonzero coefficients in the triangular matrix L and U. 

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal 

elements.   (Output) 

FACT — Complex vector of length NFAC containing the nonzero elements of L (excluding 

the diagonals) in the first NL locations and the nonzero elements of U in NL + 1 to NFAC 

locations.   (Output) 
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IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements 

in FACT.   (Output) 

JCFAC — Vector of length NFAC containing the column numbers of the corresponding 

elements in FACT.   (Output) 

IPVT — Vector of length N containing the row pivoting information for the LU factorization.   

(Output) 

JPVT — Vector of length N containing the column pivoting information for the LU 

factorization.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (IPVT,1). 

NZ — The number of nonzero coefficients in the linear system.   (Input) 

Default: NZ = size (A,1). 

IPARAM — Parameter vector of length 6.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 3. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 5.   (Input/Output)  

See Comment 3. 

FORTRAN 90 Interface 

Generic: CALL LFTZG (A, IROW, JCOL, NFAC, NL, FACT, IRFAC, JCFAC, IPVT,  
JPVT [,…]) 

Specific: The specific interface names are S_LFTZG and D_LFTZG. 

FORTRAN 77 Interface 

Single: CALL LFTZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT, 

IRFAC, JCFAC, IPVT, JPVT) 

Double:  The double precision name is DLFTZG. 

Description 

Consider the linear equation  

Ax b  
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where A is a complex n × n sparse matrix. The sparse coordinate format for the matrix A requires 

one complex and two integer vectors. The complex array a contains all the nonzeros in A. Let the 

number of nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the 

row and column indices for these entries in A. That is 

      , 1, ,i iA a i i 
irow icol

nz

 

with all other entries in A zero. 

The routine LFTZG performs an LU factorization of the coefficient matrix A. It uses by default a 

symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots that most likely would reduce 

fill-ins while maintaining numerical stability. Different strategies are also provided as options for 

row oriented or column oriented problems. The algorithm can be expressed as  

P AQ = LU 

where P and Q are the row and column permutation matrices determined by the Markowitz 

strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively. 

Finally, the solution x is obtained using LFSZG by the following calculations: 

1) Lz = Pb 

2) Uy = z 

3) x = Qy 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2TZG/DL2TZG. The 

reference is: 

CALL L2TZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT, 

IRFAC, JCFAC, IPVT, JPVT, WK, LWK, IWK, LIWK) 

The additional arguments are as follows: 

WK — Complex work vector of length LWK. 

LWK — The length of WK, LWK should be at least MAXNZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 15N + 4 * MAXNZ. 

The workspace limit is determined by MAXNZ, where 

MAXNZ = MIN0(LWK, INT(0.25(LIWK-15N))) 

2. Informational errors 

Type  Code  

3 1 The coefficient matrix is numerically singular. 
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3 2 The growth factor is too large to continue. 

3. If the default parameters are desired for LFTZG, then set IPARAM(1) to zero and call the 

routine LFTZG. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM. then the following steps should be taken before calling LFTZG: 

 CALL L4LZG (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to L4LZG will set IPARAM and RPARAM to their default values so only 

nondefault values need to be set above. The arguments are as follows: 

IPARAM — Integer vector of length 6.  

IPARAM(1) = Initialization flag.  

IPARAM(2) = The pivoting strategy. 

IPARAM(2) Action 

1 Markowitz row search 

2 Markowitz column search 

3 Symmetric Markowitz search 

IPARAM(3) = The number of rows which have least numbers of nonzero 

elements that will be searched for a pivotal element. 

Default: 3. 

IPARAM(4) = The maximal number of nonzero elements in A at any stage of 

the Gaussian elimination.   (Output) 

IPARAM(5) = The workspace limit. 

 

IPARAM(5) Action 

0 Default limit, see Comment 1. 

integer This integer value replaces the default workspace 

limit.  When L2TZG is called, the values of LWK 

and LIWK are used  instead of IPARAM(5). 

Default: 0.  

IPARAM(6) = Not used in LFTZG. 

RPARAM — Real vector of length 5.  
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RPARAM(1) = The upper limit on the growth factor. The computation stops 

when the growth factor exceeds the limit. 

Default: 10.  

RPARAM(2) = The stability factor. The absolute value of the pivotal element 

must be bigger than the largest element in absolute value in its row 

divided by RPARAM(2). 

Default: 10.0. 

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor L 

will be removed if its absolute value becomes smaller than the drop-

tolerance at any stage of the Gaussian elimination. 

Default: 0.0. 

RPARAM(4) = The growth factor. It is calculated as the largest element in 

absolute value in A at any stage of the Gaussian elimination divided by 

the largest element in absolute value in the original A matrix.   (Output) 

Large value of the growth factor indicates that an appreciable error in 

the computed solution is possible. 

RPARAM(5) = The value of the smallest pivotal element in absolute value.   

(Output) 

If double precision is required, then DL4LZG is called and RPARAM is declared 

double precision. 

Example 

As an example, the following 6 × 6 matrix is factorized, and the outcome is printed: 

10 7 0 0 0 0 0

0 3 2 3 0 1 2 0 0

0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0

5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

i

i i i

i
A

i i i

i i i i

i i i

 
 

    
 
 

  
     

       
 
       

The sparse coordinate form for A is given by: 

irow 6 2 2 4 3 1 5 4 6 5 5 6 4 2 5

jcol 6 2 3 5 3 1 1 4 1 4 5 2 1 4 6
 

 

      USE LFTZG_INT 

      USE WRCRN_INT 

      USE WRIRN_INT 

      INTEGER    N, NFAC, NZ 
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      PARAMETER  (N=6, NZ=15) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    IPVT(N), IRFAC(45), IROW(NZ), JCFAC(45),& 

                 JCOL(NZ), JPVT(N), NL 

      COMPLEX    A(NZ), FAC(45) 

! 

      DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),& 

          (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),& 

          (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/ 

      DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/ 

      DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/ 

      DATA NFAC/45/ 

!                                 Use default options 

      CALL LFTZG (A, IROW, JCOL, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT) 

! 

      CALL WRCRN (‘fact‘,FACT, 1, NFAC, 1) 

      CALL WRIRN (‘ irfac ‘,IRFAC, 1, NFAC, 1) 

      CALL WRIRN (‘ jcfac ‘,JCFAC, 1, NFAC, 1) 

      CALL WRIRN (‘ p ‘,IPVT, 1, N, 1) 

      CALL WRIRN (‘ q ‘,JPVT, 1, N, 1) 

! 

      END 

Output 
 

          fact 

 1  (  0.50,  0.85) 

 2  (  0.15, -0.41) 

 3  ( -0.60,  0.30) 

 4  (  2.23, -1.97) 

 5  ( -0.15,  0.50) 

 6  ( -0.04,  0.26) 

 7  ( -0.32, -0.17) 

 8  ( -0.92,  7.46) 

 9  ( -6.71, -6.42) 

10  ( 12.00,  2.00) 

11  ( -1.00,  2.00) 

12  ( -3.32,  0.21) 

13  (  3.00,  7.00) 

14  ( -2.00,  8.00) 

15  ( 10.00,  7.00) 

16  (  4.00,  2.00) 

 

                              irfac 

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 

3   4   4   5   5   6   6   6   5   5   4   4   3   3   2   1 

 

 

 

                              jcfac 

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 

2   3   1   4   2   5   2   6   6   5   6   4   4   3   2   1 

 

            p 

1   2   3   4   5   6 
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3   1   6   2   5   4 

 

            q 

1   2   3   4   5   6 

3   1   2   6   5   4 

LFSZG 
Solves a complex sparse system of linear equations given the LU factorization of the coefficient 

matrix. 

Required Arguments 

NFAC — The number of nonzero coefficients in FACT as output from subroutine 

LFTZG/DLFTZG.   (Input) 

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal 

elements as output from subroutine LFTZG/DLFTZG.   (Input) 

FACT — Complex vector of length NFAC containing the nonzero elements of L (excluding 

the diagonals) in the first NL locations and the nonzero elements of U in NL+ 1 to NFAC 

locations as output from subroutine LFTZG/DLFTZG.   (Input) 

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements 

in FACT as output from subroutine LFTZG/DLFTZG.   (Input) 

JCFAC — Vector of length NFAC containing the column numbers of the corresponding 

elements in FACT as output from subroutine LFTZG/DLFTZG.   (Input) 

IPVT — Vector of length N containing the row pivoting information for the LU factorization 

as output from subroutine LFTZG/DLFTZG.   (Input) 

JPVT — Vector of length N containing the column pivoting information for the LU 

factorization as output from subroutine LFTZG/DLFTZG.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (B,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system Ax = b is solved. 

IPATH = 2 means the system A
H

 x = b is solved. 

Default: IPATH = 1. 
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FORTRAN 90 Interface 

Generic: CALL LFSZG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSZG and D_LFSZG. 

FORTRAN 77 Interface 

Single: CALL LFSZG (N, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, IPATH, X) 

Double:  The double precision name is DLFSZG. 

Description 

Consider the linear equation 

Ax b  

where A is a complex n × n sparse matrix. The sparse coordinate format for the matrix A requires 

one complex and two integer vectors. The complex array a contains all the nonzeros in A. Let the 

number of nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the 

row and column numbers for these entries in A. That is 

      , 1, ,i iA a i i 
irow icol

nz

 

with all other entries in A zero. 

The routine LFSZG computes the solution of the linear equation given its LU factorization. The 

factorization is performed by calling LFTZG. The solution of the linear system is then found by the 

forward and backward substitution. The algorithm can be expressed as  

P AQ = LU 

where P and Q are the row and column permutation matrices determined by the Markowitz 

strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively. 

Finally, the solution x is obtained by the following calculations: 

1) Lz = Pb 

2) Uy = z 

3) x = Qy 

For more details, see Crowe et al. (1990). 

Example 

As an example, consider the 6 × 6 linear system: 
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10 7 0 0 0 0 0

0 3 2 3 0 1 2 0 0

0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0

5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

i

i i i

i
A

i i i

i i i i

i i i

 
 

    
 
 

  
     

       
 
       

Let  

 1 1 ,2 2 ,3 3 ,4 4 ,5 5 ,6 6Tx i i i i i i      
 

so that 

Ax1 = (3 + 17i, −19 + 5i, 6 + 18i, −38 + 32i, −63 + 49i, −57 + 83i)
T
 

and 

 2 6 6 ,5 5 ,4 4 ,3 3 ,2 2 ,1Tx i i i i i i      
 

so that 

Ax2 = (18 + 102i, −16 + 16i, 8 + 24i, −11 −11i, −63 + 7i, −132 + 106i)
T
 

The sparse coordinate form for A is given by: 

irow 6 2 2 4 3 1 5 4 6 5 5 6 4 2 5

jcol 6 2 3 5 3 1 1 4 1 4 5 2 1 4 6
 

 

      USE LFSZG_INT 

      USE WRCRN_INT 

      USE LFTZG_INT 

      INTEGER    N, NZ 

      PARAMETER  (N=6, NZ=15) 

! 

      INTEGER    IPATH, IPVT(N), IRFAC(3*NZ), IROW(NZ),& 

                 JCFAC(3*NZ), JCOL(NZ), JPVT(N), NFAC, NL 

      COMPLEX    A(NZ), B(N,2), FACT(3*NZ), X(N) 

      CHARACTER  TITLE(2)*2 

! 

      DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),& 

          (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),& 

          (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/ 

      DATA B/(3.0,17.0), (-19.0,5.0), (6.0,18.0), (-38.0,32.0),& 

          (-63.0,49.0), (-57.0,83.0), (18.0,102.0), (-16.0,16.0),& 

          (8.0,24.0), (-11.0,-11.0), (-63.0,7.0), (-132.0,106.0)/ 

      DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/ 

      DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/ 

      DATA TITLE/‘x1‘,‘x2‘/ 

! 

      NFAC = 3*NZ 

!                                 Perform LU factorization 

      CALL LFTZG (A, IROW, JCOL, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT) 
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! 

      IPATH = 1 

      DO 10 I = 1,2 

!                                 Solve A * X(i) = B(i) 

         CALL LFSZG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT,& 

                    B(:,I),  X) 

         CALL WRCRN (TITLE(I), X) 

   10 CONTINUE 

! 

      END 

Output 
 

          x1 

1  ( 1.000, 1.000) 

2  ( 2.000, 2.000) 

3  ( 3.000, 3.000) 

4  ( 4.000, 4.000) 

5  ( 5.000, 5.000) 

6  ( 6.000, 6.000) 

 

         x2 

1  ( 6.000, 6.000) 

2  ( 5.000, 5.000) 

3  ( 4.000, 4.000) 

4  ( 3.000, 3.000) 

5  ( 2.000, 2.000) 

6  ( 1.000, 1.000) 

LSLXD 
Solves a sparse system of symmetric positive definite linear algebraic equations by Gaussian 

elimination. 

Required Arguments 

A — Vector of length NZ containing the nonzero coefficients in the lower triangle of the linear 

system.   (Input)  

The sparse matrix has nonzeroes only in entries (IROW (i), JCOL(i)) for i = 1 to NZ, and 

at this location the sparse matrix has value A(i). 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 

the lower triangle of A.   (Input)  

Note IROW(i) ≥ JCOL(i), since we are only indexing the lower triangle. 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 

in the lower triangle of A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 
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Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (B,1). 

NZ — The number of nonzero coefficients in the lower triangle of the linear system.   (Input) 

Default: NZ = size (A,1). 

ITWKSP — The total workspace needed.   (Input) 

If the default is desired, set ITWKSP to zero.  

Default: ITWKSP = 0. 

FORTRAN 90 Interface 

Generic: CALL LSLXD (A, IROW, JCOL, B, X [,…]) 

Specific: The specific interface names are S_LSLXD and D_LSLXD. 

FORTRAN 77 Interface 

Single: CALL LSLXD (N, NZ, A, IROW, JCOL, B, ITWKSP, X) 

Double:  The double precision name is DLSLXD. 

Description 

Consider the linear equation 

Ax b  

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix A 

requires one real and two integer vectors. The real array a contains all the nonzeros in the lower 

triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer arrays 

irow and jcol, each of length nz, contain the row and column indices for these entries in A. That 

is 

      , 1, ,i iA a i i 
irow icol

nz

 

    1, ,i i i irow jcol nz
 

with all other entries in the lower triangle of A zero. 

The routine LSLXD solves a system of linear algebraic equations having a real, sparse and positive 

definite coefficient matrix. It first uses the routine LSCXD to compute a symbolic factorization of a 

permutation of the coefficient matrix. It then calls LNFXD to perform the numerical factorization. 

The solution of the linear system is then found using LFSXD. 

The routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set 

up the sparse data structure for the Cholesky factor, L. Then the routine LNFXD produces the 

numerical entries in L so that we have 

P AP
T
= LL

T
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Here P is the permutation matrix determined by the ordering. 

The numerical computations can be carried out in one of two ways. The first method performs the 

factorization using a multifrontal technique. This option requires more storage but in certain cases 

will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed 

description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), 

Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George and 

Liu (1981). This is just the standard factorization method based on the sparse compressed storage 

scheme. 

Finally, the solution x is obtained by the following calculations: 

1) Ly1 = Pb 

2) L
T
y2 = y1 

3) x = P
T
y2 

The routine LFSXD accepts b and the permutation vector which determines P. It then returns x. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LXD/DL2LXD. The 

reference is: 

CALL L2LXD (N, NZ, A, IROW, JCOL, B, X, IPER, IPARAM, 

RPARAM, WK, LWK, IWK, LIWK) 

The additional arguments are as follows: 

IPER — Vector of length N containing the ordering. 

IPARAM — Integer vector of length 4. See Comment 3. 

RPARAM — Real vector of length 2. See Comment 3. 

WK — Real work vector of length LWK. 

LWK — The length of WK, LWK should be at least 2N + 6NZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 15N + 15NZ + 9. 

Note that the parameter ITWKSP is not an argument to this routine. 

2. Informational errors 

Type Code 

4 1 The coefficient matrix is not positive definite. 
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4 2 A column without nonzero elements has been found in the 

coefficient matrix. 

3. If the default parameters are desired for L2LXD, then set IPARAM(1) to zero and call the 

routine L2LXD. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling L2LXD. 

 CALL L4LXD (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to L4LXD will set IPARAM and RPARAM to their default values, so only 

nondefault values need to be set above. The arguments are as follows: 

IPARAM — Integer vector of length 4. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = The numerical factorization method. 

IPARAM(2) Action 

0 Multifrontal 

1 Markowitz column search 

 Default: 0. 

IPARAM(3) = The ordering option. 

IPARAM(3) Action 

0 Minimum degree ordering 

1 User‘s ordering specified in IPER 

 Default: 0. 

IPARAM(4) = The total number of nonzeros in the factorization matrix. 

RPARAM — Real vector of length 2.  

RPARAM(1) = The value of the largest diagonal element in the Cholesky 

factorization.  

RPARAM(2) = The value of the smallest diagonal element in the Cholesky 

factorization. 

 If double precision is required, then DL4LXD is called and RPARAM is declared double 

precision. 
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Example 

As an example consider the 5× 5 linear system: 

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

A

 
 
 
 
 
 
    

Let x
T
 = (1, 2, 3, 4, 5) so that Ax = (23, 55, 107, 197, 278)

T
. The number of nonzeros in the lower 

triangle of A is nz = 10. The sparse coordinate form for the lower triangle of A is given by: 

irow 1 2 3 3 4 4 5 5 5 5

jcol 1 2 1 3 3 4 1 2 4 5

a   10 20 1 30 4 40 2 3 5 50
 

or equivalently by 

irow 4 5 5 5 1 2 3 3 4 5

jcol 4 1 2 4 1 2 1 3 3 5

a   40 2 3 5 10 20 1 30 4 50
 

 

      USE LSLXD_INT 

      USE WRRRN_INT 

      INTEGER    N, NZ 

      PARAMETER  (N=5, NZ=10) 

! 

      INTEGER    IROW(NZ), JCOL(NZ) 

      REAL       A(NZ), B(N), X(N) 

! 

      DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./ 

      DATA B/23., 55., 107., 197., 278./ 

      DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/ 

      DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/ 

!                                 Solve A * X = B 

      CALL LSLXD (A, IROW, JCOL, B, X) 

!                                 Print results 

      CALL WRRRN (‘ x ‘, X, 1, N, 1) 

      END 

Output 
 

                     x 

    1       2       3       4       5 

1.000   2.000   3.000   4.000   5.000 
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LSCXD 
Performs the symbolic Cholesky factorization for a sparse symmetric matrix using a minimum 

degree ordering or a user-specified ordering, and set up the data structure for the numerical 

Cholesky factorization 

Required Arguments 

IROW — Vector of length NZ containing the row subscripts of the nonzeros in the lower 

triangular part of the matrix including the nonzeros on the diagonal.   (Input) 

JCOL — Vector of length NZ containing the column subscripts of the nonzeros in the lower 

triangular part of the matrix including the nonzeros on the diagonal.   (Input)  

(IROW (K), JCOL(K)) gives the row and column indices of the k-th nonzero element of 

the matrix stored in coordinate form. Note, IROW(K) ≥ JCOL(K). 

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-diagonal 

nonzeros in the Cholesky factor in compressed format.   (Output) 

INZSUB — Vector of length N + 1 containing pointers for NZSUB. The row subscripts for the 

off-diagonal nonzeros in column J are stored in NZSUB from location INZSUB (J) to 

INZSUB(J + (ILNZ (J +1) −ILNZ(J) − 1).   (Output) 

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor.   (Output) 

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor. The off-diagonal 

nonzeros in column J of the factor are stored from location ILNZ (J) to  

ILNZ(J + 1) − 1.   (Output)  

(ILNZ, NZSUB, INZSUB) sets up the data structure for the off-diagonal nonzeros of the 

Cholesky factor in column ordered form using compressed subscript format. 

INVPER — Vector of length N containing the inverse permutation.   (Output)  

INVPER (K) = I indicates that the original row K is the new row I. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (INVPER,1). 

NZ — Total number of the nonzeros in the lower triangular part of the symmetric matrix, 

including the nonzeros on the diagonal.   (Input) 

Default: NZ = size (IROW,1). 

IJOB — Integer parameter selecting an ordering to permute the matrix symmetrically.   

(Input)  

IJOB = 0 selects the user ordering specified in IPER and reorders it so that the 

multifrontal method can be used in the numerical factorization. 

IJOB = 1 selects the user ordering specified in IPER. 
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IJOB = 2 selects a minimum degree ordering. 

IJOB = 3 selects a minimum degree ordering suitable for the multifrontal method in the 

numerical factorization. 

Default: IJOB = 3. 

ITWKSP — The total workspace needed.   (Input)  

If the default is desired, set ITWKSP to zero. 

Default: ITWKSP = 0. 

MAXSUB — Number of subscripts contained in array NZSUB.   (Input/Output)  

On input, MAXSUB gives the size of the array NZSUB. 

Note that when default workspace (ITWKSP = 0) is used, set MAXSUB = 3 * NZ. 

Otherwise (ITWKSP > 0), set MAXSUB = (ITWKSP − 10 * N − 7) ∕ 4. On output, MAXSUB 

gives the number of subscripts used by the compressed subscript format. 

Default: MAXSUB = 3*NZ. 

IPER — Vector of length N containing the ordering specified by IJOB.   (Input/Output)  

IPER (I) = K indicates that the original row K is the new row I. 

ISPACE — The storage space needed for stack of frontal matrices.   (Output) 

FORTRAN 90 Interface 

Generic: Because the Fortran compiler cannot determine the precision desired from the 

required arguments, there is no generic Fortran 90 Interface for this routine. The specific 

Fortran 90 Interfaces are: 

Single:  CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…]) 

Or 

  CALL S_LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…]) 

Double:  CALL DLSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…])  

Or 

  CALL D_LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…]) 

FORTRAN 77 Interface 

Single: CALL LSCXD (N, NZ, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB, INZSUB, 

MAXNZ, ILNZ, IPER, INVPER, ISPACE) 

Double:  The double precision name is DLSCXD. 
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Description 

Consider the linear equation 

Ax b  

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix A 

requires one real and two integer vectors. The real array a contains all the nonzeros in the lower 

triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer arrays 

irow and jcol, each of length nz, contain the row and column indices for these entries in A. That 

is 

      , 1, ,i iA a i i 
irow icol

nz

 

    1, ,i i i irow jcol nz
 

with all other entries in the lower triangle of A zero.  

The routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set 

up the sparse data structure for the Cholesky factor, L. Then the routine LNFXD produces the 

numerical entries in L so that we have 

P AP
T
= LL

T
 

Here, P is the permutation matrix determined by the ordering. 

The numerical computations can be carried out in one of two ways. The first method performs the 

factorization using a multifrontal technique. This option requires more storage but in certain cases 

will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed 

description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), 

Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George and 

Liu (1981). This is just the standard factorization method based on the sparse compressed storage 

scheme. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2CXD. The reference is: 

CALL L2CXD (N, NZ, IROW, JCOL, IJOB, MAXSUB, NZSUB, 

INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE, LIWK, 
IWK) 

The additional arguments are as follows: 

LIWK — The length of IWK, LIWK should be at least 10N + 12NZ + 7. Note 

that the argument MAXSUB should be set to (LIWK − 10N − 7)/4. 

IWK — Integer work vector of length LIWK. 

Note that the parameter ITWKSP is not an argument to this routine. 

2. Informational errors 

Type Code 
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4 1 The matrix is structurally singular. 

Example 

As an example, the following matrix is symbolically factorized, and the result is printed: 

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

A

 
 
 
 
 
 
    

The number of nonzeros in the lower triangle of A is nz= 10. The sparse coordinate form for the 

lower triangle of A is given by: 

 

irow      1      2      3      3      4      4      5      5      5      5 

jcol      1      2      1      3      3      4      1      2      4      5 

or equivalently by 

irow      4      5      5      5      1      2      3      3      4      5 

jcol      4      1      2      4      1      2      1      3      3      5 
 

      USE LSCXD_INT 

      USE WRIRN_INT 

      INTEGER    N, NZ 

      PARAMETER  (N=5, NZ=10) 

! 

      INTEGER    ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),& 

                 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,& 

                 NZSUB(3*NZ) 

! 

      DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/ 

      DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/ 

      MAXSUB = 3 * NZ 

      CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER,& 

                 MAXSUB=MAXSUB, IPER=IPER) 

!                                 Print results 

      CALL WRIRN (‘ iper ‘, IPER, 1, N, 1) 

      CALL WRIRN (‘ invper ‘,INVPER, 1, N, 1) 

      CALL WRIRN (‘ nzsub ‘, NZSUB, 1, MAXSUB, 1) 

      CALL WRIRN (‘ inzsub ‘, INZSUB, 1, N+1, 1) 

      CALL WRIRN (‘ ilnz ‘, ILNZ, 1, N+1, 1) 

      END 

Output 
 

          iper 

1   2   3   4   5 
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2   1   5   4   3 

 

        invper 

1   2   3   4   5 

2   1   5   4   3 

 

      nzsub 

1   2   3   4 

3   5   4   5 

 

          inzsub 

1   2   3   4   5   6 

1   1   3   4   4   4 

 

           ilnz 

1   2   3   4   5   6 

1   2   4   6   7   7 

LNFXD 
Computes the numerical Cholesky factorization of a sparse symmetrical matrix A. 

Required Arguments 

A — Vector of length NZ containing the nonzero coefficients of the lower triangle of the 

linear system.   (Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 

the lower triangle of A.   (Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 

in the lower triangle of A.   (Input) 

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine 

LSCXD/DLSCXD.   (Input) 

NZSUB — Vector of length MAXSUB containing the row subscripts for the nonzeros in the 

Cholesky factor in compressed format as output from subroutine LSCXD/DLSCXD.   

(Input) 

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine 

LSCXD/DLSCXD.   (Input)  

The row subscripts for the nonzeros in column J are stored from location INZSUB (J) 

to INZSUB(J + 1) − 1. 

MAXNZ — Length of RLNZ as output from subroutine LSCXD/DLSCXD.   (Input) 

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor as output from 

subroutine LSCXD/DLSCXD.   (Input)  

The row subscripts for the nonzeros in column J of the factor are stored from location 
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ILNZ(J) to ILNZ(J + 1) − 1. (ILNZ, NZSUB, INZSUB) sets up the compressed data 

structure in column ordered form for the Cholesky factor. 

IPER — Vector of length N containing the permutation as output from subroutine 

LSCXD/DLSCXD.   (Input) 

INVPER — Vector of length N containing the inverse permutation as output from subroutine 

LSCXD/DLSCXD.   (Input) 

ISPACE — The storage space needed for the stack of frontal matrices as output from 

subroutine LSCXD/DLSCXD.   (Input) 

DIAGNL — Vector of length N containing the diagonal of the factor.   (Output) 

RLNZ — Vector of length MAXNZ containing the strictly lower triangle nonzeros of the 

Cholesky factor.   (Output) 

RPARAM — Parameter vector containing factorization information.   (Output)  

RPARAM(1) = smallest diagonal element. 

RPARAM(2) = largest diagonal element. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (IPER,1). 

NZ — The number of nonzero coefficients in the linear system.   (Input) 

Default: NZ = size (A,1). 

IJOB — Integer parameter selecting factorization method.   (Input) 

IJOB = 1 yields factorization in sparse column format. 

IJOB = 2 yields factorization using multifrontal method. 

Default: IJOB = 1. 

ITWKSP — The total workspace needed.   (Input) 

If the default is desired, set ITWKSP to zero. 

Default: ITWKSP = 0. 

FORTRAN 90 Interface 

Generic: CALL LNFXD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ, IPER, 

INVPER, ISPACE,  DIAGNL, RLNZ, RPARAM [,…]) 

Specific: The specific interface names are S_LNFXD and D_LNFXD. 
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FORTRAN 77 Interface 

Single: CALL LNFXD (N, NZ, A, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB, INZSUB, 

MAXNZ, ILNZ, IPER, INVPER, ISPACE, ITWKSP, DIAGNL, RLNZ, RPARAM) 

Double:  The double precision name is DLNFXD. 

Description 

Consider the linear equation  

Ax b  

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix A 

requires one real and two integer vectors. The real array a contains all the nonzeros in the lower 

triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer arrays 

irow and jcol, each of length nz, contain the row and column indices for these entries in A. That 

is 

      , 1, ,i iA a i i 
irow icol

nz

 

    1, ,i i i irow jcol nz
 

with all other entries in the lower triangle of A zero. The routine LNFXD produces the Cholesky 

factorization of P AP
T
given the symbolic factorization of A which is computed by LSCXD. That is, 

this routine computes L which satisfies 

P AP
T
= LL

T
 

The diagonal of L is stored in DIAGNL and the strictly lower triangular part of L is stored in 

compressed subscript form in R = RLNZ as follows. The nonzeros in the j-th column of L are stored 

in locations R(i),…, R(i + k) where i = ILNZ(j) and k = ILNZ(j + 1) − ILNZ(j) − 1. The row 

subscripts are stored in the vector NZSUB from locations INZSUB(j) to INZSUB(j) + k. 

The numerical computations can be carried out in one of two ways. The first method (when  

IJOB = 2) performs the factorization using a multifrontal technique. This option requires more 

storage but in certain cases will be faster. The multifrontal method is based on the routines in Liu 

(1987). For detailed description of this method, see Liu (1990), also Duff and Reid (1983, 1984), 

Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989). The second method (when  

IJOB = 1) is fully described in George and Liu (1981). This is just the standard factorization 

method based on the sparse compressed storage scheme. 

Comments 

1. Workspace may be explicitly provided by use of L2FXD/DL2FXD . The reference is: 

CALL L2FXD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, 

INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE, DIAGNL, 

RLNZ, RPARAM, WK, LWK, IWK, LIWK) 

The additional arguments are as follows: 
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WK — Real work vector of length LWK. 

LWK — The length of WK, LWK should be at least N + 3NZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 2N. 

Note that the parameter ITWKSP is not an argument to this routine. 

2. Informational errors 

Type Code 

4 1 The coefficient matrix is not positive definite. 

4 2 A column without nonzero elements has been found in the 

coefficient matrix. 

Example 

As an example, consider the 5 × 5 linear system: 

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

A

 
 
 
 
 
 
    

The number of nonzeros in the lower triangle of A is nz = 10. The sparse coordinate form for the 

lower triangle of A is given by: 

irow 1 2 3 3 4 4 5 5 5 5

jcol 1 2 1 3 3 4 1 2 4 5

a   10 20 1 30 4 40 2 3 5 50
 

or equivalently by 

irow 4 5 5 5 1 2 3 3 4 5

jcol 4 1 2 4 1 2 1 3 3 5

a   40 2 3 5 10 20 1 30 4 50
 

We first call LSCXD to produce the symbolic information needed to pass on to LNFXD. Then call 

LNFXD to factor this matrix. The results are displayed below. 
 

      USE LNFXD_INT 

      USE LSCXD_INT 
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      USE WRRRN_INT 

      INTEGER    N, NZ, NRLNZ 

      PARAMETER  (N=5, NZ=10, NRLNZ=10) 

! 

      INTEGER    IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),& 

                 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,& 

                 NZSUB(3*NZ) 

      REAL       A(NZ), DIAGNL(N), RLNZ(NRLNZ), RPARAM(2) , R(N,N)  

! 

      DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./ 

      DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/ 

      DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/ 

!                                 Select minimum degree ordering 

!                                 for multifrontal method 

      IJOB = 3 

!                                 Use default workspace 

      MAXSUB = 3*NZ 

      CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, & 

                  MAXSUB=MAXSUB) 

!                                 Check if NRLNZ is large enough 

      IF (NRLNZ .GE. MAXNZ) THEN 

!                                 Choose multifrontal method 

         IJOB = 2 

         CALL LNFXD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, & 

                    ILNZ,IPER, INVPER, ISPACE, DIAGNL, RLNZ, RPARAM, & 

                    IJOB=IJOB) 

!                                 Print results 

         CALL WRRRN (' diagnl ', DIAGNL,  NRA=1, NCA=N, LDA=1) 

         CALL WRRRN (' rlnz ', RLNZ,  NRA= 1,  NCA= MAXNZ,  LDA= 1) 

      END IF 

!  

!                                Construct L matrix 

      DO I=1,N 

!                                Diagonal 

        R(I,I) = DIAG(I) 

        IF (ILNZ(I) .GT. MAXNZ) GO TO 50 

!                                Find elements of RLNZ for this column 

        ISTRT = ILNZ(I) 

        ISTOP = ILNZ(I+1) - 1 

!                                Get starting index for NZSUB 

        K = INZSUB(I) 

        DO J=ISTRT, ISTOP 

!                                NZSUB(K) is the row for this element of 

                                 RLNZ 

           R((NZSUB(K)),I) = RLNZ(J) 

           K = K + 1 

        END DO  

      END DO   

  50  CONTINUE 

      CALL WRRRN ('L', R, NRA=N, NCA=N)  

      END 

Output 
 

                 diagnl 

    1       2       3       4       5 
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4.472   3.162   7.011   6.284   5.430 

 

                          rlnz 

      1         2        3         4         5         6 

0.6708   0.6325   0.3162   0.7132  -0.0285   0.6398   

  

                                L 

         1       2       3       4       5 

 1   4.472   0.000   0.000   0.000   0.000 

 2   0.000   3.162   0.000   0.000   0.000 

 3   0.671   0.632   7.011   0.000   0.000 

 4   0.000   0.000   0.713   6.284   0.000 

 5   0.000   0.316  -0.029   0.640   5.430 

LFSXD 
Solves a real sparse symmetric positive definite system of linear equations, given the Cholesky 

factorization of the coefficient matrix. 

Required Arguments 

N — Number of equations.   (Input) 

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine 

LSCXD/DLSCXD.   (Input) 

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-diagonal 

nonzeros in the factor as output from subroutine LSCXD/DLSCXD.   (Input) 

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine 

LSCXD/DLSCXD.   (Input)  

The row subscripts of column J are stored from location INZSUB(J) to  

INZSUB(J + 1) − 1. 

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor as output from 

subroutine LSCXD/DLSCXD.   (Input) 

RLNZ — Vector of length MAXNZ containing the off-diagonal nonzeros in the factor in 

column ordered format as output from subroutine LNFXD/DLNFXD.   (Input) 

ILNZ — Vector of length N + 1 containing pointers to RLNZ as output from subroutine 

LSCXD/DLSCXD. The nonzeros in column J of the factor are stored from location 

ILNZ(J) to ILNZ(J + 1) − 1.   (Input)  

The values (RLNZ, ILNZ, NZSUB, INZSUB) give the off-diagonal nonzeros of the factor 

in a compressed subscript data format. 

DIAGNL — Vector of length N containing the diagonals of the Cholesky factor as output 

from subroutine LNFXD/DLNFXD.   (Input) 
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IPER — Vector of length N containing the ordering as output from subroutine 

LSCXD/DLSCXD.   (Input)  

IPER(I) = K indicates that the original row K is the new row I. 

B — Vector of length N containing the right-hand side.   (Input) 

X — Vector of length N containing the solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL, 

IPER, B, X) 

Specific: The specific interface names are S_LFSXD and D_LFSXD. 

FORTRAN 77 Interface 

Single: CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL, 

IPER, B, X) 

Double:  The double precision name is DLFSXD. 

Description 

Consider the linear equation  

Ax b  

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix A 

requires one real and two integer vectors. The real array a contains all the nonzeros in the lower 

triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer arrays 

irow and jcol, each of length nz, contain the row and column indices for these entries in A. That 

is 

      , 1, ,i iA a i i 
irow icol

nz

 

    1, ,i i i irow jcol nz
 

with all other entries in the lower triangle of A zero. 

The routine LFSXD computes the solution of the linear system given its Cholesky factorization. 

The factorization is performed by calling LSCXD followed by LNFXD. The routine LSCXD computes 

a minimum degree ordering or uses a user-supplied ordering to set up the sparse data structure for 

the Cholesky factor, L. Then the routine LNFXD produces the numerical entries in L so that we 

have 

P AP
T
= LL

T
 

Here P is the permutation matrix determined by the ordering. 

The numerical computations can be carried out in one of two ways. The first method performs the 

factorization using a multifrontal technique. This option requires more storage but in certain cases 
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will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed 

description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), 

Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George and 

Liu (1981). This is just the standard factorization method based on the sparse compressed storage 

scheme.  

Finally, the solution x is obtained by the following calculations: 

1) Ly1 = Pb 

2) L
T
y2 = y1 

3) x = P
T
y2 

Comments 

Informational error  

Type Code 

4 1 The input matrix is numerically singular. 

Example 

As an example, consider the 5 × 5 linear system: 

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

A

 
 
 
 
 
 
    

Let  

 1 1,2,3,4,5Tx 
 

so that Ax1 = (23, 55, 107, 197, 278)
T
, and  

 2 5,4,3,2,1Tx 
 

so that Ax2 = (55, 83, 103, 97, 82)
T
. The number of nonzeros in the lower triangle of A is nz = 10. 

The sparse coordinate form for the lower triangle of A is given by: 

irow 1 2 3 3 4 4 5 5 5 5

jcol 1 2 1 3 3 4 1 2 4 5

a   10 20 1 30 4 40 2 3 5 50
 

or equivalently by 
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irow 4 5 5 5 1 2 3 3 4 5

jcol 4 1 2 4 1 2 1 3 3 5

a   40 2 3 5 10 20 1 30 4 50
 

 

      USE LFSXD_INT 

      USE LNFXD_INT 

      USE LSCXD_INT 

      USE WRRRN_INT 

      INTEGER    N, NZ, NRLNZ 

      PARAMETER  (N=5, NZ=10, NRLNZ=10) 

! 

      INTEGER    IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),& 

                IROW(NZ), ISPACE, ITWKSP, JCOL(NZ), MAXNZ, MAXSUB,& 

                NZSUB(3*NZ) 

      REAL       A(NZ), B1(N), B2(N), DIAGNL(N), RLNZ(NRLNZ), RPARAM(2),& 

                X(N) 

! 

      DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./ 

      DATA B1/23., 55., 107., 197., 278./ 

      DATA B2/55., 83., 103., 97., 82./ 

      DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/ 

      DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/ 

!                                 Select minimum degree ordering 

!                                 for multifrontal method 

      IJOB = 3 

!                                 Use default workspace 

      ITWKSP = 0 

      MAXSUB = 3*NZ 

      CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, & 

                  MAXSUB=MAXSUB, IPER=IPER, ISPACE=ISPACE) 

!                                 Check if NRLNZ is large enough 

      IF (NRLNZ .GE. MAXNZ) THEN 

!                                 Choose multifrontal method 

         IJOB = 2 

      CALL LNFXD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ,& 

              IPER, INVPER,ISPACE, DIAGNL, RLNZ, RPARAM, IJOB=IJOB) 

!                                 Solve A * X1 = B1 

      CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,& 

                     IPER, B1, X) 

!                                 Print X1 

      CALL WRRRN (‘ x1 ‘, X, 1, N, 1) 

!                                 Solve A * X2 = B2 

      CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, & 

                     DIAGNL, IPER, B2, X) 

!                                 Print X2 

      CALL WRRRN (‘ x2 ‘ X, 1, N, 1) 

 

 

      END IF 

! 

      END 

Output 
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                    x1 

    1       2       3       4       5 

1.000   2.000   3.000   4.000   5.000 

 

                    x2 

    1       2       3       4       5 

5.000   4.000   3.000   2.000   1.000 

LSLZD 
Solves a complex sparse Hermitian positive definite system of linear equations by Gaussian 

elimination. 

Required Arguments 

A — Complex vector of length NZ containing the nonzero coefficients in the lower triangle of 

the linear system.   (Input)  

The sparse matrix has nonzeroes only in entries (IROW (i), JCOL(i)) for i = 1 to NZ, and 

at this location the sparse matrix has value A(i). 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 

the lower triangle of A.   (Input)  

Note IROW(i)≥ JCOL(i), since we are only indexing the lower triangle. 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 

in the lower triangle of A.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (B,1). 

NZ — The number of nonzero coefficients in the lower triangle of the linear system.   (Input) 

Default: NZ = size (A,1). 

ITWKSP — The total workspace needed.   (Input)  

If the default is desired, set ITWKSP to zero. 

Default: ITWKSP = 0. 

FORTRAN 90 Interface 

Generic: CALL LSLZD (A, IROW, JCOL, B, X [,…]) 

Specific: The specific interface names are S_LSLZD and D_LSLZD. 
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FORTRAN 77 Interface 

Single: CALL LSLZD (N, NZ, A, IROW, JCOL, B, ITWKSP, X) 

Double:  The double precision name is DLSLZD. 

Description 

Consider the linear equation 

Ax b  

where A is sparse, positive definite and Hermitian. The sparse coordinate format for the matrix A 

requires one complex and two integer vectors. The complex array a contains all the nonzeros in 

the lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer 

arrays irow and jcol, each of length nz, contain the row and column indices for these entries in 

A. That is 

      , 1, ,i iA a i i 
irow icol

nz

 

    1, ,i i i irow jcol nz
 

with all other entries in the lower triangle of A zero. 

The routine LSLZD solves a system of linear algebraic equations having a complex, sparse, 

Hermitian and positive definite coefficient matrix. It first uses the routine LSCXD to compute a 

symbolic factorization of a permutation of the coefficient matrix. It then calls LNFZD to perform 

the numerical factorization. The solution of the linear system is then found using LFSZD. 

The routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set 

up the sparse data structure for the Cholesky factor, L. Then the routine LNFZD produces the 

numerical entries in L so that we have 

P AP
T
= LL

H
 

Here P is the permutation matrix determined by the ordering. 

The numerical computations can be carried out in one of two ways. The first method performs the 

factorization using a multifrontal technique. This option requires more storage but in certain cases 

will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed 

description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), 

Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George and 

Liu (1981). This is just the standard factorization method based on the sparse compressed storage 

scheme. 

Finally, the solution x is obtained by the following calculations: 

1)     Ly1 = Pb 

2)  L
H

 y2 = y1 

3)   x = P
T 

y2 

The routine LFSZD accepts b and the permutation vector which determines P . It then returns x. 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LZD/DL2LZD. The 

reference is: 

CALL L2LZD (N, NZ, A, IROW, JCOL, B, X, IPER, IPARAM, 

RPARAM, WK, LWK, IWK, LIWK) 

The additional arguments are as follows: 

IPER — Vector of length N containing the ordering. 

IPARAM — Integer vector of length 4. See Comment 3. 

RPARAM — Real vector of length 2. See Comment 3. 

WK — Complex work vector of length LWK. 

LWK — The length of WK, LWK should be at least 2N + 6NZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 15N + 15NZ + 9. 

Note that the parameter ITWKSP is not an argument for this routine. 

2. Informational errors 

Type Code  

4 1 The coefficient matrix is not positive definite. 

4 2 A column without nonzero elements has been found in the 

coefficient matrix. 

3. If the default parameters are desired for L2LZD, then set IPARAM(1) to zero and call the 

routine L2LZD. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling L2LZD. 

 CALL L4LZD (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to L4LZD will set IPARAM and RPARAM to their default values, so only 

nondefault values need to be set above. The arguments are as follows: 

IPARAM — Integer vector of length 4. 

IPARAM(1) = Initialization flag. 
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IPARAM(2) = The numerical factorization method. 

IPARAM(2) Action 

0 Multifrontal 

1 Sparse column 

 Default: 0. 

IPARAM(3) = The ordering option. 

IPARAM(3 Action 

0 Minimum degree ordering 

1 User‘s ordering specified in IPER 

 Default: 0. 

IPARAM(4) = The total number of nonzeros in the factorization matrix. 

RPARAM — Real vector of length 2. 

RPARAM(1) = The absolute value of the largest diagonal element in the 

Cholesky factorization. 

RPARAM(2) = The absolute value of the smallest diagonal element in the 

Cholesky factorization. 

 If double precision is required, then DL4LZD is called and RPARAM is declared double 

precision. 

Example 

As an example, consider the 3× 3 linear system: 

2 0 1 0

1 4 0 1 2

0 1 2 10 0

i i

A i i i

i i

   
 

    
 
     

Let x
T
 = (1 + i, 2 + 2i, 3 + 3i) so that Ax = (−2 + 2i, 5 + 15i, 36 + 28i)

T
. The number of nonzeros 

in the lower triangle of A is nz = 5. The sparse coordinate form for the lower triangle of A is given 

by: 

irow 1 2 3 2 3

jcol 1 2 3 1 2

a   2 0 4 0 10 0 1 1 2i i i i i     
 

or equivalently by 
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irow 3 2 3 1 2

jcol 3 1 2 1 2

a 10 0 1 1 2 2 0 4 0i i i i i     
 

 

      USE LSLZD_INT 

      USE WRCRN_INT 

      INTEGER    N, NZ 

      PARAMETER  (N=3, NZ=5) 

! 

      INTEGER    IROW(NZ), JCOL(NZ) 

      COMPLEX    A(NZ), B(N), X(N) 

! 

      DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/ 

      DATA B/(-2.0,2.0), (5.0,15.0), (36.0,28.0)/ 

      DATA IROW/1, 2, 3, 2, 3/ 

      DATA JCOL/1, 2, 3, 1, 2/ 

!                                 Solve A * X = B 

      CALL LSLZD (A, IROW, JCOL, B, X) 

 

 

!                                 Print results 

      CALL WRCRN (‘ x ‘, X, 1, N, 1) 

      END 

Output 
 

                          x 

              1                2                3 

( 1.000, 1.000)  ( 2.000, 2.000)  ( 3.000, 3.000) 

LNFZD 
Computes the numerical Cholesky factorization of a sparse Hermitian matrix A.  

Required Arguments 

A — Complex vector of length NZ containing the nonzero coefficients of the lower triangle of 

the linear system.   (Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 

the lower triangle of A.   (Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 

in the lower triangle of A.   (Input) 

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine 

LSCXD/DLSCXD.   (Input) 
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NZSUB — Vector of length MAXSUB containing the row subscripts for the nonzeros in the 

Cholesky factor in compressed format as output from subroutine LSCXD/DLSCXD.   

(Input) 

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine 

LSCXD/DLSCXD.   (Input)  

The row subscripts for the nonzeros in column J are stored from location INZSUB(J) to 

INZSUB(J + 1) − 1. 

MAXNZ — Length of RLNZ as output from subroutine LSCXD/DLSCXD.   (Input) 

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor as output from 

subroutine LSCXD/DLSCXD.   (Input)  

The row subscripts for the nonzeros in column J of the factor are stored from location 

ILNZ(J) to ILNZ(J + 1) − 1. 

(ILNZ , NZSUB, INZSUB) sets up the compressed data structure in column ordered form 

for the Cholesky factor. 

IPER — Vector of length N containing the permutation as output from subroutine 

LSCXD/DLSCXD.   (Input) 

INVPER — Vector of length N containing the inverse permutation as output from subroutine 

LSCXD/DLSCXD.   (Input) 

ISPACE — The storage space needed for the stack of frontal matrices as output from 

subroutine LSCXD/DLSCXD.   (Input) 

DIAGNL — Complex vector of length N containing the diagonal of the factor.   (Output) 

RLNZ — Complex vector of length MAXNZ containing the strictly lower triangle nonzeros of 

the Cholesky factor.   (Output) 

RPARAM — Parameter vector containing factorization information.   (Output)  

RPARAM (1) = smallest diagonal element in absolute value. 

RPARAM (2) = largest diagonal element in absolute value. 

Optional Arguments 

N — Number of equations.   (Input) 

Default: N = size (IPER,1). 

NZ — The number of nonzero coefficients in the linear system.   (Input) 

Default: NZ = size (A,1). 

IJOB — Integer parameter selecting factorization method.   (Input)  

IJOB = 1 yields factorization in sparse column format. 

IJOB = 2 yields factorization using multifrontal method. 

Default: IJOB = 1. 
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ITWKSP — The total workspace needed.   (Input)  

If the default is desired, set ITWKSP to zero. See Comment 1 for the default. 

Default: ITWKSP = 0. 

FORTRAN 90 Interface 

Generic: CALL LNFZD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ, IPER, 

 INVPER, ISPACE, DIAGNL, RLNZ, RPARAM [,…]) 

Specific: The specific interface names are S_LNFZD and D_LNFZD. 

FORTRAN 77 Interface 

Single: CALL LNFZD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB, MAXNZ, 

ILNZ, IPER, INVPER, ISPACE, ITWKSP, DIAGNL, RLNZ, RPARAM) 

Double:  The double precision name is DLNFZD. 

Description 

Consider the linear equation  

Ax b  

where A is sparse, positive definite and Hermitian. The sparse coordinate format for the matrix A 

requires one complex and two integer vectors. The complex array a contains all the nonzeros in 

the lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer 

arrays irow and jcol, each of length nz, contain the row and column indices for these entries in 

A. That is 

      , 1, ,i iA a i i 
irow icol

nz

 

    1, ,i i i irow jcol nz
 

with all other entries in the lower triangle of A zero. 

The routine LNFZD produces the Cholesky factorization of P AP
T 

given the symbolic factorization 

of A which is computed by LSCXD. That is, this routine computes L which satisfies  

P AP
T
= LL

H
 

The diagonal of L is stored in DIAGNL and the strictly lower triangular part of L is stored in 

compressed subscript form in R = RLNZ as follows. The nonzeros in the jth column of L are stored 

in locations R(i), …, R(i + k) where i = ILNZ(j) and k = ILNZ(j + 1)− ILNZ(j) − 1. The row 

subscripts are stored in the vector NZSUB from locations INZSUB(j) to INZSUB(j) + k. 

The numerical computations can be carried out in one of two ways. The first method  

(when IJOB = 2) performs the factorization using a multifrontal technique. This option requires 

more storage but in certain cases will be faster. The multifrontal method is based on the routines in 

Liu (1987). For detailed description of this method, see Liu (1990), also Duff and Reid (1983, 
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1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989). The second method (when 

IJOB = 1) is fully described in George and Liu (1981). This is just the standard factorization 

method based on the sparse compressed storage scheme. 

Comments 

1. Workspace may be explicitly provided by use of L2FZD/DL2FZD. The reference is: 

CALL L2FZD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, 

INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE, DIAGNL, 

RLNZ, RPARAM, WK, LWK, IWK, LIWK) 

The additional arguments are as follows: 

WK — Complex work vector of length LWK. 

LWK — The length of WK, LWK should be at least N + 3NZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 2N. 

Note that the parameter ITWKSP is not an argument to this routine. 

2. Informational errors 

Type Code 

4 1 The coefficient matrix is not positive definite. 

4 2 A column without nonzero elements has been found in the 

coefficient matrix. 

Example 

As an example, consider the 3× 3 linear system: 

2 0 1 0

1 4 0 1 2

0 1 2 10 0

i i

A i i i

i i

   
 

    
 
     

The number of nonzeros in the lower triangle of A is nz = 5. The sparse coordinate form for the 

lower triangle of A is given by: 

irow 1 2 3 2 3

jcol 1 2 3 1 2

a 2 0 4 0 10 0 1 1 2i i i i i     
 

or equivalently by 
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irow 3 2 3 1 2

jcol 3 1 2 1 2

a 10 0 1 1 2 2 0 4 0i i i i i     
 

We first call LSCXD to produce the symbolic information needed to pass on to LNFZD. Then call 

LNFZD to factor this matrix. The results are displayed below. 
 

      USE LNFZD_INT 

      USE LSCXD_INT 

      USE WRCRN_INT 

      INTEGER    N, NZ, NRLNZ 

      PARAMETER  (N=3, NZ=5, NRLNZ=5) 

! 

      INTEGER    IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),& 

                 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,& 

                 NZSUB(3*NZ) 

      REAL       RPARAM(2) 

      COMPLEX    A(NZ), DIAGNL(N), RLNZ(NRLNZ) 

! 

      DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/ 

      DATA IROW/1, 2, 3, 2, 3/ 

      DATA JCOL/1, 2, 3, 1, 2/ 

!                                 Select minimum degree ordering 

!                                 for multifrontal method 

      IJOB = 3 

      MAXSUB = 3*NZ 

      CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, & 

                  IJOB=IJOB, MAXSUB=MAXSUB) 

!                                 Check if NRLNZ is large enough 

      IF (NRLNZ .GE. MAXNZ) THEN 

!                                 Choose multifrontal method 

         IJOB = 2 

      CALL LNFZD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, & 
                     ILNZ, IPER, INVPER, ISPACE, DIAGNL, RLNZ, RPARAM, & 

                     IJOB=IJOB) 

!                                 Print results 

      CALL WRCRN (‘ diagnl ‘, DIAGNL, 1, N, 1) 

      CALL WRCRN (‘ rlnz ‘, RLNZ, 1, MAXNZ, 1) 

      END IF 

! 

      END 

Output 
 

                         diagnl 

              1                2                3 

( 1.414, 0.000)  ( 1.732, 0.000)  ( 2.887, 0.000) 

 

                rlnz 

              1                2 

(-0.707,-0.707)  ( 0.577,-1.155) 
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LFSZD 
Solves a complex sparse Hermitian positive definite system of linear equations, given the 

Cholesky factorization of the coefficient matrix. 

Required Arguments 

N — Number of equations.   (Input) 

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine 

LSCXD/DLSCXD.   (Input) 

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-diagonal 

nonzeros in the factor as output from subroutine LSCXD/DLSCXD.   (Input) 

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine 

LSCXD/DLSCXD.   (Input)  

The row subscripts of column J are stored from location INZSUB(J) to  

INZSUB(J + 1) − 1. 

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor as output from 

subroutine LSCXD/DLSCXD.   (Input) 

RLNZ — Complex vector of length MAXNZ containing the off-diagonal nonzeros in the factor 

in column ordered format as output from subroutine LNFZD/DLNFZD.   (Input) 

ILNZ — Vector of length N +1 containing pointers to RLNZ as output from subroutine 

LSCXD/DLSCXD. The nonzeros in column J of the factor are stored from location 

ILNZ(J) to ILNZ(J + 1) − 1.   (Input)  

The values (RLNZ, ILNZ, NZSUB, INZSUB) give the off-diagonal nonzeros of the factor 

in a compressed subscript data format. 

DIAGNL — Complex vector of length N containing the diagonals of the Cholesky factor as 

output from subroutine LNFZD/DLNFZD.   (Input) 

IPER — Vector of length N containing the ordering as output from subroutine 

LSCXD/DLSCXD.   (Input)  

IPER(I) = K indicates that the original row K is the new row I. 

B — Complex vector of length N containing the right-hand side.   (Input) 

X — Complex vector of length N containing the solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL LFSZD (N, MAXZUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL, 

 IPER, B, X) 
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Specific: The specific interface names are S_LFSZD and D_LFSZD. 

FORTRAN 77 Interface 

Single: CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL, 

IPER, B, X) 

Double:  The double precision name is DLFSZD. 

Description 

Consider the linear equation 

Ax b  

where A is sparse, positive definite and Hermitian. The sparse coordinate format for the matrix A 

requires one complex and two integer vectors. The complex array a contains all the nonzeros in 

the lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer 

arrays irow and jcol, each of length nz, contain the row and column indices for these entries in 

A. That is 

      , 1, ,i iA a i i 
irow icol

nz

 

    1, ,i i i irow jcol nz
 

with all other entries in the lower triangle of A zero. 

The routine LFSZD computes the solution of the linear system given its Cholesky factorization. 

The factorization is performed by calling LSCXD followed by LNFZD. The routine LSCXD computes 

a minimum degree ordering or uses a user-supplied ordering to set up the sparse data structure for 

the Cholesky factor, L. Then the routine LNFZD produces the numerical entries in L so that we 

have 

P AP
T 

= LL
H

 

Here P is the permutation matrix determined by the ordering. 

The numerical computations can be carried out in one of two ways. The first method performs the 

factorization using a multifrontal technique. This option requires more storage but in certain cases 

will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed 

description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), 

Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George and 

Liu (1981). This is just the standard factorization method based on the sparse compressed storage 

scheme. Finally, the solution x is obtained by the following calculations: 

1) Ly1 = Pb 

  2) L
H 

y2 = y1 

3) x = P
T 

y2 
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Comments 

Informational error 

Type Code 

4 1 The input matrix is numerically singular. 

Example 

As an example, consider the 3 × 3 linear system: 

2 0 1 0

1 4 0 1 2

0 1 2 10 0

i i

A i i i

i i

   
 

    
 
     

Let 

 1 1 ,2 2 ,3 3Tx i i i   
 

so that Ax1 = (−2 + 2i, 5 + 15i, 36 + 28i)
T
, and 

 2 3 3 ,2 2 ,1 1Tx i i i   
 

so that Ax2 = (2 + 6i, 7 − 5i, 16 + 8i)
T
. The number of nonzeros in the lower triangle of A is nz = 

5. The sparse coordinate form for the lower triangle of A is given by:  

irow 1 2 3 2 3

jcol 1 2 3 1 2

a 2 0 4 0 10 0 1 1 2i i i i i     
 

or equivalently by 

irow 3 2 3 1 2

jcol 3 1 2 1 2

a 10 0 1 1 2 2 0 4 0i i i i i     
 

 

      USE IMSL_LIBRARIES 

      INTEGER    N, NZ, NRLNZ 

      PARAMETER  (N=3, NZ=5, NRLNZ=5) 

! 

      INTEGER    IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),& 

                 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,& 

                 NZSUB(3*NZ) 

      COMPLEX    A(NZ), B1(N), B2(N), DIAGNL(N), RLNZ(NRLNZ), X(N) 

      REAL       RPARAM(2) 

! 

      DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/ 

      DATA B1/(-2.0,2.0), (5.0,15.0), (36.0,28.0)/ 

      DATA B2/(2.0,6.0), (7.0,5.0), (16.0,8.0)/ 

      DATA IROW/1, 2, 3, 2, 3/ 
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      DATA JCOL/1, 2, 3, 1, 2/ 

!                                 Select minimum degree ordering 

!                                 for multifrontal method 

      IJOB = 3 

!                                 Use default workspace 

      MAXSUB = 3*NZ 

      CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, & 

                  IJOB=IJOB, MAXSUB=MAXSUB, IPER=IPER, ISPACE=ISPACE) 

!                                 Check if NRLNZ is large enough 

      IF (NRLNZ .GE. MAXNZ) THEN 

!                                 Choose multifrontal method 

         IJOB = 2 

         CALL LNFZD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB,& 

                    MAXNZ, ILNZ, IPER, INVPER, ISPACE, DIAGNL,& 

                    RLNZ, RPARAM, IJOB=IJOB) 

!                                 Solve A * X1 = B1 

         CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,& 

                    IPER, B1, X) 

!                                 Print X1 

         CALL WRCRN (‘ x1 ‘, X, 1, N,1) 

!                                 Solve A * X2 = B2 

         CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,& 

                    IPER, B2, X) 

!                                 Print X2 

         CALL WRCRN (‘ x2 ‘, X, 1, N,1) 

      END IF 

! 

      END 

Output 
 

                          x1 

              1                2                3 

( 1.000, 1.000)  ( 2.000, 2.000)  ( 3.000, 3.000) 

 

                         x2 

              1                2                3 

( 3.000, 3.000)  ( 2.000, 2.000)  ( 1.000, 1.000) 

LSLTO 
Solves a complex sparse Hermitian positive definite system of linear equations, given the 

Cholesky factorization of the coefficient matrix. 

Required Arguments 

A — Real vector of length 2N − 1 containing the first row of the coefficient matrix followed 

by its first column beginning with the second element.   (Input) 

See Comment 2. 

B — Real vector of length N containing the right-hand side of the linear system.   (Input) 
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X — Real vector of length N containing the solution of the linear system.   (Output)  

If B is not needed then B and X may share the same storage locations. 

Optional Arguments 

N — Order of the matrix represented by A.   (Input) 

Default: N = (size (A,1) +1)/2 

IPATH — Integer flag.   (Input)  

IPATH = 1 means the system Ax = B is solved. 

IPATH = 2 means the system A
T 

x = B is solved. 

Default: IPATH =1. 

FORTRAN 90 Interface 

Generic: CALL LSLTO (A, B, X [,…]) 

Specific: The specific interface names are S_LSLTO and D_LSLTO. 

FORTRAN 77 Interface 

Single: CALL LSLTO (N, A, B, IPATH, X) 

Double:  The double precision name is DLSLTO. 

Description 

Toeplitz matrices have entries that are constant along each diagonal, for example,  

0 1 2 4

1 0 1 2

2 1 0 1

3 2 1 0

p p p p

p p p p
A

p p p p

p p p p



 

  

 
 
 
 
 
   

The routine LSLTO is based on the routine TSLS in the TOEPLITZ package, see Arushanian et al. 

(1983). It is based on an algorithm of Trench (1964). This algorithm is also described by Golub 

and van Loan (1983), pages 125−133. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LTO/DL2LTO. The 

reference is: 

CALL L2LTO (N, A, B, IPATH, X, WK) 

The additional argument is: 
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WK — Work vector of length 2N − 2. 

2. Because of the special structure of Toeplitz matrices, the first row and the first column 

of a Toeplitz matrix completely characterize the matrix. Hence, only the elements  

A(1, 1), …, A(1, N), A(2, 1), …, A(N, 1) need to be stored. 

Example 

A system of four linear equations is solved. Note that only the first row and column of the matrix 

A are entered. 
 

      USE LSLTO_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    N 

      PARAMETER  (N=4) 

      REAL       A(2*N-1), B(N), X(N) 

!                                 Set values for  A, and B 

! 

!                                 A = (  2   -3   -1    6  ) 

!                                     (  1    2   -3   -1  ) 

!                                     (  4    1    2   -3  ) 

!                                     (  3    4    1    2  ) 

! 

!                                 B = ( 16  -29   -7    5  ) 

! 

      DATA A/2.0, -3.0, -1.0, 6.0, 1.0, 4.0, 3.0/ 

      DATA B/16.0, -29.0, -7.0, 5.0/ 

!                                 Solve AX = B 

      CALL LSLTO (A, B, X) 

!                                 Print results 

      CALL WRRRN (‘X‘, X, 1, N, 1) 

      END 

Output 
 

                 X 

     1       2       3       4 

-2.000  -1.000   7.000   4.000 

LSLTC 
Solves a complex Toeplitz linear system. 

Required Arguments 

A — Complex vector of length 2N − 1 containing the first row of the coefficient matrix 

followed by its first column beginning with the second element.   (Input)  

See Comment 2. 
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B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution of the linear system.   (Output) 

Optional Arguments 

N — Order of the matrix represented by A.   (Input) 

Default: N = size (A,1). 

IPATH — Integer flag.   (Input) 

IPATH = 1 means the system Ax = B is solved. 

IPATH = 2 means the system A
T
x = B is solved. 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LSLTC (A, B, X [,…]) 

Specific: The specific interface names are S_LSLTC and D_LSLTC. 

FORTRAN 77 Interface 

Single: CALL LSLTC (N, A, B, IPATH, X) 

Double:  The double precision name is DLSLTC. 

Description 

Toeplitz matrices have entries which are constant along each diagonal, for example,  

0 1 2 4

1 0 1 2

2 1 0 1

3 2 1 0

p p p p

p p p p
A

p p p p

p p p p



 

  

 
 
 
 
 
   

The routine LSLTC is based on the routine TSLC in the TOEPLITZ package, see Arushanian et al. 

(1983). It is based on an algorithm of Trench (1964). This algorithm is also described by Golub 

and van Loan (1983), pages 125−133. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LTC/DL2LTC. The 

reference is: 

CALL L2LTC (N, A, B, IPATH, X, WK) 

The additional argument is 
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WK — Complex work vector of length 2N − 2. 

2. Because of the special structure of Toeplitz matrices, the first row and the first column 

of a Toeplitz matrix completely characterize the matrix. Hence, only the elements  

A(1, 1), …, A(1, N), A(2, 1), …, A(N, 1) need to be stored. 

Example 

A system of four complex linear equations is solved. Note that only the first row and column of 

the matrix A are entered. 
 

      USE LSLTC_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      PARAMETER  (N=4) 

      COMPLEX    A(2*N-1), B(N), X(N) 

!                                 Set values for  A and B 

! 

!                                 A = ( 2+2i    -3     1+4i   6-2i ) 

!                                     (  i      2+2i   -3     1+4i ) 

!                                     ( 4+2i     i     2+2i   -3   ) 

!                                     ( 3-4i    4+2i    i     2+2i ) 

! 

!                                 B = ( 6+65i  -29-16i  7+i  -10+i ) 

! 

      DATA A/(2.0,2.0), (-3.0,0.0), (1.0,4.0), (6.0,-2.0), (0.0,1.0),& 

            (4.0,2.0), (3.0,-4.0)/ 

      DATA B/(6.0,65.0), (-29.0,-16.0), (7.0,1.0), (-10.0,1.0)/ 

!                                 Solve AX = B 

      CALL LSLTC (A, B, X) 

!                                 Print results 

      CALL WRCRN (‘X‘, X, 1, N, 1) 

      END 

Output 
 

                                   X 

              1                2                3                4 

(-2.000, 0.000)  (-1.000,-5.000)  ( 7.000, 2.000)  ( 0.000, 4.000) 

LSLCC 

 

 

 

Solves a complex circulant linear system. 



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  429 

     

     

 

Required Arguments 

A — Complex vector of length N containing the first row of the coefficient matrix.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution of the linear system.   (Output) 

Optional Arguments 

N — Order of the matrix represented by A.   (Input) 

Default: N = size (A,1). 

IPATH — Integer flag.   (Input)  

IPATH = 1 means the system Ax = B is solved. 

IPATH = 2 means the system A
T
x = B is solved. 

Default: IPATH = 1. 

FORTRAN 90 Interface 

Generic: CALL LSLCC (A, B, X [,…]) 

Specific: The specific interface names are S_LSLCC and D_LSLCC. 

FORTRAN 77 Interface 

Single: CALL LSLCC (N, A, B, IPATH, X) 

Double:  The double precision name is DLSLCC. 

Description 

Circulant matrices have the property that each row is obtained by shifting the row above it one 

place to the right. Entries that are shifted off at the right re-enter at the left. For example, 

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

p p p p

p p p p
A

p p p p

p p p p

 
 
 
 
 
   

If qk = p− k and the subscripts on p and q are interpreted modulo N, then 

1 1

1 1

( ) ( )
N N

j i j i j i i i

i i

Ax p x q x q x   

 

    
 

where q * x is the convolution of q and x. By the convolution theorem, if q * x = b, then  
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ˆˆ ˆ ˆ, where q x b q 
 

is the discrete Fourier transform of q as computed by the IMSL routine FFTCF and ⊗ denotes 

elementwise multiplication. By division, 

ˆˆ ˆx b q 
 

where ∅ denotes elementwise division. The vector x is recovered from 

x̂  

through the use of IMSL routine FFTCB. 

To solve A
T 

x = b, use the vector p instead of q in the above algorithm. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LCC/DL2LCC. The 

reference is: 

CALL L2LCC (N, A, B, IPATH, X, ACOPY, WK) 

The additional arguments are as follows: 

ACOPY — Complex work vector of length N. If A is not needed, then A and 

ACOPY may be the same. 

WK — Work vector of length 6N + 15. 

2. Informational error 

Type Code 

4 2 The input matrix is singular. 

3. Because of the special structure of circulant matrices, the first row of a circulant matrix 

completely characterizes the matrix. Hence, only the elements A(1, 1), …, A(1, N) need 

to be stored. 

Example 

A system of four linear equations is solved. Note that only the first row of the matrix A is entered. 
 

      USE LSLCC_INT 

      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    N 

      PARAMETER  (N=4) 

      COMPLEX    A(N), B(N), X(N) 

!                                 Set values for  A, and B 

! 



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  431 

     

     

 

!                                 A = ( 2+2i -3+0i  1+4i  6-2i) 

! 

!                                 B = (6+65i  -41-10i  -8-30i  63-3i) 

! 

      DATA A/(2.0,2.0), (-3.0,0.0), (1.0,4.0), (6.0,-2.0)/ 

      DATA B/(6.0,65.0), (-41.0,-10.0), (-8.0,-30.0), (63.0,-3.0)/ 

!                                 Solve AX = B     (IPATH = 1) 

      CALL LSLCC (A, B, X) 

!                                 Print results 

      CALL WRCRN (‘X‘, X, 1, N, 1) 

      END 

Output 
 

              1                2                3                4 

(-2.000, 0.000)  (-1.000,-5.000)  ( 7.000, 2.000)  ( 0.000, 4.000) 

PCGRC 
Solves a real symmetric definite linear system using a preconditioned conjugate gradient method 

with reverse communication. 

Required Arguments 

IDO — Flag indicating task to be done.   (Input/Output)  

On the initial call IDO must be 0. If the routine returns with IDO = 1, then set Z = AP, 

where A is the matrix, and call PCGRC again. If the routine returns with IDO = 2, then 

set Z to the solution of the system MZ = R, where M is the preconditioning matrix, and 

call PCGRC again. If the routine returns with IDO = 3, then the iteration has converged 

and X contains the solution. 

X — Array of length N containing the solution.   (Input/Output)  

On input, X contains the initial guess of the solution. On output, X contains the solution 

to the system. 

P — Array of length N.   (Output)  

Its use is described under IDO. 

R — Array of length N.   (Input/Output)  

On initial input, it contains the right-hand side of the linear system. On output, it 

contains the residual. 

Z — Array of length N.   (Input)  

When IDO = 1, it contains AP, where A is the linear system. When IDO = 2, it contains 

the solution of MZ = R, where M is the preconditioning matrix. When IDO = 0, it is 

ignored. Its use is described under IDO. 

Optional Arguments 

N — Order of the linear system.   (Input) 

Default: N = size (X,1). 
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RELERR — Relative error desired.   (Input) 

Default: RELERR = 1.e-5 for single precision and 1.d-10 for double precision. 

ITMAX — Maximum number of iterations allowed.   (Input) 

Default: ITMAX = N. 

FORTRAN 90 Interface 

Generic: CALL PCGRC (IDO, X, P, R, Z [,…]) 

Specific: The specific interface names are S_PCGRC and D_PCGRC. 

FORTRAN 77 Interface 

Single: CALL PCGRC (IDO, N, X, P, R, Z, RELERR, ITMAX) 

Double:  The double precision name is DPCGRC. 

Description 

Routine PCGRC solves the symmetric definite linear system Ax = b using the preconditioned 

conjugate gradient method. This method is described in detail by Golub and Van Loan (1983, 

Chapter 10), and in Hageman and Young (1981, Chapter 7). 

The preconditioning matrix, M, is a matrix that approximates A, and for which the linear system 

Mz = r is easy to solve. These two properties are in conflict; balancing them is a topic of much 

current research. 

The number of iterations needed depends on the matrix and the error tolerance RELERR. As a 

rough guide, ITMAX = N
1/2

 is often sufficient when N >> 1. See the references for further 

information. 

Let M be the preconditioning matrix, let b, p, r, x and z be vectors and let τ be the desired relative 

error. Then the algorithm used is as follows. 

λ = −1 

p0 = x0 

r1 = b − Ap 

For k = 1, …, itmax 

zk = M-
1rk 

If k = 1 then 

 βk = 1 
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 pk = zk 

Else 

 1 1/T T
k k k k kz r z r    

 k k k kp z p   

End if 

1 1 /

k

T T
k k k k k

k k k k

k k k k

z Ap

z r z p

x x p

r r z







 





 

 
 

If (||zk||2 ≤ τ(1 − λ)||xk||2) Then 

 Recompute λ 

 If (||zk||2 ≤ τ(1 − λ)||xk||2) Exit 

End if 

End loop 

Here λ is an estimate of λmax(G), the largest eigenvalue of the iteration matrix  G = I − M-1
 A. The 

stopping criterion is based on the result (Hageman and Young, 1981, pages 148−151) 

max

1

1 ( )

k M k M

M k M

x x z

x G x





 

Where  

2 T
Mx x Mx

 

It is known that 

     max 1 max 2 max 1T T G     
 

where the Tn are the symmetric, tridiagonal matrices 
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1 2

2 2 3

3 3 4
nT

 

  

  

 
 
 
 
 
   

with  

1 1 11 / 1/ , 1 1/k k k k         
 

and 

1/k k k   
 

The largest eigenvalue of Tk is found using the routine EVASB. Usually this eigenvalue 

computation is needed for only a few of the iterations. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of P2GRC/DP2GRC. The 

reference is: 

CALL P2GRC (IDO, N, X, P, R, Z, RELERR, ITMAX, TRI, WK, 
IWK) 

The additional arguments are as follows: 

TRI — Workspace of length 2 * ITMAX containing a tridiagonal matrix (in 

band symmetric form) whose largest eigenvalue is approximately the 

same as the largest eigenvalue of the iteration matrix. The workspace 

arrays TRI, WK and IWK should not be changed between the initial call 

with IDO = 0 and PCGRC/DPCGRC returning with IDO = 3. 

WK — Workspace of length 5 * ITMAX. 

IWK — Workspace of length ITMAX. 

2. Informational errors 

Type Code 

4 1 The preconditioning matrix is singular. 

4 2 The preconditioning matrix is not definite. 

4 3 The linear system is not definite. 

4 4 The linear system is singular. 

4 5 No convergence after ITMAX iterations. 
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Example 

In this example, the solution to a linear system is found. The coefficient matrix A is stored as a full 

matrix. The preconditioning matrix is the diagonal of A. This is called the Jacobi preconditioner. 

It is also used by the IMSL routine JCGRC. 
 

      USE PCGRC_INT 

      USE MURRV_INT 

      USE WRRRN_INT 

      USE SCOPY_INT 

      INTEGER    LDA, N 

      PARAMETER  (N=3, LDA=N) 

! 

      INTEGER    IDO, ITMAX, J 

      REAL       A(LDA,N), B(N), P(N), R(N), X(N), Z(N) 

!                                  (   1,  -3,   2   ) 

!                            A =   (  -3,  10,  -5   ) 

!                                  (   2,  -5,   6   ) 

      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 

!                            B =   (   27.0, -78.0, 64.0  ) 

      DATA B/27.0, -78.0, 64.0/ 

!                                 Set R to right side 

      CALL SCOPY (N, B, 1, R, 1) 

!                                 Initial guess for X is B 

      CALL SCOPY (N, B, 1, X, 1) 

! 

      ITMAX  = 100 

      IDO    = 0 

   10 CALL PCGRC (IDO, X, P, R, Z, ITMAX=ITMAX) 

      IF (IDO .EQ. 1) THEN 

!                                 Set z = Ap 

         CALL MURRV (A, P, Z) 

         GO TO 10 

      ELSE IF (IDO .EQ. 2) THEN 

!                                 Use diagonal of A as the 

!                                 preconditioning matrix M 

!                                 and set z = inv(M)*r 

         DO 20  J=1, N 

            Z(J) = R(J)/A(J,J) 

   20    CONTINUE 

         GO TO 10 

      END IF 

!                                 Print the solution 

      CALL WRRRN (‘Solution‘, X) 

! 

      END 

Output 
 

Solution 

1   1.001 

2  -4.000 

3   7.000 
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Example 2 

In this example, a more complicated preconditioner is used to find the solution of a linear system 

which occurs in a finite-difference solution of Laplace‘s equation on a 4 × 4 grid. The matrix is 

4 1 0 1

1 4 1 0 1

0 1 4 1 0 1

1 0 1 4 1 0 1

1 0 1 4 1 0 1

1 0 1 4 1 0 1

1 0 1 4 1 0

1 0 1 4 1

1 0 1 4

A

  
 
  
 
   
 
    
     
 

    
   
 

   
     

The preconditioning matrix M is the symmetric tridiagonal part of A, 

4 1

1 4 1

1 4 1

1 4 1

1 4 1

1 4 1

1 4 1

1 4 1

1 4

M

 
 
 
 
  
 

  
   
 

  
  
 

  
    

Note that M, called PRECND in the program, is factored once. 
 

      USE IMSL_LIBRARIES 

      INTEGER    LDA, LDPRE, N, NCODA, NCOPRE 

      PARAMETER  (N=9, NCODA=3, NCOPRE=1, LDA=2*NCODA+1,& 

                LDPRE=NCOPRE+1) 

! 

      INTEGER    IDO, ITMAX 

      REAL       A(LDA,N), P(N), PRECND(LDPRE,N), PREFAC(LDPRE,N),& 

                R(N), RCOND, RELERR, X(N), Z(N) 

!                                 Set A in band form 

      DATA A/3*0.0, 4.0, -1.0, 0.0, -1.0, 2*0.0, -1.0, 4.0, -1.0, 0.0,& 

          -1.0, 2*0.0, -1.0, 4.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0,& 

          4.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0, 4.0, -1.0, 0.0,& 

          -1.0, -1.0, 0.0, -1.0, 4.0, -1.0, 0.0, -1.0, -1.0, 0.0,& 

          -1.0, 4.0, -1.0, 2*0.0, -1.0, 0.0, -1.0, 4.0, -1.0, 2*0.0,& 
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          -1.0, 0.0, -1.0, 4.0, 3*0.0/ 

!                                 Set PRECND in band symmetric form  

      DATA PRECND/0.0, 4.0, -1.0, 4.0, -1.0, 4.0, -1.0, 4.0, -1.0, 4.0,& 

          -1.0, 4.0, -1.0, 4.0, -1.0, 4.0, -1.0, 4.0/ 

!                                 Right side is (1, ..., 1) 

      R = 1.0E0 

!                                 Initial guess for X is 0 

      X = 0.0E0 

!                                 Factor the preconditioning matrix 

      CALL LFCQS (PRECND, NCOPRE, PREFAC, RCOND) 

! 

      ITMAX  = 100 

      RELERR = 1.0E-4 

      IDO    = 0 

   10 CALL PCGRC (IDO, X, P, R, Z, RELERR=RELERR, ITMAX=ITMAX) 

      IF (IDO .EQ. 1) THEN 

!                                 Set z = Ap 

         CALL MURBV (A, NCODA, NCODA, P, Z) 

         GO TO 10 

      ELSE IF (IDO .EQ. 2) THEN 

!                                 Solve PRECND*z = r for r 

         CALL LSLQS (PREFAC, NCOPRE, R, Z) 

         GO TO 10 

      END IF 

!                                 Print the solution 

      CALL WRRRN (‘Solution‘, X) 

! 

      END 

Output 
 

Solution 

1   0.955 

2   1.241 

3   1.349 

4   1.578 

5   1.660 

6   1.578 

7   1.349 

8   1.241 

9   0.955 

JCGRC 
Solves a real symmetric definite linear system using the Jacobi-preconditioned conjugate gradient 

method with reverse communication. 

Required Arguments 

IDO — Flag indicating task to be done.   (Input/Output)  

On the initial call IDO must be 0. If the routine returns with IDO = 1, then set  

Z = A * P, where A is the matrix, and call JCGRC again. If the routine returns with  

IDO = 2, then the iteration has converged and X contains the solution. 
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DIAGNL — Vector of length N containing the diagonal of the matrix.   (Input)  

Its elements must be all strictly positive or all strictly negative. 

X — Array of length N containing the solution.   (Input/Output)  

On input, X contains the initial guess of the solution. On output, X contains the solution 

to the system. 

P — Array of length N.   (Output)  

Its use is described under IDO. 

R — Array of length N.   (Input/Output)  

On initial input, it contains the right-hand side of the linear system. On output, it 

contains the residual. 

Z — Array of length N.   (Input)  

When IDO = 1, it contains AP, where A is the linear system. When IDO = 0, it is 

ignored. Its use is described under IDO. 

Optional Arguments 

N — Order of the linear system.   (Input) 

Default: N = size (X,1). 

RELERR — Relative error desired.   (Input) 

Default: RELERR = 1.e-5 for single precision and 1.d-10 for double precision. 

ITMAX — Maximum number of iterations allowed.   (Input) 

Default: ITMAX = 100. 

FORTRAN 90 Interface 

Generic: CALL JCGRC (IDO, DIAGNL, X, P, R, Z [,…]) 

Specific: The specific interface names are S_JCGRC and D_JPCGRC. 

FORTRAN 77 Interface 

Single: CALL JCGRC (IDO, N, DIAGNL, X, P, R, Z, RELERR, ITMAX) 

Double:  The double precision name is DJCGRC. 

Description 

Routine JCGRC solves the symmetric definite linear system Ax = b using the Jacobi conjugate 

gradient method. This method is described in detail by Golub and Van Loan (1983, Chapter 10), 

and in Hageman and Young (1981, Chapter 7). 
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This routine is a special case of the routine PCGRC, with the diagonal of the matrix A used as the 

preconditioning matrix. For details of the algorithm see PCGRC. 

The number of iterations needed depends on the matrix and the error tolerance RELERR. As a 

rough guide, ITMAX = N  is often sufficient when N » 1. See the references for further information. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of J2GRC/DJ2GRC. The 

reference is: 

CALL J2GRC (IDO, N, DIAGNL, X, P, R, Z, RELERR, ITMAX, TRI, WK, IWK) 

The additional arguments are as follows: 

TRI — Workspace of length 2 * ITMAX containing a tridiagonal matrix (in 

band symmetric form) whose largest eigenvalue is approximately the 

same as the largest eigenvalue of the iteration matrix. The workspace 

arrays TRI, WK and IWK should not be changed between the initial call 

with IDO = 0 and JCGRC/DJCGRC returning with IDO = 2. 

WK — Workspace of length 5 * ITMAX. 

IWK — Workspace of length ITMAX. 

2. Informational errors 

Type Code 

4 1 The diagonal contains a zero. 

4 2 The diagonal elements have different signs. 

4 3 No convergence after ITMAX iterations. 

4 4 The linear system is not definite. 

4 5 The linear system is singular. 

Example 

In this example, the solution to a linear system is found. The coefficient matrix A is stored as a full 

matrix. 
 

      USE IMSL_LIBRARIES 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

! 

      INTEGER    IDO, ITMAX 

      REAL       A(LDA,N), B(N), DIAGNL(N), P(N), R(N), X(N), & 

                 Z(N) 

!                                  (   1,  -3,   2   ) 

!                            A =   (  -3,  10,  -5   ) 

!                                  (   2,  -5,   6   ) 

      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 



     

     
 

440  Chapter 1: Linear Systems IMSL MATH LIBRARY  

     

     

 

!                            B =   (   27.0, -78.0, 64.0  ) 

      DATA B/27.0, -78.0, 64.0/ 

!                                 Set R to right side 

      CALL SCOPY (N, B, 1, R, 1) 

!                                 Initial guess for X is B 

      CALL SCOPY (N, B, 1, X, 1) 

!                                 Copy diagonal of A to DIAGNL 

      CALL SCOPY (N, A(:, 1), LDA+1, DIAGNL, 1) 

!                                 Set parameters 

      ITMAX  = 100 

      IDO    = 0 

   10 CALL JCGRC (IDO, DIAGNL, X, P, R, Z, ITMAX=ITMAX) 

      IF (IDO .EQ. 1) THEN 

!                                 Set z = Ap 

         CALL MURRV (A, P, Z) 

         GO TO 10 

      END IF 

!                                 Print the solution 

      CALL WRRRN (‘Solution‘, X) 

! 

      END 

Output 
 

Solution 

1   1.001 

2  -4.000 

3   7.000 

GMRES 
Uses the Generalized Minimal Residual Method with reverse communication to generate an 

approximate solution of Ax = b. 

Required Arguments 

IDO— Flag indicating task to be done.   (Input/Output) 

On the initial call IDO must be 0. If the routine returns with IDO = 1, then set Z = AP, 

where A is the matrix, and call GMRES again. If the routine returns with IDO = 2, then 

set Z to the solution of the system MZ = P, where M is the preconditioning matrix, and 

call GMRES again. If the routine returns with IDO = 3, set Z = AM
-1

P, and call GMRES 

again. If the routine returns with IDO = 4, the iteration has converged, and X contains 

the approximate solution to the linear system. 

X — Array of length N containing an approximate solution.   (Input/Output) 

On input, X contains an initial guess of the solution. On output, X contains the 

approximate solution. 

P — Array of length N.   (Output) 

Its use is described under IDO. 
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R — Array of length N.   (Input/Output) 

On initial input, it contains the right-hand side of the linear system. On output, it 

contains the residual, b − Ax. 

Z — Array of length N.   (Input) 

When IDO = 1, it contains AP, where A is the coefficient matrix. When IDO = 2, it 

contains M
-1

P. When IDO = 3, it contains AM
-1

P. When IDO = 0, it is ignored. 

TOL — Stopping tolerance.   (Input/Output) 

The algorithm attempts to generate a solution x such that |b − Ax| ≤ TOL*|b|. On 

output, TOL contains the final residual norm. 

Optional Arguments 

N — Order of the linear system.   (Input) 

Default: N = size (X,1). 

FORTRAN 90 Interface 

Generic: CALL GMRES (IDO, X, P, R, Z, TOL [,…]) 

Specific: The specific interface names are S_GMRES and D_GMRES. 

FORTRAN 77 Interface 

Single: CALL GMRES (IDO, N, X, P, R, Z, TOL) 

Double:  The double precision name is DGMRES. 

Description 

The routine GMRES implements restarted GMRES with reverse communication to generate an 

approximate solution to Ax = b. It is based on GMRESD by Homer Walker. 

There are four distinct GMRES implementations, selectable through the parameter vector INFO. The 

first Gram-Schmidt implementation, INFO(1) = 1, is essentially the original algorithm by Saad 

and Schultz (1986). The second Gram-Schmidt implementation, developed by Homer Walker and 

Lou Zhou, is simpler than the first implementation. The least squares problem is constructed in 

upper-triangular form and the residual vector updating at the end of a GMRES cycle is cheaper. The 

first Householder implementation is algorithm 2.2 of Walker (1988), but with more efficient 

correction accumulation at the end of each GMRES cycle. The second Householder implementation 

is algorithm 3.1 of Walker (1988). The products of Householder transformations are expanded as 

sums, allowing most work to be formulated as large scale matrix-vector operations. Although 

BLAS are used wherever possible, extensive use of Level 2 BLAS in the second Householder 

implementation may yield a performance advantage on certain computing environments. 

The Gram-Schmidt implementations are less expensive than the Householder, the latter requiring 

about twice as much arithmetic beyond the coefficient matrix/vector products. However, the 

Householder implementations may be more reliable near the limits of residual reduction. See 



     

     
 

442  Chapter 1: Linear Systems IMSL MATH LIBRARY  

     

     

 

Walker (1988) for details. Issues such as the cost of coefficient matrix/vector products, availability 

of effective preconditioners, and features of particular computing environments may serve to 

mitigate the extra expense of the Householder implementations. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of G2RES/DG2RES. The 

reference is: 

CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, USRNPR, 

USRNRM, WORK) 

The additional arguments are as follows: 

INFO — Integer vector of length 10 used to change parameters of GMRES.   

(Input/Output).  

 For any components INFO(1) ... INFO(7) with value zero on input, the default 

value is used.  

INFO(1) = IMP, the flag indicating the desired implementation. 

IMP Action 

1 first Gram-Schmidt implementation 

2 second Gram-Schmidt implementation 

3 first Householder implementation 

4 second Householder implementation 

 Default: IMP = 1 

INFO(2) = KDMAX, the maximum Krylor subspace dimension, i.e., the 

maximum allowable number of GMRES iterations before restarting. It 

must satisfy 1 ≤ KDMAX ≤ N. 

Default: KDMAX = min(N, 20) 

INFO(3) = ITMAX, the maximum number of GMRES iterations allowed. 

Default: ITMAX = 1000 

INFO(4) = IRP, the flag indicating whether right preconditioning is used. 

If IRP = 0, no right preconditioning is performed. If IRP = 1, right 

preconditioning is performed. If IRP = 0, then IDO = 2 or 3 will not 

occur. 

Default: IRP = 0 

INFO(5) = IRESUP, the flag that indicates the desired residual vector 

updating prior to restarting or on termination.  



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  443 

     

     

 

IRESUP Action 

1 update by linear combination, restarting only 

2 update by linear combination, restarting and termination 

3 update by direct evaluation, restarting only 

4 update by direct evaluation, restarting and termination 

 Updating by direct evaluation requires an otherwise unnecessary 

matrix-vector product. The alternative is to update by forming a linear 

combination of various available vectors. This may or may not be 

cheaper and may be less reliable if the residual vector has been greatly 

reduced. If IRESUP = 2 or 4, then the residual vector is returned in 

WORK(1), ..., WORK(N). This is useful in some applications but costs 

another unnecessary residual update. It is recommended that 

IRESUP = 1 or 2 be used, unless matrix-vector products are 

inexpensive or great residual reduction is required. In this case use 

IRESUP = 3 or 4. The meaning of ―inexpensive‖ varies with IMP as 

follows: 

 

IMP ≤ 

1 (KDMAX + 1) *N flops 

2 N flops 

3 (2*KDMAX + 1) *N flops 

4 (2*KDMAX + 1) *N flops 

 ―Great residual reduction‖ means that TOL is only a few orders of 

magnitude larger than machine epsilon. 

Default: IRESUP = 1 

INFO(6) = flag for indicating the inner product and norm used in the Gram-

Schmidt implementations. If INFO(6) = 0, sdot and snrm2, from 

BLAS, are used. If INFO(6) = 1, the user must provide the routines, as 

specified under arguments USRNPR and USRNRM. 

Default: INFO(6) = 0 

INFO(7) = IPRINT, the print flag. If IPRINT = 0, no printing is performed. If  

IPRINT = 1, print the iteration numbers and residuals. 

Default: IPRINT = 0 

INFO(8) = the total number of GMRES iterations on output. 

INFO(9) = the total number of matrix-vector products in GMRES on output. 

INFO(10) = the total number of right preconditioner solves in GMRES on 

output if IRP = 1. 
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USRNPR — User-supplied FUNCTION to use as the inner product in the Gram-Schmidt 

implementation, if INFO(6) = 1. If INFO(6) = 0, the dummy function 

G8RES/DG8RES may be used. The usage is  

REAL FUNCTION USRNPR (N, SX, INCX, SY, INCY) 

N — Length of vectors X and Y.   (Input) 

SX — Real vector of length MAX(N*IABS(INCX),1).   (Input) 

INCX — Displacement between elements of SX.   (Input) 

X(I) is defined to be SX(1+(I-1)*INCX) if INCX is greater than 0, 

or  

SX(1+(I-N)*INCX) if INCX is less than 0. 

SY — Real vector of length MAX(N*IABS(INXY),1).   (Input) 

INCY — Displacement between elements of SY.   (Input) 

Y(I) is defined to be SY(1+(I-1)*INCY) if INCY is greater than 0, or  

SY(1+(I-N)*INCY) if INCY is less than zero.  

USRNPR must be declared EXTERNAL in the calling program. 

USRNRM — User-supplied FUNCTION to use as the norm ||X|| in the Gram-Schmidt 

implementation, if INFO(6) = 1. If INFO(6) = 0, the dummy function 

G9RES/DG9RES may be used.The usage is  

REAL FUNCTION USRNRM (N, SX, INCX) 

N — Length of vectors X and Y.   (Input) 

SX — Real vector of length MAX(N*IABS(INCX),1).   (Input) 

INCX — Displacement between elements of SX.   (Input) 

X(I) is defined to be SX(1+(I-1)*INCX) if INCX is greater than 0, or  

SX(1+(I-N)*INCX) if INCX is less than 0. 

USRNRM must be declared EXTERNAL in the calling program. 

WORK — Work array whose length is dependent on the chosen implementation. 

IMP length of WORK 

1 N*(KDMAX + 2) + KDMAX**2 + 3 *KDMAX + 2 

2 N*(KDMAX + 2) + KDMAX**2 + 2 *KDMAX + 1 

3 N*(KDMAX + 2) + 3 *KDMAX + 2 

4 N*(KDMAX + 2) + KDMAX**2 + 2 *KDMAX + 2 

Example 1 
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This is a simple example of GMRES usage. A solution to a small linear system is found. The 

coefficient matrix A is stored as a full matrix, and no preconditioning is used. Typically, 

preconditioning is required to achieve convergence in a reasonable number of iterations. 
 

      USE IMSL_LIBRARIES 

!                    Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (N=3, LDA=N) 

!                                  Specifications for local variables 

      INTEGER    IDO, NOUT 

      REAL       P(N), TOL, X(N), Z(N) 

      REAL       A(LDA,N), R(N) 

      SAVE       A, R 

!                                  Specifications for intrinsics 

      INTRINSIC  SQRT 

      REAL       SQRT 

!                                  ( 33.0  16.0  72.0) 

!                              A = (-24.0 -10.0 -57.0) 

!                                  ( 18.0 -11.0   7.0) 

! 

!                              B = (129.0 -96.0   8.5) 

! 

      DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/ 

      DATA R/129.0, -96.0, 8.5/ 

! 

      CALL UMACH (2, NOUT) 

! 

!                                  Initial guess = (0 ... 0) 

! 

      X = 0.0E0 

!                                  Set stopping tolerance to 

!                                  square root of machine epsilon 

      TOL = AMACH(4) 

      TOL = SQRT(TOL) 

      IDO = 0 

   10 CONTINUE 

      CALL GMRES (IDO, X, P, R, Z, TOL) 

      IF (IDO .EQ. 1) THEN 

!                                  Set z = A*p 

        CALL MURRV (A, P, Z) 

         GO TO 10 

      END IF 

! 

      CALL WRRRN ('Solution', X, 1, N, 1) 

      WRITE (NOUT,'(A11, E15.5)') 'Residual = ', TOL 

      END 
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Output 
 

      Solution 

    1       2       3    

1.000   1.500   1.000  

Residual =     0.29746E-05 

Additional Examples 

Example 2 

This example solves a linear system with a coefficient matrix stored in coordinate form, the same 

problem as in the document example for LSLXG. Jacobi preconditioning is used, i.e. the 

preconditioning matrix M is the diagonal matrix with Mii = Aii, for i = 1, …, n. 
 

      USE IMSL_LIBRARIES 

      INTEGER    N, NZ 

 

      PARAMETER  (N=6, NZ=15) 

 

!                                  Specifications for local variables 

      INTEGER    IDO, INFO(10), NOUT 

      REAL       P(N), TOL, WORK(1000), X(N), Z(N) 

      REAL       DIAGIN(N), R(N) 

!                                  Specifications for intrinsics 

      INTRINSIC  SQRT 

      REAL       SQRT 

!                                  Specifications for subroutines 

      EXTERNAL   AMULTP 

!                                  Specifications for functions 

      EXTERNAL   G8RES, G9RES 

! 

      DATA DIAGIN/0.1, 0.1, 0.0666667, 0.1, 1.0, 0.16666667/ 

      DATA R/10.0, 7.0, 45.0, 33.0, -34.0, 31.0/ 

! 

      CALL UMACH (2, NOUT) 

!                                  Initial guess = (1 ... 1) 

      X = 1.0E0 

!                                  Set up the options vector INFO 

!                                  to use preconditioning 

      INFO = 0 

      INFO(4) = 1 

!                                  Set stopping tolerance to 

!                                  square root of machine epsilon 

      TOL = AMACH(4) 

      TOL = SQRT(TOL) 

      IDO = 0 

   10 CONTINUE 

      CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK) 

      IF (IDO .EQ. 1) THEN 

!                                  Set z = A*p 

         CALL AMULTP (P, Z) 

         GO TO 10 

      ELSE IF (IDO .EQ. 2) THEN 
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! 

!                                  Set z = inv(M)*p 

!                                  The diagonal of inv(M) is stored 

!                                  in DIAGIN 

! 

         CALL SHPROD (N, DIAGIN, 1, P, 1, Z, 1) 

         GO TO 10 

      ELSE IF (IDO .EQ. 3) THEN 

! 

!                                  Set z = A*inv(M)*p 

! 

         CALL SHPROD (N, DIAGIN, 1, P, 1, Z, 1) 

         P = Z 

         CALL AMULTP (P, Z) 

         GO TO 10 

      END IF 

! 

      CALL WRRRN ('Solution', X) 

      WRITE (NOUT,'(A11, E15.5)') 'Residual = ', TOL 

      END 

! 

      SUBROUTINE AMULTP (P, Z) 

      USE IMSL_LIBRARIES 

      INTEGER    NZ 

      PARAMETER  (NZ=15) 

!                                  SPECIFICATIONS FOR ARGUMENTS 

      REAL       P(*), Z(*) 

!                                  SPECIFICATIONS FOR PARAMETERS 

      INTEGER    N 

      PARAMETER  (N=6) 

!                                  SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I 

      INTEGER    IROW(NZ), JCOL(NZ) 

      REAL       A(NZ) 

      SAVE       A, IROW, JCOL 

!                                  SPECIFICATIONS FOR SUBROUTINES 

!                                  Define the matrix A 

! 

      DATA A/6.0, 10.0, 15.0, -3.0, 10.0, -1.0, -1.0, -3.0, -5.0, 1.0, & 

          10.0, -1.0, -2.0, -1.0, -2.0/ 

      DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/ 

      DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/ 

! 

      CALL SSET(N, 0.0, Z, 1) 

!                                  Accumulate the product A*p in z 

      DO 10  I=1, NZ 

         Z(IROW(I)) = Z(IROW(I)) + A(I)*P(JCOL(I)) 

   10 CONTINUE 

      RETURN 

      END 

Output 
 

 Solution 

1   1.000 

2   2.000 

3   3.000 
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4   4.000 

5   5.000 

6   6.000 

Residual =     0.25882E-05 

Example 3 

The coefficient matrix in this example corresponds to the five-point discretization of the 2-d 

Poisson equation with the Dirichlet boundary condition. Assuming the natural ordering of the 

unknowns, and moving all boundary terms to the right hand side, we obtain the block tridiagonal 

matrix 

T I

I
A

I

I T

 
 

 
 
 

   

where 

4 1

1

1

1 4

T

 
 

 
 
 

   

and I is the identity matrix. Discretizing on a k × k grid implies that T and I are both k × k, and 

thus the coefficient matrix A is k
2
 × k

2
. 

The problem is solved twice, with discretization on a 50 × 50 grid. During both solutions, use the 

second Householder implementation to take advantage of the large scale matrix/vector operations 

done in Level 2 BLAS. Also choose to update the residual vector by direct evaluation since the 

small tolerance will require large residual reduction. 

The first solution uses no preconditioning. For the second solution, we construct a block diagonal 

preconditioning matrix 

T

M

T

 
 


 
    

M is factored once, and these factors are used in the forward solves and back substitutions 

necessary when GMRES returns with IDO = 2 or 3.  

Timings are obtained for both solutions, and the ratio of the time for the solution with no 

preconditioning to the time for the solution with preconditioning is printed. Though the exact 

results are machine dependent, we see that the savings realized by faster convergence from using a 

preconditioner exceed the cost of factoring M and performing repeated forward and back solves. 
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      USE IMSL_LIBRARIES 

      INTEGER    K, N 

      PARAMETER  (K=50, N=K*K) 

!                                  Specifications for local variables 

      INTEGER    IDO, INFO(10), IR(20), IS(20), NOUT 

      REAL       A(2*N), B(2*N), C(2*N), G8RES, G9RES, P(2*N), R(N), & 

                TNOPRE, TOL, TPRE, U(2*N), WORK(100000), X(N), & 

                Y(2*N), Z(2*N) 

!                                  Specifications for subroutines 

      EXTERNAL   AMULTP, G8RES, G9RES 

!                                  Specifications for functions 

      CALL UMACH (2, NOUT) 

!                                  Right hand side and initial guess  

!                                  to (1 ... 1) 

      R = 1.0E0 

      X = 1.0E0 

!                                  Use the 2nd Householder  

!                                  implementation and update the 

!                                  residual by direct evaluation 

      INFO = 0 

      INFO(1) = 4 

      INFO(5) = 3 

      TOL     = AMACH(4) 

      TOL     = 100.0*TOL 

      IDO     = 0 

!                                  Time the solution with no  

!                                  preconditioning 

      TNOPRE  = CPSEC() 

   10 CONTINUE 

      CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK) 

      IF (IDO .EQ. 1) THEN 

! 

!                                  Set z = A*p 

! 

         CALL AMULTP (K, P, Z) 

         GO TO 10 

      END IF 

      TNOPRE = CPSEC() - TNOPRE 

! 

      WRITE (NOUT,'(A32, I4)') 'Iterations, no preconditioner = ', & 

                             INFO(8) 

! 

!                                  Solve again using the diagonal blocks 

!                                  of A as the preconditioning matrix M 

      R = 1.0E0 

      X = 1.0E0 

!                                  Define M 

      CALL SSET (N-1, -1.0, B, 1) 

      CALL SSET (N-1, -1.0, C, 1) 

      CALL SSET (N, 4.0, A, 1) 

      INFO(4) = 1 

      TOL     = AMACH(4) 

      TOL     = 100.0*TOL 

      IDO     = 0 

      TPRE    = CPSEC() 

!                                  Compute the LDU factorization of M 

! 
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      CALL LSLCR (C, A, B, Y, U, IR, IS, IJOB=6) 

   20 CONTINUE 

      CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK) 

         IF (IDO .EQ. 1) THEN 

! 

!                                  Set z = A*p 

! 

         CALL AMULTP (K, P, Z) 

         GO TO 20 

      ELSE IF (IDO .EQ. 2) THEN 

! 

!                                  Set z = inv(M)*p 

! 

         CALL SCOPY (N, P, 1, Z, 1) 

         CALL LSLCR (C, A, B, Z, U, IR, IS, IJOB=5) 

         GO TO 20 

      ELSE IF (IDO .EQ. 3) THEN 

! 

!                                  Set z = A*inv(M)*p 

! 

         CALL LSLCR (C, A, B, P, U, IR, IS, IJOB=5) 

         CALL AMULTP (K, P, Z) 

         GO TO 20 

      END IF 

      TPRE = CPSEC() - TPRE 

      WRITE (NOUT,'(A35, I4)') 'Iterations, with preconditioning = ',& 

                             INFO(8) 

      WRITE (NOUT,'(A45, F10.5)') '(Precondition time)/(No '// & 

                                'precondition time) = ', TPRE/TNOPRE 

! 

      END 

! 

      SUBROUTINE AMULTP (K, P, Z) 

      USE IMSL_LIBRARIES 

!                                  Specifications for arguments 

      INTEGER    K 

      REAL       P(*), Z(*) 

!                                  Specifications for local variables 

      INTEGER    I, N 

! 

      N = K*K 

!                                  Multiply by diagonal blocks 

! 

      CALL SVCAL (N, 4.0, P, 1, Z, 1) 

      CALL SAXPY (N-1, -1.0, P(2:(N)), 1, Z, 1) 

      CALL SAXPY (N-1, -1.0, P, 1, Z(2:(N)), 1) 

! 

!                                  Correct for terms not properly in 

!                                  block diagonal 

      DO 10  I=K, N - K, K 

         Z(I)   = Z(I) + P(I+1) 

         Z(I+1) = Z(I+1) + P(I) 

      10 CONTINUE 

!                                  Do the super and subdiagonal blocks, 

!                                  the -I's 

! 
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      CALL SAXPY (N-K, -1.0, P((K+1):(N)), 1, Z, 1) 

      CALL SAXPY (N-K, -1.0, P, 1, Z((K+1):(N)), 1) 

! 

      RETURN 

      END 

Output 
 

Iterations, no preconditioner =  329  

Iterations, with preconditioning =  192  

(Precondition time)/(No precondition time) =    0.66278 

 

ARPACK_SVD 
Computes some singular values and  left and right singular vectors of a real rectangular 

matrix
T

M NA USV  . There is no restriction on the relative sizes, M  and N . The user 

supplies matrix-vector products y Ax and
Ty A x  for the iterative method. This routine calls 

ARPACK_SYMMETRIC. Descriptions for both ARPACK_SVD and ARPACK_SYMMETRIC are found in 

Chapter 2, ―Eigensystem Analysis‖. 

LSQRR 

 

 

 

Solves a linear least-squares problem without iterative refinement. 

Required Arguments 

A — NRA by NCA matrix containing the coefficient matrix of the least-squares system to be 

solved.   (Input) 

B — Vector of length NRA containing the right-hand side of the least-squares system.   (Input) 

X — Vector of length NCA containing the solution vector with components corresponding to 

the columns not used set to zero.   (Output) 

RES — Vector of length NRA containing the residual vector B − A * X.   (Output) 

KBASIS — Scalar containing the number of columns used in the solution. 

Optional Arguments 

NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 



     

     
 

452  Chapter 1: Linear Systems IMSL MATH LIBRARY  

     

     

 

NCA — Number of columns of A.   (Input) 

Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

TOL — Scalar containing the nonnegative tolerance used to determine the subset of columns 

of A to be included in the solution.   (Input)  

If TOL is zero, a full complement of min(NRA, NCA) columns is used. See Comments. 

Default: TOL = 0.0 

FORTRAN 90 Interface 

Generic: CALL LSQRR (A, B, X, RES, KBASIS [,…]) 

Specific: The specific interface names are S_LSQRR and D_LSQRR. 

FORTRAN 77 Interface 

Single: CALL LSQRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS) 

Double:  The double precision name is DLSQRR. 

ScaLAPACK Interface 

Generic: CALL LSQRR (A0, B0, X0, RES0, KBASIS [,…]) 

Specific: The specific interface names are S_LSQRR and D_LSQRR. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Routine LSQRR solves the linear least-squares problem. The underlying code is based on either 

LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries are used 

during linking. For a detailed explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and 

EISPACK‖ in the Introduction section of this manual. The routine LQRRR is first used to compute 

the QR decomposition of A. Pivoting, with all rows free, is used. Column k is in the basis if 

11kkR R
 

with τ = TOL. The truncated least-squares problem is then solved using IMSL routine LQRSL. 

Finally, the components in the solution, with the same index as columns that are not in the basis, 

are set to zero; and then, the permutation determined by the pivoting in IMSL routine LQRRR is 

applied. 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of L2QRR/DL2QRR. The 

reference is: 

CALL L2QRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS, QR, 

 QRAUX, IPVT, WORK) 

The additional arguments are as follows: 

QR — Work vector of length NRA * NCA representing an NRA by NCA matrix 

that contains information from the QR factorization of A. The upper 

trapezoidal part of QR contains the upper trapezoidal part of R with its 

diagonal elements ordered in decreasing magnitude. The strict lower 

trapezoidal part of QR contains information to recover the orthogonal 

matrix Q of the factorization. If A is not needed, QR can share the same 

storage locations as A.  

QRAUX — Work vector of length NCA containing information about the 

orthogonal factor of the QR factorization of A. 

IPVT — Integer work vector of length NCA containing the pivoting 

information for the QR factorization of A. 

WORK — Work vector of length 2 * NCA − 1. 

2. Routine LSQRR calculates the QR decomposition with pivoting of a matrix A and tests 

the diagonal elements against a user-supplied tolerance TOL. The first integer  

KBASIS = k is determined for which 

1, 1 11TOL *k kr r  
 

In effect, this condition implies that a set of columns with a condition number 

approximately bounded by 1.0/TOL is used. Then, LQRSL performs a truncated fit of 

the first KBASIS columns of the permuted A to an input vector B. The coefficient of this 

fit is unscrambled to correspond to the original columns of A, and the coefficients 

corresponding to unused columns are set to zero. It may be helpful to scale the rows 

and columns of A so that the error estimates in the elements of the scaled matrix are 

roughly equal to TOL. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2QRR the leading dimension of QR is increased by IVAL(3) 

when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSQRR. 

Additional memory allocation for QR and option value restoration are done 

automatically in LSQRR. Users directly calling L2QRR can allocate additional 

space for QR and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 
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applications that use LSQRR or L2QRR. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17  This option has two values that determine if the L1 condition number is to be 

computed. Routine LSQRR temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG 

skips this computation. LSQRR restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the coefficient matrix of the least squares system to be solved.   (Input) 

B0 —   Local vector of length MXLDA containing the local portions of the distributed vector B. 

B contains the right-hand side of the least squares system.   (Input) 

X0 —   Local vector  of length MXLDX containing the local portions of the distributed vector X. 

X  contains the solution vector with components corresponding to the columns not used 

set to zero.   (Output) 

RES0 —   Local vector  of length MXLDA containing the local portions of the distributed 

vector RES. RES  contains the residual vector B – A * X.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA, MXLDX, and MXCOL can be obtained through a 

call to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has 

been made. See the ScaLAPACK Example below. 

Example 

Consider the problem of finding the coefficients ci in 

f(x) = c0 + c1x + c2x2 

given data at x = 1, 2, 3 and 4, using the method of least squares. The row of the matrix A contains 

the value of 1, x and x2 at the data points. The vector b contains the data, chosen such that  

c0 ≈ 1, c1 ≈ 2 and c2 ≈ 0. The routine LSQRR solves this least-squares problem. 
 

      USE LSQRR_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (NRA=4, NCA=3, LDA=NRA) 

      REAL       A(LDA,NCA), B(NRA), X(NCA), RES(NRA), TOL 

! 

!                                 Set values for A 

! 

!                                 A = (  1    2     4   ) 
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!                                     (  1    4    16   ) 

!                                     (  1    6    36   ) 

!                                     (  1    8    64   ) 

! 

      DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/ 

! 

!                                 Set values for B 

! 

      DATA B/ 4.999,  9.001,  12.999,  17.001 / 

! 

!                                 Solve the least squares problem 

      TOL = 1.0E-4 

      CALL LSQRR (A, B, X, RES, KBASIS, TOL=TOL) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) ‘KBASIS = ‘, KBASIS 

      CALL WRRRN (‘X‘, X, 1, NCA, 1) 

      CALL WRRRN (‘RES‘, RES, 1, NRA, 1) 

! 

      END 

Output 
 

KBASIS =   3 

 

            X 

    1       2       3 

0.999   2.000   0.000 

 

                     RES 

        1          2          3          4 

-0.000400   0.001200  -0.001200   0.000400 

ScaLAPACK Example 

The previous example is repeated here as a distributed computing example. Consider the problem 

of finding the coefficients ci in 

f(x) = c0 + c1x + c2x2 

given data at x = 1, 2, 3 and 4, using the method of least squares. The row of the matrix A contains 

the value of 1, x and x2 at the data points. The vector b contains the data, chosen such that  

c0 ≈ 1, c1 ≈ 2 and c2 ≈ 0. The routine LSQRR solves this least-squares problem. SCALAPACK_MAP 

and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map and unmap arrays to 

and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools 

routine which initializes the descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LSQRR_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 
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      INTEGER  LDA, NRA, NCA, DESCA(9), DESCX(9), DESCR(9) 

      INTEGER       INFO, KBASIS, MXCOL, MXLDA, MXCOLX, MXLDX, NOUT 

      REAL          TOL 

      REAL, ALLOCATABLE ::        A(:,:), B(:), X(:), RES(:) 

      REAL, ALLOCATABLE ::        A0(:,:), B0(:), X0(:), RES0(:) 

      PARAMETER   (NRA=4, NCA=3, LDA=NRA) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,NCA), B(NRA), X(NCA), RES(NRA)) 

!                                 Set values for A and B 

          A(1,:) = (/ 1.0,  2.0,   4.0/) 

          A(2,:) = (/ 1.0,  4.0,  16.0/) 

          A(3,:) = (/ 1.0,  6.0,  36.0/) 

          A(4,:) = (/ 1.0,  8.0,  64.0/) 

! 

          B = (/4.999, 9.001,  12.999, 17.001/) 

      ENDIF 

!                                  Set up a 2D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(NRA, NCA, .TRUE., .FALSE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  MXCOL, MXLDX, and MXCOLX 

      CALL SCALAPACK_GETDIM(NRA, NCA, MP_MB, MP_NB, MXLDA, MXCOL) 

      CALL SCALAPACK_GETDIM(NCA, 1, MP_NB, 1, MXLDX, MXCOLX) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, NRA, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, & 

                    INFO) 

      CALL DESCINIT(DESCX, NCA, 1, MP_NB, 1, 0, 0, MP_ICTXT, MXLDX, INFO) 

      CALL DESCINIT(DESCR, NRA, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDX), RES0(MXLDA)) 

!                                 Map input arrays to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      CALL SCALAPACK_MAP(B, DESCR, B0) 

!                                 Solve the least squares problem 

      TOL = 1.0E-4 

      CALL LSQRR (A0, B0, X0, RES0, KBASIS, TOL=TOL) 

!                                 Unmap the results from the distributed 

!                                 arrays back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

      CALL SCALAPACK_UNMAP(RES0, DESCR, RES) 

!                                Print results. 

!                                 Only Rank=0 has the solution. 

      IF(MP_RANK .EQ. 0)THEN 

         CALL UMACH (2, NOUT) 

         WRITE (NOUT,*) ‗KBASIS = ‗, KBASIS 

         CALL WRRRN (‘X‘, X, 1, NCA, 1) 

         CALL WRRRN (‘RES‘, RES, 1, NRA, 1) 

      ENDIF 

      IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, RES, X) 

      DEALLOCATE(A0, B0, RES0, X0) 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 
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!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

KBASIS =   3 

 

            X 

    1       2       3 

0.999   2.000   0.000 

 

                     RES 

        1          2          3          4 

-0.000400   0.001200  -0.001200   0.000400 

LQRRV 

 

 

 

Computes the least-squares solution using Householder transformations applied in blocked form. 

Required Arguments 

A — Real LDA by (NCA + NUMEXC) array containing the matrix and right-hand sides.   (Input)  

The right-hand sides are input in A(1  :  NRA, NCA + j), j = 1, …, NUMEXC. The array A 

is preserved upon output. The Householder factorization of the matrix is computed and 

used to solve the systems. 

X — Real LDX by NUMEXC array containing the solution.   (Output) 

Optional Arguments 

NRA — Number of rows in the matrix.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns in the matrix.   (Input) 

Default: NCA = size (A,2) - NUMEXC. 

NUMEXC — Number of right-hand sides.   (Input) 

Default: NUMEXC = size (X,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 
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LDX — Leading dimension of the solution array X exactly as specified in the dimension 

statement of the calling program.   (Input) 

Default: LDX = size (X,1). 

FORTRAN 90 Interface 

Generic: CALL LQRRV (A, X [,…]) 

Specific: The specific interface names are S_LQRRV and D_LQRRV. 

FORTRAN 77 Interface 

Single: CALL LQRRV (NRA, NCA, NUMEXC, A, LDA, X, LDX) 

Double:  The double precision name is DLQRRV. 

ScaLAPACK Interface 

Generic: CALL LQRRV (A0, X0 [,…]) 

Specific: The specific interface names are S_LQRRV and D_LQRRV. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

The routine LQRRV computes the QR decomposition of a matrix A using blocked Householder 

transformations. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK 

code depending upon which supporting libraries are used during linking. For a detailed 

explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction 

section of this manual. The standard algorithm is based on the storage-efficient WY representation 

for products of Householder transformations. See Schreiber and Van Loan (1989). 

The routine LQRRV determines an orthogonal matrix Q and an upper triangular matrix R such that 

A = QR. The QR factorization of a matrix A having NRA rows and NCA columns is as follows: 

Initialize A1 ← A 

For k = 1, min(NRA - 1, NCA) 

      Determine a Householder transformation for column k of Ak having the form 

T
k k k kH I    

 

      where uk has zeros in the first k − 1 positions and τk is a scalar. 

      Update 

 1 1 1 k

TT
A H A A Ak k k k k k k        
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End k 

Thus, 

1 1
T

p p pA H H H A Q A R  
 

where p = min(NRA − 1, NCA). The matrix Q is not produced directly by LQRRV. The information 

needed to construct the Householder transformations is saved instead. If the matrix Q is needed 

explicitly, Q
T
 can be determined while the matrix is factored. No pivoting among the columns is 

done. The primary purpose of LQRRV is to give the user a high-performance QR least-squares 

solver. It is intended for least-squares problems that are well-posed. For background, see Golub 

and Van Loan (1989, page 225). During the QR factorization, the most time−consuming step is 

computing the matrix−vector update Ak ← HkAk −1. The routine LQRRV constructs ―block‖ of NB 

Householder transformations in which the update is ―rich‖ in matrix multiplication. The product of 

NB Householder transformations are written in the form  

1 1
T

k k k nbH H H I YTY    
 

where YNRA×NB is a lower trapezoidal matrix and TNB × NB is upper triangular. The optimal choice 

of the block size parameter NB varies among computer systems. Users may want to change it from 

its default value of 1. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2RRV/DL2RRV. The 

reference is: 

CALL L2RRV (NRA, NCA, NUMEXC, A, LDA, X, LDX, FACT, LDFACT, WK) 

The additional arguments are as follows: 

FACT — LDFACT × (NCA + NUMEXC) work array containing the Householder 

factorization of the matrix on output. If the input data is not needed, A 

and FACT can share the same storage locations. 

LDFACT — Leading dimension of the array FACT exactly as specified in the 

dimension statement of the calling program.   (Input)  

If A and FACT are sharing the same storage, then LDA = LDFACT is 

required. 

WK — Work vector of length (NCA + NUMEXC + 1) * (NB + 1) . The default 

value is  

NB = 1. This value can be reset. See item 3 below. 

2. Informational errors 

Type Code 

4 1 The input matrix is singular. 
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3. Integer Options with Chapter 11 Options Manager 

5 This option allows the user to reset the blocking factor used in computing the 

factorization. On some computers, changing IVAL(*) to a value larger than 1 

will result in greater efficiency. The value IVAL(*) is the maximum value to use. 

(The software is specialized so that IVAL(*) is reset to an ―optimal‖ used value 

within routine L2RRV.) The user can control the blocking by resetting IVAL(*) 

to a smaller value than the default. Default values are IVAL(*) = 1, IMACH(5). 

6 This option is the vector dimension where a shift is made from in-line level-2 

loops to the use of level-2 BLAS in forming the partial product of Householder 

transformations. Default value is IVAL(*) = IMACH(5). 

10 This option allows the user to control the factorization step. If the value is 1 the 

Householder factorization will be computed. If the value is 2, the factorization 

will not be computed. In this latter case the decomposition has already been 

computed. Default value is IVAL(*) = 1. 

11 This option allows the user to control the solving steps. The rules for IVAL(*) 

are: 

1. Compute b ← Q
T
b, and x ← R+b. 

2. Compute b ← Q
T
b. 

3. Compute b ← Qb. 

4. Compute x ← R+b. 

Default value is IVAL (*) = 1. Note that IVAL (*) = 2 or 3 may only be set when 

calling L2RRV/DL2RRV. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix 

A.  A contains the matrix and right-hand sides.   (Input)  

The right-hand sides are input in A(1  :  NRA, NCA + j), j = 1,…, NUMEXC. The array A 

is preserved upon output. The Householder factorization of the matrix is computed and 

used to solve the systems..   (Input) 

X0 —   MXLDX by MXCOLX local matrix containing the local portions of the distributed 

matrix  X.  X  contains the solution.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA, MXLDX, MXCOL, and MXCOLX can be 

obtained through a call to SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP 

(see Utilities) has been made. See the ScaLAPACK Example below. 
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Example 

Given a real m × k matrix B it is often necessary to compute the k least-squares solutions of the 

linear system AX = B, where A is an m × n real matrix. When m > n the system is considered 

overdetermined. A solution with a zero residual normally does not exist. Instead the minimization 

problem  

2
min

n
j

j j
x

Ax b



R

 

is solved k times where xj, bj are the j-th columns of the matrices X, B respectively. When A is of 

full column rank there exits a unique solution XLS that solves the above minimization problem. By 

using the routine LQRRV, XLS is computed. 
 

      USE LQRRV_INT 

      USE WRRRN_INT 

      USE SGEMM_INT 

!                                 Declare variables 

      INTEGER    LDA, LDX, NCA, NRA, NUMEXC 

      PARAMETER  (NCA=3, NRA=5, NUMEXC=2, LDA=NRA, LDX=NCA) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      REAL       X(LDX,NUMEXC) 

!                                 SPECIFICATIONS FOR SAVE VARIABLES 

      REAL       A(LDA,NCA+NUMEXC) 

      SAVE       A 

!                                 SPECIFICATIONS FOR SUBROUTINES 

! 

!                                 Set values for A and the 

!                                 righthand sides. 

! 

!                                 A = (  1    2     4 |   7  10) 

!                                     (  1    4    16 |  21  10) 

!                                     (  1    6    36 |  43  9 ) 

!                                     (  1    8    64 |  73  10) 

!                                     (  1   10   100 | 111  10) 

! 

      DATA A/5*1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 4.0, 16.0, 36.0, 64.0, & 

          100.0, 7.0, 21.0, 43.0, 73.0, 111.0, 2*10., 9., 2*10./ 

! 

! 

!                                 QR factorization and solution 

      CALL LQRRV (A, X) 

      CALL WRRRN (‘SOLUTIONS 1-2‘, X) 

!                                 Compute residuals and print 

      CALL SGEMM (‘N‘, ‘N‘, NRA, NUMEXC, NCA, 1.E0, A, LDA, X, LDX, & 

                 -1.E0, A(1:,(NCA+1):),LDA) 

      CALL WRRRN (‘RESIDUALS 1-2‘, A(1:,(NCA+1):)) 

! 

      END 

Output 
 

   SOLUTIONS 1-2 

        1       2 

1    1.00   10.80 



     

     
 

462  Chapter 1: Linear Systems IMSL MATH LIBRARY  

     

     

 

2    1.00   -0.43 

3    1.00    0.04 

 

   RESIDUALS 1-2 

        1        2 

1   0.0000   0.0857 

2   0.0000  -0.3429 

3   0.0000   0.5143 

4   0.0000  -0.3429 

5   0.0000   0.0857 

ScaLAPACK Example 

The previous example is repeated here as a distributed computing example. Given a real m × k 

matrix B it is often necessary to compute the k least-squares solutions of the linear system  

AX = B, where A is an m × n real matrix. When m > n the system is considered overdetermined. A 

solution with a zero residual normally does not exist. Instead the minimization problem  

2
min

n
j

j j
x

Ax b



R

 

is solved k times where xj, bj are the j-th columns of the matrices X, B respectively. When A is of 

full column rank there exits a unique solution XLS that solves the above minimization problem. By 

using the routine LQRRV, XLS is computed. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL 

utility routines (see Utilities) used to map and unmap arrays to and from the processor grid. They 

are used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the 

descriptors for the local arrays. 
 

      USE MPI_SETUP_INT 

      USE LQRRV_INT 

      USE SGEMM_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  LDA, LDX, NCA, NRA, NUMEXC, DESCA(9), DESCX(9) 

      INTEGER       INFO, MXCOL, MXLDA, MXLDX, MXCOLX 

      INTEGER       K 

      REAL, ALLOCATABLE ::        A(:,:), X(:) 

      REAL, ALLOCATABLE ::        A0(:,:), X0(:) 

      PARAMETER   (NRA=5, NCA=3, NUMEXC=2, LDA=NRA, LDX=NCA) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,NCA+NUMEXC), X(LDX, NUMEXC)) 

!                                 Set values for A and the righthand sides 

          A(1,:) = (/ 1.0,  2.0,   4.0,   7.0, 10.0/) 

          A(2,:) = (/ 1.0,  4.0,  16.0,  21.0, 10.0/) 

          A(3,:) = (/ 1.0,  6.0,  36.0,  43.0,  9.0/) 

          A(4,:) = (/ 1.0,  8.0,  64.0,  73.0, 10.0/) 

          A(5,:) = (/ 1.0, 10.0, 100.0, 111.0, 10.0/) 

      ENDIF 
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!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(NRA, NCA+NUMEXC, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(NRA, NCA+NUMEXC, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

CALL DESCINIT(DESCA, NRA, NCA+NUMEXC, MP_MB, MP_NB, 0, 0, MP_ICTXT, & 

              MXLDA, INFO) 

      K = MIN0(NRA, NCA) 

!                                  Need to get dimensions of local x 

!                                  separate since x's leading 

!                                  dimension differs from A's 

!                                  Get the array descriptor entities  

!                                  MXLDX, AND MXCOLX 

      CALL SCALAPACK_GETDIM(K, NUMEXC, MP_MB, MP_NB, MXLDX, MXCOLX) 

      CALL DESCINIT (DESCX, K, NUMEXC, MP_NB, MP_NB, 0, 0, MP_ICTXT, & 

      MXLDX, INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), X0(MXLDX,MXCOLX)) 

!                                 Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Solve the least squares problem 

      CALL LQRRV (A0, X0) 

!                                 Unmap the results from the distributed 

!                                 arrays back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

!                                Print results. 

!                                Only Rank=0 has the solution, X. 

      IF(MP_RANK .EQ. 0)THEN 

         CALL WRRRN (‘SOLUTIONS 1-2‘, X) 

!                                 Compute residuals and print 

      CALL SGEMM (‘N‘, ‘N‘, NRA, NUMEXC, NCA, 1.E0, A, LDA, X, LDX, & 

                 -1.E0, A(1:,(NCA+1):),LDA) 

      CALL WRRRN (‘RESIDUALS 1-2‘, A(1:,(NCA+1):)) 

      ENDIF 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

LSBRR 

 

 

 

Solves a linear least-squares problem with iterative refinement. 
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Required Arguments 

A — Real NRA by NCA matrix containing the coefficient matrix of the least-squares system to 

be solved.   (Input) 

B — Real vector of length NRA containing the right-hand side of the least-squares system.   

(Input) 

X — Real vector of length NCA containing the solution vector with components corresponding 

to the columns not used set to zero.   (Output) 

Optional Arguments 

NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 

Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

TOL — Real scalar containing the nonnegative tolerance used to determine the subset of 

columns of A to be included in the solution.   (Input)  

If TOL is zero, a full complement of min(NRA, NCA) columns is used. See Comments. 

Default: TOL = 0.0 

RES — Real vector of length NRA containing the residual vector B − AX.   (Output) 

KBASIS — Integer scalar containing the number of columns used in the solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL LSBRR (A, B, X [,…]) 

Specific: The specific interface names are S_LSBRR and D_LSBRR. 

FORTRAN 77 Interface 

Single: CALL LSBRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS) 

Double: The double precision name is DLSBRR. 
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Description 

Routine LSBRR solves the linear least-squares problem using iterative refinement. The iterative 

refinement algorithm is due to Björck (1967, 1968). It is also described by Golub and Van Loan 

(1983, pages 182−183). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2BRR/DL2BRR. The 

reference is: 

CALL L2BRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS, QR, BRRUX, 

 IPVT, WK) 

The additional arguments are as follows: 

QR — Work vector of length NRA * NCA representing an NRA by NCA matrix 

that contains information from the QR factorization of A. See LQRRR 

for details. 

BRRUX — Work vector of length NCA containing information about the 

orthogonal factor of the QR factorization of A. See LQRRR for details. 

IPVT — Integer work vector of length NCA containing the pivoting 

information for the QR factorization of A. See LQRRR for details. 

WK — Work vector of length NRA + 2 * NCA − 1. 

2. Informational error 

Type Code 

4 1 The data matrix is too ill-conditioned for iterative refinement to be 

effective. 

3. Routine LSBRR calculates the QR decomposition with pivoting of a matrix A and tests 

the diagonal elements against a user-supplied tolerance TOL. The first integer  

KBASIS = k is determined for which 

1, 1 11TOL*k kr r  
 

 In effect, this condition implies that a set of columns with a condition number 

approximately bounded by 1.0/TOL is used. Then, LQRSL performs a truncated fit of the 

first KBASIS columns of the permuted A to an input vector B. The coefficient of this fit 

is unscrambled to correspond to the original columns of A, and the coefficients 

corresponding to unused columns are set to zero. It may be helpful to scale the rows 

and columns of A so that the error estimates in the elements of the scaled matrix are 

roughly equal to TOL. The iterative refinement method of Björck is then applied to this 

factorization. 
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4. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2BRR the leading dimension of QR is increased by IVAL(3) 

when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSBRR. 

Additional memory allocation for QR and option value restoration are done 

automatically in LSBRR. Users directly calling L2BRR can allocate additional 

space for QR and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSBRR or L2BRR. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17 This option has two valuess that determine if the L1 condition number is to be 

computed. Routine LSBRR temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG 

skips this computation. LSBRR restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

Example 

This example solves the linear least-squares problem with A, an 8 × 4 matrix. Note that the second 

and fourth columns of A are identical. Routine LSBRR determines that there are three columns in 

the basis. 
 

      USE LSBRR_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      PARAMETER  (NRA=8, NCA=4, LDA=NRA) 

      REAL       A(LDA,NCA), B(NRA), X(NCA), RES(NRA), TOL 

! 

!                                 Set values for A 

! 

!                                 A = (  1    5    15    5  ) 

!                                     (  1    4    17    4  ) 

!                                     (  1    7    14    7  ) 

!                                     (  1    3    18    3  ) 

!                                     (  1    1    15    1  ) 

!                                     (  1    8    11    8  ) 

!                                     (  1    3     9    3  ) 

!                                     (  1    4    10    4  ) 

! 

      DATA A/8*1, 5., 4., 7., 3., 1., 8., 3., 4., 15., 17., 14., & 

        18., 15., 11., 9., 10., 5., 4., 7., 3., 1., 8., 3., 4. / 

! 

!                                 Set values for B 

! 

      DATA B/ 30., 31., 35., 29., 18., 35., 20., 22. / 

! 

!                                 Solve the least squares problem 
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      TOL = 1.0E-4 

      CALL LSBRR (A, B, X, TOL=TOL, RES=RES, KBASIS=KBASIS) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) ‘KBASIS = ‘, KBASIS 

      CALL WRRRN (‘X‘, X, 1, NCA, 1) 

      CALL WRRRN (‘RES‘, RES, 1, NRA, 1) 

! 

      END 

Output 
 

KBASIS =   3 

                X 

      1       2       3       4 

  0.636   2.845   1.058   0.000 

 

                               RES 

      1       2       3       4       5       6       7       8 

 -0.733   0.996  -0.365   0.783  -1.353  -0.036   1.306  -0.597 

LCLSQ 
Solves a linear least-squares problem with linear constraints. 

Required Arguments 

A — Matrix of dimension NRA by NCA containing the coefficients of the NRA least squares 

equations.   (Input) 

B — Vector of length NRA containing the right-hand sides of the least squares equations.   

(Input) 

C — Matrix of dimension NCON by NCA containing the coefficients of the NCON constraints.   

(Input)  

If NCON = 0, C is not referenced. 

BL — Vector of length NCON containing the lower limit of the general constraints.   (Input)  

If there is no lower limit on the I-th constraint, then BL(I) will not be referenced. 

BU — Vector of length NCON containing the upper limit of the general constraints.   (Input)  

If there is no upper limit on the I-th constraint, then BU(I) will not be referenced. If 

there is no range constraint, BL and BU can share the same storage locations. 

IRTYPE — Vector of length NCON indicating the type of constraints exclusive of simple 

bounds, where IRTYPE(I) = 0, 1, 2, 3 indicates .EQ., .LE., .GE., and range 

constraints respectively.   (Input) 

XLB — Vector of length NCA containing the lower bound on the variables.   (Input)  

If there is no lower bound on the I-th variable, then XLB(I) should be set to 1.0E30. 
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XUB — Vector of length NCA containing the upper bound on the variables.   (Input)  

If there is no upper bound on the I-th variable, then XUB(I) should be set −1.0E30. 

X — Vector of length NCA containing the approximate solution.   (Output) 

Optional Arguments 

NRA — Number of least-squares equations.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of variables.   (Input) 

Default: NCA = size (A,2). 

NCON — Number of constraints.   (Input) 

Default: NCON = size (C,1). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the 

calling program.   (Input)  

LDA must be at least NRA. 

Default: LDA = size (A,1). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 

program.   (Input)  

LDC must be at least NCON. 

Default: LDC = size (C,1). 

RES — Vector of length NRA containing the residuals B − AX of the least-squares equations at 

the approximate solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL LCLSQ (A, B, C, BL, BU, IRTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_LCLSQ and D_LCLSQ. 

FORTRAN 77 Interface 

Single: CALL LCLSQ (NRA, NCA, NCON, A, LDA, B, C, LDC, BL, BU, IRTYPE, XLB, XUB, 

X, RES) 

Double: The double precision name is DLCLSQ. 

Description 

The routine LCLSQ solves linear least-squares problems with linear constraints. These are systems 

of least-squares equations of the form Ax ≅ b 

subject to 
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bl ≤ Cx ≤ bu 

xl ≤ x ≤ xu 

Here, A is the coefficient matrix of the least-squares equations, b is the right-hand side, and C is 

the coefficient matrix of the constraints. The vectors bl, bu, xl and xu are the lower and upper 

bounds on the constraints and the variables, respectively. The system is solved by defining 

dependent variables y ≡ Cx and then solving the least squares system with the lower and upper 

bounds on x and y. The equation Cx − y = 0 is a set of equality constraints. These constraints are 

realized by heavy weighting, i.e. a penalty method, Hanson, (1986, pages 826−834). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2LSQ/DL2LSQ. The 

reference is: 

CALL L2LSQ (NRA, NCA, NCON, A, LDA, B, C, LDC, BL, BU, 

IRTYPE, XLB, XUB, X, RES, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length (NCON + MAXDIM) * (NCA + NCON + 1) + 10 

* NCA + 9 * NCON + 3. 

IWK — Integer work vector of length 3 * (NCON + NCA). 

2. Informational errors 

Type Code 

3 1 The rank determination tolerance is less than machine precision. 

4 2 The bounds on the variables are inconsistent. 

4 3 The constraint bounds are inconsistent. 

4 4 Maximum number of iterations exceeded. 

3. Integer Options with Chapter 11 Options Manager 

13 Debug output flag. If more detailed output is desired, set this option to the value 

1. Otherwise, set it to 0. Default value is 0. 

14 Maximum number of add/drop iterations. If the value of this option is zero, up to 

5 * max(nra, nca) iterations will be allowed. Otherwise set this option to the 

desired iteration limit. Default value is 0. 

4. Floating Point Options with Chapter 11 Options Manager 

2 The value of this option is the relative rank determination tolerance to be used. 

Default value is sqrt(AMACH (4)). 
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5 The value of this option is the absolute rank determination tolerance to be used. 

Default value is sqrt(AMACH (4)). 

Example 

A linear least-squares problem with linear constraints is solved. 
 

      USE LCLSQ_INT 

      USE UMACH_INT 

      USE SNRM2_INT 

! 

!     Solve the following in the least squares sense: 

!           3x1 + 2x2 +  x3 = 3.3 

!           4x1 + 2x2 +  x3 = 2.3 

!           2x1 + 2x2 +  x3 = 1.3 

!            x1 +  x2 +  x3 = 1.0 

! 

!     Subject to:  x1 + x2 + x3 <= 1 

!                  0 <= x1 <= .5 

!                  0 <= x2 <= .5 

!                  0 <= x3 <= .5 

! 

! ---------------------------------------------------------------------- 

!                                 Declaration of variables 

! 

      INTEGER     NRA, NCA, MCON, LDA, LDC 

      PARAMETER   (NRA=4, NCA=3, MCON=1, LDC=MCON, LDA=NRA) 

! 

      INTEGER     IRTYPE(MCON), NOUT 

      REAL        A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA), & 

                 RESNRM, XSOL(NCA), XLB(NCA), XUB(NCA) 

!                                 Data initialization! 

      DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, & 

            2.0E0, 2.0E0, 1.0E0, 1.0E0, 1.0E0, 1.0E0, 1.0E0/, & 

            B/3.3E0, 2.3E0, 1.3E0, 1.0E0/, & 

            C/3*1.0E0/, & 

            BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/ 

! 

!                                 Solve the bounded, constrained 

!                                 least squares problem. 

! 

      CALL LCLSQ (A, B, C, BC, BC, IRTYPE, XLB, XUB, XSOL, RES=RES) 

!                                 Compute the 2-norm of the residuals. 

      RESNRM = SNRM2 (NRA, RES, 1) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT, 999) XSOL, RES, RESNRM 

! 

 999  FORMAT (‘  The solution is ‘, 3F9.4, //, ‘  The residuals ‘, & 

            ‘evaluated at the solution are ‘, /, 18X, 4F9.4, //, & 

            ‘  The norm of the residual vector is ‘, F8.4) 

! 

      END 
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Output 
 

The solution is    0.5000   0.3000   0.2000 

The residuals evaluated at the solution are 

                   -1.0000   0.5000   0.5000   0.0000 

 

The norm of the residual vector is   1.2247 

LQRRR 

 

 

 

Computes the QR decomposition, AP = QR, using Householder transformations. 

Required Arguments 

A — Real NRA by NCA matrix containing the matrix whose QR factorization is to be 

computed.   (Input) 

QR — Real NRA by NCA matrix containing information required for the QR factorization.   

(Output)  

The upper trapezoidal part of QR contains the upper trapezoidal part of R with its 

diagonal elements ordered in decreasing magnitude. The strict lower trapezoidal part of 

QR contains information to recover the orthogonal matrix Q of the factorization. 

Arguments A and QR can occupy the same storage locations. In this case, A will not be 

preserved on output. 

QRAUX — Real vector of length NCA containing information about the orthogonal part of the 

decomposition in the first min(NRA, NCA) position. (Output) 

Optional Arguments 

NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 

Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

PIVOT — Logical variable.   (Input)  

PIVOT = .TRUE. means column pivoting is enforced. 

PIVOT = .FALSE. means column pivoting is not done. 

Default: PIVOT = .TRUE. 
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IPVT — Integer vector of length NCA containing information that controls the final order of 

the columns of the factored matrix A.   (Input/Output)  

On input, if IPVT(K) > 0, then the K-th column of A is an initial column. If IPVT(K) = 0, 

then the K-th column of A is a free column. If IPVT(K) < 0, then the K-th column of A is 

a final column. See Comments. 

On output, IPVT(K) contains the index of the column of A that has been interchanged 

into the K-th column. This defines the permutation matrix P. The array IPVT is 

referenced only if PIVOT is equal to .TRUE. 

Default: IPVT = 0. 

LDQR — Leading dimension of QR exactly as specified in the dimension statement of the 

calling program.   (Input) 

Default: LDQR = size (QR,1). 

CONORM — Real vector of length NCA containing the norms of the columns of the input 

matrix.   (Output) 

If this information is not needed, CONORM and QRAUX can share the same storage 

locations. 

FORTRAN 90 Interface 

Generic: CALL LQRRR (A, QR, QRAUX [,…]) 

Specific: The specific interface names are S_LQRRR and D_LQRRR. 

FORTRAN 77 Interface 

Single: CALL LQRRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX, CONORM) 

Double: The double precision name is DLQRRR. 

ScaLAPACK Interface 

Generic: CALL LQRRR (A0, QR0, QRAUX0 [,…]) 

Specific: The specific interface names are S_LQRRR and D_LQRRR. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

The routine LQRRR computes the QR decomposition of a matrix using Householder 

transformations. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK 

code depending upon which supporting libraries are used during linking. For a detailed 

explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction 

section of this manual. 
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LQRRR determines an orthogonal matrix Q, a permutation matrix P, and an upper trapezoidal 

matrix R with diagonal elements of nonincreasing magnitude, such that AP = QR. The 

Householder transformation for column k is of the form 

T
k k

k

u u
I

p


 

for k = 1, 2, …, min(NRA, NCA), where u has zeros in the first k − 1 positions. The matrix Q is not 

produced directly by LQRRR . Instead the information needed to reconstruct the Householder 

transformations is saved. If the matrix Q is needed explicitly, the subroutine LQERR can be called 

after LQRRR. This routine accumulates Q from its factored form. 

Before the decomposition is computed, initial columns are moved to the beginning of the array A 

and the final columns to the end. Both initial and final columns are frozen in place during the 

computation. Only free columns are pivoted. Pivoting, when requested, is done on the free 

columns of largest reduced norm. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2RRR/DL2RRR. The 

reference is: 

CALL L2RRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX, CONORM, 

 WORK) 

The additional argument is 

WORK — Work vector of length 2NCA − 1. Only NCA − 1 locations of WORK 

are referenced if PIVOT = .FALSE. . 

2. LQRRR determines an orthogonal matrix Q, permutation matrix P, and an upper 

trapezoidal matrix R with diagonal elements of nonincreasing magnitude, such that  

AP = QR. The Householder transformation for column k, k = 1, …, min(NRA, NCA) is of 

the form 

1 T
kI u uu

 

where u has zeros in the first k − 1 positions. If the explicit matrix Q is needed, the 

user can call routine LQERR after calling LQRRR. This routine accumulates Q from its 

factored form. 

3. Before the decomposition is computed, initial columns are moved to the beginning and 

the final columns to the end of the array A. Both initial and final columns are not 

moved during the computation. Only free columns are moved. Pivoting, if requested, is 

done on the free columns of largest reduced norm. 

4. When pivoting has been selected by having entries of IPVT initialized to zero, an 

estimate of the condition number of A can be obtained from the output by computing 

the magnitude of the number QR(1, 1)/QR(K, K), where K = MIN(NRA, NCA). This 
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estimate can be used to select the number of columns, KBASIS, used in the solution 

step computed with routine LQRSL. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A.  

A contains the matrix whose QR factorization is to be computed.   (Input)  

QR0 — MXLDA by MXCOL local matrix containing the local portions of the distributed    

matrix  QR.  QR contains the information required for the QR factorization.   (Output)  

The upper trapezoidal part of QR contains the upper trapezoidal part of R with its 

diagonal elements ordered in decreasing magnitude. The strict lower trapezoidal part of 

QR contains information to recover the orthogonal matrix Q of the factorization. 

Arguments A and QR can occupy the same storage locations. In this case, A will not be 

preserved on output. 

QRAUX0 — Real vector of length MXCOL containing the local portions of the distributed  

matrix  QRAUX.  QRAUX contains information about the orthogonal part of the 

decomposition in the first MIN(NRA, NCA) position. (Output) 

IPVT0 — Integer vector of length MXLDB containing the local portions of the distributed 

vector  IPVT.  IPVT contains the information that controls the final order of the 

columns of the factored matrix A.   (Input/Output)  

On input, if IPVT(K) > 0, then the K-th column of A is an initial column. If IPVT(K) = 0, 

then the K-th column of A is a free column. If IPVT(K) < 0, then the K-th column of A is 

a final column. See Comments. 

On output, IPVT(K) contains the index of the column of A that has been interchanged 

into the K-th column. This defines the permutation matrix P. The array IPVT is 

referenced only if PIVOT is equal to .TRUE. 

Default: IPVT = 0. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above, MXLDA, MXLDB, and MXCOL can be obtained through a 

call to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has 

been made. See the ScaLAPACK Example below. 

Example 

In various statistical algorithms it is necessary to compute q = x
T
(A

T 
A) -

1
x, where A is a 

rectangular matrix of full column rank. By using the QR decomposition, q can be computed 

without forming A
T
A. Note that 

A
T 

A = (QRP-1
)
T 

(QRP-1
) = P-T R

T 
(Q

T 
Q)RP-1

 = P R
T 

RP
T
 

since Q is orthogonal (Q
T
Q = I) and P is a permutation matrix. Let 
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1

0

T R
Q AP R

 
   

   

where R1 is an upper triangular nonsingular matrix. Then 

 
1

1 1 1 2
1 1 1 2

T T T T Tx A A x x PR R P x R P x


     
 

In the following program, first the vector t = P-1
 x is computed. Then  

1: Tt R t
 

Finally,  

2
q t

 
 

      USE IMSL_LIBRARIES 

!                                 Declare variables 

      INTEGER    LDA, LDQR, NCA, NRA 

      PARAMETER  (NCA=3, NRA=4, LDA=NRA, LDQR=NRA) 

!                                 SPECIFICATIONS FOR PARAMETERS 

      INTEGER    LDQ 

      PARAMETER  (LDQ=NRA) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    IPVT(NCA), NOUT 

      REAL       CONORM(NCA), Q, QR(LDQR,NCA), QRAUX(NCA), T(NCA) 

      LOGICAL    PIVOT 

      REAL       A(LDA,NCA), X(NCA) 

! 

!                                 Set values for A 

! 

!                                 A = (  1    2     4   ) 

!                                     (  1    4    16   ) 

!                                     (  1    6    36   ) 

!                                     (  1    8    64   ) 

! 

      DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/ 

! 

!                                 Set values for X 

! 

!                                 X = (  1    2     3  ) 

      DATA X/1.0, 2.0, 3.0/ 

! 

!                                 QR factorization 

      PIVOT = .TRUE. 

      IPVT=0 

      CALL LQRRR (A, QR, QRAUX, PIVOT=PIVOT, IPVT=IPVT) 

!                                 Set t = inv(P)*x 

      CALL PERMU (X, IPVT, T, IPATH=1) 

!                                 Compute t = inv(trans(R))*t 

      CALL LSLRT (QR, T, T, IPATH=4) 

!                                 Compute 2-norm of t, squared. 

      Q = SDOT(NCA,T,1,T,1) 

!                                 Print result 

      CALL UMACH (2, NOUT) 
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      WRITE (NOUT,*) ‘Q = ‘, Q 

! 

      END 

Output 
 

Q =    0.840624 

ScaLAPACK Example 

The previous example is repeated here as a distributed computing example. In various statistical 

algorithms it is necessary to compute q = x
T
(A

T 
A) -

1
x, where A is a rectangular matrix of full 

column rank. By using the QR decomposition, q can be computed without forming A
T 

A. Note that 

A
T 

A = (QRP-1
)
T 

(QRP-1
) = P-

T R
T 

(Q
T 

Q)RP-1
 = P R

T 
RP

T
 

since Q is orthogonal (Q
T
Q = I) and P is a permutation matrix. Let 

1

0

T R
Q AP R

 
   

   

where R1 is an upper triangular nonsingular matrix. Then 

 
1

1 1 1 2
1 1 1 2

T T T T Tx A A x x PR R P x R P x


     
 

In the following program, first the vector t = P-1
 x is computed. Then  

1: Tt R t
 

 

Finally,  

2
q t

 

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map 

and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a 

ScaLAPACK tools routine which initializes the descriptors for the local arrays.  
 

      USE MPI_SETUP_INT 

      USE LQRRR_INT 

      USE PERMU_INT 

      USE LSLRT_INT 

      USE UMACH_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  LDA, LDQR, NCA, NRA, DESCA(9), DESCB(9), DESCL(9) 

      INTEGER       INFO, MXCOL, MXLDA, MXLDB, MXCOLB, NOUT 

      INTEGER, ALLOCATABLE ::     IPVT(:), IPVT0(:) 

      LOGICAL       PIVOT 
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      REAL          Q 

      REAL, ALLOCATABLE ::        A(:,:), X(:), T(:) 

      REAL, ALLOCATABLE ::        A0(:,:), T0(:), QR0(:,:), QRAUX0(:) 

      REAL, (KIND(1E0))SDOT 

      PARAMETER   (NRA=4, NCA=3, LDA=NRA, LDQR=NRA) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,NCA), X(NCA), T(NCA), IPVT(NCA)) 

!                                 Set values for A and the righthand side 

          A(1,:) = (/ 1.0,  2.0,   4.0/) 

          A(2,:) = (/ 1.0,  4.0,  16.0/) 

          A(3,:) = (/ 1.0,  6.0,  36.0/) 

          A(4,:) = (/ 1.0,  8.0,  64.0/) 

! 

          X      = (/ 1.0,  2.0,   3.0/) 

! 

          IPVT = 0 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(NRA, NCA, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  MXCOL, MXLDB, MXCOLB 

      CALL SCALAPACK_GETDIM(NRA, NCA, MP_MB, MP_NB, MXLDA, MXCOL) 

      CALL SCALAPACK_GETDIM(NCA, 1, MP_NB, 1, MXLDB, MXCOLB) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, NRA, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, & 

      INFO) 

      CALL DESCINIT(DESCL, 1, NCA, 1, MP_NB, 0, 0, MP_ICTXT, 1, INFO) 

      CALL DESCINIT(DESCB, NCA, 1, MP_NB, 1, 0, 0, MP_ICTXT, MXLDB, & 

      INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), QR0(MXLDA,MXCOL), QRAUX0(MXCOL), & 

                IPVT0(MXCOL), T0(MXLDB)) 

!                                 Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      PIVOT = .TRUE. 

 

      CALL SCALAPACK_MAP(IPVT, DESCL, IPVT0) 

!                                 QR factorization 

      CALL LQRRR (A0, QR0, QRAUX0, PIVOT=PIVOT, IPVT=IPVT0) 

!                                 Unmap the results from the distributed 

!                                 array back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(IPVT0, DESCL, IPVT, NCA, .FALSE.) 

      IF(MP_RANK .EQ. 0) CALL PERMU (X, IPVT, T, IPATH=1) 

      CALL SCALAPACK_MAP(T, DESCB, T0) 

      CALL LSLRT (QR0, T0, T0, IPATH=4) 

      CALL SCALAPACK_UNMAP(T0, DESCB, T) 

!                                Print results. 

!                                Only Rank=0 has the solution. 

      IF(MP_RANK .EQ. 0)THEN 

         Q = SDOT(NCA, T, 1, T, 1) 

         CALL UMACH (2, NOUT) 

         WRITE (NOUT, *) ‗Q = ‗, Q 
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      ENDIF 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

Q =    0.840624 

LQERR 

 

 

 

Accumulates the orthogonal matrix Q from its factored form given the QR factorization of a 

rectangular matrix A. 

Required Arguments 

QR — Real NRQR by NCQR matrix containing the factored form of the matrix Q in the first 

min(NRQR, NCQR) columns of the strict lower trapezoidal part of QR as output from 

subroutine LQRRR/DLQRRR.   (Input) 

QRAUX — Real vector of length NCQR containing information about the orthogonal part of 

the decomposition in the first min(NRQR, NCQR) position as output from routine 

LQRRR/DLQRRR.   (Input) 

Q — Real NRQR by NRQR matrix containing the accumulated orthogonal matrix Q; Q and QR 

can share the same storage locations if QR is not needed.   (Output) 

Optional Arguments 

NRQR — Number of rows in QR.   (Input) 

Default: NRQR = size (QR,1). 

NCQR — Number of columns in QR.   (Input) 

Default: NCQR = size (QR,2). 

LDQR — Leading dimension of QR exactly as specified in the dimension statement of the 

calling program.   (Input) 

Default: LDQR = size (QR,1). 
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LDQ — Leading dimension of Q exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDQ = size (Q,1). 

FORTRAN 90 Interface 

Generic: CALL LQERR (QR, QRAUX, Q [,…]) 

Specific: The specific interface names are S_LQERR and D_LQERR. 

FORTRAN 77 Interface 

Single: CALL LQERR (NRQR,  NCQR, QR, LDQR, QRAUX, Q, LDQ) 

Double:  The double precision name is DLQERR. 

ScaLAPACK Interface 

Generic: CALL LQERR (QR0, QRAUX0, Q0 [,…]) 

Specific: The specific interface names are S_LQERR and D_LQERR. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

The routine LQERR accumulates the Householder transformations computed by IMSL routine 

LQRRR to produce the orthogonal matrix Q. 

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending 

upon which supporting libraries are used during linking. For a detailed explanation see ―Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2ERR/DL2ERR. The 

reference is: 

CALL L2ERR (NRQR, NCQR, QR, LDQR, QRAUX, Q, LDQ, WK) 

The additional argument is 

WK — Work vector of length 2 * NRQR. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 
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QR0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed    

matrix  QR.  QR  contains the factored form of the matrix Q in the first min(NRQR, NCQR) 

columns of the strict lower trapezoidal part of QR as output from subroutine 

LQRRR/DLQRRR.   (Input) 

QRAUX0 —   Real vector of length MXCOL containing the local portions of the  

 distributed  matrix  QRAUX.  QRAUX  contains the information about the  

 orthogonal part of the decomposition in the first min(NRA, NCA) positions as 

 output from subroutine LQRRR/DLQRRR.   (Input) 

Q0 —   MXLDA by MXLDA local matrix containing the local portions of the distributed matrix 

Q.  Q contains the accumulated orthogonal matrix ; Q and QR can share the same storage 

locations if QR is not needed.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call 

to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been 

made. See the ScaLAPACK Example below. 

Example 

In this example, the orthogonal matrix Q in the QR decomposition of a matrix A is computed. The 

product X = QR is also computed. Note that X can be obtained from A by reordering the columns 

of A according to IPVT. 
 

      USE IMSL_LIBRARIES 

!                                 Declare variables 

      INTEGER    LDA, LDQ, LDQR, NCA, NRA 

      PARAMETER  (NCA=3, NRA=4, LDA=NRA, LDQ=NRA, LDQR=NRA) 

! 

      INTEGER    IPVT(NCA), J 

      REAL       A(LDA,NCA), CONORM(NCA), Q(LDQ,NRA), QR(LDQR,NCA), & 

                 QRAUX(NCA), R(NRA,NCA), X(NRA,NCA) 

      LOGICAL    PIVOT 

! 

!                                 Set values for A 

! 

!                                 A = (  1    2     4   ) 

!                                     (  1    4    16   ) 

!                                     (  1    6    36   ) 

!                                     (  1    8    64   ) 

! 

      DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/ 

! 

!                                 QR factorization 

!                                 Set IPVT = 0 (all columns free) 

      IPVT = 0 

      PIVOT = .TRUE. 

      CALL LQRRR (A, QR, QRAUX, IPVT=IPVT, PIVOT=PIVOT) 

!                                 Accumulate Q 

      CALL LQERR (QR, QRAUX, Q) 

!                                 R is the upper trapezoidal part of QR 
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      R = 0.0E0 

      DO 10  J=1, NCA 

         CALL SCOPY (J, QR(:,J), 1, R(:,J), 1) 

   10 CONTINUE 

!                                 Compute X = Q*R 

      CALL MRRRR (Q, R, X) 

!                                 Print results 

      CALL WRIRN (‘IPVT‘, IPVT, 1, NCA, 1) 

      CALL WRRRN (‘Q‘, Q) 

      CALL WRRRN (‘R‘, R) 

      CALL WRRRN (‘X = Q*R‘, X) 

! 

      END 

Output 
 

   IPVT 

 1   2   3 

 3   2   1 

                   Q 

         1        2        3        4 

1  -0.0531  -0.5422   0.8082  -0.2236 

2  -0.2126  -0.6574  -0.2694   0.6708 

3  -0.4783  -0.3458  -0.4490  -0.6708 

4  -0.8504   0.3928   0.2694   0.2236 

 

             R 

        1       2       3 

1  -75.26  -10.63   -1.59 

2    0.00   -2.65   -1.15 

3    0.00    0.00    0.36 

4    0.00    0.00    0.00 

 

          X = Q*R 

        1       2       3 

1    4.00    2.00    1.00 

2   16.00    4.00    1.00 

3   36.00    6.00    1.00 

4   64.00    8.00    1.00 

ScaLAPACK Example 

In this example, the orthogonal matrix Q in the QR decomposition of a matrix A is computed. 

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map 

and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a 

ScaLAPACK tools routine which initializes the descriptors for the local arrays.  
 

      USE MPI_SETUP_INT 

      USE LQRRR_INT 

      USE LQERR_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 
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      INTEGER  LDA, LDQR, NCA, NRA, DESCA(9), DESCL(9), DESCQ(9) 

      INTEGER       INFO, MXCOL, MXLDA, LDQ 

      INTEGER, ALLOCATABLE ::     IPVT(:), IPVT0(:) 

      LOGICAL       PIVOT 

      REAL, ALLOCATABLE ::        A(:,:), QR(:,:), Q(:,:), QRAUX(:) 

      REAL, ALLOCATABLE ::        A0(:,:), QR0(:,:), Q0(:,:), QRAUX0(:) 

      PARAMETER   (NRA=4, NCA=3, LDA=NRA, LDQR=NRA, LDQ=NRA) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(NRA,NCA), Q(NRA,NRA), QR(NRA,NCA), & 

          QRAUX(NCA), IPVT(NCA)) 

!                                 Set values for A and the righthand sides 

          A(1,:) = (/ 1.0,  2.0,   4.0/) 

          A(2,:) = (/ 1.0,  4.0,  16.0/) 

          A(3,:) = (/ 1.0,  6.0,  36.0/) 

          A(4,:) = (/ 1.0,  8.0,  64.0/) 

! 

          IPVT = 0 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(NRA, NCA, .FALSE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(NRA, NCA, MP_MB, MP_NB, MXLDA, MXCOL) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, NRA, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, & 

      INFO) 

      CALL DESCINIT(DESCL, 1, NCA, 1, MP_NB, 0, 0, MP_ICTXT, 1, INFO) 

      CALL DESCINIT(DESCQ, NRA, NRA, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, & 

      INFO) 

!       Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), QR0(MXLDA,MXCOL), QRAUX0(MXCOL), & 

                IPVT0(MXCOL), Q0(MXLDA,MXLDA)) 

!                                 Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

      PIVOT = .TRUE. 

 

      CALL SCALAPACK_MAP(IPVT, DESCL, IPVT0) 

!                                 QR factorization 

      CALL LQRRR (A0, QR0, QRAUX0, PIVOT=PIVOT, IPVT=IPVT0) 

      CALL LQERR (QR0, QRAUX0, Q0) 

!                                 Unmap the results from the distributed 

!                                 array back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(Q0, DESCQ, Q) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, Q. 

      IF(MP_RANK .EQ. 0) CALL WRRRN (‘Q‘, Q) 

!                                Exit Scalapack usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 
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LQRSL 

 

 

 

Computes the coordinate transformation, projection, and complete the solution of the least-squares 

problem Ax = b. 

Required Arguments 

KBASIS — Number of columns of the submatrix Ak of A.   (Input)  

The value KBASIS must not exceed min(NRA, NCA), where NCA is the number of 

columns in matrix A. The value NCA is an argument to routine LQRRR. The value of 

KBASIS is normally NCA unless the matrix is rank-deficient. The user must analyze the 

problem data and determine the value of KBASIS. See Comments. 

QR — NRA by NCA array containing information about the QR factorization of A as output 

from routine LQRRR/DLQRRR.   (Input) 

QRAUX — Vector of length NCA containing information about the QR factorization of A as 

output from routine LQRRR/DLQRRR.   (Input) 

B — Vector b of length NRA to be manipulated.   (Input) 

IPATH — Option parameter specifying what is to be computed.   (Input)  

The value IPATH has the decimal expansion IJKLM, such that: 

I ≠ 0 means compute Qb; 

J ≠ 0 means compute Q
T
b; 

K ≠ 0 means compute Q
T
b and x; 

L ≠ 0 means compute Q
T
b and b − Ax; 

M ≠ 0 means compute Q
T
b and Ax. 

 For example, if the decimal number IPATH = 01101, then I = 0, J = 1, K = 1,  

L= 0, and M= 1. 

Optional Arguments 

NRA — Number of rows of matrix A.   (Input) 

Default: NRA = size (QR,1). 

LDQR — Leading dimension of QR exactly as specified in the dimension statement of the 

calling program.   (Input) 

Default: LDQR = size (QR,1). 

QB — Vector of length NRA containing Qb if requested in the option IPATH.   (Output) 
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QTB — Vector of length NRA containing Q
T
b if requested in the option IPATH.   (Output) 

X — Vector of length KBASIS containing the solution of the least-squares problem Akx = b, if 

this is requested in the option IPATH.   (Output)  

If pivoting was requested in routine LQRRR/DLQRRR, then the J-th entry of X will be 

associated with column IPVT(J) of the original matrix A. See Comments. 

RES — Vector of length NRA containing the residuals (b − Ax) of the least-squares problem if 

requested in the option IPATH.   (Output)  

This vector is the orthogonal projection of b onto the orthogonal complement of the 

column space of A. 

AX — Vector of length NRA containing the least-squares approximation Ax if requested in the 

option IPATH.   (Output)  

This vector is the orthogonal projection of b onto the column space of A. 

FORTRAN 90 Interface 

Generic: CALL LQRSL (KBASIS, QR, QRAUX, B, IPATH [,…]) 

Specific: The specific interface names are S_LQRSL and D_LQRSL. 

FORTRAN 77 Interface 

Single: CALL LQRSL (NRA, KBASIS, QR, LDQR, QRAUX, B, IPATH, QB, QTB, X, RES, 
AX) 

Double:  The double precision name is DLQRSL. 

ScaLAPACK Interface 

Generic: CALL LQRSL (KBASIS, QR0, QRAUX0, B0, IPATH [,…]) 

Specific: The specific interface names are S_LQRSL and D_LQRSL. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

The underlying code of routine LQRSL is based on either LINPACK , LAPACK, or ScaLAPACK 

code depending upon which supporting libraries are used during linking. For a detailed 

explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction 

section of this manual. 

The most important use of LQRSL is for solving the least-squares problem Ax = b, with coefficient 

matrix A and data vector b. This problem can be formulated, using the normal equations method, 

as A
T 

Ax = A
T 

b. Using LQRRR the QR decomposition of A, AP = QR, is computed. Here P is a 
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permutation matrix (P = P), Q is an orthogonal matrix (Q = Q
T
) and R is an upper trapezoidal 

matrix. The normal equations can then be written as 

(PR
T
)(Q

T
Q)R(P

T
x) = (PR

T
)Q

T 
b 

If A
T
A is nonsingular, then R is also nonsingular and the normal equations can be written as  

R(P
T
x) = Q

T 
b. LQRSL can be used to compute Q

T 
b and then solve for P

T 
x. Note that the permuted 

solution is returned. 

The routine LQRSL can also be used to compute the least-squares residual, b − Ax. This is the 

projection of b onto the orthogonal complement of the column space of A. It can also compute Qb, 

Q
T
b and Ax, the orthogonal projection of x onto the column space of A. 

Comments 

1. Informational error 

Type Code 

4 1 Computation of the least-squares solution of AK * X = B is requested, 

but the upper triangular matrix R from the QR factorization is 

singular. 

2. This routine is designed to be used together with LQRRR. It assumes that LQRRR/DLQRR 

has been called to get QR, QRAUX and IPVT. The submatrix Ak mentioned above is 

actually equal to Ak = (A(IPVT(1)), A(IPVT(2)), …, A(IPVT (KBASIS))), where 

A(IPVT(I)) is the IPVT(I)-th column of the original matrix. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

QR0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed    

matrix  QR.  QR  contains the factored form of the matrix Q in the first min(NRQR, NCQR) 

columns of the strict lower trapezoidal part of QR as output from subroutine 

LQRRR/DLQRRR.   (Input) 

QRAUX0 —   Real vector of length MXCOL containing the local portions of the distributed  

matrix  QRAUX.  QRAUX  contains the information about the orthogonal part of the 

decomposition in the first min(NRA, NCA) positions as output from subroutine 

LQRRR/DLQRRR.   (Input) 

B0 —   Real vector of length MXLDA containing the local portions of the distributed  vector B.  

B contains the vector to be manipulated.   (Input) 

QB0 — Real vector of length MXLDA containing the local portions of the distributed  vector 

Qb if requested in the option IPATH.   (Output) 

QTB0 — Real vector of length MXLDA containing the local portions of the distributed  vector 

Q
T
b if requested in the option IPATH.   (Output) 
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X0 — Real vector of length MXLDX containing the local portions of the distributed vector X. X 

contains the solution of the least-squares problem Akx = b, if this is requested in the 

option IPATH.   (Output)  

If pivoting was requested in routine LQRRR/DLQRRR, then the J-th entry of X will be 

associated with column IPVT(J) of the original matrix A. See Comments. 

RES0 — Real vector of length MXLDA containing the local portions of the distributed  vector 

RES. RES contains the residuals (b − Ax) of the least-squares problem if requested in 

the option IPATH.   (Output)  

This vector is the orthogonal projection of b onto the orthogonal complement of the 

column space of A. 

AX0 — Real vector of length MXLDA containing the local portions of the distributed  vector 

AX. AX contains the least-squares approximation Ax if requested in the option IPATH.   

(Output)  

This vector is the orthogonal projection of b onto the column space of A. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA, MXLDX and MXCOL can be obtained through 

a call to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has 

been made. See the ScaLAPACK Example below. 

Example 

Consider the problem of finding the coefficients ci in 

f(x) = c0 + c1x + c2x2 

given data at xi = 2i,i = 1, 2, 3, 4, using the method of least squares. The row of the matrix A 

contains the value of 1, xi and 

2
ix

 

at the data points. The vector b contains the data. The routine LQRRR is used to compute the QR 

decomposition of A. Then LQRSL is then used to solve the least-squares problem and compute the 

residual vector. 
 

      USE IMSL_LIBRARIES 

!                                 Declare variables 

      PARAMETER  (NRA=4, NCA=3, KBASIS=3, LDA=NRA, LDQR=NRA) 

      INTEGER    IPVT(NCA) 

      REAL       A(LDA,NCA), QR(LDQR,NCA), QRAUX(NCA), CONORM(NCA), & 

                 X(KBASIS), QB(1), QTB(NRA), RES(NRA), & 

                 AX(1), B(NRA) 

      LOGICAL    PIVOT 

! 

!                                 Set values for A 

! 

!                                 A = (  1    2     4   ) 

!                                     (  1    4    16   ) 

!                                     (  1    6    36   ) 

!                                     (  1    8    64   ) 
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! 

      DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/ 

! 

!                                 Set values for B 

! 

!                                 B = ( 16.99  57.01  120.99  209.01 ) 

      DATA B/ 16.99,  57.01,  120.99,  209.01 / 

! 

!                                 QR factorization 

      PIVOT = .TRUE. 

      IPVT = 0 

      CALL LQRRR (A, QR, QRAUX, PIVOT=PIVOT, IPVT=IPVT) 

!                                 Solve the least squares problem 

      IPATH = 00110 

      CALL LQRSL (KBASIS, QR, QRAUX, B, IPATH, X=X, RES=RES) 

!                                 Print results 

      CALL WRIRN (‘IPVT‘, IPVT, 1, NCA, 1) 

      CALL WRRRN (‘X‘, X, 1, KBASIS, 1) 

      CALL WRRRN (‘RES‘, RES, 1, NRA, 1) 

! 

      END 

Output 
 

   IPVT 

 1   2   3 

 3   2   1 

 

           X 

    1       2       3 

3.000   2.002   0.990 

 

                   RES 

       1         2         3         4 

-0.00400   0.01200  -0.01200   0.00400 

 

Note that since IPVT is (3, 2, 1) the array X contains the solution coefficients ci in reverse order. 

ScaLAPACK Example 

The previous example is repeated here as a distributed example. Consider the problem of finding 

the coefficients ci in 

f(x) = c0 + c1x + c2x2 

given data at xi = 2i, i = 1, 2, 3, 4, using the method of least squares. The row of the matrix A 

contains the value of 1, xi and 

2
ix

 

at the data points. The vector b contains the data. The routine LQRRR is used to compute the QR 

decomposition of A. Then LQRSL is then used to solve the least-squares problem and compute the 

residual vector. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines  

(see Utilities) used to map and unmap arrays to and from the processor grid. They are used here 
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for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the 

local arrays.  
 

      USE MPI_SETUP_INT 

      USE LQRRR_INT 

      USE LQRSL_INT 

      USE WRIRN_INT 

      USE WRRRN_INT 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  KBASIS, LDA, LDQR, NCA, NRA, DESCA(9), DESCL(9), & 

                    DESCX(9), DESCB(9) 

      INTEGER       INFO, MXCOL, MXCOLX, MXLDA, MXLDX, LDQ, IPATH 

      INTEGER, ALLOCATABLE ::     IPVT(:), IPVT0(:) 

      REAL, ALLOCATABLE ::        A(:,:), B(:), QR(:,:), QRAUX(:), X(:), & 

                                  RES(:) 

      REAL, ALLOCATABLE ::        A0(:,:), QR0(:,:), QRAUX0(:), X0(:), & 

                                  RES0(:), B0(:), QTB0(:) 

      LOGICAL        PIVOT 

      PARAMETER   (NRA=4, NCA=3, LDA=NRA, LDQR=NRA, KBASIS=3) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,NCA), B(NRA), QR(LDQR,NCA), & 

          QRAUX(NCA), IPVT(NCA), X(NCA), RES(NRA)) 

!                                 Set values for A and the righthand sides 

          A(1,:) = (/ 1.0,  2.0,   4.0/) 

          A(2,:) = (/ 1.0,  4.0,  16.0/) 

          A(3,:) = (/ 1.0,  6.0,  36.0/) 

          A(4,:) = (/ 1.0,  8.0,  64.0/) 

! 

          B      = (/ 16.99, 57.01, 120.99, 209.01 /) 

! 

          IPVT = 0 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(NRA, NCA, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  and MXCOL 

      CALL SCALAPACK_GETDIM(NRA, NCA, MP_MB, MP_NB, MXLDA, MXCOL) 

      CALL SCALAPACK_GETDIM(KBASIS, 1, MP_NB, 1, MXLDX, MXCOLX) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, NRA, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, &            

         MXLDA,INFO) 

      CALL DESCINIT(DESCL, 1, NCA, 1, MP_NB, 0, 0, MP_ICTXT, 1, INFO) 

      CALL DESCINIT(DESCX, KBASIS, 1, MP_NB, 1, 0, 0, MP_ICTXT, MXLDX, INFO) 

      CALL DESCINIT(DESCB, NRA, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO) 

!       Allocate space for the local arrays 

ALLOCATE (A0(MXLDA,MXCOL), QR0(MXLDA,MXCOL), QRAUX0(MXCOL), & 

IPVT0(MXCOL), B0(MXLDA), X0(MXLDX), RES0(MXLDA), QTB0(MXLDA)) 

!                                 Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 



 

 

IMSL MATH LIBRARY Chapter 1: Linear Systems  489 

     

     

 

      CALL SCALAPACK_MAP(B, DESCB, B0) 

      PIVOT = .TRUE. 

      CALL SCALAPACK_MAP(IPVT, DESCL, IPVT0) 

!                                 QR factorization 

      CALL LQRRR (A0, QR0, QRAUX0, PIVOT=PIVOT, IPVT=IPVT0) 

      IPATH = 00110 

      CALL LQRSL (KBASIS, QR0, QRAUX0, B0, IPATH, QTB=QTB0, X=X0, RES=RES0) 

!                                 Unmap the results from the distributed 

!                                 array back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(IPVT0, DESCL, IPVT, NCA, .FALSE.) 

      CALL SCALAPACK_UNMAP(X0, DESCX, X) 

      CALL SCALAPACK_UNMAP(RES0, DESCB, RES) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, X. 

      IF(MP_RANK .EQ. 0) THEN 

         CALL WRIRN (‘IPVT‘, IPVT, 1, NCA, 1) 

         CALL WRRRN (‘X‘, X, 1, KBASIS, 1) 

         CALL WRRRN (‘RES‘, RES, 1, NRA, 1) 

      ENDIF 

 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

   IPVT 

 1   2   3 

 3   2   1 

 

           X 

    1       2       3 

3.000   2.002   0.990 

 

                   RES 

       1         2         3         4 

-0.00400   0.01200  -0.01200   0.00400 

 

Note that since IPVT is (3, 2, 1) the array X contains the solution coefficients ci in reverse order. 

LUPQR 

Computes an updated QR factorization after the rank-one matrix  xy
T
 is added. 

Required Arguments 

ALPHA — Scalar determining the rank-one update to be added.   (Input) 
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W — Vector of length NROW determining the rank-one matrix to be added.   (Input)  

The updated matrix is A + xy
T
. If I = 0 then W contains the vector x. If I = 1 then W 

contains the vector Q
T
x. 

Y — Vector of length NCOL determining the rank-one matrix to be added.   (Input) 

R — Matrix of order NROW by NCOL containing the R matrix from the QR factorization.   

(Input)  

Only the upper trapezoidal part of R is referenced. 

IPATH — Flag used to control the computation of the QR update.   (Input)  

IPATH has the decimal expansion IJ such that: I = 0 means W contains the vector x. 

I= 1 means W contains the vector Q
T
x.  

J = 0 means do not update the matrix Q. J = 1 means update the matrix Q. For example, 

if IPATH = 10 then, I = 1 and J = 0. 

RNEW — Matrix of order NROW by NCOL containing the updated R matrix in the QR 

factorization.   (Output)  

Only the upper trapezoidal part of RNEW is updated. R and RNEW may be the same. 

Optional Arguments 

NROW — Number of rows in the matrix A = Q * R.   (Input) 

Default: NROW = size (W,1). 

NCOL — Number of columns in the matrix A = Q * R.   (Input) 

 Default: NCOL = size (Y,1). 

Q — Matrix of order NROW containing the Q matrix from the QR factorization.   (Input)  

Ignored if IPATH = 0. 

Default: Q is 1x1 and un-initialized. 

LDQ — Leading dimension of Q exactly as specified in the dimension statement of the calling 

program.   (Input)  

Ignored if IPATH = 0. 

Default: LDQ = size (Q,1). 

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDR = size (R,1). 

QNEW — Matrix of order NROW containing the updated Q matrix in the QR factorization.   

(Output)  

Ignored if J = 0, see IPATH for definition of J. 

LDQNEW — Leading dimension of QNEW exactly as specified in the dimension statement of 

the calling program.   (Input)  
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Ignored if J = 0; see IPATH for definition of J. 

Default: LDQNEW = size (QNEW,1). 

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDRNEW = size (RNEW,1). 

FORTRAN 90 Interface 

Generic: CALL LUPQR (ALPHA, W, Y, R, IPATH, RNEW [,…]) 

Specific: The specific interface names are S_LUPQR and D_LUPQR. 

FORTRAN 77 Interface 

Single: CALL LUPQR (NROW, NCOL, ALPHA, W, Y, Q, LDQ, R, LDR, IPATH, QNEW, 

LDQNEW, RNEW, LDRNEW) 

Double:  The double precision name is DLUPQR. 

Description 

Let A be an m × n matrix and let A = QR be its QR decomposition. (In the program, m is called 

NROW and n is called NCOL) Then 

A + αxy
T
 = QR + αxy

T
 = Q(R + αQ

T
xy

T
) = Q(R + αwy

T
) 

where w = Q
T 

x. An orthogonal transformation J can be constructed, using a sequence of m − 1 

Givens rotations, such that Jw = ωe1, where ω = ±||w||2 and e1 = (1, 0, …, 0)
T
. Then 

A + αxy
T
 = (QJ

T
 )(JR + αωe1y

T
) 

Since JR is an upper Hessenberg matrix, H = JR + αωe1y
T
 is also an upper Hessenberg matrix. 

Again using m − 1 Givens rotations, an orthogonal transformation G can be constructed such that 

GH is an upper triangular matrix. Then  

, where T T TA xy QR Q QJ G  
 

is orthogonal and 

R GH  

is upper triangular.  

If the last k components of w are zero, then the number of Givens rotations needed to construct  

J or G is m − k − 1 instead of m − 1. 

For further information, see Dennis and Schnabel (1983, pages 55− 58 and 311−313), or Golub 

and Van Loan (1983, pages 437− 439). 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of L2PQR/DL2PQR. The 

reference is: 

CALL L2PQR (NROW, NCOL, ALPHA, W, Y, Q, LDQ, R, LDR, IPATH, QNEW, 

LDQNEW, RNEW, LDRNEW, Z, WORK) 

The additional arguments are as follows: 

Z — Work vector of length NROW. 

WORK — Work vector of length MIN(NROW − 1, NCOL). 

Example 

The QR factorization of A is found. It is then used to find the QR factorization of A + xy
T
. Since 

pivoting is used, the QR factorization routine finds AP = QR, where P is a permutation matrix 

determined by IPVT. We compute 

  TTAP xy A x Py P QR    
 

The IMSL routine PERMU (see Utilities) is used to compute Py. As a check 

QR
 

is computed and printed. It can also be obtained from A + xy
T
 by permuting its columns using the 

order given by IPVT. 
 

      USE IMSL_LIBRARIES 

!                                 Declare variables 

      INTEGER    LDA, LDAQR, LDQ, LDQNEW, LDQR, LDR, LDRNEW, NCOL, NROW 

      PARAMETER  (NCOL=3, NROW=4, LDA=NROW, LDAQR=NROW, LDQ=NROW, & 

                 LDQNEW=NROW, LDQR=NROW, LDR=NROW, LDRNEW=NROW) 

! 

      INTEGER    IPATH, IPVT(NCOL), J, MIN0 

      REAL       A(LDA,NCOL), ALPHA, AQR(LDAQR,NCOL), CONORM(NCOL), & 

                 Q(LDQ,NROW), QNEW(LDQNEW,NROW), QR(LDQR,NCOL), & 

                 QRAUX(NCOL), R(LDR,NCOL), RNEW(LDRNEW,NCOL), W(NROW), & 

                 Y(NCOL) 

      LOGICAL    PIVOT 

      INTRINSIC  MIN0 

! 

!                                 Set values for A 

! 

!                                 A = (  1    2     4   ) 

!                                     (  1    4    16   ) 

!                                     (  1    6    36   ) 

!                                     (  1    8    64   ) 

! 

      DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/ 
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!                                 Set values for W and Y 

      DATA W/1., 2., 3., 4./ 

      DATA Y/3., 2., 1./ 

! 

!                                 QR factorization 

!                                 Set IPVT = 0 (all columns free) 

      IPVT = 0 

      PIVOT = .TRUE. 

      CALL LQRRR (A, QR, QRAUX, IPVT=IPVT, PIVOT=PIVOT) 

!                                 Accumulate Q 

      CALL LQERR (QR, QRAUX, Q) 

!                                 Permute Y 

      CALL PERMU (Y, IPVT, Y) 

!                                 R is the upper trapezoidal part of QR 

      R = 0.0E0 

      DO 10  J=1, NCOL 

         CALL SCOPY (MIN0(J,NROW), QR(:,J), 1, R(:,J), 1) 

   10 CONTINUE 

!                                 Update Q and R 

      ALPHA = 1.0 

      IPATH = 01 

      CALL LUPQR (ALPHA, W, Y, R, IPATH, RNEW, Q=Q, QNEW=QNEW) 

!                                 Compute AQR = Q*R 

      CALL MRRRR (QNEW, RNEW, AQR) 

!                                 Print results 

      CALL WRIRN (‘IPVT‘, IPVT, 1, NCOL,1) 

      CALL WRRRN (‘QNEW‘, QNEW) 

      CALL WRRRN (‘RNEW‘, RNEW) 

      CALL WRRRN (‘QNEW*RNEW‘, AQR) 

      END 

Output 
 

   IPVT 

 1   2   3 

 3   2   1 

 

             QNEW 

         1        2        3        4 

1  -0.0620  -0.5412   0.8082  -0.2236 

2  -0.2234  -0.6539  -0.2694   0.6708 

3  -0.4840  -0.3379  -0.4490  -0.6708 

4  -0.8438   0.4067   0.2694   0.2236 

 

           RNEW 

        1       2       3 

1  -80.59  -21.34  -17.62 

2    0.00   -4.94   -4.83 

3    0.00    0.00    0.36 

4    0.00    0.00    0.00 

 

         QNEW*RNEW 

        1       2       3 

1    5.00    4.00    4.00 

2   18.00    8.00    7.00 

3   39.00   12.00   10.00 

4   68.00   16.00   13.00 
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LCHRG 
Computes the Cholesky decomposition of a symmetric positive definite matrix with optional 

column pivoting. 

Required Arguments 

A — N by N symmetric positive definite matrix to be decomposed.   (Input)  

Only the upper triangle of A is referenced. 

FACT — N by N matrix containing the Cholesky factor of the permuted matrix in its upper 

triangle.   (Output)  

If A is not needed, A and FACT can share the same storage locations. 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

PIVOT — Logical variable.   (Input)  

PIVOT = .TRUE. means column pivoting is done. PIVOT = .FALSE. means no 

pivoting is done. 

Default: PIVOT = .TRUE. 

IPVT — Integer vector of length N containing information that controls the selection of the 

pivot columns. (Input/Output)  

On input, if IPVT(K) > 0, then the K-th column of A is an initial column; if 

IPVT(K) = 0, then the K-th column of A is a free column; if IPVT(K) < 0, then the K-th 

column of A is a final column. See Comments. On output, IPVT(K) contains the index 

of the diagonal element of A that was moved into the K-th position. IPVT is only 

referenced when PIVOT is equal to .TRUE.. 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 

Generic: CALL LCHRG (A, FACT [,…]) 

Specific: The specific interface names are S_LCHRG and D_LCHRG. 
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FORTRAN 77 Interface 

Single: CALL LCHRG (N, A, LDA, PIVOT, IPVT, FACT, LDFACT) 

Double:  The double precision name is DLCHRG. 

Description 

Routine LCHRG is based on the LINPACK routine SCHDC; see Dongarra et al. (1979). 

Before the decomposition is computed, initial elements are moved to the leading part of A and 

final elements to the trailing part of A. During the decomposition only rows and columns 

corresponding to the free elements are moved. The result of the decomposition is an upper 

triangular matrix R and a permutation matrix P that satisfy P
T 

AP = R
T 

R, where P is represented 

by IPVT. 

Comments 

1. Informational error 

Type Code 

4 1 The input matrix is not positive definite. 

2. Before the decomposition is computed, initial elements are moved to the leading part 

of A and final elements to the trailing part of A. During the decomposition only rows 

and columns corresponding to the free elements are moved. The result of the 

decomposition is an upper triangular matrix R and a permutation matrix P that satisfy 

P
T 

AP = R
T 

R, where P is represented by IPVT. 

3. LCHRG can be used together with subroutines PERMU and LSLDS to solve the positive 

definite linear system AX = B with the solution X overwriting the right-hand side B as 

follows: 

 CALL ISET  (N, 0, IPVT, 1) 

CALL LCHRG (A, FACT, N, LDA,.TRUE, IPVT, LDFACT) 

CALL PERMU (B, IPVT, B, N, 1) 

CALL LSLDS (FACT, B, B, N, LDFACT) 

CALL PERMU (B, IPVT, B, N, 2) 

Example 

Routine LCHRG can be used together with the IMSL routines PERMU (see Chapter 11) and LFSDS 

to solve a positive definite linear system Ax = b. Since A = PR
T 

RP, the system Ax = b is equivalent 

to R
T 

R(Px) = Pb. LFSDS is used to solve R
T 

Ry = Pb for y. The routine PERMU is used to compute 

both Pb and x = Py. 
 

      USE IMSL_LIBRARIES 

!                                 Declare variables 

      PARAMETER  (N=3, LDA=N, LDFACT=N) 

      INTEGER    IPVT(N) 

      REAL       A(LDA,N), FACT(LDFACT,N), B(N), X(N) 
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      LOGICAL    PIVOT 

! 

!                                 Set values for A and B 

! 

!                                 A = (   1   -3   2  ) 

!                                     (  -3   10  -5  ) 

!                                     (   2   -5   6  ) 

! 

!                                 B = (  27  -78  64  ) 

! 

      DATA A/1.,-3.,2.,-3.,10.,-5.,2.,-5.,6./ 

      DATA B/27.,-78.,64./ 

!                                 Pivot using all columns 

      PIVOT = .TRUE. 

      IPVT = 0 

!                                 Compute Cholesky factorization 

      CALL LCHRG (A, FACT, PIVOT=PIVOT, IPVT=IPVT) 

!                                 Permute B and store in X 

      CALL PERMU (B, IPVT, X, IPATH=1) 

!                                 Solve for X 

      CALL LFSDS (FACT, X, X) 

!                                 Inverse permutation 

      CALL PERMU (X, IPVT, X, IPATH=2) 

!                                 Print X 

      CALL WRRRN (‘X‘, X, 1, N, 1) 

! 

      END 

Output 
 

           X 

    1       2       3 

1.000  -4.000   7.000 

LUPCH 

Updates the R
T 

R Cholesky factorization of a real symmetric positive definite matrix after a rank-

one matrix is added. 

Required Arguments 

R — N by N upper triangular matrix containing the upper triangular factor to be updated.   

(Input)  

Only the upper triangle of R is referenced. 

X — Vector of length N determining the rank-one matrix to be added to the factorization  

R
T 

R.   (Input) 

RNEW — N by N upper triangular matrix containing the updated triangular factor of  

R
T 

R + XX
T
.   (Output)  
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Only the upper triangle of RNEW is referenced. If R is not needed, R and RNEW can share 

the same storage locations. 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (R,2). 

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDR = size (R,1). 

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDRNEW = size (RNEW,1). 

CS — Vector of length N containing the cosines of the rotations.   (Output) 

SN — Vector of length N containing the sines of the rotations.   (Output) 

FORTRAN 90 Interface 

Generic: CALL LUPCH (R, X, RNEW [,…]) 

Specific: The specific interface names are S_LUPCH and D_LUPCH. 

FORTRAN 77 Interface 

Single: CALL LUPCH (N, R, LDR, X, RNEW, LDRNEW, CS, SN) 

Double:  The double precision name is DLUPCH. 

Description 

The routine LUPCH is based on the LINPACK routine SCHUD; see Dongarra et al. (1979). 

The Cholesky factorization of a matrix is A = R
T 

R, where R is an upper triangular matrix. Given 

this factorization, LUPCH computes the factorization  

T TA xx R R   

In the program  

R  

is called RNEW. 

LUPCH determines an orthogonal matrix U as the product GN…G1 of Givens rotations, such that 



     

     
 

498  Chapter 1: Linear Systems IMSL MATH LIBRARY  

     

     

 

0T

R R
U

x

   
   
    

By multiplying this equation by its transpose, and noting that U
T 

U = I, the desired result 

T T TR R xx R R   

is obtained. 

Each Givens rotation, Gi, is chosen to zero out an element in x
T
. The matrix  

Gi is (N + 1) × (N + 1) and has the form 

1 0 0 0

0 0

0 0 0

0 0

i

i i
i

N i

i i

I

c s
G

I

s c





 
 
 
 
 

   

Where Ik  is the identity matrix of order k and ci = cosθi = CS(I), si = sinθi = SN(I) for some θi. 

Example 

A linear system Az = b is solved using the Cholesky factorization of A. This factorization is then 

updated and the system (A + xx
T
) z = b is solved using this updated factorization. 

 

      USE IMSL_LIBRARIES 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      REAL       A(LDA,LDA), FACT(LDFACT,LDFACT), FACNEW(LDFACT,LDFACT), & 

                X(N), B(N), CS(N), SN(N), Z(N) 

! 

!                                 Set values for A 

!                                 A = (  1.0  -3.0   2.0) 

!                                     ( -3.0  10.0  -5.0) 

!                                     (  2.0  -5.0   6.0) 

! 

      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 

! 

!                                 Set values for X and B 

      DATA X/3.0, 2.0, 1.0/ 

      DATA B/53.0, 20.0, 31.0/ 

!                                 Factor the matrix A 

      CALL LFTDS (A, FACT) 

!                                 Solve the original system 

      CALL LFSDS (FACT, B, Z) 

!                                 Print the results 

      CALL WRRRN (‘FACT‘, FACT, ITRING=1) 

      CALL WRRRN (‘Z‘, Z, 1, N, 1) 

!                                 Update the factorization 

      CALL LUPCH (FACT, X, FACNEW) 
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!                                 Solve the updated system 

      CALL LFSDS (FACNEW, B, Z) 

!                                 Print the results 

      CALL WRRRN (‘FACNEW‘, FACNEW, ITRING=1) 

      CALL WRRRN (‘Z‘, Z, 1, N, 1) 

! 

      END 

Output 
 

         FACT 

        1       2       3 

1   1.000  -3.000   2.000 

2           1.000   1.000 

3                   1.000 

          Z 

     1        2        3 

1860.0    433.0   -254.0 

 

      FACNEW 

     1       2       3 

1   3.162   0.949   1.581 

2           3.619  -1.243 

3                  -1.719 

 

        Z 

    1       2       3 

4.000   1.000   2.000 

LDNCH 

 

 

 

Downdates the R
T 

R Cholesky factorization of a real symmetric positive definite matrix after a 

rank-one matrix is removed. 

Required Arguments 

R — N by N upper triangular matrix containing the upper triangular factor to be downdated.   

(Input)  

Only the upper triangle of R is referenced. 

X — Vector of length N determining the rank-one matrix to be subtracted from the 

factorization R
T 

R.   (Input) 

RNEW — N by N upper triangular matrix containing the downdated triangular factor of  

R
T 

R − X X
T
.   (Output)  

Only the upper triangle of RNEW is referenced. If R is not needed, R and RNEW can share 

the same storage locations. 
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Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = size (R,2). 

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDR = size (R,1). 

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDRNEW = size (RNEW,1). 

CS — Vector of length N containing the cosines of the rotations.   (Output) 

SN — Vector of length N containing the sines of the rotations.   (Output) 

FORTRAN 90 Interface 

Generic: CALL LDNCH (R, X, RNEW [,…]) 

Specific: The specific interface names are S_LDNCH and D_LDNCH. 

FORTRAN 77 Interface 

Single: CALL LDNCH (N, R, LDR, X, RNEW, LDRNEW, CS, SN) 

Double:  The double precision name is DLDNCH. 

Description 

The routine LDNCH is based on the LINPACK routine SCHDD; see Dongarra et al. (1979). 

The Cholesky factorization of a matrix is A = R
T 

R, where R is an upper triangular matrix. Given 

this factorization, LDNCH computes the factorization  

T TA xx R R   

In the program 

R  

is called RNEW. This is not always possible, since A − xx
T
 may not be positive definite. 

LDNCH determines an orthogonal matrix U as the product GN …G1of Givens rotations, such that 

0 T
RR

U
x
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By multiplying this equation by its transpose and noting that U
T 

U = I, the desired result  

T T TR R xx R R   

is obtained. 

Let a be the solution of the linear system R
T 

a = x and let  

2

2
1 a  

 

The Givens rotations, Gi, are chosen such that 

1

0
1N

a
G G 

   
   

     

The Gi are (N + 1) × (N + 1) matrices of the form 

1 0 0 0

0 0

0 0 0

0 0

i

i i
i

N i

i i

I

c s
G

I

s c





 
 


 
 
 
   

where Ik is the identity matrix of order k; and ci= cosθi = CS(I), si= sinθi = SN(I) for some θi.  

The Givens rotations are then used to form  

1,
0

N T

RR
R G G

x

  
   

      

The matrix  

R  

is upper triangular and  

x x  

because 

     
0

0 0 1
T T T Ta a

x R R U U R x x 
     

        
       

Comments 

Informational error 

Type Code 

4 1 R
T
R − X X

T
 is not positive definite. R cannot be downdated. 
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Example 

A linear system Az = b is solved using the Cholesky factorization of A. This factorization is then 

downdated, and the system (A − xx
T
)z = b is solved using this downdated factorization. 

 

      USE LDNCH_INT 

      USE LFTDS_INT 

      USE LFSDS_INT 

      USE WRRRN_INT 

!                                 Declare variables 

      INTEGER    LDA, LDFACT, N 

      PARAMETER  (LDA=3, LDFACT=3, N=3) 

      REAL       A(LDA,LDA), FACT(LDFACT,LDFACT), FACNEW(LDFACT,LDFACT), & 

                X(N), B(N), CS(N), SN(N), Z(N) 

! 

!                                 Set values for A 

!                                 A = ( 10.0   3.0   5.0) 

!                                     (  3.0  14.0  -3.0) 

!                                     (  5.0  -3.0   7.0) 

! 

      DATA A/10.0, 3.0, 5.0, 3.0, 14.0, -3.0, 5.0, -3.0, 7.0/ 

! 

!                                 Set values for X and B 

      DATA X/3.0, 2.0, 1.0/ 

      DATA B/53.0, 20.0, 31.0/ 

!                                 Factor the matrix A 

      CALL LFTDS (A, FACT) 

!                                 Solve the original system 

      CALL LFSDS (FACT, B, Z) 

!                                 Print the results 

      CALL WRRRN (‘FACT‘, FACT, ITRING=1) 

      CALL WRRRN (‘Z‘, Z, 1, N, 1) 

!                                 Downdate the factorization 

      CALL LDNCH (FACT, X, FACNEW) 

!                                 Solve the updated system 

      CALL LFSDS (FACNEW, B, Z) 

!                                 Print the results 

      CALL WRRRN (‘FACNEW‘, FACNEW, ITRING=1) 

      CALL WRRRN (‘Z‘, Z, 1, N, 1) 

! 

      END 

Output 
 

          FACT 

        1       2       3 

1   3.162   0.949   1.581 

2           3.619  -1.243 

3                   1.719 

            Z 

      1       2       3 

  4.000   1.000   2.000 

 

          FACNEW 

        1       2       3 
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1   1.000  -3.000   2.000 

2           1.000   1.000 

3                   1.000 

 

             Z 

     1        2        3 

1859.9    433.0   -254.0 

LSVRR 

 

 

 

Computes the singular value decomposition of a real matrix. 

Required Arguments 

A — NRA by NCA matrix whose singular value decomposition is to be computed.   (Input) 

IPATH — Flag used to control the computation of the singular vectors.   (Input)  

IPATH has the decimal expansion IJ such that: 

I = 0 means do not compute the left singular vectors; 

I = 1 means return the NRA left singular vectors in U; 

NOTE: This option is not available for the ScaLAPACK interface. If this option is 

chosen for ScaLAPACK usage, the min(NRA, NCA) left singular vectors will be 

returned.  

I = 2 means return only the min(NRA, NCA) left singular vectors in U; 

J = 0 means do not compute the right singular vectors, 

J = 1 means return the right singular vectors in V. 

           For example, IPATH = 20 means I = 2 and J = 0. 

S — Vector of length min(NRA + 1, NCA) containing the singular values of A in descending 

order of magnitude in the first min(NRA, NCA) positions.   (Output) 

Optional Arguments 

NRA — Number of rows in the matrix A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns in the matrix A.   (Input) 

Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 
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TOL — Scalar containing the tolerance used to determine when a singular value is negligible.   

(Input)  

If TOL is positive, then a singular value σi considered negligible if σi ≤ TOL . If TOL is 

negative, then a singular value σi considered negligible if σi ≤ |TOL| * ||A||∞. In this 

case, |TOL| generally contains an estimate of the level of the relative error in the data. 

Default: TOL = 1.0e-5 for single precision and 1.0d-10 for double precision. 

IRANK — Scalar containing an estimate of the rank of A.   (Output) 

U — NRA by NCU matrix containing the left singular vectors of A.   (Output)  

NCU must be equal to NRA if I is equal to 1. NCU must be equal to min(NRA, NCA) if I is 

equal to 2. U will not be referenced if I is equal to zero. If NRA is less than or equal to 

NCU, then U can share the same storage locations as A. See Comments. 

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDU = size (U,1). 

V — NCA by NCA matrix containing the right singular vectors of A.   (Output)  

V will not be referenced if J is equal to zero. V can share the same storage location as 

A, however, U and V cannot both coincide with A simultaneously. 

LDV — Leading dimension of V exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDV = size (V,1). 

FORTRAN 90 Interface 

Generic: CALL LSVRR (A, IPATH, S [ ,…]) 

Specific: The specific interface names are S_LSVRR and D_LSVRR. 

FORTRAN 77 Interface 

Single: CALL LSVRR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV) 

Double:  The double precision name is DLSVRR. 

ScaLAPACK Interface 

Generic: CALL LSVRR (A0, IPATH, S [,…]) 

Specific: The specific interface names are S_LSVRR and D_LSVRR. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 
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Description 

The underlying code of routine LSVRR is based on either LINPACK , LAPACK, or ScaLAPACK 

code depending upon which supporting libraries are used during linking. For a detailed 

explanation see ―Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction 

section of this manual. 

Let n = NRA (the number of rows in A) and let p = NCA (the number of columns in A). For any  

n × p matrix A, there exists an n × n orthogonal matrix U and a p × p orthogonal matrix V such 

that 

 

if   
0

0 if   

T
n p

U AV

n p

  
 

  
    

where ∑ = diag(σ1, …, σm), and m = min(n, p). The scalars σ1 ≥ σ2 ≥… ≥ σm ≥ 0 are called the 

singular values of A. The columns of U are called the left singular vectors of A. The columns of V 

are called the right singular vectors of A. 

The estimated rank of A is the number of σk that is larger than a tolerance η. If τ is the parameter 

TOL in the program, then 

if  > 0

if  < 0A

 


 



 
  

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2VRR/DL2VRR. The 

reference is: 

CALL L2VRR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV,  

ACOPY, WK) 

The additional arguments are as follows: 

ACOPY — NRA × NCA work array for the matrix A. If A is not needed, then A 

and ACOPY may share the same storage locations. 

WK — Work vector of length NRA + NCA + max(NRA, NCA) − 1. 

2. Informational error 

Type Code 

4 1 Convergence cannot be achieved for all the singular values and their 

corresponding singular vectors. 

3. When NRA is much greater than NCA, it might not be reasonable to store the whole 

matrix U. In this case, IPATH with I = 2 allows a singular value factorization of A to be 
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computed in which only the first NCA columns of U are computed, and in many 

applications those are all that are needed. 

4. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2VRR the leading dimension of ACOPY is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSVRR. 

Additional memory allocation for ACOPY and option value restoration are done 

automatically in LSVRR. Users directly calling L2VRR can allocate additional 

space for ACOPY and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 

applications that use LSVRR or L2VRR. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17  This option has two values that determine if the L1 condition number is to be 

computed. Routine LSVRR temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG 

skips this computation. LSVRR restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A.  

A contains the matrix whose singular value decomposition is to be computed.   (Input) 

U0 —   MXLDU by MXCOLU local matrix containing the local portions of the left singular 

vectors of the distributed matrix A.   (Output) 

U0 will not be referenced if I is equal to zero. If NRA is less than or equal to NCU, then 

U0 can share the same storage locations as A0. See Comments. 

V0  —   MXLDV by MXCOLV local matrix containing the local portions of the right singular 

vectors of the distributed matrix A.   (Output) 

V0 will not be referenced if J is equal to zero. V0 can share the same storage location 

as A0, however, U0 and V0 cannot both coincide with A0 simultaneously. 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above, MXLDA, MXCOL, MXLDU, MXCOLU, MXLDV and MXCOLV 

can be obtained through a call to ScaLAPACK_GETDIM (Chapter 11, ―Utilities‖) after a call to 

ScaLAPACK_SETUP (Chapter 11, ―Utilities‖) has been made. See the ScaLAPACK Example 

below. 
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Example 

This example computes the singular value decomposition of a 6 × 4 matrix A. The matrices U and 

V containing the left and right singular vectors, respectively, and the diagonal of ∑, containing 

singular values, are printed. On some systems, the signs of some of the columns of U and V may 

be reversed. 
 

      USE IMSL_LIBRARIES 

!                                 Declare variables 

      PARAMETER  (NRA=6, NCA=4, LDA=NRA, LDU=NRA, LDV=NCA) 

      REAL       A(LDA,NCA), U(LDU,NRA), V(LDV,NCA), S(NCA) 

! 

!                                 Set values for A 

! 

!                                 A = (  1    2    1    4  ) 

!                                     (  3    2    1    3  ) 

!                                     (  4    3    1    4  ) 

!                                     (  2    1    3    1  ) 

!                                     (  1    5    2    2  ) 

!                                     (  1    2    2    3  ) 

! 

      DATA A/1., 3., 4., 2., 1., 1., 2., 2., 3., 1., 5., 2., 3*1., & 

            3., 2., 2., 4., 3., 4., 1., 2., 3./ 

! 

!                                 Compute all singular vectors 

      IPATH = 11 

      TOL   = AMACH(4) 

      TOL   = 10.*TOL 

      CALL LSVRR(A, IPATH, S, TOL=TOL, IRANK=IRANK, U=U, V=V) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT, *) ‘IRANK = ‘, IRANK 

      CALL WRRRN (‘U‘, U, NRA, NCA) 

      CALL WRRRN (‘S‘, S, 1, NCA, 1) 

      CALL WRRRN (‘V‘, V) 

! 

      END 

Output 
 

IRANK =   4 

                            U 

         1        2        3        4   

1  -0.3805   0.1197   0.4391  -0.5654   

2  -0.4038   0.3451  -0.0566   0.2148   

3  -0.5451   0.4293   0.0514   0.4321   

4  -0.2648  -0.0683  -0.8839  -0.2153   

5  -0.4463  -0.8168   0.1419   0.3213   

6  -0.3546  -0.1021  -0.0043  -0.5458   

 

                S 

      1       2       3       4 

  11.49    3.27    2.65    2.09 

 

                  V 

         1        2        3        4 
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1  -0.4443   0.5555  -0.4354   0.5518 

2  -0.5581  -0.6543   0.2775   0.4283 

3  -0.3244  -0.3514  -0.7321  -0.4851 

4  -0.6212   0.3739   0.4444  -0.5261 

ScaLAPACK Example 

The previous example is repeated here as a distributed example. This example computes the 

singular value decomposition of a 6 × 4 matrix A. The matrices U and V containing the left and 

right singular vectors, respectively, and the diagonal of S, containing singular values, are printed. 

On some systems, the signs of some of the columns of U and V may be reversed.. 
 

      USE MPI_SETUP_INT 

      USE IMSL_LIBRARIES 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  KBASIS, LDA, LDQR, NCA, NRA, DESCA(9), DESCU(9), & 

                    DESCV(9), MXLDV, MXCOLV, NSZ, MXLDU, MXCOLU 

      INTEGER       INFO, MXCOL, MXLDA, LDU, LDV, IPATH, IRANK 

      REAL          TOL, AMACH 

      REAL, ALLOCATABLE ::        A(:,:),U(:,:), V(:,:), S(:) 

      REAL, ALLOCATABLE ::        A0(:,:), U0(:,:), V0(:,:), S0(:) 

      PARAMETER   (NRA=6, NCA=4, LDA=NRA, LDU=NRA, LDV=NCA) 

      NSZ = MIN(NRA,NCA) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,NCA), U(LDU,NCA), V(LDV,NCA), S(NCA)) 

!                                 Set values for A  

          A(1,:) = (/ 1.0,  2.0,  1.0,  4.0/) 

          A(2,:) = (/ 3.0,  2.0,  1.0,  3.0/) 

          A(3,:) = (/ 4.0,  3.0,  1.0,  4.0/) 

          A(4,:) = (/ 2.0,  1.0,  3.0,  1.0/) 

          A(5,:) = (/ 1.0,  5.0,  2.0,  2.0/) 

          A(6,:) = (/ 1.0,  2.0,  2.0,  3.0/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(NRA, NCA, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  MXCOL, MXLDU, MXCOLU, MXLDV, AND MXCOLV 

      CALL SCALAPACK_GETDIM(NRA, NCA, MP_MB, MP_NB, MXLDA, MXCOL) 

      CALL SCALAPACK_GETDIM(NRA, NSZ, MP_MB, MP_NB, MXLDU, MXCOLU) 

      CALL SCALAPACK_GETDIM(NSZ, NCA, MP_MB, MP_NB, MXLDV, MXCOLV) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, NRA, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, & 

      MXLDA, INFO) 

      CALL DESCINIT(DESCU, NRA, NSZ, MP_MB, MP_NB, 0, 0, MP_ICTXT, & 

      MXLDU, INFO) 

      CALL DESCINIT(DESCV, NSZ, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, & 

      MXLDV, INFO) 

!      Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), U0(MXLDU,MXCOLU), V0(MXLDV,MXCOLV), S(NCA)) 
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!                                 Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Compute all singular vectors 

      IPATH = 11 

      TOL = AMACH(4) 

      TOL = 10. * TOL 

      CALL LSVRR (A0, IPATH, S, TOL=TOL, IRANK=IRANK, U=U0, V=V0) 

!                                 Unmap the results from the distributed 

!                                 array back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(U0, DESCU, U) 

      CALL SCALAPACK_UNMAP(V0, DESCV, V) 

!                                 Print results. 

!                                 Only Rank=0 has the solution. 

      IF(MP_RANK .EQ. 0) THEN 

         CALL WRRRN (‘U‘, U, NRA, NCA) 

         CALL WRRRN (‘S‘, S, 1, NCA, 1) 

         CALL WRRRN (‘V‘, V) 

      ENDIF 

!                                Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 

Output 
 

IRANK =   4 

                            U 

         1        2        3        4   

1  -0.3805   0.1197   0.4391  -0.5654   

2  -0.4038   0.3451  -0.0566   0.2148   

3  -0.5451   0.4293   0.0514   0.4321   

4  -0.2648  -0.0683  -0.8839  -0.2153   

5  -0.4463  -0.8168   0.1419   0.3213   

6  -0.3546  -0.1021  -0.0043  -0.5458   

 

                S 

      1       2       3       4 

  11.49    3.27    2.65    2.09 

 

                  V 

         1        2        3        4 

1  -0.4443   0.5555  -0.4354   0.5518 

2  -0.5581  -0.6543   0.2775   0.4283 

3  -0.3244  -0.3514  -0.7321  -0.4851 

4  -0.6212   0.3739   0.4444  -0.5261 
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LSVCR 

 

 

 

Computes the singular value decomposition of a complex matrix. 

Required Arguments 

A — Complex NRA by NCA matrix whose singular value decomposition is to be computed.   

(Input) 

IPATH — Integer flag used to control the computation of the singular vectors.   (Input)  

IPATH has the decimal expansion IJ such that: 

I=0 means do not compute the left singular vectors; 

I=1 means return the NCA left singular vectors in U; 

I=2 means return only the min(NRA, NCA) left singular vectors in U; 

J=0 means do not compute the right singular vectors; 

J=1 means return the right singular vectors in V. 

For example, IPATH = 20 means I = 2 and J = 0. 

S — Complex vector of length min(NRA + 1, NCA) containing the singular values of A in 

descending order of magnitude in the first min(NRA, NCA) positions.   (Output) 

Optional Arguments 

NRA — Number of rows in the matrix A.   (Input) 

Default: NRA = size (A,1). 

NCA  — Number of columns in the matrix A.  (Input) 

Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

TOL — Real scalar containing the tolerance used to determine when a singular value is 

negligible.   (Input)  

If TOL is positive, then a singular value SI is considered negligible if SI ≤ TOL . If 

TOL is negative, then a singular value SI is considered negligible if 

SI ≤ ǀTOLǀ*(Infinity norm of A). In this case ǀTOLǀ should generally contain an 

estimate of the level of relative error in the data. 

Default: TOL = 1.0e-5 for single precision and 1.0d-10 for double precision. 
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IRANK — Integer scalar containing an estimate of the rank of A.   (Output) 

U — Complex NRA by NRA if I = 1 or NRA by min(NRA, NCA) if I = 2 matrix containing the 

left singular vectors of A.   (Output)  

U will not be referenced if I is equal to zero. If NRA is less than or equal to NCA or 

IPATH = 2, then U can share the same storage locations as A. 

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDU = size (U,1). 

V — Complex NCA by NCA matrix containing the right singular vectors of A.   (Output)  

V will not be referenced if J is equal to zero. If NCA is less than or equal to NRA, then V 

can share the same storage locations as A; however U and V cannot both coincide with A 

simultaneously. 

LDV — Leading dimension of V exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDV = size (V,1). 

FORTRAN 90 Interface 

Generic: CALL LSVCR (A, IPATH, S [,…]) 

Specific: The specific interface names are S_LSVCR and D_LSVCR. 

FORTRAN 77 Interface 

Single: CALL LSVCR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV) 

Double:  The double precision name is DLSVCR. 

Description 

The underlying code of routine LSVCR is based on either LINPACK or LAPACK code depending 

upon which supporting libraries are used during linking. For a detailed explanation see “Using 

ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Let n = NRA (the number of rows in A) and let p = NCA (the number of columns in A).For any n × 

p matrix A there exists an n × n orthogonal matrix U and a p × p orthogonal matrix V such that  

 

if   
0

0 if   

T
n p

U AV

n p
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where ∑  = diag(σ1, …, σm), and m = min(n, p). The scalars σ1 ≥ σ2 ≥ … ≥ 0 are called the 

singular values of A. The columns of U are called the left singular vectors of A. The columns of V 

are called the right singular vectors of A. 

The estimated rank of A is the number of σk which are larger than a tolerance η. If τ is the 

parameter TOL in the program, then 

if  > 0

if  < 0A

 


 



 
  

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2VCR/DL2VCR. The 

reference is 

CALL L2VCR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV,  

ACOPY, WK) 

The additional arguments are as follows: 

ACOPY — NRA * NCA complex work array of length for the matrix A. If A is 

not needed, then A and ACOPY can share the same storage locations. 

WK — Complex work vector of length NRA + NCA + max(NRA, NCA)  1. 

2. Informational error 

Type Code 

4 1 Convergence cannot be achieved for all the singular values and their 

corresponding singular vectors. 

3. When NRA is much greater than NCA, it might not be reasonable to store the whole 

matrix U. In this case IPATH with I = 2 allows a singular value factorization of A to be 

computed in which only the first NCA columns of U are computed, and in many 

applications those are all that are needed. 

4. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 

problems. In routine L2VCR the leading dimension of ACOPY is increased by 

IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSVCR. 

Additional memory allocation for ACOPY and option value restoration are done 

automatically in LSVCR. Users directly calling L2VCR can allocate additional 

space for ACOPY and set IVAL(3) and IVAL(4) so that memory bank conflicts no 

longer cause inefficiencies. There is no requirement that users change existing 
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applications that use LSVCR or L2VCR. Default values for the option are  

IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L1 condition number is to be 

computed. Routine LSVCR temporarily replaces IVAL(2) by IVAL(1). The 

routine L2CCG computes the condition number if IVAL(2) = 2. Otherwise L2CCG 

skips this computation. LSVCR restores the option. Default values for the option 

are IVAL(*) = 1, 2. 

Example 

This example computes the singular value decomposition of a 6 × 3 matrix A. The matrices U and 

V containing the left and right singular vectors, respectively, and the diagonal of ∑, containing 

singular values, are printed. On some systems, the signs of some of the columns of U and V may 

be reversed. 
 

      USE IMSL_LIBRARIES 

!                                 Declare variables 

      PARAMETER  (NRA=6, NCA=3, LDA=NRA, LDU=NRA, LDV=NCA) 

      COMPLEX    A(LDA,NCA), U(LDU,NRA), V(LDV,NCA), S(NCA) 

! 

!                                 Set values for A 

! 

!                                 A = (  1+2i    3+2i    1-4i  ) 

!                                     (  3-2i    2-4i    1+3i  ) 

!                                     (  4+3i   -2+1i    1+4i  ) 

!                                     (  2-1i    3+0i    3-1i  ) 

!                                     (  1-5i    2-5i    2+2i  ) 

!                                     (  1+2i    4-2i    2-3i  ) 

! 

      DATA A/(1.0,2.0), (3.0,-2.0), (4.0,3.0), (2.0,-1.0), (1.0,-5.0), & 

            (1.0,2.0), (3.0,2.0), (2.0,-4.0), (-2.0,1.0), (3.0,0.0), & 

            (2.0,-5.0), (4.0,-2.0), (1.0,-4.0), (1.0,3.0), (1.0,4.0), & 

            (3.0,-1.0), (2.0,2.0), (2.0,-3.0)/ 

! 

!                                 Compute all singular vectors 

      IPATH = 11 

      TOL   = AMACH(4) 

      TOL   = 10. * TOL 

      CALL LSVCR(A, IPATH, S, TOL = TOL, IRANK=IRANK, U=U, V=V) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT, *) ‘IRANK = ‘, IRANK 

      CALL WRCRN (‘U‘, U, NRA, NCA) 

      CALL WRCRN (‘S‘, S, 1, NCA, 1) 

      CALL WRCRN (‘V‘, V) 

! 

      END 

Output 
 

IRANK =   3 
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                                      U 

                  1                 2                  3 

1 ( 0.1968, 0.2186) ( 0.5011, 0.0217)  (-0.2007,-0.1003) 

2 ( 0.3443,-0.3542) (-0.2933, 0.0248)  ( 0.1155,-0.2338) 

3 ( 0.1457, 0.2307) (-0.5424, 0.1381)  (-0.4361,-0.4407) 

4 ( 0.3016,-0.0844) ( 0.2157, 0.2659)  (-0.0523,-0.0894) 

5 ( 0.2283,-0.6008) (-0.1325, 0.1433)  ( 0.3152,-0.0090) 

6 ( 0.2876,-0.0350) ( 0.4377,-0.0400)  ( 0.0458,-0.6205) 

 

                        S 

              1                2                3 

( 11.77,  0.00)  (  9.30,  0.00)  (  4.99,  0.00) 

 

                            V 

                   1                  2                  3 

1  ( 0.6616, 0.0000)  (-0.2651, 0.0000)  (-0.7014, 0.0000) 

2  ( 0.7355, 0.0379)  ( 0.3850,-0.0707)  ( 0.5482, 0.0624) 

3  ( 0.0507,-0.1317)  ( 0.1724, 0.8642)  (-0.0173,-0.4509) 

LSGRR 

 

 

 

Computes the generalized inverse of a real matrix. 

Required Arguments 

A — NRA by NCA matrix whose generalized inverse is to be computed.   (Input) 

GINVA — NCA by NRA matrix containing the generalized inverse of A.   (Output) 

Optional Arguments 

NRA — Number of rows in the matrix A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns in the matrix A.   (Input) 

Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

TOL — Scalar containing the tolerance used to determine when a singular value (from the 

singular value decomposition of A) is negligible.   (Input)  

If TOL is positive, then a singular value σi considered negligible if σi ≤ TOL . If TOL is 
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negative, then a singular value σi considered negligible if σi ≤ |TOL| * ||A||∞. In this 

case, |TOL| generally contains an estimate of the level of the relative error in the data. 

Default: TOL = 1.0e-5 for single precision and 1.0d-10 for double precision. 

IRANK — Scalar containing an estimate of the rank of A.   (Output) 

LDGINV — Leading dimension of GINVA exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDGINV = size (GINV,1). 

FORTRAN 90 Interface 

Generic: CALL LSGRR (A, GINVA [ ,…]) 

Specific: The specific interface names are S_LSGRR and D_LSGRR. 

FORTRAN 77 Interface 

Single: CALL LSGRR (NRA, NCA, A, LDA, TOL, IRANK, GINVA, LDGINV) 

Double:  The double precision name is DLSGRR. 

ScaLAPACK Interface 

Generic: CALL LSGRR (A0, GINVA0 [,…]) 

Specific: The specific interface names are S_LSGRR and D_LSGRR. 

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed 

computing. 

Description 

Let k = IRANK, the rank of A; let n = NRA, the number of rows in A; let p = NCA, the number of 

columns in A; and let  

† GINVA   

be the generalized inverse of A. 

To compute the Moore-Penrose generalized inverse, the routine LSVRR is first used to compute 

the singular value decomposition of A. A singular value decomposition of A consists of an n × n 

orthogonal matrix U, a p × p orthogonal matrix V and a diagonal matrix ∑ = diag(σ1,…, σm), 

m = min(n, p), such that U
T
 AV = [∑, 0] if n ≤ p and U

T
 AV = [∑, 0]

T
 if n ≥ p. Only the first p 

columns of U are computed. The rank k is estimated by counting the number of nonnegligible σi. 

The matrices U and V can be partitioned as U = (U1, U2) and V = (V1, V2) where both U1 and V1 are 

k × k matrices. Let∑1 = diag(σ1, …, σk). The Moore-Penrose generalized inverse of A is 
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† 1
1 1 1V TA U 

 

The underlying code of routine LSGRR is based on either LINPACK, LAPACK, or ScaLAPACK 

code depending upon which supporting libraries are used during linking. For a detailed 

explanation see “Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction 

section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2GRR/DL2GRR. The 

reference is: 

CALL L2GRR (NRA, NCA, A, LDA, TOL, IRANK, GINVA, LDGINV,  

WKA, WK) 

The additional arguments are as follows: 

WKA — Work vector of length NRA * NCA used as workspace for the matrix 

A. If A is not needed, WKA and A can share the same storage locations. 

WK — Work vector of length LWK where LWK is equal to  

NRA
2
 + NCA

2
 + min(NRA + 1, NCA) + NRA + NCA + max(NRA, NCA) − 2. 

2. Informational error 

Type Code 

4 1 Convergence cannot be achieved for all the singular values and their 

corresponding singular vectors. 

ScaLAPACK Usage Notes 

The arguments which differ from the standard version of this routine are: 

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed    

matrix  A.  A contains the matrix for which the generalized inverse is to be computed.   

(Input) 

GINVA0 —   MXLDG by MXCOLG local matrix containing the local portions of the distributed    

matrix  GINVA.  GINVA  contains the generalized inverse of matrix  A.   (Output) 

All other arguments are global and are the same as described for the standard version of the 

routine. In the argument descriptions above,  MXLDA, MXCOL, MXLDG, and MXCOLG can be 

obtained through a call to  SCALAPACK_GETDIM (see Utilities) after a call to SCALAPACK_SETUP 

(see Chapter 11, Utilities)  has been made. See the ScaLAPACK Example below. 

Example 

This example computes the generalized inverse of a 3 × 2 matrix A. The rank k = IRANK and the 

inverse  
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† GINVA   

are printed. 
 

  USE IMSL_LIBRARIES 

!                                 Declare variables 

      PARAMETER  (NRA=3, NCA=2, LDA=NRA, LDGINV=NCA) 

      REAL       A(LDA,NCA), GINV(LDGINV,NRA) 

! 

!                                 Set values for A 

! 

!                                 A = (   1    0   ) 

!                                     (   1    1   ) 

!                                     ( 100  -50   ) 

! ` 

      DATA A/1., 1., 100., 0., 1., -50./ 

! 

!                                 Compute generalized inverse 

      TOL = AMACH(4) 

      TOL = 10.*TOL 

      CALL LSGRR (A, GINV,TOL=TOL, IRANK=IRANK) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT, *) ‘IRANK = ‘, IRANK 

      CALL WRRRN (‘GINV‘, GINV) 

! 

      END 

Output 
 

IRANK =   2 

             GINV 

         1        2        3 

1   0.1000   0.3000   0.0060 

2   0.2000   0.6000  -0.0080 

ScaLAPACK Example 

This example computes the generalized inverse of a 6 × 4 matrix A as a distributed example. The 

rank k = IRANK and the inverse  

† GINVA   

are printed. 
 

      USE MPI_SETUP_INT 

      USE IMSL_LIBRARIES 

      USE SCALAPACK_SUPPORT 

      IMPLICIT NONE 

      INCLUDE ‗mpif.h‘ 

!                                 Declare variables 

      INTEGER  IRANK, LDA, NCA, NRA, DESCA(9), DESCG(9), & 

                    LDGINV, MXLDG, MXCOLG, NOUT 

      INTEGER       INFO, MXCOL, MXLDA 

      REAL          TOL, AMACH 
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      REAL, ALLOCATABLE ::        A(:,:),GINVA(:,:) 

      REAL, ALLOCATABLE ::        A0(:,:), GINVA0(:,:) 

      PARAMETER   (NRA=6, NCA=4, LDA=NRA, LDGINV=NCA) 

!                                 Set up for MPI 

      MP_NPROCS = MP_SETUP() 

      IF(MP_RANK .EQ. 0) THEN 

          ALLOCATE (A(LDA,NCA), GINVA(NCA,NRA)) 

!                                 Set values for A  

          A(1,:) = (/ 1.0,  2.0,  1.0,  4.0/) 

          A(2,:) = (/ 3.0,  2.0,  1.0,  3.0/) 

          A(3,:) = (/ 4.0,  3.0,  1.0,  4.0/) 

          A(4,:) = (/ 2.0,  1.0,  3.0,  1.0/) 

          A(5,:) = (/ 1.0,  5.0,  2.0,  2.0/) 

          A(6,:) = (/ 1.0,  2.0,  2.0,  3.0/) 

      ENDIF 

!                                  Set up a 1D processor grid and define 

!                                  its context ID, MP_ICTXT 

      CALL SCALAPACK_SETUP(NRA, NCA, .TRUE., .TRUE.) 

!                                  Get the array descriptor entities MXLDA, 

!                                  MXCOL, MXLDG, and MXCOLG 

      CALL SCALAPACK_GETDIM(NRA, NCA, MP_MB, MP_NB, MXLDA, MXCOL) 

 

      CALL SCALAPACK_GETDIM(NCA, NRA, MP_NB, MP_MB, MXLDG, MXCOLG) 

!                                  Set up the array descriptors 

      CALL DESCINIT(DESCA, NRA, NCA, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, & 

      INFO) 

      CALL DESCINIT(DESCG, NCA, NRA, MP_NB, MP_MB, 0, 0, MP_ICTXT, MXLDG, & 

      INFO) 

!      Allocate space for the local arrays 

      ALLOCATE (A0(MXLDA,MXCOL), GINVA0(MXLDG,MXCOLG)) 

!                                 Map input array to the processor grid 

      CALL SCALAPACK_MAP(A, DESCA, A0) 

!                                 Compute the generalized inverse 

      TOL = AMACH(4) 

      TOL = 10. * TOL 

      CALL LSGRR (A0, GINVA0, TOL=TOL, IRANK=IRANK) 

!                                 Unmap the results from the distributed 

!                                 array back to a non-distributed array. 

!                                 After the unmap, only Rank=0 has the full 

!                                 array. 

      CALL SCALAPACK_UNMAP(GINVA0, DESCG, GINVA) 

!                                 Print results. 

!                                 Only Rank=0 has the solution, GINVA 

      IF(MP_RANK .EQ. 0) THEN 

         CALL UMACH (2, NOUT) 

         WRITE (NOUT, *) ‗IRANK = ‗,IRANK 

         CALL WRRRN (‗GINVA‘, GINVA) 

      ENDIF 

!                                 Exit ScaLAPACK usage 

      CALL SCALAPACK_EXIT(MP_ICTXT) 

!                                Shut down MPI 

      MP_NPROCS = MP_SETUP(‗FINAL‘) 

      END 
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Chapter 2: Eigensystem Analysis 

Routines 

2.1. Eigenvalue Decomposition 

2.1.1 Computes the eigenvalues of a self-adjoint  
matrix, A ................................................................. LIN_EIG_SELF 526 

2.1.2 Computes the eigenvalues of an n × n  
matrix, A .................................................................. LIN_EIG_GEN 533 

2.1.3 Computes the generalized eigenvalues of an  

n × n matrix pencil, Av = Bv ................................ LIN_GEIG_GEN 542 

2.2. Eigenvalues and (Optionally) Eigenvectors of Ax = x 

2.2.1 Real General Problem Ax = x  
All eigenvalues ..................................................................... EVLRG 549 
All eigenvalues and eigenvectors ....................................... EVCRG 552 
Performance index ................................................................ EPIRG 555 

2.2.2 Complex General Problem Ax = x 
All eigenvalues ..................................................................... EVLCG 557 
All eigenvalues and eigenvectors ....................................... EVCCG 559 
Performance index ................................................................ EPICG 562 

2.2.3 Real Symmetric Problem Ax = x 
All eigenvalues ......................................................................EVLSF 564 
All eigenvalues and eigenvectors ........................................ EVCSF 566 
Extreme eigenvalues ........................................................... EVASF 568 
Extreme eigenvalues and their eigenvectors ....................... EVESF 570 
Eigenvalues in an interval .................................................... EVBSF 573 
Eigenvalues in an interval and their eigenvectors ............... EVFSF 575 
Performance index .................................................................EPISF 578 

2.2.4 Real Band Symmetric Matrices in Band Storage Mode 
All eigenvalues ..................................................................... EVLSB 580 
All eigenvalues and eigenvectors ........................................ EVCSB 582 
Extreme eigenvalues ........................................................... EVASB 585 
Extreme eigenvalues and their eigenvectors ....................... EVESB 588 
Eigenvalues in an interval .................................................... EVBSB 591 
Eigenvalues in an interval and their eigenvectors ............... EVFSB 593 
Performance index ................................................................ EPISB 596 
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2.2.5 Complex Hermitian Matrices 
All eigenvalues ..................................................................... EVLHF 598 
All eigenvalues and eigenvectors ........................................ EVCHF 601 
Extreme eigenvalues ........................................................... EVAHF 604 
Extreme eigenvalues and their eigenvectors ...................... EVEHF 606 
Eigenvalues in an interval ................................................... EVBHF 609 
Eigenvalues in an interval and their eigenvectors ................ EVFHF 612 
Performance index ................................................................ EPIHF 615 

2.2.6 Real Upper Hessenberg Matrices 
All eigenvalues .................................................................... EVLRH 617 
All eigenvalues and eigenvectors ........................................ EVCRH 619 

2.2.7 Complex Upper Hessenberg Matrices 
All eigenvalues .................................................................... EVLCH 621 
All eigenvalues and eigenvectors ........................................ EVCCH 623 

2.3. Eigenvalues and (Optionally) Eigenvectors of Ax = Bx 

2.3.1 Real General Problem Ax = Bx 
All eigenvalues .................................................................... GVLRG 626 
All eigenvalues and eigenvectors ....................................... GVCRG 629 
Performance index ............................................................... GPIRG 632 

2.3.2 Complex General Problem Ax = Bx 
All eigenvalues .................................................................... GVLCG 634 
All eigenvalues and eigenvectors ....................................... GVCCG 637 
Performance index ............................................................... GPICG 640 

2.3.3 Real Symmetric Problem Ax = Bx 
All eigenvalues .................................................................... GVLSP 642 
All eigenvalues and eigenvectors ........................................ GVCSP 645 
Performance index ............................................................... GPISP 648 

2.4. Eigenvalues and Eigenvectors Computed with ARPACK 
Fortran 2003 Usage .......................................................................  651 
The Base Class ......................................................  ARPACKBASE 653 

Real Symmetric Problem Ax = Bx ........... ARPACK_SYMMETRIC 654 
Real singular value decomposition AV = US .......... ARPACK_SVD 668 

Real General Problem Ax = Bx ....... ARPACK_NONSYMMETRIC 676 

Complex General Problem Ax = Bx ............ ARPACK_COMPLEX 685 

Usage Notes 
This chapter includes routines for linear eigensystem analysis. Many of these are for matrices with 

special properties. Some routines compute just a portion of the eigensystem. Use of the 

appropriate routine can substantially reduce computing time and storage requirements compared to 

computing a full eigensystem for a general complex matrix. 

An ordinary linear eigensystem problem is represented by the equation Ax = x where A denotes 

an n n  matrix. The value  is an eigenvalue and x ≠ 0 is the corresponding eigenvector. The 

eigenvector is determined up to a scalar factor. In all routines, we have chosen this factor so that x 



 

 

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis  523 

     

     

 

has Euclidean length with value one, and the component of x of smallest index and largest 

magnitude is positive. In case x is a complex vector, this largest component is real and positive. 

Similar comments hold for the use of the remaining Level 1 routines in the following tables in 

those cases where the second character of the Level 2 routine name is no longer the character "2".  

A generalized linear eigensystem problem is represented by Ax = Bx where A and B are n × n 

matrices. The value  is an eigenvalue, and x is the corresponding eigenvector. The eigenvectors 

are normalized in the same manner as for the ordinary eigensystem problem. The linear 

eigensystem routines have names that begin with the letter ―E‖. The generalized linear 

eigensystem routines have names that begin with the letter ―G‖. This prefix is followed by a two-

letter code for the type of analysis that is performed. That is followed by another two-letter suffix 

for the form of the coefficient matrix. The following tables summarize the names of the 

eigensystem routines. 

 

Symmetric and Hermitian Eigensystems 

 Symmetric 
Full 

Symmetric 
Band 

Hermitian 
Full 

All eigenvalues EVLSF EVLSB EVLHF 

All eigenvalues 

and eigenvectors 

EVCSF EVCSB EVCHF 

Extreme eigenvalues EVASF EVASB EVAHF 

Extreme eigenvalues 

and eigenvectors 

EVESF EVESB EVEHF 

Eigenvalues in 

an interval 

EVBSF EVBSB EVBHF 

Eigenvalues and  

eigevectors in an interval 

EVFSF EVFSB EVFHF 

Performance index EPISF EPISB EPIHF 

 

General Eigensystems 

 Real 
General 

Complex 
General 

Real 
Hessenberg 

Complex 
Hessenberg 

All eigenvalues EVLRG EVLCG EVLRH EVLCH 

All eigenvalues 

and eigenvectors 

EVCRG EVCCG EVCRH EVCCH 

Performance 

index 

EPIRG EPICG EPIRG EPICG 
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Generalized Eigensystems Ax = Bx 

 Real 
General 

Complex 
General 

A Symmetric 
B Positive 

Definite 

All eigenvalues GVLRG GVLCG GVLSP 

All eigenvalues and 

eigenvectors 

GVCRG GVCCG GVCSP 

Performance index GPIRG GPICG GPISP 

Error Analysis and Accuracy 

The remarks in this section are for the ordinary eigenvalue problem. Except in special cases, 

routines will not return the exact eigenvalue-eigenvector pair for the ordinary eigenvalue problem 

Ax = x. The computed pair  

,x 
 

is an exact eigenvector-eigenvalue pair for a ―nearby‖ matrix A + E. Information about E is known 

only in terms of bounds of the form || E||2 ≤ (n) ||A||2 ε. The value of (n) depends on the 

algorithm but is typically a small fractional power of n. The parameter ε is the machine precision. 

By a theorem due to Bauer and Fike (see Golub and Van Loan [1989, page 342]), 

   
2

min for all  in AX E     
 

where σ (A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of 

eigenvectors, ||  ||2 is the 2-norm, and κ(X) is the condition number of X defined as  

κ (X) = || X ||2 || X-1
 ||2. If A is a real symmetric or complex Hermitian matrix, then its eigenvector 

matrix X is respectively orthogonal or unitary. For these matrices, κ(X) = 1. 

The eigenvalues  

j  

and eigenvectors  

jx
 

computed by EVC** can be checked by computing their performance index τ using EPI**. The 

performance index is defined by Smith et al. (1976, pages 124− 126) to be 

1

1
1 1

max
10

j j j

j n
j

Ax x

n A x




 




 

No significance should be attached to the factor of 10 used in the denominator. For a real vector x, 

the symbol || x ||1 represents the usual 1-norm of x. For a complex vector x, the symbol || x ||1 is 

defined by 
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The performance index τ is related to the error analysis because 

2 2j j j jEx Ax x 
 

where E is the ―nearby‖ matrix discussed above. 

While the exact value of τ is machine and precision dependent, the performance of an eigensystem 

analysis routine is defined as excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. This is an 

arbitrary definition, but large values of τ can serve as a warning that there is a blunder in the 

calculation. There are also similar routines GPI** to compute the performance index for 

generalized eigenvalue problems. 

If the condition number κ(X) of the eigenvector matrix X is large, there can be large errors in the 

eigenvalues even if τ is small. In particular, it is often difficult to recognize near multiple 

eigenvalues or unstable mathematical problems from numerical results. This facet of the 

eigenvalue problem is difficult to understand: A user often asks for the accuracy of an individual 

eigenvalue. This can be answered approximately by computing the condition number of an 

individual eigenvalue. See Golub and Van Loan (1989, pages 344-345). For matrices A such that 

the computed array of normalized eigenvectors X is invertible, the condition number of j is κj  

the Euclidean length of row j of the inverse matrix X
-1

. Users can choose to compute this matrix 

with routine LINCG, see Chapter 1, Linear Systems. An approximate bound for the accuracy of a 

computed eigenvalue is then given by κj ε|| A ||.  To compute an approximate bound for the 

relative accuracy of an eigenvalue, divide this bound by | j |. 

Reformulating Generalized Eigenvalue Problems 

The generalized eigenvalue problem Ax = Bx is often difficult for users to analyze because it is 

frequently ill-conditioned. There are occasionally changes of variables that can be performed on 

the given problem to ease this ill-conditioning. Suppose that B is singular but A is nonsingular. 

Define the reciprocal μ = -1
.  Then, the roles of A and B are interchanged so that the reformulated 

problem  

Bx = μAx is solved. Those generalized eigenvalues μj = 0 correspond to eigenvalues j = ∞. The 

remaining  

1
j j 

 

The generalized eigenvectors for j correspond to those for μj. Other reformulations can be made: 

If B is nonsingular, the user can solve the ordinary eigenvalue problem Cx  B-1
 Ax = x. This is 

not recommended as a computational algorithm for two reasons. First, it is generally less efficient 

than solving the generalized problem directly. Second, the matrix C will be subject to 

perturbations due to ill-conditioning and rounding errors when computing B-1
 A. Computing the 

condition numbers of the eigenvalues for C may, however, be helpful for analyzing the accuracy 

of results for the generalized problem. 

There is another method that users can consider to reduce the generalized problem to an alternate 

ordinary problem. This technique is based on first computing a matrix decomposition B = PQ, 

where both P and Q are matrices that are ―simple‖ to invert. Then, the given generalized problem 
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is equivalent to the ordinary eigenvalue problem Fy = y. The matrix F  P-1
 AQ-1

. The 

unnormalized eigenvectors of the generalized problem are given by x = Q-1
 y. An example of this 

reformulation is used in the case where A and B are real and symmetric with B positive definite. 

The IMSL routines GVLSP and GVCSP use P = R
T
 and Q = R where R is an upper triangular matrix 

obtained from a Cholesky decomposition, B = R
T
R. The matrix F = R-T AR-1

 is symmetric and 

real. Computation of the eigenvalue-eigenvector expansion for F is based on routine EVCSF. 

Using ARPACK for Ordinary and Generalized Eigenvalue Problems 

ARPACK consists of a set of Fortran 77 subroutines which use the Arnoldi method (Sorensen, 

1992) to solve eigenvalue problems. ARPACK is well suited for large structured eigenvalue 

problems where structured means that a matrix-vector product w← Av requires O(n) rather than 

the usual O(n
2
) floating point operations. 

The suite of features that we have implemented from ARPACK are described in the work of 

Lehoucq, Sorensen and Yang, ARPACK Users’ Guide, SIAM Publications, (1998).  Users will 

find access to this Guide helpful.  Due to the size of the package, we provide for the use of double 

precision real and complex arithmetic only. 

The ARPACK computational algorithm computes a partial set of approximate eigenvalues or 

singular values for various classes of problems.  This includes the ordinary problem, Ax x , 

the generalized problem, Ax Bx , and the singular value decomposition, 
TA USV . 

The original API for ARPACK is a Reverse Communication Interface. This interface can be used 

as illustrated in the Guide. However, we provide a Fortran 2003 interface to ARPACK that will be 

preferred by some users. This is a forward communication interface based on user-written 

functions for matrix-vector products or linear equation solving steps required by the algorithms in 

ARPACK.  It is not necessary that the linear operators be expressed as dense or sparse matrices.  

That is permitted, but for some problems the best approach is the ability to form a product of the 

operator with a vector. 

The forward communication interface includes an argument of a user-extended derived type or 

class object.  The intent of producing this argument is that an extended type provides access to 

threaded user data or other required information, including procedure pointers, for use in the user-

written product functions.  It also hides information that can often be ignored with a first use. 

LIN_EIG_SELF 
Computes the eigenvalues of a self-adjoint (i.e. real symmetric or complex Hermitian) matrix, A. 

Optionally, the eigenvectors can be computed. This gives the decomposition A = VDV
T
 , where V 

is an n × n orthogonal matrix and D is a real diagonal matrix. 

Required Arguments 

A —    Array of size n × n containing the matrix. (Input [/Output]) 

D —    Array of size n containing the eigenvalues. The values are in order of decreasing 

absolute value. (Output) 
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Optional Arguments 

NROWS = n   (Input) 

Uses array A(1:n, 1:n) for the input matrix. 

Default: n = size(A, 1) 

v = v(:,:)   (Output) 

Array of the same type and kind as A(1:n, 1:n). It contains the n × n orthogonal matrix 

V. 

iopt = iopt(:)   (Input) 

Derived type array with the same precision as the input matrix; used for passing 

optional data to the routine. The options are as follows: 

 

Packaged Options for LIN_EIG_SELF 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ Lin_eig_self_set_small 1 

s_, d_, c_, z_ Lin_eig_self_overwrite_input 2 

s_, d_, c_, z_ Lin_eig_self_scan_for_NaN 3 

s_, d_, c_, z_ Lin_eig_self_use_QR 4 

s_, d_, c_, z_ Lin_eig_self_skip_Orth 5 

s_, d_, c_, z_ Lin_eig_self_use_Gauss_elim 6 

s_, d_, c_, z_ Lin_eig_self_set_perf_ratio 7 

iopt(IO) = ?_options(?_lin_eig_self_set_small, Small) 

If a denominator term is smaller in magnitude than the value Small, it is replaced by 

Small. 

Default: the smallest number that can be reciprocated safely 

iopt(IO) = ?_options(?_lin_eig_self_overwrite_input, ?_dummy) 

Do not save the input array A(:, :). 

iopt(IO) = ?_options(?_lin_eig_self_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that 

 isNaN(a(i,j)) == .true.  

 See the isNaN() function, Chapter 10. 

Default: The array is not scanned for NaNs. 

iopt(IO) = ?_options(?_lin_eig_use_QR, ?_dummy) 

Uses a rational QR algorithm to compute eigenvalues. Accumulate the eigenvectors 

using this algorithm. 

Default: the eigenvectors computed using inverse iteration 

iopt(IO) = ?_options(?_lin_eig_skip_Orth, ?_dummy) 

If the eigenvalues are computed using inverse iteration, skips the final 
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orthogonalization of the vectors. This will result in a more efficient computation but 

the eigenvectors, while a complete set, may be far from orthogonal. 

Default: the eigenvectors are normally orthogonalized if obtained using inverse 

iteration. 

iopt(IO) = ?_options(?_lin_eig_use_Gauss_elim, ?_dummy) 

If the eigenvalues are computed using inverse iteration, uses standard elimination with 

partial pivoting to solve the inverse iteration problems. 

Default: the eigenvectors computed using cyclic reduction 

iopt(IO) = ?_options(?_lin_eig_self_set_perf_ratio, perf_ratio) 

Uses residuals for approximate normalized eigenvectors if they have a performance 

index no larger than perf_ratio. Otherwise an alternate approach is taken and the 

eigenvectors are computed again: Standard elimination is used instead of cyclic 

reduction, or the standard QR algorithm is used as a backup procedure to inverse 

iteration. Larger values of perf_ratio are less likely to cause these exceptions. 

Default: perf_ratio = 4 

FORTRAN 90 Interface 

Generic: CALL LIN_EIG_SELF (A, D [,…]) 

Specific: The specific interface names are S_LIN_EIG_SELF, D_LIN_EIG_SELF, 

C_LIN_EIG_SELF, and Z_LIN_EIG_SELF. 

Description 

Routine LIN_EIG_SELF is an implementation of the QR algorithm for self-adjoint matrices. An 

orthogonal similarity reduction of the input matrix to self-adjoint tridiagonal form is performed. 

Then, the eigenvalue-eigenvector decomposition of a real tridiagonal matrix is calculated. The ex-

pansion of the matrix as AV = VD results from a product of these matrix factors. See Golub and 

Van Loan (1989, Chapter 8) for details. 

Fatal, Terminal, and Warning Error Messages 

See the messages.gls file for error messages for LIN_EIG_SELF. These error messages are 

numbered 8190; 101110; 121129; 141149. 

Example 1: Computing Eigenvalues 

The eigenvalues of a self-adjoint matrix are computed. The matrix A = C+C
T
 is used, where C is 

random. The magnitudes of eigenvalues of A agree with the singular values of A. Also, see 

operator_ex25, supplied with the product examples. 
 

      use lin_eig_self_int  

      use lin_sol_svd_int  

      use rand_gen_int  

  

      implicit none  
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! This is Example 1 for LIN_EIG_SELF.  

  

      integer, parameter :: n=64  

      real(kind(1e0)), parameter :: one=1e0  

      real(kind(1e0)) :: A(n,n), b(n,0), D(n), S(n), x(n,0), y(n*n)  

  

! Generate a random matrix and from it   

! a self-adjoint matrix.  

      call rand_gen(y)  

      A = reshape(y,(/n,n/))  

      A = A + transpose(A)  

  

! Compute the eigenvalues of the matrix.  

      call lin_eig_self(A, D)  

  

! For comparison, compute the singular values.  

      call lin_sol_svd(A, b, x, nrhs=0, s=S)  

  

! Check the results:  Magnitude of eigenvalues should equal  

! the singular values.  

  

      if (sum(abs(abs(D) - S)) <= &  

           sqrt(epsilon(one))*S(1)) then  

         write (*,*) 'Example 1 for LIN_EIG_SELF is correct.'  

      end if  

      end  

Output 
 

Example 1 for LIN_EIG_SELF is correct. 

Additional Examples 

Example 2: Eigenvalue-Eigenvector Expansion of a Square Matrix 

A self-adjoint matrix is generated and the eigenvalues and eigenvectors are computed. Thus,  

A = VDV
T
, where V is orthogonal and D is a real diagonal matrix. The matrix V is obtained using 

an optional argument. Also, see operator_ex26, Chapter 10. 
 

      use lin_eig_self_int  

      use rand_gen_int  

  

      implicit none  

! This is Example 2 for LIN_EIG_SELF.  

  

      integer, parameter :: n=8  

      real(kind(1e0)), parameter :: one=1e0  

      real(kind(1e0)) :: a(n,n), d(n), v_s(n,n), y(n*n)  

  

! Generate a random self-adjoint matrix.  

      call rand_gen(y)  

      a = reshape(y,(/n,n/))  

      a = a + transpose(a)  

! Compute the eigenvalues and eigenvectors.  

      call lin_eig_self(a, d, v=v_s)  

! Check the results for small residuals.  
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      if (sum(abs(matmul(a,v_s)-v_s*spread(d,1,n)))/d(1) <= &  

             sqrt(epsilon(one))) then  

         write (*,*) 'Example 2 for LIN_EIG_SELF is correct.'  

      end if  

      end  

Output 
 

Example 2 for LIN_EIG_SELF is correct. 

Example 3: Computing a few Eigenvectors with Inverse Iteration 

A self-adjoint n × n matrix is generated and the eigenvalues,  id , are computed. The 

eigenvectors associated with the first k of these are computed using the self-adjoint solver, 

lin_sol_self, and inverse iteration. With random right-hand sides, these systems are as 

follows: 

 A d I v b
i i i

 
 

The solutions are then orthogonalized as in Hanson et al. (1991) to comprise a partial decomposition  

AV = VD where V is an n × k matrix resulting from the orthogonalized  iv  and D is the k × k 

diagonal matrix of the distinguished eigenvalues. It is necessary to suppress the error message when 

the matrix is singular. Since these singularities are desirable, it is appropriate to ignore the 

exceptions and not print the message text. Also, see operator_ex27, supplied with the product 

examples. 
 

      use lin_eig_self_int  

      use lin_sol_self_int  

      use rand_gen_int  

      use error_option_packet  

  

      implicit none  

  

! This is Example 3 for LIN_EIG_SELF.  

  

      integer i, j  

      integer, parameter :: n=64, k=8  

      real(kind(1d0)), parameter :: one=1d0, zero=0d0  

      real(kind(1d0)) big, err  

      real(kind(1d0)) :: a(n,n), b(n,1), d(n), res(n,k), temp(n,n), &  

              v(n,k), y(n*n)  

      type(d_options) :: iopti(2)=d_options(0,zero)  

  

! Generate a random self-adjoint matrix.  

      call rand_gen(y)  

      a = reshape(y,(/n,n/))  

      a = a + transpose(a)  

 

! Compute just the eigenvalues.  

      call lin_eig_self(a, d)  

  

      do i=1, k  
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! Define a temporary array to hold the matrices A - eigenvalue*I.  

         temp = a  

         do j=1, n  

            temp(j,j) = temp(j,j) - d(i)  

         end do  

  

! Use packaged option to reset the value of a small diagonal.  

         iopti(1) = d_options(d_lin_sol_self_set_small,&  

                    epsilon(one)*abs(d(i)))  

  

! Use packaged option to skip singularity messages.  

         iopti(2) = d_options(d_lin_sol_self_no_sing_mess,&  

                    zero)  

         call rand_gen(b(1:n,1))  

         call lin_sol_self(temp, b, v(1:,i:i),&  

              iopt=iopti)  

      end do  

  

! Orthogonalize the eigenvectors.  

      do i=1, k  

         big = maxval(abs(v(1:,i)))  

         v(1:,i) = v(1:,i)/big  

         v(1:,i) = v(1:,i)/sqrt(sum(v(1:,i)**2))  

         if (i == k) cycle  

         v(1:,i+1:k) = v(1:,i+1:k) + &  

               spread(-matmul(v(1:,i),v(1:,i+1:k)),1,n)* &  

               spread(v(1:,i),2,k-i)  

      end do  

      do i=k-1, 1, -1  

         v(1:,i+1:k) = v(1:,i+1:k) + &  

               spread(-matmul(v(1:,i),v(1:,i+1:k)),1,n)* &  

               spread(v(1:,i),2,k-i)  

      end do  

  

! Check the results for both orthogonality of vectors and small   

! residuals.  

      res(1:k,1:k) = matmul(transpose(v),v)  

      do i=1,k  

         res(i,i)=res(i,i)-one  

      end do  

      err = sum(abs(res))/k**2  

      res = matmul(a,v) - v*spread(d(1:k),1,n)  

      if (err <= sqrt(epsilon(one))) then  

         if (sum(abs(res))/abs(d(1)) <= sqrt(epsilon(one))) then  

            write (*,*) 'Example 3 for LIN_EIG_SELF is correct.'  

         end if  

      end if  

      end  

Output 
 

Example 3 for LIN_EIG_SELF is correct. 
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Example 4: Analysis and Reduction of a Generalized Eigensystem 

A generalized eigenvalue problem is Ax = Bx, where A and B are n × n self-adjoint matrices. The 

matrix B is positive definite. This problem is reduced to an ordinary self-adjoint eigenvalue 

problem Cy = y by changing the variables of the generalized problem to an equivalent form. The 

eigenvalue-eigenvector decomposition B = VSV
T
 is first computed, labeling an eigenvalue too 

small if it is less than epsilon(1.d0). The ordinary self-adjoint eigenvalue problem is Cy = y 

provided that the rank of B, based on this definition of Small, has the value n. In that case, 

TC DV AVD  

where  

1/ 2D S   

The relationship between x and y is summarized as X = VDY, computed after the ordinary 

eigenvalue problem is solved for the eigenvectors Y of C. The matrix X is normalized so that each 

column has Euclidean length of value one. This solution method is nonstandard for any but the 

most  

ill-conditioned matrices B. The standard approach is to compute an ordinary self-adjoint problem 

following computation of the Cholesky decomposition 

TB R R  

where R is upper triangular. The computation of C can also be completed efficiently by exploiting 

its self-adjoint property. See Golub and Van Loan (1989, Chapter 8) for more information. Also, 

see operator_ex28, Chapter 10. 
  

      use lin_eig_self_int  

      use rand_gen_int  

      implicit none  

  

! This is Example 4 for LIN_EIG_SELF.  

  

      integer i  

      integer, parameter :: n=64  

      real(kind(1e0)), parameter :: one=1d0  

      real(kind(1e0)) b_sum  

      real(kind(1e0)), dimension(n,n) :: A, B, C, D(n), lambda(n), &  

               S(n), vb_d, X, ytemp(n*n), res  

  

  

! Generate random self-adjoint matrices.  

      call rand_gen(ytemp)  

      A = reshape(ytemp,(/n,n/))  

      A = A + transpose(A)  

      

      call rand_gen(ytemp)  

      B = reshape(ytemp,(/n,n/))  

      B = B + transpose(B)  

  

      b_sum = sqrt(sum(abs(B**2))/n)  

  

! Add a scalar matrix so B is positive definite.  
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      do i=1, n  

         B(i,i) = B(i,i) + b_sum  

      end do  

  

! Get the eigenvalues and eigenvectors for B.  

  

      call lin_eig_self(B, S, v=vb_d)  

  

! For full rank problems, convert to an ordinary self-adjoint   

! problem.  (All of these examples are full rank.)  

      if (S(n) > epsilon(one)) then  

  

         D = one/sqrt(S)  

  

         C = spread(D,2,n)*matmul(transpose(vb_d), &  

                matmul(A,vb_d))*spread(D,1,n)  

  

! Get the eigenvalues and eigenvectors for C.  

         call lin_eig_self(C, lambda, v=X)  

  

! Compute the generalized eigenvectors.  

         X = matmul(vb_d,spread(D,2,n)*X)  

  

! Normalize the eigenvectors for the generalized problem.  

         X = X * spread(one/sqrt(sum(X**2,dim=2)),1,n)  

  

         res =  matmul(A,X) - &  

               matmul(B,X)*spread(lambda,1,n)       

  

! Check the results.  

         if (sum(abs(res))/(sum(abs(A))+sum(abs(B))) <= &  

            sqrt(epsilon(one))) then  

            write (*,*) 'Example 4 for LIN_EIG_SELF is correct.'  

         end if  

end if  

end  

Output 
 

Example 4 for LIN_EIG_SELF is correct. 

LIN_EIG_GEN 

 

 

 

Computes the eigenvalues of an n × n matrix, A. Optionally, the eigenvectors of A or A
T
 are 

computed. Using the eigenvectors of A gives the decomposition AV = VE, where V is an n × n 

complex matrix of eigenvectors, and E is the complex diagonal matrix of eigenvalues. Other 

options include the reduction of A to upper triangular or Schur form, reduction to block upper 
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triangular form with 2 × 2 or unit sized diagonal block matrices, and reduction to upper 

Hessenberg form. 

Required Arguments 

A —    Array of size n × n containing the matrix. (Input [/Output]) 

E —    Array of size n containing the eigenvalues. These complex values are in order of 

decreasing absolute value. The signs of imaginary parts of the eigenvalues are in no 

predictable order. (Output) 

Optional Arguments 

NROWS = n   (Input) 

Uses array A(1:n, 1:n) for the input matrix. 

Default: n = SIZE(A, 1) 

v = V(:,:)   (Output) 

Returns the complex array of eigenvectors for the matrix A.  

v_adj = U(:,:)   (Output) 

Returns the complex array of eigenvectors for the matrix A
T
.  Thus the residuals  

TS A U UE   

are small.  

tri = T(:,:)   (Output) 

Returns the complex upper-triangular matrix T associated with the reduction of the 

matrix A to Schur form. Optionally a unitary matrix W is returned in array V(:,:) 

such that the residuals Z = AW  WT are small.  

iopt = iopt(:)   (Input) 

Derived type array with the same precision as the input matrix. Used for passing 

optional data to the routine. The options are as follows: 

Packaged Options for LIN_EIG_GEN 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_eig_gen_set_small 1 

s_, d_, c_, z_ lin_eig_gen_overwrite_input 2 

s_, d_, c_, z_ lin_eig_gen_scan_for_NaN 3 

s_, d_, c_, z_ lin_eig_gen_no_balance 4 

s_, d_, c_, z_ lin_eig_gen_set_iterations 5 

s_, d_, c_, z_ lin_eig_gen_in_Hess_form 6 

s_, d_, c_, z_ lin_eig_gen_out_Hess_form 7 
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Packaged Options for LIN_EIG_GEN 

s_, d_, c_, z_ lin_eig_gen_out_block_form 8 

s_, d_, c_, z_ lin_eig_gen_out_tri_form 9 

s_, d_, c_, z_ lin_eig_gen_continue_with_V 10 

s_, d_, c_, z_ lin_eig_gen_no_sorting 11 

iopt(IO) = ?_options(?_lin_eig_gen_set_small, Small) 

This is the tolerance used to declare off-diagonal values effectively zero compared with 

the size of the numbers involved in the computation of a shift. 

Default: Small = epsilon(), the relative accuracy of arithmetic 

iopt(IO) = ?_options(?_lin_eig_gen_overwrite_input, ?_dummy) 

Does not save the input array A(:, :).  

Default: The array is saved. 

iopt(IO) = ?_options(?_lin_eig_gen_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that  

isNaN(a(i,j)) == .true..  

See the isNaN() function, Chapter 10. 

Default: The array is not scanned for NaNs. 

iopt(IO) = ?_options(?_lin_eig_no_balance, ?_dummy) 

The input matrix is not preprocessed searching for isolated eigenvalues followed by 

rescaling. See Golub and Van Loan (1989, Chapter 7) for references. With some 

optional uses of the routine, this option flag is required. 

Default: The matrix is first balanced. 

iopt(IO) = ?_options(?_lin_eig_gen_set_iterations, ?_dummy) 

Resets the maximum number of iterations permitted to isolate each diagonal block 

matrix. 

Default: The maximum number of iterations is 52. 

iopt(IO) = ?_options(?_lin_eig_gen_in_Hess_form, ?_dummy) 

The input matrix is in upper Hessenberg form. This flag is used to avoid the initial 

reduction phase which may not be needed for some problem classes. 

Default: The matrix is first reduced to Hessenberg form. 

iopt(IO) = ?_options(?_lin_eig_gen_out_Hess_form, ?_dummy) 

The output matrix is transformed to upper Hessenberg form, 1H .  If the optional 

argument ―v=V(:,:)‖ is passed by the calling program unit, then the array V(:,:) 

contains an orthogonal matrix 1Q  such that  

1 1 1 0AQ Q H 
 

Requires the simultaneous use of option ?_lin_eig_no_balance. 

Default: The matrix is reduced to diagonal form. 
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iopt(IO) = ?_options(?_lin_eig_gen_out_block_form, ?_dummy) 

The output matrix is transformed to upper Hessenberg form, 2H , which is block upper 

triangular. The dimensions of the blocks are either 2 × 2 or unit sized. Nonzero 

subdiagonal values of 2H  determine the size of the blocks. If the optional argument 

―v=V(:,:)‖ is passed by the calling program unit, then the array V(:,:) contains an 

orthogonal matrix 2Q  such that  

2 2 2 0AQ Q H 
 

Requires the simultaneous use of option ?_lin_eig_no_balance. 

Default: The matrix is reduced to diagonal form. 

iopt(IO) = ?_options(?_lin_eig_gen_out_tri_form, ?_dummy) 

The output matrix is transformed to upper-triangular form, T. If the optional argument 

―v=V(:,:)‖ is passed by the calling program unit, then the array V(:,:) contains a 

unitary matrix W such that  

AW  WT  0. The upper triangular matrix T is returned in the optional argument 

―tri=T(:,:)‖.  The eigenvalues of A are the diagonal entries of the matrix T . They 

are in no particular order. The output array E(:)is blocked with NaNs using this 

option. This option requires the simultaneous use of option ?_lin_eig_no_balance. 

Default: The matrix is reduced to diagonal form. 

iopt(IO) = ?_options(?_lin_eig_gen_continue_with_V, ?_dummy) 

As a convenience or for maintaining efficiency, the calling program unit sets the 

optional argument ―v=V(:,:)‖ to a matrix that has transformed a problem to the 

similar matrix, A . The contents of V(:,:) are updated by the transformations used in 

the algorithm. Requires the simultaneous use of option ?_lin_eig_no_balance. 

Default: The array V(:,:) is initialized to the identity matrix. 

iopt(IO) = ?_options(?_lin_eig_gen_no_sorting, ?_dummy) 

Does not sort the eigenvalues as they are isolated by solving the 2 × 2 or unit sized 

blocks. This will have the effect of guaranteeing that complex conjugate pairs of 

eigenvalues are adjacent in the array E(:). 

Default: The entries of E(:) are sorted so they are non-increasing in absolute value. 

FORTRAN 90 Interface 

Generic: CALL LIN_EIG_GEN (A, E [,…]) 

 Specific: The specific interface names are S_LIN_EIG_GEN, D_LIN_EIG_GEN, 

C_LIN_EIG_GEN, and Z_LIN_EIG_GEN. 

Description 

The input matrix A is first balanced. The resulting similar matrix is transformed to upper Hessen-

berg form using orthogonal transformations. The double-shifted QR algorithm transforms the Hes-
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senberg matrix so that 2 × 2 or unit sized blocks remain along the main diagonal. Any off-diagonal 

that is classified as ―small‖ in order to achieve this block form is set to the value zero. Next the 

block upper triangular matrix is transformed to upper triangular form with unitary rotations. The 

eigenvectors of the upper triangular matrix are computed using back substitution. Care is taken to 

avoid overflows during this process. At the end, eigenvectors are normalized to have Euclidean 

length one, with the largest component real and positive. This algorithm follows that given in 

Golub and Van Loan, (1989, Chapter 7), with some novel organizational details for additional 

options, efficiency and robustness. 

Fatal, Terminal, and Warning Error Messages 

See the messages.gls file for error messages for LIN_EIG_GEN. These error messages are 

numbered 841858; 861878; 881898; 901918. 

Example 1: Computing Eigenvalues 

The eigenvalues of a random real matrix are computed. These values define a complex diagonal 

matrix E. Their correctness is checked by obtaining the eigenvector matrix V and verifying that the 

residuals R = AV  VE are small. Also, see operator_ex29, supplied with the product examples. 
 

      use lin_eig_gen_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 1 for LIN_EIG_GEN.  

  

      integer, parameter :: n=32  

      real(kind(1d0)), parameter :: one=1d0  

      real(kind(1d0)) A(n,n), y(n*n), err  

      complex(kind(1d0)) E(n), V(n,n), E_T(n)  

      type(d_error) :: d_epack(16) = d_error(0,0d0)  

  

! Generate a random matrix.  

      call rand_gen(y)  

      A = reshape(y,(/n,n/))  

  

! Compute only the eigenvalues.  

      call lin_eig_gen(A, E)  

  

! Compute the decomposition, A*V = V*values,   

! obtaining eigenvectors.  

      call lin_eig_gen(A, E_T, v=V)  

  

! Use values from the first decomposition, vectors from the   

! second decomposition, and check for small residuals.  

      err = sum(abs(matmul(A,V) - V*spread(E,DIM=1,NCOPIES=n))) &  

                / sum(abs(E))  

      if (err  <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 1 for LIN_EIG_GEN is correct.'  

      end if  

  

      end   
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Output 
 

Example 1 for LIN_EIG_GEN is correct. 

Additional Examples 

Example 2: Complex Polynomial Equation Roots 

The roots of a complex polynomial equation, 

 
1

0
n

n k n
k

k

f z b z z



  
 

are required. This algebraic equation is formulated as a matrix eigenvalue problem. The equivalent 

matrix eigenvalue problem is solved using the upper Hessenberg matrix which has the value zero 

except in row number 1 and along the first subdiagonal. The entries in the first row are given by 

a1,j = bj, i = 1, …, n, while those on the first subdiagonal have the value one. This is a companion 

matrix for the polynomial. The results are checked by testing for small values of |f(ei)|, i = 1, …, n, 

at the eigenvalues of the matrix, which are the roots of f(z). Also, see operator_ex30, supplied 

with the product examples. 
 

      use lin_eig_gen_int  

      use rand_gen_int  

  

      implicit none  

! This is Example 2 for LIN_EIG_GEN.  

  

      integer i  

      integer, parameter :: n=12  

      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  

      real(kind(1d0)) err, t(2*n)  

      type(d_options) :: iopti(1)=d_options(0,zero)  

      complex(kind(1d0)) a(n,n), b(n), e(n), f(n), fg(n)  

        

      call rand_gen(t)  

      b = cmplx(t(1:n),t(n+1:),kind(one))  

  

! Define the companion matrix with polynomial coefficients   

! in the first row.  

  

      a = zero  

  

      do i=2, n  

         a(i,i-1) = one  

      end do  

  

      a(1,1:n) = -b  

  

! Note that the input companion matrix is upper Hessenberg.  

      iopti(1) = d_options(z_lin_eig_gen_in_Hess_form,zero)  

  

! Compute complex eigenvalues of the companion matrix.  
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      call lin_eig_gen(a, e, iopt=iopti)  

  

      f=one; fg=one  

        

! Use Horner's method for evaluation of the complex polynomial   

! and size gauge at all roots.  

    

      do i=1, n  

         f = f*e + b(i)  

         fg = fg*abs(e) + abs(b(i))  

      end do  

  

! Check for small errors at all roots.  

  

      err = sum(abs(f/fg))/n  

      if (err <= sqrt(epsilon(one))) then   

         write (*,*) 'Example 2 for LIN_EIG_GEN is correct.'  

      end if  

      end   

Output 
 

Example 2 for LIN_EIG_GEN is correct. 

Example 3: Solving Parametric Linear Systems with a Scalar Change 

The efficient solution of a family of linear algebraic equations is required. These systems are  

(A + hI)x = b. Here A is an n × n real matrix, I is the identity matrix, and b is the right-hand side 

matrix. The scalar h is such that the coefficient matrix is nonsingular. The method is based on the 

Schur form for matrix A: AW = WT, where W is unitary and T is upper triangular. This provides an 

efficient solution method for several values of h, once the Schur form is computed. The solution 

steps solve, for y, the upper triangular linear system 

  TT hI y W b 
 

Then, x = x(h) = Wy. This is an efficient and accurate method for such parametric systems pro-

vided the expense of computing the Schur form has a pay-off in later efficiency. Using the Schur 

form in this way, it is not required to compute an LU factorization of A + hI with each new value 

of h. Note that even if the data A, h, and b are real, subexpressions for the solution may involve 

complex intermediate values, with x(h) finally a real quantity. Also, see operator_ex31, 

supplied with the product examples. 
 

     use lin_eig_gen_int  

      use lin_sol_gen_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 3 for LIN_EIG_GEN.  

  

      integer i  

      integer, parameter :: n=32, k=2  

      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0  

      real(kind(1e0)) a(n,n), b(n,k), x(n,k), temp(n*max(n,k)), h, err  

      type(s_options) :: iopti(2)  
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      complex(kind(1e0)) w(n,n), t(n,n), e(n), z(n,k)  

        

      call rand_gen(temp)  

      a = reshape(temp,(/n,n/))  

  

      call rand_gen(temp)  

      b = reshape(temp,(/n,k/))  

  

      iopti(1) = s_options(s_lin_eig_gen_out_tri_form,zero)  

      iopti(2) = s_options(s_lin_eig_gen_no_balance,zero)  

  

! Compute the Schur decomposition of the matrix.  

  

      call lin_eig_gen(a, e, v=w, tri=t, &  

            iopt=iopti)  

  

! Choose a value so that A+h*I is non-singular.  

      h = one  

  

! Solve for (A+h*I)x=b using the Schur decomposition.  

  

      z = matmul(conjg(transpose(w)),b)  

  

! Solve intermediate upper-triangular system with implicit   

! additive diagonal, h*I.  This is the only dependence on   

! h in the solution process.  

      do i=n,1,-1  

         z(i,1:k) = z(i,1:k)/(t(i,i)+h)  

         z(1:i-1,1:k) = z(1:i-1,1:k) + &  

                        spread(-t(1:i-1,i),dim=2,ncopies=k)* &  

                        spread(z(i,1:k),dim=1,ncopies=i-1)  

      end do  

  

! Compute the solution.  It should be the same as x, but will not be   

! exact due to rounding errors.  (The quantity real(z,kind(one)) is  

! the real-valued answer when the Schur decomposition method is used.)  

  

      z = matmul(w,z)  

  

! Compute the solution by solving for x directly.  

      do i=1, n    

         a(i,i) = a(i,i) + h  

      end do  

        

      call lin_sol_gen(a, b, x)  

  

! Check that x and z agree approximately.  

      err = sum(abs(x-z))/sum(abs(x))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 3 for LIN_EIG_GEN is correct.'  

      end if  

  

      end   
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Output 
 

Example 3 for LIN_EIG_GEN is correct. 

Example 4: Accuracy Estimates of Eigenvalues Using Adjoint and Ordinary 
Eigenvectors 

A matrix A has entries that are subject to uncertainty. This is expressed as the realization that A 

can be replaced by the matrix A + B, where the value  is ―small‖ but still significantly larger 

than machine precision. The matrix B satisfies ||B|| ≤ ||A||. A variation in eigenvalues is estimated 

using analysis found in Golub and Van Loan, (1989, Chapter 7, p. 344). Each eigenvalue and 

eigenvector is expanded in a power series in . With  

 i i ie e e   
 

 

and normalized eigenvectors, the bound 

| |i

i i

A
e

u v


 

is satisfied. The vectors  and i iu v  are the ordinary and adjoint eigenvectors associated 

respectively with ie  and its complex conjugate. This gives an upper bound on the size of the 

change to each ie  due to changing the matrix data.  The reciprocal 

1

i iu v




 

is defined as the condition number of ie .  Also, see operator_ex32, Chapter 10. 

 

      use lin_eig_gen_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 4 for LIN_EIG_GEN.  

  

      integer i  

      integer, parameter :: n=17  

      real(kind(1d0)), parameter :: one=1d0  

      real(kind(1d0)) a(n,n), c(n,n), variation(n), y(n*n), temp(n), &  

              norm_of_a, eta  

      complex(kind(1d0)), dimension(n,n) :: e(n), d(n), u, v  

  

! Generate a random matrix.  

      call rand_gen(y)  

      a = reshape(y,(/n,n/))  

  

! Compute the eigenvalues, left- and right- eigenvectors.  

      call lin_eig_gen(a, e, v=v, v_adj=u)  

  

! Compute condition numbers and variations of eigenvalues.  
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      norm_of_a = sqrt(sum(a**2)/n)  

      do i=1, n  

         variation(i) = norm_of_a/abs(dot_product(u(1:n,i), &  

                                              v(1:n,i)))  

      end do  

        

! Now perturb the data in the matrix by the relative factors   

! eta=sqrt(epsilon) and solve for values again.  Check the   

! differences compared to the estimates.  They should not exceed   

! the bounds.  

  

      eta = sqrt(epsilon(one))  

      do i=1, n  

         call rand_gen(temp)  

         c(1:n,i) = a(1:n,i) + (2*temp - 1)*eta*a(1:n,i)  

      end do  

   

      call lin_eig_gen(c,d)  

  

! Looking at the differences of absolute values accounts for   

! switching signs on the imaginary parts.  

      if (count(abs(d)-abs(e) > eta*variation) == 0) then  

         write (*,*) 'Example 4 for LIN_EIG_GEN is correct.'  

      end if  

  

      end   

Output 
 

Example 4 for LIN_EIG_GEN is correct. 

LIN_GEIG_GEN 

 

 

 

Computes the generalized eigenvalues of an n × n matrix pencil, Av = Bv. Optionally, the 

generalized eigenvectors are computed. If either of A or B is nonsingular, there are diagonal 

matrices α and β, and a complex matrix V, all computed such that AV β = BVα. 

Required Arguments 

A —   Array of size n × n containing the matrix A. (Input [/Output]) 

B —   Array of size n × n containing the matrix B. (Input [/Output]) 

ALPHA —   Array of size n containing diagonal matrix factors of the generalized 

eigenvalues. These complex values are in order of decreasing absolute value. (Output) 
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BETAV —   Array of size n containing diagonal matrix factors of the generalized 

eigenvalues. These real values are in order of decreasing value. (Output) 

Optional Arguments 

NROWS = n   (Input) 

Uses arrays A(1:n, 1:n) and B(1:n, 1:n) for the input matrix pencil. 

Default: n = SIZE(A, 1) 

v = V(:,:)   (Output) 

Returns the complex array of generalized eigenvectors for the matrix pencil.  

iopt = iopt(:)   (Input) 

Derived type array with the same precision as the input matrix. Used for passing 

optional data to the routine. The options are as follows: 

 

Packaged Options for LIN_GEIG_GEN 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_geig_gen_set_small 1 

s_, d_, c_, z_ lin_geig_gen_overwrite_input 2 

s_, d_, c_, z_ lin_geig_gen_scan_for_NaN 3 

s_, d_, c_, z_ lin_geig_gen_self_adj_pos 4 

s_, d_, c_, z_ lin_geig_gen_for_lin_sol_self 5 

s_, d_, c_, z_ lin_geig_gen_for_lin_eig_self 6 

s_, d_, c_, z_ lin_geig_gen_for_lin_sol_lsq 7 

s_, d_, c_, z_ lin_geig_gen_for_lin_eig_gen 8 

iopt(IO) = ?_options(?_lin_geig_gen_set_small, Small) 

This tolerance, multiplied by the sum of absolute value of the matrix B, is used to 

define a small diagonal term in the routines lin_sol_lsq and lin_sol_self. That 

value can be replaced using the option flags lin_geig_gen_for_lin_sol_lsq, and 

lin_geig_gen_for_lin_sol_self. 

Default: Small = epsilon(.), the relative accuracy of arithmetic 

iopt(IO) = ?_options(?_lin_geig_gen_overwrite_input, ?_dummy) 

Does not save the input arrays A(:, :) and B(:, :).  

Default: The array is saved. 

iopt(IO) = ?_options(?_lin_geig_gen_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that  

isNaN(a(i,j)) .or. isNaN(b(i,j)) == .true.  

See the isNaN() function, Chapter 10. 

Default: The arrays are not scanned for NaNs. 
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iopt(IO) = ?_options(?_lin_geig_gen_self_adj_pos, ?_dummy) 

If both matrices A and B are self-adjoint and additionally B is positive-definite, then the 

Cholesky algorithm is used to reduce the matrix pencil to an ordinary self-adjoint 

eigenvalue problem. 

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_sol_self, ?_dummy)  

iopt(IO+1) = ?_options((k=size of options for lin_sol_self), ?_dummy) 

The options for lin_sol_self follow as data in iopt(). 

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_eig_self, ?_dummy)  

iopt(IO+1) = ?_options((k=size of options for lin_eig_self), ?_dummy) 

The options for lin_eig_self follow as data in iopt(). 

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_sol_lsq, ?_dummy)  

iopt(IO+1) = ?_options((k=size of options for lin_sol_lsq), ?_dummy) 

The options for lin_sol_lsq follow as data in iopt(). 

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_eig_gen, ?_dummy)  

iopt(IO+1) = ?_options((k=size of options for lin_eig_gen), ?_dummy) 

The options for lin_eig_gen follow as data in iopt(). 

FORTRAN 90 Interface 

Generic: CALL LIN_GEIG_GEN (A, B, ALPHA, BETAV [,…]) 

 Specific: The specific interface names are S_LIN_GEIG_GEN, D_LIN_GEIG_GEN, 

C_LIN_GEIG_GEN, and Z_LIN_GEIG_GEN. 

Description 

Routine LIN_GEIG_GEN implements a standard algorithm that reduces a generalized eigenvalue 

or matrix pencil problem to an ordinary eigenvalue problem. An orthogonal decomposition is 

computed 

TBP HR  

The orthogonal matrix H is the product of n  1 row permutations, each followed by a 

Householder transformation. Column permutations, P, are chosen at each step to maximize the 

Euclidian length of the pivot column. The matrix R is upper triangular. Using the default tolerance 

τ = ε||B||, where ε is machine relative precision, each diagonal entry of R exceeds τ in value. 

Otherwise, R is singular.  In that case A and B are interchanged and the orthogonal decomposition 

is computed one more time. If both matrices are singular the problem is declared singular and is 

not solved. The interchange of A and B is accounted for in the output diagonal matrices α and β. 

The ordinary eigenvalue problem is Cx = x, where  

1T TC H AP R  
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and 

RPv = x 

If the matrices A and B are self-adjoint and if, in addition, B is positive-definite, then a more 

efficient reduction than the default algorithm can be optionally used to solve the problem: A 

Cholesky decomposition is obtained, R
T
R R = PBP

T
.  The matrix R is upper triangular and P is a 

permutation matrix. This is equivalent to the ordinary self-adjoint eigenvalue problem Cx = x, 

where RPv = x and  

1T TC R PAP R   

The self-adjoint eigenvalue problem is then solved. 

Fatal, Terminal, and Warning Error Messages 

See the messages.gls file for error messages for LIN_GEIG_GEN. These error messages are 

numbered 921936; 941956; 961976; 981996. 

Example 1: Computing Generalized Eigenvalues 

The generalized eigenvalues of a random real matrix pencil are computed. These values are 

checked by obtaining the generalized eigenvectors and then showing that the residuals 

1AV BV 
 

are small. Note that when the matrix B is nonsingular β = I, the identity matrix. When B is singular 

and A is nonsingular, some diagonal entries of β are essentially zero. This corresponds to ―infinite 

eigenvalues‖ of the matrix pencil. This random matrix pencil example has all finite eigenvalues. 

Also, see operator_ex33, Chapter 10. 
 

      use lin_geig_gen_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 1 for LIN_GEIG_GEN.  

  

      integer, parameter :: n=32  

      real(kind(1d0)), parameter :: one=1d0  

      real(kind(1d0)) A(n,n), B(n,n), betav(n), beta_t(n), err, y(n*n)  

      complex(kind(1d0)) alpha(n), alpha_t(n), V(n,n)  

  

! Generate random matrices for both A and B.  

      call rand_gen(y)  

      A = reshape(y,(/n,n/))  

      call rand_gen(y)  

      B = reshape(y,(/n,n/))  

  

! Compute the generalized eigenvalues.  

      call lin_geig_gen(A, B, alpha, betav)  

  

! Compute the full decomposition once again, A*V = B*V*values.  

      call lin_geig_gen(A, B, alpha_t, beta_t, &  

                v=V)  
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! Use values from the first decomposition, vectors from the   

! second decomposition, and check for small residuals.  

      err = sum(abs(matmul(A,V) - &  

                   matmul(B,V)*spread(alpha/betav,DIM=1,NCOPIES=n))) / &  

                sum(abs(a)+abs(b))  

      if (err  <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 1 for LIN_GEIG_GEN is correct.'  

      end if  

  

      end   

Output 
 

Example 1 for LIN_GEIG_GEN is correct. 

Additional Examples 

Example 2: Self-Adjoint, Positive-Definite Generalized Eigenvalue Problem 

This example illustrates the use of optional flags for the special case where A and B are complex  

self-adjoint matrices, and B is positive-definite. For purposes of maximum efficiency an option is 

passed to routine LIN_SOL_SELF so that pivoting is not used in the computation of the Cholesky 

decomposition of matrix B. This example does not require that secondary option. Also, see 

operator_ex34, supplied with the product examples. 
 

      use lin_geig_gen_int  

      use lin_sol_self_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 2 for LIN_GEIG_GEN.  

  

      integer i  

      integer, parameter :: n=32  

      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  

      real(kind(1d0)) betav(n), temp_c(n,n), temp_d(n,n), err  

      type(d_options) :: iopti(4)=d_options(0,zero)  

      complex(kind(1d0)), dimension(n,n) :: A, B, C, D, V, alpha(n)  

  

  

! Generate random matrices for both A and B.  

      do i=1, n  

         call rand_gen(temp_c(1:n,i))  

         call rand_gen(temp_d(1:n,i))  

      end do  

      c = temp_c; d = temp_c  

      do i=1, n  

         call rand_gen(temp_c(1:n,i))  

         call rand_gen(temp_d(1:n,i))  

      end do  

      c = cmplx(real(c),temp_c,kind(one))  

      d = cmplx(real(d),temp_d,kind(one))  
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      a = conjg(transpose(c)) + c  

      b = matmul(conjg(transpose(d)),d)  

  

! Set option so that the generalized eigenvalue solver uses an   

! efficient method for well-posed, self-adjoint problems.  

      iopti(1) = d_options(z_lin_geig_gen_self_adj_pos,zero)  

      iopti(2) = d_options(z_lin_geig_gen_for_lin_sol_self,zero)  

  

! Number of secondary optional data items and the options:  

      iopti(3) =   d_options(1,zero)   

      iopti(4) =   d_options(z_lin_sol_self_no_pivoting,zero)  

  

      call lin_geig_gen(a, b, alpha, betav, v=v, &  

        iopt=iopti)  

  

! Check that residuals are small.  Use the real part of alpha   

! since the values are known to be real.  

      err = sum(abs(matmul(a,v) - matmul(b,v)* &  

            spread(real(alpha,kind(one))/betav,dim=1,ncopies=n))) / &  

            sum(abs(a)+abs(b))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 2 for LIN_GEIG_GEN is correct.'  

      end if  

  

      end   

Output 
 

Example 2 for LIN_GEIG_GEN is correct. 

Example 3: A Test for a Regular Matrix Pencil 

In the classification of Differential Algebraic Equations (DAE), a system with linear constant  

coefficients is given by A x + Bx = f. Here A and B are n × n matrices, and f is an n-vector that is 

not part of this example. The DAE system is defined as solvable if and only if the quantity det 

(μA + B) does not vanish identically as a function of the dummy parameter μ. A sufficient con-

dition for solvability is that the generalized eigenvalue problem Av = Bv is nonsingular. By con-

structing A and B so that both are singular, the routine flags nonsolvability in the DAE by 

returning NaN for the generalized eigenvalues. Also, see operator_ex35, supplied with the 

product examples. 
 

      use lin_geig_gen_int  

      use rand_gen_int  

      use error_option_packet  

      use isnan_int  

  

      implicit none  

  

! This is Example 3 for LIN_GEIG_GEN.  

  

      integer, parameter :: n=6  

      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  

      real(kind(1d0)) a(n,n), b(n,n), betav(n), y(n*n)  

      type(d_options) iopti(1)  

      type(d_error) epack(1)  
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      complex(kind(1d0)) alpha(n)  

  

! Generate random matrices for both A and B.  

      call rand_gen(y)  

      a = reshape(y,(/n,n/))  

  

      call rand_gen(y)  

      b = reshape(y,(/n,n/))  

  

! Make columns of A and B zero, so both are singular.  

      a(1:n,n) = 0; b(1:n,n) = 0  

  

! Set internal tolerance for a small diagonal term.  

      iopti(1) = d_options(d_lin_geig_gen_set_small,sqrt(epsilon(one)))  

  

! Compute the generalized eigenvalues.  

      call lin_geig_gen(a, b, alpha, betav, &  

        iopt=iopti,epack=epack)  

  

! See if singular DAE system is detected.  

! (The size of epack() is too small for the message, so  

! output is blocked with NaNs.)  

      if (isnan(alpha)) then   

         write (*,*) 'Example 3 for LIN_GEIG_GEN is correct.'  

      end if  

  

      end   

Output 
 

Example 3 for LIN_GEIG_GEN is correct. 

Example 4: Larger Data Uncertainty than Working Precision 

Data values in both matrices A and B are assumed to have relative errors that can be as large as 
1/ 2  where ε is the relative machine precision. This example illustrates the use of an optional flag 

that resets the tolerance used in routine lin_sol_lsq for determining a singularity of either 

matrix. The tolerance is reset to the new value 
1/ 2 B  and the generalized eigenvalue problem 

is solved. We anticipate that B might be singular and detect this fact. Also, see operator_ex36, 

Chapter 10. 
 

      use lin_geig_gen_int  

      use lin_sol_lsq_int  

      use rand_gen_int  

      use isNaN_int  

  

      implicit none  

  

! This is Example 4 for LIN_GEIG_GEN.  

  

      integer, parameter :: n=32  

      real(kind(1d0)), parameter :: one=1d0, zero=0d0  

      real(kind(1d0)) a(n,n), b(n,n), betav(n), y(n*n), err  
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      type(d_options) iopti(4)  

      type(d_error) epack(1)  

      complex(kind(1d0)) alpha(n), v(n,n)  

  

! Generate random matrices for both A and B.  

  

      call rand_gen(y)  

      a = reshape(y,(/n,n/))  

  

      call rand_gen(y)  

      b = reshape(y,(/n,n/))  

  

! Set the option, a larger tolerance than default for lin_sol_lsq.  

      iopti(1) = d_options(d_lin_geig_gen_for_lin_sol_lsq,zero)  

  

! Number of secondary optional data items  

      iopti(2) =   d_options(2,zero)   

      iopti(3) =   d_options(d_lin_sol_lsq_set_small,sqrt(epsilon(one))*&  

                    sqrt(sum(b**2)/n))  

      iopti(4) =   d_options(d_lin_sol_lsq_no_sing_mess,zero)  

  

! Compute the generalized eigenvalues.  

      call lin_geig_gen(A, B, alpha, betav, v=v, &  

                  iopt=iopti, epack=epack)  

  

      if(.not. isNaN(alpha)) then  

  

! Check the residuals.  

        err = sum(abs(matmul(A,V)*spread(betav,dim=1,ncopies=n) - &  

                     matmul(B,V)*spread(alpha,dim=1,ncopies=n))) / &  

                sum(abs(a)+abs(b))  

        if (err  <= sqrt(epsilon(one))) then  

           write (*,*) 'Example 4 for LIN_GEIG_GEN is correct.'  

 

        end if  

      end if  

      end   

Output 
 

Example 4 for LIN_GEIG_GEN is correct. 

EVLRG 

 

 

 

Computes all of the eigenvalues of a real matrix. 

Required Arguments 

A — Real full matrix of order N.   (Input) 
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EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVLRG (A, EVAL [,…]) 

 Specific: The specific interface names are S_EVLRG and D_EVLRG. 

FORTRAN 77 Interface 

Single: CALL EVLRG (N, A, LDA, EVAL) 

Double: The double precision name is DEVLRG. 

Description 

Routine EVLRG computes the eigenvalues of a real matrix. The matrix is first balanced. 

Elementary or Gauss similarity transformations with partial pivoting are used to reduce this 

balanced matrix to a real upper Hessenberg matrix. A hybrid double− shifted LR− QR algorithm 

is used to compute the eigenvalues of the Hessenberg matrix, Watkins and Elsner (1990). 

The underlying code is based on either EISPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation, see  

“Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this 

manual. The LR− QR algorithm is based on software work of Watkins and Haag. Further details, 

some timing data, and credits are given in Hanson et al. (1990). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3LRG/DE3LRG. The 

reference is: 

CALL E3LRG (N, A, LDA, EVAL, ACOPY, WK, IWK) 

The additional arguments are as follows: 

ACOPY — Real work array of length N
2
. A and ACOPY may be the same, in 

which case the first N
2
 elements of A will be destroyed. 
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WK — Floating-point work array of size 4N. 

IWK — Integer work array of size 2N. 

2. Informational error 

Type Code 

4 1 The iteration for an eigenvalue failed to converge. 

3. Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access 

inefficiency) problems. In routine E3LRG, the internal or working leading 

dimension of ACOPY is increased by IVAL(3) when N is a multiple of IVAL(4). 

The values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and 

IVAL(2), respectively, in routine EVLRG . Additional memory allocation and 

option value restoration are automatically done in EVLRG. There is no 

requirement that users change existing applications that use EVLRG or E3LRG. 

Default values for the option are  

IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5−8 in IVAL(*) are for the generalized 

eigenvalue problem and are not used in EVLRG. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 

page 85). The eigenvalues of this real matrix are computed and printed. The exact eigenvalues are 

known to be {4, 3, 2, 1}. 
 

      USE EVLRG_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (N=4, LDA=N) 

! 

      REAL       A(LDA,N) 

      COMPLEX    EVAL(N) 

!                                 Set values of A 

! 

!                                 A = ( -2.0    2.0    2.0    2.0  ) 

!                                     ( -3.0    3.0    2.0    2.0  ) 

!                                     ( -2.0    0.0    4.0    2.0  ) 

!                                     ( -1.0    0.0    0.0    5.0  ) 

      DATA A/-2.0, -3.0, -2.0, -1.0, 2.0, 3.0, 0.0, 0.0, 2.0, 2.0, & 

          4.0, 0.0, 2.0, 2.0, 2.0, 5.0/ 

! 

!                                 Find eigenvalues of A 

      CALL EVLRG (A, EVAL) 

!                                 Print results 

      CALL WRCRN ('EVAL', EVAL, 1, N, 1) 

      END 
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Output 
             

                                EVAL 

               1                2                3                4 

 ( 4.000, 0.000)  ( 3.000, 0.000)  ( 2.000, 0.000)  ( 1.000, 0.000) 

EVCRG 

 

 

 

Computes all of the eigenvalues and eigenvectors of a real matrix. 

Required Arguments 

A — Floating-point array containing the matrix.   (Input) 

EVAL — Complex array of size N containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

EVEC — Complex array containing the matrix of eigenvectors.   (Output)  

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each 

vector is normalized to have Euclidean length equal to the value one. 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL EVCRG (A, EVAL, EVEC [,…]) 

 Specific: The specific interface names are S_EVCRG and D_EVCRG. 
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FORTRAN 77 Interface 

Single: CALL EVCRG (N, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCRG. 

Description 

Routine EVCRG computes the eigenvalues and eigenvectors of a real matrix. The matrix is first 

balanced. Orthogonal similarity transformations are used to reduce the balanced matrix to a real 

upper Hessenberg matrix. The implicit double− shifted QR algorithm is used to compute the 

eigenvalues and eigenvectors of this Hessenberg matrix. The eigenvectors are normalized such 

that each has Euclidean length of value one. The largest component is real and positive. 

The underlying code is based on either EISPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. Further details, 

some timing data, and credits are given in Hanson et al. (1990). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E8CRG/DE8CRG. The 

reference is: 

CALL E8CRG (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, ECOPY, 

WK, IWK) 

The additional arguments are as follows: 

ACOPY — Floating-point work array of size N by N. The arrays A and ACOPY 

may be the same, in which case the first N
2
 elements of A will be 

destroyed. The array ACOPY can have its working row dimension 

increased from N to a larger value. An optional usage is required. See 

Item 3 below for further details. 

ECOPY — Floating-point work array of default size N by N + 1. The working, 

leading dimension of ECOPY is the same as that for ACOPY. To increase 

this value, an optional usage is required. See Item 3 below for further 

details. 

WK — Floating-point work array of size 6N. 

IWK — Integer work array of size N. 

2. Informational error 

Type Code  

4 1 The iteration for the eigenvalues failed to converge. No eigenvalues 

or eigenvectors are computed. 

3. Integer Options with Chapter 11 Options Manager 
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1 This option uses eight values to solve memory bank conflict (access 

inefficiency) problems. In routine E8CRG, the internal or working leading 

dimensions of ACOPY and ECOPY are both increased by IVAL(3) when N is a 

multiple of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced 

by IVAL(1) and IVAL(2), respectively, in routine EVCRG. Additional memory 

allocation and option value restoration are automatically done in EVCRG. There 

is no requirement that users change existing applications that use EVCRG or 

E8CRG. Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 

58 in IVAL(*) are for the generalized eigenvalue problem and are not used in 

EVCRG. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 

page 82). The eigenvalues and eigenvectors of this real matrix are computed and printed. The 

performance index is also computed and printed. This serves as a check on the computations. For 

more details, see IMSL routine EPIRG. 
 

      USE EVCRG_INT 

      USE EPIRG_INT 

      USE UMACH_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, N 

      PARAMETER  (N=3, LDA=N, LDEVEC=N) 

      INTEGER    NOUT 

      REAL       PI 

      COMPLEX    EVAL(N), EVEC(LDEVEC,N) 

      REAL       A(LDA,N) 

 

!                                 Define values of A: 

! 

!                                 A = (  8.0   -1.0   -5.0  ) 

!                                     ( -4.0    4.0   -2.0  ) 

!                                     ( 18.0   -5.0   -7.0  ) 

! 

      DATA A/8.0, -4.0, 18.0, -1.0, 4.0, -5.0, -5.0, -2.0, -7.0/ 

! 

!                                 Find eigenvalues and vectors of A 

      CALL EVCRG (A, EVAL, EVEC) 

!                                 Compute performance index 

      PI = EPIRG(N,A,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRCRN ('EVAL', EVAL, 1, N, 1) 

      CALL WRCRN ('EVEC', EVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 
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Output 
   

                       EVAL 

               1                2                3 

 ( 2.000, 4.000)  ( 2.000,-4.000)  ( 1.000, 0.000) 

   

                            EVEC 

                    1                  2                  3 

 1  ( 0.3162, 0.3162)  ( 0.3162,-0.3162)  ( 0.4082, 0.0000) 

 2  (-0.0000, 0.6325)  (-0.0000,-0.6325)  ( 0.8165, 0.0000) 

 3  ( 0.6325, 0.0000)  ( 0.6325, 0.0000)  ( 0.4082, 0.0000) 

 

 Performance index =  0.026 

EPIRG 
This function computes the performance index for a real eigensystem. 

Function Return Value 

EPIRG — Performance index.   (Output) 

Required Arguments 

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index 

computation is based.   (Input) 

A — Matrix of order N.   (Input) 

EVAL — Complex vector of length NEVAL containing eigenvalues of A.   (Input) 

EVEC — Complex N by NEVAL array containing eigenvectors of A.   (Input)  

The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column 

of EVEC. 

Optional Arguments  

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 



     

     
 

556  Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY  

     

     

 

FORTRAN 90 Interface 

Generic: EPIRG (NEVAL, A, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EPIRG and D_EPIRG. 

FORTRAN 77 Interface 

Single: EPIRG (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision function name is DEPIRG. 

Description 

Let M = NEVAL,  = EVAL, xj = EVEC(*,J), the j-th column of EVEC. Also, let ε be the machine 

precision given by AMACH(4). The performance index, τ, is defined to be 

1

1
1 1

max
10

j j j

j M
j

Ax x

N A x




 




 

The norms used are a modified form of the 1-norm. The norm of the complex vector v is 

 1
1

N

i i

i

v v v


   
 

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered 

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. 

The performance index was first developed by the EISPACK project at Argonne National 

Laboratory; see Smith et al. (1976, pages 124− 125). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E2IRG/DE2IRG. The 

reference is: 

E2IRG (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, CWK) 

The additional argument is: 

CWK — Complex work array of length N. 

2. Informational errors 

Type Code 

3 1 The performance index is greater than 100. 

3 2 An eigenvector is zero. 
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3 3 The matrix is zero. 

Example 

For an example of EPIRG, see IMSL routine EVCRG. 

EVLCG 

 

 

 

Computes all of the eigenvalues of a complex matrix. 

Required Arguments 

A — Complex matrix of order N.   (Input) 

EVAL —  Complex vector of length N containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVLCG (A, EVAL [,…]) 

Specific: The specific interface names are S_EVLCG and D_EVLCG. 

FORTRAN 77 Interface 

Single: CALL EVLCG (N, A, LDA, EVAL) 

Double: The double precision name is EVLCG. 

Description 

Routine EVLCG computes the eigenvalues of a complex matrix. The matrix is first balanced. 

Unitary similarity transformations are used to reduce this balanced matrix to a complex upper 
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Hessenberg matrix. The shifted QR algorithm is used to compute the eigenvalues of this 

Hessenberg matrix. 

The underlying code is based on either EISPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3LCG/DE3LCG. The 

reference is: 

CALL E3LCG (N, A, LDA, EVAL, ACOPY, RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same, 

in which case the first N
2
 elements of A will be destroyed. 

RWK — Work array of length N. 

CWK — Complex work array of length 2N. 

IWK — Integer work array of length N. 

2. Informational error 

Type Code 

4 1 The iteration for an eigenvalue failed to converge. 

3. Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access 

inefficiency) problems. In routine E3LCG, the internal or working, leading 

dimension of ACOPY is increased by IVAL(3) when N is a multiple of IVAL(4). 

The values IVAL(3) and IVAL (4) are temporarily replaced by IVAL(1) and 

IVAL(2), respectively, in routine EVLCG . Additional memory allocation and 

option value restoration are automatically done in EVLCG. There is no 

requirement that users change existing applications that use EVLCG or E3LCG. 

Default values for the option are  

IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 58 in IVAL(*) are for the generalized 

eigenvalue problem and are not used in EVLCG. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney  

(1969, page 115). The program computes the eigenvalues of this matrix. 
 

      USE EVLCG_INT 
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      USE WRCRN_INT 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (N=3, LDA=N) 

! 

      COMPLEX    A(LDA,N), EVAL(N) 

!                                 Set values of A 

! 

!                                 A = ( 1+2i    3+4i   21+22i) 

!                                     (43+44i  13+14i  15+16i) 

!                                     ( 5+6i    7+8i   25+26i) 

! 

      DATA A/(1.0,2.0), (43.0,44.0), (5.0,6.0), (3.0,4.0), & 

          (13.0,14.0), (7.0,8.0), (21.0,22.0), (15.0,16.0), & 

          (25.0,26.0)/ 

! 

!                                 Find eigenvalues of A 

      CALL EVLCG (A, EVAL) 

!                                 Print results 

      CALL WRCRN (‘EVAL‘, EVAL, 1, N, 1) 

      END 

Output 
 

                          EVAL 

              1                2                3 

( 39.78, 43.00)  (  6.70, -7.88)  ( -7.48,  6.88) 

EVCCG 

 

 

 

Computes all of the eigenvalues and eigenvectors of a complex matrix. 

Required Arguments 

A — Complex matrix of order N.   (Input) 

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

EVEC —  Complex matrix of order N.   (Output)  

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each 

vector is normalized to have Euclidean length equal to the value one. 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL EVCCG (A, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EVCCG and D_EVCCG. 

FORTRAN 77 Interface 

Single: CALL EVCCG (N, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCCG. 

Description 

Routine EVCCG computes the eigenvalues and eigenvectors of a complex matrix. The matrix is 

first balanced. Unitary similarity transformations are used to reduce this balanced matrix to a 

complex upper Hessenberg matrix. The QR algorithm is used to compute the eigenvalues and 

eigenvectors of this Hessenberg matrix. The eigenvectors of the original matrix are computed by 

transforming the eigenvectors of the complex upper Hessenberg matrix. 

The underlying code is based on either EISPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E6CCG/DE6CCG. The 

reference is: 

CALL E6CCG (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, RWK, 

CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N
2
. The arrays A and ACOPY may 

be the same, in which case the first N
2
 elements of A will be destroyed. 

RWK — Work array of length N. 

CWK — Complex work array of length 2N. 
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IWK — Integer work array of length N. 

2. Informational error 

Type Code  

4 1 The iteration for the eigenvalues failed to converge. No eigenvalues 

or eigenvectors are computed. 

3. Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access 

inefficiency) problems. In routine E6CCG, the internal or working leading 

dimensions of ACOPY and ECOPY are both increased by IVAL(3) when N is a 

multiple of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced 

by IVAL(1) and IVAL(2), respectively, in routine EVCCG. Additional memory 

allocation and option value restoration are automatically done in EVCCG. There 

is no requirement that users change existing applications that use EVCCG or 

E6CCG. Default values for the option are  

IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 58 in IVAL(*) are for the generalized 

eigenvalue problem and are not used in EVCCG. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 

page 116). Its eigenvalues are known to be {1 + 5i, 2 + 6i, 3 + 7i, 4 + 8i}. The program computes 

the eigenvalues and eigenvectors of this matrix. The performance index is also computed and 

printed. This serves as a check on the computations, for more details, see IMSL routine EPICG. 
 

      USE EVCCG_INT 

      USE EPICG_INT 

      USE WRCRN_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, N 

      PARAMETER  (N=4, LDA=N, LDEVEC=N) 

! 

      INTEGER    NOUT 

      REAL       PI 

      COMPLEX    A(LDA,N), EVAL(N), EVEC(LDEVEC,N) 

!                                 Set values of A 

! 

!                                 A = (5+9i  5+5i  -6-6i  -7-7i) 

!                                     (3+3i  6+10i -5-5i  -6-6i) 

!                                     (2+2i  3+3i  -1+3i  -5-5i) 

!                                     (1+i   2+2i  -3-3i     4i) 

! 

      DATA A/(5.0,9.0), (3.0,3.0), (2.0,2.0), (1.0,1.0), (5.0,5.0), & 

          (6.0,10.0), (3.0,3.0), (2.0,2.0), (-6.0,-6.0), (-5.0,-5.0), & 

          (-1.0,3.0), (-3.0,-3.0), (-7.0,-7.0), (-6.0,-6.0), & 

          (-5.0,-5.0), (0.0,4.0)/ 

! 
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!                                 Find eigenvalues and vectors of A 

       CALL EVCCG (A, EVAL, EVEC) 

!                                 Compute performance index 

      PI = EPICG(N,A,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRCRN ('EVAL', EVAL, 1, N, 1) 

      CALL WRCRN ('EVEC', EVEC) 

  

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
                                EVAL 

               1                2                3                4 

 ( 4.000, 8.000)  ( 3.000, 7.000)  ( 2.000, 6.000)  ( 1.000, 5.000) 

   

                                     EVEC 

                    1                  2                  3                  

4 

 1  ( 0.5774, 0.0000)  ( 0.5774, 0.0000)  ( 0.3780, 0.0000)  ( 0.7559, 

0.0000) 

 2  ( 0.5774,-0.0000)  ( 0.5773,-0.0000)  ( 0.7559, 0.0000)  ( 0.3780, 

0.0000) 

 3  ( 0.5774,-0.0000)  (-0.0000,-0.0000)  ( 0.3780, 0.0000)  ( 0.3780, 

0.0000) 

 4  ( 0.0000, 0.0000)  ( 0.5774, 0.0000)  ( 0.3780, 0.0000)  ( 0.3780, 

0.0000) 

 

 Performance index =  0.016 

EPICG 
This function computes the performance index for a complex eigensystem. 

Function Return Value 

EPICG — Performance index.   (Output) 

Required Arguments 

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index 

computation is based.   (Input) 

A — Complex matrix of order N.   (Input) 

EVAL —  Complex vector of length N containing the eigenvalues of A.   (Input) 

EVEC — Complex matrix of order N containing the eigenvectors of A.   (Input)  

The J-th eigenvalue/eigenvector pair should be in EVAL(J) and in the J-th column of 

EVEC. 
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Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: EPICG (NEVAL, A, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EPICG and D_EPICG. 

FORTRAN 77 Interface 

Single: EPICG (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision function name is DEPICG. 

Description 

Let M = NEVAL,  = EVAL, xj = EVEC(*, J), the j-th column of EVEC. Also, let ε be the machine 

precision given by AMACH(4). The performance index, τ, is defined to be 

1

1
1 1

max
10

j j j

j M
j

Ax x

N A x




 




 

The norms used are a modified form of the 1-norm. The norm of the complex vector v is 

 1
1

N

i i

i

v v v


   
 

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered 

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. The performance index was first 

developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, pages 

124− 125). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E2ICG/DE2ICG. The 

reference is: 
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E2ICG (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WK) 

The additional argument is: 

WK — Complex work array of length N. 

2. Informational errors 

Type Code  

3  1 Performance index is greater than 100. 

3 2 An eigenvector is zero. 

3 3 The matrix is zero. 

Example 

For an example of EPICG, see IMSL routine EVCCG. 

EVLSF 
Computes all of the eigenvalues of a real symmetric matrix. 

Required Arguments 

A — Real symmetric matrix of order N.   (Input) 

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVLSF (A, EVAL [,…]) 

Specific: The specific interface names are S_EVLSF and D_EVLSF. 

FORTRAN 77 Interface 

Single:    CALL EVLSF (N, A, LDA, EVAL) 
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Double: The double precision name is DEVLSF. 

Description 

Routine EVLSF computes the eigenvalues of a real symmetric matrix. Orthogonal similarity 

transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. Then, 

an implicit rational QR algorithm is used to compute the eigenvalues of this tridiagonal matrix. 

The underlying code is based on either EISPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E4LSF/DE4LSF. The 

reference is: 

CALL E4LSF (N, A, LDA, EVAL, WORK, IWORK) 

The additional arguments are as follows: 

WORK — Work array of length 2N. 

IWORK — Integer array of length N. 

2. Informational error 

Type Code  

3 1 The iteration for the eigenvalue failed to converge in 100 iterations 

before deflating. 

Example 

In this example, the eigenvalues of a real symmetric matrix are computed and printed. This matrix 

is given by Gregory and Karney (1969, page 56). 
 

      USE EVLSF_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (N=4, LDA=N) 

! 

      REAL       A(LDA,N), EVAL(N) 

!                                 Set values of A 

! 

!                                 A = (  6.0    4.0    4.0    1.0) 

!                                     (  4.0    6.0    1.0    4.0) 

!                                     (  4.0    1.0    6.0    4.0) 

!                                     (  1.0    4.0    4.0    6.0) 

! 

      DATA A /6.0, 4.0, 4.0, 1.0, 4.0, 6.0, 1.0, 4.0, 4.0, 1.0, 6.0, & 
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             4.0, 1.0, 4.0, 4.0, 6.0 / 

! 

!                                 Find eigenvalues of A 

      CALL EVLSF (A, EVAL) 

!                                 Print results 

      CALL WRRRN ('EVAL', EVAL, 1, N, 1) 

      END 

Output 
 

              EVAL 

      1       2       3       4 

  15.00    5.00    5.00   -1.00 

EVCSF 
Computes all of the eigenvalues and eigenvectors of a real symmetric matrix. 

Required Arguments 

A — Real symmetric matrix of order N.   (Input) 

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

EVEC — Real matrix of order N.   (Output)  

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each 

vector is normalized to have Euclidean length equal to the value one. 

Optional Arguments  

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL EVCSF (A, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EVCSF and D_EVCSF. 
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FORTRAN 77 Interface 

Single: CALL EVCSF (N, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCSF. 

Description 

Routine EVCSF computes the eigenvalues and eigenvectors of a real symmetric matrix. Orthogonal 

similarity transformations are used to reduce the matrix to an equivalent symmetric tridiagonal 

matrix. These transformations are accumulated. An implicit rational QR algorithm is used to 

compute the eigenvalues of this tridiagonal matrix. The eigenvectors are computed using the 

eigenvalues as perfect shifts, Parlett (1980, pages 169, 172). The underlying code is based on 

either EISPACK or LAPACK code depending upon which supporting libraries are used during 

linking. For a detailed explanation, see “Using ScaLAPACK, LAPACK, LINPACK, and 

EISPACK‖ in the Introduction section of this manual.  Further details, some timing data, and 

credits are given in Hanson et al. (1990). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E5CSF/DE5CSF. The 

reference is: 

CALL E5CSF (N, A, LDA, EVAL, EVEC, LDEVEC, WORK, IWK) 

The additional argument is: 

WORK — Work array of length 3N. 

IWK — Integer array of length N. 

2. Informational error 

Type Code  

3 1 The iteration for the eigenvalue failed to converge in 100 iterations 

before deflating. 

Example 

The eigenvalues and eigenvectors of this real symmetric matrix are computed and printed. The 

performance index is also computed and printed. This serves as a check on the computations. For 

more details, see EPISF. 
 

      USE EVCSF_INT 

      USE EPISF_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, N 

      PARAMETER  (N=3, LDA=N, LDEVEC=N) 
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! 

      INTEGER    NOUT 

      REAL       A(LDA,N), EVAL(N), EVEC(LDEVEC,N), PI 

! 

!                                 Set values of A 

! 

!                                 A = (  7.0   -8.0   -8.0) 

!                                     ( -8.0  -16.0  -18.0) 

!                                     ( -8.0  -18.0   13.0) 

! 

      DATA A/7.0, -8.0, -8.0, -8.0, -16.0, -18.0, -8.0, -18.0, 13.0/ 

! 

!                                 Find eigenvalues and vectors of A 

      CALL EVCSF (A, EVAL, EVEC) 

!                                 Compute performance index 

      PI = EPISF (N, A, EVAL, EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRRRN ('EVAL', EVAL, 1, N, 1) 

      CALL WRRRN ('EVEC', EVEC) 

 

      WRITE (NOUT, '(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
 

          EVAL 

      1       2       3 

 -27.90   22.68    9.22 

   

             EVEC 

          1        2        3 

 1   0.2945  -0.2722   0.9161 

 2   0.8521  -0.3591  -0.3806 

 3   0.4326   0.8927   0.1262 

 

 Performance index =  0.019 

EVASF 
Computes the largest or smallest eigenvalues of a real symmetric matrix. 

Required Arguments 

NEVAL — Number of eigenvalues to be computed.   (Input) 

A — Real symmetric matrix of order N.   (Input) 

SMALL — Logical variable.   (Input)  

If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest NEVAL 

eigenvalues are computed. 
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EVAL — Real vector of length NEVAL containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVASF (NEVAL, A, SMALL, EVAL [,…]) 

Specific: The specific interface names are S_EVASF and D_EVASF. 

FORTRAN 77 Interface 

Single: CALL EVASF (N, NEVAL, A, LDA, SMALL, EVAL) 

Double: The double precision name is DEVASF. 

Description 

Routine EVASF computes the largest or smallest eigenvalues of a real symmetric matrix. 

Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric 

tridiagonal matrix. Then, an implicit rational QR algorithm is used to compute the eigenvalues of 

this tridiagonal matrix. 

The reduction routine is based on the EISPACK routine TRED2. See Smith et al. (1976). The 

rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page 169). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E4ASF/DE4ASF. The 

reference is: 

CALL E4ASF (N, NEVAL, A, LDA, SMALL, EVAL, WORK, IWK) 

WORK — Work array of length 4N. 

IWK — Integer work array of length N. 

2. Informational error 

Type Code 

3 1 The iteration for an eigenvalue failed to converge. The best estimate 

will be returned. 
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Example 

In this example, the three largest eigenvalues of the computed Hilbert matrix aij = 1/(i + j 1) of 

order N = 10 are computed and printed. 
 

      USE EVASF_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, N, NEVAL 

      PARAMETER  (N=10, NEVAL=3, LDA=N) 

! 

      INTEGER    I, J 

      REAL       A(LDA,N), EVAL(NEVAL), REAL 

      LOGICAL    SMALL 

      INTRINSIC  REAL 

!                                 Set up Hilbert matrix 

      DO 20  J=1, N 

         DO 10  I=1, N 

            A(I,J) = 1.0/REAL(I+J-1) 

   10    CONTINUE 

   20 CONTINUE 

!                                 Find the 3 largest eigenvalues 

      SMALL = .FALSE. 

       CALL EVASF (NEVAL, A, SMALL, EVAL) 

!                                 Print results 

       CALL WRRRN ('EVAL', EVAL, 1, NEVAL, 1) 

 

      END 

Output 
 

          EVAL 

      1       2       3 

  1.752   0.343   0.036 

EVESF 
Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a real 

symmetric matrix. 

Required Arguments 

NEVEC — Number of eigenvalues to be computed.   (Input) 

A — Real symmetric matrix of order N.   (Input) 

SMALL — Logical variable.   (Input)  

If .TRUE., the smallest NEVEC eigenvalues are computed. If .FALSE., the largest NEVEC 

eigenvalues are computed. 
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EVAL — Real vector of length NEVEC containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

EVEC — Real matrix of dimension N by NEVEC.   (Output)  

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each 

vector is normalized to have Euclidean length equal to the value one. 

Optional Arguments  

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL EVESF (NEVEC, A, SMALL, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EVESF and D_EVESF. 

FORTRAN 77 Interface 

Single: CALL EVESF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVESF. 

Description 

Routine EVESF computes the largest or smallest eigenvalues and the corresponding eigenvectors 

of a real symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to 

an equivalent symmetric tridiagonal matrix. Then, an implicit rational QR algorithm is used to 

compute the eigenvalues of this tridiagonal matrix. Inverse iteration is used to compute the 

eigenvectors of the tridiagonal matrix. This is followed by orthogonalization of these vectors. The 

eigenvectors of the original matrix are computed by back transforming those of the tridiagonal 

matrix. 

The reduction routine is based on the EISPACK routine TRED2. See Smith et al. (1976). The 

rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page 169). The 

inverse iteration and orthogonalization computation is discussed in Hanson et al. (1990). The back 

transformation routine is based on the EISPACK routine TRBAK1. 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of E5ESF/DE5ESF. The 

reference is: 

CALL E5ESF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC, 

WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length 9N. 

IWK — Integer array of length N. 

2. Informational errors 

Type Code  

3  1 The iteration for an eigenvalue failed to converge. The best estimate 

will be returned. 

3 2 Inverse iteration did not converge. Eigenvector is not correct for the 

specified eigenvalue. 

3 3 The eigenvectors have lost orthogonality. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 

page 55). The largest two eigenvalues and their eigenvectors are computed and printed. The 

performance index is also computed and printed. This serves as a check on the computations. For 

more details, see IMSL routine EPISF. 
 

      USE EVESF_INT 

      USE EPISF_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables  

      INTEGER    LDA, LDEVEC, N 

      PARAMETER  (N=4, LDA=N, LDEVEC=N) 

! 

      INTEGER    NEVEC, NOUT 

      REAL       A(LDA,N), EVAL(N), EVEC(LDEVEC,N), PI 

      LOGICAL    SMALL 

! 

!                                 Set values of A 

! 

!                                 A = (  5.0    4.0    1.0    1.0) 

!                                     (  4.0    5.0    1.0    1.0) 

!                                     (  1.0    1.0    4.0    2.0) 

!                                     (  1.0    1.0    2.0    4.0) 

! 
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      DATA A/5.0, 4.0, 1.0, 1.0, 4.0, 5.0, 1.0, 1.0, 1.0, 1.0, 4.0, & 

          2.0, 1.0, 1.0, 2.0, 4.0/ 

! 

!                                 Find eigenvalues and vectors of A 

      NEVEC = 2 

      SMALL = .FALSE. 

      CALL EVESF (NEVEC, A, SMALL, EVAL, EVEC) 

!                                 Compute performance index 

      PI = EPISF(NEVEC,A,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRRRN ('EVAL', EVAL, 1, NEVEC, 1) 

      CALL WRRRN ('EVEC', EVEC, N, NEVEC, LDEVEC) 

 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
 

      EVAL 

      1       2 

  10.00    5.00 

   

        EVEC 

          1        2 

 1   0.6325  -0.3162 

 2   0.6325  -0.3162 

 3   0.3162   0.6325 

 4   0.3162   0.6325 

 

 Performance index =  0.031 

EVBSF 
Computes selected eigenvalues of a real symmetric matrix. 

Required Arguments 

MXEVAL — Maximum number of eigenvalues to be computed.   (Input) 

A — Real symmetric matrix of order N.   (Input) 

ELOW — Lower limit of the interval in which the eigenvalues are sought.   (Input) 

EHIGH — Upper limit of the interval in which the eigenvalues are sought.   (Input) 

NEVAL — Number of eigenvalues found.   (Output) 

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW, 

EHIGH) in decreasing order of magnitude.   (Output) 

Only the first NEVAL elements of EVAL are significant. 
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Optional Arguments  

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVBSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL [,…]) 

Specific: The specific interface names are S_EVBSF and D_EVBSF. 

FORTRAN 77 Interface 

Single: CALL EVBSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL) 

Double: The double precision name is DEVBSF. 

Description 

Routine EVBSF computes the eigenvalues in a given interval for a real symmetric matrix. 

Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric 

tridiagonal matrix. Then, an implicit rational QR algorithm is used to compute the eigenvalues of 

this tridiagonal matrix. The reduction step is based on the EISPACK routine TRED1. See Smith et 

al. (1976). The rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, 

page 169). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E5BSF/DE5BSF. The 

reference is 

CALL E5BSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, 

WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length 5N. 

IWK — Integer work array of length 1N. 

2. Informational error 

Type Code  
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3 1 The number of eigenvalues in the specified interval exceeds 

MXEVAL. NEVAL contains the number of eigenvalues in the 

interval. No eigenvalues will be returned. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 

page 56). The eigenvalues of A are known to be 1, 5, 5 and 15. The eigenvalues in the interval 

[1.5, 5.5] are computed and printed. As a test, this example uses MXEVAL = 4. The routine EVBSF 

computes NEVAL, the number of eigenvalues in the given interval. The value of NEVAL is 2. 
 

      USE EVBSF_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, MXEVAL, N 

      PARAMETER  (MXEVAL=4, N=4, LDA=N) 

! 

      INTEGER    NEVAL, NOUT 

      REAL       A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL) 

! 

!                                 Set values of A 

! 

!                                 A = (  6.0    4.0    4.0    1.0) 

!                                     (  4.0    6.0    1.0    4.0) 

!                                     (  4.0    1.0    6.0    4.0) 

!                                     (  1.0    4.0    4.0    6.0) 

! 

      DATA A/6.0, 4.0, 4.0, 1.0, 4.0, 6.0, 1.0, 4.0, 4.0, 1.0, 6.0, & 

          4.0, 1.0, 4.0, 4.0, 6.0/ 

! 

!                                 Find eigenvalues of A 

      ELOW  = 1.5 

      EHIGH = 5.5 

      CALL EVBSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,'(/,A,I2)') ' NEVAL = ', NEVAL 

      CALL WRRRN ('EVAL', EVAL, 1, NEVAL, 1) 

      END 

Output 
 

NEVAL =  2 

   

      EVAL 

      1       2 

  5.000   5.000 

EVFSF 
Computes selected eigenvalues and eigenvectors of a real symmetric matrix. 
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Required Arguments 

MXEVAL — Maximum number of eigenvalues to be computed.   (Input) 

A — Real symmetric matrix of order N.   (Input) 

ELOW — Lower limit of the interval in which the eigenvalues are sought.   (Input) 

EHIGH — Upper limit of the interval in which the eigenvalues are sought.   (Input) 

NEVAL — Number of eigenvalues found.   (Output) 

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval  

(ELOW, EHIGH) in decreasing order of magnitude.   (Output) 

Only the first NEVAL elements of EVAL are significant. 

EVEC — Real matrix of dimension N by MXEVAL.   (Output)  

The J-th eigenvector corresponding to EVAL(J), is stored in the J-th column. Only the 

first NEVAL columns of EVEC are significant. Each vector is normalized to have 

Euclidean length equal to the value one. 

Optional Arguments  

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL EVFSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EVFSF and D_EVFSF. 

FORTRAN 77 Interface 

Single: CALL EVFSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, EVEC, 
LDEVEC) 

Double: The double precision name is DEVFSF. 



 

 

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis  577 

     

     

 

Description 

Routine EVFSF computes the eigenvalues in a given interval and the corresponding eigenvectors 

of a real symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to 

an equivalent symmetric tridiagonal matrix. Then, an implicit rational QR algorithm is used to 

compute the eigenvalues of this tridiagonal matrix. Inverse iteration is used to compute the 

eigenvectors of the tridiagonal matrix. This is followed by orthogonalization of these vectors. The 

eigenvectors of the original matrix are computed by back transforming those of the tridiagonal 

matrix. 

The reduction step is based on the EISPACK routine TRED1. The rational QR algorithm is called 

the PWK algorithm. It is given in Parlett (1980, page 169). The inverse iteration and 

orthogonalization processes are discussed in Hanson et al. (1990). The transformation back to the 

users‘s input matrix is based on the EISPACK routine TRBAK1. See Smith et al. (1976) for the 

EISPACK routines. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3FSF/DE3FSF. The 

reference is: 

CALL E3FSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, VAL, 

EVEC, LDEVEC, WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length 9N. 

IWK — Integer work array of length N. 

2. Informational errors 

Type Code 

3 1 The number of eigenvalues in the specified range exceeds 

MXEVAL. NEVAL contains the number of eigenvalues in the 

range. No eigenvalues will be computed. 

3 2 Inverse iteration did not converge. Eigenvector is not correct for the 

specified eigenvalue. 

3 3 The eigenvectors have lost orthogonality. 

Example 

In this example, A is set to the computed Hilbert matrix. The eigenvalues in the interval [0.001, 1] 

and their corresponding eigenvectors are computed and printed. This example uses MXEVAL = 3. 

The routine EVFSF computes the number of eigenvalues NEVAL in the given interval. The value of 

NEVAL is 2. The performance index is also computed and printed. For more details, see IMSL 

routine EPISF. 
 

      USE EVFSF_INT 

      USE EPISF_INT 

      USE WRRRN_INT 
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      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, MXEVAL, N, J, I 

      PARAMETER  (MXEVAL=3, N=3, LDA=N, LDEVEC=N) 

! 

      INTEGER    NEVAL, NOUT 

      REAL       A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL), & 

                EVEC(LDEVEC,MXEVAL), PI 

!                                 Compute Hilbert matrix 

      DO 20 J=1,N 

         DO 10 I=1,N 

            A(I,J) = 1.0/FLOAT(I+J-1) 

   10    CONTINUE 

   20 CONTINUE 

!                                 Find eigenvalues and vectors 

      ELOW  = 0.001 

      EHIGH = 1.0 

      CALL EVFSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC, LDEVEC) 

!                                 Compute performance index 

      PI = EPISF(NEVAL,A,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,'(/,A,I2)') ' NEVAL = ', NEVAL 

      CALL WRRRN ('EVAL', EVAL, 1, NEVAl, 1) 

      CALL WRRRN ('EVEC', EVEC, N, NEVAL, LDEVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
 

 NEVAL =  2 

   

       EVAL 

       1        2 

  0.1223   0.0027 

   

        EVEC 

          1        2 

 1  -0.5474  -0.1277 

 2   0.5283   0.7137 

 3   0.6490  -0.6887 

 

 Performance index =  0.008 

EPISF 
This function computes the performance index for a real symmetric eigensystem. 

Function Return Value 

EPISF — Performance index.   (Output) 



 

 

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis  579 

     

     

 

Required Arguments 

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index 

computation is based on.   (Input) 

A — Symmetric matrix of order N.   (Input) 

EVAL — Vector of length NEVAL containing eigenvalues of A.   (Input) 

EVEC — N by NEVAL array containing eigenvectors of A.   (Input)  

The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column 

of EVEC. 

Optional Arguments  

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: EPISF (NEVAL, A, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EPISF and D_EPISF. 

FORTRAN 77 Interface 

Single: EPISF (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision function name is DEPISF. 

Description 

Let M = NEVAL,  = EVAL, xj = EVEC(*,J), the j-th column of EVEC. Also, let ε be the machine 

precision, given by AMACH(4), see the Reference chapter of this manual. The performance index, τ, 

is defined to be  









 

max
1

1

1 1
10j M

j j j

j

Ax x

N A x
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While the exact value of τ is highly machine dependent, the performance of EVCSF is considered 

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. The performance index was first 

developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, pages 

124− 125). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E2ISF/DE2ISF. The 

reference is: 

E2ISF (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WORK) 

The additional argument is: 

WORK — Work array of length N. 

E2ISF — Performance Index. 

2. Informational errors 

Type Code 

3 1 Performance index is greater than 100. 

3 2 An eigenvector is zero. 

3 3 The matrix is zero. 

Example 

For an example of EPISF, see routine EVCSF. 

EVLSB 
Computes all of the eigenvalues of a real symmetric matrix in band symmetric storage mode. 

Required Arguments 

A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

EVAL — Vector of length N containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

Optional Arguments  

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVLSB (A, NCODA, EVAL [,…]) 

Specific: The specific interface names are S_EVLSB and D_EVLSB. 

FORTRAN 77 Interface 

Single: CALL EVLSB (N, A, LDA, NCODA, EVAL) 

Double: The double precision name is DEVLSB. 

Description 

Routine EVLSB computes the eigenvalues of a real band symmetric matrix. Orthogonal similarity 

transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. The 

implicit QL algorithm is used to compute the eigenvalues of the resulting tridiagonal matrix. 

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The QL 

routine is based on the EISPACK routine IMTQL1; see Smith et al. (1976). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3LSB/DE3LSB. The 

reference is: 

CALL E3LSB (N, A, LDA, NCODA, EVAL, ACOPY, WK) 

The additional arguments are as follows: 

ACOPY —  Work array of length N(NCODA + 1). The arrays A and ACOPY 

may be the same, in which case the first N(NCODA + 1) elements of A 

will be destroyed. 

WK —  Work array of length N. 

2. Informational error 

Type Code 

4 1 The iteration for the eigenvalues failed to converge. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 

page 77). The eigenvalues of this matrix are given by 
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Since the eigenvalues returned by EVLSB are in decreasing magnitude, the above formula for  

k = 1, …, N gives the values in a different order. The eigenvalues of this real band symmetric 

matrix are computed and printed. 
 

      USE EVLSB_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, N, NCODA 

      PARAMETER  (N=5, NCODA=2, LDA=NCODA+1, LDEVEC=N) 

! 

      REAL       A(LDA,N), EVAL(N) 

!                                 Define values of A: 

!                                 A = (-1  2  1       ) 

!                                     ( 2  0  2  1    ) 

!                                     ( 1  2  0  2  1 ) 

!                                     (    1  2  0  2 ) 

!                                     (       1  2 -1 ) 

!                                 Represented in band symmetric 

!                                 form this is: 

!                                 A = ( 0  0  1  1  1 ) 

!                                     ( 0  2  2  2  2 ) 

!                                     (-1  0  0  0 -1 ) 

! 

      DATA A/0.0, 0.0, -1.0, 0.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, & 

          0.0, 1.0, 2.0, -1.0/ 

! 

       CALL EVLSB (A, NCODA, EVAL) 

!                                 Print results 

      CALL WRRRN ('EVAL', EVAL, 1, N, 1) 

      END 

Output 
 

                  EVAL 

      1       2       3       4       5 

  4.464  -3.000  -2.464  -2.000   1.000 

EVCSB 
Computes all of the eigenvalues and eigenvectors of a real symmetric matrix in band symmetric 

storage mode. 

Required Arguments 

A — Band symmetric matrix of order N.   (Input) 
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NCODA — Number of codiagonals in A.   (Input) 

EVAL — Vector of length N containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

EVEC — Matrix of order N containing the eigenvectors.   (Output)  

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each 

vector is normalized to have Euclidean length equal to the value one. 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL EVCSB (A, NCODA, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EVCSB and D_EVCSB. 

FORTRAN 77 Interface 

Single: CALL EVCSB (N, A, LDA, NCODA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCSB. 

Description 

Routine EVCSB computes the eigenvalues and eigenvectors of a real band symmetric matrix. 

Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric 

tridiagonal matrix. These transformations are accumulated. The implicit QL algorithm is used to 

compute the eigenvalues and eigenvectors of the resulting tridiagonal matrix. 

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The QL 

routine is based on the EISPACK routine IMTQL2; see Smith et al. (1976). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E4CSB/DE4CSB. The 

reference is: 
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CALL E4CSB (N, A, LDA, NCODA, EVAL, EVEC, LDEVEC, COPY, 

WK, IWK) 

The additional arguments are as follows: 

ACOPY — Work array of length N(NCODA + 1). A and ACOPY may be the 

same, in which case the first N * NCODA elements of A will be 

destroyed. 

WK — Work array of length N. 

IWK — Integer work array of length N. 

2. Informational error 

Type Code 

4 1 The iteration for the eigenvalues failed to converge. 

3. The success of this routine can be checked using EPISB. 

Example 

In this example, a DATA statement is used to set A to a band matrix given by Gregory and Karney 

(1969, page 75). The eigenvalues, k, of this matrix are given by 

416sin
2 2

k

k

N




 
  

   

The eigenvalues and eigenvectors of this real band symmetric matrix are computed and printed. 

The performance index is also computed and printed. This serves as a check on the computations; 

for more details, see IMSL routine EPISB. 
 

      USE EVCSB_INT 

      USE EPISB_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, N, NCODA 

      PARAMETER  (N=6, NCODA=2, LDA=NCODA+1, LDEVEC=N) 

! 

      INTEGER    NOUT 

      REAL       A(LDA,N), EVAL(N), EVEC(LDEVEC,N), PI 

!                                 Define values of A: 

!                                 A = (  5  -4   1              ) 

!                                     ( -4   6  -4   1          ) 

!                                     (  1  -4   6  -4   1      ) 

!                                     (      1  -4   6  -4   1  ) 

!                                     (          1  -4   6  -4  ) 

!                                     (              1  -4   5  ) 
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!                                 Represented in band symmetric 

!                                 form this is: 

!                                 A = (  0   0   1   1   1   1  ) 

!                                     (  0  -4  -4  -4  -4  -4  ) 

!                                     (  5   6   6   6   6   5  ) 

! 

      DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, & 

          6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/ 

! 

!                                 Find eigenvalues and vectors 

      CALL EVCSB (A, NCODA, EVAL, EVEC) 

!                                 Compute performance index 

      PI = EPISB(N,A,NCODA,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRRRN ('EVAL', EVAL, 1, N, 1) 

      CALL WRRRN ('EVEC', EVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
 

                      EVAL 

      1       2       3       4       5       6 

  14.45   10.54    5.98    2.42    0.57    0.04 

   

                          EVEC 

          1        2        3        4        5        6 

 1  -0.2319  -0.4179  -0.5211   0.5211  -0.4179   0.2319 

 2   0.4179   0.5211   0.2319   0.2319  -0.5211   0.4179 

 3  -0.5211  -0.2319   0.4179  -0.4179  -0.2319   0.5211 

 4   0.5211  -0.2319  -0.4179  -0.4179   0.2319   0.5211 

 5  -0.4179   0.5211  -0.2319   0.2319   0.5211   0.4179 

 6   0.2319  -0.4179   0.5211   0.5211   0.4179   0.2319 

 

 Performance index =  0.029 

EVASB 
Computes the largest or smallest eigenvalues of a real symmetric matrix in band symmetric 

storage mode. 

Required Arguments 

NEVAL — Number of eigenvalues to be computed.   (Input) 

A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

SMALL — Logical variable.   (Input)  

If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest NEVAL 

eigenvalues are computed. 



     

     
 

586  Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY  

     

     

 

EVAL — Vector of length NEVAL containing the computed eigenvalues in decreasing order of 

magnitude.   (Output) 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVASB (NEVAL, A, NCODA, SMALL, EVAL [,…]) 

Specific: The specific interface names are S_EVASB and D_EVASB. 

FORTRAN 77 Interface 

Single: CALL EVASB (N, NEVAL, A, LDA, NCODA, SMALL, EVAL) 

Double: The double precision name is DEVASB. 

Description 

Routine EVASB computes the largest or smallest eigenvalues of a real band symmetric matrix. 

Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric 

tridiagonal matrix. The rational QR algorithm with Newton corrections is used to compute the 

extreme eigenvalues of this tridiagonal matrix. 

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1978). The QR 

routine is based on the EISPACK routine RATQR; see Smith et al. (1976). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3ASB/DE3ASB. The 

reference is: 

CALL E3ASB (N, NEVAL, A, LDA, NCODA, SMALL, EVAL, ACOPY, 

WK) 

The additional arguments are as follows: 

ACOPY — Work array of length N(NCODA + 1). A and ACOPY may be the 

same, in which case the first N(NCODA + 1) elements of A will be 

destroyed. 
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WK — Work array of length 3N. 

2. Informational error 

Type Code 

3 1 The iteration for an eigenvalue failed to converge. The best estimate 

will be returned. 

Example 

The following example is given in Gregory and Karney (1969, page 63). The smallest four 

eigenvalues of the matrix 

5 2 1 1

2 6 3 1 1

1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1

1 1 3 6 2

1 1 2 5

A

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
   

are computed and printed. 
 

      USE EVASB_INT 

      USE WRRRN_INT 

      USE SSET_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, N, NCODA, NEVAL 

      PARAMETER  (N=11, NCODA=3, NEVAL=4, LDA=NCODA+1) 

! 

      REAL       A(LDA,N), EVAL(NEVAL) 

      LOGICAL    SMALL 

!                                 Set up matrix in band symmetric 

!                                 storage mode 

      CALL SSET (N, 6.0, A(4:,1), LDA) 

      CALL SSET (N-1, 3.0, A(3:,2), LDA) 

      CALL SSET (N-2, 1.0, A(2:,3), LDA) 

      CALL SSET (N-3, 1.0, A(1:,4), LDA) 

      CALL SSET (NCODA, 0.0, A(1:,1), 1) 

      CALL SSET (NCODA-1, 0.0, A(1:,2), 1) 

      CALL SSET (NCODA-2, 0.0, A(1:,3), 1) 

      A(4,1) = 5.0 
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      A(4,N) = 5.0 

      A(3,2) = 2.0 

      A(3,N) = 2.0 

!                                 Find the 4 smallest eigenvalues 

      SMALL = .TRUE. 

      CALL EVASB (NEVAL, A, NCODA, SMALL, EVAL) 

!                                 Print results 

      CALL WRRRN ('EVAL', EVAL, 1, NEVAL, 1) 

      END 

Output 
 

              EVAL 

      1       2       3       4 

  4.000   3.172   1.804   0.522 

EVESB 
Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a real 

symmetric matrix in band symmetric storage mode. 

Required Arguments 

NEVEC — Number of eigenvectors to be calculated.   (Input) 

A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

SMALL — Logical variable.    (Input) 

If .TRUE. , the smallest NEVEC eigenvectors are computed. If .FALSE. , the largest 

NEVEC eigenvectors are computed. 

EVAL — Vector of length NEVEC containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

EVEC — Real matrix of dimension N by NEVEC.    (Output) 

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each 

vector is normalized to have Euclidean length equal to the value one. 

Optional Arguments  

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 
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LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL EVESB (NEVEC, A, NCODA, SMALL, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_EVESB and D_EVESB. 

FORTRAN 77 Interface 

Single: CALL EVESB (N, NEVEC, A, LDA, NCODA, SMALL, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVESB. 

Description 

Routine EVESB computes the largest or smallest eigenvalues and the corresponding eigenvectors 

of a real band symmetric matrix. Orthogonal similarity transformations are used to reduce the 

matrix to an equivalent symmetric tridiagonal matrix. The rational QR algorithm with Newton 

corrections is used to compute the extreme eigenvalues of this tridiagonal matrix. Inverse iteration 

and orthogonalization are used to compute the eigenvectors of the given band matrix. The 

reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The QR 

routine is based on the EISPACK routine RATQR; see Smith et al. (1976). The inverse iteration and 

orthogonalization steps are based on EISPACK routine BANDV using the additional steps given in 

Hanson et al. (1990). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E4ESB/DE4ESB. The 

reference is: 

CALL E4ESB (N, NEVEC, A, LDA, NCODA, SMALL, EVAL, EVEC, 

LDEVEC, ACOPY, WK, IWK) 

The additional argument is: 

ACOPY — Work array of length N(NCODA + 1). 

WK — Work array of length N(2NCODA + 5). 

IWK — Integer work array of length N. 

2. Informational errors 

Type Code 

3 1 Inverse iteration did not converge. Eigenvector is not correct for the 

specified eigenvalue. 
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3 2 The eigenvectors have lost orthogonality. 

3. The success of this routine can be checked using EPISB. 

Example 

The following example is given in Gregory and Karney (1969, page 75). The largest three 

eigenvalues and the corresponding eigenvectors of the matrix are computed and printed. 
 

      USE EVESB_INT 

      USE EPISB_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, N, NCODA, NEVEC 

      PARAMETER  (N=6, NCODA=2, NEVEC=3, LDA=NCODA+1, LDEVEC=N) 

! 

      INTEGER    NOUT 

      REAL       A(LDA,N), EVAL(NEVEC), EVEC(LDEVEC,NEVEC), PI 

      LOGICAL    SMALL 

!                                 Define values of A: 

!                                 A = (  5  -4   1              ) 

!                                     ( -4   6  -4   1          ) 

!                                     (  1  -4   6  -4   1      ) 

!                                     (      1  -4   6  -4   1  ) 

!                                     (          1  -4   6  -4  ) 

!                                     (              1  -4   5  ) 

!                                 Represented in band symmetric 

!                                 form this is: 

!                                 A = (  0   0   1   1   1   1  ) 

!                                     (  0  -4  -4  -4  -4  -4  ) 

!                                     (  5   6   6   6   6   5  ) 

! 

      DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, & 

          6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/ 

! 

!                                 Find the 3 largest eigenvalues 

!                                 and their eigenvectors. 

      SMALL = .FALSE. 

      CALL EVESB (NEVEC, A, NCODA, SMALL, EVAL, EVEC) 

!                                 Compute performance index 

      PI = EPISB(NEVEC,A,NCODA,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRRRN ('EVAL', EVAL, 1, NEVEC, 1) 

      CALL WRRRN ('EVEC', EVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
 

          EVAL 
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      1       2       3 

  14.45   10.54    5.98 

   

             EVEC 

          1        2        3 

 1   0.2319  -0.4179   0.5211 

 2  -0.4179   0.5211  -0.2319 

 3   0.5211  -0.2319  -0.4179 

 4  -0.5211  -0.2319   0.4179 

 5   0.4179   0.5211   0.2319 

 6  -0.2319  -0.4179  -0.5211 

 

 Performance index =  0.175 

EVBSB 
Computes the eigenvalues in a given interval of a real symmetric matrix stored in band symmetric 

storage mode. 

Required Arguments 

MXEVAL — Maximum number of eigenvalues to be computed.   (Input) 

A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

ELOW — Lower limit of the interval in which the eigenvalues are sought.   (Input) 

EHIGH — Upper limit of the interval in which the eigenvalues are sought.   (Input) 

NEVAL — Number of eigenvalues found.   (Output) 

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW, 

EHIGH) in decreasing order of magnitude.   (Output) 

Only the first NEVAL elements of EVAL are set. 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVBSB (MXEVAL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL [,…]) 

Specific: The specific interface names are S_EVBSB and D_EVBSB. 
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FORTRAN 77 Interface 

Single: CALL EVBSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, EVAL) 

Double: The double precision name is DEVBSB. 

Description 

Routine EVBSB computes the eigenvalues in a given range of a real band symmetric matrix. 

Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric 

tridiagonal matrix. A bisection algorithm is used to compute the eigenvalues of the tridiagonal 

matrix in a given range. 

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The 

bisection routine is based on the EISPACK routine BISECT; see Smith et al. (1976). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3BSB/DE3BSB. The 

reference is: 

CALL E3BSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, EVAL, 

ACOPY, WK) 

The additional arguments are as follows: 

ACOPY — Work matrix of size NCODA + 1 by N. A and ACOPY may be the 

same, in which case the first N(NCODA + 1) elements of A will be 

destroyed. 

WK — Work array of length 5N. 

2. Informational error 

Type Code 

3 1 The number of eigenvalues in the specified interval exceeds 

MXEVAL. NEVAL contains the number of eigenvalues in the 

interval. No eigenvalues will be returned. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 

page 77). The eigenvalues in the range (-2.5, 1.5) are computed and printed. As a test, this 

example uses MXEVAL = 5. The routine EVBSB computes NEVAL, the number of eigenvalues in the 

given range, has the value 3. 
 

      USE EVBSB_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 
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!                                 Declare variables 

      INTEGER    LDA, MXEVAL, N, NCODA 

      PARAMETER  (MXEVAL=5, N=5, NCODA=2, LDA=NCODA+1) 

! 

      INTEGER    NEVAL, NOUT 

      REAL       A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL) 

! 

!                                 Define values of A: 

!                                 A = ( -1   2   1          ) 

!                                     (  2   0   2   1      ) 

!                                     (  1   2   0   2   1  ) 

!                                     (      1   2   0   2  ) 

!                                     (          1   2  -1  ) 

!                                 Representedin band symmetric 

!                                 form this is: 

!                                 A = (  0   0   1   1   1 ) 

!                                     (  0   2   2   2   2 ) 

!                                     ( -1   0   0   0  -1 ) 

      DATA A/0.0, 0.0, -1.0, 0.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, & 

          0.0, 1.0, 2.0, -1.0/ 

! 

      ELOW  = -2.5 

      EHIGH = 1.5 

      CALL EVBSB (MXEVAL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,'(/,A,I1)') ' NEVAL = ', NEVAL 

      CALL WRRRN ('EVAL', EVAL, 1, NEVAl, 1) 

      END 

Output 
 

NEVAL = 3 

   

          EVAL 

      1       2       3 

 -2.464  -2.000   1.000 

EVFSB 
Computes the eigenvalues in a given interval and the corresponding eigenvectors of a real 

symmetric matrix stored in band symmetric storage mode. 

Required Arguments 

MXEVAL — Maximum number of eigenvalues to be computed.   (Input) 

A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

ELOW — Lower limit of the interval in which the eigenvalues are sought.   (Input) 

EHIGH — Upper limit of the interval in which the eigenvalues are sought.   (Input) 
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NEVAL — Number of eigenvalues found.   (Output) 

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW, 

EHIGH) in decreasing order of magnitude.   (Output) 

Only the first NEVAL elements of EVAL are significant. 

EVEC — Real matrix containing in its first NEVAL columns the eigenvectors associated with 

the eigenvalues found and stored in EVAL. Eigenvector J corresponds to eigenvalue J 

for J = 1 to NEVAL. Each vector is normalized to have Euclidean length equal to the 

value one.   (Output) 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL EVFSB (MXEVEL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EVFSB and D_EVFSB. 

FORTRAN 77 Interface 

Single: CALL EVFSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, EVAL, EVEC, 
LDEVEC) 

Double: The double precision name is DEVFSB. 

Description 

Routine EVFSB computes the eigenvalues in a given range and the corresponding eigenvectors of a 

real band symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to 

an equivalent tridiagonal matrix. A bisection algorithm is used to compute the eigenvalues of the 

tridiagonal matrix in the required range. Inverse iteration and orthogonalization are used to 

compute the eigenvectors of the given band symmetric matrix. 

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The 

bisection routine is based on the EISPACK routine BISECT; see Smith et al. (1976). The inverse 
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iteration and orthogonalization steps are based on the EISPACK routine BANDV using remarks 

from Hanson et al. (1990). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3FSB/DE3FSB. The 

reference is: 

CALL E3FSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, 

EVAL, EVEC, LDEVEC, ACOPY, WK1, WK2, IWK) 

The additional arguments are as follows: 

ACOPY — Work matrix of size NCODA + 1 by N. 

WK1 — Work array of length 6N. 

WK2 — Work array of length 2N * NCODA + N 

IWK — Integer work array of length N. 

2. Informational errors 

Type Code 

3 1 The number of eigenvalues in the specified interval exceeds 

MXEVAL. NEVAL contains the number of eigenvalues in the 

interval. No eigenvalues will be returned. 

3 2 Inverse iteration did not converge. Eigenvector is not correct for the 

specified eigenvalue. 

3 3 The eigenvectors have lost orthogonality. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 

page 75). The eigenvalues in the range [1, 6] and their corresponding eigenvectors are computed 

and printed. As a test, this example uses MXEVAL = 4. The routine EVFSB computes NEVAL, the 

number of eigenvalues in the given range has the value 2. As a check on the computations, the 

performance index is also computed and printed. For more details, see IMSL routine EPISB. 
 

      USE EVFSB_INT 

      USE EPISB_INT 

      USE WRRRN_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, MXEVAL, N, NCODA 

      PARAMETER  (MXEVAL=4, N=6, NCODA=2, LDA=NCODA+1, LDEVEC=N) 

! 

      INTEGER    NEVAL, NOUT 

      REAL       A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL), & 
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                 EVEC(LDEVEC,MXEVAL), PI 

!                                 Define values of A: 

!                                 A = (  5  -4   1              ) 

!                                     ( -4   6  -4   1          ) 

!                                     (  1  -4   6  -4   1      ) 

!                                     (      1  -4   6  -4   1  ) 

!                                     (          1  -4   6  -4  ) 

!                                     (              1  -4   5  ) 

!                                 Represented in band symmetric 

!                                 form this is: 

!                                 A = (  0   0   1   1   1   1  ) 

!                                     (  0  -4  -4  -4  -4  -4  ) 

!                                     (  5   6   6   6   6   5  ) 

      DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, & 

          6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/ 

! 

!                                 Find eigenvalues and vectors 

      ELOW  = 1.0 

      EHIGH = 6.0 

      CALL EVFSB (MXEVAL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL, EVEC) 

!                                 Compute performance index 

      PI = EPISB(NEVAL,A,NCODA,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,'(/,A,I1)') ' NEVAL = ', NEVAL 

      CALL WRRRN ('EVAL', EVAL, 1, NEVAL, 1) 

      CALL WRRRN ('EVEC', EVEC, N, NEVAL, LDEVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
 

NEVAL = 2 

   

      EVAL 

      1       2 

  5.978   2.418 

   

        EVEC 

          1        2 

 1   0.5211   0.5211 

 2  -0.2319   0.2319 

 3  -0.4179  -0.4179 

 4   0.4179  -0.4179 

 5   0.2319   0.2319 

 6  -0.5211   0.5211 

 

 Performance index =  0.083 

EPISB 
This function computes the performance index for a real symmetric eigensystem in band 

symmetric storage mode. 
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Required Arguments 

EPISB — Performance index.   (Output) 

Required Arguments 

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance is based.   

(Input) 

A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

EVAL — Vector of length NEVAL containing eigenvalues of A.   (Input) 

EVEC — N by NEVAL array containing eigenvectors of A.   (Input)  

The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column 

of EVEC. 

Optional Arguments  

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: EPISB (NEVAL, A, NCODA, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EPISB and D_EPISB. 

FORTRAN 77 Interface 

Single: EPISB (N, NEVAL, A, LDA, NCODA, EVAL, EVEC, LDEVEC) 

Double: The double precision function name is DEPISB. 

Description 

Let M = NEVAL,  = EVAL, xj = EVEC(*,J), the j-th column of EVEC. Also, let ε be the machine 

precision, given by AMACH(4), see the Reference chapter of the manual. The performance index, τ, 

is defined to be 
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While the exact value of τ is highly machine dependent, the performance of EVCSF is considered 

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. The performance index was first 

developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, pages 

124− 125). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E2ISB/DE2ISB. The 

reference is: 

E2ISB (N, NEVAL, A, LDA, NCODA, EVAL, EVEC, LDEVEC, WK) 

The additional argument is: 

WK — Work array of length N. 

2. Informational errors 

Type Code 

3 1 Performance index is greater than 100. 

3  2 An eigenvector is zero. 

3 3 The matrix is zero. 

Example 

For an example of EPISB, see IMSL routine EVCSB. 

EVLHF 

 

 

 

Computes all of the eigenvalues of a complex Hermitian matrix. 

Required Arguments 

A — Complex Hermitian matrix of order N.   (Input)  

Only the upper triangle is used. 
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EVAL — Real vector of length N containing the eigenvalues of A in decreasing order  

of magnitude.   (Output) 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVLHF (A, EVAL [,…]) 

Specific: The specific interface names are S_EVLHF and D_EVLHF. 

FORTRAN 77 Interface 

Single: CALL EVLHF (N, A, LDA, EVAL) 

Double: The double precision name is DEVLHF. 

Description 

Routine EVLHF computes the eigenvalues of a complex Hermitian matrix. Unitary similarity 

transformations are used to reduce the matrix to an equivalent real symmetric tridiagonal matrix. 

The implicit QL algorithm is used to compute the eigenvalues of this tridiagonal matrix. 

The underlying code is based on either EISPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3LHF/DE3LHF. The 

reference is: 

CALL E3LHF (N, A, LDA, EVAL, ACOPY, RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same 

in which case A will be destroyed. 

RWK — Work array of length N. 

CWK — Complex work array of length 2N. 
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IWK — Integer work array of length N. 

2. Informational errors 

Type Code 

3 1 The matrix is not Hermitian. It has a diagonal entry with a small 

imaginary part. 

4 1 The iteration for an eigenvalue failed to converge. 

4 2 The matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3.        Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access 

inefficiency) problems. In routine E3LHF, the internal or working leading 

dimensions of ACOPY and ECOPY are both increased by IVAL(3) when N is a 

multiple of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced 

by IVAL(1) and IVAL(2), respectively, in routine EVLHF. Additional memory 

allocation and option value restoration are automatically done in EVLHF. There 

is no requirement that users change existing applications that use EVLHF or 

E3LHF. Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 

5  8 in IVAL(*) are for the generalized eigenvalue problem and are not used in 

EVLHF. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 

page 114). The eigenvalues of this complex Hermitian matrix are computed and printed. 
 

      USE EVLHF_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (N=2, LDA=N) 

! 

      REAL       EVAL(N) 

      COMPLEX    A(LDA,N) 

!                                 Set values of A 

! 

!                                 A = (  1      -i  ) 

!                                     (  i       1  ) 

! 

      DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/ 

! 

!                                 Find eigenvalues of A 

      CALL EVLHF (A, EVAL) 

!                                 Print results 

      CALL WRRRN ('EVAL', EVAL, 1, N, 1) 
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      END 

Output 
 

      EVAL 

      1       2 

  2.000   0.000 

EVCHF 

 

 

 

Computes all of the eigenvalues and eigenvectors of a complex Hermitian matrix. 

Required Arguments 

A — Complex Hermitian matrix of order N.   (Input)  

Only the upper triangle is used. 

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

EVEC — Complex matrix of order N.   (Output)  

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each 

vector is normalized to have Euclidean length equal to the value one. 

Optional Arguments  

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL EVCHF (A, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EVCHF and D_EVCHF. 
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FORTRAN 77 Interface 

Single: CALL EVCHF (N, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCHF. 

Description 

Routine EVCHF computes the eigenvalues and eigenvectors of a complex Hermitian matrix. 

Unitary similarity transformations are used to reduce the matrix to an equivalent real symmetric 

tridiagonal matrix. The implicit QL algorithm is used to compute the eigenvalues and eigenvectors 

of this tridiagonal matrix. These eigenvectors and the transformations used to reduce the matrix to 

tridiagonal form are combined to obtain the eigenvectors for the user‘s problem. The underlying 

code is based on either EISPACK or LAPACK code depending upon which supporting libraries 

are used during linking. For a detailed explanation, see “Using ScaLAPACK, LAPACK, 

LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E5CHF/DE5CHF. The 

reference is: 

CALL E5CHF (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, RWK, 

CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same, 

in which case A will be destroyed. 

RWK — Work array of length N
2
 + N. 

CWK — Complex work array of length 2N. 

IWK — Integer work array of length N. 

2. Informational error 

Type Code 

3 1 The matrix is not Hermitian. It has a diagonal entry with a small 

imaginary part. 

4 1 The iteration for an eigenvalue failed to converge. 

4 2 The matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. The success of this routine can be checked using EPIHF. 

4. Integer Options with Chapter 11 Options Manager 
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1 This option uses eight values to solve memory bank conflict (access 

inefficiency) problems. In routine E5CHF, the internal or working leading 

dimensions of ACOPY and ECOPY are both increased by IVAL(3) when N is a 

multiple of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced 

by IVAL(1) and IVAL(2), respectively, in routine EVCHF. Additional memory 

allocation and option value restoration are automatically done in EVCHF. There 

is no requirement that users change existing applications that use EVCHF or 

E5CHF. Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 

58 in IVAL(*) are for the generalized eigenvalue problem and are not used in 

EVCHF. 

Example 

In this example, a DATA statement is used to set A to a complex Hermitian matrix. The eigenvalues 

and eigenvectors of this matrix are computed and printed. The performance index is also 

computed and printed. This serves as a check on the computations, for more details, see routine 

EPIHF. 
 

      USE IMSL_libraries 

 

      IMPLICIT   NONE 

 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, N 

      PARAMETER  (N=3, LDA=N, LDEVEC=N) 

! 

      INTEGER    NOUT 

      REAL       EVAL(N), PI 

      COMPLEX    A(LDA,N), EVEC(LDEVEC,N) 

!                                 Set values of A 

! 

!                                 A = ((1, 0)  (  1,-7i)  ( 0,- i)) 

!                                     ((1,7i)  (  5,  0)  (10,-3i)) 

!                                     ((0, i)  ( 10, 3i)  (-2,  0)) 

! 

      DATA A/(1.0,0.0), (1.0,7.0), (0.0,1.0), (1.0,-7.0), (5.0,0.0), & 

          (10.0, 3.0), (0.0,-1.0), (10.0,-3.0), (-2.0,0.0)/ 

! 

!                                 Find eigenvalues and vectors of A 

      CALL EVCHF (A, EVAL, EVEC) 

!                                 Compute performance index 

      PI = EPIHF(N,A,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRRRN ('EVAL', EVAL, 1, N, 1) 

      CALL WRCRN ('EVEC', EVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
   

          EVAL 

      1       2       3 

  15.38  -10.63   -0.75 
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                            EVEC 

                    1                  2                  3 

 1  ( 0.0631,-0.4075)  (-0.0598,-0.3117)  ( 0.8539, 0.0000) 

 2  ( 0.7703, 0.0000)  (-0.5939, 0.1841)  (-0.0313,-0.1380) 

 3  ( 0.4668, 0.1366)  ( 0.7160, 0.0000)  ( 0.0808,-0.4942) 

 

 Performance index =  0.093 

EVAHF 
Computes the largest or smallest eigenvalues of a complex Hermitian matrix. 

Required Arguments 

NEVAL — Number of eigenvalues to be calculated.   (Input) 

A — Complex Hermitian matrix of order N.   (Input)  

Only the upper triangle is used. 

SMALL — Logical variable.   (Input)  

If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest 

NEVAL eigenvalues are computed. 

EVAL — Real vector of length N containing the extreme eigenvalues of A in decreasing order 

of magnitude in the first NEVAL elements. (Output) 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVAHF (NEVAL, A, SMALL, EVAL [,…]) 

Specific: The specific interface names are S_EVAHF and D_EVAHF. 

FORTRAN 77 Interface 

Single: CALL EVAHF (N, NEVAL, A, LDA, SMALL, EVAL) 

Double: The double precision name is DEVAHF. 
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Description 

Routine EVAHF computes the largest or smallest eigenvalues of a complex Hermitian matrix. 

Unitary transformations are used to reduce the matrix to an equivalent symmetric tridiagonal 

matrix. The rational QR algorithm with Newton corrections is used to compute the extreme 

eigenvalues of this tridiagonal matrix. 

The reduction routine is based on the EISPACK routine HTRIDI. The QR routine is based on the 

EISPACK routine RATQR. See Smith et al. (1976) for the EISPACK routines. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3AHF/DE3AHF. The 

reference is 

CALL E3AHF (N, NEVAL, A, LDA, SMALL, EVAL, ACOPY, RWK, 

CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same 

in which case A will be destroyed. 

RWK — Work array of length 2N. 

CWK — Complex work array of length 2N. 

IWK — Work array of length N. 

2. Informational errors 

Type Code 

3 1 The iteration for an eigenvalue failed to converge. The best estimate 

will be returned. 

3 2 The matrix is not Hermitian. It has a diagonal entry with a small 

imaginary part. 

4 2 The matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 

page 114). Its largest eigenvalue is computed and printed. 
 

      USE EVAHF_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (N=2, LDA=N) 
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! 

      INTEGER    NEVAL 

      REAL       EVAL(N) 

      COMPLEX    A(LDA,N) 

      LOGICAL    SMALL 

!                                 Set values of A 

! 

!                                 A = (  1      -i  ) 

!                                     (  i       1  ) 

! 

      DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/ 

! 

!                                 Find the largest eigenvalue of A 

      NEVAL = 1 

      SMALL = .FALSE. 

      CALL EVAHF (NEVAL, A, SMALL, EVAL) 

!                                 Print results 

      CALL WRRRN ('EVAL', EVAL, 1, NEVAl, 1) 

      END 

Output 
 

  EVAL 

  2.000 

EVEHF 
Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a complex 

Hermitian matrix. 

Required Arguments 

NEVEC — Number of eigenvectors to be computed.   (Input) 

A — Complex Hermitian matrix of order N.   (Input)  

Only the upper triangle is used. 

SMALL — Logical variable.   (Input)  

If .TRUE., the smallest NEVEC eigenvectors are computed. If .FALSE., the largest 

NEVEC eigenvectors are computed. 

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

EVEC — Complex matrix of dimension N by NEVEC.   (Output)  

The J-th eigenvector corresponding to EVAL(J), is stored in the J-th column. Each 

vector is normalized to have Euclidean length equal to the value one. 
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Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2).  

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL EVEHF (NEVEC, A, SMALL, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EVEHF and D_EVEHF. 

FORTRAN 77 Interface 

Single: CALL EVEHF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVEHF. 

Description 

Routine EVEHF computes the largest or smallest eigenvalues and the corresponding eigenvectors 

of a complex Hermitian matrix. Unitary transformations are used to reduce the matrix to an 

equivalent real symmetric tridiagonal matrix. The rational QR algorithm with Newton corrections 

is used to compute the extreme eigenvalues of the tridiagonal matrix. Inverse iteration is used to 

compute the eigenvectors of the tridiagonal matrix. Eigenvectors of the original matrix are found 

by back transforming the eigenvectors of the tridiagonal matrix.  

The reduction routine is based on the EISPACK routine HTRIDI. The QR routine used is based on 

the EISPACK routine RATQR. The inverse iteration routine is based on the EISPACK routine 

TINVIT. The back transformation routine is based on the EISPACK routine HTRIBK. See Smith et 

al. (1976) for the EISPACK routines. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3EHF/DE3EHF. The 

reference is: 

CALL E3EHF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC, 

ACOPY, RW1, RW2, CWK, IWK) 

The additional arguments are as follows: 
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ACOPY — Complex work array of length N
2
. A and ACOPY may be the same, 

in which case A will be destroyed. 

RW1 — Work array of length N * NEVEC. Used to store the real eigenvectors 

of a symmetric tridiagonal matrix. 

RW2 — Work array of length 8N. 

CWK — Complex work array of length 2N. 

IWK — Work array of length N. 

2. Informational errors 

Type Code 

3 1 The iteration for an eigenvalue failed to converge. The best estimate 

will be returned. 

3 2 The iteration for an eigenvector failed to converge. The eigenvector 

will be set to 0. 

3 3 The matrix is not Hermitian. It has a diagonal entry with a small 

imaginary part. 

4 2 The matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. The success of this routine can be checked using EPIHF. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 

page 115). The smallest eigenvalue and its corresponding eigenvector is computed and printed. 

The performance index is also computed and printed. This serves as a check on the computations. 

For more details, see IMSL routine EPIHF. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, N, NEVEC 

      PARAMETER  (N=3, NEVEC=1, LDA=N, LDEVEC=N) 

! 

      INTEGER    NOUT 

      REAL       EVAL(N), PI 

      COMPLEX    A(LDA,N), EVEC(LDEVEC,NEVEC) 

      LOGICAL    SMALL 

!                                 Set values of A 

! 

!                                 A = (  2      -i      0  ) 

!                                     (  i       2      0  ) 

!                                     (  0       0      3  ) 



 

 

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis  609 

     

     

 

! 

      DATA A/(2.0,0.0), (0.0,1.0), (0.0,0.0), (0.0,-1.0), (2.0,0.0), & 

          (0.0,0.0), (0.0,0.0), (0.0,0.0), (3.0,0.0)/ 

! 

!                                 Find smallest eigenvalue and its 

!                                 eigenvectors 

      SMALL = .TRUE. 

      CALL EVEHF (NEVEC, A, SMALL, EVAL, EVEC) 

!                                 Compute performance index 

      PI = EPIHF(NEVEC,A,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRRRN ('EVAL', EVAL, 1, NEVEC, 1) 

      CALL WRCRN ('EVEC', EVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
   

  EVAL 

  1.000 

   

         EVEC 

 1  ( 0.0000, 0.7071) 

 2  ( 0.7071, 0.0000) 

 3  ( 0.0000, 0.0000) 

 

 Performance index =  0.031 

EVBHF 
Computes the eigenvalues in a given range of a complex Hermitian matrix. 

Required Arguments 

MXEVAL — Maximum number of eigenvalues to be computed.   (Input) 

A — Complex Hermitian matrix of order N.   (Input)  

Only the upper triangle is used. 

ELOW — Lower limit of the interval in which the eigenvalues are sought.   (Input) 

EHIGH — Upper limit of the interval in which the eigenvalues are sought.   (Input) 

NEVAL — Number of eigenvalues found.   (Output) 

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW, 

EHIGH) in decreasing order of magnitude.   (Output) 

Only the first NEVAL elements of EVAL are significant. 
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Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVBHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL [,…]) 

Specific: The specific interface names are S_EVBHF and D_EVBHF. 

FORTRAN 77 Interface 

Single: CALL EVBHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL) 

Double: The double precision name is DEVBHF. 

Description 

Routine EVBHF computes the eigenvalues in a given range of a complex Hermitian matrix. Unitary 

transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. A 

bisection algorithm is used to compute the eigenvalues in the given range of this tridiagonal 

matrix. 

The reduction routine is based on the EISPACK routine HTRIDI. The bisection routine used is 

based on the EISPACK routine BISECT. See Smith et al. (1976) for the EISPACK routines. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3BHF/DE3BHF. The 

reference is: 

CALL E3BHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, 

ACOPY, RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work matrix of size N by N. A and ACOPY may be the 

same, in which case the first N
2
 elements of A will be destroyed. 

RWK — Work array of length 5N. 

CWK — Complex work array of length 2N. 

IWK — Work array of length MXEVAL. 
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2. Informational errors 

Type Code 

3 1 The number of eigenvalues in the specified range exceeds 

MXEVAL. NEVAL contains the number of eigenvalues in the 

range. No eigenvalues will be computed. 

3 2 The matrix is not Hermitian. It has a diagonal entry with a small 

imaginary part. 

4 2 The matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

Example 

In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 

page 114). The eigenvalues in the range [1.5, 2.5] are computed and printed. This example allows 

a maximum number of eigenvalues MXEVAL = 2. The routine computes that there is one eigenvalue 

in the given range. This value is returned in NEVAL. 
 

      USE EVBHF_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, MXEVAL, N 

      PARAMETER  (MXEVAL=2, N=2, LDA=N) 

! 

      INTEGER    NEVAL, NOUT 

      REAL       EHIGH, ELOW, EVAL(MXEVAL) 

      COMPLEX    A(LDA,N) 

!                                 Set values of A 

! 

!                                 A = (  1      -i  ) 

!                                     (  i       1  ) 

! 

      DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/ 

! 

!                                 Find eigenvalue 

      ELOW  = 1.5 

      EHIGH = 2.5 

      CALL EVBHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL) 

! 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,'(/,A,I3)') ' NEVAL = ', NEVAL 

      CALL WRRRN ('EVAL', EVAL, 1, NEVAL, 1) 

      END 
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Output 
 

 NEVAL =   1 

   

  EVAL 

  2.000 

EVFHF 
Computes the eigenvalues in a given range and the corresponding eigenvectors of a complex 

Hermitian matrix. 

Required Arguments 

MXEVAL — Maximum number of eigenvalues to be computed.   (Input) 

A — Complex Hermitian matrix of order N.   (Input) 

Only the upper triangle is used. 

ELOW — Lower limit of the interval in which the eigenvalues are sought.   (Input) 

EHIGH — Upper limit of the interval in which the eigenvalues are sought.   (Input) 

NEVAL — Number of eigenvalues found.   (Output) 

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW, 

EHIGH) in decreasing order of magnitude.   (Output) 

Only the first NEVAL elements of EVAL are significant. 

EVEC — Complex matrix containing in its first NEVAL columns the eigenvectors associated 

with the eigenvalues found stored in EVAL. Each vector is normalized to have 

Euclidean length equal to the value one.   (Output) 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 
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FORTRAN 90 Interface 

Generic: CALL EVFHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EVFHF and D_EVFHF. 

FORTRAN 77 Interface 

Single: CALL EVFHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, EVEC, 
LDEVEC) 

Double: The double precision name is DEVHFH. 

Description 

Routine EVFHF computes the eigenvalues in a given range and the corresponding eigenvectors of a 

complex Hermitian matrix. Unitary transformations are used to reduce the matrix to an equivalent 

symmetric tridiagonal matrix. A bisection algorithm is used to compute the eigenvalues in the 

given range of this tridiagonal matrix. Inverse iteration is used to compute the eigenvectors of the 

tridiagonal matrix. The eigenvectors of the original matrix are computed by back transforming the 

eigenvectors of the tridiagonal matrix. 

The reduction routine is based on the EISPACK routine HTRIDI. The bisection routine is based on 

the EISPACK routine BISECT. The inverse iteration routine is based on the EISPACK routine 

TINVIT. The back transformation routine is based on the EISPACK routine HTRIBK. See Smith et 

al. (1976) for the EISPACK routines. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3FHF/DE3FHF. The 

reference is: 

CALL E3FHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, 

EVEC, LDEVEC, ACOPY, ECOPY, RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work matrix of size N by N. A and ACOPY may be the 

same, in which case the first N
2
 elements of A will be destroyed. 

ECOPY — Work matrix of size N by MXEVAL. Used to store eigenvectors of a 

real tridiagonal matrix. 

RWK — Work array of length 8N. 

CWK — Complex work array of length 2N. 

IWK — Work array of length MXEVAL. 

2. Informational errors 
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Type Code 

3 1 The number of eigenvalues in the specified range exceeds 

MXEVAL. NEVAL contains the number of eigenvalues in the 

range. No eigenvalues will be computed. 

3 2 The iteration for an eigenvector failed to converge. The eigenvector 

will be set to 0. 

3 3 The matrix is not Hermitian. It has a diagonal entry with a small 

imaginary part. 

4 2 The matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

Example 

In this example, a DATA statement is used to set A to a complex Hermitian matrix. The eigenvalues 

in the range [15, 0] and their corresponding eigenvectors are computed and printed. As a test, this 

example uses MXEVAL = 3. The routine EVFHF computes the number of eigenvalues in the given 

range. That value, NEVAL, is two. As a check on the computations, the performance index is also 

computed and printed. For more details, see routine EPIHF. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, MXEVAL, N 

      PARAMETER  (MXEVAL=3, N=3, LDA=N, LDEVEC=N) 

! 

      INTEGER    NEVAL, NOUT 

      REAL       EHIGH, ELOW, EVAL(MXEVAL), PI 

      COMPLEX    A(LDA,N), EVEC(LDEVEC,MXEVAL) 

!                                 Set values of A 

! 

!                                 A = ((1, 0)  (  1,-7i)  ( 0,- i)) 

!                                     ((1,7i)  (  5,  0)  (10,-3i)) 

!                                     ((0, i)  ( 10, 3i)  (-2,  0)) 

! 

      DATA A/(1.0,0.0), (1.0,7.0), (0.0,1.0), (1.0,-7.0), (5.0,0.0), & 

          (10.0,3.0), (0.0,-1.0), (10.0,-3.0), (-2.0,0.0)/ 

! 

!                                 Find eigenvalues and vectors 

      ELOW  = -15.0 

      EHIGH = 0.0 

      CALL EVFHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC) 

!                                 Compute performance index 

      PI = EPIHF(NEVAL,A,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,'(/,A,I3)') ' NEVAL = ', NEVAL 

      CALL WRRRN ('EVAL', EVAL, 1, NEVAL, 1) 

      CALL WRCRN ('EVEC', EVEC, N, NEVAL, LDEVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 
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      END 

Output 
 

 NEVAL =   2 

   

      EVAL 

      1       2 

 -10.63   -0.75 

   

                  EVEC 

                    1                  2 

 1  (-0.0598,-0.3117)  ( 0.8539, 0.0000) 

 2  (-0.5939, 0.1841)  (-0.0313,-0.1380) 

 3  ( 0.7160, 0.0000)  ( 0.0808,-0.4942) 

 

 Performance index =  0.057 

EPIHF 
This function computes the performance index for a complex Hermitian eigensystem. 

Function Return Value 

EPIHF — Performance index.   (Output) 

Required Arguments 

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index 

computation is based.   (Input) 

A — Complex Hermitian matrix of order N.   (Input) 

EVAL — Vector of length NEVAL containing eigenvalues of A.   (Input) 

EVEC — Complex N by NEVAL array containing eigenvectors of A.   (Input)  

The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column 

of EVEC. 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 
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FORTRAN 90 Interface 

Generic: EPIHF (NEVAL, A, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EPIHF and D_EPIHF. 

FORTRAN 77 Interface 

Single: EPIHF (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision function name is DEPIHF. 

Description 

Let M = NEVAL,  = EVAL, xj = EVEC(*, J), the j-th column of EVEC. Also, let ε be the machine 

precision, given by AMACH(4), see the Reference chapter of this manual. The performance index, τ, 

is defined to be  

1

1
1 1
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10

j j j

j M
j

Ax x

N A x




 




 

The norms used are a modified form of the 1-norm. The norm of the complex vector v is 

 1
1

N

i i

i

v v v


   
 

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered 

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. The performance index was first 

developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, pages 

124− 125). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E2IHF/DE2IHF. The 

reference is: 

E2IHF(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WK) 

The additional argument is 

WK — Complex work array of length N. 

2. Informational errors 

Type Code 

3 1 Performance index is greater than 100. 
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3 2 An eigenvector is zero. 

3 3 The matrix is zero. 

Example 

For an example of EPIHF, see IMSL routine EVCHF. 

EVLRH 
Computes all of the eigenvalues of a real upper Hessenberg matrix. 

Required Arguments 

A — Real upper Hessenberg matrix of order N.   (Input) 

EVAL — Complex vector of length N containing the eigenvalues in decreasing order of 

magnitude.   (Output) 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVLRH (A, EVAL [,…]) 

Specific: The specific interface names are S_EVLRH and D_EVLRH. 

FORTRAN 77 Interface 

Single: CALL EVLRH (N, A, LDA, EVAL) 

Double: The double precision name is DEVLRH. 

Description 

Routine EVLRH computes the eigenvalues of a real upper Hessenberg matrix by using the QR 

algorithm. The QR Algorithm routine is based on the EISPACK routine HQR, Smith et al. (1976). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3LRH/DE3LRH. The 

reference is: 



     

     
 

618  Chapter 2: Eigensystem Analysis IMSL MATH LIBRARY  

     

     

 

CALL E3LRH (N, A, LDA, EVAL, ACOPY, WK, IWK) 

The additional arguments are as follows: 

ACOPY — Real N by N work matrix. 

WK — Real vector of length 3n. 

IWK — Integer vector of length n. 

2. Informational error 

Type Code 

4 1 The iteration for the eigenvalues failed to converge. 

Example 

In this example, a DATA statement is used to set A to an upper Hessenberg matrix of integers. The 

eigenvalues of this matrix are computed and printed. 
 

      USE EVLRH_INT 

      USE UMACH_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (N=4, LDA=N) 

! 

      INTEGER    NOUT 

      REAL       A(LDA,N) 

      COMPLEX    EVAL(N) 

!                                 Set values of A 

! 

!                                 A = (  2.0    1.0    3.0    4.0  ) 

!                                     (  1.0    0.0    0.0    0.0  ) 

!                                     (         1.0    0.0    0.0  ) 

!                                     (                1.0    0.0  ) 

! 

      DATA A/2.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 3.0, 0.0, 0.0, & 

          1.0, 4.0, 0.0, 0.0, 0.0/ 

! 

!                                 Find eigenvalues of A 

      CALL EVLRH (A, EVAL) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRCRN ('EVAL', EVAL, 1, N, 1) 

      END 
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Output 
 

                                EVAL 

               1                2                3                4 

 ( 2.878, 0.000)  ( 0.011, 1.243)  ( 0.011,-1.243)  (-0.900, 0.000) 

EVCRH 
Computes all of the eigenvalues and eigenvectors of a real upper Hessenberg matrix. 

Required Arguments 

A — Real upper Hessenberg matrix of order N.   (Input) 

EVAL — Complex vector of length N containing the eigenvalues in decreasing order of 

magnitude.   (Output) 

EVEC — Complex matrix of order N.   (Output)  

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each 

vector is normalized to have Euclidean length equal to the value one. 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL EVCRH (A, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EVCRH and D_EVCRH. 

FORTRAN 77 Interface 

Single: CALL EVCRH (N, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCRH. 
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Description 

Routine EVCRH computes the eigenvalues and eigenvectors of a real upper Hessenberg matrix by 

using the QR algorithm. The QR algorithm routine is based on the EISPACK routine HQR2; see 

Smith et al. (1976). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E6CRH/DE6CRH. The 

reference is: 

CALL E6CRH (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, ECOPY, 

RWK, IWK) 

The additional arguments are as follows: 

ACOPY — Real N by N work matrix. 

ECOPY — Real N by N work matrix. 

RWK — Real array of length 3N. 

IWK — Integer array of length N. 

2. Informational error 

Type Code 

4 1 The iteration for the eigenvalues failed to converge. 

Example 

In this example, a DATA statement is used to set A to a Hessenberg matrix with integer entries. The 

values are returned in decreasing order of magnitude. The eigenvalues, eigenvectors and 

performance index of this matrix are computed and printed. See routine EPIRG for details. 
 

      USE EVCRH_INT 

      USE EPIRG_INT 

      USE UMACH_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, N 

      PARAMETER  (N=4, LDA=N, LDEVEC=N) 

! 

      INTEGER    NOUT 

      REAL       A(LDA,N), PI 

      COMPLEX    EVAL(N), EVEC(LDEVEC,N) 

!                                 Define values of A: 

! 

!                                 A = ( -1.0   -1.0   -1.0   -1.0  ) 
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!                                     (  1.0    0.0    0.0    0.0  ) 

!                                     (         1.0    0.0    0.0  ) 

!                                     (                1.0    0.0  ) 

! 

      DATA A/-1.0, 1.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0, & 

          1.0, -1.0, 0.0, 0.0, 0.0/ 

! 

!                                 Find eigenvalues and vectors of A 

      CALL EVCRH (A, EVAL, EVEC) 

!                                 Compute performance index 

      PI = EPIRG(N,A,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRCRN ('EVAL', EVAL, 1, N, 1) 

      CALL WRCRN ('EVEC', EVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
   

                                    EVAL 

                 1                  2                  3                  4 

 (-0.8090, 0.5878)  (-0.8090,-0.5878)  ( 0.3090, 0.9511)  ( 0.3090,-0.9511) 

   

                                     EVEC 

                    1                  2                  3                  

4 

 1  (-0.4045, 0.2939)  (-0.4045,-0.2939)  (-0.4045,-0.2939)  (-0.4045, 

0.2939) 

 2  ( 0.5000, 0.0000)  ( 0.5000, 0.0000)  (-0.4045, 0.2939)  (-0.4045,-

0.2939) 

 3  (-0.4045,-0.2939)  (-0.4045, 0.2939)  ( 0.1545, 0.4755)  ( 0.1545,-

0.4755) 

 4  ( 0.1545, 0.4755)  ( 0.1545,-0.4755)  ( 0.5000, 0.0000)  ( 0.5000, 

0.0000) 

 

 Performance index =  0.098 

EVLCH 
Computes all of the eigenvalues of a complex upper Hessenberg matrix. 

Required Arguments 

A — Complex upper Hessenberg matrix of order N.   (Input) 

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

Required Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL EVLCH (A, EVAL [,…]) 

Specific: The specific interface names are S_EVLCH and D_EVLCH. 

FORTRAN 77 Interface 

Single: CALL EVLCH (N, A, LDA, EVAL) 

Double: The double precision name is DEVLCH. 

Description 

Routine EVLCH computes the eigenvalues of a complex upper Hessenberg matrix using the QR 

algorithm. This routine is based on the EISPACK routine COMQR2; see Smith et al. (1976). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E3LCH/DE3LCH. The 

reference is: 

CALL E3LCH (N, A, LDA, EVAL, ACOPY, RWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex N by N work array. A and ACOPY may be the same, in 

which case A is destroyed. 

RWK — Real work array of length N. 

IWK — Integer work array of length N. 

2. Informational error 

Type Code 

4 1 The iteration for the eigenvalues failed to converge. 

Example 

In this example, a DATA statement is used to set the matrix A. The program computes and prints the 

eigenvalues of this matrix. 
 

      USE EVLCH_INT 
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      USE WRCRN_INT 

 

      IMPLICIT NONE 

!                                 Declare variables 

      INTEGER LDA, N 

      PARAMETER (N=4, LDA=N) 

      COMPLEX A(LDA,N), EVAL(N) 

!                                 Set values of A 

! 

!                                 A = (5+9i  5+5i  -6-6i  -7-7i) 

!                                     (3+3i  6+10i -5-5i  -6-6i) 

!                                     ( 0    3+3i  -1+3i  -5-5i) 

!                                     ( 0     0    -3-3i     4i) 

! 

      DATA A /(5.0,9.0), (3.0,3.0), (0.0,0.0), (0.0,0.0), & 

             (5.0,5.0), (6.0,10.0), (3.0,3.0), (0.0,0.0), & 

             (-6.0,-6.0), (-5.0,-5.0), (-1.0,3.0), (-3.0,-3.0), & 

             (-7.0,-7.0), (-6.0,-6.0), (-5.0,-5.0), (0.0,4.0)/ 

! 

!                                 Find the eigenvalues of A 

      CALL EVLCH (A, EVAL) 

!                                 Print results 

      CALL WRCRN ('EVAL', EVAL, 1, N, 1) 

      END 

Output 
   

                                EVAL 

               1                2                3                4 

 (  8.22, 12.22)  (  3.40,  7.40)  (  1.60,  5.60)  ( -3.22,  0.78) 

EVCCH 
Computes all of the eigenvalues and eigenvectors of a complex upper Hessenberg matrix. 

Required Arguments 

A — Complex upper Hessenberg matrix of order N.   (Input) 

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of 

magnitude.   (Output) 

EVEC — Complex matrix of order N.   (Output)   

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each 

vector is normalized to have Euclidean length equal to the value one. 

Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL EVCCH (A, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_EVCCH and D_EVCCH. 

FORTRAN 77 Interface 

Single: CALL EVCCH (N, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCCH. 

Description 

Routine EVCCH computes the eigenvalues and eigenvectors of a complex upper Hessenberg matrix 

using the QR algorithm. This routine is based on the EISPACK routine COMQR2; see Smith et al. 

(1976). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of E4CCH/DE4CCH. The 

reference is: 

CALL E4CCH (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, CWORK, 

RWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex N by N work array. A and ACOPY may be the same, in 

which case A is destroyed. 

CWORK — Complex work array of length 2N. 

RWK — Real work array of length N. 

IWK — Integer work array of length N. 

2 Informational error 

Type Code 
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4 1 The iteration for the eigenvalues failed to converge. 

3. The results of EVCCH can be checked using EPICG. This requires that the matrix A 

explicitly contains the zeros in A(I, J) for (I  1) > J which are assumed by EVCCH. 

Example 

In this example, a DATA statement is used to set the matrix A. The program computes the 

eigenvalues and eigenvectors of this matrix. The performance index is also computed and printed. 

This serves as a check on the computations; for more details, see IMSL routine EPICG. The zeros 

in the lower part of the matrix are not referenced by EVCCH, but they are required by EPICG. 
 

      USE EVCCH_INT 

      USE EPICG_INT 

      USE UMACH_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDEVEC, N 

      PARAMETER  (N=4, LDA=N, LDEVEC=N) 

! 

      INTEGER    NOUT 

      REAL       PI 

      COMPLEX    A(LDA,N), EVAL(N), EVEC(LDEVEC,N) 

!                                 Set values of A 

! 

!                                 A = (5+9i  5+5i  -6-6i  -7-7i) 

!                                     (3+3i  6+10i -5-5i  -6-6i) 

!                                     ( 0    3+3i  -1+3i  -5-5i) 

!                                     ( 0     0    -3-3i     4i) 

! 

      DATA A/(5.0,9.0), (3.0,3.0), (0.0,0.0), (0.0,0.0), (5.0,5.0), & 

          (6.0,10.0), (3.0,3.0), (0.0,0.0), (-6.0,-6.0), (-5.0,-5.0), & 

          (-1.0,3.0), (-3.0,-3.0), (-7.0,-7.0), (-6.0,-6.0), & 

          (-5.0,-5.0), (0.0,4.0)/ 

! 

!                                 Find eigenvalues and vectors of A 

      CALL EVCCH (A, EVAL, EVEC) 

!                                 Compute performance index 

      PI = EPICG(N,A,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRCRN ('EVAL', EVAL, 1, N, 1) 

      CALL WRCRN ('EVEC', EVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
   

                                EVAL 

               1                2                3                4 

 (  8.22, 12.22)  (  3.40,  7.40)  (  1.60,  5.60)  ( -3.22,  0.78) 

   

                                     EVEC 
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                    1                  2                  3                  

4 

 1  ( 0.7167, 0.0000)  (-0.0704, 0.0000)  (-0.3678, 0.0000)  ( 0.5429, 

0.0000) 

 2  ( 0.6402,-0.0000)  (-0.0046,-0.0000)  ( 0.6767, 0.0000)  ( 0.4298,-

0.0000) 

 3  ( 0.2598, 0.0000)  ( 0.7477, 0.0000)  (-0.3005, 0.0000)  ( 0.5277,-

0.0000) 

 4  (-0.0948,-0.0000)  (-0.6603,-0.0000)  ( 0.5625, 0.0000)  ( 0.4920,-

0.0000) 

 

 Performance index =  0.020 

GVLRG 

Computes all of the eigenvalues of a generalized real eigensystem Az = Bz. 

Required Arguments 

A — Real matrix of order N.   (Input) 

B — Real matrix of order N.   (Input) 

ALPHA — Complex vector of size N containing scalars αi, i = 1, …, n. If βi ≠ 0, i = αi / βi  

the eigenvalues of the system in decreasing order of magnitude.   (Output) 

BETAV —  Vector of size N containing scalars βi.   (Output) 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL GVLRG (A, B, ALPHA, BETAV [,…]) 

Specific: The specific interface names are S_GVLRG and D_GVLRG. 
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FORTRAN 77 Interface 

Single: CALL GVLRG (N, A, LDA, B, LDB, ALPHA, BETAV) 

Double: The double precision name is DGVLRG. 

Description 

Routine GVLRG computes the eigenvalues of the generalized eigensystem Ax = Bx where A and B 

are real matrices of order N. The eigenvalues for this problem can be infinite; so instead of 

returning , GVLRG returns α and β. If β is nonzero, then  = α/β. 

The first step of the QZ algorithm is to simultaneously reduce A to upper Hessenberg form and B 

to upper triangular form. Then, orthogonal transformations are used to reduce A to quasi-upper-

triangular form while keeping B upper triangular. The generalized eigenvalues are then computed. 

The underlying code is based on either EISPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation, see  

“Using ScaLAPACK, LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this 

manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of G3LRG/DG3LRG. The 

reference is: 

CALL G3LRG (N, A, LDA, B, LDB, ALPHA, BETAV, ACOPY, BCOPY, 

RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Work array of size N
2
 . The arrays A and ACOPY may be the same, 

in which case the first N
2
 elements of A will be destroyed. 

BCOPY — Work array of size N
2
 . The arrays B and BCOPY may be the same, 

in which case the first N
2
 elements of B will be destroyed. 

RWK — Real work array of size N. 

CWK — Complex work array of size N. 

IWK — Integer work array of size N. 

2. Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access 

inefficiency) problems. In routine G3LRG, the internal or working leading 

dimension of ACOPY is increased by IVAL(3) when N is a multiple of IVAL(4). 

The values IVAL(3) and IVAL (4) are temporarily replaced by IVAL(1) and 

IVAL(2), respectively, in routine GVLRG . Analogous comments hold for BCOPY 

and the values IVAL(5)  IVAL(8) . Additional memory allocation and option 
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value restoration are automatically done in GVLRG. There is no requirement that 

users change existing applications that use GVLRG or G3LRG. Default values for 

the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. 

Example 

In this example, DATA statements are used to set A and B. The eigenvalues are computed and 

printed. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    LDA, LDB, N 

      PARAMETER  (N=3, LDA=N, LDB=N) 

! 

      INTEGER    I 

      REAL       A(LDA,N), B(LDB,N), BETAV(N) 

      COMPLEX    ALPHA(N), EVAL(N) 

! 

!                                 Set values of A and B 

!                                 A = (  1.0     0.5    0.0  ) 

!                                     (-10.0     2.0    0.0  ) 

!                                     (  5.0     1.0    0.5  ) 

! 

!                                 B = (  0.5     0.0    0.0  ) 

!                                     (  3.0     3.0    0.0  ) 

!                                     (  4.0     0.5    1.0  ) 

! 

!                                 Declare variables 

      DATA A/1.0, -10.0, 5.0, 0.5, 2.0, 1.0, 0.0, 0.0, 0.5/ 

      DATA B/0.5, 3.0, 4.0, 0.0, 3.0, 0.5, 0.0, 0.0, 1.0/ 

! 

      CALL GVLRG (A, B, ALPHA, BETAV) 

!                                 Compute eigenvalues 

      DO 10  I=1, N 

            EVAL(I) = ALPHA(I)/BETAV(I) 

   10 CONTINUE 

!                                 Print results 

      CALL WRCRN ('EVAL', EVAL, 1, N, 1) 

      END 

Output 
   

                       EVAL 

               1                2                3 

 ( 0.833, 1.993)  ( 0.833,-1.993)  ( 0.500, 0.000) 
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GVCRG 

 

 

 

Computes all of the eigenvalues and eigenvectors of a generalized real eigensystem Az = Bz. 

Required Arguments 

A — Real matrix of order N.   (Input) 

B — Real matrix of order N.   (Input) 

ALPHA — Complex vector of size N containing scalars αi. If  

βi ≠ 0, i = αi / βi, i = 1, …, n are the eigenvalues of the system. 

BETAV — Vector of size N containing scalars βi.   (Output) 

EVEC — Complex matrix of order N.   (Output)  

The J-th eigenvector, corresponding to J, is stored in the J-th column. Each vector is 

normalized to have Euclidean length equal to the value one. 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL GVCRG (A, B, ALPHA, BETAV, EVEC [,…]) 

Specific: The specific interface names are S_GVCRG and D_GVCRG. 
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FORTRAN 77 Interface 

Single: CALL GVCRG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC) 

Double: The double precision name is DGVCRG. 

Description 

Routine GVCRG computes the complex eigenvalues and eigenvectors of the generalized 

eigensystem Ax = Bx where A and B are real matrices of order N. The eigenvalues for this 

problem can be infinite; so instead of returning , GVCRG returns complex numbers α and real 

numbers β. If β is nonzero, then  = α/ β. For problems with small β users can choose to solve the 

mathematically equivalent problem Bx = μAx where μ= -1
. 

The first step of the QZ algorithm is to simultaneously reduce A to upper Hessenberg form and B 

to upper triangular form. Then, orthogonal transformations are used to reduce A to quasi-upper-

triangular form while keeping B upper triangular. The generalized eigenvalues and eigenvectors 

for the reduced problem are then computed. 

The underlying code is based on either EISPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of G8CRG/DG8CRG. The 

reference is: 

CALL G8CRG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC, 

ACOPY, BCOPY, ECOPY, RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Work array of size N
2
. The arrays A and ACOPY may be the same, 

in which case the first N
2
 elements of A will be destroyed. 

BCOPY — Work array of size N
2
. The arrays B and BCOPY may be the same, 

in which case the first N
2
 elements of B will be destroyed. 

ECOPY — Work array of size N
2
. 

RWK — Work array of size N. 

CWK — Complex work array of size N. 

IWK — Integer work array of size N. 

2. Integer Options with Chapter 11 Options Manager 
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1 This option uses eight values to solve memory bank conflict (access 

inefficiency) problems. In routine G8CRG, the internal or working leading 

dimensions of ACOPY and ECOPY are both increased by IVAL(3) when N is a 

multiple of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced 

by IVAL(1) and IVAL(2), respectively, in routine GVCRG. Analogous comments 

hold for the array BCOPY and the option values IVAL(5)  IVAL(8). Additional 

memory allocation and option value restoration are automatically done in 

GVCRG. There is no requirement that users change existing applications that use 

GVCRG or G8CRG. Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 

0, 1. Items 58 in IVAL(*) are for the generalized eigenvalue problem and are 

not used in GVCRG. 

Example 

In this example, DATA statements are used to set A and B. The eigenvalues, eigenvectors and 

performance index are computed and printed for the systems Ax = Bx and Bx = μAx where μ = -

1
. For more details about the performance index, see routine GPIRG. 

 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    LDA, LDB, LDEVEC, N 

      PARAMETER  (N=3, LDA=N, LDB=N, LDEVEC=N) 

! 

      INTEGER    I, NOUT 

      REAL       A(LDA,N), B(LDB,N), BETAV(N), PI 

      COMPLEX    ALPHA(N), EVAL(N), EVEC(LDEVEC,N) 

! 

!                                 Define values of A and B: 

!                                 A = (  1.0     0.5    0.0  ) 

!                                     (-10.0     2.0    0.0  ) 

!                                     (  5.0     1.0    0.5  ) 

! 

!                                 B = (  0.5     0.0    0.0  ) 

!                                     (  3.0     3.0    0.0  ) 

!                                     (  4.0     0.5    1.0  ) 

! 

!                                 Declare variables 

      DATA A/1.0, -10.0, 5.0, 0.5, 2.0, 1.0, 0.0, 0.0, 0.5/ 

      DATA B/0.5, 3.0, 4.0, 0.0, 3.0, 0.5, 0.0, 0.0, 1.0/ 

! 

      CALL GVCRG (A, B, ALPHA, BETAV, EVEC) 

!                                 Compute eigenvalues 

      DO 10  I=1, N 

            EVAL(I) = ALPHA(I)/BETAV(I) 

   10 CONTINUE 

!                                 Compute performance index 

      PI = GPIRG(N,A,B,ALPHA,BETAV,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRCRN ('EVAL', EVAL, 1, N, 1) 

      CALL WRCRN ('EVEC', EVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

!                                 Solve for reciprocals of values 
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      CALL GVCRG (B, A, ALPHA, BETAV, EVEC) 

 

!                                 Compute reciprocals 

      DO 20  I=1, N 

            EVAL(I) = ALPHA(I)/BETAV(I) 

   20 CONTINUE 

!                                 Compute performance index 

      PI = GPIRG(N,B,A,ALPHA,BETAV,EVEC) 

!                                 Print results 

      CALL WRCRN ('EVAL reciprocals', EVAL, 1, N, 1) 

      CALL WRCRN ('EVEC', EVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
   

                       EVAL 

               1                2                3 

 ( 0.833, 1.993)  ( 0.833,-1.993)  ( 0.500, 0.000) 

   

                         EVEC 

                  1                2                3 

 1  (-0.197, 0.150)  (-0.197,-0.150)  (-0.000, 0.000) 

 2  (-0.069,-0.568)  (-0.069, 0.568)  (-0.000, 0.000) 

 3  ( 0.782, 0.000)  ( 0.782, 0.000)  ( 1.000, 0.000) 

 

 Performance index =  0.384 

   

                 EVAL reciprocals 

               1                2                3 

 ( 2.000, 0.000)  ( 0.179, 0.427)  ( 0.179,-0.427) 

   

                         EVEC 

                  1                2                3 

 1  ( 0.000, 0.000)  (-0.197,-0.150)  (-0.197, 0.150) 

 2  ( 0.000, 0.000)  (-0.069, 0.568)  (-0.069,-0.568) 

 3  ( 1.000, 0.000)  ( 0.782, 0.000)  ( 0.782, 0.000) 

 

 Performance index =  0.283 

GPIRG 

This function computes the performance index for a generalized real eigensystem Az = Bz. 

Function Return Value 

GPIRG — Performance index.   (Output) 

Required Arguments 

NEVAL — Number of eigenvalue/eigenvector pairs performance index computation is based 

on.   (Input) 



 

 

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis  633 

     

     

 

A — Real matrix of order N.   (Input) 

B — Real matrix of order N.   (Input) 

ALPHA — Complex vector of length NEVAL containing the numerators of eigenvalues.   

(Input) 

BETAV — Real vector of length NEVAL containing the denominators of eigenvalues.   (Input) 

EVEC — Complex N by NEVAL array containing the eigenvectors.   (Input) 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: GPIRG (NEVAL, A, B, ALPHA, BETAV, EVEC, GPIRG [,…]) 

Specific: The specific interface names are S_GPIRG and D_GPIRG. 

FORTRAN 77 Interface 

Single: GPIRG (N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC) 

Double: The double precision function name is DGPIRG. 

 
 

Let M = NEVAL, xj = EVEC(*,J) , the j-th column of EVEC. Also, let ε be the machine precision 

given by AMACH(4), see the Reference chapter of this manual. The performance index, τ, is defined 

to be 
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The norms used are a modified form of the 1-norm. The norm of the complex vector v is 
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While the exact value of τ is highly machine dependent, the performance of EVCSF is considered 

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. The performance index was first 

developed by the EISPACK project at Argonne National Laboratory; see Garbow et al. (1977, 

pages 77− 79). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of G2IRG/DG2IRG. The 

reference is: 

G2IRG (N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC, 

LDEVEC, WK) 

The additional argument is: 

WK — Complex work array of length 2N. 

2. Informational errors 

Type Code 

3 1 Performance index is greater than 100. 

3 2 An eigenvector is zero. 

3 3 The matrix A is zero. 

3 4 The matrix B is zero. 

3. The J-th eigenvalue should be ALPHA(J)/BETAV(J), its eigenvector should be in the J-

th column of EVEC. 

Example 

For an example of GPIRG, see routine GVCRG. 

GVLCG 

Computes all of the eigenvalues of a generalized complex eigensystem Az = Bz. 
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Required Arguments 

A — Complex matrix of order N.   (Input) 

B — Complex matrix of order N.   (Input) 

ALPHA — Complex vector of length N. Ultimately, alpha(i)/betav(i) (for i = 1, n), will be the 

eigenvalues of the system in decreasing order of magnitude.   (Output) 

BETAV — Complex vector of length N.   (Output) 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL GVLCG (A, B, ALPHA, BETAV [,…]) 

Specific: The specific interface names are S_GVLCG and D_GVLCG. 

FORTRAN 77 Interface 

Single: CALL GVLCG (N, A, LDA, B, LDB, ALPHA, BETAV) 

Double: The double precision name is DGVLCG. 

Description 

Routine GVLCG computes the eigenvalues of the generalized eigensystem Ax = Bx, where A and B 

are complex matrices of order n. The eigenvalues for this problem can be infinite; so instead of 

returning , GVLCG returns α and β. If β is nonzero, then  = α/β. If the eigenvectors are needed, 

then use GVCCG. 

The underlying code is based on either EISPACK or LAPACK code depending upon which 

supporting libraries are used during linking. For a detailed explanation, see “Using ScaLAPACK, 

LAPACK, LINPACK, and EISPACK‖ in the Introduction section of this manual.  Some timing 

information is given in Hanson et al. (1990). 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of G3LCG/DG3LCG. The 

reference is: 

CALL G3LCG (N, A, LDA, B, LDB, ALPHA, BETAV, ACOPY, BCOPY, 

CWK, WK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same, 

in which case A will be destroyed. 

BCOPY — Complex work array of length N
2
. B and BCOPY may be the same, 

in which case B will be destroyed. 

CWK — Complex work array of length N. 

WK — Real work array of length N. 

IWK — Integer work array of length N. 

2. Informational error 

Type Code 

4 1 The iteration for the eigenvalues failed to converge. 

Example 

In this example, DATA statements are used to set A and B. Then, the eigenvalues are computed and 

printed. 
 

      USE GVLCG_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declaration of variables 

      INTEGER    LDA, LDB, N 

      PARAMETER  (N=5, LDA=N, LDB=N) 

! 

      INTEGER    I 

      COMPLEX    A(LDA,N), ALPHA(N), B(LDB,N), BETAV(N), EVAL(N) 

! 

!                                 Define values of A and B 

! 

      DATA A/(-238.0,-344.0), (76.0,152.0), (118.0,284.0), & 

          (-314.0,-160.0), (-54.0,-24.0), (86.0,178.0), & 

          (-96.0,-128.0), (55.0,-182.0), (132.0,78.0), & 

          (-205.0,-400.0), (164.0,240.0), (40.0,-32.0), & 

          (-13.0,460.0), (114.0,296.0), (109.0,148.0), &  

          (-166.0,-308.0), (60.0,184.0), (34.0,-192.0), & 
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          (-90.0,-164.0), (158.0,312.0), (56.0,158.0), & 

          (-60.0,-136.0), (-176.0,-214.0), (-424.0,-374.0), & 

          (-38.0,-96.0)/ 

      DATA B/(388.0,94.0), (-304.0,-76.0), (-658.0,-136.0), & 

          (-640.0,-10.0), (-162.0,-72.0), (-386.0,-122.0), & 

          (384.0,64.0), (-73.0,100.0), (204.0,-42.0), (631.0,158.0), & 

          (-250.0,-14.0), (-160.0,16.0), (-109.0,-250.0), & 

          (-692.0,-90.0), (131.0,52.0), (556.0,130.0), & 

          (-240.0,-92.0), (-118.0,100.0), (288.0,66.0), & 

          (-758.0,-184.0), (-396.0,-62.0), (240.0,68.0), & 

          (406.0,96.0), (-192.0,154.0), (278.0,76.0)/ 

! 

      CALL GVLCG (A, B, ALPHA, BETAV) 

!                                 Compute eigenvalues 

            EVAL = ALPHA/BETAV 

 

!                                 Print results 

      CALL WRCRN ('EVAL', EVAL, 1, N, 1) 

 

      STOP 

      END 

Output 
  

                                EVAL 

               1                2                3                4 

 (-1.000,-1.333)  ( 0.765, 0.941)  (-0.353, 0.412)  (-0.353,-0.412) 

   

               5 

 (-0.353,-0.412) 

GVCCG 

Computes all of the eigenvalues and eigenvectors of a generalized complex eigensystem Az = Bz. 

Required Arguments 

A — Complex matrix of order N.   (Input) 

B — Complex matrix of order N.   (Input) 

ALPHA — Complex vector of length N. Ultimately, alpha(i)/betav(i) (for i = 1, …, n), will be 

the eigenvalues of the system in decreasing order of magnitude.   (Output) 

BETAV — Complex vector of length N.   (Output) 

EVEC — Complex matrix of order N.   (Output)  

The J-th eigenvector, corresponding to ALPHA(J)/BETAV(J), is stored in the J-th 

column. Each vector is normalized to have Euclidean length equal to the value one. 
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Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL GVCCG (A, B, ALPHA, BETAV, EVEC [,…]) 

Specific: The specific interface names are S_GVCCG and D_GVCCG. 

FORTRAN 77 Interface 

Single: CALL GVCCG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC) 

Double: The double precision name is DGVCCG. 

Description 

Routine GVCCG computes the eigenvalues and eigenvectors of the generalized eigensystem Ax = 

Bx. Here, A and B, are complex matrices of order n. The eigenvalues for this problem can be 

infinite; so instead of returning , GVCCG returns α and β. If β is nonzero, then  = α/β. 

The routine GVCCG uses the QZ algorithm described by Moler and Stewart (1973). The 

implementation is based on routines of Garbow (1978). Some timing results are given in Hanson 

et al. (1990). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of G6CCG/DG6CCG. The 

reference is: 

CALL G6CCG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC, 

ACOPY, BCOPY, CWK, WK, IWK) 

The additional arguments are as follows: 



 

 

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis  639 

     

     

 

ACOPY — Complex work array of length N
2
. A and ACOPY may be the same 

in which case the first N
2
 elements of A will be destroyed. 

BCOPY — Complex work array of length N
2
. B and BCOPY may be the same 

in which case the first N
2
 elements of B will be destroyed. 

CWK — Complex work array of length N. 

WK — Real work array of length N. 

IWK — Integer work array of length N. 

2. Informational error 

Type Code 

4 1 The iteration for an eigenvalue failed to converge. 

3. The success of this routine can be checked using GPICG. 

Example 

In this example, DATA statements are used to set A and B. The eigenvalues and eigenvectors are 

computed and printed. The performance index is also computed and printed. This serves as a 

check on the computations. For more details, see routine GPICG. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    LDA, LDB, LDEVEC, N 

      PARAMETER  (N=3, LDA=N, LDB=N, LDEVEC=N) 

! 

      INTEGER    I, NOUT 

      REAL       PI 

      COMPLEX    A(LDA,N), ALPHA(N), B(LDB,N), BETAV(N), EVAL(N), & 

                EVEC(LDEVEC,N) 

! 

!                                 Define values of A and B 

!                                 A = (  1+0i   0.5+i   0+5i   ) 

!                                     (-10+0i     2+i   0+0i   ) 

!                                     (  5+i     1+0i   0.5+3i ) 

! 

!                                 B = ( 0.5+0i     0+0i  0+0i  ) 

!                                     (   3+3i     3+3i   0+i  ) 

!                                     (   4+2i    0.5+i   1+i  ) 

! 

!                                 Declare variables 

      DATA A/(1.0,0.0), (-10.0,0.0), (5.0,1.0), (0.5,1.0), (2.0,1.0), & 

          (1.0,0.0), (0.0,5.0), (0.0,0.0), (0.5,3.0)/ 

      DATA B/(0.5,0.0), (3.0,3.0), (4.0,2.0), (0.0,0.0), (3.0,3.0), & 

          (0.5,1.0), (0.0,0.0), (0.0,1.0), (1.0,1.0)/ 

!                                 Compute eigenvalues 

      CALL GVCCG (A, B, ALPHA, BETAV, EVEC) 
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                        EVAL = ALPHA/BETAV 

!                                 Compute performance index 

      PI = GPICG(N,A,B,ALPHA,BETAV,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRCRN ('EVAL', EVAL, 1, N, 1) 

      CALL WRCRN ('EVEC', EVEC) 

      WRITE (NOUT, '(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
   

                       EVAL 

               1                2                3 

 ( -8.18,-25.38)  (  2.18,  0.61)  (  0.12, -0.39) 

   

                            EVEC 

                    1                  2                  3 

 1  (-0.3267,-0.1245)  (-0.3007,-0.2444)  ( 0.0371, 0.1518) 

 2  ( 0.1767, 0.0054)  ( 0.8959, 0.0000)  ( 0.9577, 0.0000) 

 3  ( 0.9201, 0.0000)  (-0.2019, 0.0801)  (-0.2215, 0.0968) 

 

 Performance index =  0.709 

GPICG 

This function computes the performance index for a generalized complex eigensystem Az = Bz. 

Function Return Value 

GPICG — Performance index.   (Output) 

Required Arguments 

NEVAL — Number of eigenvalue/eigenvector pairs performance index computation is based 

on.   (Input) 

A — Complex matrix of order N.   (Input) 

B — Complex matrix of order N.   (Input) 

ALPHA — Complex vector of length NEVAL containing the numerators of eigenvalues.   

(Input) 

BETAV — Complex vector of length NEVAL containing the denominators of eigenvalues.   

(Input) 

EVEC — Complex N by NEVAL array containing the eigenvectors.   (Input) 
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Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: GPICG (NEVAL, A, B, ALPHA, BETAV, EVEC [,…]) 

Specific: The specific interface names are S_GPICG and D_GPICG. 

FORTRAN 77 Interface 

Single: GPICG (N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC) 

Double: The double precision name is DGPICG. 

Description 

Let M = NEVAL, xj = EVEC(*, J) , the j-th column of EVEC. Also, let ε be the machine precision 

given by AMACH(4). The performance index, τ, is defined to be 

 
1

1
1 1 1

max
j j j j

j M
j j j

Ax Bx

A B x

 


   





 

The norms used are a modified form of the 1-norm. The norm of the complex vector v is 

 1
1

N

i i

i

v v v


   
 

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered 

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100.  

The performance index was first developed by the EISPACK project at Argonne National 

Laboratory; see Garbow et al. (1977, pages 77− 79). 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of G2ICG/DG2ICG. The 

reference is: 

G2ICG (N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC, 

LDEVEC, WK) 

The additional argument is: 

WK — Complex work array of length 2N. 

2. Informational errors 

Type Code 

3 1 Performance index is greater than 100. 

3 2 An eigenvector is zero. 

3 3 The matrix A is zero. 

3 4 The matrix B is zero. 

3. The J-th eigenvalue should be ALPHA(J)/BETAV (J), its eigenvector should be in the J-

th column of EVEC. 

Example 

For an example of GPICG, see routine GVCCG. 

GVLSP 

 

 

 

Computes all of the eigenvalues of the generalized real symmetric eigenvalue problem Az = Bz, 

with B symmetric positive definite. 

Required Arguments 

A — Real symmetric matrix of order N.   (Input) 

B — Positive definite symmetric matrix of order N.   (Input) 

EVAL — Vector of length N containing the eigenvalues in decreasing order of magnitude.   

(Output) 
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Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL GVLSP (A, B, EVAL [,…]) 

Specific: The specific interface names are S_GVLSP and D_GVLSP. 

FORTRAN 77 Interface 

Single: CALL GVLSP (N, A, LDA, B, LDB, EVAL) 

Double: The double precision name is DGVLSP. 

Description 

Routine GVLSP computes the eigenvalues of Ax = Bx with A symmetric and B symmetric positive 

definite. The Cholesky factorization B = R
T 

R, with R a triangular matrix, is used to transform the 

equation Ax = Bx to 

(R-T AR-1
)(Rx) =  (Rx) 

The eigenvalues of C = R-T AR-1
 are then computed. This development is found in Martin and 

Wilkinson (1968). The Cholesky factorization of B is computed based on IMSL routine LFTDS, 

(see Chapter 1, Linear Systems). The eigenvalues of C are computed based on routine EVLSF. 

Further discussion and some timing results are given Hanson et al. (1990). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of G3LSP/DG3LSP. The 

reference is: 

CALL G3LSP (N, A, LDA, B, LDB, EVAL, IWK, WK1, WK2) 

The additional arguments are as follows: 

IWK — Integer work array of length N. 

WK1 — Work array of length 2N. 
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WK2 — Work array of length N
2
 + N. 

2. Informational errors 

Type Code 

4 1 The iteration for an eigenvalue failed to converge. 

4 2 Matrix B is not positive definite. 

Example 

In this example, a DATA statement is used to set the matrices A and B. The eigenvalues of the 

system are computed and printed. 
 

      USE GVLSP_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N 

      PARAMETER  (N=3, LDA=N, LDB=N) 

! 

      REAL       A(LDA,N), B(LDB,N), EVAL(N) 

!                                 Define values of A: 

!                                 A = (  2    3    5  ) 

!                                     (  3    2    4  ) 

!                                     (  5    4    2  ) 

      DATA A/2.0, 3.0, 5.0, 3.0, 2.0, 4.0, 5.0, 4.0, 2.0/ 

! 

!                                 Define values of B: 

!                                 B = (  3    1    0  ) 

!                                     (  1    2    1  ) 

!                                     (  0    1    1  ) 

      DATA B/3.0, 1.0, 0.0, 1.0, 2.0, 1.0, 0.0, 1.0, 1.0/ 

! 

!                                 Find eigenvalues 

      CALL GVLSP (A, B, EVAL) 

!                                 Print results 

      CALL WRRRN ('EVAL', EVAL, 1, N, 1) 

      END 

Output 
   

          EVAL 

      1       2       3 

 -4.717   4.393  -0.676 
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GVCSP 

 

 

 

Computes all of the eigenvalues and eigenvectors of the generalized real symmetric eigenvalue 

problem Az = Bz, with B symmetric positive definite. 

Required Arguments 

A — Real symmetric matrix of order N.   (Input) 

B — Positive definite symmetric matrix of order N.   (Input) 

EVAL — Vector of length N containing the eigenvalues in decreasing order of magnitude.   

(Output) 

EVEC —  Matrix of order N.   (Output)  

The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each 

vector is normalized to have Euclidean length equal to the value one. 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: CALL GVCSP (A, B, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_GVCSP and D_GVCSP. 
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FORTRAN 77 Interface 

Single: CALL GVCSP (N, A, LDA, B, LDB, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DGVCSP. 

Description 

Routine GVLSP computes the eigenvalues and eigenvectors of Az = Bz, with A symmetric and B 

symmetric positive definite. The Cholesky factorization B = R
T
R, with R a triangular matrix, is 

used to transform the equation Az = Bz, to 

(R-T AR-1
)(Rz) =  (Rz) 

The eigenvalues and eigenvectors of C = R-T AR-1
 are then computed. The generalized 

eigenvectors of A are given by z = R-1
 x, where x is an eigenvector of C. This development is 

found in Martin and Wilkinson (1968). The Cholesky factorization is computed based on IMSL 

routine LFTDS, see Chapter 1, Linear Systems. The eigenvalues and eigenvectors of C are 

computed based on routine EVCSF. Further discussion and some timing results are given Hanson 

et al. (1990). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of G3CSP/DG3CSP. The 

reference is: 

CALL G3CSP (N, A, LDA, B, LDB, EVAL, EVEC, LDEVEC, IWK, 

WK1, WK2) 

The additional arguments are as follows: 

IWK — Integer work array of length N. 

WK1 — Work array of length 3N. 

WK2 — Work array of length N
2
 + N. 

2. Informational errors 

Type Code 

4 1 The iteration for an eigenvalue failed to converge. 

4 2 Matrix B is not positive definite. 

3. The success of this routine can be checked using GPISP. 
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Example 

In this example, a DATA statement is used to set the matrices A and B. The eigenvalues, 

eigenvectors and performance index are computed and printed. For details on the performance 

index, see IMSL routine GPISP. 
 

      USE GVCSP_INT 

      USE GPISP_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, LDEVEC, N 

      PARAMETER  (N=3, LDA=N, LDB=N, LDEVEC=N) 

! 

      INTEGER    NOUT 

      REAL       A(LDA,N), B(LDB,N), EVAL(N), EVEC(LDEVEC,N), PI 

!                                 Define values of A: 

!                                 A = (  1.1    1.2    1.4  ) 

!                                     (  1.2    1.3    1.5  ) 

!                                     (  1.4    1.5    1.6  ) 

      DATA A/1.1, 1.2, 1.4, 1.2, 1.3, 1.5, 1.4, 1.5, 1.6/ 

! 

!                                 Define values of B: 

!                                 B = (  2.0    1.0    0.0  ) 

!                                     (  1.0    2.0    1.0  ) 

!                                     (  0.0    1.0    2.0  ) 

      DATA B/2.0, 1.0, 0.0, 1.0, 2.0, 1.0, 0.0, 1.0, 2.0/ 

! 

!                                 Find eigenvalues and vectors 

      CALL GVCSP (A, B, EVAL, EVEC) 

!                                 Compute performance index 

      PI = GPISP(N,A,B,EVAL,EVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      CALL WRRRN ('EVAL', EVAL) 

      CALL WRRRN ('EVEC', EVEC) 

      WRITE (NOUT,'(/,A,F6.3)') ' Performance index = ', PI 

      END 

Output 
   

   EVAL 

 1   1.386 

 2  -0.058 

 3  -0.003 

   

             EVEC 

          1        2        3 

 1   0.6431  -0.1147  -0.6817 

 2  -0.0224  -0.6872   0.7266 

 3   0.7655   0.7174  -0.0858 

 

 Performance index =  0.417 
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GPISP 
This function computes the performance index for a generalized real symmetric eigensystem 

problem. 

Function Return Value 

GPISP — Performance index.   (Output) 

Required Arguments 

NEVAL — Number of eigenvalue/eigenvector pairs that the performance index computation 

is based on.   (Input) 

A — Symmetric matrix of order N.   (Input) 

B — Symmetric matrix of order N.   (Input) 

EVAL — Vector of length NEVAL containing eigenvalues.   (Input) 

EVEC — N by NEVAL array containing the eigenvectors.   (Input) 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in 

the calling program.   (Input) 

Default: LDEVEC = SIZE (EVEC,1). 

FORTRAN 90 Interface 

Generic: GPISP (NEVAL, A, B, EVAL, EVEC [,…]) 

Specific: The specific interface names are S_GPISP and D_GPISP. 
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FORTRAN 77 Interface 

Single: GPISP (N, NEVAL, A, LDA, B, LDB, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DGPISP. 

Description 

Let M = NEVAL,  = EVAL, xj = EVEC(*, J) , the j-th column of EVEC. Also, let ε be the machine 

precision given by AMACH(4). The performance index, τ, is defined to be 

 
1

1
1 1 1

max
j j j

j M
j j

Ax Bx

A B x




  





 

The norms used are a modified form of the 1-norm. The norm of the complex vector v is 

 1
1

N

i i

i

v v v


   
 

While the exact value of τ is highly machine dependent, the performance of EVCSF is considered 

excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. The performance index was first 

developed by the EISPACK project at Argonne National Laboratory; see Garbow et al. (1977, 

pages 77− 79). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of G2ISP/DG2ISP. The 

reference is: 

G2ISP (N, NEVAL, A, LDA, B, LDB, EVAL, EVEC, LDEVEC, WORK) 

The additional argument is: 

WORK — Work array of length 2 * N. 

2. Informational errors 

Type Code 

3 1 Performance index is greater than 100. 

3 2 An eigenvector is zero. 

3 3 The matrix A is zero. 

3 4 The matrix B is zero. 

3. The J-th eigenvalue should be ALPHA(J)/BETAV(J), its eigenvector should be in the J-

th column of EVEC. 
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Example 

For an example of GPISP, see routine GVCSP. 
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Eigenvalues and Eigenvectors Computed with 
ARPACK 

First see Using ARPACK for Ordinary and Generalized Eigenvalue Problems in the Usage Notes 

section of this chapter.  We describe here the Fortran 2003 usage of four basic problem types.  

There must be compiler support for the object-oriented features of Fortran 2003 to use these 

routines. 

The generalized eigenvalue problem Ax Bx requires that some eigenvalues and eigenvectors 

be computed.  The organization of the user-written function for matrix-vector products depends on 

the part of the eigenvalue spectrum that is desired. 

For an ordinary problem with A symmetric and B I , the eigenvalues of largest or smallest 

magnitude can be computed by providing the operator products w Ax .  Here x  is an input 

vector and w  is the result of applying the linear operator A  to x .  This process is repeated 

several times within the Arnoldi algorithm, and the net result is a few eigenvalues of A  and the 

corresponding eigenvectors. 

For a generalized problem, it is useful and efficient to consider a shift value  and the ordinary 

eigenvalue problem  
1

Cx A B Bx x 


   .  The matrix pencil A B is non-singular.  

The purpose of the user-written function is to provide results for the individual operator products 

w Bx , 
1( )w A B x   , and w Ax .  Usually the inverse matrix product will be 

computed by solving linear systems, where the matrix pencil is the coefficient matrix.  The desired 

eigenvalues of this ordinary problem satisfy
1

j j     . 

In the special case that B is positive definite, well-conditioned, and symmetric, one may compute 

the Cholesky decomposition
TB R R  and then solve the ordinary eigenvalue problem 

1TCy R AR y y   .  The product operation required by the Arnoldi algorithm, w Cx , is 

performed in steps:  Solve Rz x  for z , compute y Az , and solve
TR x y  for w .  The 

eigenvectors, Y , of C are transformed to those of the generalized problem, X , by 

solving RX Y for X . 

The operations required by ARPACK codes are returned as array functions.  An array of input 

values, x, will yield an output array, y.  These functions are written by the user.  They must be 

written according to an abstract interface, given below.  There are two user functions, double 

precision real and complex, that we support for the eigenvalue problem, and a third for the 

singular value decomposition, using  double precision real data only.  This interface, the named or 

enumerated constants that describe what is needed, and the eigenvalue codes are in the module 

ARPACK_INT.  We use the notation: DKIND=kind(1.D0) to specify two double precision data 

types: REAL(DKIND) and COMPLEX(DKIND).  The interface SVDMV(...) is for the singular value 

decomposition products only.  For that problem the components EXTYPE%MROWS and 

EXTYPE%NCOLS are switched between the operator sizes M and N to account for computing 

M Ny A x  or
Ty A x . 
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The Abstract Interfaces for User-Written Array Functions 

 

 Abstract Interface 
 
  FUNCTION DMV(X, TASK, EXTYPE)RESULT(Y) 

   IMPORT DKIND,  ARPACKBASE 

   REAL(DKIND), INTENT(INOUT) :: X(:) 

   INTEGER, INTENT(IN) :: TASK 

   CLASS (ARPACKBASE), INTENT(INOUT) :: EXTYPE   

   REAL(DKIND) Y(SIZE(X)) 

  END FUNCTION 

       

  FUNCTION ZMV (X, TASK, EXTYPE) RESULT(Y) 

   IMPORT DKIND,  ARPACKBASE 

   CLASS (ARPACKBASE), INTENT(INOUT) :: EXTYPE 

   COMPLEX (DKIND), INTENT(INOUT) :: X(:) 

   INTEGER, INTENT(IN) :: TASK 

   COMPLEX (DKIND) Y(SIZE(X)) 

  END FUNCTION 

   

  FUNCTION SVDMV (X, TASK, EXTYPE) RESULT(Y) 

   IMPORT DKIND,  ARPACKBASE 

   CLASS (ARPACKBASE), INTENT(INOUT) :: EXTYPE 

   REAL (DKIND), INTENT(INOUT) :: X(EXTYPE%NCOLS)  

   INTEGER, INTENT(IN) :: TASK 

   REAL (DKIND) Y(EXTYPE%MROWS) 

  END FUNCTION 

      

 End Interface 

Figure 1 Abstract Interface for User-Written Array Functions 
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The Base Class ARPACKBASE 
The components of the derived type ARPACKBASE contain data used by the ARPACK routines.  

These will have initial or default values assigned.  The default values can usually be left 

unchanged with a first use of our codes.  They are used as arguments to the original routines of the 

ARPACK package.  The more experienced user may wish to change the components marked with 

‗=>‘to new values, depending on their application.  These can be changed prior to calling the 

ARPACK interface codes we provide.  This base class can be extended to pass user data or 

procedure pointers for use within the array function. 

Note that the derived type argument EXTYPE, is optional in all the ARPACK_ eigenvalue routines, 

but it is not optional for the user-written array functions.  If EXTYPE is not included in the 

argument list of the ARPACK_ eigenvalue routine, an internally declared type is passed to the array 

functions as the argument, EXTYPE.  Although the user may choose not to use this optional 

argument when calling our interface routines, they must include this argument in their user-

supplied array function code. In this case, the array function code does not need to reference this 

argument. 

 
    TYPE, PUBLIC :: ARPACKBASE 

        INTEGER :: TASK   = 0                     ! Local store in Class for compute 

                                                  ! tasks to follow.  Used in 

ARPACK_SVD. 

        INTEGER :: MROWS=0                        ! Defines output vector size 

        INTEGER :: NCOLS=0                        ! Defines input/output vector size       

     => COMPLEX(DKIND) :: SHIFT=& 

          (0._DKIND, 0._DKIND)                    ! Shift factor 

        REAL(DKIND) :: TOL=EPSILON(0._DKIND)      ! Error tolerance  

        INTEGER :: ISHFTS = 1                     ! Number of shifts – don‘t change 

     => INTEGER :: MAXITR = HUGE(1)               ! Max number of iterations (many!) 

     => INTEGER :: MAXMV  = HUGE(1)               ! Max number of matrix ops (many!) 

     => INTEGER :: INFO   = 0                     ! ARPACK error flag, = 0 is OK 

     => INTEGER :: NACC   = 0                     ! Number of accurate eigenvalues or 

                                                  ! singular values computed. 

        INTEGER :: IPARAM(11)=0                   ! ARPACK array of direction and  

                                                  ! result flags 

     => REAL(DKIND) ::  FACTOR_MAXNCV = 2.5_DKIND ! Factor for the Number of Ritz 

vectors  

                                                  ! > the number of requested 

eigenvalues 

        LOGICAL :: RALEIGH_QUOTIENT = .TRUE.      ! Compute eigenvalues using the  

                                                  ! computed eigenvectors and Raleigh 

                                                  ! quotients.       

        REAL(DKIND), ALLOCATABLE :: RESID(:)      ! REAL Starting vector for Arnoldi  

                                                  ! iteration, if allocated; else 

random 

        COMPLEX(DKIND), ALLOCATABLE :: ZRESID(:)  ! COMPLEX Starting vector for 

Arnoldi  

                                                  ! iteration, if allocated; else 

random 

    END TYPE 

Figure 2.  The Base Class Derived Type – Users may extend this to provide problem data or 

procedures. 
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ARPACK_SYMMETRIC 
Computes some eigenvalues and eigenvectors of the generalized real symmetric eigenvalue 

problem Ax Bx .  This can be used for the case B I . 

Required Arguments 

N — The dimension of the problem.   (Input) 

F — User-supplied FUNCTION to return matrix-vector operations or linear solutions. This user 

function is written corresponding to the abstract interface for the function DMV(…). The 

usage is F (X, TASK, EXTYPE), where 

Function Return Value 

F — An array of length N containing matrix-vector operations or linear 

equations solutions. Operations provided as code in the function F will be 

made depending upon the value of argument TASK. 

Required Arguments 

X — An array of length N containing the vector to which the operator will be 

applied.   (Input) 

TASK — An enumerated type which specifies the operation to be performed.   

(Input) 

TASK is an enumerated integer value, use-associated from the module 

ARPACK_INT. It will be one of the following: 

 

Value Description 

ARPACK_Prepare Take initial steps to prepare for  

the operations that follow. These 

steps can include defining the 

data for the matrices, 

factorizations for upcoming 

linear system solves, or 

recording the vectors used in the 

operations. 

ARPACK_A_x y Ax  

ARPACK_B_x y Bx  

ARPACK_inv_A_minus_Shift_x 
 

1
y A I x


   

ARPACK_inv_B_x 1y B x  

ARPACK_inv_A_minus_Shift_B_x 
 

1
y A B x
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EXTYPE — A derived type of the extensible class ARPACKBASE, which may be 

used to pass additional information to/from the user-supplied function.   

(Input/Output) 

The user must include a USE ARPACK_INT statement in the calling 

program to define this derived type. If EXTYPE is not included as an 

argument to ARPACK_SYMMETRIC it should be ignored in the user-

function, F. 

 The function F must be written according to the abstract interface for DMV. If F is not 

use-associated nor contained in the calling program, declare it with PROCEDURE(DMV) 

F. 

VALUES — An array of eigenvalues.   (Output) 

The value NEV=size(VALUES) defines the number of eigenvalues to be computed.  

The calling program declares or allocates the array VALUES(1:NEV). The number of 

eigenvalues computed accurately is optionally available as the component 

EXTYPE%NACC of the base class EXTYPE. 

Optional Arguments 

PLACE — Defines the output content of VALUES.   (Input) 

PLACE specifies the placement within the spectrum for the required eigenvalues. 

PLACE can be one of the following enumerated integers as defined in ARPACK_INT: 

 

Value 

ARPACK_Largest_Algebraic 

ARPACK_Smallest_Algebraic 

ARPACK_Largest_Magnitude 

ARPACK_inv_A_minus_Shift_x 

ARPACK_Smallest_Magnitude 

ARPACK_Both_Ends 

 

 Default: PLACE = ARPACK_Largest_Algebraic. 

TYPE — Defines the eigenvalue problem as either a standard or generalized eigenvalue 

problem.   (Input) 

TYPE can be one of the following enumerated integers as defined in ARPACK_INT: 

 

Value Description 

ARPACK_Standard Ax x  

ARPACK_Generalized Ax Bx  

 

 Default: TYPE = ARPACK_Standard. 
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CATEGORY — CATEGORY and TYPE define the operation sequence provided in the user-

written function.   (Input) 

CATEGORY can be one of the following enumerated integers as defined in 

ARPACK_INT: 

 

Value Description 

ARPACK_Regular y Ax  

ARPACK_Regular_Inverse 1, ,y Ax y Bx y B x    

ARPACK_Shift_Invert 
 

1
,y Ax y A I x


    

ARPACK_Buckling 
 

1
, ,y Ax y Bx y A B x


   

 

ARPACK_Cayley 
 

1
, ,y Ax y Bx y A B x


   

 

 

 Default: CATEGORY = ARPACK_Regular. 

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be used to pass 

additional information to/from the user-supplied function.   (Input/Output) 

The user must include a USE ARPACK_INT statement in the calling program to define 

this derived type. If EXTYPE is not included as an argument to ARPACK_SYMMETRIC it 

must still be supplied as an argument to user-function, F, but is not used. 

VECTORS — An allocatable array of approximate eigenvectors.   (Output) 

It is not necessary to allocate VECTORS(:,:).  If this argument is used the allocation 

occurs within the routine ARPACK_SYMMETRIC. The output sizes are 

VECTORS(1:N,1:NCV). The second dimension value is NCV=min(N, 

max(FACTOR_MAXNCV*NEV,NEV+1)), where the value FACTOR_MAXNCV is a 

component of the base class, ARPACKBASE.  The first NEV columns of VECTORS(:,:) 

are the eigenvectors. 

FORTRAN 2003 Interface 

Generic: ARPACK_SYMMETRIC (N, F, VALUES [,…]) 

Specific: The specific interface name is D_ARPACK_SYMMETRIC. 

FORTRAN 90 Interface 

A Fortran 90 compiler version is not available for this routine. 



 

 

IMSL MATH LIBRARY Chapter 2: Eigensystem Analysis  657 

     

     

 

Description 

Routine ARPACK_SYMMETRIC calls ARPACK subroutines to compute partial eigenvalue-

eigenvector decompositions for symmetric real matrices.  The ARPACK routines are dsaupd and 

dseupd (see ARPACK Users’ Guide, SIAM Publications, (1998)), which use ―reverse 

communication‖ to obtain the required matrix-vector operations for this approximation.  

Responses to these requests are made by calling the user-written function F.  By including the 

class object EXTYPE as an argument to this function, user data and procedure pointers are available 

for the evaluations.  A user code must extend the base class EXTYPE to include the extra data and 

procedure pointers. 

Comments 

The user function F is written to supply requests for the matrix operations.  The following 

psuedo-code outlines the required responses of F depending on the circumstances.  Only those 

cases that follow from the settings of PLACE, TYPE and CATEGORY need to be provided in the 

user code. The enumerated constants, ARPACK_A_x, etc., are available by use-association 

from the module ARPACK_INT. 

 

      FUNCTION F (X, TASK, EXTYPE) RESULT(Y) 

      USE ARPACK_INT 

      IMPLICIT NONE 

 

      CLASS(ARPACKBASE), INTENT(INOUT) :: EXTYPE 

      REAL(DKIND), INTENT(INOUT) :: X(:) 

      INTEGER, INTENT(IN) :: TASK 

      REAL(DKIND) Y(SIZE(X)) 

  

      SELECT CASE (TASK) 

 

            CASE (ARPACK_Prepare) 

            …{Take initial steps to prepare for the operations that follow.} 

            CASE (ARPACK_A_x) 

            … y Ax  

            CASE (ARPACK_B_x) 

            … y Bx  

            CASE (ARPACK_inv_A_minus_Shift_x) 

            …  
1

y A I x


   

            CASE (ARPACK_inv_B_x) 

            …
1y B x  

            CASE (ARPACK_inv_A_minus_Shift_B_x) 

            …  
1

y A B x


   

            CASE DEFAULT 

            …{This is an error condition. } 

      END SELECT 

      END FUNCTION 

Example 1 

We approximate eigenvalues and eigenfunctions of the Laplacian operator 
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2 2

2 2
,

u u
u u u

x y


 
     

 
,  

on the unit square, [0,1] [0,1] , with zero Dirichlet boundary values.  The full set of eigenvalues 

and their eigenfunctions are given by the 

sequence    2 2 2

, ,, , sin( )sin( )m n m nm n u x y m n      , where ,  m n are positive 

integers. 

This provides a check on the accuracy of the numerical results.  Equally spaced divided 

differences on the unit square are used to approximate u . A few eigenvalues of smallest 

magnitude, and their eigenvectors, are requested.  This application requires the optional argument 

PLACE=ARPACK_Smallest_Magnitude.  The user function code provides the second order 

divided difference operator applied to an input vector.  The problem is a symmetric matrix 

eigenvalue computation.  It involves only the single TASK, ARPACK_A_x, in the user functions. 

The function FCN defines a grid of values and provides the operation that derives from this 

eigenvalue problem.  The class argument EXTYPE must be declared but need not be used. Within 

the main program, the function interface for the external function FCN is specified with the 

declaration PROCEDURE (DMV) FCN. 

Link to example source (arpack_symmetric_ex1.f90) 

 

      PROGRAM ARPACK_SYMMETRIC_EX1 

      USE ARPACK_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

      IMPLICIT NONE 

!     Compute the smallest eigenvalues of a discrete Laplacian, 

!     based on second order divided differences. 

!     The matrix used is the 2 dimensional discrete Laplacian on  

!     the unit square with zero Dirichlet boundary condition.                     

      INTEGER                  :: J, NOUT 

      INTEGER, parameter       :: NEV=5   !number of Eigenvalues required 

      INTEGER, parameter       :: NV=0, NX=10  

      INTEGER, parameter       :: N=NX**2 !size of matrix problem 

      REAL(DKIND)              :: VALUES(NEV), RES(N), EF(NX, NX) 

      REAL(DKIND), ALLOCATABLE :: VECTORS(:,:) 

      REAL(DKIND)              :: NORM 

      LOGICAL                  :: SMALL, SOLVED 

      TYPE(ARPACKBASE)         :: Q 

      PROCEDURE(DMV)           :: FCN 

 

      CALL UMACH(2, NOUT) 

! Note that VECTORS(:,:) does not need to be allocated 

! in the calling program.  That happens within the 

! routine ARPACK_SYMMETRIC().  It is OK to do this but 

! the sizes (N,NCV) are determined in ARPACK_SYMMETRIC.   

      CALL ARPACK_SYMMETRIC(N, FCN, VALUES, & 

           PLACE=ARPACK_Smallest_Magnitude,  VECTORS=VECTORS) 

      WRITE(NOUT, *) 'Number of eigenvalues requested, and declared 

accurate' 

LinkedDocuments/arpack_symmetric_ex1.f90
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      WRITE(NOUT, *) '------------------------------------------------------

' 

      WRITE(NOUT, '(5X, I4, 5X, I4)') NEV, Q%NACC 

      WRITE(NOUT, *) 'Number of Matrix-Vector Products Recorded, EX-11' 

      WRITE(NOUT, *) '------------------------------------------------' 

      WRITE(NOUT, '(5X, I4)') NV 

      CALL WRRRN('Smallest Laplacian Eigenvalues', VALUES) 

 

! Check residuals, A*vectors = values*vectors: 

      DO J=1,NEV 

! Necessary to have an unused TYPE(ARPACKBASE) :: Q as an argument:          

          RES=FCN(VECTORS(:,J), ARPACK_A_x, Q)-VALUES(J)*VECTORS(:,J) 

          NORM=maxval(abs(RES))  

          SMALL=(NORM <= ABS(VALUES(J))*SQRT(EPSILON(NORM))) 

          IF(J==1) SOLVED=SMALL 

          SOLVED=SOLVED .and. SMALL 

      END DO 

      IF(SOLVED) THEN 

         WRITE(nout,'(A///)') & 

              'All Ritz Values and Vectors have small residuals.' 

      ELSE 

         WRITE(nout,'(A///)') & 

               'Some Ritz Values and Vectors have large residuals.' 

      ENDIF 

 

! The first eigenvector is scaled to be positive. 

! It defines the eigenfunction for the smallest 

! eigenvalue at the grid defined by the differencing.          

      EF=reshape(VECTORS(:,1),(/NX,NX/)) 

      CALL WRRRN('First 2D Laplacian Eigenfunction at Grid Points', EF) 

     

      END 

       

      FUNCTION FCN(X, TASK, EX)RESULT(Y) 

         USE ARPACK_INT 

 

         CLASS(ARPACKBASE),INTENT(INOUT) :: EX 

         REAL(DKIND), INTENT(INOUT) :: X(:) 

         INTEGER, INTENT(IN) :: TASK 

         REAL(DKIND) Y(SIZE(X)) 

         

! Local variables:                 

         INTEGER J 

         INTEGER, SAVE :: NX 

         REAL(DKIND), SAVE :: HSQ 

 

         SELECT CASE(TASK) 

            CASE(ARPACK_A_x) 

!     Computes y <-- A*x, where A is the N**2 by N**2 block         

!     tridiagonal matrix                                                 

!                                                                        

!                  | T -I          |                                     

!                  |-I  T -I       |                                     

!              A = |   -I  T       |                                     

!                  |        ...  -I|                                     

!                  |           -I T|             

               Y(1:NX)=T(NX,X(1:NX)) - X(NX+1:2*NX) 
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               DO J=NX+1,NX**2-NX,NX 

                  Y(J:J+NX-1)=T(NX,X(J:J+NX-1))& 

                           - X(J-NX:J-1)-X(J+NX:J+2*NX-1) 

               END DO  

               Y((NX-1)*NX+1:NX**2)= - X((NX-1)*NX-NX+1:(NX-1)*NX)& 

                                  + T(NX,X((NX-1)*NX+1:NX**2)) 

! Note that HSQ is passed as a component of the extended type.  

               Y=(1._DKIND/HSQ)*Y 

             

            CASE(ARPACK_Prepare) 

! Define NX, 1/H**2 so they are later available in the evaluator.  

               NX=10 ! This value is fixed in the evaluator.            

               HSQ = 1._DKIND/REAL(NX+1,DKIND)**2 

               Y=0._DKIND 

            CASE DEFAULT 

               WRITE(NOUT,*) TASK, ': INVALID TASK REQUESTED' 

               STOP 'IMSL_ERROR_WRONG_OPERATION' 

            END SELECT 

      CONTAINS 

         FUNCTION T(NX, X)RESULT(V) 

            INTEGER, INTENT(IN) :: NX 

            REAL(DKIND), INTENT(IN) :: X(:) 

            REAL(DKIND) :: V(NX) 

            REAL(DKIND) :: MONE=-1._DKIND, FOUR=4._DKIND 

            INTEGER J 

          

            V(1)=FOUR*X(1)+MONE*X(2) 

            DO J=2,NX-1 

               V(J)=MONE*X(J-1)+FOUR*X(J)+MONE*X(J+1) 

            END DO 

            V(NX)=MONE*X(NX-1)+FOUR*X(NX) 

         END FUNCTION     

      END FUNCTION 

Output 
 

Number of eigenvalues requested, and declared accurate 

 ------------------------------------------------------ 

        5        0 

 Number of Matrix-Vector Products Recorded, EX-11 

 ------------------------------------------------ 

        0 

   

 Smallest Laplacian Eigenvalues 

            1   19.61 

            2   48.22 

            3   48.22 

            4   76.83 

            5   93.33 

All Ritz Values and Vectors have small residuals. 

 

 

 

   

               First 2D Laplacian Eigenfunction at Grid Points 
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           1        2        3        4        5        6        7        8 

  1   0.0144   0.0277   0.0387   0.0466   0.0507   0.0507   0.0466   0.0387 

  2   0.0277   0.0531   0.0743   0.0894   0.0973   0.0973   0.0894   0.0743 

  3   0.0387   0.0743   0.1038   0.1250   0.1360   0.1360   0.1250   0.1038 

  4   0.0466   0.0894   0.1250   0.1504   0.1637   0.1637   0.1504   0.1250 

  5   0.0507   0.0973   0.1360   0.1637   0.1781   0.1781   0.1637   0.1360 

  6   0.0507   0.0973   0.1360   0.1637   0.1781   0.1781   0.1637   0.1360 

  7   0.0466   0.0894   0.1250   0.1504   0.1637   0.1637   0.1504   0.1250 

  8   0.0387   0.0743   0.1038   0.1250   0.1360   0.1360   0.1250   0.1038 

  9   0.0277   0.0531   0.0743   0.0894   0.0973   0.0973   0.0894   0.0743 

 10   0.0144   0.0277   0.0387   0.0466   0.0507   0.0507   0.0466   0.0387 

   

           9       10 

  1   0.0277   0.0144 

  2   0.0531   0.0277 

  3   0.0743   0.0387 

  4   0.0894   0.0466 

  5   0.0973   0.0507 

  6   0.0973   0.0507 

  7   0.0894   0.0466 

  8   0.0743   0.0387 

  9   0.0531   0.0277 

 10   0.0277   0.0144 

Example 2 

We approximate eigenvalues and eigenfunctions of the 1D Laplacian operator

2

2

d u
u

dx
  on the 

unit interval, [0,1] .  Equally spaced divided differences are used for the operator, which yields a 

tri-diagonal matrix.  The eigenvalues and eigenfunctions are 

 2 2
, sin( ), 1, 2,

n n
n u x n n     . This example shows that using inverse iteration for 

approximating the largest reciprocals of eigenvalues is more efficient than directly computing the 

smallest magnitude eigenvalues by products of the operator.  This requires the optional argument 

CATEGORY=ARPACK_Shift_Invert. The user function, FCN, requires the solution of a tri-

diagonal system of linear equations applied to an input vector.  The base class ARPACKBASE is 

extended to the user‘s type, TYPE(ARPACKBASE_EXT), defined in the user module 

ARPACK_SYMMETRIC_EX2_INT. This extension includes the number of intervals, a total kept in 

FCN for noting the number of operations, and allocatable arrays used to store the LU factorization 

of the tri-diagonal matrix.  When FCN is entered with TASK=ARPACK_Prepare, these arrays are 

allocated, defined, and the LU factorization of the shifted matrix  A I is computed, here 

with 0  .  When FCN is later entered with TASK=ARPACK_inv_A_minus_Shift_x, the LU 

factorization is available to efficiently compute  
1 1y A I x A x
    .  The function FCN is 

also entered with TASK=ARPACK_A_x, to compute Ax . 

Link to example source (arpack_symmetric_ex2.f90) 

 

      MODULE ARPACK_SYMMETRIC_EX2_INT 

      USE ARPACK_INT 

      USE LSLCR_INT 

      USE N1RTY_INT 

LinkedDocuments/arpack_symmetric_ex2.f90
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      IMPLICIT NONE 

 

      TYPE, EXTENDS(ARPACKBASE) :: ARPACKBASE_EXT 

         REAL(DKIND) :: HSQ=0._DKIND 

         INTEGER ::     NX=0, NV=0 

! This example extends the base type to  

! information for solving tridiagonal systems.        

         REAL(DKIND), ALLOCATABLE :: A(:), B(:), C(:) 

         REAL(DKIND), ALLOCATABLE :: Y1(:), U(:) 

         INTEGER, ALLOCATABLE :: IR(:), IS(:) 

      END TYPE ARPACKBASE_EXT 

       

      CONTAINS 

       

      FUNCTION FCN(X, TASK, EX) RESULT(Y) 

         CLASS (ARPACKBASE), INTENT(INOUT) :: EX 

         REAL (DKIND), INTENT(INOUT) :: X(:)  

         INTEGER, INTENT(IN) :: TASK 

         REAL (DKIND) Y(size(X)) 

         INTEGER J, IERR, IJOB, NSIZE 

 

         SELECT TYPE(EX) 

            TYPE IS(ARPACKBASE_EXT) 

            ASSOCIATE(N     =>    EX%NCOLS, & 

                      NV    =>    EX%NV, & 

                      HSQ   =>    EX%HSQ, & 

                      SHIFT =>  EX%SHIFT)  

            SELECT CASE(TASK) 

               CASE(ARPACK_A_x) 

                  Y(1) =  2._DKIND*X(1) - X(2) 

                    

                  DO J = 2,N-1  

                     Y(J) = - X(J-1) + 2._DKIND*X(J) - X(J+1)  

                  END DO 

                   

                  Y(N) = - X(N-1) + 2._DKIND*X(N)  

                  Y=Y/HSQ       

                  CASE(ARPACK_inv_A_minus_Shift_x) 

! Compute Y=inv(A-*I)*x.  This is done with a solve 

! step, using the LU factorization.  Note that the data 

! for the factorization is stored in the user's extended 

! data type. 

 

                     EX%Y1(1:N) = X 

                     IJOB = 2 

                     CALL LSLCR (EX%C, EX%A, EX%B, EX%Y1, EX%U, & 

                                  EX%IR, EX%IS, N=N, IJOB=IJOB) 

                     Y(1:N) = EX%Y1(1:N) 

                     IERR= N1RTY(1) 

                     IF (IERR==4 .OR. IERR==5)  STOP 

'IMSl_FATAL_ERROR_SOLVING' 

! Total number of solve steps.                 

                     NV=NV+1 

                  CASE(ARPACK_Prepare) 

! Set up storage areas for factored tridiagonal matrix. 

                     IF (ALLOCATED(EX%A)) DEALLOCATE(EX%A) 
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                     IF (ALLOCATED(EX%B)) DEALLOCATE(EX%B) 

                     IF (ALLOCATED(EX%C)) DEALLOCATE(EX%C) 

                     IF (ALLOCATED(EX%Y1)) DEALLOCATE(EX%Y1) 

                     IF (ALLOCATED(EX%U)) DEALLOCATE(EX%U) 

                     IF (ALLOCATED(EX%IR)) DEALLOCATE(EX%IR) 

                     IF (ALLOCATED(EX%IS)) DEALLOCATE(EX%IS) 

                     NSIZE = (log(dble(N))/log(2.0)) + 5 

                     ALLOCATE(EX%A(2*N), EX%B(2*N), EX%C(2*N), EX%Y1(2*N), & 

                               EX%U(2*N), EX%IR(NSIZE),               & 

                               EX%IS(NSIZE),   STAT=IERR) 

                     IF (IERR /= 0) STOP 'IMSL_ERROR_ALLOCATING_WORKSPACE'  

! Define matrix values. 

                     HSQ=1._DKIND/REAL((N+1)**2,DKIND) 

                     EX%B(1:N) = -1._DKIND/HSQ 

                     EX%A(1:N) = 2._DKIND/HSQ - SHIFT 

                     EX%C(1:N) = EX%B(1:N) 

                     EX%Y1(:) = 0.0_DKIND 

! Factor the matrix with LU and partial pivoting. 

                     IJOB = 3 

                     CALL LSLCR (EX%C, EX%A, EX%B, EX%Y1, EX%U, & 

                                  EX%IR, EX%IS, N=N, IJOB=IJOB) 

                     IERR = N1RTY(1)    

                     IF(IERR == 4 .or. IERR == 5) STOP 'IMSL FATAL ERROR' 

! Give output some values to satisfy compiler.                 

                     Y=0._DKIND 

                     NV=0 

                  CASE DEFAULT 

                     STOP 'IMSL_ERROR_WRONG_OPERATION' 

                  END SELECT 

            END ASSOCIATE  

         END SELECT 

      END FUNCTION     

      END MODULE 

 

      USE ARPACK_SYMMETRIC_EX2_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

      IMPLICIT NONE 

! Compute the smallest eigenvalues of a discrete Laplacian, 

! based on second order divided differences. 

 

! The matrix is the 1 dimensional discrete Laplacian on        

! the interval 0,1 with zero Dirichlet boundary condition.  

       

      INTEGER, PARAMETER ::  NEV=4, N=100 

      REAL(DKIND) :: VALUES(NEV), RES(N) 

      REAL(DKIND), ALLOCATABLE :: VECTORS(:,:) 

      REAL(DKIND) NORM 

      LOGICAL SMALL, SOLVED 

      INTEGER J, NOUT 

      TYPE(ARPACKBASE_EXT) EX 

     

      ASSOCIATE(NX  => EX%NX, & 

                NV  => EX%NV, & 

              SIGMA => EX%SHIFT) 

               

      CALL UMACH(2, NOUT) 
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! Note that VECTORS(:,:) does not need to be allocated 

! in the calling program.  That happens within the 

! routine ARPACK_SYMMETRIC().  It is OK to do this but 

! the sizes (N,NCV) are determined in ARPACK_SYMMETRIC. 

      SIGMA=0._DKIND 

      CALL ARPACK_SYMMETRIC(N, FCN, VALUES,& 

         CATEGORY=ARPACK_Shift_Invert, EXTYPE=EX, VECTORS=VECTORS) 

       

      WRITE(NOUT,*) 'Number of Matrix-Vector Products Required, EX-2' 

      WRITE(NOUT,*) '-----------------------------------------------' 

      WRITE(NOUT, '(5X, I4)') NV 

      CALL WRRRN('Largest Laplacian Eigenvalues Near Zero Shift', & 

                 VALUES) 

! Check residuals, A*vectors = values*vectors: 

      DO J=1,NEV 

         RES=FCN(VECTORS(:,J),ARPACK_A_x,EX)-VALUES(J)*VECTORS(:,J) 

         NORM=maxval(abs(RES))          

            SMALL=(NORM <= ABS(VALUES(J))*SQRT(EPSILON(NORM))) 

         IF(J==1) SOLVED=SMALL 

            SOLVED=SOLVED .and. SMALL 

      END DO 

      

      IF(SOLVED) THEN 

          WRITE(nout,'(A///)') & 

               'All Ritz Values and Vectors have small residuals.' 

      ELSE 

          WRITE(nout,'(A///)') & 

               'Some Ritz Values and Vectors have large residuals.' 

      ENDIF 

      END ASSOCIATE               

      END 

       

Output 
 

 Number of Matrix-Vector Products Required, EX-2 

 ----------------------------------------------- 

       24 

   

 Largest Laplacian Eigenvalues Near Zero Shift 

                   1     9.9 

                   2    39.5 

                   3    88.8 

                   4   157.7 

All Ritz Values and Vectors have small residuals. 

Example 3 

We compute the solution of a generalized problem.  This comes from using equally spaced linear 

finite element test functions to solve eigenvalues and eigenfunctions of the 1D Laplacian 

operator

2

2

d u
u

dx
  on the unit interval, [0,1] .  This is Example 2 but solved using finite 

elements.  With matrix notation, we have the matrix problem Ax Bx .  Both A and B are tri-
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diagonal and symmetric.  The matrix B is non-singular.  We compute the smallest magnitude 

eigenvalues.  This requires the optional arguments TYPE = ARPACK_Generalized, CATEGORY 

= ARPACK_Regular_Inverse, and PLACE = ARPACK_Smallest_Magnitude. The user 

function, FCN, requires the solution of a tri-diagonal system of linear equations applied to an input 

vector,
1y B x .  The base class ARPACKBASE is extended to the user‘s type, 

TYPE(ARPACKBASE_EXT), defined in the user module ARPACK_SYMMETRIC_EX3_INT.  This 

extension includes the number of intervals, a total kept in FCN for noting the number of operations, 

and allocatable arrays used to store the LU factorization of B .  When FCN is entered with 

TASK=ARPACK_Prepare, these arrays are allocated, defined, and the LU factorization of the 

matrix B is computed. The function FCN is entered with the three values TASK=ARPACK_A_x, 

for y Ax ; TASK=ARPACK_B_x, for y Bx ; and TASK=ARPACK_inv_B_x, for 
1y B x . 

Within the main program, the function interface for the external function FCN is specified with the 

declaration PROCEDURE (DMV) FCN. 

Link to example source (arpack_symmetric_ex3.f90) 

 

      MODULE ARPACK_SYMMETRIC_EX3_INT 

      USE ARPACK_INT 

      USE LSLCR_INT 

      USE N1RTY_INT 

      IMPLICIT NONE 

 

      TYPE, EXTENDS(ARPACKBASE) :: ARPACKBASE_EXT 

         REAL(DKIND) :: H=0._DKIND 

         INTEGER ::     NX=0, NV=0 

! This example extends the base type to  

! information for solving tridiagonal systems.        

         REAL(DKIND), ALLOCATABLE ::  A(:), B(:), C(:) 

         REAL(DKIND), ALLOCATABLE :: Y1(:), U(:) 

         INTEGER, ALLOCATABLE :: IR(:), IS(:) 

 

      END TYPE ARPACKBASE_EXT  

      END MODULE 

       

 

 

      PROGRAM  ARPACK_SYMMETRIC_EX3 

      USE ARPACK_SYMMETRIC_EX3_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

      IMPLICIT NONE 

 

!         We want to solve A*x = lambda*M*x in inverse mode,     

!         where A and M are obtained by the finite element method 

!         of the 1-dimensional discrete Laplacian 

!                             d^2u / dx^2                                

!         on the interval 0,1, with zero Dirichlet boundary conditions,   

!         using piecewise linear elements.                        

 

      INTEGER,PARAMETER ::  NEV=4, N=100 

      REAL(DKIND) :: VALUES(NEV), RES(N) 

      REAL(DKIND), ALLOCATABLE :: VECTORS(:,:)  

      REAL(DKIND) NORM 

LinkedDocuments/arpack_symmetric_ex3.f90
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      LOGICAL :: PRINTRESULTS = .FALSE. 

      LOGICAL SMALL, SOLVED 

      INTEGER J, NOUT 

      PROCEDURE(DMV) FCN 

      TYPE(ARPACKBASE_EXT) EX 

       

      ASSOCIATE(NX  => EX%NX, & 

                NV  => EX%NV) 

              EX%FACTOR_MAXNCV=5._DKIND 

      CALL UMACH(2, NOUT) 

! Note that VECTORS(:,:) does not need to be allocated 

! in the calling program.  That happens within the 

! routine ARPACK_SYMMETRIC().  It is OK to do this but 

! the sizes (N,NCV) are determined in ARPACK_SYMMETRIC. 

      CALL ARPACK_SYMMETRIC(N, FCN, VALUES, & 

         TYPE=ARPACK_Generalized, & 

         CATEGORY=ARPACK_Regular_Inverse, & 

         PLACE=ARPACK_Smallest_Magnitude, EXTYPE=EX, VECTORS=VECTORS) 

       

      WRITE(NOUT,*) 'Number of Matrix-Vector Products Required, EX-3' 

      WRITE(NOUT,*) '-----------------------------------------------' 

      WRITE(NOUT, '(5X, I4)') NV 

      CALL WRRRN('Largest Laplacian Eigenvalues', VALUES) 

 

! Check residuals, A*vectors = values*B*vectors: 

      DO J=1,NEV 

         RES=FCN(VECTORS(:,J),ARPACK_A_x,EX)-& 

            VALUES(J)*FCN(VECTORS(:,J),ARPACK_B_x,EX) 

         NORM=maxval(abs(RES)) 

         SMALL=(NORM <= ABS(VALUES(J))*SQRT(EPSILON(NORM))) 

         IF(J==1) SOLVED=SMALL 

         SOLVED=SOLVED .and. SMALL 

      END DO 

         

      IF(SOLVED) THEN 

          WRITE(nout,'(A///)') & 

               'All Ritz Values and Vectors have small residuals.' 

      ELSE 

          WRITE(nout,'(A///)') & 

               'Some Ritz Values and Vectors have large residuals.' 

      ENDIF 

      END ASSOCIATE   

      END PROGRAM 

   

      FUNCTION FCN(X, TASK, EX) RESULT(Y) 

         USE ARPACK_SYMMETRIC_EX3_INT 

         CLASS (ARPACKBASE), INTENT(INOUT) :: EX 

         REAL (DKIND), INTENT(INOUT) :: X(:) 

         INTEGER, INTENT(IN) :: TASK 

         REAL (DKIND) Y(SIZE(X)), PI 

         INTEGER J, IERR, IJOB, NSIZE 

 

         SELECT TYPE(EX) 

            TYPE IS(ARPACKBASE_EXT) 

            ASSOCIATE(N   =>    EX%NCOLS, & 

                      NV  =>    EX%NV, & 
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                      H   =>    EX%H) 

 

            SELECT CASE(TASK) 

               CASE(ARPACK_A_x) 

                  Y(1) =  2._DKIND*X(1) - X(2)  

                   

                  DO J = 2,N-1  

                     Y(J) = - X(J-1) + 2._DKIND*X(J) - X(J+1)  

                  END DO 

                   

                  Y(N) = - X(N-1) + 2._DKIND*X(N)  

                  Y=Y/H 

               CASE(ARPACK_B_x) 

                  Y(1) = 4._DKIND*X(1) + X(2) 

                   

                  DO J = 2,N-1  

                     Y(J) = X(J-1) + 4._DKIND*X(J) + X(J+1)  

                  END DO    

                   

                  Y(N) = X(N-1) + 4._DKIND*X(N)  

                  Y=Y*(H/6._DKIND) 

               CASE(ARPACK_inv_B_x) 

! Compute Y=inv(A-*I)*x.  This is done with a solve 

! step, using the LU factorization.  Note that the data 

! for the factorization is stored in the user's extended 

! data type.       

                  EX%Y1(1:N) = X 

                  IJOB = 2 

                  CALL LSLCR (EX%C, EX%A, EX%B, EX%Y1, EX%U, & 

                              EX%IR, EX%IS, N=N, IJOB=IJOB) 

                  Y(1:N) = EX%Y1(1:N) 

                  IERR= N1RTY(1) 

                  IF (IERR==4 .OR. IERR==5)  STOP 'IMSl_FATAL_ERROR_SOLVING' 

! Total number of solve steps.                 

                  NV=NV+1 

               CASE(ARPACK_Prepare) 

! Set up storage areas for factored tridiagonal matrix. 

 

                     IF (ALLOCATED(EX%A)) DEALLOCATE(EX%A) 

                     IF (ALLOCATED(EX%B)) DEALLOCATE(EX%B) 

                     IF (ALLOCATED(EX%C)) DEALLOCATE(EX%C) 

                     IF (ALLOCATED(EX%Y1)) DEALLOCATE(EX%Y1) 

                     IF (ALLOCATED(EX%U)) DEALLOCATE(EX%U) 

                     IF (ALLOCATED(EX%IR)) DEALLOCATE(EX%IR) 

                     IF (ALLOCATED(EX%IS)) DEALLOCATE(EX%IS) 

                     NSIZE = (log(dble(N))/log(2.0d0)) + 5 

                     ALLOCATE(EX%A(2*N), EX%B(2*N), EX%C(2*N), EX%Y1(2*N), & 

                               EX%U(2*N), EX%IR(NSIZE),               & 

                               EX%IS(NSIZE),   STAT=IERR) 

                     IF (IERR /= 0) STOP 'IMSL_ERROR_ALLOCATING_WORKSPACE' 

                 

! Define matrix values. 

                  PI=ATAN(1._DKIND)*4._DKIND 

                  H=PI/REAL(N+1,DKIND) 

                  EX%B(1:N) =  (1._DKIND/6._DKIND)*H 

                  EX%A(1:N) =  (2._DKIND/3._DKIND)*H  

                  EX%C(1:N) = EX%B(1:N) 
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                  EX%Y1(:) = 0.0_DKIND 

 

! Factor the matrix with LU and partial pivoting. 

                   

                  IJOB = 3 

                  CALL LSLCR (EX%C, EX%A, EX%B, EX%Y1, EX%U, & 

                              EX%IR, EX%IS, N=N, IJOB=IJOB) 

                  IERR = N1RTY(1) 

                  IF(IERR == 4 .or. IERR == 5) STOP 'IMSL FATAL ERROR' 

! Give output some values to satisfy compiler.                 

                  Y=0._DKIND 

                  NV=0 

               CASE DEFAULT 

                  write(*,*)TASK 

                  STOP 'IMSL_ERROR_WRONG_OPERATION' 

               END SELECT 

            END ASSOCIATE  

         END SELECT 

      END FUNCTION 

Output 
 

 Number of Matrix-Vector Products Required, EX-3 

 ----------------------------------------------- 

     1126 

   

 Largest Laplacian Eigenvalues 

           1    1.00 

           2    4.00 

           3    9.01 

           4   16.02 

All Ritz Values and Vectors have small residuals. 

ARPACK_SVD 
Computes some singular values and left and right singular vectors of a real rectangular 

matrix
T

M NA USV  .  There is no restriction on the relative sizes, M  and N .  This routine 

calls ARPACK_SYMMETRIC. 

Required Arguments 

M — The number of matrix rows.   (Input) 

N — The number of matrix columns.   (Input) 

F — User-supplied FUNCTION to return matrix-vector operations. This user function is 

written corresponding to the abstract interface for the function SVDMV(…).The 

operations provided as code in the function F will be made based on the two matrix 

operations y Ax and
T Ty A x x A  . The usage is F (X, TASK, EXTYPE), where 
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Function Return Value 

F — An array of length N containing matrix-vector operations or linear 

equations solutions. Operations provided as code in the function F will be 

made depending upon the value of argument TASK. 

Required Arguments 

X — An array of length N containing the vector to which the operator will be 

applied.   (Input) 

TASK — An enumerated type which specifies the operation to be performed.   

(Input) 

TASK is an enumerated integer value, use-associated from the module 

ARPACK_INT. It will be one of the following: 

 

Value Description 

ARPACK_Prepare Take initial steps to prepare for the 

operations that follow. These steps 

can include defining the data for the 

matrices, factorizations for 

upcoming linear system solves, or 

recording the vectors used in the 

operations. 

ARPACK_A_x y Ax  

ARPACK_xt_A y Bx  

 

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be 

used to pass additional information to/from the user-supplied function.   

(Input/Output) 

The user must include a USE ARPACK_INT statement in the calling 

program to define this derived type. If EXTYPE is not included as an 

argument to ARPACK_SVD it should be ignored in the user-function, F. 

 The function F must be written according to the abstract interface for SVDMV. If F is not 

use-associated nor contained in the calling program, declare it with 

PROCEDURE(SVDMV) F. 

SVALUES — A rank-1 array of singular values.   (Output) 

The value NEV = size(SVALUES) defines the number of singular values to be 

computed.  The calling program declares or allocates the array SVALUES(1:NEV). 

Optional Arguments 

PLACE — Indicates the placement in the spectrum for required singular values.   (Input) 

PLACE can be one of the following enumerated integers as defined in ARPACK_INT: 
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Value 

ARPACK_Largest_Algebraic 

ARPACK_Smallest_Magnitude 

 

 Default: PLACE = ARPACK_Largest_Algebraic. 

ITERATION_TYPE — Indicates the method for obtaining the required singular values.   

(Input) 

ITERATION_TYPE can be one of the following enumerated integers as defined in 

ARPACK_INT: 

 

Value 

ARPACK_Normal 

ARPACK_Expanded 

 

 For values M N  , ARPACK_Normal specifies computing singular values based on 

eigenvalues and eigenvectors of the normal symmetric matrix
TA A ; for values M   N 

this will be the alternate symmetric matrix
TAA . 

 For all values of ,M N , ARPACK_Expanded specifies computing singular values 

based on the symmetric matrix eigenvalue problem for the matrices 

0

0T

A

A

 
 
    or  

0

0

TA

A

 
 
   

 Default: ITERATION_TYPE = ARPACK_Normal. 

CATEGORY — An integer from a packaged enumeration with values that are passed to 

ARPACK_SYMMETRIC.   (Input) 

CATEGORY can be one of the following enumerated integers as defined in 

ARPACK_INT: 

 

Value 

ARPACK_Regular 

ARPACK_Regular_Inverse 

 

 Default: CATEGORY = Regular. 

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be used to pass 

additional information to/from the user-supplied function.   (Input/Output) 
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The user must include a USE ARPACK_INT statement in the calling program to define 

this derived type. If EXTYPE is not included as an argument to ARPACK_SVD it must 

still be supplied as an argument to user-function, F, but is not used. 

U_VECTORS — An allocatable array of orthogonal left singular vectors.   (Output) 

It is not necessary to allocate U_VECTORS(:,:).  If this argument is present, the 

allocation occurs within the routine ARPACK_SVD  The output sizes are 

UVECTORS(1:M,1:NCV).  The second dimension value is NCV=min(M, 

max(FACTOR_MAXNCV*NEV,NEV+1)), where the value FACTOR_MAXNCV is a 

component of the base class, ARPACKBASE.  The first NEV columns of 

U_VECTORS(:,:) are the left singular vectors. 

V_VECTORS — An allocatable array of orthogonal right singular vectors.   (Output) 

It is not necessary to allocate V_VECTORS(:,:).  If this argument is present, the 

allocation occurs within the routine ARPACK_SVD.  The output sizes are 

V_VECTORS(1:N,1:NCV).  The second dimension value is NCV=min(M, 

max(FACTOR_MAXNCV*NEV,NEV+1)), where the value FACTOR_MAXNCV is a 

component of the base class, ARPACKBASE.  The first NEV columns of 

V_VECTORS(:,:) are the right singular vectors. 

FORTRAN 2003 Interface 

Generic: ARPACK_SVD (M, N, F,SVALUES [,…]) 

Specific: The specific interface name is D_ARPACK_SVD. 

FORTRAN 90 Interface 

A Fortran 90 compiler version is not available for this routine. 

Description 

Routine ARPACK_SVD calls ARPACK_SYMMETRIC to compute partial singular value 

decompositions for rectangular real matrices.  There is no restriction on the relative sizes of the 

number of rows and columns.  A function internal to ARPACK_SVD is used in the call to 

ARPACK_SYMMETRIC.  The internal function calls the user function, F, which provides matrix-

vector products of the matrix and an internally generated vector.  By including the class object 

EXTYPE as an argument to this function, user data and procedure pointers are available for the 

evaluations.  A user code must extend the base class EXTYPE to include the extra data and 

procedure pointers. 

Comments 

The user function supplies requests for the matrix operations.  Those cases that follow from 

the settings of PLACE, ITERATION_TYPE and CATEGORY need to be provided in the user 

code. The enumerated TASK constants, ARPACK_A_x and ARPACK_xt_A are available by 

use-association from the module ARPACK_INT.  The sizes of the inputs and outputs, ,x y , 

switch between the values ,n m .  The values ,n mare alternated in the base class components 

EXTYPE%NCOLS and EXTYPE%MROWS. 
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The value of Iteration_Type may impact the number of iterations required.  Generally one 

expects Iteration_Type=ARPACK_Normal (the default) to result in the fewest iterations, 

and Iteration_Type=ARPACK_Expanded to result in singular values with the greatest 

accuracy. 

The output arrays U_VECTORS(:,:), SVALUES(:), and V_VECTORS(:,:) allow for 

reconstruction of an approximation to the matrix A .  This approximation is
TB USV .  The 

matrices ,U S  and V  are available in these respective routine arguments. The 

terms
M NSVU 

 and 
N NSVV 

 have orthogonal columns, 
T T

NSVU U I V V  .  The diagonal 

matrix 
NSV NSVS 

 has its entries in SVALUES(:), ordered from largest to smallest.  Use the 

value min( ( ), )NSV size NACC SVALUES , where NACC is the number of accurate singular 

values computed by ARPACK_SYMMETRIC.  This is the component EXTYPE%NACC of the base 

class EXTYPE. 

After computing the singular values and right singular vectors by iteration with the normal 

matrix 
TA A , U is computed from the relation AV US .  The result is then processed 

with the modified Gram-Schmidt algorithm to assure thatU is orthogonal.  When iterating 

with
TAA we first compute the left singular vectorsU and then obtainV by the Gram-

Schmidt algorithm.  If we use Iteration_Type=ARPACK_Expanded, U and V are 

computed simultaneously, and both are orthogonal. 

Example 1 

We define the M N matrix  ,i jA a with entries ,i ja i j  .  This matrix has two non-zero 

singular values.  With the pair of values ( , ) (512, 265)M N    and ( , ) (265,512)M N   we obtain 

the singular decomposition for these rectangular matrices.   With each pair we compute the 

decomposition using the input Iteration_Type=ARPACK_Normal and 

Iteration_Type=ARPACK_Expanded.  The latter value requires the larger number of iterations.  

The matrix A has its storage requirements changed from MN to the value  2 1M N  .  The 

resulting product
T

B USV , when rounded to the nearest integer, satisfies B A . 

The base class ARPACKBASE is extended to include an allocatable array, EXTYPE%A(:,:).  This is 

allocated and defined and stores the matrix A .  The matrix operations y Ax  and 

T Ty A x x A  are computed with DGEMV. 

Link to example source (arpack_svd_ex1.f90) 

 

      MODULE ARPACK_SVD_EX1_INT 

      USE ARPACK_INT 

      IMPLICIT NONE 

 

      TYPE, EXTENDS(ARPACKBASE) :: ARPACKBASE_EXT 

          REAL(DKIND), ALLOCATABLE :: A(:,:) 

          INTEGER :: NV = 0 

LinkedDocuments/arpack_svd_ex1.f90
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          INTEGER :: MM = 0 

          INTEGER :: NN = 0 

      END TYPE ARPACKBASE_EXT  

      CONTAINS 

     

      FUNCTION FCN(X, TASK, EXTYPE) RESULT(Y) 

         USE UMACH_INT 

         CLASS (ARPACKBASE), INTENT(INOUT) :: EXTYPE 

         REAL (DKIND), INTENT(INOUT) :: X(EXTYPE % NCOLS) 

         INTEGER, INTENT(IN) :: TASK 

         REAL (DKIND) Y(EXTYPE % MROWS) 

         INTEGER I, J, NOUT 

          

         CALL UMACH(2, NOUT) 

         SELECT TYPE(EXTYPE) 

            TYPE IS(ARPACKBASE_EXT) 

            ASSOCIATE(M => EXTYPE % MM,& 

                      N => EXTYPE % NN,& 

                      A => EXTYPE % A) 

            SELECT CASE(TASK) 

            CASE(ARPACK_A_x) 

!     Computes y <-- A*x       

               CALL DGEMV('N',M,N,1._DKIND,A,M,X,1,0._DKIND,Y,1) 

               EXTYPE % NV = EXTYPE % NV + 1 

            CASE(ARPACK_xt_A) 

 

!     Computes y <-- A^T*x = x^T * A 

               CALL DGEMV('T',M,N,1._DKIND,A,M,X,1,0._DKIND,Y,1) 

               EXTYPE % NV = EXTYPE % NV + 1 

  

            CASE(ARPACK_Prepare) 

               EXTYPE % NV = 0 

               IF(ALLOCATED(EXTYPE % A)) DEALLOCATE(EXTYPE % A) 

               ALLOCATE(EXTYPE % A(M,N)) 

                

               DO J=1,N 

                  DO I=1,M 

                     EXTYPE % A (I,J) = I + J 

                  END DO 

               END DO 

            CASE DEFAULT 

               WRITE(NOUT,*) TASK, ': INVALID TASK REQUESTED' 

               STOP 'IMSL_ERROR_WRONG_OPERATION' 

            END SELECT 

             

            END ASSOCIATE 

         END SELECT 

      END FUNCTION 

      END MODULE 

 

      USE ARPACK_SVD_EX1_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

! Compute the largest and smallest singular values of a  

! patterned matrix. 

      INTEGER, PARAMETER :: NSV=2 

      INTEGER ::  COUNT, I, J, N, M, nout 
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      REAL(DKIND)  :: SVALUESMax(NSV) 

      REAL(DKIND), ALLOCATABLE :: SVALUEsMin(:) 

      REAL(DKIND), ALLOCATABLE :: VECTORS(:,:), B(:,:) 

      REAL(DKIND), ALLOCATABLE :: U_VECTORS(:,:), V_VECTORS(:,:) 

      REAL(DKIND) NORM 

      LOGICAL SMALL, SOLVED 

      TYPE(ARPACKBASE_EXT) EX 

 

      ASSOCIATE(M=>EX % MM,& 

                N=>EX % NN,& 

                NACC=>EX % NACC,& 

                TOL =>EX % TOL,& 

                MAXMV => EX % MAXMV) 

      SOLVED = .true.           

      CALL UMACH(2, NOUT)        

! Define size of matrix problem. 

      N=800 

      M=600 

      DO COUNT =1,2 

! Some values will not be accurately determined for rank 

! deficient problems.  This next value drops the number 

! requested after every sequence of iterations of this size.  

         MAXMV=500 

         CALL ARPACK_SVD(M, N, FCN, SVALUESMax, & 

                PLACE=ARPACK_Largest_Algebraic, & !Default 

                Iteration_TYPE=ARPACK_Normal,   & !Default 

                CATEGORY=ARPACK_Regular,        & !Default 

                EXTYPE=EX, U_VECTORS=U_VECTORS,   & 

                V_VECTORS=V_VECTORS) 

         CALL WRRRN( 'Largest Singular values, Normal Method', & 

                     SVALUESMax) 

         WRITE(NOUT, *) 'Number of matrix-vector products' 

         WRITE(NOUT, *) '--------------------------------' 

         WRITE(NOUT, '(5X, I4)') EX % NV 

         IF(ALLOCATED(B))DEALLOCATE(B) 

         ALLOCATE(B(M,N)) 

! Reconstruct an approximation to A, B = U * S * V ^T.   

! Use only the singular values accurately determined.  

      

         DO I=1,NACC 

            U_VECTORS(:,I)=U_VECTORS(:,I)*SVALUESMax(I) 

         END DO 

         B=matmul(U_VECTORS(:,1:NACC),transpose(V_VECTORS(:,1:NACC))) 

! Truncate the approximation to nearest integers.        

! Subtract known integer matrix and check agreement with 

! the approximation. 

         DO I=1,M 

            DO J=1,N 

               B(I,J)=REAL(NINT(B(I,J)),DKIND) 

               B(I,J)=B(I,J)-EX % A(I,J) 

            END DO 

         END DO     

         WRITE(NOUT,'(/A,I6)')& 

         'Number of singular values, S and columns of U,V =', NACC 

         WRITE(NOUT,'(/A,F6.2)')& 

               'Integer units of error with U,V and S =', maxval(B) 
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         if (maxval(B) > 0.0d0) then 

            solved = .false. 

         else  

            solved = solved .and. .true. 

         end if 

         SVALUESMax=0._DKIND 

! Do same SVD with the Expanded form of the symmetric matrix.  

         CALL ARPACK_SVD(M, N, FCN, SVALUESMax,& 

                         PLACE=ARPACK_Largest_Algebraic, & !Default 

                         Iteration_TYPE=ARPACK_Expanded, &     

                         CATEGORY=ARPACK_Regular,        & !Default 

                         EXTYPE=EX, U_VECTORS=U_VECTORS,   & 

                         V_VECTORS=V_VECTORS) 

                          

         CALL WRRRN('Largest Singular values, Expanded Method', SVALUESMax) 

         WRITE(NOUT, *) 'Number of matrix-vector products' 

         WRITE(NOUT, *) '--------------------------------' 

         WRITE(NOUT, '(5X,I4)') EX % NV 

! Reconstruct an approximation to A, B = U * S * V ^T.   

! Use only the singular values accurately determined.   

         DO I=1,NACC 

            U_VECTORS(:,I)=U_VECTORS(:,I)*SVALUESMax(I) 

         END DO 

         B=matmul(U_VECTORS(:,1:NACC),transpose(V_VECTORS(:,1:NACC))) 

! Truncate the approximation to nearest integers.        

! Subtract known integer matrix and check agreement with 

! the approximation.  

         DO I=1,M 

            DO J=1,N 

               B(I,J)=REAL(NINT(B(I,J)),DKIND) 

               B(I,J)=B(I,J)-EX % A(I,J) 

            END DO 

         END DO       

         WRITE(NOUT,'(A,I6)')& 

              'Number of singular values, S and columns of U,V =', NACC 

         WRITE(NOUT,'(A,F6.2)')& 

               'Integer units of error with U,V and S =', maxval(B) 

         if (maxval(B) > 0.0d0) then 

            solved = .false. 

         else  

            solved = solved .and. .true. 

         end if 

 

         M=800 

         N=600 

         DEALLOCATE(U_VECTORS, V_VECTORS) 

      END DO          

       

      END ASSOCIATE 

      END 

Output 

   

 Largest Singular values, Normal Method 

              1   523955.7 

              2    36644.2 
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 Number of matrix-vector products 

 -------------------------------- 

       12 

 

Number of singular values, S and columns of U,V =     2 

 

Integer units of error with U,V and S =  0.00 

   

 Largest Singular values, Expanded Method 

               1   523955.7 

               2    36644.2 

 Number of matrix-vector products 

 -------------------------------- 

       22 

Number of singular values, S and columns of U,V =     2 

Integer units of error with U,V and S =  0.00 

   

 Largest Singular values, Normal Method 

              1   523955.7 

              2    36644.2 

 Number of matrix-vector products 

 -------------------------------- 

       12 

 

Number of singular values, S and columns of U,V =     2 

 

Integer units of error with U,V and S =  0.00 

   

 Largest Singular values, Expanded Method 

               1   523955.7 

               2    36644.2 

 Number of matrix-vector products 

 -------------------------------- 

       18 

Number of singular values, S and columns of U,V =     2 

Integer units of error with U,V and S =  0.00 

ARPACK_NONSYMMETRIC 
Compute some eigenvalues and eigenvectors of the generalized eigenvalue problem Ax Bx .  

This can be used for the case B I .   The values for ,A B are real, but eigenvalues may be 

complex and occur in conjugate pairs. 

Required Arguments 

N — The dimension of the problem.   (Input) 

F — User-supplied FUNCTION to return matrix-vector operations or linear solutions. This user 

function is written corresponding to the abstract interface for the function DMV(…). The 

usage is F (X, TASK, EXTYPE), where 
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Function Return Value 

F — An array of length N containing matrix-vector operations or linear 

equations solutions. Operations provided as code in the function F will be 

made depending upon the value of argument TASK. 

Required Arguments 

X — An array of length N containing the vector to which the operator will be 

applied.   (Input) 

TASK — An enumerated type which specifies the operation to be performed.   

(Input) 

TASK is an enumerated integer value, use-associated from the module 

ARPACK_INT. It will be one of the following: 

 

Value Description 

ARPACK_Prepare Take initial steps to prepare for the 

operations that follow. These steps 

can include defining the data for the 

matrices, factorizations for 

upcoming linear system solves, or 

recording the vectors used in the 

operations. 

ARPACK_A_x y Ax  

ARPACK_B_x y Bx  

ARPACK_inv_A_minus_Shift_x 
 

1
y A I x


   

ARPACK_inv_B_x 1y B x  

ARPACK_inv_A_minus_Shift_B

_x  
1

y A B x


   

 

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be 

used to pass additional information to/from the user-supplied function.   

(Input/Output) 

The user must include a USE ARPACK_INT statement in the calling 

program to define this derived type. If EXTYPE is not included as an 

argument to ARPACK_NONSYMMETRIC it should be ignored in the user-

function, F. 

 The function F must be written according to the abstract interface for DMV. If F is not 

use-associated nor contained in the calling program, declare it with PROCEDURE(DMV) 

F. 

ZVALUES — A complex array of eigenvalues.   (Output) 

The value NEV=size(ZVALUES) defines the number of eigenvalues to be computed.  

The calling program declares or allocates the array ZVALUES(1:NEV).  The size value 
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NEV should account for pairs of complex conjugates.  The number of eigenvalues 

computed accurately is optionally available as the component EXTYPE%NACC of the 

base class EXTYPE. 

Optional Arguments 

PLACE — Defines the placement in the spectrum for required eigenvalues.   (Input) 

PLACE can be one of the following enumerated integers as defined in ARPACK_INT: 

 

Value 

ARPACK_Largest_Magnitude 

ARPACK_Smallest_Magnitude 

ARPACK_Largest_Real_Parts 

ARPACK_Smallest_Real_Parts 

ARPACK_Largest_Imag_Parts 

ARPACK_Smallest_Imag_Parts 

 

 Default: ARPACK_Largest_Magnitude. 

TYPE —  Defines the eigenvalue problem as either a standard or generalized eigenvalue 

problem.   (Input) 

TYPE can be one of the following enumerated integers as defined in ARPACK_INT: 

 

Value Description 

ARPACK_Standard Ax x  

ARPACK_Generalized Ax Bx  
 

 Default: TYPE = ARPACK_Standard. 

CATEGORY —CATEGORY and TYPE define the operation sequence provided in the user-

written function.   (Input) 

CATEGORY can be one of the following enumerated integers as defined in 

ARPACK_INT: 

 

Value Description 

ARPACK_Regular Ax x  

ARPACK_Regular_Inverse 1, ,y Ax y Bx y B x    

ARPACK_Shift_Invert 
   

1 1
, ,y Ax y A I x y A B x 
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Value Description 

ARPACK_Regular Ax x  

ARPACK_Complex_Part_Shift_Invert 
   

1 1
, ,y Ax y A I x y A B x 

 
    

 
1

, , Im{ }y Ax y Bx y A B x


   

 
1

, , Re{ }y Ax y Bx y A B x


   

 

 

 Default: CATEGORY = ARPACK_Regular. 

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be used to pass 

additional information to/from the user-supplied function.   (Input/Output) 

The user must include a USE ARPACK_INT statement in the calling program to define 

this derived type. If EXTYPE is not included as an argument to 

ARPACK_NONSYMMETRIC it must still be supplied as an argument to user-function, F, 

but is not used. 

VECTORS — An allocatable array of approximate eigenvectors.   (Output) 

It is not necessary to allocate VECTORS(:,:).  If this argument is used the allocation 

occurs within the routine ARPACK_NONSYMMETRIC.  The output sizes are 

VECTORS(1:N,1:NCV). The second dimension value is  

NCV=min(N, max(FACTOR_MAXNCV*NEV,NEV+1)), where the value FACTOR_MAXNCV 

is a component of the base class, ARPACKBASE.  The first NEV columns of 

VECTORS(:,:) represent the eigenvectors (see Comments).  

FORTRAN 2003 Interface 

Generic: ARPACK_NONSYMMETRIC (N, F,ZVALUES [,…]) 

Specific: The specific interface name is D_ARPACK_NONSYMMETRIC. 

FORTRAN 90 Interface 

A Fortran 90 compiler version is not available for this routine. 

Description 

Routine ARPACK_NONSYMMETRIC calls ARPACK subroutines to compute partial eigenvalue-

eigenvector decompositions for real matrices.  The ARPACK routines are dnaupd and dneupd 

(see ARPACK Users’ Guide, SIAM Publications, (1998)), which use ―reverse communication‖ to 

obtain the required matrix-vector operations for this approximation.  Responses to these requests 

are made by calling the user-written function F.  By including the class object EXTYPE as an 

argument to this function, user data and procedure pointers are available for the evaluations.  A 

user code must extend the base class EXTYPE to include the extra data and procedure pointers. 
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Comments 

The non-symmetric problem may have complex eigenvalues that occur in conjugate pairs, and 

the eigenvectors are returned in the REAL(DKIND) array VECTORS(:,:) but with a compact 

representation:  If the eigenvalue j has an imaginary part with a negative value, construct the 

complex eigenvector from the relation 1j j jw v iv   .  The real vectors 1,j jv v  are 

consecutive columns of the array VECTORS (:,:).   The eigenvalue-eigenvector relationship 

is j j jAw w .  Since A is real, j is also an eigenvalue; thus the conjugate 

relationship j j jAw w will hold.  For purposes of checking results the complex 

residual j j j jr Aw w  should be small in norm relative to the norm of A  .  If that is true, 

there is no need to check the alternate relationship.  This compact representation of the 

eigenvectors can be expanded to require twice the storage requirements, but that is not done 

here in the interest of saving large blocks of storage. 

For the generalized eigenvalue problem Ax Bx  the eigenvalues are optionally computed 

based on the Raleigh Quotient.  Because of the shifts used, only the eigenvectors may be 

computed.  The eigenvalues are returned by solving j jAw Bw for : 

   /H H

j j j j jw Aw w Bw  .  j  is valid if the denominator is non-zero.  If j has a non-

zero imaginary part, then the complex conjugate j is also an eigenvalue.  The Raleigh 

Quotient for eigenvalues of generalized problems is used when vectors are requested and the 

user has requested it be used with the base class component EXTYPE%RALEIGH_QUOTIENT  

==  .TRUE..   This is the component‘s default value. 

Example 1 

We solve the generalized eigenvalue problem Ax Bx  using the shift-invert category.  The 

matrix A  is tri-diagonal with the values 2 on the diagonal, -2 on the sub-diagonal, and 3 on the 

super-diagonal.  The matrix B  is tri-diagonal with the values 4 on the diagonal and 1 on the off-

diagonals.  We use the complex shift 0.4 0.6i   and increase the factor for the number of 

Ritz vectors from 2.5 to 5.  Two strategies of shift-invert are illustrated, 
1Re( )y A B Bx   and

1Im( )y A B Bx   .  In each case NEV=6 eigenvalues are 

obtained, each with 3 pairs of complex conjugate values. 

Link to example source (arpack_nonsymmetric_ex1.f90) 

 

 

      MODULE ARPACK_NONSYMMETRIC_EX1_INT 

      USE ARPACK_INT 

      USE LSLCQ_INT 

      USE N1RTY_INT 

      IMPLICIT NONE 

 

      TYPE, EXTENDS(ARPACKBASE) :: ARPACKBASE_EXT 

LinkedDocuments/arpack_nonsymmetric_ex1.f90
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         INTEGER ::     NX=0 

         INTEGER ::     NV=0 

! This example extends the base type to  

! information for solving complex tridiagonal systems. 

         COMPLEX(DKIND), ALLOCATABLE :: A(:), B(:), C(:) 

         INTEGER, ALLOCATABLE ::  IR(:), IS(:)  

! This controls the type of shifting.  When 

! the value is 1, use real part of inv(A-*M)*x. 

! If value is 2, use imaginary part of same. 

         INTEGER :: SHIFT_STRATEGY=1 

      END TYPE ARPACKBASE_EXT  

       

      CONTAINS 

      FUNCTION FCN(X, TASK, EX) RESULT(Y) 

         USE UMACH_INT 

          

         CLASS (ARPACKBASE), INTENT(INOUT) :: EX 

         REAL (DKIND), INTENT(INOUT) :: X(:) 

         INTEGER, INTENT(IN) :: TASK 

         INTEGER, PARAMETER :: NSIZE=12 

         REAL(DKIND) Y(size(X)) 

         REAL(DKIND) DL, DD, DU 

         COMPLEX(DKIND) Z(2*size(X)) 

         REAL(DKIND) U(2*size(X)) 

         INTEGER J, IERR, NOUT, IJOB 

         CALL UMACH(2, NOUT) 

         SELECT TYPE(EX) 

            TYPE IS(ARPACKBASE_EXT) 

            ASSOCIATE(N   =>    EX % NCOLS,& 

                      NV  =>    EX % NV, & 

                      SHIFT =>  EX % SHIFT) 

 

            SELECT CASE(TASK) 

 

               CASE(ARPACK_A_x) 

                  DL =  -2._DKIND 

                  DD =   2._DKIND  

                  DU =   3._DKIND 

                  Y(1) =  DD*X(1) + DU*X(2)  

                  DO J = 2,N-1  

                     Y(J) = DL*X(J-1) + DD*X(J) + DU*X(J+1) 

                  END DO  

                  Y(N) =  DL*X(N-1) + DD*X(N) 

                  NV=NV+1  

                             

               CASE(ARPACK_B_x) 

                  Y(1) = 4._DKIND*X(1) + X(2) 

                  DO J = 2,N-1  

                     Y(J) = X(J-1) + 4._DKIND*X(J) + X(J+1) 

                  END DO    

                  Y(N) = X(N-1) + 4._DKIND*X(N)  

                  NV=NV+1 

                   

               CASE(ARPACK_inv_A_minus_Shift_B_x) 

! Compute Y=REAL/AIMAG(inv(A-*B)*x).  This is done with a solve 

! step, using the LU factorization.  Note that the data 

! for the factorization is stored in the user's extended 
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! data type. 

                  Z=CMPLX(X,0._DKIND,DKIND) 

                  IJOB = 2 

                  CALL LSLCQ (EX%C, EX%A, EX%B, Z, U, & 

                              EX%IR, EX%IS, N=N, IJOB=IJOB) 

                  IERR= N1RTY(1) 

                  IF (IERR==4 .OR. IERR==5)  & 

                      STOP 'IMSl_FATAL_ERROR_SOLVING' 

 

 

                  IF(EX % SHIFT_STRATEGY == 1) THEN 

                     Y(1:N)=REAL( Z(1:N),DKIND) 

                  ELSE IF (EX % SHIFT_STRATEGY == 2)THEN 

                     Y(1:N)=AIMAG(Z(1:N)) 

                  END IF 

 

! Total number of solve steps.                 

                  NV=NV+1 

                   

               CASE(ARPACK_Prepare) 

! Set up storage areas for factored tridiagonal matrix. 

 

                  IF (ALLOCATED(EX%A)) DEALLOCATE(EX%A) 

                  IF (ALLOCATED(EX%B)) DEALLOCATE(EX%B) 

                  IF (ALLOCATED(EX%C)) DEALLOCATE(EX%C) 

                  IF (ALLOCATED(EX%IR)) DEALLOCATE(EX%IR) 

                  IF (ALLOCATED(EX%IS)) DEALLOCATE(EX%IS) 

                  ALLOCATE(EX%A(2*N), EX%B(2*N), EX%C(2*N), & 

                           EX%IR(NSIZE), EX%IS(NSIZE), STAT=IERR) 

                  IF (IERR /= 0) STOP 'IMSL_ERROR_ALLOCATING_WORKSPACE' 

  

! Define matrix, A-SHIFT*B. 

                  EX % B(1:N) =  -2._DKIND-SHIFT 

                  EX % A(1:N) =  2._DKIND-4._DKIND*SHIFT 

                  EX % C(1:N) =  3._DKIND-SHIFT  

! Factor the matrix with LU and partial pivoting. 

                  IJOB = 3 

                  CALL LSLCQ (EX%C, EX%A, EX%B, Z, U, & 

                              EX%IR, EX%IS, N=N, IJOB=IJOB) 

                  IERR = N1RTY(1) 

                  IF(IERR == 4 .or. IERR == 5) STOP 'IMSL FATAL ERROR' 

 

! Give output some ZVALUES to satisfy compiler. 

                  Y=0._DKIND 

                  NV=0 

                   

               CASE DEFAULT 

                  WRITE(NOUT,*) TASK, ': INVALID OPERATION REQUESTED' 

                  STOP 'IMSL_ERROR_WRONG_OPERATION' 

               END SELECT 

            END ASSOCIATE  

            END SELECT 

      END FUNCTION 

      END MODULE 
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!         Suppose we want to solve A*x = lambda*B*x in -invert mode 

!         The matrix A is the tridiagonal matrix with 2 on the diagonal, 

!         -2 on the subdiagonal and 3 on the superdiagonal.  The matrix  

!         is the tridiagonal matrix with 4 on the diagonal and 1 on the  

!         off-diagonals. 

!         The  sigma is a complex number (sigmar, sigmai). 

!         OP = Real_Part{invA-(SIGMAR,SIGMAI)*B*B.   

       

      USE ARPACK_NONSYMMETRIC_EX1_INT 

      USE UMACH_INT 

      USE WRCRN_INT 

       

      INTEGER, PARAMETER ::  NEV=6, N=100 

      COMPLEX(DKIND)  :: ZVALUES(NEV), RES(N),U(N),V(N),W(N) 

      REAL(DKIND), ALLOCATABLE :: VECTORS(:,:) 

      REAL(DKIND) NORM 

      LOGICAL SKIP, SMALL, SOLVED 

      INTEGER J, STRATEGY, NOUT 

      CHARACTER(LEN=12) TAG     

      CHARACTER(LEN=60) TITLE 

      TYPE(ARPACKBASE_EXT) EX 

     

      ASSOCIATE(NX  => EX % NX, & 

                NV  => EX % NV, & 

                SHIFT  => EX % SHIFT,& 

                FACTOR => EX % FACTOR_MAXNCV,&  

                NACC   => EX % NACC) 

! Note that VECTORS(:,:) does not need to be allocated 

! in the calling program.  That happens within the 

! routine ARPACK_NONSYMMETRIC().  It is OK to do this but 

! the sizes (N,NCV) are determined in ARPACK_NONSYMMETRIC. 

 

      CALL UMACH(2, NOUT) 

      SOLVED=.TRUE.  

      DO STRATEGY=1,2 

         SHIFT=CMPLX(0.4_DKIND,0.6_DKIND,DKIND) 

         FACTOR=5._DKIND 

         EX % SHIFT_STRATEGY=STRATEGY 

     

         CALL ARPACK_NONSYMMETRIC(N, FCN, ZVALUES,         & 

                 TYPE=ARPACK_Generalized,                   & 

                 CATEGORY=ARPACK_Complex_Part_Shift_Invert, & 

                 EXTYPE=EX, VECTORS=VECTORS) 

                  

         WRITE(NOUT, *) & 

             'Number of Matrix-Vector Products Required, NS Ex-1' 

         WRITE(NOUT, *) & 

             '--------------------------------------------------' 

         WRITE(NOUT, '(5X,I4)') NV 

         WRITE(NOUT, *) 'Number of accurate values determined' 

         WRITE(NOUT, *) '------------------------------------' 

         WRITE(NOUT, '(5X, I4)') NACC 

! Check residuals, A*vectors = ZVALUES*M*vectors: 

 

         SKIP=.FALSE.          

         DO J=1,NACC 

            IF(SKIP) THEN 
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               SKIP=.FALSE. 

               CYCLE 

            END IF 

! The eigenvalue is complex and the pair of vectors 

! for the complex eigenvector is returned.          

            IF(AIMAG(ZVALUES(J)) /= 0._DKIND)THEN 

! Make calls for real and imaginary parts of eigenvectors 

! applied to the operators A, M                      

               U=CMPLX(FCN(VECTORS(:,J),ARPACK_A_x,EX),& 

                       FCN(VECTORS(:,J+1),ARPACK_A_x,EX),DKIND) 

               V=CMPLX(FCN(VECTORS(:,J),ARPACK_B_x,EX),& 

                       FCN(VECTORS(:,J+1),ARPACK_B_x,EX),DKIND) 

! Since the matrix is real, there is an additional conjugate: 

               RES=U-ZVALUES(J)*V 

               SKIP=.TRUE. 

            ELSE 

! The eigenvalue is real and the real eigenvector is returned. 

         

               RES=FCN(VECTORS(:,J),ARPACK_A_x,EX)-ZVALUES(J)*& 

                   FCN(VECTORS(:,J),ARPACK_B_x,EX) 

            END IF 

            NORM=maxval(abs(RES)) 

            SMALL=(NORM <= ABS(ZVALUES(J))*SQRT(EPSILON(NORM))) 

            SOLVED=SOLVED .and. SMALL 

         END DO 

         IF(STRATEGY==1) TAG='REAL SHIFT' 

         IF(STRATEGY==2) TAG='IMAG SHIFT' 

   

         TITLE = 'Largest Raleigh Quotient Eigenvalues,'//TAG 

         CALL WRCRN(TITLE, ZVALUES) 

 

         IF(SOLVED) THEN 

             WRITE(NOUT,'(A///)') & 

                  'All Ritz Values and Vectors have small residuals.' 

         ELSE 

             WRITE(NOUT,'(A///)') & 

                  'Some Ritz Values and Vectors have large residuals.' 

         END IF 

      END DO ! Shift strategy 

      END ASSOCIATE   

 

      END 

Output 

 

 Number of Matrix-Vector Products Required, NS Ex-1 

 -------------------------------------------------- 

      280 

 Number of accurate values determined 

 ------------------------------------ 

        6 

   

 Largest Raleigh Quotient Eigenvalues,REAL SHIFT 

              1  ( 0.5000,-0.5958) 

              2  ( 0.5000, 0.5958) 
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              3  ( 0.5000,-0.6331) 

              4  ( 0.5000, 0.6331) 

              5  ( 0.5000, 0.5583) 

              6  ( 0.5000,-0.5583) 

All Ritz Values and Vectors have small residuals. 

 

 

 

 Number of Matrix-Vector Products Required, NS Ex-1 

 -------------------------------------------------- 

      248 

 Number of accurate values determined 

 ------------------------------------ 

        6 

   

 Largest Raleigh Quotient Eigenvalues,IMAG SHIFT 

              1  ( 0.5000,-0.5958) 

              2  ( 0.5000, 0.5958) 

              3  ( 0.5000,-0.5583) 

              4  ( 0.5000, 0.5583) 

              5  ( 0.5000,-0.6331) 

              6  ( 0.5000, 0.6331) 

All Ritz Values and Vectors have small residuals. 

ARPACK_COMPLEX 

Compute some eigenvalues and eigenvectors of the generalized eigenvalue problem Ax Bx .  

This can be used for the case B I .  The values for ,A B are real or complex.  When the values 

are complex the eigenvalues may be complex and are not expected to occur in complex conjugate 

pairs. 

Required Arguments 

N — The dimension of the problem.   (Input) 

F — User-supplied FUNCTION to return matrix-vector operations or linear solutions. This user 

function is written corresponding to the abstract interface for the function ZMV(…). The 

usage is F (X, TASK, EXTYPE), where 

Function Return Value 

F — An array of length N containing matrix-vector operations or linear 

equations solutions. Operations provided as code in the function F will be 

made depending upon the value of argument TASK. 

Required Arguments 

X — An array of length N containing the vector to which the operator will be 

applied.   (Input) 

TASK — An enumerated type which specifies the operation to be performed.   

(Input) 
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TASK is an enumerated integer value, use-associated from the module 

ARPACK_INT. It will be one of the following: 

 

Value Description 

ARPACK_Prepare Take initial steps to prepare for 

the operations that follow. These 

steps can include defining the data 

for the matrices, factorizations for 

upcoming linear system solves, or 

recording the vectors used in the 

operations. 

ARPACK_A_x y Ax  

ARPACK_xt_A y Bx  

 

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be 

used to pass additional information to/from the user-supplied function.   

(Input/Output) 

The user must include a USE ARPACK_INT statement in the calling 

program to define this derived type. If EXTYPE is not included as an 

argument to ARPACK_COMPLEX it should be ignored in the user-function, F. 

 The function F must be written according to the abstract interface for ZMV. If F is not 

use-associated nor contained in the calling program, declare it with PROCEDURE(ZMV) 

F. 

ZVALUES — A complex array of eigenvalues.   (Output) 

The value NEV=size(ZVALUES) defines the number of eigenvalues to be computed. 

The calling program declares or allocates the array ZVALUES(1:NEV). The number of 

eigenvalues computed accurately is optionally available as the component 

EXTYPE%NACC of the base class EXTYPE. 

Optional Arguments 

PLACE — Defines the output content of VALUES.   (Input) 

PLACE specifies the placement within the spectrum for the required eigenvalues.  

PLACE can be one of the following enumerated integers as defined in ARPACK_INT:  

 

Value 

ARPACK_Largest_Magnitude 

ARPACK_Smallest_Magnitude 

ARPACK_Largest_Real_Parts 

ARPACK_Smallest_Real_Parts 

ARPACK_Largest_Imag_Parts 
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Value 

ARPACK_Largest_Magnitude 

ARPACK_Smallest_Imag_Parts 

 

 Default: PLACE =  ARPACK_Largest_Magnitude. 

TYPE —  Defines the eigenvalue problem as either a standard or generalized eigenvalue 

problem.   (Input) 

TYPE can be one of the following enumerated integers as defined in ARPACK_INT: 

 

Value Description 

ARPACK_Standard Ax x  

ARPACK_Generalized Ax Bx  

 

 Default: TYPE = ARPACK_Standard. 

CATEGORY — CATEGORY and TYPE define the operation sequence provided in the user-

written function.   (Input) 

CATEGORY can be one of the following enumerated integers as defined in 

ARPACK_INT: 

 

Value Description 

ARPACK_Regular y Ax  

ARPACK_Regular_Inverse 1, ,y Ax y Bx y B x    

ARPACK_Shift_Invert 
   

1 1
, ,y Ax y A I x y A B x 

 
    

 

ARPACK_Complex_Part_Shift_Invert 
 

1
, , Re{ }y Ax y Bx y A B x


   

 

 
1

, , Im{ }y Ax y Bx y A B x


   

 

 

 Default: CATEGORY = ARPACK_Regular. 

EXTYPE — A derived type of the extensible class ARPACKBASE, which may be used to pass 

additional information to/from the user-supplied function.   (Input/Output) 

The user must include a USE ARPACK_INT statement in the calling program to define 

this derived type. If EXTYPE is not included as an argument to ARPACK_COMPLEX it 

must still be supplied as an argument to user-function, F, but is not used. 
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VECTORS — An allocatable array of approximate eigenvectors.   (Output) 

It is not necessary to allocate VECTORS(:,:).  If this argument is used the allocation 

occurs within the routine ARPACK_NONSYMMETRIC.  The output sizes are 

VECTORS(1:N,1:NCV).  The second dimension value is NCV=min(N, 

max(FACTOR_MAXNCV*NEV,NEV+1)), where the value FACTOR_MAXNCV is a 

component of the base class, ARPACKBASE.  The first NEV columns of VECTORS(:,:) 

represent the eigenvectors jw (see Comments). 

FORTRAN 2003 Interface 

Generic: ARPACK_COMPLEX (N, F,ZVALUES [,…]) 

Specific: The specific interface name is Z_ARPACK_COMPLEX. 

FORTRAN 90 Interface 

A Fortran 90 compiler version is not available for this routine. 

Description 

Routine ARPACK_COMPLEX calls ARPACK subroutines to compute partial eigenvalue-eigenvector 

decompositions for complex matrices.  The ARPACK routines are dzaupd and dzeupd (see 

ARPACK Users’ Guide, SIAM Publications, (1998)), which use ―reverse communication‖ to 

obtain the required matrix-vector operations for this approximation.  Responses to these requests 

are made by calling the user-written function F.  By including the class object EXTYPE as an 

argument to this function, user data and procedure pointers are available for the evaluations.  A 

user code must extend the base class EXTYPE to include the extra data and procedure pointers. 

Comments 

For purposes of checking results the complex residual j j j jr Aw w  should be small in 

norm relative to the norm of A  .  For the generalized eigenvalue problem Ax Bx  the 

eigenvalues are optionally computed based on the Raleigh Quotient.  Because of the shifts 

used, only the eigenvectors may be computed.  The eigenvalues are returned based on 

solving j jAw Bw for j ,  

where  

   /H H

j j j j jw Aw w Bw 
. 

The eigenvalue j  is finite and valid if the denominator is non-zero.  The Raleigh Quotient 

for eigenvalues of generalized problems is used only when vectors are requested and the user 

has requested it be used with the base class component EXTYPE%RALEIGH_QUOTIENT = 

.TRUE.  This is the component‘s default value. 
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Example 1 

This example is a variation of the first example for ARPACK_SYMMETRIC. We approximate 

eigenvalues and eigenfunctions of the Laplacian operator 

2 2

2 2
,

u u u
u u u

x y x
 

  
      

  
,  

on the unit square, [0,1] [0,1] .  But now the parameter  is complex.  Thus the eigenvalues and 

eigenfunctions are complex.   

Link to example source 

 (arpack_complex_ex1.f90) 

    

      MODULE ARPACK_COMPLEX_EX1_INT 

      USE ARPACK_INT 

      IMPLICIT NONE 

 

      TYPE, EXTENDS(ARPACKBASE), PUBLIC :: ARPACKBASE_EXT 

         REAL(DKIND) :: H  =0._DKIND 

         REAL(DKIND) :: HSQ=0._DKIND 

         COMPLEX(DKIND) :: RHO=(0._DKIND,0._DKIND) 

         COMPLEX(DKIND) :: DL=(0._DKIND,0._DKIND) 

         COMPLEX(DKIND) :: DD=(0._DKIND,0._DKIND) 

         COMPLEX(DKIND) :: DU=(0._DKIND,0._DKIND) 

         INTEGER :: NX=0 

         INTEGER :: NV=0 

      END TYPE ARPACKBASE_EXT  

      CONTAINS 

      FUNCTION FZ1(X, TASK, EXTYPE) RESULT(Y) 

         USE UMACH_INT 

          

         CLASS (ARPACKBASE), INTENT(INOUT) :: EXTYPE 

         COMPLEX (DKIND), INTENT(INOUT) :: X(:)  

         INTEGER, INTENT(IN) :: TASK 

         COMPLEX (DKIND) Y(size(X)) 

         COMPLEX (DKIND) DT(3) 

         REAL(DKIND) :: ONE=1._DKIND 

         INTEGER J, NOUT 

 

         CALL UMACH(2, NOUT) 

         SELECT TYPE(EXTYPE) 

            TYPE IS(ARPACKBASE_EXT) 

            ASSOCIATE(NX  => EXTYPE % NX,& 

                      H   => EXTYPE % H,& 

                      HSQ => EXTYPE % HSQ,& 

                      RHO => EXTYPE % RHO,& 

                      DL  => EXTYPE % DL,& 

                      DD  => EXTYPE % DD,& 

                      DU  => EXTYPE % DU,& 

                      NV  => EXTYPE % NV) 

                       

            SELECT CASE(TASK) 

               CASE(ARPACK_A_x) 

!     Computes y <-- A*x, where A is the N**2 by N**2 block         

LinkedDocuments/arpack_complex_ex1.f90
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!     tridiagonal matrix deriving from (Laplacian u) + rho*(du/dx).  

 

                  DT=(/DL,DD,DU/)             

                  Y(1:NX)=T(NX,X(1:NX),DT) - X(NX+1:2*NX)/HSQ 

                  DO J=NX+1,NX**2-NX,NX 

                     Y(J:J+NX-1)=T(NX,X(J:J+NX-1),DT) & 

                                 - (X(J-NX:J-1)+ X(J+NX:J+2*NX-1))/HSQ 

                  END DO  

                  Y((NX-1)*NX+1:NX**2)= - X((NX-1)*NX-NX+1:(NX-1)*NX) & 

                                  / HSQ + T(NX,X((NX-1)*NX+1:NX**2),DT) 

! Total the number of matrix-vector products.       

                  NV=NV+1 

             

               CASE(ARPACK_Prepare) 

! Define 1/H**2, etc. so they are available in the evaluator. 

                  H   = ONE/REAL(NX+1,DKIND)           

                  HSQ = H**2 

                  DD  = (4.0D+0, 0.0D+0)  / HSQ 

                  DL  = -ONE/HSQ - (5.0D-1, 0.0D+0) *RHO/H  

                  DU  = -ONE/HSQ + (5.0D-1, 0.0D+0) *RHO/H  

                  NV = 0             

               CASE DEFAULT 

                  WRITE(nout,*) TASK, ': INVALID TASK REQUESTED' 

                  STOP 'IMSL_ERROR_WRONG_OPERATION' 

            END SELECT 

            END ASSOCIATE 

         END SELECT 

      END FUNCTION 

 

      FUNCTION T(NX, X, DT)RESULT(V) 

         INTEGER, INTENT(IN) :: NX 

         COMPLEX(DKIND), INTENT(IN) :: X(:), DT(3) 

         COMPLEX(DKIND) :: V(NX) 

         INTEGER J 

         ASSOCIATE(DL => DT(1),& 

                   DD => DT(2),& 

                   DU => DT(3)) 

         V(1) =  DD*X(1) + DU*X(2)  

         DO J = 2,NX-1  

            V(J) = DL*X(J-1) + DD*X(J) + DU*X(J+1)  

         END DO 

         V(NX) =  DL*X(NX-1) + DD*X(NX) 

         END ASSOCIATE 

      END FUNCTION     

      END MODULE 

 

! Compute the largest magnitude eigenvalues of a discrete Laplacian, 

! based on second order divided differences. 

 

!     The matrix used is obtained from the standard central difference  

!         discretization of the convection-diffusion operator            

!                 (Laplacian u) + rho*(du / dx)                          

!         on the unit squre 0,1x0,1 with zero Dirichlet boundary     

!         conditions. 

      USE ARPACK_COMPLEX_EX1_INT 

      USE UMACH_INT 
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      USE WRCRN_INT 

   

      INTEGER, PARAMETER :: NEV=6 

      INTEGER ::  J, N, NOUT 

      COMPLEX(DKIND) :: VALUES(NEV) 

      COMPLEX(DKIND), ALLOCATABLE :: RES(:), EF(:,:) 

      COMPLEX(DKIND), ALLOCATABLE :: VECTORS(:,:) 

      REAL(DKIND) NORM 

      LOGICAL SMALL, SOLVED 

      TYPE(ARPACKBASE_EXT) EX 

 

      ASSOCIATE(NX   => EX % NX, & 

                NV   => EX % NV, & 

                RHO  => EX % RHO,& 

                NACC => EX % NACC) 

               

      CALL UMACH(2, NOUT)         

      NX=10 

      RHO=(100._DKIND,1._DKIND) 

 

! Define size of matrix problem.     

      N=NX**2 

! Note that VECTORS(:,:) does not need to be allocated 

! in the calling program.  That happens within the 

! routine ARPACK_COMPLEX().  It is OK to do this but 

! the sizes (N,NCV) are determined in ARPACK_COMPLEX.   

      CALL ARPACK_COMPLEX(N, FZ1, VALUES, EXTYPE=EX, VECTORS=VECTORS) 

       

      WRITE(NOUT, *) 'Number of eigenvalues requested, and accurate' 

      WRITE(NOUT, *) '---------------------------------------------' 

      WRITE(NOUT, '(5X, I4, 5X, I4)') NEV, NACC 

      WRITE(NOUT, *) 'Number of Matrix-Vector Products Required, ZEX-1' 

      WRITE(NOUT, *) '------------------------------------------------' 

      WRITE(NOUT,  '(5X, I4)') NV 

      CALL WRCRN ('Largest Magnitude Operator Eigenvalues', VALUES) 

! Check residuals, A*vectors = values*vectors: 

      ALLOCATE(RES(N)) 

      DO J=1,NACC 

         RES=FZ1(VECTORS(:,J),ARPACK_A_x,EX)-VALUES(J)*VECTORS(:,J) 

         NORM=maxval(abs(RES))  

         SMALL=(NORM <= ABS(VALUES(J))*SQRT(EPSILON(NORM))) 

         IF(J==1) SOLVED=SMALL 

         SOLVED=SOLVED .and. SMALL 

      END DO 

 

      IF(SOLVED) THEN 

         WRITE(NOUT,'(A///)') & 

            'All Ritz Values and Vectors have small residuals.' 

      ELSE 

         WRITE(NOUT,'(A///)') & 

            'Some Ritz Values and Vectors have large residuals.' 

      END IF 

 

      END ASSOCIATE 

      END 
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Output 
 

 Number of eigenvalues requested, and accurate 

 --------------------------------------------- 

        6        6 

 Number of Matrix-Vector Products Required, ZEX-1 

 ------------------------------------------------ 

      475 

   

 Largest Magnitude Operator Eigenvalues 

          1  (  727.0,-1029.6) 

          2  (  705.4, 1029.6) 

          3  (  698.4,-1029.6) 

          4  (  676.8, 1029.6) 

          5  (  653.3,-1029.6) 

          6  (  631.7, 1029.6) 

All Ritz Values and Vectors have small residuals. 
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Chapter 3: Interpolation and 
Approximation 

Routines 

3.1 Curve and Surface Fitting with Splines 
 

Returns the derived type array result ..... SPLINE_CONSTRAINTS 702 
Returns an array result, given an array  
of input ................................................................ SPLINE_VALUES 703 
Weighted least-squares fitting by B-splines to discrete  
One-Dimensional data is performed ................... SPLINE_FITTING 704 
Returns the derived type array result given  
optional input....................................... SURFACE_CONSTRAINTS 714 
Returns a tensor product array result, given two arrays of  
independent variable values .......................... SURFACE_VALUES 715 
Weighted least-squares fitting by tensor product  
B-splines to discrete two-dimensional data  
is performed .................................................... SURFACE_FITTING 716 

3.2.  Cubic Spline Interpolation 
Easy to use cubic spline routine ........................................... CSIEZ 727 
Not-a-knot ............................................................................. CSINT 729 
Derivative end conditions .................................................... CSDEC 732 
Hermite ............................................................................... CSHER 737 
Akima .................................................................................. CSAKM 740 
Shape preserving ................................................................ CSCON 742 
Periodic ................................................................................CSPER 746 

3.3.  Cubic Spline Evaluation and Integration 
Evaluation ............................................................................ CSVAL 749 
Evaluation of the derivative ................................................. CSDER 750 
Evaluation on a grid .............................................................CS1GD 753 
Integration ............................................................................. CSITG 756 

3.4.  B-spline Interpolation 
Easy to use spline routine .....................................................SPLEZ 758 
One-dimensional interpolation .............................................. BSINT 761 
Knot sequence given interpolation data .............................. BSNAK 765 
Optimal knot sequence given interpolation data ..................BSOPK 768 
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Two-dimensional tensor product interpolation ...................... BS2IN 771 
Three-dimensional tensor product interpolation .................... BS3IN 776 

3.5.  Spline Evaluation, Integration, and Conversion to Piecewise 
Polynomial Given the B-spline Representation 
Evaluation ............................................................................. BSVAL 782 
Evaluation of the derivative ................................................. BSDER 783 
Evaluation on a grid ............................................................. BS1GD 786 
One-dimensional integration ................................................. BSITG 789 
Two-dimensional evaluation ................................................. BS2VL 792 
Two-dimensional evaluation of the derivative ..................... BS2DR 794 
Two-dimensional evaluation on a grid ................................. BS2GD 797 
Two-dimensional integration ................................................. BS2IG 801 
Three-dimensional evaluation .............................................. BS3VL 805 
Three-dimensional evaluation of the derivative .................. BS3DR 807 
Three-dimensional evaluation on a grid .............................. BS3GD 811 
Three-dimensional integration ............................................... BS3IG 817 
Convert B-spline representation to piecewise polynomial .. BSCPP 821 

3.6. Piecewise Polynomial 
Evaluation ............................................................................. PPVAL 823 
Evaluation of the derivative ................................................. PPDER 825 
Evaluation on a grid ............................................................. PP1GD 828 
Integration ............................................................................. PPITG 831 

3.7. Quadratic Polynomial Interpolation Routines for Gridded Data 
One-dimensional evaluation ................................................ QDVAL 833 
One-dimensional evaluation of the derivative .................... QDDER 835 
Two-dimensional evaluation ................................................. QD2VL 838 
Two-dimensional evaluation of the derivative ..................... QD2DR 840 
Three-dimensional evaluation .............................................. QD3VL 843 
Three-dimensional evaluation of the derivative .................. QD3DR 847 

3.8. Multi-dimensional Interpolation 
Akima’s surface fitting method ............................................... SURF 851 
Multidimensional interpolation and differentiation ............ SURFND 855 

3.9. Least-Squares Approximation 
Linear polynomial .................................................................. RLINE 858 
General polynomial ............................................................. RCURV 861 
General functions ................................................................ FNLSQ 865 
Splines with fixed knots ....................................................... BSLSQ 870 
Splines with variable knot ..................................................... BSVLS 874 
Splines with linear constraints ............................................. CONFT 879 
Two-dimensional tensor-product splines with fixed knots .... BSLS2 889 
Three-dimensional tensor-product splines with fixed knots . BSLS3 894 

3.10. Cubic Spline Smoothing 
Smoothing by error detection .............................................. CSSED 900 
Smoothing spline ................................................................ CSSMH 904 
Smoothing spline using cross-validation ............................. CSSCV 907 
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3.11. Rational L∞ Approximation 
Rational Chebyshev .............................................................RATCH 910 

Usage Notes 
The majority of the routines in this chapter produce piecewise polynomial or spline functions that 

either interpolate or approximate given data, or are support routines for the evaluation, integration, 

and conversion from one representation to another. Two major subdivisions of routines are 

provided. The cubic spline routines begin with the letters ―CS‖ and utilize the piecewise 

polynomial representation described below. The B-spline routines begin with the letters ―BS‖ and 

utilize the B-spline representation described below. Most of the spline routines are based on 

routines in the book by de Boor (1978). 

Piecewise Polynomials 

A univariate piecewise polynomial (function) p is specified by giving its breakpoint sequence  

ξ ∈ R
n
, the order k (degree k − 1) of its polynomial pieces, and the k × (n − 1) matrix c of its 

local polynomial coefficients. In terms of this information, the piecewise polynomial (pp) function 

is given by 
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The breakpoint sequence ξ is assumed to be strictly increasing, and we extend the pp function to 

the entire real axis by extrapolation from the first and last intervals. The subroutines in this chapter 

will consistently make the following identifications for FORTRAN variables: 

PPCOEF

BREAK

KORDER

NBREAK

c

k

N









  

This representation is redundant when the pp function is known to be smooth. For example, if p is 

known to be continuous, then we can compute c1,i+1 from the cji as follows 
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where Δξi := ξi+1 − ξi. For smooth pp, we prefer to use the irredundant representation in terms of 

the B-(for ‗basis‘)-splines, at least when such a function is first to be determined. The above pp 

representation is employed for evaluation of the pp function at many points since it is more 

efficient. 

Splines and B-splines 

B-splines provide a particularly convenient and suitable basis for a given class of smooth pp 

functions. Such a class is specified by giving its breakpoint sequence, its order, and the required 
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smoothness across each of the interior breakpoints. The corresponding B-spline basis is specified 

by giving its knot sequence t ∈ R
M

. The specification rule is the following: If the class is to have 

all derivatives up to and including the j-th derivative continuous across the interior breakpoint ξi, 

then the number ξi should occur k − j − 1 times in the knot sequence. Assuming that ξ1, and ξn 

are the endpoints of the interval of interest, one chooses the first k knots equal to ξ1 and the last k 

knots equal to ξn. This can be done since the B-splines are defined to be right continuous near ξ1 

and left continuous near ξn. 

When the above construction is completed, we will have generated a knot sequence t of length M; 

and there will be m := M − k B-splines of order k, say B1 ,…, Bm that span the pp functions on the 

interval with the indicated smoothness. That is, each pp function in this class has a unique 

representation 

p = a1B1 + a2B2 + … + amBm 

as a linear combination of B-splines. The B-spline routines will consistently make use of the 

following identifiers for FORTRAN variables: 

BSCOEF

XKNOT

NCOEF

NKNOT

a

m

M









t

 

A B-spline is a particularly compact pp function. Bi is a nonnegative function that is nonzero only 

on the interval [ti, ti + k]. More precisely, the support of the i-th B-spline is [ti, ti + k]. No pp function 

in the same class (other than the zero function) has smaller support (i.e., vanishes on more 

intervals) than a B-spline. This makes B-splines particularly attractive basis functions since the 

influence of any particular B-spline coefficient extends only over a few intervals. When it is 

necessary to emphasize the dependence of the B-spline on its parameters, we will use the notation 

Bi,k,t 

to denote the i-th B-spline of order k for the knot sequence t. 
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CSAKM

CSINT
CSDEC (natural spline)

CSCON

BSINT with K=3 BSINT with K=5

 

Figure 3- 1  Spline Interpolants of the Same Data 

Cubic Splines 

Cubic splines are smooth (i.e., C 
1
 or C 

2
) fourth-order pp functions. For historical and other 

reasons, cubic splines are the most heavily used pp functions. Therefore, we provide special 

routines for their construction and evaluation. The routines for their determination use yet another 

representation (in terms of value and slope at all the breakpoints) but output the pp representation 

as described above for general pp functions. 

We provide seven cubic spline interpolation routines: CSIEZ, CSINT, CSDEC, CSHER, CSAKM, 

CSCON, and CSPER. The first routine, CSIEZ, is an easy-to-use version of CSINT coupled with 

CSVAL. The routine CSIEZ will compute the value of the cubic spline interpolant (to given data 

using the ‗not-a-knot‘ criterion) on a grid. The routine CSDEC allows the user to specify various 

endpoint conditions (such as the value of the first or second derivative at the right and left points). 

This means that the natural cubic spline can be obtained using this routine by setting the second 

derivative to zero at both endpoints. If function values and derivatives are available, then the 

Hermite cubic interpolant can be computed using CSHER. The two routines CSAKM and CSCON are 



     

     
 

698  Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY  

     

     

 

designed so that the shape of the curve matches the shape of the data. In particular, CSCON 

preserves the convexity of the data while CSAKM attempts to minimize oscillations. If the data is 

periodic, then CSPER will produce a periodic interpolant. The routine CONFT allows the user wide 

latitude in enforcing shapes. This routine returns the B-spline representation. 

It is possible that the cubic spline interpolation routines will produce unsatisfactory results. The 

adventurous user should consider using the B-spline interpolation routine BSINT that allows one 

to choose the knots and order of the spline interpolant. 

In Figure 3-1, we display six spline interpolants to the same data. This data can be found in 

Example 1 of the IMSL routine CSCON Notice the different characteristics of the interpolants. The 

interpolation routines CSAKM and CSCON are the only two that attempt to preserve the shape of the 

data. The other routines tend to have extraneous inflection points, with the piecewise quartic  

(k = 5) exhibiting the most oscillation. 

Tensor Product Splines 

The simplest method of obtaining multivariate interpolation and approximation routines is to take 

univariate methods and form a multivariate method via tensor products. In the case of  

two-dimensional spline interpolation, the development proceeds as follows: Let tx be a knot 

sequence for splines of order kx, and ty be a knot sequence for splines of order ky. Let Nx + kx be 

the length of tx, and Ny + ky be the length of ty. Then, the tensor product spline has the form 

, , , ,

1 1

( ) ( )
y x

x x y y

N N

nm n k m k

m n

c B x B y
 

  t t

 

Given two sets of points  

   
1 1

 and x yN N

i ii i
x y

   

for which the corresponding univariate interpolation problem could be solved, the tensor product 

interpolation problem becomes: Find the coefficients cnm so that 

, , , ,

1 1

( ) ( )
y x

x x y y

N N

nm n k i m k i ij

m n

c B x B y f
 

  t t

 

This problem can be solved efficiently by repeatedly solving univariate interpolation problems as 

described in de Boor (1978, page 347). Three-dimensional interpolation has analogous behavior. 

In this chapter, we provide routines that compute the two-dimensional tensorproduct spline 

coefficients given two-dimensional interpolation data (BS2IN), compute the three-dimensional 

tensor-product spline coefficients given three-dimensional interpolation data (BS3IN) compute the 

two-dimensional tensor-product spline coefficients for a tensor-product least squares problem 

(BSLS2), and compute the three-dimensional tensor-product spline coefficients for a  

tensor-product least squares problem (BSLS3). In addition, we provide evaluation, differentiation, 

and integration routines for the twoand three-dimensional tensor-product spline functions. The 

relevant routines are BS2VL, BS3VL, BS2DR, BS3DR, BS2GD, BS3GD, BS2IG, and BS3IG. 
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Quadratic Interpolation 

The routines that begin with the letters ―QD‖ in this chapter are designed to interpolate a one-,  

two-, or three-dimensional (tensor product) table of values and return an approximation to the 

value of the underlying function or one of its derivatives at a given point. These routines are all 

based on quadratic polynomial interpolation. 

Multi-dimensional Interpolation 

We have one routine, SURF, that will return values of an interpolant to scattered data in the plane. 

This routine is based on work by Akima (1978), which utilizes C
1
 piecewise quintics on a 

triangular mesh. SURFND computes a piecewise polynomial interpolant, of up to 15-th degree, to a 

function of up to 7 variables, defined on a multi-dimensional grid. 

Least Squares 

Routines are provided to smooth noisy data: regression using linear regression using arbitrary 

polynomials (RCURV), and regression using user-supplied functions (FNLSQ). Additional routines 

compute the least-squares fit using splines with fixed knots (BSLSQ) or free knots (BSVLS). These 

routines can produce cubic-spline least-squares fit simply by setting the order to 4. The routine 

CONFT computes a fixed-knot spline weighted least-squares fit subject to linear constraints. This 

routine is very general and is recommended if issues of shape are important. The two- and three-

dimensional tensor-product spline regression routines are (BSLS2) and (BSLS3). 

Smoothing by Cubic Splines 

Two ―smoothing spline‖ routines are provided. The routine CSSMH returns the cubic spline that 

smooths the data, given a smoothing parameter chosen by the user. Whereas, CSSCV estimates the 

smoothing parameter by cross-validation and then returns the cubic spline that smooths the data. 

In this sense, CSSCV is the easier of the two routines to use. The routine CSSED returns a smoothed 

data vector approximating the values of the underlying function when the data are contaminated 

by a few random spikes. 

Rational Chebyshev Approximation 

The routine RATCH computes a rational Chebyshev approximation to a user-supplied function. 

Since polynomials are rational functions, this routine can be used to compute best polynomial 

approximations. 

Using the Univariate Spline Routines 

An easy to use spline interpolation routine CSIEZ is provided . This routine computes an 

interpolant and returns the values of the interpolant on a user-supplied grid. A slightly more 

advanced routine SPLEZ computes (at the users discretion) one of several interpolants or least-

squares fits and returns function values or derivatives on a user-supplied grid. 

For more advanced uses of the interpolation (or least squares) spline routines, one first forms an 

interpolant from interpolation (or least-squares) data. Then it must be evaluated, differentiated, or 

integrated once the interpolant has been formed. One way to perform these tasks, using cubic 

splines with the ‗not-a-knot‘ end condition, is to call CSINT to obtain the local coefficients of the 
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piecewise cubic interpolant and then call CSVAL to evaluate the interpolant. A more complicated 

situation arises if one wants to compute a quadratic spline interpolant and then evaluate it 

(efficiently) many times. Typically, the sequence of routines called might be BSNAK (get the 

knots), BSINT (returns the B-spline coefficients of the interpolant), BSCPP (convert to pp form), 

and PPVAL (evaluate). The last two calls could be replaced by a call to the B-spline grid evaluator 

BS1GD, or the last call could be replaced with pp grid evaluator PP1GD. The interconnection of the 

spline routines is summarized in Figure 3-2. 

CSVAL

CSDER

CSITG

CS1GD

BSNAK

BSOPK

BSINT

BSLSQ

BSVLS

CONFT

BSCPP

BSVAL

BSDER

BSITG

BS1GD

DATA

CSSMH

CSSCV

PPVAL

PPDER

PPITG

PP1GD

OUT

CSINT

CSHER

CSCON

CSPER

CSAKM

CSDEC

 

Figure 3- 2  Interrelation of the Spline Routines 
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Choosing an Interpolation Routine 

The choice of an interpolation routine depends both on the type of data and on the use of the 

interpolant. We provide 19 interpolation routines. These routines are depicted in a decision tree in 

Figure 3-3. This figure provides a guide for selecting an appropriate interpolation routine. For 

example, if periodic one-dimensional (univariate) data is available, then the path through 

univariate to periodic leads to the IMSL routine CSPER, which is the proper routine for this 

setting. The general-purpose univariate interpolation routines can be found in the box beginning 

with CSINT. Multidimensional tensor-product interpolation routines are also provided. For two-

dimensional scattered data, the appropriate routine is SURF. 

 

 

Figure 3- 3  Choosing an Interpolation Routine 
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SPLINE_CONSTRAINTS 
This function returns the derived type array result, ?_SPLINE_CONSTRAINTS, given optional 

input.  There are optional arguments for the derivative index, the value applied to the spline, and 

the periodic point for any periodic constraint.   

The function is used, for entry number j, 
?_SPLINE_CONSTRAINTS(J) = &  

   SPLINE_CONSTRAINTS([DERIVATIVE=DERIVATIVE_INDEX,] &  

   POINT = WHERE_APPLIED, [VALUE=VALUE_APPLIED,], &  

   TYPE = CONSTRAINT_INDICATOR, &  

   [PERIODIC_POINT = VALUE_APPLIED])  

The square brackets enclose optional arguments.  For each constraint either (but not both) the 

‗VALUE =‘ or the ‗PERIODIC_POINT =‘ optional arguments must be present. 

Required Arguments 

POINT = WHERE_APPLIED  (Input)  

The point in the data interval where a constraint is to be applied. 

TYPE = CONSTRAINT_INDICATOR  (Input)  

The indicator for the type of constraint the spline function or its derivatives is to 

satisfy at the point: where_applied.  The choices are the character strings 

‗==‘, ‗<=‘, ‗>=‘, ‗.=.‘, and ‗.=-‘.  They respectively indicate that the 

spline value or its derivatives will be equal to, not greater than, not less than, 

equal to the value of the spline at another point, or equal to the negative of the 

spline value at another point.  These last two constraints are called periodic and 

negative-periodic, respectively.  The alternate independent variable point is 

value_applied for either periodic constraint.  There is a use of periodic 

constraints in . 

Optional Arguments 

DERIVATIVE = DERIVATIVE_INDEX  (Input)  

This is the number of the derivative for the spline to apply the constraint.  The 

value 0 corresponds to the function, the value 1 to the first derivative, etc.  If this 

argument is not present in the list, the value 0 is substituted automatically.  Thus 

a constraint without the derivative listed applies to the spline function. 

PERIODIC_POINT = VALUE_APPLIED 

This optional argument improves readability by automatically identifying the 

second independent variable value for periodic constraints. 

FORTRAN 90 Interface 

Generic: CALL SPLINE_CONSTRAINTS (POINT, TYPE [,…]) 

Specific: The specific interface names are S_SPLINE_CONSTRAINTS and 

D_SPLINE_CONSTRAINTS. 
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SPLINE_VALUES 
This rank-1 array function returns an array result, given an array of input.  Use the optional 

argument for the covariance matrix when the square root of the variance function is required.  The 

result will be a scalar value when the input variable is scalar. 

Required Arguments 

DERIVATIVE = DERIVATIVE  (Input)  

The index of the derivative evaluated.  Use non-negative integer values.  For the 

function itself use the value 0. 

VARIABLES = VARIABLES  (Input)  

The independent variable values where the spline or its derivatives are 

evaluated.  Either a rank-1 array or a scalar can be used as this argument. 

KNOTS = KNOTS  (Input)  

The derived type ?_spline_knots, defined as the array COEFFS was obtained 

with the function SPLINE_FITTING.  This contains the polynomial spline 

degree and the number of knots and the knots themselves for this spline 

function. 

COEFFS = C  (Input)  

The coefficients in the representation for the spline function,  

   
1

N

j j

j

f x c B x



.   

These result from the fitting process or array assignment 

C=SPLINE_FITTING(...), defined below.  The value 

 N = size(C)  satisfies the identity  

N - 1 + spline_degree = size (?_knots), where the two right-most quantities refer 

to components of the argument knots. 

Optional Arguments 

COVARIANCE = G  (Input)  

This argument, when present, results in the evaluation of the square root of the 

variance function 

      
1/ 2

T
e x b x Gb x

  

where  

     1 , ,
T

Nb x B x B x     

and G  is the covariance matrix associated with the coefficients of the spline 

 1, ,
T

Nc c c
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The argument G is an optional output parameter from the function 

SPLINE_FITTING, described below.  When the square root of the variance 

function is computed, the arguments DERIVATIVE and C are not used. 

IOPT = IOPT  (Input)  

This optional argument, of derived type ?_options, is not used in this 

release. 

FORTRAN 90 Interface 

Generic: CALL SPLINE_VALUES (DERIVATIVE, VARAIBLES, KNOTS, COEFFS [,…]) 

Specific: The specific interface names are S_SPLINE_VALUES and D_SPLINE_VALUES. 

SPLINE_FITTING 
Weighted least-squares fitting by B-splines to discrete One-Dimensional data is performed.  

Constraints on the spline or its derivatives are optional.  The spline function  

   
1

N

j j

j

f x c B x



 

its derivatives, or the square root of its variance function are evaluated after the fitting. 

Required Arguments 

DATA = DATA(1:3,:)  (Input/Output)  

An assumed-shape array with size(data,1) = 3.  The data are placed in the array: 

data(1,i) = ix , data(2,i) = iy , and data(3,i) = i , 1,...,i ndata . If the 

variances are not known but are proportional to an unknown value, users may set 

data(3,i) = 1, 1,...,i ndata . 

KNOTS = KNOTS  (Input)  

A derived type, ?_spline_knots, that defines the degree of the spline and the 

breakpoints for the data fitting interval. 

Optional Arguments 

CONSTRAINTS = SPLINE_CONSTRAINTS  (Input) 

A rank-1 array of derived type ?_spline_constraints that give constraints the 

output spline is to satisfy. 

COVARIANCE = G  (Output) 

An assumed-shape rank-2 array of the same precision as the data.  This output is the 

covariance matrix of the coefficients.  It is optionally used to evaluate the square root 

of the variance function. 
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IOPT = IOPT(:)  (Input/Output) 

Derived type array with the same precision as the input array; used for passing optional 

data to SPLINE_FITTING. The options are as follows: 

Packaged Options for SPLINE_FITTING 

Prefix = None Option Name Option Value 

 SPLINE_FITTING_TOL_EQUAL 1 

 SPLINE_FITTING_TOL_LEAST 2 

IOPT(IO) = ?_OPTIONS(SPLINE_FITTING_TOL_EQUAL, ?_VALUE) 

This resets the value for determining that equality constraint equations are rank-

deficient.  The default is ?_value = 10
-4

. 

IOPT(IO) = ?_OPTIONS(SPLINE_FITTING_TOL_LEAST, ?_VALUE) 

This resets the value for determining that least-squares equations are rank-deficient.  

The default is ?_value = 10
-4

. 

FORTRAN 90 Interface 

Generic: CALL SPLINE_FITTING (DATA, KNOTS [,…]) 

Specific: The specific interface names are S_SPLINE_FITTING and D_SPLINE_FITTING. 

Description 

This routine has similar scope to CONFT found in IMSL (2003, pp 734-743).  We provide the 

square root of the variance function, but we do not provide for constraints on the integral of the 

spline.  The least-squares matrix problem for the coefficients is banded, with band-width equal to 

the spline order.  This fact is used to obtain an efficient solution algorithm when there are no 

constraints.  When constraints are present the routine solves a linear-least squares problem with 

equality and inequality constraints.  The processed least-squares equations result in a banded and 

upper triangular matrix, following accumulation of the spline fitting equations.  The algorithm 

used for solving the constrained least-squares system will handle rank-deficient problems.  A set 

of reference are available in Hanson (1995) and Lawson and Hanson (1995).  The CONFT routine 

uses QPROG (loc cit., p. 959), which requires that the least-squares equations be of full rank. 

Fatal and Terminal Error Messages 

See the messages.gls file for error messages for SPLINE_FITTING. These error messages are 

numbered 13401367. 

Example 1: Natural Cubic Spline Interpolation to Data 

The function  

   2exp / 2g x x 
  

is interpolated by cubic splines on the grid of points  
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 1 , 1,...,ix i x i ndata   
 

Those natural conditions are  

       
2 2

2 2
, 0,..., ; , 0 and i i i i

d f d g
f x g x i ndata x x i ndata

dx dx
   

 

Our program checks the term .const  appearing in the maximum truncation error term 

4.error const x   

at a finer grid. 
  

      USE spline_fitting_int  

      USE show_int  

      USE norm_int  

        

      implicit none  

  

! This is Example 1 for SPLINE_FITTING, Natural Spline  

! Interpolation using cubic splines.  Use the function  

! exp(-x**2/2) to generate samples.  

  

      integer :: i  

      integer, parameter :: ndata=24, nord=4, ndegree=nord-1, &  

        nbkpt=ndata+2*ndegree, ncoeff=nbkpt-nord, nvalues=2*ndata  

      real(kind(1e0)), parameter :: zero=0e0, one=1e0, half=5e-1  

      real(kind(1e0)), parameter :: delta_x=0.15, delta_xv=0.4*delta_x  

      real(kind(1e0)), target :: xdata(ndata), ydata(ndata), &   

            spline_data (3, ndata), bkpt(nbkpt), &  

            ycheck(nvalues), coeff(ncoeff), &  

            xvalues(nvalues), yvalues(nvalues), diffs  

  

      real(kind(1e0)), pointer :: pointer_bkpt(:)  

      type (s_spline_knots) break_points  

      type (s_spline_constraints) constraints(2)  

  

      xdata = (/((i-1)*delta_x, i=1,ndata)/)   

      ydata = exp(-half*xdata**2)  

      xvalues =(/(0.03+(i-1)*delta_xv,i=1,nvalues)/)  

      ycheck= exp(-half*xvalues**2)  

      spline_data(1,:)=xdata   

      spline_data(2,:)=ydata  

      spline_data(3,:)=one  

  

! Define the knots for the interpolation problem.  

         bkpt(1:ndegree) = (/(i*delta_x, i=-ndegree,-1)/)   

         bkpt(nord:nbkpt-ndegree) = xdata  

         bkpt(nbkpt-ndegree+1:nbkpt) =  &  

         (/(xdata(ndata)+i*delta_x, i=1,ndegree)/)  

  

! Assign the degree of the polynomial and the knots.  

      pointer_bkpt => bkpt  

      break_points=s_spline_knots(ndegree, pointer_bkpt)  
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! These are the natural conditions for interpolating cubic  

! splines.  The derivatives match those of the interpolating  

! function at the ends.  

      constraints(1)=spline_constraints &  

         (derivative=2, point=bkpt(nord), type='==', value=-one)  

      constraints(2)=spline_constraints &  

         (derivative=2,point=bkpt(nbkpt-ndegree), type= '==', &  

         value=(-one+xdata(ndata)**2)*ydata(ndata))  

  

      coeff = spline_fitting(data=spline_data, knots=break_points,&  

             constraints=constraints)  

      yvalues=spline_values(0, xvalues, break_points, coeff)  

  

      diffs=norm(yvalues-ycheck,huge(1))/delta_x**nord   

  

      if (diffs <= one) then  

        write(*,*) 'Example 1 for SPLINE_FITTING is correct.'  

      end if  

      end   

Output 
 

Example 1 for SPLINE_FITTING is correct. 

Additional Examples 

Example 2: Shaping a Curve and its Derivatives 

The function  

    2exp / 2 1g x x noise  
 

is fit by cubic splines on the grid of equally spaced points 

 1 , 1,...,ix i x i ndata   
 

The term noise is uniform random numbers from the normalized interval  

 ,  , where 0.01  .  The spline curve is constrained to be convex down for for 0 ≤ x ≤ 1 

convex upward for 1< x ≤ 4, and have the second derivative exactly equal to the value zero at   

x = 1.  The first derivative is constrained with the value zero at x = 0  and is non-negative at the 

right and of the interval, x = 4.  A sample table of independent variables, second derivatives and 

square root of  variance function values is printed. 
 

      use spline_fitting_int  

      use show_int  

      use rand_int  

      use norm_int  

  

      implicit none  

  

! This is Example 2 for SPLINE_FITTING. Use 1st and 2nd derivative  

! constraints to shape the splines.  
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      integer :: i, icurv  

      integer, parameter :: nbkptin=13, nord=4, ndegree=nord-1, &  

             nbkpt=nbkptin+2*ndegree, ndata=21, ncoeff=nbkpt-nord  

      real(kind(1e0)), parameter :: zero=0e0, one=1e0, half=5e-1  

      real(kind(1e0)), parameter :: range=4.0, ratio=0.02, tol=ratio*half  

      real(kind(1e0)), parameter :: delta_x=range/(ndata-1), & 

      delta_b=range/(nbkptin-1)  

      real(kind(1e0)), target :: xdata(ndata), ydata(ndata), ynoise(ndata),&   

            sddata(ndata), spline_data (3, ndata), bkpt(nbkpt), &  

            values(ndata), derivat1(ndata), derivat2(ndata), &  

            coeff(ncoeff), root_variance(ndata), diffs  

      real(kind(1e0)), dimension(ncoeff,ncoeff) :: sigma_squared  

  

      real(kind(1e0)), pointer :: pointer_bkpt(:)  

      type (s_spline_knots) break_points  

      type (s_spline_constraints) constraints(nbkptin+2)  

   

      xdata = (/((i-1)*delta_x, i=1,ndata)/)   

      ydata = exp(-half*xdata**2)   

      ynoise = ratio*ydata*(rand(ynoise)-half)  

      ydata = ydata+ynoise  

      sddata = ynoise  

      spline_data(1,:)=xdata  

      spline_data(2,:)=ydata  

      spline_data(3,:)=sddata  

  

      bkpt=(/((i-nord)*delta_b, i=1,nbkpt)/)   

  

! Assign the degree of the polynomial and the knots.  

      pointer_bkpt => bkpt  

      break_points=s_spline_knots(ndegree, pointer_bkpt)  

  

      icurv=int(one/delta_b)+1  

  

! At first shape the curve to be convex down.        

      do i=1,icurv-1  

        constraints(i)=spline_constraints &  

 (derivative=2, point=bkpt(i+ndegree), type='<=', value=zero)  

      end do  

  

! Force a curvature change.  

      constraints(icurv)=spline_constraints &  

 (derivative=2, point=bkpt(icurv+ndegree), type='==', value=zero)  

  

! Finally, shape the curve to be convex up.  

      do i=icurv+1,nbkptin  

        constraints(i)=spline_constraints &  

 (derivative=2, point=bkpt(i+ndegree), type='>=', value=zero)  

      end do  

  

! Make the slope zero and value non-negative at right.  

      constraints(nbkptin+1)=spline_constraints &  

 (derivative=1, point=bkpt(nord), type='==', value=zero)  

      constraints(nbkptin+2)=spline_constraints &  

 (derivative=0, point=bkpt(nbkptin+ndegree), type='>=', value=zero)  
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      coeff = spline_fitting(data=spline_data, knots=break_points, &  

              constraints=constraints, covariance=sigma_squared)  

  

!     Compute value, first two derivatives and the variance.  

      values=spline_values(0, xdata, break_points, coeff)  

      root_variance=spline_values(0, xdata, break_points, coeff, &  

                             covariance=sigma_squared)  

      derivat1=spline_values(1, xdata, break_points, coeff)  

      derivat2=spline_values(2, xdata, break_points, coeff)  

   

      call show(reshape((/xdata, derivat2, root_variance/),(/ndata,3/)),&  

"The x values, 2-nd derivatives, and square root of variance.")  

  

! See that differences are relatively small and the curve has  

! the right shape and signs.        

      diffs=norm(values-ydata)/norm(ydata)  

      if (all(values > zero) .and. all(derivat1 < epsilon(zero))&  

         .and. diffs <= tol) then  

        write(*,*) 'Example 2 for SPLINE_FITTING is correct.'  

      end if  

  

      end   

Output 
 

Example 2 for SPLINE_FITTING is correct. 

Example 3: Splines Model a Random Number Generator 

The function  

   2exp / 2 , 1 1

0, | | 1

g x x x

x

    

 
 

is an unnormalized probability distribution.  This function is similar to the standard Normal 

distribution, with specific choices for the mean and variance, except that it is truncated.  Our 

algorithm interpolates g(x) with a natural cubic spline, f(x).  The cumulative distribution is 

approximated by precise evaluation of the function 

   
1

x
q x f t dt


   

Gauss-Legendre quadrature formulas, IMSL (1994, pp. 621-626), of order two are used on each 

polynomial piece of f(t)  to evaluate q(x) cheaply.  After normalizing the cubic spline so that  

q(1) = 1, we may then generate random numbers according to the distribution    f x g x .  

The values of x  are evaluated by solving q(x) = u, -1 < x < 1.  Here u  is a uniform random 

sample.  Newton‘s method, for a vector of unknowns, is used for the solution algorithm.  

Recalling the relation 

     , 1 1
d

q x u f x x
dx
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we believe this illustrates a method for generating a vector of random numbers according to a 

continuous distribution function having finite support. 
 

 use spline_fitting_int  

 use linear_operators  

 use Numerical_Libraries  

        

       implicit none  

  

! This is Example 3 for SPLINE_FITTING.  Use splines to  

! generate random (almost normal) numbers.  The normal distribution  

! function has support (-1,+1), and is zero outside this interval.  

! The variance is 0.5.  

  

 integer i, niterat  

        integer, parameter :: iweight=1, nfix=0, nord=4, ndata=50  

        integer, parameter :: nquad=(nord+1)/2, ndegree=nord-1  

        integer, parameter :: nbkpt=ndata+2*ndegree, ncoeff=nbkpt-nord  

        integer, parameter :: last=nbkpt-ndegree, n_samples=1000  

        integer, parameter :: limit=10  

 real(kind(1e0)), dimension(n_samples) :: fn, rn, x, alpha_x, beta_x  

        INTEGER LEFT_OF(n_samples)  

 real(kind(1e0)), parameter :: one=1e0, half=5e-1, zero=0e0, two=2e0  

 real(kind(1e0)), parameter :: delta_x=two/(ndata-1)  

        real(kind(1e0)), parameter :: qalpha=zero, qbeta=zero, domain=two   

        real(kind(1e0)) qx(nquad), qxi(nquad), qw(nquad), qxfix(nquad)  

        real(kind(1e0)) alpha_, beta_, quad(0:ndata-1)  

        real(kind(1e0)), target :: xdata(ndata), ydata(ndata),& 

        coeff(ncoeff), spline_data(3, ndata), bkpt(nbkpt)  

  

        real(kind(1e0)), pointer :: pointer_bkpt(:)  

        type (s_spline_knots) break_points  

        type (s_spline_constraints) constraints(2)  

  

! Approximate the probability density function by splines.  

        xdata = (/(-one+(i-1)*delta_x, i=1,ndata)/)   

        ydata = exp(-half*xdata**2)  

  

        spline_data(1,:)=xdata  

        spline_data(2,:)=ydata  

        spline_data(3,:)=one  

  

        bkpt=(/(-one+(i-nord)*delta_x, i=1,nbkpt)/)   

  

! Assign the degree of the polynomial and the knots.  

      pointer_bkpt => bkpt  

      break_points=s_spline_knots(ndegree, pointer_bkpt)  

  

! Define the natural derivatives constraints:  

        constraints(1)=spline_constraints &  

          (derivative=2, point=bkpt(nord), type='==', &  

          value=(-one+xdata(1)**2)*ydata(1))  

        constraints(2)=spline_constraints &  

          (derivative=2, point=bkpt(last), type='==', &  

          value=(-one+xdata(ndata)**2)*ydata(ndata))  
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! Obtain the spline coefficients.  

        coeff=spline_fitting(data=spline_data, knots=break_points,&  

        constraints=constraints)  

  

! Compute the evaluation points 'qx(*)' and weights 'qw(*)' for   

! the Gauss-Legendre quadrature.  This will give a precise  

! quadrature for polynomials of degree <= nquad*2.  

        call gqrul(nquad, iweight, qalpha, qbeta, nfix, qxfix, qx, qw)  

  

! Compute pieces of the accumulated distribution function:   

        quad(0)=zero  

 do i=1, ndata-1  

          alpha_= (bkpt(nord+i)-bkpt(ndegree+i))*half  

          beta_ = (bkpt(nord+i)+bkpt(ndegree+i))*half  

  

! Normalized abscissas are stretched to each spline interval.  

! Each polynomial piece is integrated and accumulated.  

          qxi = alpha_*qx+beta_  

          quad(i) = sum(qw*spline_values(0, qxi, break_points,& 

      coeff))*alpha_&  

                  + quad(i-1)  

 end do  

  

! Normalize the coefficients and partial integrals so that the  

! total integral has the value one.  

        coeff=coeff/quad(ndata-1); quad=quad/quad(ndata-1)  

        rn=rand(rn)   

        x=zero; niterat=0  

  

 solve_equation: do  

  

! Find the intervals where the x values are located.  

          LEFT_OF=NDEGREE; I=NDEGREE  

            do  

               I=I+1; if(I >= LAST) EXIT  

               WHERE(x >= BKPT(I))LEFT_OF = LEFT_OF+1  

            end do  

  

! Use Newton's method to solve the nonlinear equation:  

! accumulated_distribution_function - random_number = 0.  

            alpha_x = (x-bkpt(LEFT_OF))*half  

            beta_x  = (x+bkpt(LEFT_OF))*half  

            FN=QUAD(LEFT_OF-NORD)-RN  

            DO I=1,NQUAD  

               FN=FN+QW(I)*spline_values(0, alpha_x*QX(I)+beta_x,&  

                     break_points, coeff)*alpha_x  

            END DO  

  

! This is the Newton method update step:  

            x=x-fn/spline_values(0, x, break_points, coeff)  

            niterat=niterat+1  

  

! Constrain the values so they fall back into the interval.  

! Newton's method may give approximates outside the interval.  

            where(x <= -one .or. x >= one) x=zero  

  



     

     
 

712  Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY  

     

     

 

            if(norm(fn,1) <= sqrt(epsilon(one))*norm(x,1))&  

              exit solve_equation  

 end do solve_equation  

  

! Check that Newton's method converges.   

  

        if (niterat <= limit) then  

          write (*,*) 'Example 3 for SPLINE_FITTING is correct.'  

        end if  

  

 end   

Output 
 

Example 3 for SPLINE_FITTING is correct. 

Example 4: Represent a Periodic Curve 

The curve tracing the edge of a rectangular box, traversed in a counter-clockwise direction, is 

parameterized with a spline representation for each coordinate function, (x(t), y(t)).  The functions 

are constrained to be periodic at the ends of the parameter interval.  Since the perimeter arcs are 

piece-wise linear functions, the degree of the splines is the value one.  Some breakpoints are 

chosen so they correspond to corners of the box, where the derivatives of the coordinate functions 

are discontinuous.  The value of this representation is that for each t the splines representing  

(x(t), y(t)) are points on the perimeter of the box.  This ―eases‖ the complexity of evaluating the 

edge of the box.  This example illustrates a method for representing the edge of a domain in two 

dimensions, bounded by a periodic curve. 
 

      use spline_fitting_int  

      use norm_int  

  

      implicit none  

  

! This is Example 4 for SPLINE_FITTING. Use piecewise-linear  

! splines to represent the perimeter of a rectangular box.  

  

      integer i, j   

      integer, parameter :: nbkpt=9, nord=2, ndegree=nord-1, &  

               ncoeff=nbkpt-nord, ndata=7, ngrid=100, &  

               nvalues=(ndata-1)*ngrid  

      real(kind(1e0)), parameter :: zero=0e0, one=1e0  

      real(kind(1e0)), parameter ::  delta_t=one, delta_b=one, delta_v=0.01  

      real(kind(1e0)) delta_x, delta_y  

      real(kind(1e0)), dimension(ndata) ::  sddata=one,  &  

! These are redundant coordinates on the edge of the box.  

             xdata=(/0.0, 1.0, 2.0, 2.0, 1.0, 0.0, 0.0/), &  

             ydata=(/0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0/)  

      real(kind(1e0)) tdata(ndata), xspline_data(3, ndata), &  

            yspline_data(3, ndata), tvalues(nvalues), &  

            xvalues(nvalues), yvalues(nvalues), xcoeff(ncoeff), &  

            ycoeff(ncoeff), xcheck(nvalues), ycheck(nvalues), diffs  

      real(kind(1e0)), target :: bkpt(nbkpt)  

      real(kind(1e0)), pointer :: pointer_bkpt(:)  

      type (s_spline_knots) break_points  
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      type (s_spline_constraints) constraints(1)  

  

      tdata = (/((i-1)*delta_t, i=1,ndata)/)   

      xspline_data(1,:)=tdata; yspline_data(1,:)=tdata   

      xspline_data(2,:)=xdata; yspline_data(2,:)=ydata  

      xspline_data(3,:)=sddata; yspline_data(3,:)=sddata  

  

      bkpt(nord:nbkpt-ndegree)=(/((i-nord)*delta_b,  &  

                                  i=nord, nbkpt-ndegree)/)   

! Collapse the outside knots.  

      bkpt(1:ndegree)=bkpt(nord)    

      bkpt(nbkpt-ndegree+1:nbkpt)=bkpt(nbkpt-ndegree)    

     

! Assign the degree of the polynomial and the knots.  

      pointer_bkpt => bkpt  

      break_points=s_spline_knots(ndegree, pointer_bkpt)  

  

! Make the two parametric curves also periodic.  

      constraints(1)=spline_constraints &  

        (derivative=0, point=bkpt(nord), type='.=.', &  

        value=bkpt(nbkpt-ndegree))  

  

      xcoeff = spline_fitting(data=xspline_data, knots=break_points, &  

                              constraints=constraints)  

      ycoeff = spline_fitting(data=yspline_data, knots=break_points, &  

                              constraints=constraints)  

  

! Use the splines to compute the coordinates of points along the perimeter.   

! Compare them with the coordinates of the edge points.   

      tvalues= (/((i-1)*delta_v, i=1,nvalues)/)   

      xvalues=spline_values(0, tvalues, break_points, xcoeff)  

      yvalues=spline_values(0, tvalues, break_points, ycoeff)  

      do i=1, nvalues  

        j=(i-1)/ngrid+1   

        delta_x=(xdata(j+1)-xdata(j))/ngrid  

 delta_y=(ydata(j+1)-ydata(j))/ngrid  

        xcheck(i)=xdata(j)+mod(i+ngrid-1,ngrid)*delta_x   

        ycheck(i)=ydata(j)+mod(i+ngrid-1,ngrid)*delta_y   

      end do  

  

      diffs=norm(xvalues-xcheck,1)/norm(xcheck,1)+&  

           norm(yvalues-ycheck,1)/norm(ycheck,1)  

      if (diffs <= sqrt(epsilon(one))) then  

        write(*,*) 'Example 4 for SPLINE_FITTING is correct.'  

      end if  

        

      end   

Output 
 

Example 4 for SPLINE_FITTING is correct. 
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SURFACE_CONSTRAINTS 
To further shape a surface defined by a tensor product of B-splines, the routine SURFACE_FITTING 

will least squares fit data with equality, inequality and periodic constraints. These can apply to the 

surface function or its partial derivatives. Each constraint is packaged in the derived type 

?_SURFACE_CONSTRAINTS. This function uses the data consisting of: the place where the 

constraint is to hold, the partial derivative indices, and the type of the constraint. This object is 

returned as the derived type function result ?_SURFACE_CONSTRAINTS. The function itself has 

two required and two optional arguments. In a list of constraints, the j-th item will be: 

 
?_SURFACE_CONSTRAINTS(j) = &  

SURFACE_CONSTRAINTS&  

   ([DERIVATIVE=DERIVATIVE_INDEX(1:2),] &  

   POINT = WHERE_APPLIED(1:2),[VALUE=VALUE_APPLIED,],&  

   TYPE = CONSTRAINT_INDICATOR, &  

   [PERIODIC_POINT = PERIODIC_POINT(1:2)])  

The square brackets enclose optional arguments.  For each constraint the arguments ‗value =‘ 

and ‗PERIODIC_POINT =‘ are not used at the same time. 

Required Arguments 

POINT = WHERE_APPLIED  (Input)  

The point in the data domain where a constraint is to be applied.  Each point has 

an x and y coordinate, in that order. 

TYPE = CONSTRAINT_INDICATOR (Input)  

The indicator for the type of constraint the tensor product spline function or its 

partial derivatives is to satisfy at the point: where_applied.  The choices are 

the character strings ‗==‘, ‗<=‘, ‗>=‘, ‗.=.‘, and ‗.=-‘. They 

respectively indicate that the spline value or its derivatives will be equal to, not 

greater than, not less than, equal to the value of the spline at another point, or 

equal to the negative of the spline value at another point. These last two 

constraints are called periodic and negative-periodic, respectively. 

Optional Arguments 

DERIVATIVE = DERIVATIVE_INDEX(1:2)  (Input)  

These are the number of the partial derivatives for the tensor product spline to 

apply the constraint.  The array (/0,0/) corresponds to the function, the value 

(/1,0/)  to the first partial derivative with respect to x, etc.  If this argument is 

not present in the list, the value (/0,0/) is substituted automatically.  Thus a 

constraint without the derivatives listed applies to the tensor product spline 

function. 

PERIODIC = PERIODIC_POINT(1:2) 

This optional argument improves readability by identifying the second pair of 

independent variable values for periodic constraints. 



 

 

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation  715 

     

     

 

FORTRAN 90 Interface 

Generic: CALL SURFACE_CONSTRAINTS (POINT, TYPE [,…]) 

Specific: The specific interface names are S_SURFACE_CONSTRAINTS and 

D_SURFACE_CONSTRAINTS. 

SURFACE_VALUES 
This rank-2 array function returns a tensor product array result, given two arrays of independent 

variable values.  Use the optional input argument for the covariance matrix when the square root 

of the variance function is evaluated.  The result will be a scalar value when the input independent 

variable is scalar. 

Required Arguments 

DERIVATIVE = DERIVATIVE(1:2)  (Input)  

The indices of the partial derivative evaluated.  Use non-negative integer values.  

For the function itself use the array (/0,0/). 

VARIABLESX = VARIABLESX (Input)  

The independent variable values in the first or x  dimension where the spline or 

its derivatives are evaluated.  Either a rank-1 array or a scalar can be used as this 

argument. 

VARIABLESY = VARIABLESY  (Input)  

The independent variable values in the second or y  dimension where the spline 

or its derivatives are evaluated.  Either a rank-1 array or a scalar can be used as 

this argument. 

KNOTSX = KNOTSX  (Input)  

The derived type ?_spline_knots, used when the array coeffs(:,:)was 

obtained with the function SURFACE_FITTING.  This contains the polynomial 

spline degree and the number of knots and the knots themselves, in the x 

dimension. 

KNOTSY = KNOTSY  (Input)  

The derived type ?_spline_knots, used when the array coeffs(:,:) was 

obtained with the function SURFACE_FITTING.  This contains the polynomial 

spline degree and the number of knots and the knots themselves, in the y 

dimension. 

COEFFS = C  (Input)  

The coefficients in the representation for the spline function,  

     
1 1

,
N M

ij i j

j i

f x y c B y B x
 


 

These result from the fitting process or array assignment 

C=SURFACE_FITTING(...), defined below.   

The values M = size (C,1) and N = size (C,2) satisfies the respective identities  
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N -1 + spline_degree = size (?_knotsx), and  

M -1 + spline_degree = size (?_knotsy) , where the two right-most quantities in 

both equations refer to components of the arguments knotsx and knotsy.  The 

same value of spline_degree must be used for both knotsx and knotsy. 

Optional Arguments 

COVARIANCE = G  (Input)  

This argument, when present, results in the evaluation of  the square root of the 

variance function 

      
1/ 2

, , ,
T

e x y b x y Gb x y
 

where  

         1 1 1, , , ,
T

Nb x y B x B y B x B y     

and G is the covariance matrix associated with the coefficients of the spline 

 11 1, , ,
T

Nc c c
 

The argument G is an optional output from SURFACE_FITTING, described 

below.  When the square root of the variance function is computed, the 

arguments DERIVATIVE and C are not used. 

IOPT = IOPT  (Input)  

This optional argument, of derived type ?_options, is not used in this 

release. 

FORTRAN 90 Interface 

Generic: CALL SURFACE_VALUES (DERIVATIVE, VARIABLESX, VARIABLESY, KNOTSX, 

KNOTSY, COEFFS [,…]) 

Specific: The specific interface names are S_SURFACE_VALUES and 

D_SURFACE_VALUES. 

SURFACE_FITTING 
Weighted least-squares fitting by tensor product B-splines to discrete two-dimensional data is 

performed.  Constraints on the spline or its partial derivatives are optional.  The spline function 

     
1 1

,
N M

ij i j

j i

f x y c B y B x
 


,  

its derivatives, or the square root of its variance function are evaluated after the fitting. 
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Required Arguments 

DATA = DATA(1:4,:)  (Input/Output)  

An assumed-shape array with size(data,1) = 4.  The data are placed in the array:  

 data(1,i) = ix ,  

 data(2,i) = iy ,  

 data(3,i) = iz ,  

 data(4,i) = i , 1,...,i ndata .  

If the variances are not known, but are proportional to an unknown value, use  

 data(4,i) = 1, 1,...,i ndata . 

KNOTSX = KNOTSX  (Input)  

A derived type, ?_SPLINE_KNOTS, that defines the degree of the spline and the 

breakpoints for the data fitting domain, in the first dimension. 

KNOTSY = KNOTSY  (Input)  

A derived type, ?_SPLINE_KNOTS, that defines the degree of the spline and the 

breakpoints for the data fitting domain, in the second dimension. 

Optional Arguments 

CONSTRAINTS = SURFACE_CONSTRAINTS  (Input) 

A rank-1 array of derived type ?_SURFACE_CONSTRAINTS that defines constraints the 

tensor product spline is to satisfy. 

COVARIANCE = G  (Output) 

An assumed-shape rank-2 array of the same precision as the data.  This output is the 

covariance matrix of the coefficients.  It is optionally used to evaluate the square root 

of the variance function. 

IOPT = IOPT(:)  (Input/Output) 

Derived type array with the same precision as the input array; used for passing optional 

data to SURFACE_FITTING.  The options are as follows: 

Packaged Options for SURFACE_FITTING 

Prefix = None Option Name Option Value 

 SURFACE_FITTING_SMALLNESS 1 

 SURFACE_FITTING_FLATNESS 2 

 SURFACE_FITTING_TOL_EQUAL 3 

 SURFACE_FITTING_TOL_LEAST 4 

 SURFACE_FITTING_RESIDUALS 5 
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Packaged Options for SURFACE_FITTING 

 SURFACE_FITTING_PRINT 6 

 SURFACE_FITTING_THINNESS 7 

IOPT(IO) = ?_OPTIONS&  

            (surface_fitting_smallnes, ?_value) 

This resets the square root of the regularizing parameter multiplying the squared 

integral of the unknown function.  The argument ?_value is replaced by the default 

value. The default is ?_value = 0. 

IOPT(IO) = ?_OPTIONS&  

            (SURFACE_FITTING_FLATNESS, ?_VALUE) 

This resets the square root of the regularizing parameter multiplying the squared 

integral of the partial derivatives of the unknown function.  The argument  ?_VALUE  

is replaced by the default value. The default is  

?_VALUE = SQRT(EPSILON(?_VALUE))*SIZE, where  

 | (3,:) / (4,:) | / 1size data data ndata  . 

IOPT(IO) = ?_OPTIONS&  

            (SURFACE_FITTING_TOL_EQUAL, ?_VALUE) 

This resets the value for determining that equality constraint equations are rank-

deficient.  The default is ?_VALUE = 10
-4

. 

IOPT(IO) = ?_OPTIONS&  

            (SURFACE_FITTING_TOL_LEAST, ?_VALUE) 

This resets the value for determining that least-squares equations are rank-deficient.  

The default is ?_VALUE = 10
-4

. 

IOPT(IO) = ?_OPTIONS&  

            (SURFACE_FITTING_RESIDUALS, DUMMY) 

This option returns the residuals = surface - data, in data(4,:).  That row of the 

array is overwritten by the residuals.  The data is returned in the order of cell 

processing order, or left-to-right in x and then increasing in y.  The allocation of a 

temporary for data(1:4,:) is avoided, which may be desirable for problems with 

large amounts of data.  The default is to not evaluate the residuals and to leave 

data(1:4,:) as input. 

IOPT(IO) = ?_OPTIONS&  

            (SURFACE_FITTING_PRINT, DUMMY) 

This option prints the knots or breakpoints for x and y, and the count of data points in 

cell processing order.  The default is to not print these arrays. 
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IOPT(IO) = ?_OPTIONS&  

            (SURFACE_FITTING_THINNESS, ?_VALUE) 

This resets the square root of the regularizing parameter multiplying the squared 

integral of the second partial derivatives of the unknown function.  The argument  

?_VALUE is replaced by the default value. The default is ?_VALUE = 10
-3

 × SIZE,, 

where 

 | (3,:) / (4,:) | / 1size data data ndata  . 

FORTRAN 90 Interface 

Generic: CALL SURFACE_FITTING (DATA, KNOTSX, KNOTSX, KNOTSY[,…]) 

Specific: The specific interface names are S_SURFACE_FITTING and 

D_SURFACE_FITTING. 

Description 

The coefficients are obtained by solving a least-squares system of linear algebraic equations, 

subject to linear equality and inequality constraints.  The system is the result of the weighted data 

equations and regularization.  If there are no constraints, the solution is computed using a banded 

least-squares solver.  Details are found in Hanson (1995). 

Fatal and Terminal Error Messages 

See the messages.gls file for error messages for SURFACE_FITTING. These error messages are 

numbered 1151-1152, 1161-1162, 1370-1393. 

Example 1: Tensor Product Spline Fitting of Data 

The function  

   2 2, expg x y x y  
 

is least-squares fit by a tensor product of cubic splines on the square  

   0, 2 0, 2
 

There are ndata  random pairs of values for the independent variables.  Each datum is given unit 

uncertainty.  The grid of knots in both x and y dimensions are equally spaced, in the interior cells, 

and identical to each other.  After the coefficients are computed a check is made that the surface 

approximately agrees with g(x,y) at a tensor product grid of equally spaced values. 
 

      USE surface_fitting_int  

      USE rand_int  

      USE norm_int  

  

      implicit none  

  

! This is Example 1 for SURFACE_FITTING, tensor product  
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! B-splines approximation.  Use the function  

! exp(-x**2-y**2) on the square (0, 2) x (0, 2) for samples.  

! The spline order is "nord" and the number of cells is  

! "(ngrid-1)**2".  There are "ndata" data values in the square.  

  

      integer :: i  

      integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &  

        nbkpt=ngrid+2*ndegree, ndata = 2000, nvalues=100  

      real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0  

      real(kind(1d0)), parameter :: TOLERANCE=1d-3  

      real(kind(1d0)), target :: spline_data (4, ndata), bkpt(nbkpt), &  

             coeff(ngrid+ndegree-1,ngrid+ndegree-1), delta, sizev, &  

             x(nvalues), y(nvalues), values(nvalues, nvalues)  

  

      real(kind(1d0)), pointer :: pointer_bkpt(:)  

      type (d_spline_knots) knotsx, knotsy  

  

! Generate random (x,y) pairs and evaluate the  

! example exponential function at these values.      

      spline_data(1:2,:)=two*rand(spline_data(1:2,:))  

      spline_data(3,:)=exp(-sum(spline_data(1:2,:)**2,dim=1))  

      spline_data(4,:)=one  

  

! Define the knots for the tensor product data fitting problem.  

         delta = two/(ngrid-1)  

         bkpt(1:ndegree) = zero  

         bkpt(nbkpt-ndegree+1:nbkpt) =  two  

         bkpt(nord:nbkpt-ndegree)=(/(i*delta,i=0,ngrid-1)/)  

  

! Assign the degree of the polynomial and the knots.  

      pointer_bkpt => bkpt  

      knotsx=d_spline_knots(ndegree, pointer_bkpt)  

      knotsy=knotsx  

  

! Fit the data and obtain the coefficients.  

      coeff = surface_fitting(spline_data, knotsx, knotsy)  

  

! Evaluate the residual = spline - function  

! at a grid of points inside the square.  

      delta=two/(nvalues+1)  

      x=(/(i*delta,i=1,nvalues)/); y=x  

  

      values=exp(-spread(x**2,1,nvalues)-spread(y**2,2,nvalues))  

      values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)-&  

             values  

  

! Compute the R.M.S. error:  

      sizev=norm(pack(values, (values == values)))/nvalues  

  

      if (sizev <= TOLERANCE) then  

        write(*,*) 'Example 1 for SURFACE_FITTING is correct.'  

      end if  

      end   
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Output 
 

Example 1 for SURFACE_FITTING is correct. 

Additional Examples 

Example 2: Parametric Representation of a Sphere 

From Struik (1961), the parametric representation of points (x,y,z) on the surface of a sphere of 

radius a > 0 is expressed in terms of spherical coordinates, 

     

     

   

, cos cos , 2

, cos sin ,

, sin

x u v a u v u

y u v a u v v

z u v a u

 

 

   

   


 

The parameters are radians of latitude (u)and longitude (v).  The example program fits the same 

ndata  random pairs of latitude and longitude in each coordinate.  We have covered the sphere 

twice by allowing  

u     

for latitude.  We solve three data fitting problems, one for each coordinate function.  Periodic 

constraints on the value of the spline are used for both u and v.  We could reduce the 

computational effort by fitting a spline function in one variable for the z coordinate.  To illustrate 

the representation of more general surfaces than spheres, we did not do this.  When the surface is 

evaluated we compute latitude, moving from the South Pole to the North Pole,  

2u     

Our surface will approximately satisfy the equality 

2 2 2 2x y z a  
 

These residuals are checked at a rectangular mesh of latitude and longitude pairs.  To illustrate the 

use of some options, we have reset the three regularization parameters to the value zero, the least-

squares system tolerance to a smaller value than the default, and obtained the residuals for each 

parametric coordinate function at the data points. 
 

      USE surface_fitting_int  

      USE rand_int  

      USE norm_int  

      USE Numerical_Libraries  

  

      implicit none  

  

! This is Example 2 for SURFACE_FITTING, tensor product  

! B-splines approximation.  Fit x, y, z parametric functions  

! for points on the surface of a sphere of radius ―A‖.  

! Random values of latitude and longitude are used to generate  

! data.  The functions are evaluated at a rectangular grid  

! in latitude and longitude and checked to lie on the surface  

! of the sphere.  

  

      integer :: i, j  
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      integer, parameter :: ngrid=6, nord=6, ndegree=nord-1, &  

        nbkpt=ngrid+2*ndegree, ndata =1000, nvalues=50, NOPT=5  

      real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0  

      real(kind(1d0)), parameter :: TOLERANCE=1d-2  

      real(kind(1d0)), target :: spline_data (4, ndata, 3), bkpt(nbkpt), &  

             coeff(ngrid+ndegree-1,ngrid+ndegree-1, 3), delta, sizev, &  

             pi, A, x(nvalues), y(nvalues), values(nvalues, nvalues), &  

             data(4,ndata)  

  

      real(kind(1d0)), pointer :: pointer_bkpt(:)  

      type (d_spline_knots) knotsx, knotsy  

      type (d_options) OPTIONS(NOPT)  

 

! Get the constant "pi" and a random radius, > 1.  

      pi = DCONST("pi"); A=one+rand(A)  

  

! Generate random (latitude, longitude) pairs and evaluate the  

! surface parameters at these points.  

      spline_data(1:2,:,1)=pi*(two*rand(spline_data(1:2,:,1))-one)  

      spline_data(1:2,:,2)=spline_data(1:2,:,1)  

      spline_data(1:2,:,3)=spline_data(1:2,:,1)  

  

! Evaluate x, y, z parametric points.  

      spline_data(3,:,1)=A*cos(spline_data(1,:,1))*cos(spline_data(2,:,1))  

      spline_data(3,:,2)=A*cos(spline_data(1,:,2))*sin(spline_data(2,:,2))  

      spline_data(3,:,3)=A*sin(spline_data(1,:,3))  

  

! The values are equally uncertain.  

      spline_data(4,:,:)=one  

  

! Define the knots for the tensor product data fitting problem.  

      delta = two*pi/(ngrid-1)  

      bkpt(1:ndegree) = -pi  

      bkpt(nbkpt-ndegree+1:nbkpt) =  pi  

      bkpt(nord:nbkpt-ndegree)=(/(-pi+i*delta,i=0,ngrid-1)/)  

  

! Assign the degree of the polynomial and the knots.  

      pointer_bkpt => bkpt  

      knotsx=d_spline_knots(ndegree, pointer_bkpt)  

      knotsy=knotsx  

   

! Fit a data surface for each coordinate.  

! Set default regularization parameters to zero and compute   

! residuals of the individual points. These are returned  

! in DATA(4,:).  

      do j=1,3  

        data=spline_data(:,:,j)  

      OPTIONS(1)=d_options(surface_fitting_thinness,zero)  

      OPTIONS(2)=d_options(surface_fitting_flatness,zero)  

      OPTIONS(3)=d_options(surface_fitting_smallness,zero)  

      OPTIONS(4)=d_options(surface_fitting_tol_least,1d-5)  

      OPTIONS(5)=surface_fitting_residuals  

      coeff(:,:,j) = surface_fitting(data, knotsx, knotsy,&  

           IOPT=OPTIONS)  

      end do  
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! Evaluate the function at a grid of points inside the rectangle of   

! latitude and longitude covering the sphere just once.  Add the   

! sum of squares. They should equal "A**2" but will not due to  

! truncation and rounding errors.  

      delta=pi/(nvalues+1)  

      x=(/(-pi/two+i*delta,i=1,nvalues)/); y=two*x  

      values=zero  

      do j=1,3  

        values=values+&  

        surface_values((/0,0/), x, y, knotsx, knotsy, coeff(:,:,j))**2  

      end do  

      values=values-A**2  

! Compute the R.M.S. error:  

  

      sizev=norm(pack(values, (values == values)))/nvalues  

        

      if (sizev <= TOLERANCE) then  

        write(*,*) "Example 2 for SURFACE_FITTING is correct."  

      end if  

      end   

Output 
 

Example 2 for SURFACE_FITTING is correct. 

Example 3: Constraining Some Points using a Spline Surface 

This example illustrates the use of discrete constraints to shape the surface. The data fitting 

problem of Example 1 is modified by requiring that the surface interpolate the value one at  

x = y = 0.  The shape is constrained so first partial derivatives in both x and y are zero at x = y = 0.  

These constraints mimic some properties of the function g(x,y).  The size of the residuals at a grid 

of points and the residuals of the constraints are checked. 
 

      USE surface_fitting_int  

      USE rand_int  

      USE norm_int  

  

      implicit none  

  

! This is Example 3 for SURFACE_FITTING, tensor product  

! B-splines approximation, f(x,y).  Use the function  

! exp(-x**2-y**2) on the square (0, 2) x (0, 2) for samples.  

! The spline order is "nord" and the number of cells is  

! "(ngrid-1)**2".  There are "ndata" data values in the square.  

! Constraints are put on the surface at (0,0).  Namely  

! f(0,0) = 1, f_x(0,0) = 0, f_y(0,0) = 0.  

  

      integer :: i  

      integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &  

        nbkpt=ngrid+2*ndegree, ndata = 2000, nvalues=100, NC = 3  

      real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0  

      real(kind(1d0)), parameter :: TOLERANCE=1d-3  

      real(kind(1d0)), target :: spline_data (4, ndata), bkpt(nbkpt), &  

             coeff(ngrid+ndegree-1,ngrid+ndegree-1), delta, sizev, &  

             x(nvalues), y(nvalues), values(nvalues, nvalues), &  

             f_00, f_x00, f_y00  
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      real(kind(1d0)), pointer :: pointer_bkpt(:)  

      type (d_spline_knots) knotsx, knotsy  

      type (d_surface_constraints) C(NC)  

      LOGICAL PASS  

  

! Generate random (x,y) pairs and evaluate the  

! example exponential function at these values.      

      spline_data(1:2,:)=two*rand(spline_data(1:2,:))  

      spline_data(3,:)=exp(-sum(spline_data(1:2,:)**2,dim=1))  

      spline_data(4,:)=one  

  

! Define the knots for the tensor product data fitting problem.  

         delta = two/(ngrid-1)  

         bkpt(1:ndegree) = zero  

         bkpt(nbkpt-ndegree+1:nbkpt) =  two  

         bkpt(nord:nbkpt-ndegree)=(/(i*delta,i=0,ngrid-1)/)  

  

! Assign the degree of the polynomial and the knots.  

      pointer_bkpt => bkpt  

      knotsx=d_spline_knots(ndegree, pointer_bkpt)  

      knotsy=knotsx  

  

! Define the constraints for the fitted surface.  

     C(1)=surface_constraints(point=(/zero,zero/),type='==',value=one)  

     C(2)=surface_constraints(derivative=(/1,0/),&  

          point=(/zero,zero/),type='==',value=zero)  

     C(3)=surface_constraints(derivative=(/0,1/),&  

          point=(/zero,zero/),type='==',value=zero)  

  

! Fit the data and obtain the coefficients.  

  

      coeff = surface_fitting(spline_data, knotsx, knotsy,&  

              CONSTRAINTS=C)  

  

! Evaluate the residual = spline - function  

! at a grid of points inside the square.  

      delta=two/(nvalues+1)  

      x=(/(i*delta,i=1,nvalues)/); y=x  

  

      values=exp(-spread(x**2,1,nvalues)-spread(y**2,2,nvalues))  

      values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)-&  

             values  

      f_00 = surface_values((/0,0/), zero, zero,  knotsx, knotsy, coeff)  

      f_x00= surface_values((/1,0/), zero, zero,  knotsx, knotsy, coeff)  

      f_y00= surface_values((/0,1/), zero, zero,  knotsx, knotsy, coeff)  

  

! Compute the R.M.S. error:  

      sizev=norm(pack(values, (values == values)))/nvalues  

      PASS = sizev <= TOLERANCE   

      PASS = abs (f_00 - one) <= sqrt(epsilon(one)) .and. PASS  

      PASS = f_x00 <= sqrt(epsilon(one)) .and. PASS  

      PASS = f_y00 <= sqrt(epsilon(one)) .and. PASS  

  

      if (PASS) then  

        write(*,*) 'Example 3 for SURFACE_FITTING is correct.'  
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      end if  

      end 

Output 
 

Example 3 for SURFACE_FITTING is correct. 

Example 4: Constraining a Spline Surface to be non-Negative 

The review of interpolating methods by Franke (1982) uses a test data set originally due to James 

Ferguson.  We use this data set of 25 points, with unit uncertainty for each dependent variable.  

Our algorithm does not interpolate the data values but approximately fits them in the least-squares 

sense.  We reset the regularization parameter values of flatness and thinness, Hanson (1995).  

Then the surface is fit to the data and evaluated at a grid of points.  Although the surface appears 

smooth and fits the data, the values are negative near one corner.  Our scenario for the application 

assumes that the surface be non-negative at all points of the rectangle containing the independent 

variable data pairs.  Our algorithm for constraining the surface is simple but effective in this case.  

The data fitting is repeated one more time but with positive constraints at the grid of points where 

it was previously negative. 
 

      USE surface_fitting_int  

      USE rand_int  

      USE surface_fitting_int  

      USE rand_int  

      USE norm_int  

  

      implicit none  

  

! This is Example 4 for SURFACE_FITTING, tensor product  

! B-splines approximation, f(x,y).  Use the data set from  

! Franke, due to Ferguson.  Without constraints the function  

! becomes negative in a corner.  Constrain the surface  

! at a grid of values so it is non-negative.  

  

      integer :: i, j, q  

      integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &  

        nbkpt=ngrid+2*ndegree, ndata = 25, nvalues=50  

      real(kind(1d0)), parameter :: zero=0d0, one=1d0  

      real(kind(1d0)), parameter :: TOLERANCE=1d-3  

      real(kind(1d0)), target :: spline_data (4, ndata), bkptx(nbkpt), &  

             bkpty(nbkpt),coeff(ngrid+ndegree-1,ngrid+ndegree-1), &  

             x(nvalues), y(nvalues), values(nvalues, nvalues), &  

             delta  

      real(kind(1d0)), pointer :: pointer_bkpt(:)  

      type (d_spline_knots) knotsx, knotsy  

      type (d_surface_constraints), allocatable :: C(:)  

  

      real(kind(1e0)) :: data (3*ndata) = & ! This is Ferguson's data:  

(/2.0   ,  15.0  ,    2.5 ,      2.49 ,     7.647,    3.2,&  

  2.981 ,   0.291,    3.4 ,      3.471,    -7.062,    3.5,&  

  3.961 , -14.418,    3.5 ,      7.45 ,    12.003,    2.5,&  

  7.35  ,   6.012,    3.5 ,      7.251,     0.018,    3.0,&  

  7.151 ,  -5.973,    2.0 ,      7.051,   -11.967,    2.5,&  

  10.901,   9.015,    2.0 ,     10.751,     4.536,    1.925,&  

  10.602,   0.06 ,    1.85,     10.453,    -4.419,    1.576,&  
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  10.304,  -8.895,    1.7 ,     14.055,    10.509,    1.5,&  

  14.194,   6.783,    1.3 ,     14.331,     3.054,    1.7,&  

  14.469,  -0.672,    2.1 ,     14.607,    -4.398,    1.75,&  

  15.0  ,  12.0  ,    0.5 ,     15.729,     8.067,    0.5,&  

  16.457,   4.134,    0.7 ,     17.185,     0.198,    1.1,&  

  17.914,  -3.735,    1.7/)  

  

      spline_data(1:3,:)=reshape(data,(/3,ndata/)); spline_data(4,:)=one  

  

! Define the knots for the tensor product data fitting problem.  

! Use the data limits to  the knot sequences.  

         bkptx(1:ndegree) = minval(spline_data(1,:))  

         bkptx(nbkpt-ndegree+1:nbkpt) =  maxval(spline_data(1,:))  

         delta=(bkptx(nbkpt)-bkptx(ndegree))/(ngrid-1)  

         bkptx(nord:nbkpt-ndegree)=(/(bkptx(1)+i*delta,i=0,ngrid-1)/)  

  

! Assign the degree of the polynomial and the knots for x.  

      pointer_bkpt => bkptx  

      knotsx=d_spline_knots(ndegree, pointer_bkpt)  

         bkpty(1:ndegree) = minval(spline_data(2,:))  

         bkpty(nbkpt-ndegree+1:nbkpt) =  maxval(spline_data(2,:))  

         delta=(bkpty(nbkpt)-bkpty(ndegree))/(ngrid-1)  

         bkpty(nord:nbkpt-ndegree)=(/(bkpty(1)+i*delta,i=0,ngrid-1)/)  

  

! Assign the degree of the polynomial and the knots for y.  

      pointer_bkpt => bkpty  

      knotsy=d_spline_knots(ndegree, pointer_bkpt)  

  

! Fit the data and obtain the coefficients.  

      coeff = surface_fitting(spline_data, knotsx, knotsy)  

  

      delta=(bkptx(nbkpt)-bkptx(1))/(nvalues+1)  

      x=(/(bkptx(1)+i*delta,i=1,nvalues)/)  

      delta=(bkpty(nbkpt)-bkpty(1))/(nvalues+1)  

      y=(/(bkpty(1)+i*delta,i=1,nvalues)/)  

  

! Evaluate the function at a rectangular grid.  

! Use non-positive values to  a constraint.  

      values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)  

  

! Count the number of values <= zero.  Then constrain the spline  

! so that it is >= TOLERANCE at those points where it was <= zero.  

      q=count(values <= zero)  

      allocate (C(q))  

      DO I=1,nvalues  

         DO J=1,nvalues  

           IF(values(I,J) <= zero) THEN  

             C(q)=surface_constraints(point=(/x(i),y(j)/), type='>=',&  

                  value=TOLERANCE)  

             q=q-1  

           END IF  

         END DO  

      END DO  

  

! Fit the data with constraints and obtain the coefficients.  

      coeff = surface_fitting(spline_data, knotsx, knotsy,&  
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              CONSTRAINTS=C)  

      deallocate(C)  

  

! Evaluate the surface at a grid and check, once again, for   

! non-positive values.  All values should now be positive.  

      values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)  

if (count(values <= zero) == 0) then  

        write(*,*) 'Example 4 for SURFACE_FITTING is correct.'  

      end if  

  

      end   

Output 
 

Example 4 for SURFACE_FITTING is correct. 

CSIEZ 
Computes the cubic spline interpolant with the ‗not-a-knot‘ condition and return values of the 

interpolant at specified points. 

Required Arguments 

XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

The data point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

XVEC — Array of length N containing the points at which the spline is to be evaluated.   

(Input) 

VALUE — Array of length N containing the values of the spline at the points in XVEC.   

(Output) 

Optional Arguments 

NDATA — Number of data points.   (Input) 

NDATA must be at least 2. 

Default: NDATA = size (XDATA,1). 

N — Length of vector XVEC.   (Input) 

Default: N = size (XVEC,1). 

FORTRAN 90 Interface 

Generic: CALL CSIEZ (XDATA, FDATA, XVEC, VALUE [,…]) 

Specific: The specific interface names are S_CSIEZ and D_CSIEZ. 
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FORTRAN 77 Interface 

Single: CALL CSIEZ (NDATA, XDATA, FDATA, N, XVEC, VALUE) 

Double: The double precision name is DCSIEZ. 

Description 

This routine is designed to let the user easily compute the values of a cubic spline interpolant. The 

routine CSIEZ computes a spline interpolant to a set of data points (xi, fi) for i = 1, …, NDATA. The 

output for this routine consists of a vector of values of the computed cubic spline. Specifically, let 

n = N, v = XVEC, and y = VALUE, then if s is the computed spline we set 

yj = s(vj ) j = 1, …, n 

Additional documentation can be found by referring to the IMSL routines CSINT or SPLEZ. 

Comments 

Workspace may be explicitly provided, if desired, by use of C2IEZ/DC2IEZ. The reference is: 

CALL C2IEZ (NDATA, XDATA, FDATA, N, XVEC, VALUE, IWK, WK1, WK2) 

The additional arguments are as follows: 

IWK — Integer work array of length MAX0(N, NDATA) + N. 

WK1 — Real work array of length 5 * NDATA. 

WK2 — Real work array of length 2 * N. 

Example 

In this example, a cubic spline interpolant to a function F is computed. The values of this spline 

are then compared with the exact function values. 
 

      USE CSIEZ_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    NDATA 

      PARAMETER  (NDATA=11) 

!  

      INTEGER    I, NOUT 

      REAL       F, FDATA(NDATA), FLOAT, SIN, VALUE(2*NDATA-1), X,& 

                 XDATA(NDATA), XVEC(2*NDATA-1) 

      INTRINSIC  FLOAT, SIN 

!                                  Define function 

      F(X) = SIN(15.0*X) 

!                                  Set up a grid 

      DO 10  I=1, NDATA 
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         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

      DO 20  I=1, 2*NDATA - 1 

         XVEC(I) = FLOAT(I-1)/FLOAT(2*NDATA-2) 

   20 CONTINUE 

!                                  Compute cubic spline interpolant 

      CALL CSIEZ (XDATA, FDATA, XVEC, VALUE) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99998) 

99998 FORMAT (13X, 'X', 9X, 'INTERPOLANT', 5X, 'ERROR') 

!                                  Print the interpolant and the error 

!                                  on a finer grid 

      DO 30  I=1, 2*NDATA - 1 

         WRITE (NOUT,99999) XVEC(I), VALUE(I), F(XVEC(I)) - VALUE(I) 

   30 CONTINUE 

99999 FORMAT(' ', 2F15.3, F15.6) 

      END 

Output 
 

  X         INTERPOLANT     ERROR 

0.000          0.000       0.000000 

0.050          0.809      -0.127025 

0.100          0.997       0.000000 

0.150          0.723       0.055214 

0.200          0.141       0.000000 

0.250         -0.549      -0.022789 

0.300         -0.978       0.000000 

0.350         -0.843      -0.016246 

0.400         -0.279       0.000000 

0.450          0.441       0.009348 

0.500          0.938       0.000000 

0.550          0.903       0.019947 

0.600          0.412       0.000000 

0.650         -0.315      -0.004895 

0.700         -0.880       0.000000 

0.750         -0.938      -0.029541 

0.800         -0.537       0.000000 

0.850          0.148       0.034693 

0.900          0.804       0.000000 

0.950          1.086      -0.092559 

1.000          0.650       0.000000 

CSINT 
Computes the cubic spline interpolant with the ‗not-a-knot‘ condition. 

Required Arguments 

XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

The data point abscissas must be distinct. 
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FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 

representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   

(Output) 

Optional Arguments 

NDATA — Number of data points.   (Input) 

NDATA must be at least 2. 

Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 

Generic: CALL CSINT (XDATA, FDATA, BREAK, CSCOEF [,…]) 

Specific: The specific interface names are S_CSINT and D_CSINT. 

FORTRAN 77 Interface 

Single: CALL CSINT (NDATA, XDATA, FDATA, BREAK, CSCOEF) 

Double: The double precision name is DCSINT. 

Description 

The routine CSINT computes a C 
2
 cubic spline interpolant to a set of data points (xi, fi) for  

i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are 

automatically determined by the program. These conditions correspond to the ―not-a-knot‖ 

condition (see de Boor 1978), which requires that the third derivative of the spline be continuous 

at the second and next-to-last breakpoint. If N is 2 or 3, then the linear or quadratic interpolating 

polynomial is computed, respectively. 

If the data points arise from the values of a smooth (say C 
4
) function f, i.e. fi = f(xi), then the error 

will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline 

interpolant. Then, the maximum absolute error satisfies 
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For more details, see de Boor (1978, pages 55− 56). 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of C2INT/DC2INT. The 

reference is: 

CALL C2INT (NDATA, XDATA, FDATA, BREAK, CSCOEF, IWK) 

The additional argument is 

IWK — Work array of length NDATA. 

2. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using 

CSDER. 

3. Note that column NDATA of CSCOEF is used as workspace. 

Example 

In this example, a cubic spline interpolant to a function F is computed. The values of this spline 

are then compared with the exact function values. 
 

      USE CSINT_INT 

      USE UMACH_INT 

      USE CSVAL_INT 

 

      IMPLICIT   NONE 

!                                  Specifications 

      INTEGER    NDATA 

      PARAMETER  (NDATA=11) 

!  

      INTEGER    I, NINTV, NOUT 

      REAL       BREAK(NDATA), CSCOEF(4,NDATA), F,& 

                 FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA) 

      INTRINSIC  FLOAT, SIN 

!                                  Define function 

      F(X) = SIN(15.0*X) 

!                                  Set up a grid 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Compute cubic spline interpolant 

      CALL CSINT (XDATA, FDATA, BREAK, CSCOEF) 

!                                  Get output unit number. 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error') 

      NINTV = NDATA - 1 

!                                  Print the interpolant and the error 

!                                  on a finer grid 

      DO 20  I=1, 2*NDATA - 1 

         X = FLOAT(I-1)/FLOAT(2*NDATA-2) 

         WRITE (NOUT,'(2F15.3,F15.6)') X, CSVAL(X,BREAK,CSCOEF),& 

                                     F(X) - CSVAL(X,BREAK,& 
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                                     CSCOEF) 

   20 CONTINUE 

      END 

Output 
 

   X         Interpolant     Error 

0.000          0.000       0.000000 

0.050          0.809      -0.127025 

0.100          0.997       0.000000 

0.150          0.723       0.055214 

0.200          0.141       0.000000 

0.250         -0.549      -0.022789 

0.300         -0.978       0.000000 

0.350         -0.843      -0.016246 

0.400         -0.279       0.000000 

0.450          0.441       0.009348 

0.500          0.938       0.000000 

0.550          0.903       0.019947 

0.600          0.412       0.000000 

0.650         -0.315      -0.004895 

0.700         -0.880       0.000000 

0.750         -0.938      -0.029541 

0.800         -0.537       0.000000 

0.850          0.148       0.034693 

0.900          0.804       0.000000 

0.950          1.086      -0.092559 

1.000          0.650       0.000000 

CSDEC 
Computes the cubic spline interpolant with specified derivative endpoint conditions. 

Required Arguments 

XDATA — Array of length NDATA containing the data point abscissas.   (Input) The data 

point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

ILEFT — Type of end condition at the left endpoint.   (Input)  

ILEFT Condition 

   0  ―Not-a-knot‖ condition 

   1  First derivative specified by DLEFT 

   2  Second derivative specified by DLEFT 
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DLEFT — Derivative at left endpoint if ILEFT is equal to 1 or 2.   (Input) 

If ILEFT = 0, then DLEFT is ignored. 

IRIGHT — Type of end condition at the right endpoint.   (Input)  

IRIGHT Condition 

   0  ―Not-a-knot‖ condition 

   1  First derivative specified by DRIGHT 

   2  Second derivative specified by DRIGHT 

DRIGHT — Derivative at right endpoint if IRIGHT is equal to 1 or 2.   (Input) If IRIGHT = 0 

then DRIGHT is ignored. 

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 

representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   

(Output) 

Optional Arguments 

NDATA — Number of data points.   (Input) 

Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 

Generic: CALL CSDEC (XDATA, FDATA, ILEFT, DLEFT, IRIGHT, DRIGHT, BREAK, 
CSCOEF [,…]) 

Specific: The specific interface names are S_CSDEC and D_CSDEC. 

FORTRAN 77 Interface 

Single: CALL CSDEC (NDATA, XDATA, FDATA, ILEFT, DLEFT, IRIGHT, DRIGHT, 

BREAK, CSCOEF) 

Double: The double precision name is DCSDEC. 

Description 

The routine CSDEC computes a C 
2
 cubic spline interpolant to a set of data points (xi, fi) for  

i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are to be 

selected by the user. The user may specify not-a-knot, first derivative, or second derivative at each 

endpoint (see de Boor 1978, Chapter 4).  
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If the data (including the endpoint conditions) arise from the values of a smooth (say C 
4
) function 

f, i.e. fi = f(xi), then the error will behave in a predictable fashion. Let ξ be the breakpoint vector 

for the above spline interpolant. Then, the maximum absolute error satisfies 
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For more details, see de Boor (1978, Chapter 4 and 5). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of C2DEC/DC2DEC. The 

reference is: 

CALL C2DEC (NDATA, XDATA, FDATA, ILEFT, DLEFT, IRIGHT, 

DRIGHT, BREAK, CSCOEF, IWK) 

The additional argument is: 

IWK — Work array of length NDATA. 

2. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using 

CSDER. 

3. Note that column NDATA of CSCOEF is used as workspace. 

Example 1 

In Example 1, a cubic spline interpolant to a function f is computed. The value of the derivative at 

the left endpoint and the value of the second derivative at the right endpoint are specified. The 

values of this spline are then compared with the exact function values. 
 

      USE CSDEC_INT 

      USE UMACH_INT 

      USE CSVAL_INT 

 

      IMPLICIT   NONE 

      INTEGER    ILEFT, IRIGHT, NDATA 

      PARAMETER  (ILEFT=1, IRIGHT=2, NDATA=11) 

!  

      INTEGER    I, NINTV, NOUT 

      REAL       BREAK(NDATA), COS, CSCOEF(4,NDATA), DLEFT,& 

                 DRIGHT, F, FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA) 

      INTRINSIC  COS, FLOAT, SIN 

!                                  Define function 

      F(X) = SIN(15.0*X) 

!                                  Initialize DLEFT and DRIGHT 
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      DLEFT  = 15.0*COS(15.0*0.0) 

      DRIGHT = -15.0*15.0*SIN(15.0*1.0) 

!                                  Set up a grid 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Compute cubic spline interpolant 

      CALL CSDEC (XDATA, FDATA, ILEFT, DLEFT, IRIGHT, & 

                  DRIGHT, BREAK, CSCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error') 

      NINTV = NDATA - 1 

!                                  Print the interpolant on a finer grid 

      DO 20  I=1, 2*NDATA - 1 

         X = FLOAT(I-1)/FLOAT(2*NDATA-2) 

         WRITE (NOUT,'(2F15.3,F15.6)') X, CSVAL(X,BREAK,CSCOEF),& 

                                     F(X) - CSVAL(X,BREAK,& 

                                     CSCOEF) 

   20 CONTINUE 

      END 

Output 
 

   X         Interpolant     Error 

0.000          0.000       0.000000 

0.050          0.675       0.006332 

0.100          0.997       0.000000 

0.150          0.759       0.019485 

0.200          0.141       0.000000 

0.250         -0.558      -0.013227 

0.300         -0.978       0.000000 

0.350         -0.840      -0.018765 

0.400         -0.279       0.000000 

0.450          0.440       0.009859 

0.500          0.938       0.000000 

0.550          0.902       0.020420 

0.600          0.412       0.000000 

0.650         -0.312      -0.007301 

0.700         -0.880       0.000000 

0.750         -0.947      -0.020391 

0.800         -0.537       0.000000 

0.850          0.182       0.000497 

0.900          0.804       0.000000 

0.950          0.959       0.035074 

1.000          0.650       0.000000 



     

     
 

736  Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY  

     

     

 

Additional Examples 

Example 2 

In Example 2, we compute the natural cubic spline interpolant to a function f by forcing the 

second derivative of the interpolant to be zero at both endpoints. As in the previous example, we 

compare the exact function values with the values of the spline. 
 

      USE CSDEC_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    ILEFT, IRIGHT, NDATA, NOUT 

      PARAMETER  (ILEFT=2, IRIGHT=2, NDATA=11) 

!  

      INTEGER    I, NINTV 

      REAL       BREAK(NDATA), CSCOEF(4,NDATA), DLEFT, DRIGHT,& 

                 F, FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA), CSVAL 

      INTRINSIC  FLOAT, SIN 

!                                  Initialize DLEFT and DRIGHT 

      DATA DLEFT/0./, DRIGHT/0./ 

!                                  Define function 

      F(X) = SIN(15.0*X) 

!                                  Set up a grid 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Compute cubic spline interpolant 

      CALL CSDEC (XDATA, FDATA, ILEFT, DLEFT, IRIGHT, DRIGHT,& 

                  BREAK, CSCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error') 

      NINTV = NDATA - 1 

!                                  Print the interpolant on a finer grid 

      DO 20  I=1, 2*NDATA - 1 

         X = FLOAT(I-1)/FLOAT(2*NDATA-2) 

         WRITE (NOUT,'(2F15.3,F15.6)') X, CSVAL(X,BREAK,CSCOEF),& 

                                     F(X) - CSVAL(X,BREAK,& 

                                     CSCOEF) 

   20 CONTINUE 

      END 

Output 
 

    X         Interpolant     Error 

0.000          0.000       0.000000 

0.050          0.667       0.015027 

0.100          0.997       0.000000 

0.150          0.761       0.017156 

0.200          0.141       0.000000 



 

 

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation  737 

     

     

 

0.250         -0.559      -0.012609 

0.300         -0.978       0.000000 

0.350         -0.840      -0.018907 

0.400         -0.279       0.000000 

0.450          0.440       0.009812 

0.500          0.938       0.000000 

0.550          0.902       0.020753 

0.600          0.412       0.000000 

0.650         -0.311      -0.008586 

0.700         -0.880       0.000000 

0.750         -0.952      -0.015585 

0.800         -0.537       0.000000 

CSHER 
Computes the Hermite cubic spline interpolant. 

Required Arguments 

XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

The data point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

DFDATA — Array of length NDATA containing the values of the derivative.   (Input) 

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 

representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   

(Output) 

Optional Arguments 

NDATA — Number of data points.   (Input) 

Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 

Generic: CALL CSHER (XDATA, FDATA, DFDATA, BREAK, CSCOEF [,…]) 

Specific: The specific interface names are S_CSHER and D_CSHER. 

FORTRAN 77 Interface 

Single: CALL CSHER (NDATA, XDATA, FDATA, BREAK, CSCOEF) 

Double: The double precision name is DCSHER. 
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Description 

The routine CSHER computes a C 
1
 cubic spline interpolant to the set of data points 

   , and ,i i i ix f x f 
 

for i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas. 

If the data points arise from the values of a smooth (say C 
4
) function f, i.e.,  

( )and ( )i i i if f x f f x  
 

then the error will behave in a predictable fashion. Let ξ be the 

breakpoint vector for the above spline interpolant. Then, the maximum absolute error satisfies 

 
 

 1
1

44

,
,N

N

f s C f
 

 
 

 

where 

1
2, ,

: i i
i N

   


 
 

For more details, see de Boor (1978, page 51). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of C2HER/DC2HER. The 

reference is: 

CALL C2HER (NDATA, XDATA, FDATA, DFDATA, BREAK, CSCOEF, 

IWK) 

The additional argument is: 

IWK — Work array of length NDATA. 

2. Informational error 

Type Code 

4 2 The XDATA values must be distinct. 

3. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using 

CSDER. 

4. Note that column NDATA of CSCOEF is used as workspace. 
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Example 

In this example, a cubic spline interpolant to a function f is computed. The value of the function f 

and its derivative f ʹ are computed on the interpolation nodes and passed to CSHER. The values of 

this spline are then compared with the exact function values. 
 

      USE CSHER_INT 

      USE UMACH_INT 

      USE CSVAL_INT 

 

      IMPLICIT   NONE 

      INTEGER    NDATA 

      PARAMETER  (NDATA=11) 

!  

      INTEGER    I, NINTV, NOUT 

      REAL       BREAK(NDATA), COS, CSCOEF(4,NDATA), DF,& 

                 DFDATA(NDATA), F, FDATA(NDATA), FLOAT, SIN, X,& 

                 XDATA(NDATA) 

      INTRINSIC  COS, FLOAT, SIN 

!                                  Define function and derivative 

      F(X)  = SIN(15.0*X) 

      DF(X) = 15.0*COS(15.0*X) 

!                                  Set up a grid 

      DO 10  I=1, NDATA 

         XDATA(I)  = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I)  = F(XDATA(I)) 

         DFDATA(I) = DF(XDATA(I)) 

   10 CONTINUE 

!                                  Compute cubic spline interpolant 

      CALL CSHER (XDATA, FDATA, DFDATA, BREAK, CSCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error') 

      NINTV = NDATA - 1 

!                                  Print the interpolant on a finer grid 

      DO 20  I=1, 2*NDATA - 1 

         X = FLOAT(I-1)/FLOAT(2*NDATA-2) 

         WRITE (NOUT,'(2F15.3, F15.6)') X, CSVAL(X,BREAK,CSCOEF)& 

                                      , F(X) - CSVAL(X,BREAK,& 

                                      CSCOEF) 

 

   20 CONTINUE 

      END 

Output 
 

   X         Interpolant     Error 

0.000          0.000       0.000000 

0.050          0.673       0.008654 

0.100          0.997       0.000000 

0.150          0.768       0.009879 

0.200          0.141       0.000000 

0.250         -0.564      -0.007257 

0.300         -0.978       0.000000 
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0.350         -0.848      -0.010906 

0.400         -0.279       0.000000 

0.450          0.444       0.005714 

0.500          0.938       0.000000 

0.550          0.911       0.011714 

0.600          0.412       0.000000 

0.650         -0.315      -0.004057 

0.700         -0.880       0.000000 

0.750         -0.956      -0.012288 

0.800         -0.537       0.000000 

0.850          0.180       0.002318 

0.900          0.804       0.000000 

0.950          0.981       0.012616 

1.000          0.650       0.000000 

CSAKM 
Computes the Akima cubic spline interpolant. 

Required Arguments 

XDATA — Array of length NDATA containing the data point abscissas.   (Input)  

The data point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 

representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   

(Output) 

Optional Arguments 

NDATA — Number of data points.   (Input) 

Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 

Generic: CALL CSAKM (XDATA, FDATA, BREAK, CSCOEF [,…]) 

Specific: The specific interface names are S_CSAKM and D_CSAKM. 

FORTRAN 77 Interface 

Single: CALL CSAKM (NDATA, XDATA, FDATA, BREAK, CSCOEF) 

Double: The double precision name is DCSAKM. 
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Description 

The routine CSAKM computes a C 
1
 cubic spline interpolant to a set of data points (xi, fi) for  

i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are 

automatically determined by the program; see Akima (1970) or de Boor (1978). 

If the data points arise from the values of a smooth (say C 
4
) function f, i.e. fi = f(xi), then the error 

will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline 

interpolant. Then, the maximum absolute error satisfies 

 
 

 1
1

22

,
,N

N

f s C f
 

 
 

 

where 

1
2, ,

: max i i
i N

   


 
 

The routine CSAKM is based on a method by Akima (1970) to combat wiggles in the interpolant. 

The method is nonlinear; and although the interpolant is a piecewise cubic, cubic polynomials are 

not reproduced. (However, linear polynomials are reproduced.) 

Comments 

1. Workspace may be explicitly provided, if desired, by use of C2AKMD/C2AKM. The 

reference is: 

CALL C2AKM (NDATA, XDATA, FDATA, BREAK, CSCOEF, IWK) 

The additional argument is: 

IWK — Work array of length NDATA. 

2. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using 

CSDER. 

3. Note that column NDATA of CSCOEF is used as workspace. 

Example 

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are 

then compared with the exact function values. 
 

      USE CSAKM_INT 

      USE UMACH_INT 

      USE CSVAL_INT 

 

      IMPLICIT   NONE 

      INTEGER    NDATA 

      PARAMETER  (NDATA=11) 

!  

      INTEGER    I, NINTV, NOUT 

      REAL       BREAK(NDATA), CSCOEF(4,NDATA), F,& 
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                 FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA) 

      INTRINSIC  FLOAT, SIN 

!                                  Define function 

      F(X) = SIN(15.0*X) 

!                                  Set up a grid 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Compute cubic spline interpolant 

      CALL CSAKM (XDATA, FDATA, BREAK, CSCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error') 

      NINTV = NDATA - 1 

!                                  Print the interpolant on a finer grid 

      DO 20  I=1, 2*NDATA - 1 

         X = FLOAT(I-1)/FLOAT(2*NDATA-2) 

         WRITE (NOUT,'(2F15.3,F15.6)') X, CSVAL(X,BREAK,CSCOEF),& 

                                     F(X) - CSVAL(X,BREAK,& 

                                     CSCOEF) 

   20 CONTINUE 

      END 

Output 
 

   X         Interpolant     Error 

0.000          0.000       0.000000 

0.050          0.818      -0.135988 

0.100          0.997       0.000000 

0.150          0.615       0.163487 

0.200          0.141       0.000000 

0.250         -0.478      -0.093376 

0.300         -0.978       0.000000 

0.350         -0.812      -0.046447 

0.400         -0.279       0.000000 

0.450          0.386       0.064491 

0.500          0.938       0.000000 

0.550          0.854       0.068274 

0.600          0.412       0.000000 

0.650         -0.276      -0.043288 

0.700         -0.880       0.000000 

0.750         -0.889      -0.078947 

0.800         -0.537       0.000000 

0.850          0.149       0.033757 

0.900          0.804       0.000000 

0.950          0.932       0.061260 

1.000          0.650       0.000000 

CSCON 
Computes a cubic spline interpolant that is consistent with the concavity of the data. 
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Required Arguments 

XDATA — Array of length NDATA containing the data point abscissas.   (Input)  

The data point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

IBREAK — The number of breakpoints.   (Output)  

It will be less than 2 * NDATA. 

BREAK — Array of length IBREAK containing the breakpoints for the piecewise cubic 

representation in its first IBREAK positions.   (Output)  

The dimension of BREAK must be at least 2 * NDATA. 

CSCOEF — Matrix of size 4 by N where N is the dimension of BREAK.   (Output)  

The first IBREAK − 1 columns of CSCOEF contain the local coefficients of the cubic 

pieces. 

Optional Arguments 

NDATA — Number of data points.   (Input)  

NDATA must be at least 3. 

Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 

Generic: CALL CSCON (XDATA, FDATA, IBREAK, BREAK, CSCOEF [,…]) 

Specific: The specific interface names are S_CSCON and D_CSCON. 

FORTRAN 77 Interface 

Single: CALL CSCON (NDATA, XDATA, FDATA, IBREAK, BREAK, CSCOEF) 

Double: The double precision name is DCSCON. 

Descritpion 

The routine CSCON computes a cubic spline interpolant to n = NDATA data points {xi, fi} for  

i = 1, …, n. For ease of explanation, we will assume that xi < xi + 1, although it is not necessary for 

the user to sort these data values. If the data are strictly convex, then the computed spline is 

convex, C 
2
, and minimizes the expression 

 
1

2
nx

x
g

 

over all convex C 
1
 functions that interpolate the data. In the general case when the data have both 

convex and concave regions, the convexity of the spline is consistent with the data and the above 
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integral is minimized under the appropriate constraints. For more information on this interpolation 

scheme, we refer the reader to Micchelli et al. (1985) and Irvine et al. (1986). 

One important feature of the splines produced by this subroutine is that it is not possible, a priori, 

to predict the number of breakpoints of the resulting interpolant. In most cases, there will be 

breakpoints at places other than data locations. The method is nonlinear; and although the 

interpolant is a piecewise cubic, cubic polynomials are not reproduced. (However, linear 

polynomials are reproduced.) This routine should be used when it is important to preserve the 

convex and concave regions implied by the data. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of C2CON/DC2CON. The 

reference is: 

CALL C2CON (NDATA, XDATA, FDATA, IBREAK, BREAK, CSCOEF, 

ITMAX, XSRT, FSRT, A, Y, DIVD, ID, WK) 

The additional arguments are as follows: 

ITMAX — Maximum number of iterations of Newton‘s method.   (Input) 

XSRT — Work array of length NDATA to hold the sorted XDATA values. 

FSRT — Work array of length NDATA to hold the sorted FDATA values. 

A — Work array of length NDATA. 

Y — Work array of length NDATA − 2. 

DIVD — Work array of length NDATA − 2. 

ID — Integer work array of length NDATA. 

WK — Work array of length 5 * (NDATA − 2). 

2. Informational errors  

Type Code 

3 16 Maximum number of iterations exceeded, call C2CON/DC2CON to set 

a larger number for ITMAX. 

4 3 The XDATA values must be distinct. 

3. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using 

CSDER. 

4. The default value for ITMAX is 25. This can be reset by calling C2CON/DC2CON directly. 
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Example 

We first compute the shape-preserving interpolant using CSCON, and display the coefficients and 

breakpoints. Second, we interpolate the same data using CSINT in a program not shown and 

overlay the two results. The graph of the result from CSINT is represented by the dashed line. 

Notice the extra inflection points in the curve produced by CSINT. 
 

      USE CSCON_INT 

      USE UMACH_INT 

      USE WRRRL_INT 

 

      IMPLICIT   NONE 

!                                  Specifications 

      INTEGER    NDATA 

      PARAMETER  (NDATA=9) 

!  

      INTEGER    IBREAK, NOUT 

      REAL       BREAK(2*NDATA), CSCOEF(4,2*NDATA), FDATA(NDATA),& 

                 XDATA(NDATA) 

      CHARACTER  CLABEL(14)*2, RLABEL(4)*2 

!  

      DATA XDATA/0.0, .1, .2, .3, .4, .5, .6, .8, 1./ 

      DATA FDATA/0.0, .9, .95, .9, .1, .05, .05, .2, 1./ 

      DATA RLABEL/' 1', ' 2', ' 3', ' 4'/ 

      DATA CLABEL/'  ', ' 1', ' 2', ' 3', ' 4', ' 5', ' 6',& 

           ' 7', ' 8', ' 9', '10', '11', '12', '13'/ 

!                                  Compute cubic spline interpolant 

      CALL CSCON (XDATA, FDATA, IBREAK, BREAK, CSCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Print the BREAK points and the 

!                                  coefficients (CSCOEF) for 

!                                  checking purposes. 

      WRITE (NOUT,'(1X,A,I2)') 'IBREAK = ', IBREAK 

      CALL WRRRL ('BREAK', BREAK, RLABEL, CLABEL, 1, IBREAK, 1, & 

                  FMT='(F9.3)') 

      CALL WRRRL ('CSCOEF', CSCOEF, RLABEL, CLABEL, 4, IBREAK, 4, & 

                  FMT='(F9.3)') 

      END 

Output 
 

IBREAK = 13 

                               BREAK 

           1          2          3          4          5          6 

1      0.000      0.100      0.136      0.200      0.259      0.300 

 

           7          8          9         10         11         12 

1      0.400      0.436      0.500      0.600      0.609      0.800 

 

          13 

1      1.000 

 

                              CSCOEF 

           1          2          3          4          5          6 

1      0.000      0.900      0.942      0.950      0.958      0.900 
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2     11.886      3.228      0.131      0.131      0.131    -4.434 

3      0.000   -173.170      0.000      0.000      0.000   220.218 

4  -1731.699   4841.604      0.000      0.000  -5312.082  4466.875 

 

           7          8          9         10         11         12 

1      0.100      0.050      0.050      0.050      0.050      0.200 

2     -4.121      0.000      0.000      0.000      0.000      2.356 

3    226.470      0.000      0.000      0.000      0.000     24.664 

4  -6222.348      0.000      0.000      0.000    129.115    123.321 

 

          13 

1      1.000 

2      0.000 

3      0.000 

4      0.000 

 

Figure 3- 4  CSCON vs. CSINT 

CSPER 
Computes the cubic spline interpolant with periodic boundary conditions. 

Required Arguments 

XDATA — Array of length NDATA containing the data point abscissas.   (Input)  

The data point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 
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BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 

representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   

(Output) 

Optional Arguments 

NDATA — Number of data points.   (Input)  

NDATA must be at least 4. 

Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 

Generic: CALL CSPER (XDATA, FDATA, BREAK, CSCOEF [,…]) 

Specific: The specific interface names are S_CSPER and D_CSPER. 

FORTRAN 77 Interface 

Single: CALL CSPER (NDATA, XDATA, FDATA, BREAK, CSCOEF) 

Double: The double precision name is DCSPER. 

Description  

The routine CSPER computes a C
2
 cubic spline interpolant to a set of data points (xi, fi) for 

i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas. The program enforces 

periodic endpoint conditions. This means that the spline s satisfies s(a) = s(b), sʹ(a) = sʹ(b), and  

s"(a) = s"(b), where a is the leftmost abscissa and b is the rightmost abscissa. If the ordinate values 

corresponding to a and b are not equal, then a warning message is issued. The ordinate value at b 

is set equal to the ordinate value at a and the interpolant is computed. 

If the data points arise from the values of a smooth (say C 
4
) periodic function f, i.e. fi = f(xi), then 

the error will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline 

interpolant. Then, the maximum absolute error satisfies 

 
 

 1
1

44

,
,N

N

f s C f
 

 
 

 

where 

1
2, ,

: max i i
i N

   


 
 

For more details, see de Boor (1978, pages 320− 322). 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of C2PER/DC2PER. The 

reference is: 

CALL C2PER (NDATA, XDATA, FDATA, BREAK, CSCOEF, WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length 6 * NDATA. 

IWK — Work array of length NDATA. 

2. Informational error 

Type Code 

3 1 The data set is not periodic, i.e., the function values at the smallest 

and largest XDATA points are not equal. The value at the smallest 

XDATA point is used. 

3. The cubic spline can be evaluated using CSVAL and its derivative can be evaluated 

using CSDER. 

Example 

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are 

then compared with the exact function values. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    NDATA 

      PARAMETER  (NDATA=11) 

!  

      INTEGER    I, NINTV, NOUT 

      REAL       BREAK(NDATA), CSCOEF(4,NDATA), F,& 

                 FDATA(NDATA), FLOAT, H, PI, SIN, X, XDATA(NDATA) 

      INTRINSIC  FLOAT, SIN 

!  

!                                  Define function 

      F(X) = SIN(15.0*X) 

!                                  Set up a grid 

      PI = CONST('PI') 

      H = 2.0*PI/15.0/10.0 

      DO 10  I=1, NDATA 

         XDATA(I) = H*FLOAT(I-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Round off will cause FDATA(11) to 

!                                  be nonzero; this would produce a 

!                                  warning error since FDATA(1) is zero. 

!                                  Therefore, the value of FDATA(1) is 
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!                                  used rather than the value of 

!                                  FDATA(11). 

      FDATA(NDATA) = FDATA(1) 

!  

!                                  Compute cubic spline interpolant 

      CALL CSPER (XDATA, FDATA, BREAK, CSCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error') 

      NINTV = NDATA - 1 

      H     = H/2.0 

!                                  Print the interpolant on a finer grid 

      DO 20  I=1, 2*NDATA - 1 

         X = H*FLOAT(I-1) 

         WRITE (NOUT,'(2F15.3,F15.6)') X, CSVAL(X,BREAK,CSCOEF),& 

                                     F(X) - CSVAL(X,BREAK,& 

                                     CSCOEF) 

   20 CONTINUE 

      END 

Output 
 

       X         Interpolant     Error 

0.000          0.000       0.000000 

0.021          0.309       0.000138 

0.042          0.588       0.000000 

0.063          0.809       0.000362 

0.084          0.951       0.000000 

0.105          1.000       0.000447 

0.126          0.951       0.000000 

0.147          0.809       0.000362 

0.168          0.588       0.000000 

0.188          0.309       0.000138 

0.209          0.000       0.000000 

0.230         -0.309      -0.000138 

0.251         -0.588       0.000000 

0.272         -0.809      -0.000362 

0.293         -0.951       0.000000 

0.314         -1.000      -0.000447 

0.335         -0.951       0.000000 

0.356         -0.809      -0.000362 

0.377         -0.588       0.000000 

0.398         -0.309      -0.000138 

0.419          0.000       0.000000 

CSVAL 
This function evaluates a cubic spline. 

Function Return Value 

CSVAL — Value of the polynomial at X.   (Output) 
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Required Arguments 

X — Point at which the spline is to be evaluated.   (Input) 

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic 

representation.   (Input)  

BREAK must be strictly increasing. 

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic 

pieces.   (Input) 

Optional Arguments 

NINTV — Number of polynomial pieces.   (Input) 

FORTRAN 90 Interface 

Generic: CSVAL (X, BREAK, CSCOEF[,…]) 

Specific: The specific interface names are S_CSVAL and D_CSVAL. 

FORTRAN 77 Interface 

Single: CSVAL (X, NINTV, BREAK, CSCOEF) 

Double: The double precision function name is DCSVAL. 

Description 

The routine CSVAL evaluates a cubic spline at a given point. It is a special case of the routine 

PPDER, which evaluates the derivative of a piecewise polynomial. (The value of a piecewise 

polynomial is its zero-th derivative and a cubic spline is a piecewise polynomial of order 4.) The 

routine PPDER is based on the routine PPVALU in de Boor (1978, page 89). 

Example 

For an example of the use of CSVAL, see IMSL routine CSINT. 

CSDER 
This function evaluates the derivative of a cubic spline. 

Function Return Value 

CSDER —  Value of the IDERIV-th derivative of the polynomial at X.   (Output) 
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Required Arguments 

IDERIV — Order of the derivative to be evaluated.   (Input) 

In particular, IDERIV = 0 returns the value of the polynomial. 

X — Point at which the polynomial is to be evaluated.   (Input) 

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic 

representation.   (Input)  

BREAK must be strictly increasing. 

CSCOEF —  Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic 

pieces.   (Input) 

Optional Arguments 

NINTV —  Number of polynomial pieces.   (Input) 

Default: NINTV = size (BREAK,1) – 1. 

FORTRAN 90 Interface 

Generic: CSDER (IDERIV, X, BREAK, CSCOEF, CSDER [,…]) 

Specific: The specific interface names are S_CSDER and D_CSDER. 

FORTRAN 77 Interface 

Single: CSDER (IDERIV, X, NINTV, BREAK, CSCOEF) 

Double: The double precision function name is DCSDER. 

Description 

The function CSDER evaluates the derivative of a cubic spline at a given point. It is a special case 

of the routine PPDER, which evaluates the derivative of a piecewise polynomial. (A cubic spline is 

a piecewise polynomial of order 4.) The routine PPDER is based on the routine PPVALU in de Boor 

(1978, page 89). 

Example 

In this example, we compute a cubic spline interpolant to a function f using IMSL routine CSINT. 

The values of the spline and its first and second derivatives are computed using CSDER. These 

values can then be compared with the corresponding values of the interpolated function. 
 

      USE CSDER_INT 

      USE CSINT_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    NDATA 

      PARAMETER  (NDATA=10) 



     

     
 

752  Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY  

     

     

 

!  

      INTEGER    I, NINTV, NOUT 

      REAL       BREAK(NDATA), CDDF, CDF, CF, COS, CSCOEF(4,NDATA),& 

                 DDF, DF, F, FDATA(NDATA), FLOAT, SIN, X,& 

                 XDATA(NDATA) 

      INTRINSIC  COS, FLOAT, SIN 

!                                  Define function and derivatives 

      F(X)   = SIN(15.0*X) 

      DF(X)  = 15.0*COS(15.0*X) 

      DDF(X) = -225.0*SIN(15.0*X) 

!                                  Set up a grid 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Compute cubic spline interpolant 

      CALL CSINT (XDATA, FDATA, BREAK, CSCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

99999 FORMAT (9X, 'X', 8X, 'S(X)', 5X, 'Error', 6X, 'S''(X)', 5X,& 

             'Error', 6X, 'S''''(X)', 4X, 'Error', /) 

      NINTV = NDATA - 1 

!                                  Print the interpolant on a finer grid 

      DO 20  I=1, 2*NDATA 

         X    = FLOAT(I-1)/FLOAT(2*NDATA-1) 

         CF   = CSDER(0,X,BREAK,CSCOEF) 

         CDF  = CSDER(1,X,BREAK,CSCOEF) 

         CDDF = CSDER(2,X,BREAK,CSCOEF) 

         WRITE (NOUT,'(F11.3, 3(F11.3, F11.6))') X, CF, F(X) - CF,& 

                                               CDF, DF(X) - CDF,& 

                                               CDDF, DDF(X) - CDDF 

   20 CONTINUE 

      END 

Output 
 

   X        S(X)     Error      S‘(X)     Error      S‘‘(X)    Error 

 

0.000      0.000   0.000000     26.285 -11.284739   -379.458 379.457794 

0.053      0.902  -0.192203      8.841   1.722460   -283.411 123.664734 

0.105      1.019  -0.019333     -3.548   3.425718   -187.364 -37.628586 

0.158      0.617   0.081009    -10.882   0.146207    -91.317 -65.824875 

0.211     -0.037   0.021155    -13.160  -1.837700      4.730  -1.062027 

0.263     -0.674  -0.046945    -10.033  -0.355268    117.916  44.391640 

0.316     -0.985  -0.015060     -0.719   1.086203    235.999 -11.066727 

0.368     -0.682  -0.004651     11.314  -0.409097    154.861  -0.365387 

0.421      0.045  -0.011915     14.708   0.284042    -25.887  18.552732 

0.474      0.708   0.024292      9.508   0.702690   -143.785 -21.041260 

0.526      0.978   0.020854      0.161  -0.771948   -211.402 -13.411087 

0.579      0.673   0.001410    -11.394   0.322443   -163.483  11.674103 

0.632     -0.064   0.015118    -14.937  -0.045511     28.856 -17.856323 

0.684     -0.724  -0.019246     -8.859  -1.170871    163.866   3.435547 

0.737     -0.954  -0.044143      0.301   0.554493    184.217  40.417282 
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0.789     -0.675   0.012143     10.307   0.928152    166.021 -16.939514 

0.842      0.027   0.038176     15.015  -0.047344     12.914 -27.575521 

0.895      0.764  -0.010112     11.666  -1.819128   -140.193 -29.538193 

0.947      1.114  -0.116304      0.258  -1.357680   -293.301  68.905701 

1.000      0.650   0.000000    -19.208   7.812407   -446.408 300.092896 

CS1GD 
Evaluates the derivative of a cubic spline on a grid. 

Required Arguments 

IDERIV — Order of the derivative to be evaluated.   (Input)  

In particular, IDERIV = 0 returns the values of the cubic spline. 

XVEC — Array of length N containing the points at which the cubic spline is to be evaluated.   

(Input)  

The points in XVEC should be strictly increasing. 

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic 

representation.   (Input)  

BREAK must be strictly increasing. 

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic 

pieces.   (Input) 

VALUE —  Array of length N containing the values of the IDERIV-th derivative of the cubic 

spline at the points in XVEC.   (Output) 

Optional Arguments 

N — Length of vector XVEC.   (Input) 

Default: N = size (XVEC,1). 

NINTV — Number of polynomial pieces.   (Input) 

Default: NINTV = size (BREAK,1) – 1. 

FORTRAN 90 Interface 

Generic: CALL CS1GD (IDERIV, XVEC, BREAK, CSCOEF, VALUE [,…]) 

Specific: The specific interface names are S_CS1GD and D_CS1GD. 

FORTRAN 77 Interface 

Single: CALL CS1GD (IDERIV, N, XVEC, NINTV, BREAK, CSCOEF, VALUE) 

Double: The double precision name is DCS1GD. 
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Description 

The routine CS1GD evaluates a cubic spline (or its derivative) at a vector of points. That is, given a 

vector x of length n satisfying xi < xi + 1 for i = 1, …, n − 1, a derivative value j, and a cubic spline 

s that is represented by a breakpoint sequence and coefficient matrix this routine returns the values 

s
(j)

(xi) i = 1, …, n 

in the array VALUE. The functionality of this routine is the same as that of CSDER called in a loop, 

however CS1GD should be much more efficient. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of C21GD/DC21GD. The 

reference is: 

CALL C21GD (IDERIV, N, XVEC, NINTV, BREAK, CSCOEF, VALUE, 

IWK, WORK1, WORK2) 

The additional arguments are as follows: 

IWK — Array of length N. 

WORK1 — Array of length N. 

WORK2 — Array of length N. 

2. Informational error 

Type Code 

4 4 The points in XVEC must be strictly increasing. 

Example 

To illustrate the use of CS1GD, we modify the example program for CSINT. In this example, a 

cubic spline interpolant to F is computed. The values of this spline are then compared with the 

exact function values. The routine CS1GD is based on the routine PPVALU in de Boor (1978, page 

89). 
 

      USE CS1GD_INT 

      USE CSINT_INT 

      USE UMACH_INT 

      USE CSVAL_INT 

 

      IMPLICIT   NONE 

!                                  Specifications 

      INTEGER    NDATA, N, IDERIV, J 

      PARAMETER  (NDATA=11, N=2*NDATA-1) 

!  

      INTEGER    I, NINTV, NOUT 

      REAL       BREAK(NDATA), CSCOEF(4,NDATA), F,& 
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                 FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA),& 

                 FVALUE(N), VALUE(N), XVEC(N) 

      INTRINSIC  FLOAT, SIN 

!                                  Define function 

      F(X) = SIN(15.0*X) 

!                                  Set up a grid 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Compute cubic spline interpolant 

      CALL CSINT (XDATA, FDATA, BREAK, CSCOEF) 

      DO 20  I=1, N 

         XVEC(I) = FLOAT(I-1)/FLOAT(2*NDATA-2) 

         FVALUE(I) = F(XVEC(I)) 

   20  CONTINUE 

      IDERIV = 0 

      NINTV = NDATA - 1 

      CALL CS1GD (IDERIV, XVEC, BREAK, CSCOEF, VALUE) 

!                                  Get output unit number. 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error') 

!                                  Print the interpolant and the error 

!                                  on a finer grid 

      DO 30 J=1, N 

         WRITE (NOUT,'(2F15.3,F15.6)') XVEC(J), VALUE(J),& 

                                     FVALUE(J)-VALUE(J) 

   30 CONTINUE 

      END 

Output 
 

   X         Interpolant     Error 

0.000          0.000       0.000000 

0.050          0.809      -0.127025 

0.100          0.997       0.000000 

0.150          0.723       0.055214 

0.200          0.141       0.000000 

0.250         -0.549      -0.022789 

0.300         -0.978       0.000000 

0.350         -0.843      -0.016246 

0.400         -0.279       0.000000 

0.450          0.441       0.009348 

0.500          0.938       0.000000 

0.550          0.903       0.019947 

0.600          0.412       0.000000 

0.650         -0.315      -0.004895 

0.700         -0.880       0.000000 

0.750         -0.938      -0.029541 

0.800         -0.537       0.000000 

0.850          0.148       0.034693 

0.900          0.804       0.000000 

0.950          1.086      -0.092559 

1.000          0.650       0.000000 
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CSITG 
This function evaluates the integral of a cubic spline. 

Function Return Value 

CSITG — Value of the integral of the spline from A to B.   (Output) 

Required Arguments 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic 

representation.   (Input)  

BREAK must be strictly increasing. 

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic 

pieces.   (Input) 

Optional Arguments 

NINTV — Number of polynomial pieces.   (Input) 

Default: NINTV = size (BREAK,1) – 1. 

FORTRAN 90 Interface 

Generic: CSITG (A, B, BREAK, CSCOEF [,…]) 

Specific: The specific interface names are S_CSITG and D_CSITG. 

FORTRAN 77 Interface 

Single: CSITG(A, B, NINTV, BREAK, CSCOEF) 

Double: The double precision function name is DCSITG. 

Description 

The function CSITG evaluates the integral of a cubic spline over an interval. It is a special case of 

the routine PPITG, which evaluates the integral of a piecewise polynomial. (A cubic spline is a 

piecewise polynomial of order 4.) 
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Example 

This example computes a cubic spline interpolant to the function x
2
 using CSINT and evaluates its 

integral over the intervals [0., .5] and [0., 2.]. Since CSINT uses the not-a knot condition, the 

interpolant reproduces x
2
, hence the integral values are 1/24 and 8/3, respectively. 

 

      USE CSITG_INT 

      USE UMACH_INT 

      USE CSINT_INT 

 

      IMPLICIT   NONE 

      INTEGER    NDATA 

      PARAMETER  (NDATA=10) 

!  

      INTEGER    I, NINTV, NOUT 

      REAL       A, B, BREAK(NDATA), CSCOEF(4,NDATA), ERROR,& 

                 EXACT, F, FDATA(NDATA), FI, FLOAT, VALUE, X,& 

                 XDATA(NDATA) 

      INTRINSIC  FLOAT 

!                                  Define function and integral 

      F(X)  = X*X 

      FI(X) = X*X*X/3.0 

!                                  Set up a grid 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Compute cubic spline interpolant 

      CALL CSINT (XDATA, FDATA, BREAK, CSCOEF) 

!                                  Compute the integral of F over 

!                                  [0.0,0.5] 

      A     = 0.0 

      B     = 0.5 

      NINTV = NDATA - 1 

      VALUE = CSITG(A,B,BREAK,CSCOEF) 

      EXACT = FI(B) - FI(A) 

      ERROR = EXACT - VALUE 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Print the result 

      WRITE (NOUT,99999) A, B, VALUE, EXACT, ERROR 

!                                  Compute the integral of F over 

!                                  [0.0,2.0] 

      A     = 0.0 

      B     = 2.0 

      VALUE = CSITG(A,B,BREAK,CSCOEF) 

      EXACT = FI(B) - FI(A) 

      ERROR = EXACT - VALUE 

!                                  Print the result 

      WRITE (NOUT,99999) A, B, VALUE, EXACT, ERROR 

99999 FORMAT (' On the closed interval (', F3.1, ',', F3.1,& 

             ') we have :', /, 1X, 'Computed Integral = ', F10.5, /,& 

             1X, 'Exact Integral    = ', F10.5, /, 1X, 'Error         '& 

             , '    = ', F10.6, /, /) 

      END 
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Output 
 

On the closed interval (0.0,0.5) we have : 

Computed Integral =    0.04167 

Exact Integral    =    0.04167 

Error             =   0.000000 

 

On the closed interval (0.0,2.0) we have : 

Computed Integral =    2.66666 

Exact Integral    =    2.66667 

Error             =   0.000006 

SPLEZ 

 

 

 

Computes the values of a spline that either interpolates or fits user-supplied data. 

Required Arguments 

XDATA — Array of length NDATA containing the data point abscissae.   (Input)  

The data point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

XVEC — Array of length N containing the points at which the spline function values are 

desired.   (Input)  

The entries of XVEC must be distinct. 

VALUE — Array of length N containing the spline values.   (Output) 

VALUE (I) = S(XVEC (I)) if IDER = 0, VALUE(I) = Sʹ(XVEC (I)) if IDER = 1, and so 

forth, where S is the computed spline. 

Optional Arguments 

NDATA — Number of data points.   (Input)  

Default: NDATA = size (XDATA,1). 

All choices of ITYPE are valid if NDATA is larger than 6. More specifically, 

NDATA > ITYPE                or ITYPE = 1. 

NDATA > 3                         for ITYPE = 2, 3. 

NDATA > (ITYPE − 3)        for ITYPE = 4, 5, 6, 7, 8. 
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NDATA > 3                         for ITYPE = 9, 10, 11, 12. 

NDATA > KORDER              for ITYPE = 13, 14, 15. 

ITYPE — Type of interpolant desired.   (Input)  

Default: ITYPE = 1. 

ITYPE 

1  yields CSINT 

2  yields CSAKM 

3  yields CSCON 

4  yields BSINT-BSNAK K = 2 

5  yields BSINT-BSNAK K = 3 

6  yields BSINT-BSNAK K = 4 

7  yields BSINT-BSNAK K = 5 

8  yields BSINT-BSNAK K = 6 

9  yields CSSCV 

10  yields BSLSQ K = 2 

11  yields BSLSQ K = 3 

12  yields BSLSQ K = 4 

13  yields BSVLS K = 2 

14  yields BSVLS K = 3 

15  yields BSVLS K = 4 

IDER — Order of the derivative desired.   (Input) 

Default: IDER = 0. 

N — Number of function values desired.   (Input) 

Default: N = size (XVEC,1). 

FORTRAN 90 Interface 

Generic: CALL SPLEZ (XDATA, FDATA, XVEC, VALUE [,…]) 

Specific: The specific interface names are S_SPLEZ and D_SPLEZ. 

FORTRAN 77 Interface 

Single: CALL SPLEZ (NDATA, XDATA, FDATA, ITYPE, IDER, N, XVEC, VALUE) 

Double: The double precision name is DSPLEZ. 
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Description 

This routine is designed to let the user experiment with various interpolation and smoothing 

routines in the library. 

The routine SPLEZ computes a spline interpolant to a set of data points (xi, fi) for i = 1, …, NDATA 

if ITYPE = 1, …, 8. If ITYPE ≥ 9, various smoothing or least squares splines are computed. The 

output for this routine consists of a vector of values of the computed spline or its derivatives. 

Specifically, let i = IDER, n = N, v = XVEC, and y = VALUE, then if s is the computed spline we set 

yj = s
(i)

(vj) j = 1, …, n 

The routines called are listed above under the ITYPE heading. Additional documentation can be 

found by referring to these routines. 

Example 

In this example, all the ITYPE parameters are exercised. The values of the spline are then 

compared with the exact function values and derivatives. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    NDATA, N 

      PARAMETER  (NDATA=21, N=2*NDATA-1) 

!                                  Specifications for local variables 

      INTEGER    I, IDER, ITYPE, NOUT 

      REAL       FDATA(NDATA), FPVAL(N), FVALUE(N),& 

                 VALUE(N), XDATA(NDATA), XVEC(N), EMAX1(15),& 

                 EMAX2(15), X 

!                                  Specifications for intrinsics 

      INTRINSIC  FLOAT, SIN, COS 

      REAL       FLOAT, SIN, COS 

!                                  Specifications for subroutines 

!  

      REAL       F, FP 

!  

!                                  Define a function 

      F(X)  = SIN(X*X) 

      FP(X) = 2*X*COS(X*X) 

!  

      CALL UMACH (2, NOUT) 

!                                  Set up a grid 

      DO 10  I=1, NDATA 

         XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1)) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

      DO 20  I=1, N 

         XVEC(I)    = 3.0*(FLOAT(I-1)/FLOAT(2*NDATA-2)) 

         FVALUE(I)  = F(XVEC(I)) 

         FPVAL(I) = FP(XVEC(I)) 

   20 CONTINUE 

!  

      WRITE (NOUT,99999) 

!                                  Loop to call SPLEZ for each ITYPE 
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      DO 40  ITYPE=1, 15 

         DO 30  IDER=0, 1 

            CALL SPLEZ (XDATA, FDATA, XVEC, VALUE, ITYPE=ITYPE, & 

                        IDER=IDER) 

!                                 Compute the maximum error 

            IF (IDER .EQ. 0) THEN 

               CALL SAXPY (N, -1.0, FVALUE, 1, VALUE, 1) 

               EMAX1(ITYPE) = ABS(VALUE(ISAMAX(N,VALUE,1))) 

            ELSE 

               CALL SAXPY (N, -1.0, FPVAL, 1, VALUE, 1) 

               EMAX2(ITYPE) = ABS(VALUE(ISAMAX(N,VALUE,1))) 

            END IF 

   30  CONTINUE 

         WRITE (NOUT,'(I7,2F20.6)') ITYPE, EMAX1(ITYPE), EMAX2(ITYPE) 

   40 CONTINUE 

!  

99999 FORMAT (4X, 'ITYPE', 6X, 'Max error for f', 5X,& 

              'Max error for f''', /) 

      END 

Output 
 

ITYPE      Max error for f     Max error for f‘ 

 

 1            0.014082            0.658018 

 2            0.024682            0.897757 

 3            0.020896            0.813228 

 4            0.083615            2.168083 

 5            0.010403            0.508043 

 6            0.014082            0.658020 

 7            0.004756            0.228858 

 8            0.001070            0.077159 

 9            0.020896            0.813228 

10            0.392603            6.047916 

11            0.162793            1.983959 

12            0.045404            1.582624 

13            0.588370            7.680381 

14            0.752475            9.673786 

15            0.049340            1.713031 

BSINT 

 

Computes the spline interpolant, returning the B-spline coefficients. 

Required Arguments 

NDATA — Number of data points.   (Input) 

XDATA — Array of length NDATA containing the data point abscissas.   (Input) 
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FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

KORDER — Order of the spline.   (Input) 

KORDER must be less than or equal to NDATA. 

XKNOT — Array of length NDATA + KORDER containing the knot sequence.   (Input) 

XKNOT must be nondecreasing. 

BSCOEF — Array of length NDATA containing the B-spline coefficients.   (Output) 

FORTRAN 90 Interface 

Generic: CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

Specific: The specific interface names are S_BSINT and D_BSINT. 

FORTRAN 77 Interface 

Single: CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

Double: The double precision name is DBSINT. 

Description 

Following the notation in de Boor (1978, page 108), let Bj = Bj,k,t denote the j-th B-spline of order 

k with respect to the knot sequence t. Then, BSINT computes the vector a satisfying 

 
1

N

j j i i

j

a B x f



 

and returns the result in BSCOEF = a. This linear system is banded with at most k − 1 subdiagonals 

and k − 1 superdiagonals. The matrix 

A = (Bj (xi)) 

is totally positive and is invertible if and only if the diagonal entries are nonzero. The routine 

BSINT is based on the routine SPLINT by de Boor (1978, page 204).  

The routine BSINT produces the coefficients of the B-spline interpolant of order KORDER with knot 

sequence XKNOT to the data (xi, fi) for i = 1 to NDATA, where x = XDATA and f = FDATA. Let  

t = XKNOT, k = KORDER, and N = NDATA. First, BSINT sorts the XDATA vector and stores the result 

in x. The elements of the FDATA vector are permuted appropriately and stored in f, yielding the 

equivalent data (xi, fi) for i = 1 to N. The following preliminary checks are performed on the data. 

We verify that 
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The first test checks to see that the abscissas are distinct. The second and third inequalities verify 

that a valid knot sequence has been specified. 

In order for the interpolation matrix to be nonsingular, we also check tk ≤ x ≤ tN + 1 for i = 1 to N. 

This first inequality in the last check is necessary since the method used to generate the entries of 

the interpolation matrix requires that the k possibly nonzero B-splines at xi, 

Bj - k +1, …, Bj  where j satisfies tj ≤ xi < tj + 1 

be well-defined (that is, j − k + 1 ≥ 1). 

General conditions are not known for the exact behavior of the error in spline interpolation, 

however, if t and x are selected properly and the data points arise from the values of a smooth (say 

C 
k
) function f, i.e. fi = f(xi), then the error will behave in a predictable fashion. The maximum 

absolute error satisfies 

 
 

 1
1

,
,k N

k N
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f s C f
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t t
t

 

where 

1
, ,

: max i i
i k N




 t t t
 

For more information on this problem, see de Boor (1978, Chapter 13) and the references therein. 

This routine can be used in place of the IMSL routine CSINT by calling BSNAK to obtain the 

proper knots, then calling BSINT yielding the B-spline coefficients, and finally calling IMSL 

routine BSCPP to convert to piecewise polynomial form. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2INT/DB2INT. The 

reference is: 

CALL B2INT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF, 

WK1, WK2, WK3, IWK) 

The additional arguments are as follows: 

WK1 — Work array of length (5 * KORDER − 2) * NDATA. 

WK2 — Work array of length NDATA. 

WK3 — Work array of length NDATA. 

IWK — Work array of length NDATA. 
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2. Informational errors 

Type Code 

3 1 The interpolation matrix is ill-conditioned. 

4 3 The XDATA values must be distinct. 

4  4 Multiplicity of the knots cannot exceed the order of the spline. 

4  5 The knots must be nondecreasing. 

4 15 The I-th smallest element of the data point array must be greater than 

the Ith knot and less than the (I + KORDER)-th knot. 

4 16 The largest element of the data point array must be greater than the 

(NDATA)-th knot and less than or equal to the  

(NDATA + KORDER)-th knot. 

4 17 The smallest element of the data point array must be greater than or 

equal to the first knot and less than the (KORDER + 1)st knot. 

3. The spline can be evaluated using BSVAL, and its derivative can be evaluated using 

BSDER. 

Example 

In this example, a spline interpolant s, to 

 f x x
 

is computed. The interpolated values are then compared with the exact function values using the 

IMSL routine BSVAL. 
 

      USE BSINT_INT 

      USE BSNAK_INT 

      USE UMACH_INT 

      USE BSVAL_INT 

 

      IMPLICIT   NONE 

      INTEGER    KORDER, NDATA, NKNOT 

      PARAMETER  (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER) 

!  

      INTEGER    I, NCOEF, NOUT 

      REAL       BSCOEF(NDATA), BT, F, FDATA(NDATA), FLOAT,& 

                 SQRT, X, XDATA(NDATA), XKNOT(NKNOT), XT 

      INTRINSIC  FLOAT, SQRT 

!                                  Define function 

      F(X) = SQRT(X) 

!                                  Set up interpolation points 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Generate knot sequence 
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      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

!                                  Interpolate 

      CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Print on a finer grid 

      NCOEF = NDATA 

      XT    = XDATA(1) 

!                                  Evaluate spline 

      BT    = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF) 

      WRITE (NOUT,99998) XT, BT, F(XT) - BT 

      DO 20  I=2, NDATA 

         XT = (XDATA(I-1)+XDATA(I))/2.0 

!                                  Evaluate spline 

         BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF) 

         WRITE (NOUT,99998) XT, BT, F(XT) - BT 

         XT = XDATA(I) 

!                                  Evaluate spline 

         BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF) 

         WRITE (NOUT,99998) XT, BT, F(XT) - BT 

   20 CONTINUE 

99998 FORMAT (' ', F6.4, 15X, F8.4, 12X, F11.6) 

99999 FORMAT (/, 6X, 'X', 19X, 'S(X)', 18X, 'Error', /) 

      END 

Output 
 

     X                   S(X)                  Error 

0.0000                 0.0000               0.000000 

0.1250                 0.2918               0.061781 

0.2500                 0.5000               0.000000 

0.3750                 0.6247              -0.012311 

0.5000                 0.7071               0.000000 

0.6250                 0.7886               0.002013 

0.7500                 0.8660               0.000000 

0.8750                 0.9365              -0.001092 

1.0000                 1.0000               0.000000 

BSNAK 
Computes the ―not-a-knot‖ spline knot sequence. 

Required Arguments 

NDATA — Number of data points.   (Input) 

XDATA — Array of length NDATA containing the location of the data points.   (Input) 

KORDER — Order of the spline.   (Input) 

XKNOT — Array of length NDATA + KORDER containing the knot sequence.   (Output) 



     

     
 

766  Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY  

     

     

 

FORTRAN 90 Interface 

Generic: CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

Specific: The specific interface names are S_BSNAK and D_BSNAK. 

FORTRAN 77 Interface 

Single: CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

Double: The double precision name is DBSNAK. 

Description 

Given the data points x = XDATA , the order of the spline k = KORDER, and the number N = NDATA 

of elements in XDATA, the subroutine BSNAK returns in t = XKNOT a knot sequence that is 

appropriate for interpolation of data on x by splines of order k. The vector t contains the knot 

sequence in its first N + k positions. If k is even and we assume that the entries in the input vector 

x are increasing, then t is returned as 

ti = x1       for i = 1, …, k 

ti = xi - k/2     for i = k + 1, …, N 

ti = xN + ɛ  for i = N + 1, …, N + k 

where ɛ is a small positive constant. There is some discussion concerning this selection of knots in 

de Boor (1978, page 211). If k is odd, then t is returned as 

1 for  = 1, , i x i kt  

1 1
1

2 2

( ) / 2 for  =  + 1, , i k k
i i

x x i k N 
  

 t  

for  =  + 1, ,  + i Nx i N N k t  

It is not necessary to sort the values in x since this is done in the routine BSNAK. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2NAK/DB2NAK. The 

reference is: 

CALL B2NAK (NDATA, XDATA, KORDER, XKNOT, XSRT, IWK) 

The additional arguments are as follows: 

XSRT — Work array of length NDATA to hold the sorted XDATA values. If 

XDATA is not needed, XSRT may be the same as XDATA. 
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IWK — Work array of length NDATA to hold the permutation of XDATA. 

2. Informational error 

Type Code 

4 4 The XDATA values must be distinct. 

3. The first knot is at the left endpoint and the last knot is slightly beyond the last 

endpoint. Both endpoints have multiplicity KORDER. 

4. Interior knots have multiplicity one. 

Example 

In this example, we compute (for k = 3, …, 8) six spline interpolants sk to F(x) = sin(10x
3
) on the 

interval [0,1]. The routine BSNAK is used to generate the knot sequences for sk and then BSINT is 

called to obtain the interpolant. We evaluate the absolute error 

|sk − F| 

at 100 equally spaced points and print the maximum error for each k. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    KMAX, KMIN, NDATA 

      PARAMETER  (KMAX=8, KMIN=3, NDATA=20) 

!  

      INTEGER    I, K, KORDER, NOUT 

      REAL       ABS, AMAX1, BSCOEF(NDATA), DIF, DIFMAX, F,& 

                 FDATA(NDATA), FLOAT, FT, SIN, ST, T, X, XDATA(NDATA),& 

                 XKNOT(KMAX+NDATA), XT 

      INTRINSIC  ABS, AMAX1, FLOAT, SIN 

!                                  Define function and tau function 

      F(X) = SIN(10.0*X*X*X) 

      T(X) = 1.0 - X*X 

!                                  Set up data 

      DO 10  I=1, NDATA 

         XT       = FLOAT(I-1)/FLOAT(NDATA-1) 

         XDATA(I) = T(XT) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Loop over different orders 

      DO 30  K=KMIN, KMAX 

         KORDER = K 

!                                  Generate knots 

         CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

!                                  Interpolate 

         CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

         DIFMAX = 0.0 
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         DO 20  I=1, 100 

            XT     = FLOAT(I-1)/99.0 

!                                  Evaluate spline 

            ST     = BSVAL(XT,KORDER,XKNOT,NDATA,BSCOEF) 

            FT     = F(XT) 

            DIF    = ABS(FT-ST) 

!                                  Compute maximum difference 

            DIFMAX = AMAX1(DIF,DIFMAX) 

   20  CONTINUE 

!                                  Print maximum difference 

         WRITE (NOUT,99998) KORDER, DIFMAX 

   30 CONTINUE 

!  

99998 FORMAT (' ', I3, 5X, F9.4) 

99999 FORMAT (' KORDER', 5X, 'Maximum difference', /) 

      END 

Output 
 

KORDER     Maximum difference 

   3        0.0080 

   4        0.0026 

   5        0.0004 

   6        0.0008 

   7        0.0010 

   8        0.0004 

BSOPK 

 

Computes the ―optimal‖ spline knot sequence. 

Required Arguments 

NDATA — Number of data points.   (Input) 

XDATA — Array of length NDATA containing the location of the data points.   (Input) 

KORDER — Order of the spline.   (Input) 

XKNOT — Array of length NDATA + KORDER containing the knot sequence.   (Output) 

FORTRAN 90 Interface 

Generic: CALL BSOPK (NDATA, XDATA, KORDER, XKNOT) 

Specific: The specific interface names are S_BSOPK and D_BSOPK. 
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FORTRAN 77 Interface 

Single: CALL BSOPK (NDATA, XDATA, KORDER, XKNOT) 

Double: The double precision name is DBSOPK. 

Description 

Given the abscissas x = XDATA for an interpolation problem and the order of the spline interpolant 

k = KORDER, BSOPK returns the knot sequence t = XKNOT that minimizes the constant in the error 

estimate 

|| f − s || ≤ c || f 
(k)

 || 

In the above formula, f is any function in C
k
 and s is the spline interpolant to f at the abscissas x 

with knot sequence t. 

The algorithm is based on a routine described in de Boor (1978, page 204), which in turn is based 

on a theorem of Micchelli, Rivlin and Winograd (1976). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2OPK/DB2OPK. The 

reference is: 

CALL B2OPK (NDATA, XDATA, KORDER, XKNOT, MAXIT, WK, IWK) 

The additional arguments are as follows: 

MAXIT — Maximum number of iterations of Newton‘s Method.   (Input) A 

suggested value is 10. 

WK — Work array of length (NDATA − KORDER) * (3 * KORDER − 2) 
+ 6 * NDATA + 2 * KORDER + 5. 

IWK — Work array of length NDATA. 

2. Informational errors 

Type Code 

3 6 Newton‘s method iteration did not converge. 

4 3 The XDATA values must be distinct. 

4 4 Interpolation matrix is singular. The XDATA values may be too close 

together. 

3. The default value for MAXIT is 10, this can be overridden by calling B2OPK/DB2OPK 

directly with a larger value. 
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Example 

In this example, we compute (for k = 3, …, 8) six spline interpolants sk to F(x) = sin(10x
3
) on the 

interval [0, 1]. The routine BSOPK is used to generate the knot sequences for sk and then BSINT is 

called to obtain the interpolant. We evaluate the absolute error 

| sk − F | 

at 100 equally spaced points and print the maximum error for each k. 
 

      USE BSOPK_INT 

      USE BSINT_INT 

      USE UMACH_INT 

      USE BSVAL_INT 

 

      IMPLICIT   NONE 

      INTEGER    KMAX, KMIN, NDATA 

      PARAMETER  (KMAX=8, KMIN=3, NDATA=20) 

!  

      INTEGER    I, K, KORDER, NOUT 

      REAL       ABS, AMAX1, BSCOEF(NDATA), DIF, DIFMAX, F,& 

                 FDATA(NDATA), FLOAT, FT, SIN, ST, T, X, XDATA(NDATA),& 

                 XKNOT(KMAX+NDATA), XT 

      INTRINSIC  ABS, AMAX1, FLOAT, SIN 

!                                  Define function and tau function 

      F(X) = SIN(10.0*X*X*X) 

      T(X) = 1.0 - X*X 

!                                  Set up data 

      DO 10  I=1, NDATA 

         XT       = FLOAT(I-1)/FLOAT(NDATA-1) 

         XDATA(I) = T(XT) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Loop over different orders 

      DO 30  K=KMIN, KMAX 

         KORDER = K 

!                                  Generate knots 

         CALL BSOPK (NDATA, XDATA, KORDER, XKNOT) 

!                                  Interpolate 

         CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

         DIFMAX = 0.0 

         DO 20  I=1, 100 

            XT     = FLOAT(I-1)/99.0 

!                                  Evaluate spline 

            ST     = BSVAL(XT,KORDER,XKNOT,NDATA,BSCOEF) 

            FT     = F(XT) 

            DIF    = ABS(FT-ST) 

!                                  Compute maximum difference 

            DIFMAX = AMAX1(DIF,DIFMAX) 

   20  CONTINUE 

!                                  Print maximum difference 
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         WRITE (NOUT,99998) KORDER, DIFMAX 

   30 CONTINUE 

!  

99998 FORMAT (' ', I3, 5X, F9.4) 

99999 FORMAT (' KORDER', 5X, 'Maximum difference', /) 

      END 

Output 
 

KORDER   Maximum difference 

 

 3        0.0096 

 4        0.0018 

 5        0.0005 

 6        0.0004 

 7        0.0007 

 8        0.0035 

BS2IN 

 

Computes a two-dimensional tensor-product spline interpolant, returning the tensor-product B-

spline coefficients. 

Required Arguments 

XDATA — Array of length NXDATA containing the data points in the X-direction.   (Input)  

XDATA must be strictly increasing. 

YDATA — Array of length NYDATA containing the data points in the Y-direction.   (Input)  

YDATA must be strictly increasing. 

FDATA — Array of size NXDATA by NYDATA containing the values to be interpolated.   

(Input)  

FDATA (I, J) is the value at (XDATA (I), YDATA(J)). 

KXORD — Order of the spline in the X-direction.   (Input)  

KXORD must be less than or equal to NXDATA. 

KYORD — Order of the spline in the Y-direction.   (Input)  

KYORD must be less than or equal to NYDATA. 

XKNOT — Array of length NXDATA + KXORD containing the knot sequence in the X-direction.   

(Input)  

XKNOT must be nondecreasing. 
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YKNOT — Array of length NYDATA + KYORD containing the knot sequence in the Y-direction.   

(Input)  

YKNOT must be nondecreasing. 

BSCOEF — Array of length NXDATA * NYDATA containing the tensor-product B-spline 

coefficients.   (Output)  

BSCOEF is treated internally as a matrix of size NXDATA by NYDATA. 

Optional Arguments  

NXDATA — Number of data points in the X-direction.   (Input) 

Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the Y-direction.   (Input) 

Default: NYDATA = size (YDATA,1). 

LDF — The leading dimension of FDATA exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDF = size (FDATA,1). 

FORTRAN 90 Interface 

Generic: CALL BS2IN (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, YKNOT,  
BSCOEF [,…]) 

Specific: The specific interface names are S_BS2IN and D_BS2IN. 

FORTRAN 77 Interface 

Single: CALL BS2IN (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, KXORD, KYORD, 

XKNOT, YKNOT, BSCOEF) 

Double: The double precision name is DBS2IN. 

Description 

The routine BS2IN computes a tensor product spline interpolant. The tensor product spline 

interpolant to data {(xi, yj, fij)}, where 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny, has the form 

   , , , ,

1

y

x x y y

N

n k m k

m

B x B y


 t t

 

where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in 

KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences (XKNOT 

and YKNOT). The algorithm requires that 

tx(kx) ≤ xi ≤ tx(Nx + 1) 1 ≤ i ≤ Nx 
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ty(ky) ≤ yj ≤ ty(Ny + 1) 1 ≤ j ≤ Ny 

Tensor product spline interpolants in two dimensions can be computed quite efficiently by solving 

(repeatedly) two univariate interpolation problems. The computation is motivated by the following 

observations. It is necessary to solve the system of equations 

   , , , ,

1 1

y x

x x y y

N N
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 t t

 

Setting 
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we note that for each fixed i from 1 to Nx, we have Ny linear equations in the same number of 

unknowns as can be seen below: 

 , ,
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 t

 

The same matrix appears in all of the equations above: 

 , , 1 ,
y y ym k jB y m j N   

 t
 

Thus, we need only factor this matrix once and then apply this factorization to the Nx righthand 

sides. Once this is done and we have computed hmi, then we must solve for the coefficients cnm 

using the relation 

 , ,

1

x

x x

N

nm n k i mi

n

c B x h


 t

 

for m from 1 to Ny, which again involves one factorization and Ny solutions to the different right-

hand sides. The routine BS2IN is based on the routine SPLI2D by de Boor (1978, page 347). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B22IN/DB22IN. The 

reference is: 

CALL B22IN (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, 

KXORD, KYORD, XKNOT, YKNOT, BSCOEF, WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length NXDATA * NYDATA + MAX((2 * KXORD −1) 

NXDATA, (2 * KYORD − 1) * NYDATA) + MAX((3 * KXORD − 

2) * NXDATA, (3 * KYORD − 2) * NYDATA) + 2 * 
MAX(NXDATA, NYDATA). 
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IWK — Work array of length MAX(NXDATA, NYDATA). 

2. Informational errors 

Type Code 

3 1 Interpolation matrix is nearly singular. LU factorization failed. 

3 2 Interpolation matrix is nearly singular. Iterative refinement failed. 

4 6 The XDATA values must be strictly increasing. 

4 7 The YDATA values must be strictly increasing. 

4 13 Multiplicity of the knots cannot exceed the order of the spline. 

4 14 The knots must be nondecreasing. 

4 15 The I-th smallest element of the data point array must be greater 

than the I-th knot and less than the (I + K_ORD)-th knot. 

4 16 The largest element of the data point array must be greater than the 

(N_DATA)-th knot and less than or equal to the (N_DATA + K_ORD)-th 

knot. 

4 17 The smallest element of the data point array must be greater than or 

equal to the first knot and less than the (K_ORD + 1)st knot. 

Example 

In this example, a tensor product spline interpolant to a function f is computed. The values of the 

interpolant and the error on a 4 × 4 grid are displayed. 
 

      USE BS2IN_INT 

      USE BSNAK_INT 

      USE BS2VL_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                  SPECIFICATIONS FOR PARAMETERS 

      INTEGER    KXORD, KYORD, LDF, NXDATA, NXKNOT, NXVEC, NYDATA,& 

                 NYKNOT, NYVEC 

      PARAMETER  (KXORD=5, KYORD=2, NXDATA=21, NXVEC=4, NYDATA=6,& 

                 NYVEC=4, LDF=NXDATA, NXKNOT=NXDATA+KXORD,& 

                 NYKNOT=NYDATA+KYORD) 

!  

      INTEGER    I, J, NOUT, NXCOEF, NYCOEF 

      REAL       BSCOEF(NXDATA,NYDATA), F, FDATA(LDF,NYDATA), FLOAT,& 

                 X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(NXVEC), Y,& 

                 YDATA(NYDATA), YKNOT(NYKNOT), YVEC(NYVEC),VL 

      INTRINSIC  FLOAT 

!                                  Define function 

      F(X,Y) = X*X*X + X*Y 

!                                  Set up interpolation points 

      DO 10  I=1, NXDATA 

         XDATA(I) = FLOAT(I-11)/10.0 



 

 

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation  775 

     

     

 

   10 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 

!                                  Set up interpolation points 

      DO 20  I=1, NYDATA 

         YDATA(I) = FLOAT(I-1)/5.0 

   20 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 

!                                  Generate FDATA 

      DO 40  I=1, NYDATA 

         DO 30  J=1, NXDATA 

            FDATA(J,I) = F(XDATA(J),YDATA(I)) 

   30  CONTINUE 

   40 CONTINUE 

!                                  Interpolate 

      CALL BS2IN (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, YKNOT,& 

                  BSCOEF) 

      NXCOEF = NXDATA 

      NYCOEF = NYDATA 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Print over a grid of 

!                                  [0.0,1.0] x [0.0,1.0] at 16 points. 

      DO 50  I=1, NXVEC 

         XVEC(I) = FLOAT(I-1)/3.0 

   50 CONTINUE 

      DO 60  I=1, NYVEC 

         YVEC(I) = FLOAT(I-1)/3.0 

   60 CONTINUE 

!                                  Evaluate spline 

      DO 80  I=1, NXVEC 

         DO 70  J=1, NYVEC 

            VL = BS2VL (XVEC(I), YVEC(J), KXORD, KYORD, XKNOT,& 

                 YKNOT, NXCOEF, NYCOEF, BSCOEF)                                      

 

             WRITE (NOUT,'(3F15.4,F15.6)') XVEC(I), YVEC(J),& 

                        VL, (F(XVEC(I),YVEC(J))-VL) 

   70  CONTINUE 

   80  CONTINUE 

99999 FORMAT (13X, 'X', 14X, 'Y', 10X, 'S(X,Y)', 9X, 'Error') 

      END 

Output 
 

    X              Y          S(X,Y)         Error 

0.0000         0.0000         0.0000       0.000000 

0.0000         0.3333         0.0000       0.000000 

0.0000         0.6667         0.0000       0.000000 

0.0000         1.0000         0.0000       0.000000 

0.3333         0.0000         0.0370       0.000000 

0.3333         0.3333         0.1481       0.000000 

0.3333         0.6667         0.2593       0.000000 

0.3333         1.0000         0.3704       0.000000 

0.6667         0.0000         0.2963       0.000000 
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0.6667         0.3333         0.5185       0.000000 

0.6667         0.6667         0.7407       0.000000 

0.6667         1.0000         0.9630       0.000000 

1.0000         0.0000         1.0000       0.000000 

1.0000         0.3333         1.3333       0.000000 

1.0000         0.6667         1.6667       0.000000 

1.0000         1.0000         2.0000       0.000000 

BS3IN 

 

Computes a three-dimensional tensor-product spline interpolant, returning the tensor-product B-

spline coefficients. 

Required Arguments 

XDATA — Array of length NXDATA containing the data points in the x-direction.   (Input)  

XDATA must be increasing. 

YDATA — Array of length NYDATA containing the data points in the y-direction.   (Input)  

YDATA must be increasing. 

ZDATA — Array of length NZDATA containing the data points in the z-direction.   (Input)  

ZDATA must be increasing. 

FDATA — Array of size NXDATA by NYDATA by NZDATA containing the values to be 

interpolated.   (Input)  

FDATA (I, J, K) contains the value at (XDATA (I), YDATA(J), ZDATA(K)). 

KXORD — Order of the spline in the x-direction.   (Input)  

KXORD must be less than or equal to NXDATA. 

KYORD — Order of the spline in the y-direction.   (Input)  

KYORD must be less than or equal to NYDATA. 

KZORD — Order of the spline in the z-direction.   (Input)  

KZORD must be less than or equal to NZDATA. 

XKNOT — Array of length NXDATA + KXORD containing the knot sequence in the x-direction.   

(Input)  

XKNOT must be nondecreasing. 

YKNOT — Array of length NYDATA + KYORD containing the knot sequence in the y-direction.   

(Input)  

YKNOT must be nondecreasing. 
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ZKNOT — Array of length NZDATA + KZORD containing the knot sequence in the z-direction.   

(Input)  

ZKNOT must be nondecreasing. 

BSCOEF — Array of length NXDATA * NYDATA * NZDATA containing the tensor-product B-

spline coefficients.   (Output)  

BSCOEF is treated internally as a matrix of size NXDATA by NYDATA by NZDATA. 

Optional Arguments 

NXDATA — Number of data points in the x-direction.   (Input) 

Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the y-direction.   (Input) 

Default: NYDATA = size (YDATA,1). 

NZDATA — Number of data points in the z-direction.   (Input) 

Default: NZDATA = size (ZDATA,1). 

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the 

calling program.   (Input) 

Default: LDF = size (FDATA,1). 

MDF — Middle dimension of FDATA exactly as specified in the dimension statement of the 

calling program.   (Input) 

Default: MDF = size (FDATA,2). 

FORTRAN 90 Interface 

Generic: CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT, 

YKNOT, ZKNOT, BSCOEF [,…]) 

Specific: The specific interface names are S_BS3IN and D_BS3IN. 

FORTRAN 77 Interface 

Single: CALL BS3IN (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, FDATA, LDF, 

MDF, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF) 

Double: The double precision name is DBS3IN. 

Description 

The routine BS3IN computes a tensor-product spline interpolant. The tensor-product spline 

interpolant to data {(xi, yj, zk, fijk)}, where 1 ≤  i ≤ Nx, 1 ≤ j ≤ Ny, and 1 ≤ k ≤ Nz has the form  
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where kx, ky, and kz are the orders of the splines (these numbers are passed to the subroutine in 

KXORD, KYORD, and KZORD, respectively). Likewise, tx, ty, and tz are the corresponding knot 

sequences (XKNOT, YKNOT, and ZKNOT). The algorithm requires that 
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Tensor-product spline interpolants can be computed quite efficiently by solving (repeatedly) three 

univariate interpolation problems. The computation is motivated by the following observations. It 

is necessary to solve the system of equations 

     , , , , , ,

1 1 1

y xz

x x y y z z

N NN

nml n k i m k j l k k ijk

l m n

c B x B y B z f
  

 t t t

 

Setting 

   , , , ,1 1

y x

x x y y

N N

lij nml n k i m k jm n
h c B x B y

 
  t t

 

we note that for each fixed pair ij we have Nz linear equations in the same number of unknowns as 

can be seen below: 
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The same interpolation matrix appears in all of the equations above: 

 , , 1 ,
z zl k k zB z l k N    t

 

Thus, we need only factor this matrix once and then apply it to the NxNy right-hand sides. Once 

this is done and we have computed hlij, then we must solve for the coefficients cnml using the 

relation  
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that is the bivariate tensor-product problem addressed by the IMSL routine BS2IN. The interested 

reader should consult the algorithm description in the two-dimensional routine if more detail is 

desired. The routine BS3IN is based on the routine SPLI2D by de Boor (1978, page 347). 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of B23IN/DB23IN. The 

reference is: 

CALL B23IN (NXDATA, XDATA, NYDATA, YDATA, NZDAYA, ZDATA, 

FDATA, LDF, MDF, KXORD, KYORD, KZORD, XKNOT, YKNOT, 

ZKNOT, BSCOEF, WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length MAX((2 * KXORD − 1) * NXDATA, (2 * 

KYORD − 1) * NYDATA, (2 * KZORD − 1) * NZDATA) + 

MAX((3 * KXORD − 2) * NXDATA, (3 * KYORD − 2) * 

NYDATA + (3 * KZORD − 2) * NZDATA) + NXDATA * NYDATA 
*NZDATA + 2 * MAX(NXDATA, NYDATA, NZDATA). 

IWK — Work array of length MAX(NXDATA, NYDATA, NZDATA). 

2. Informational errors 

Type Code 

3 1 Interpolation matrix is nearly singular. LU factorization failed. 

3 2 Interpolation matrix is nearly singular. Iterative refinement failed. 

4  13 Multiplicity of the knots cannot exceed the order of the spline. 

4 14 The knots must be nondecreasing. 

4 15 The I-th smallest element of the data point array must be greater 

than the Ith knot and less than the (I + K_ORD)-th knot. 

4 16 The largest element of the data point array must be greater than the 

(N_DATA)-th knot and less than or equal to the (N_DATA + K_ORD)-th 

knot. 

4 17 The smallest element of the data point array must be greater than or 

equal to the first knot and less than the (K_ORD + 1)st knot. 

4 18 The XDATA values must be strictly increasing. 

4 19 The YDATA values must be strictly increasing. 

4 20 The ZDATA values must be strictly increasing. 

Example 

In this example, a tensor-product spline interpolant to a function f is computed. The values of the 

interpolant and the error on a 4 × 4 × 2 grid are displayed. 
 

      USE BS3IN_INT 

      USE BSNAK_INT 

      USE UMACH_INT 
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      USE BS3GD_INT 

 

      IMPLICIT   NONE 

!                                  SPECIFICATIONS FOR PARAMETERS 

      INTEGER    KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT, NXVEC,& 

                 NYDATA, NYKNOT, NYVEC, NZDATA, NZKNOT, NZVEC 

      PARAMETER  (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NXVEC=4,& 

                 NYDATA=6, NYVEC=4, NZDATA=8, NZVEC=2, LDF=NXDATA,& 

                 MDF=NYDATA, NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,& 

                 NZKNOT=NZDATA+KZORD) 

!  

      INTEGER    I, J, K, NOUT, NXCOEF, NYCOEF, NZCOEF 

      REAL       BSCOEF(NXDATA,NYDATA,NZDATA), F,& 

                 FDATA(LDF,MDF,NZDATA), FLOAT, VALUE(NXVEC,NYVEC,NZVEC)& 

                 , X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(NXVEC), Y,& 

                 YDATA(NYDATA), YKNOT(NYKNOT), YVEC(NYVEC), Z,& 

                 ZDATA(NZDATA), ZKNOT(NZKNOT), ZVEC(NZVEC) 

      INTRINSIC  FLOAT 

!                                  Define function. 

      F(X,Y,Z) = X*X*X + X*Y*Z 

!                                  Set up X-interpolation points 

      DO 10  I=1, NXDATA 

         XDATA(I) = FLOAT(I-11)/10.0 

   10 CONTINUE 

!                                  Set up Y-interpolation points 

      DO 20  I=1, NYDATA 

         YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1) 

   20 CONTINUE 

!                                  Set up Z-interpolation points 

      DO 30  I=1, NZDATA 

         ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1) 

   30 CONTINUE 

!                                  Generate knots 

      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 

      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 

      CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT) 

!                                  Generate FDATA 

      DO 50  K=1, NZDATA 

         DO 40  I=1, NYDATA 

            DO 40  J=1, NXDATA 

               FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K)) 

   40  CONTINUE 

   50 CONTINUE 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Interpolate 

      CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, & 

                  KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF) 

!  

      NXCOEF = NXDATA 

      NYCOEF = NYDATA 

      NZCOEF = NZDATA 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Print over a grid of 

!                                  [-1.0,1.0] x [0.0,1.0] x [0.0,1.0] 
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!                                  at 32 points. 

      DO 60  I=1, NXVEC 

         XVEC(I) = 2.0*(FLOAT(I-1)/3.0) - 1.0 

   60 CONTINUE 

      DO 70  I=1, NYVEC 

         YVEC(I) = FLOAT(I-1)/3.0 

   70 CONTINUE 

      DO 80  I=1, NZVEC 

         ZVEC(I) = FLOAT(I-1) 

   80 CONTINUE 

!                                  Call the evaluation routine. 

      CALL BS3GD (0, 0, 0, XVEC, YVEC, ZVEC,& 

                  KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, VALUE) 

      DO 110  I=1, NXVEC 

         DO 100  J=1, NYVEC 

            DO 90  K=1, NZVEC 

               WRITE (NOUT,'(4F13.4, F13.6)') XVEC(I), YVEC(K),& 

                                            ZVEC(K), VALUE(I,J,K),& 

                                            F(XVEC(I),YVEC(J),ZVEC(K))& 

                                             - VALUE(I,J,K) 

   90       CONTINUE 

  100    CONTINUE 

  110 CONTINUE 

99999 FORMAT (10X, 'X', 11X, 'Y', 10X, 'Z', 10X, 'S(X,Y,Z)', 7X,& 

             'Error') 

      END 

Output 
 

    X           Y          Z          S(X,Y,Z)       Error 

-1.0000       0.0000       0.0000      -1.0000     0.000000 

-1.0000       0.3333       1.0000      -1.0000     0.000000 

-1.0000       0.0000       0.0000      -1.0000     0.000000 

-1.0000       0.3333       1.0000      -1.3333     0.000000 

-1.0000       0.0000       0.0000      -1.0000     0.000000 

-1.0000       0.3333       1.0000      -1.6667     0.000000 

-1.0000       0.0000       0.0000      -1.0000     0.000000 

-1.0000       0.3333       1.0000      -2.0000     0.000000 

-0.3333       0.0000       0.0000      -0.0370     0.000000 

-0.3333       0.3333       1.0000      -0.0370     0.000000 

-0.3333       0.0000       0.0000      -0.0370     0.000000 

-0.3333       0.3333       1.0000      -0.1481     0.000000 

-0.3333       0.0000       0.0000      -0.0370     0.000000 

-0.3333       0.3333       1.0000      -0.2593     0.000000 

-0.3333       0.0000       0.0000      -0.0370     0.000000 

-0.3333       0.3333       1.0000      -0.3704     0.000000 

 0.3333       0.0000       0.0000       0.0370     0.000000 

 0.3333       0.3333       1.0000       0.0370     0.000000 

 0.3333       0.0000       0.0000       0.0370     0.000000 

 0.3333       0.3333       1.0000       0.1481     0.000000 

 0.3333       0.0000       0.0000       0.0370     0.000000 

 0.3333       0.3333       1.0000       0.2593     0.000000 

 0.3333       0.0000       0.0000       0.0370     0.000000 

 0.3333       0.3333       1.0000       0.3704     0.000000 

 1.0000       0.0000       0.0000       1.0000     0.000000 

 1.0000       0.3333       1.0000       1.0000     0.000000 

 1.0000       0.0000       0.0000       1.0000     0.000000 
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 1.0000       0.3333       1.0000       1.3333     0.000000 

 1.0000       0.0000       0.0000       1.0000     0.000000 

 1.0000       0.3333       1.0000       1.6667     0.000000 

 1.0000       0.0000       0.0000       1.0000     0.000000 

 1.0000       0.3333       1.0000       2.0000     0.000000 

BSVAL 
This function evaluates a spline, given its B-spline representation. 

Function Return Value 

BSVAL — Value of the spline at X.   (Output) 

Required Arguments 

X — Point at which the spline is to be evaluated.   (Input) 

KORDER — Order of the spline.   (Input) 

XKNOT — Array of length KORDER + NCOEF containing the knot sequence.   (Input) 

XKNOT must be nondecreasing. 

NCOEF — Number of B-spline coefficients.   (Input) 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Input) 

FORTRAN 90 Interface 

Generic: BSVAL (X, KORDER, XKNOT, NCOEF, BSCOEF) 

Specific: The specific interface names are S_BSVAL and D_BSVAL. 

FORTRAN 77 Interface 

Single: BSVAL (X, KORDER, XKNOT, NCOEF, BSCOEF) 

Double: The double precision function name is DBSVAL. 

Description 

The function BSVAL evaluates a spline (given its B-spline representation) at a specific point. It is a 

special case of the routine BSDER, which evaluates the derivative of a spline given its B-spline 

representation. The routine BSDER is based on the routine BVALUE by de Boor (1978, page 144). 

Specifically, given the knot vector t, the number of coefficients N, the coefficient vector a, and a 

point x, BSVAL returns the number 
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where Bj,k is the j-th B-spline of order k for the knot sequence t. Note that this function routine 

arbitrarily treats these functions as if they were right continuous near XKNOT(KORDER) and left 

continuous near XKNOT(NCOEF + 1). Thus, if we have KORDER knots stacked at the left or right end 

point, and if we try to evaluate at these end points, then we will get the value of the limit from the 

interior of the interval. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2VAL/DB2VAL. The 

reference is: 

CALL B2VAL(X, KORDER, XKNOT, NCOEF, BSCOEF, WK1, WK2, WK3) 

The additional arguments are as follows: 

WK1 — Work array of length KORDER. 

WK2 — Work array of length KORDER. 

WK3 — Work array of length KORDER. 

2. Informational errors 

Type Code 

4 4 Multiplicity of the knots cannot exceed the order of the spline. 

4 5 The knots must be nondecreasing. 

Example 

For an example of the use of BSVAL, see IMSL routine BSINT. 

BSDER 
This function evaluates the derivative of a spline, given its B-spline representation. 

Function Return Value 

BSDER — Value of the IDERIV-th derivative of the spline at X.   (Output) 

Required Arguments 

IDERIV — Order of the derivative to be evaluated.   (Input)  

In particular, IDERIV = 0 returns the value of the spline. 

X — Point at which the spline is to be evaluated.   (Input) 
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KORDER — Order of the spline.   (Input) 

XKNOT — Array of length NCOEF + KORDER containing the knot sequence.   (Input)  

XKNOT must be nondecreasing. 

NCOEF — Number of B-spline coefficients.   (Input) 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Input) 

FORTRAN 90 Interface 

Generic: BSDER (IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF) 

Specific: The specific interface names are S_BSDER and D_BSDER. 

FORTRAN 77 Interface 

Single: BSDER (IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF) 

Double: The double precision function name is DBSDER. 

Description 

The function BSDER produces the value of a spline or one of its derivatives (given its B-spline 

representation) at a specific point. The function BSDER is based on the routine BVALUE by de Boor 

(1978, page 144). 

Specifically, given the knot vector t, the number of coefficients N, the coefficient vector a, the 

order of the derivative i and a point x, BSDER returns the number 

   ,
1

N
i

j j k
j

a B x



 

where Bj,k is the j-th B-spline of order k for the knot sequence t. Note that this function routine 

arbitrarily treats these functions as if they were right continuous near XKNOT(KORDER) and left 

continuous near XKNOT(NCOEF + 1). Thus, if we have KORDER knots stacked at the left or right end 

point, and if we try to evaluate at these end points, then we will get the value of the limit from the 

interior of the interval. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2DER/DB2DER. The 

reference is: 

CALL B2DER(IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF, WK1, WK2, WK3) 

The additional arguments are as follows: 
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WK1 — Array of length KORDER. 

WK2 — Array of length KORDER. 

WK3 — Array of length KORDER. 

2. Informational errors 

Type Code 

4 4 Multiplicity of the knots cannot exceed the order of the spline. 

4 5 The knots must be nondecreasing. 

Example 

A spline interpolant to the function 

( )f x x
 

is constructed using BSINT. The B-spline representation, which is returned by the IMSL routine 

BSINT, is then used by BSDER to compute the value and derivative of the interpolant. The output 

consists of the interpolation values and the error at the data points and the midpoints. In addition, 

we display the value of the derivative and the error at these same points. 
 

      USE BSDER_INT 

      USE BSINT_INT 

      USE BSNAK_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    KORDER, NDATA, NKNOT 

      PARAMETER  (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER) 

!  

      INTEGER    I, NCOEF, NOUT 

      REAL       BSCOEF(NDATA), BT0, BT1, DF, F, FDATA(NDATA),& 

                 FLOAT, SQRT, X, XDATA(NDATA), XKNOT(NKNOT), XT 

      INTRINSIC  FLOAT, SQRT 

!                                  Define function and derivative 

      F(X)  = SQRT(X) 

      DF(X) = 0.5/SQRT(X) 

!                                  Set up interpolation points 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I)/FLOAT(NDATA) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

!                                  Interpolate 

      CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Print on a finer grid 

      NCOEF = NDATA 
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      XT    = XDATA(1) 

!                                  Evaluate spline 

      BT0   = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF) 

      BT1   = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF) 

      WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1 

      DO 20  I=2, NDATA 

         XT  = (XDATA(I-1)+XDATA(I))/2.0 

!                                  Evaluate spline 

         BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF) 

         BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF) 

         WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1 

         XT  = XDATA(I) 

!                                  Evaluate spline 

         BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF) 

         BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF) 

         WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1 

   20 CONTINUE 

99998 FORMAT (' ', F6.4, 5X, F7.4, 3X, F10.6, 5X, F8.4, 3X, F10.6) 

 

 

99999 FORMAT (6X, 'X', 8X, 'S(X)', 7X, 'Error', 8X, 'S''(X)', 8X,& 

             'Error', /) 

      END 

Output 
 

     X        S(X)       Error        S‘(X)        Error 

 

0.2000      0.4472     0.000000       1.0423     0.075738 

0.3000      0.5456     0.002084       0.9262    -0.013339 

0.4000      0.6325     0.000000       0.8101    -0.019553 

0.5000      0.7077    -0.000557       0.6940     0.013071 

0.6000      0.7746     0.000000       0.6446     0.000869 

0.7000      0.8366     0.000071       0.5952     0.002394 

0.8000      0.8944     0.000000       0.5615    -0.002525 

0.9000      0.9489    -0.000214       0.5279    -0.000818 

1.0000      1.0000     0.000000       0.4942     0.005814 

BS1GD 
Evaluates the derivative of a spline on a grid, given its B-spline representation. 

Required Arguments 

IDERIV — Order of the derivative to be evaluated.   (Input)  

In particular, IDERIV = 0 returns the value of the spline. 

XVEC —  Array of length N containing the points at which the spline is to be evaluated.   

(Input)  

XVEC should be strictly increasing. 

KORDER — Order of the spline.   (Input) 
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XKNOT — Array of length NCOEF + KORDER containing the knot sequence.   (Input)  

XKNOT must be nondecreasing. 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Input) 

VALUE — Array of length N containing the values of the IDERIV-th derivative of the spline 

at the points in XVEC.   (Output) 

Optional Arguments  

N — Length of vector XVEC.   (Input) 

Default: N = size (XVEC,1). 

NCOEF — Number of B-spline coefficients.   (Input) 

Default: NCOEF = size (BSCOEF,1). 

FORTRAN 90 Interface 

Generic: CALL BS1GD (IDERIV, XVEC, KORDER, XKNOT, BSCOEF, VALUE [,…]) 

Specific: The specific interface names are S_BS1GD and D_BS1GD. 

FORTRAN 77 Interface 

Single: CALL BS1GD (IDERIV, N, XVEC, KORDER, XKNOT, NCOEF, BSCOEF, VALUE) 

Double: The double precision name is DBS1GD. 

Description 

The routine BS1GD evaluates a B-spline (or its derivative) at a vector of points. That is, given a 

vector x of length n satisfying xi < xi + 1 for i = 1, …, n − 1, a derivative value j, and a B-spline s 

that is represented by a knot sequence and coefficient sequence, this routine returns the values 

    1, ,
j

is x i n
 

in the array VALUE. The functionality of this routine is the same as that of BSDER called in a loop, 

however BS1GD should be much more efficient. This routine converts the B-spline representation 

to piecewise polynomial form using the IMSL routine BSCPP, and then uses the IMSL routine 

PPVAL for evaluation. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B21GD/DB21GD. The 

reference is: 

CALL B21GD (IDERIV, N, XVEC, KORDER, XKNOT, NCOEF, BSCOEF, 

VALUE, RWK1, RWK2, IWK3, RWK4, RWK5, RWK6) 

The additional arguments are as follows: 
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RWK1 — Real array of length KORDER * (NCOEF − KORDER + 1). 

RWK2 — Real array of length NCOEF − KORDER + 2. 

IWK3 — Integer array of length N. 

RWK4 — Real array of length N. 

RWK5 — Real array of length N. 

RWK6 — Real array of length (KORDER + 3) * KORDER 

2. Informational error 

Type Code 

4 5 The points in XVEC must be strictly increasing. 

Example 

To illustrate the use of BS1GD, we modify the example program for BSDER. In this example, a 

quadratic (order 3) spline interpolant to F is computed. The values and derivatives of this spline 

are then compared with the exact function and derivative values. The routine BS1GD is based on 

the routines BSPLPP and PPVALU in de Boor (1978, page 89). 
 

      USE BS1GD_INT 

      USE BSINT_INT 

      USE BSNAK_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    KORDER, NDATA, NKNOT, NFGRID 

      PARAMETER  (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER, NFGRID = 9) 

!                                  SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I, NCOEF, NOUT 

      REAL       ANS0(NFGRID), ANS1(NFGRID), BSCOEF(NDATA),& 

                 FDATA(NDATA),& 

                 X, XDATA(NDATA), XKNOT(NKNOT), XVEC(NFGRID) 

!                                  SPECIFICATIONS FOR INTRINSICS 

      INTRINSIC  FLOAT, SQRT 

      REAL       FLOAT, SQRT 

!                                  SPECIFICATIONS FOR SUBROUTINES 

      REAL       DF, F 

!  

      F(X)  = SQRT(X) 

      DF(X) = 0.5/SQRT(X) 

!  

      CALL UMACH (2, NOUT) 

!                                  Set up interpolation points 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I)/FLOAT(NDATA) 

         FDATA(I) = F(XDATA(I)) 
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   10 CONTINUE 

      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

!                                  Interpolate 

      CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

      WRITE (NOUT,99999) 

!                                  Print on a finer grid 

      NCOEF   = NDATA 

      XVEC(1) = XDATA(1) 

      DO 20  I=2, 2*NDATA - 2, 2 

         XVEC(I)   = (XDATA(I/2+1)+XDATA(I/2))/2.0 

         XVEC(I+1) = XDATA(I/2+1) 

   20 CONTINUE 

      CALL BS1GD (0, XVEC, KORDER, XKNOT, BSCOEF, ANS0) 

      CALL BS1GD (1, XVEC, KORDER, XKNOT, BSCOEF, ANS1) 

      DO 30  I=1, 2*NDATA - 1 

         WRITE (NOUT,99998) XVEC(I), ANS0(I), F(XVEC(I)) - ANS0(I),& 

                           ANS1(I), DF(XVEC(I)) - ANS1(I) 

   30 CONTINUE 

99998 FORMAT (' ', F6.4, 5X, F7.4, 5X, F8.4, 5X, F8.4, 5X, F8.4) 

99999 FORMAT (6X, 'X', 8X, 'S(X)', 7X, 'Error', 8X, 'S''(X)', 8X,& 

             'Error', /) 

      END 

Output 
 

     X        S(X)       Error        S‘(X)        Error 

 

0.2000      0.4472       0.0000       1.0423       0.0757 

0.3000      0.5456       0.0021       0.9262      -0.0133 

0.4000      0.6325       0.0000       0.8101      -0.0196 

0.5000      0.7077      -0.0006       0.6940       0.0131 

0.6000      0.7746       0.0000       0.6446       0.0009 

0.7000      0.8366       0.0001       0.5952       0.0024 

0.8000      0.8944       0.0000       0.5615      -0.0025 

0.9000      0.9489      -0.0002       0.5279      -0.0008 

1.0000      1.0000       0.0000       0.4942       0.0058 

BSITG 
This function evaluates the integral of a spline, given its B-spline representation. 

Function Return Value 

BSITG — Value of the integral of the spline from A to B.   (Output) 

Required Arguments 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

KORDER — Order of the spline.   (Input) 
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XKNOT — Array of length KORDER + NCOEF containing the knot sequence.   (Input)  

XKNOT must be nondecreasing. 

NCOEF — Number of B-spline coefficients.   (Input) 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Input) 

FORTRAN 90 Interface 

Generic: BSITG (A, B, KORDER, XKNOT, NCOEF, BSCOEF) 

Specific: The specific interface names are S_BSITG and D_BSITG. 

FORTRAN 77 Interface 

Single: BSITG (A, B, KORDER, XKNOT, NCOEF, BSCOEF) 

Double: The double precision function name is DBSITG. 

Description 

The function BSITG computes the integral of a spline given its B-spline representation. 

Specifically, given the knot sequence t = XKNOT, the order k = KORDER, the coefficients  

a = BSCOEF , n = NCOEF and an interval [a, b], BSITG returns the value 

 , ,

1

n
b

i i ka
i

a B x dx


 t

 

This routine uses the identity (22) on page 151 of de Boor (1978), and it assumes that t1 = … = tk 

and tn + 1= … = tn + k. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2ITG/DB2ITG. The 

reference is: 

CALL B2ITG(A, B, KORDER, XKNOT, NCOEF, BSCOEF, TCOEF, AJ, 

DL, DR) 

The additional arguments are as follows: 

TCOEF —  Work array of length KORDER + 1. 

AJ —  Work array of length KORDER + 1. 

DL — Work array of length KORDER + 1. 
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DR — Work array of length KORDER + 1. 

2. Informational errors 

Type Code 

3 7 The upper and lower endpoints of integration are equal. 

3 8 The lower limit of integration is less than XKNOT(KORDER). 

3 9 The upper limit of integration is greater than XKNOT(NCOEF + 1). 

4 4 Multiplicity of the knots cannot exceed the order of the spline. 

4 5 The knots must be nondecreasing. 

Example 

We integrate the quartic (k = 5) spline that interpolates x
3
 at the points {i/10 : i = −10, …, 10} 

over the interval [0, 1]. The exact answer is 1/4 since the interpolant reproduces cubic 

polynomials. 
 

      USE BSITG_INT 

      USE BSNAK_INT 

      USE BSINT_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    KORDER, NDATA, NKNOT 

      PARAMETER  (KORDER=5, NDATA=21, NKNOT=NDATA+KORDER) 

!  

      INTEGER    I, NCOEF, NOUT 

      REAL       A, B, BSCOEF(NDATA), ERROR, EXACT, F,& 

                 FDATA(NDATA), FI, FLOAT, VAL, X, XDATA(NDATA),& 

                 XKNOT(NKNOT) 

      INTRINSIC  FLOAT 

!                                  Define function and integral 

      F(X)  = X*X*X 

      FI(X) = X**4/4.0 

!                                  Set up interpolation points 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-11)/10.0 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

!                                  Interpolate 

      CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!  

      NCOEF = NDATA 

      A     = 0.0 

      B     = 1.0 

!                                  Integrate from A to B 

      VAL   = BSITG(A,B,KORDER,XKNOT,NCOEF,BSCOEF) 

      EXACT = FI(B) - FI(A) 
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      ERROR = EXACT - VAL 

!                                  Print results 

      WRITE (NOUT,99999) A, B, VAL, EXACT, ERROR 

99999 FORMAT (' On the closed interval (', F3.1, ',', F3.1,& 

             ') we have :', /, 1X, 'Computed Integral = ', F10.5, /,& 

             1X, 'Exact Integral    = ', F10.5, /, 1X, 'Error         '& 

             , '    = ', F10.6, /, /) 

      END 

Output 
 

On the closed interval (0.0,1.0) we have : 

Computed Integral =    0.25000 

Exact Integral    =    0.25000 

Error             =   0.000000 

BS2VL 
This function evaluates a two-dimensional tensor-product spline, given its tensor-product B-spline 

representation. 

Function Return Value 

BS2VL — Value of the spline at (X, Y).   (Output) 

Required Arguments 

X — X-coordinate of the point at which the spline is to be evaluated.   (Input) 

Y — Y-coordinate of the point at which the spline is to be evaluated.   (Input) 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.   

(Input)  

XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   

(Input)  

YKNOT must be nondecreasing. 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 
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BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline 

coefficients.   (Input)  

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF. 

FORTRAN 90 Interface 

Generic: BS2VL (X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF) 

Specific:  The specific interface names are S_BS2VL and D_BS2VL. 

FORTRAN 77 Interface 

Single: BS2VL (X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF) 

Double: The double precision function name is DBS2VL. 

Description 

The function BS2VL evaluates a bivariate tensor product spline (represented as a linear 

combination of tensor product B-splines) at a given point. This routine is a special case of the 

routine BS2DR, which evaluates partial derivatives of such a spline. (The value of a spline is its 

zero-th derivative.) For more information see de Boor (1978, pages 351− 353).  

This routine returns the value of the function s at a point (x, y) given the coefficients c by 

computing  

     , , , ,

1 1

,
y x

x x y y

N N

nm n k m k

m n

s x y c B x B y
 

 t t

 

where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in 

KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences (XKNOT 

and YKNOT). 

Comments 

Workspace may be explicitly provided, if desired, by use of B22VL/DB22VL. The reference 

is: 

CALL B22VL(X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, 

BSCOEF, WK) 

The additional argument is 

WK — Work array of length 3 * MAX(KXORD, KYORD) + KYORD. 

Example 

For an example of the use of BS2VL, see IMSL routine BS2IN. 



     

     
 

794  Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY  

     

     

 

BS2DR 
This function evaluates the derivative of a two-dimensional tensor-product spline, given its tensor-

product B-spline representation. 

Function Return Value 

BS2DR — Value of the (IXDER, IYDER) derivative of the spline at (X, Y).   (Output) 

Required Arguments 

IXDER — Order of the derivative in the X-direction.   (Input) 

IYDER — Order of the derivative in the Y-direction.   (Input) 

X — X-coordinate of the point at which the spline is to be evaluated.   (Input) 

Y — Y-coordinate of the point at which the spline is to be evaluated.   (Input) 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-

direction.   (Input)  

XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   

(Input)  

YKNOT must be nondecreasing. 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline 

coefficients.   (Input)  

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF. 

FORTRAN 90 Interface 

Generic: BS2DR (IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, 
BSCOEF) 

Specific: The specific interface names are S_BS2DR and D_BS2DR. 
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FORTRAN 77 Interface 

Single: BS2DR (IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, 
BSCOEF) 

Double: The double precision function name is DBS2DR. 

Description 

The routine BS2DR evaluates a partial derivative of a bivariate tensor-product spline (represented 

as a linear combination of tensor product B-splines) at a given point; see de Boor (1978, pages 

351− 353). 

This routine returns the value of s
(p,q)

at a point (x, y) given the coefficients c by computing  

           ,
, , , ,
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where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in 

KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences (XKNOT 

and YKNOT). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B22DR/DB22DR. The 

reference is: 

CALL B22DR(IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT, 

NXCOEF, NYCOEF, BSCOEF, WK) 

The additional argument is: 

WK — Work array of length 3 * MAX(KXORD, KYORD) + KYORD. 

2. Informational errors 

Type Code 

3 1 The point X does not satisfy 

XKNOT(KXORD) .LE. X .LE. XKNOT(NXCOEF + 1). 

3 2 The point Y does not satisfy 

YKNOT(KYORD) .LE. Y .LE. YKNOT(NYCOEF + 1). 

Example 

In this example, a spline interpolant s to a function f is constructed. We use the IMSL routine 

BS2IN to compute the interpolant and then BS2DR is employed to compute s
(2,1)

(x, y). The values 

of this partial derivative and the error are computed on a 4 × 4 grid and then displayed. 
 

      USE BS2DR_INT 
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      USE BSNAK_INT 

      USE UMACH_INT 

      USE BS2IN_INT 

 

      IMPLICIT   NONE 

!                                  SPECIFICATIONS FOR PARAMETERS 

      INTEGER    KXORD, KYORD, LDF, NXDATA, NXKNOT, NYDATA, NYKNOT 

      PARAMETER  (KXORD=5, KYORD=3, NXDATA=21, NYDATA=6, LDF=NXDATA,& 

                 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD) 

!  

      INTEGER    I, J, NOUT, NXCOEF, NYCOEF 

      REAL       BSCOEF(NXDATA,NYDATA), F, F21,& 

                 FDATA(LDF,NYDATA), FLOAT, S21, X, XDATA(NXDATA),& 

                 XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT) 

      INTRINSIC  FLOAT 

 

!                                  Define function and (2,1) derivative 

      F(X,Y)   = X*X*X*X + X*X*X*Y*Y 

      F21(X,Y) = 12.0*X*Y 

!                                  Set up interpolation points 

      DO 10  I=1, NXDATA 

         XDATA(I) = FLOAT(I-11)/10.0 

   10 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 

!                                  Set up interpolation points 

      DO 20  I=1, NYDATA 

         YDATA(I) = FLOAT(I-1)/5.0 

   20 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 

!                                  Generate FDATA 

      DO 40  I=1, NYDATA 

         DO 30  J=1, NXDATA 

            FDATA(J,I) = F(XDATA(J),YDATA(I)) 

   30  CONTINUE 

   40 CONTINUE 

!                                  Interpolate 

      CALL BS2IN (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, & 

                  YKNOT, BSCOEF) 

      NXCOEF = NXDATA 

      NYCOEF = NYDATA 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Print (2,1) derivative over a 

!                                  grid of [0.0,1.0] x [0.0,1.0] 

!                                  at 16 points. 

      DO 60  I=1, 4 

         DO 50  J=1, 4 

            X   = FLOAT(I-1)/3.0 

            Y   = FLOAT(J-1)/3.0 

!                                  Evaluate spline 

            S21 = BS2DR(2,1,X,Y,KXORD,KYORD,XKNOT,YKNOT,NXCOEF,NYCOEF,& 

                  BSCOEF) 
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            WRITE (NOUT,'(3F15.4, F15.6)') X, Y, S21, F21(X,Y) - S21 

   50  CONTINUE 

   60 CONTINUE 

99999 FORMAT (39X, '(2,1)', /, 13X, 'X', 14X, 'Y', 10X, 'S    (X,Y)',& 

              5X, 'Error') 

      END 

Output 
 

                               (2,1) 

    X              Y          S    (X,Y)     Error 

0.0000         0.0000         0.0000       0.000000 

0.0000         0.3333         0.0000       0.000000 

0.0000         0.6667         0.0000       0.000000 

0.0000         1.0000         0.0000       0.000001 

0.3333         0.0000         0.0000       0.000000 

0.3333         0.3333         1.3333       0.000002 

0.3333         0.6667         2.6667      -0.000002 

0.3333         1.0000         4.0000       0.000008 

0.6667         0.0000         0.0000       0.000006 

0.6667         0.3333         2.6667      -0.000011 

0.6667         0.6667         5.3333       0.000028 

0.6667         1.0000         8.0001      -0.000134 

1.0000         0.0000        -0.0004       0.000439 

1.0000         0.3333         4.0003      -0.000319 

1.0000         0.6667         7.9996       0.000363 

1.0000         1.0000        12.0005      -0.000458 

BS2GD 
Evaluates the derivative of a two-dimensional tensor-product spline, given its tensor-product  

B-spline representation on a grid. 

Required Arguments 

IXDER — Order of the derivative in the X-direction.   (Input) 

IYDER — Order of the derivative in the Y-direction.   (Input) 

XVEC — Array of length NX containing the X-coordinates at which the spline is to be 

evaluated.   (Input)  

The points in XVEC should be strictly increasing. 

YVEC — Array of length NY containing the Y-coordinates at which the spline is to be 

evaluated.   (Input)  

The points in YVEC should be strictly increasing. 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 
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XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.   

(Input)  

XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   

(Input)  

YKNOT must be nondecreasing. 

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline 

coefficients.   (Input)  

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF. 

VALUE — Value of the (IXDER, IYDER) derivative of the spline on the NX by NY grid.   

(Output)  

VALUE (I, J) contains the derivative of the spline at the point (XVEC(I), YVEC(J)). 

Optional Arguments 

NX — Number of grid points in the X-direction.   (Input) 

Default: NX = size (XVEC,1). 

NY — Number of grid points in the Y-direction.   (Input) 

Default: NY = size (YVEC,1). 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

Default: NXCOEF = size (XKNOT,1) – KXORD. 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 

Default: NYCOEF = size (YKNOT,1) – KYORD. 

LDVALU — Leading dimension of VALUE exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDVALU = SIZE (VALUE,1). 

FORTRAN 90 Interface 

Generic: CALL BS2GD (IXDER, IDER, XVEC, YVEC, KXORD, KYORD, XKNOT, YKNOT, 

BSCOEF, VALUE [,…]) 

Specific: The specific interface names are S_BS2GD and D_BS2GD. 

FORTRAN 77 Interface 

Single: CALL BS2GD (IXDER, IYDER, NX, XVEC, NY, YVEC, KXORD, KYORD, XKNOT, 

YKNOT, NXCOEF, NYCOEF, BSCOEF, VALUE, LDVALU) 

Double: The double precision name is DBS2GD. 
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Description 

The routine BS2GD evaluates a partial derivative of a bivariate tensor-product spline (represented 

as a linear combination of tensor-product B-splines) on a grid of points; see de Boor (1978, pages 

351− 353). 

This routine returns the values of s
(p,q)

on the grid (xi, yj) for i = 1, …, nx and j = 1, …, ny given the 

coefficients c by computing (for all (x, y) in the grid) 

           ,
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where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in 

KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences (XKNOT 

and YKNOT). The grid must be ordered in the sense that xi < xi+1 and yj < yj+1. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B22GD/DB22GD. The 

reference is: 

CALL B22GD (IXDER, IYDER, NX, XVEC, NY, YVEC, KXORD, 

KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF, VALUE, 

LDVALU, LEFTX, LEFTY, A, B, DBIATX, DBIATY, BX, BY) 

The additional arguments are as follows: 

LEFTX — Integer work array of length NX. 

LEFTY — Integer work array of length NY. 

A — Work array of length KXORD * KXORD. 

B — Work array of length KYORD * KYORD. 

DBIATX — Work array of length KXORD * (IXDER + 1). 

DBIATY — Work array of length KYORD * (IYDER + 1). 

BX — Work array of length KXORD * NX. 

BY — Work array of length KYORD * NY. 

2 Informational errors 

Type Code 

3 1 XVEC(I) does not satisfy 

XKNOT (KXORD) .LE. XVEC(I) .LE. XKNOT(NXCOEF + 1) 
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3 2 YVEC(I) does not satisfy 

YKNOT (KYORD) .LE. YVEC(I) .LE. YKNOT(NYCOEF + 1) 

4 3 XVEC is not strictly increasing. 

4 4  YVEC is not strictly increasing. 

Example 

In this example, a spline interpolant s to a function f is constructed. We use the IMSL routine 

BS2IN to compute the interpolant and then BS2GD is employed to compute s
(2,1)

 (x, y) on a grid. 

The values of this partial derivative and the error are computed on a 4 × 4 grid and then displayed. 
 

      USE BS2GD_INT 

      USE BS2IN_INT 

      USE BSNAK_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                  SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I, J, KXORD, KYORD, LDF, NOUT, NXCOEF, NXDATA,& 

                 NYCOEF, NYDATA 

      REAL       DCCFD(21,6), DOCBSC(21,6), DOCXD(21), DOCXK(26),& 

                 DOCYD(6), DOCYK(9), F, F21, FLOAT, VALUE(4,4),& 

                 X, XVEC(4), Y, YVEC(4) 

      INTRINSIC  FLOAT 

!                                  Define function and derivative 

      F(X,Y)   = X*X*X*X + X*X*X*Y*Y 

      F21(X,Y) = 12.0*X*Y 

!                yj                  Initialize/Setup 

      CALL UMACH (2, NOUT) 

      KXORD  = 5 

      KYORD  = 3 

      NXDATA = 21 

      NYDATA = 6 

      LDF    = NXDATA 

!                                  Set up interpolation points 

      DO 10  I=1, NXDATA 

         DOCXD(I) = FLOAT(I-11)/10.0 

   10 CONTINUE 

!                                  Set up interpolation points 

      DO 20  I=1, NYDATA 

         DOCYD(I) = FLOAT(I-1)/5.0 

   20 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NXDATA, DOCXD, KXORD, DOCXK) 

!                                  Generate knot sequence 

      CALL BSNAK (NYDATA, DOCYD, KYORD, DOCYK) 

!                                  Generate FDATA 

      DO 40  I=1, NYDATA 

         DO 30  J=1, NXDATA 

            DCCFD(J,I) = F(DOCXD(J),DOCYD(I)) 

   30  CONTINUE 

   40 CONTINUE 



 

 

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation  801 

     

     

 

!                                  Interpolate 

      CALL BS2IN (DOCXD, DOCYD, DCCFD, KXORD, KYORD, & 

                  DOCXK, DOCYK, DOCBSC) 

!                                  Print (2,1) derivative over a 

!                                  grid of [0.0,1.0] x [0.0,1.0] 

!                                  at 16 points. 

      NXCOEF = NXDATA 

      NYCOEF = NYDATA 

      WRITE (NOUT,99999) 

      DO 50  I=1, 4 

         XVEC(I) = FLOAT(I-1)/3.0 

         YVEC(I) = XVEC(I) 

   50 CONTINUE 

      CALL BS2GD (2, 1, XVEC, YVEC, KXORD, KYORD, DOCXK, DOCYK,& 

                  DOCBSC, VALUE) 

      DO 70  I=1, 4 

         DO 60  J=1, 4 

            WRITE (NOUT,'(3F15.4,F15.6)') XVEC(I), YVEC(J),& 

                                        VALUE(I,J),& 

                                        F21(XVEC(I),YVEC(J)) -& 

                                        VALUE(I,J) 

   60  CONTINUE 

   70 CONTINUE 

99999 FORMAT (39X, '(2,1)', /, 13X, 'X', 14X, 'Y', 10X, 'S    (X,Y)',& 

             5X, 'Error') 

      END 

Output 
 

                                  (2,1) 

    X              Y          S    (X,Y)     Error 

0.0000         0.0000         0.0000       0.000000 

0.0000         0.3333         0.0000       0.000000 

0.0000         0.6667         0.0000       0.000000 

0.0000         1.0000         0.0000       0.000001 

0.3333         0.0000         0.0000      -0.000001 

0.3333         0.3333         1.3333       0.000001 

0.3333         0.6667         2.6667      -0.000004 

0.3333         1.0000         4.0000       0.000008 

0.6667         0.0000         0.0000      -0.000001 

0.6667         0.3333         2.6667      -0.000008 

0.6667         0.6667         5.3333       0.000038 

0.6667         1.0000         8.0001      -0.000113 

1.0000         0.0000        -0.0005       0.000488 

1.0000         0.3333         4.0004      -0.000412  

1.0000         0.6667         7.9995       0.000488 

1.0000         1.0000        12.0002      -0.000244 

BS2IG 
This function evaluates the integral of a tensor-product spline on a rectangular domain, given its 

tensor-product B-spline representation. 
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Function Return Value 

BS2IG — Integral of the spline over the rectangle (A, B) by (C, D).  

(Output) 

Required Arguments 

A — Lower limit of the X-variable.   (Input) 

B — Upper limit of the X-variable.   (Input) 

C — Lower limit of the Y-variable.   (Input) 

D — Upper limit of the Y-variable.   (Input) 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.   

(Input)  

XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   

(Input)  

YKNOT must be nondecreasing. 

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline 

coefficients.   (Input)  

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF. 

Optional Arguments 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

Default: NXCOEF = size (XKNOT,1) – KXORD. 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 

Default: NYCOEF = size (YKNOT,1) – KYORD. 

FORTRAN 90 Interface 

Generic: BS2IG (A, B, C, D, KXORD, KYORD, XKNOT, YKNOT, BSCOEF [,…]) 

Specific: The specific interface names are S_BS2IG and D_BS2IG. 

FORTRAN 77 Interface 

Single: BS2IG (A, B, C, D, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF) 
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Double: The double precision function name is DBS2IG. 

Description 

The function BS2IG computes the integral of a tensor-product two-dimensional spline given its  

B-spline representation. Specifically, given the knot sequence tx = XKNOT, ty = YKNOT, the order  

kx = KXORD, ky = KYORD, the coefficients β = BSCOEF, the number of coefficients nx = NXCOEF, 

ny = NYCOEF and a rectangle [a, b] by [c, d], BS2IG returns the value 

1 1

yx
nn

b d

ij ija c
i j

B dy dx
 

 
 

where 

     , , , , ,,
x x y yi j i k j kB x y B x B y t t

 

This routine uses the identity (22) on page 151 of de Boor (1978). It assumes (for all knot 

sequences) that the first and last k knots are stacked, that is,t1 = … = tk and tn + 1 = … = tn + k, 

where k is the order of the spline in the x or y direction. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B22IG/DB22IG. The 

reference is: 

CALL B22IG(A, B, C, D, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, 

NYCOEF, BSCOEF, WK) 

The additional argument is: 

WK — Work array of length 4 * (MAX(KXORD, KYORD) + 1) + NYCOEF. 

2. Informational errors 

Type Code 

3 1 The lower limit of the X-integration is less than XKNOT(KXORD). 

3 2 The upper limit of the X-integration is greater than XKNOT(NXCOEF + 

1). 

3 3 The lower limit of the Y-integration is less than YKNOT(KYORD). 

3 4 The upper limit of the Y-integration is greater than YKNOT(NYCOEF + 

1). 

4 13 Multiplicity of the knots cannot exceed the order of the spline. 

4 14 The knots must be nondecreasing. 
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Example 

We integrate the two-dimensional tensor-product quartic (kx = 5) by linear (ky = 2) spline that 

interpolates x
3
 + xy at the points {(i/10, j/5) : i = −10, …, 10 and j = 0, …, 5} over the rectangle  

[0, 1] × [.5, 1]. The exact answer is 5/16. 
 

      USE BS2IG_INT 

      USE BSNAK_INT 

      USE BS2IN_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                  SPECIFICATIONS FOR PARAMETERS 

      INTEGER    KXORD, KYORD, LDF, NXDATA, NXKNOT, NYDATA, NYKNOT 

      PARAMETER  (KXORD=5, KYORD=2, NXDATA=21, NYDATA=6, LDF=NXDATA,& 

                 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD) 

!  

      INTEGER    I, J, NOUT, NXCOEF, NYCOEF 

      REAL       A, B, BSCOEF(NXDATA,NYDATA), C , D, F,& 

                 FDATA(LDF,NYDATA), FI, FLOAT, VAL, X, XDATA(NXDATA),& 

                 XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT) 

      INTRINSIC  FLOAT 

!                                  Define function and integral 

      F(X,Y)      = X*X*X + X*Y 

      FI(A,B,C ,D) = .25*((B**4-A**4)*(D-C )+(B*B-A*A)*(D*D-C *C )) 

!                                  Set up interpolation points 

      DO 10  I=1, NXDATA 

         XDATA(I) = FLOAT(I-11)/10.0 

   10 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 

!                                  Set up interpolation points 

      DO 20  I=1, NYDATA 

         YDATA(I) = FLOAT(I-1)/5.0 

   20 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 

!                                  Generate FDATA 

      DO 40  I=1, NYDATA 

         DO 30  J=1, NXDATA 

            FDATA(J,I) = F(XDATA(J),YDATA(I)) 

   30  CONTINUE 

   40 CONTINUE 

!                                  Interpolate 

      CALL BS2IN (XDATA, YDATA, FDATA, KXORD,& 

                  KYORD, XKNOT, YKNOT, BSCOEF) 

!                                  Integrate over rectangle 

!                                  [0.0,1.0] x [0.0,0.5] 

      NXCOEF = NXDATA 

      NYCOEF = NYDATA 

      A      = 0.0 

      B      = 1.0 

      C       = 0.5 

      D      = 1.0 
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      VAL    = BS2IG(A,B,C ,D,KXORD,KYORD,XKNOT,YKNOT,BSCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Print results 

      WRITE (NOUT,99999) VAL, FI(A,B,C ,D), FI(A,B,C ,D) - VAL 

99999 FORMAT (' Computed Integral = ', F10.5, /, ' Exact Integral    '& 

             , '= ', F10.5, /, ' Error             '& 

             , '= ', F10.6, /) 

      END 

Output 
 

Computed Integral =    0.31250 

Exact Integral    =    0.31250 

Error             =   0.000000 

BS3VL 
This function Evaluates a three-dimensional tensor-product spline, given its tensor-product B-

spline representation. 

Function Return Value 

BS3VL — Value of the spline at (X, Y, Z).   (Output) 

Required Arguments 

X — X-coordinate of the point at which the spline is to be evaluated.   (Input) 

Y — Y-coordinate of the point at which the spline is to be evaluated.   (Input) 

Z — Z-coordinate of the point at which the spline is to be evaluated.   (Input) 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 

KZORD — Order of the spline in the Z-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.   

(Input)  

XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   

(Input)  

YKNOT must be nondecreasing. 

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the Z-direction.   

(Input)  

ZKNOT must be nondecreasing. 
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NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 

NZCOEF — Number of B-spline coefficients in the Z-direction.   (Input) 

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product  

B-spline coefficients.   (Input)  

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF. 

FORTRAN 90 Interface 

Generic: BS3VL (X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, 

NYCOEF, NZCOEF, BSCOEF) 

 Specific: The specific interface names are S_BS3VL and D_BS3VL. 

FORTRAN 77 Interface 

Single:    BS3VL (X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, 

NYCOEF, NZCOEF, BSCOEF) 

Double: The double precision function name is DBS3VL. 

Description 

The function BS3VL evaluates a trivariate tensor-product spline (represented as a linear 

combination of tensor-product B-splines) at a given point. This routine is a special case of the 

IMSL routine BS3DR, which evaluates a partial derivative of such a spline. (The value of a spline 

is its zero-th derivative.) For more information, see de Boor (1978, pages 351− 353). 

This routine returns the value of the function s at a point (x, y, z) given the coefficients c by 

computing 

       , , , , , ,

1 1 1

, ,
y xz

x x y y z z

N NN

nml n k m k l k

l m n

s x y z c B x B y B z
  

 t t t

 

where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in 

KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot 

sequences (XKNOT, YKNOT, and ZKNOT). 

Comments 

Workspace may be explicitly provided, if desired, by use of B23VL/DB23VL. The reference is: 

CALL B23VL (X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT, 

ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, WK) 
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The additional argument is: 

WK — Work array of length 3 * MAX(KXORD, KYORD, KZORD) + KYORD * 

KZORD + KZORD. 

Example 

For an example of the use of BS3VL, see IMSL routine BS3IN. 

BS3DR 
This function evaluates the derivative of a three-dimensional tensor-product spline, given its 

tensor-product B-spline representation. 

Function Return Value 

BS3DR — Value of the (IXDER, IYDER, IZDER) derivative of the spline at (X, Y, Z).   

(Output) 

Required Arguments 

IXDER — Order of the X-derivative.   (Input) 

IYDER — Order of the Y-derivative.   (Input) 

IZDER — Order of the Z-derivative.   (Input) 

X — X-coordinate of the point at which the spline is to be evaluated.   (Input) 

Y — Y-coordinate of the point at which the spline is to be evaluated.   (Input) 

Z — Z-coordinate of the point at which the spline is to be evaluated.   (Input) 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 

KZORD — Order of the spline in the Z-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.   

(Input)  

KNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   

(Input)  

YKNOT must be nondecreasing. 
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ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the Z-direction.   

(Input)  

ZKNOT must be nondecreasing. 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 

NZCOEF — Number of B-spline coefficients in the Z-direction.   (Input) 

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product  

B-spline coefficients.   (Input)  

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF. 

FORTRAN 90 Interface 

Generic: BS3DR (IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT, 

ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF) 

Specific: The specific interface names are S_BS3DR and D_BS3DR. 

FORTRAN 77 Interface 

Single: BS3DR (IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT, 

ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF) 

Double: The double precision function name is DBS3DR. 

Description 

The function BS3DR evaluates a partial derivative of a trivariate tensor-product spline (represented 

as a linear combination of tensor-product B-splines) at a given point. For more information, see de 

Boor (1978, pages 351− 353). 

This routine returns the value of the function s
(p,

 
q,

 
r)

 at a point (x, y, z) given the coefficients c by 

computing 

               , ,

, , , , , ,
1 1 1

, ,
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x x y y z z

N NN
p q rp q r
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s x y z c B x B y B z
  

 t t t

 

where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in 

KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot 

sequences (XKNOT, YKNOT, and ZKNOT). 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of B23DR/DB23DR. The 

reference is: 

CALL B23DR(IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD, 

KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, 

BSCOEF, WK) 

The additional argument is: 

WK — Work array of length 3 * MAX0(KXORD, KYORD, KZORD) + KYORD * 

KZORD + KZORD. 

2. Informational errors 

Type Code 

3 1 The point X does not satisfy 

XKNOT(KXORD) .LE. X .LE. XKNOT(NXCOEF + 1). 

3 2 The point Y does not satisfy 

YKNOT(KYORD) .LE. Y .LE. YKNOT(NYCOEF + 1). 

3 3 The point Z does not satisfy 

ZKNOT (KZORD) .LE. Z .LE. ZKNOT(NZCOEF + 1). 

Example 

In this example, a spline interpolant s to a function f(x, y, z) = x
4
 + y(xz)

3
 is constructed using 

BS3IN. Next, BS3DR is used to compute s
(2,0,1)

(x, y, z). The values of this partial derivative and the 

error are computed on a 4 × 4 × 2 grid and then displayed. 
 

      USE BS3DR_INT 

      USE BS3IN_INT 

      USE BSNAK_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                  SPECIFICATIONS FOR PARAMETERS 

      INTEGER    KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT,& 

                 NYDATA, NYKNOT, NZDATA, NZKNOT 

      PARAMETER  (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NYDATA=6,& 

                 NZDATA=8, LDF=NXDATA, MDF=NYDATA,& 

                 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,& 

                 NZKNOT=NZDATA+KZORD) 

!  

      INTEGER    I, J, K, L, NOUT, NXCOEF, NYCOEF, NZCOEF 

      REAL       BSCOEF(NXDATA,NYDATA,NZDATA), F, F201,& 

                 FDATA(LDF,MDF,NZDATA), FLOAT, S201, X, XDATA(NXDATA),& 

                 XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT), Z,& 

                 ZDATA(NZDATA), ZKNOT(NZKNOT) 

      INTRINSIC  FLOAT 

!                                  Define function and (2,0,1) 

!                                  derivative 
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      F(X,Y,Z)    = X*X*X*X + X*X*X*Y*Z*Z*Z 

      F201(X,Y,Z) = 18.0*X*Y*Z 

!                                  Set up X-interpolation points 

      DO 10  I=1, NXDATA 

         XDATA(I) = FLOAT(I-11)/10.0 

   10 CONTINUE 

!                                  Set up Y-interpolation points 

      DO 20  I=1, NYDATA 

         YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1) 

   20 CONTINUE 

!                                  Set up Z-interpolation points 

      DO 30  I=1, NZDATA 

         ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1) 

   30 CONTINUE 

!                                  Generate knots 

      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 

      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 

      CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT) 

!                                  Generate FDATA 

      DO 50  K=1, NZDATA 

         DO 40  I=1, NYDATA 

            DO 40  J=1, NXDATA 

               FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K)) 

   40  CONTINUE 

   50 CONTINUE 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Interpolate& 

      CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT, & 

                  YKNOT, ZKNOT, BSCOEF) 

!  

      NXCOEF = NXDATA 

      NYCOEF = NYDATA 

      NZCOEF = NZDATA 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Print over a grid of 

!                                  [-1.0,1.0] x [0.0,1.0] x [0.0,1.0] 

!                                  at 32 points. 

      DO 80  I=1, 4 

         DO 70  J=1, 4 

            DO 60  L=1, 2 

               X    = 2.0*(FLOAT(I-1)/3.0) - 1.0 

               Y    = FLOAT(J-1)/3.0 

               Z    = FLOAT(L-1) 

!                                  Evaluate spline 

               S201 = BS3DR(2,0,1,X,Y,Z,KXORD,KYORD,KZORD,XKNOT,YKNOT,& 

                      ZKNOT,NXCOEF,NYCOEF,NZCOEF,BSCOEF) 

               WRITE (NOUT,'(3F12.4,2F12.6)') X, Y, Z, S201,& 

                      F201(X,Y,Z) - S201 

   60     CONTINUE 

   70  CONTINUE 

   80 CONTINUE 

99999 FORMAT (38X, '(2,0,1)', /, 9X, 'X', 11X,& 

             'Y', 11X, 'Z', 4X, 'S     (X,Y,Z)    Error') 

      END 
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Output 
 

                                  (2,0,1) 

    X           Y           Z    S     (X,Y,Z)   Error 

-1.0000      0.0000      0.0000   -0.000107    0.000107 

-1.0000      0.0000      1.0000    0.000053   -0.000053 

-1.0000      0.3333      0.0000    0.064051   -0.064051 

-1.0000      0.3333      1.0000   -5.935941   -0.064059 

-1.0000      0.6667      0.0000    0.127542   -0.127542 

-1.0000      0.6667      1.0000  -11.873034   -0.126966 

-1.0000      1.0000      0.0000    0.191166   -0.191166 

-1.0000      1.0000      1.0000  -17.808527   -0.191473 

-0.3333      0.0000      0.0000   -0.000002    0.000002 

-0.3333      0.0000      1.0000    0.000000    0.000000 

-0.3333      0.3333      0.0000    0.021228   -0.021228 

-0.3333      0.3333      1.0000   -1.978768   -0.021232 

-0.3333      0.6667      0.0000    0.042464   -0.042464 

-0.3333      0.6667      1.0000   -3.957536   -0.042464 

-0.3333      1.0000      0.0000    0.063700   -0.063700 

-0.3333      1.0000      1.0000   -5.936305   -0.063694 

 0.3333      0.0000      0.0000   -0.000003    0.000003 

 0.3333      0.0000      1.0000    0.000000    0.000000 

 0.3333      0.3333      0.0000   -0.021229    0.021229 

 0.3333      0.3333      1.0000    1.978763    0.021238 

 0.3333      0.6667      0.0000   -0.042465    0.042465 

 0.3333      0.6667      1.0000    3.957539    0.042462 

 0.3333      1.0000      0.0000   -0.063700    0.063700 

 0.3333      1.0000      1.0000    5.936304    0.063697 

 1.0000      0.0000      0.0000   -0.000098    0.000098 

 1.0000      0.0000      1.0000    0.000053   -0.000053 

 1.0000      0.3333      0.0000   -0.063855    0.063855 

 1.0000      0.3333      1.0000    5.936146    0.063854 

 1.0000      0.6667      0.0000   -0.127631    0.127631 

 1.0000      0.6667      1.0000   11.873067    0.126933 

 1.0000      1.0000      0.0000   -0.191442    0.191442 

 1.0000      1.0000      1.0000   17.807940    0.192060 

BS3GD 
Evaluates the derivative of a three-dimensional tensor-product spline, given its tensor-product  

B-spline representation on a grid. 

Required Arguments 

IXDER — Order of the X-derivative.   (Input) 

IYDER — Order of the Y-derivative.   (Input) 

IZDER — Order of the Z-derivative.   (Input) 

XVEC — Array of length NX containing the x-coordinates at which the spline is to be 

evaluated.   (Input)  

The points in XVEC should be strictly increasing. 
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YVEC — Array of length NY containing the y-coordinates at which the spline is to be 

evaluated.   (Input)  

The points in YVEC should be strictly increasing. 

ZVEC — Array of length NY containing the y-coordinates at which the spline is to be 

evaluated.   (Input)  

The points in YVEC should be strictly increasing. 

KXORD — Order of the spline in the x-direction.   (Input) 

KYORD — Order of the spline in the y-direction.   (Input) 

KZORD — Order of the spline in the z-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the x-direction.   

(Input)  

XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the y-direction.   

(Input)  

YKNOT must be nondecreasing. 

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the z-direction.   

(Input)  

ZKNOT must be nondecreasing. 

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product  

B-spline coefficients.   (Input)  

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF. 

VALUE — Array of size NX by NY by NZ containing the values of the (IXDER, IYDER, 

IZDER) derivative of the spline on the NX by NY by NZ grid.   (Output)  

VALUE(I, J, K) contains the derivative of the spline at the point (XVEC(I), YVEC(J), 

ZVEC(K)). 

Optional Arguments 

NX — Number of grid points in the x-direction.   (Input) 

Default: NX = size (XVEC,1). 

NY — Number of grid points in the y-direction.   (Input) 

Default: NY = size (YVEC,1). 

NZ — Number of grid points in the z-direction.   (Input) 

Default: NZ = size (ZVEC,1). 

NXCOEF — Number of B-spline coefficients in the x-direction.   (Input) 

Default: NXCOEF = size (XKNOT,1) – KXORD. 
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NYCOEF — Number of B-spline coefficients in the y-direction.   (Input) 

Default: NYCOEF = size (YKNOT,1) – KYORD. 

NZCOEF — Number of B-spline coefficients in the z-direction.   (Input) 

Default: NZCOEF = size (ZKNOT,1) – KZORD. 

LDVALU — Leading dimension of VALUE exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDVALU = SIZE (VALUE,1). 

MDVALU — Middle dimension of VALUE exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: MDVALU = SIZE (VALUE,2). 

FORTRAN 90 Interface 

Generic: CALL BS3GD (IXDER, IYDER, IZDER, XVEC, YVEC, ZVEC, KXORD, KYORD, 

KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, VALUE [,…]) 

Specific:  The specific interface names are S_BS3GD and D_BS3GD. 

FORTRAN 77 Interface 

Single: CALL BS3GD (IXDER, IYDER, IZDER, NX, XVEC, NY, YVEC, NZ, ZVEC, KXORD, 

KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, 

VALUE, LDVALU, MDVALU) 

Double: The double precision name is DBS3GD. 

Description 

The routine BS3GD evaluates a partial derivative of a trivariate tensor-product spline (represented 

as a linear combination of tensor-product B-splines) on a grid. For more information, see de Boor 

(1978, pages 351− 353). 

This routine returns the value of the function s
(p,q,r)

 on the grid (xi, yj, zk) for i = 1, …, nx,  

j = 1, …, ny, and k = 1, …, nz given the coefficients c by computing (for all (x, y, z) on the grid) 

               , ,

, , , , , ,
1 1 1

, ,
y xz

x x y y z z

N NN
p q rp q r

nml n k m k l k
l m n

s x y z c B x B y B z
  

 t t t

 

where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in 

KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot 

sequences (XKNOT, YKNOT, and ZKNOT). The grid must be ordered in the sense that  

xi < xi + 1, yj < yj + 1, and zk < zk + 1. 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of B23GD/DB23GD. The 

reference is: 

CALL B23GD ((IXDER, IYDER, IZDER, NX, XVEC, NY, YVEC, NZ, 

ZVEC, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, 

NXCOEF, NYCOEF, NZCOEF, BSCOEF, VALUE, LDVALU, 

MDVALU, LEFTX, LEFTY, LEFTZ, A, B, C, DBIATX, DBIATY, 

DBIATZ, BX, BY, BZ) 

The additional arguments are as follows: 

LEFTX — Work array of length NX. 

LEFTY — Work array of length NY. 

LEFTZ — Work array of length NZ. 

A — Work array of length KXORD * KXORD. 

B — Work array of length KYORD * KYORD. 

C — Work array of length KZORD * KZORD. 

DBIATX — Work array of length KXORD * (IXDER + 1). 

DBIATY — Work array of length KYORD * (IYDER + 1). 

DBIATZ — Work array of length KZORD * (IZDER + 1). 

BX — Work array of length KXORD * NX. 

BY — Work array of length KYORD * NY. 

BZ — Work array of length KZORD * NZ. 

2. Informational errors 

Type Code 

3 1 XVEC(I) does not satisfy  

XKNOT(KXORD) ≤ XVEC(I) ≤ XKNOT(NXCOEF + 1). 

3 2 YVEC(I) does not satisfy  

YKNOT(KYORD) ≤ YVEC(I) ≤ YKNOT(NYCOEF + 1). 

3 3 ZVEC(I) does not satisfy  

ZKNOT(KZORD) ≤ ZVEC(I) ≤ ZKNOT(NZCOEF + 1). 
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4 4 XVEC is not strictly increasing. 

4 5 YVEC is not strictly increasing. 

4 6 ZVEC is not strictly increasing. 

Example 

In this example, a spline interpolant s to a function f(x, y, z) = x
4
 + y(xz)

3
 is constructed using 

BS3IN. Next, BS3GD is used to compute s
(2,0,1)

(x, y, z) on the grid. The values of this partial 

derivative and the error are computed on a 4 × 4 × 2 grid and then displayed. 
 

      USE BS3GD_INT 

      USE BS3IN_INT 

      USE BSNAK_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    KXORD, KYORD, KZORD, LDF, LDVAL, MDF, MDVAL, NXDATA,& 

                 NXKNOT, NYDATA, NYKNOT, NZ, NZDATA, NZKNOT 

      PARAMETER  (KXORD=5, KYORD=2, KZORD=3, LDVAL=4, MDVAL=4,& 

                 NXDATA=21, NYDATA=6, NZ=2, NZDATA=8, LDF=NXDATA,& 

                 MDF=NYDATA, NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,& 

                 NZKNOT=NZDATA+KZORD) 

!  

      INTEGER    I, J, K, L, NOUT, NXCOEF, NYCOEF, NZCOEF 

      REAL       BSCOEF(NXDATA,NYDATA,NZDATA), F, F201,& 

                 FDATA(LDF,MDF,NZDATA), FLOAT, VALUE(LDVAL,MDVAL,NZ),& 

                 X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(LDVAL), Y,& 

                 YDATA(NYDATA), YKNOT(NYKNOT), YVEC(MDVAL), Z,& 

                 ZDATA(NZDATA), ZKNOT(NZKNOT), ZVEC(NZ) 

      INTRINSIC  FLOAT 

!  

!  

!  

      F(X,Y,Z)    = X*X*X*X + X*X*X*Y*Z*Z*Z 

      F201(X,Y,Z) = 18.0*X*Y*Z 

!  

      CALL UMACH (2, NOUT) 

!                                  Set up X interpolation points 

      DO 10  I=1, NXDATA 

         XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) - 1.0 

   10 CONTINUE 

!                                  Set up Y interpolation points 

      DO 20  I=1, NYDATA 

         YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1) 

   20 CONTINUE 

!                                  Set up Z interpolation points 

      DO 30  I=1, NZDATA 

         ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1) 

   30 CONTINUE 

!                                  Generate knots 

      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 

      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 

      CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT) 

!                                  Generate FDATA 
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      DO 50  K=1, NZDATA 

         DO 40  I=1, NYDATA 

            DO 40  J=1, NXDATA 

               FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K)) 

   40  CONTINUE 

   50 CONTINUE 

!                                  Interpolate 

      CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD,& 

                  KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF) 

!  

      NXCOEF = NXDATA 

      NYCOEF = NYDATA 

      NZCOEF = NZDATA 

!                                  Print over a grid of 

!                                  [-1.0,1.0] x [0.0,1.0] x [0.0,1.0] 

!                                  at 32 points. 

      DO 60  I=1, 4 

         XVEC(I) = 2.0*(FLOAT(I-1)/3.0) - 1.0 

   60 CONTINUE 

      DO 70  J=1, 4 

         YVEC(J) = FLOAT(J-1)/3.0 

   70 CONTINUE 

      DO 80  L=1, 2 

         ZVEC(L) = FLOAT(L-1) 

   80 CONTINUE 

      CALL BS3GD (2, 0, 1, XVEC, YVEC, ZVEC, KXORD, KYORD,& 

                  KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, VALUE) 

!  

!  

      WRITE (NOUT,99999) 

      DO 110  I=1, 4 

         DO 100  J=1, 4 

            DO 90  L=1, 2 

               WRITE (NOUT,'(5F13.4)') XVEC(I), YVEC(J), ZVEC(L),& 

                                     VALUE(I,J,L),& 

                                     F201(XVEC(I),YVEC(J),ZVEC(L)) -& 

                                     VALUE(I,J,L) 

   90   CONTINUE 

  100 CONTINUE 

  110 CONTINUE 

99999 FORMAT (44X, '(2,0,1)', /, 10X, 'X', 11X, 'Y', 10X, 'Z', 10X,& 

             'S     (X,Y,Z)  Error') 

      STOP 

      END 

Output 
 

                                            (2,0,1) 

          X           Y          Z          S     (X,Y,Z)  Error 

      -1.0000       0.0000       0.0000      -0.0005       0.0005 

      -1.0000       0.0000       1.0000       0.0002      -0.0002 

      -1.0000       0.3333       0.0000       0.0641      -0.0641 

      -1.0000       0.3333       1.0000      -5.9360      -0.0640 

      -1.0000       0.6667       0.0000       0.1274      -0.1274 

      -1.0000       0.6667       1.0000     -11.8730      -0.1270 
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      -1.0000       1.0000       0.0000       0.1911      -0.1911 

      -1.0000       1.0000       1.0000     -17.8086      -0.1914 

      -0.3333       0.0000       0.0000       0.0000       0.0000 

      -0.3333       0.0000       1.0000       0.0000       0.0000 

      -0.3333       0.3333       0.0000       0.0212      -0.0212 

      -0.3333       0.3333       1.0000      -1.9788      -0.0212 

      -0.3333       0.6667       0.0000       0.0425      -0.0425 

      -0.3333       0.6667       1.0000      -3.9575      -0.0425 

      -0.3333       1.0000       0.0000       0.0637      -0.0637 

      -0.3333       1.0000       1.0000      -5.9363      -0.0637 

       0.3333       0.0000       0.0000       0.0000       0.0000 

       0.3333       0.0000       1.0000       0.0000       0.0000 

       0.3333       0.3333       0.0000      -0.0212       0.0212 

       0.3333       0.3333       1.0000       1.9788       0.0212 

       0.3333       0.6667       0.0000      -0.0425       0.0425 

       0.3333       0.6667       1.0000       3.9575       0.0425 

       0.3333       1.0000       0.0000      -0.0637       0.0637 

       0.3333       1.0000       1.0000       5.9363       0.0637 

       1.0000       0.0000       0.0000      -0.0005       0.0005 

       1.0000       0.0000       1.0000       0.0000       0.0000 

       1.0000       0.3333       0.0000      -0.0637       0.0637 

       1.0000       0.3333       1.0000       5.9359       0.0641 

       1.0000       0.6667       0.0000      -0.1273       0.1273 

       1.0000       0.6667       1.0000      11.8733       0.1267 

       1.0000       1.0000       0.0000      -0.1912       0.1912 

       1.0000       1.0000       1.0000      17.8096       0.1904 

BS3IG 
This function evaluates the integral of a tensor-product spline in three dimensions over a three-

dimensional rectangle, given its tensor-product B-spline representation. 

Function Return Value 

BS3IG — Integral of the spline over the three-dimensional rectangle (A, B) by (C, D) by (E, F).   

(Output) 

Required Arguments 

A — Lower limit of the X-variable.   (Input) 

B — Upper limit of the X-variable.   (Input) 

C — Lower limit of the Y-variable.   (Input) 

D — Upper limit of the Y-variable.   (Input) 

E — Lower limit of the Z-variable.   (Input) 

F — Upper limit of the Z-variable.   (Input) 

KXORD — Order of the spline in the X-direction.   (Input) 
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KYORD — Order of the spline in the Y-direction.   (Input) 

KZORD — Order of the spline in the Z-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.   

(Input)  

XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   

(Input)  

YKNOT must be nondecreasing. 

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the Z-direction.   

(Input)  

ZKNOT must be nondecreasing. 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 

NZCOEF — Number of B-spline coefficients in the Z-direction.   (Input) 

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product  

B-spline coefficients.   (Input)  

BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF. 

FORTRAN 90 Interface 

Generic: BS3IG (A, B, C, D, E, F, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, 

NXCOEF, NYCOEF, NZCOEF, BSCOEF) 

Specific: The specific interface names are S_BS3IG and D_BS3IG. 

FORTRAN 77 Interface 

Single: BS3IG (A, B, C, D, E, F, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, 

NXCOEF, NYCOEF, NZCOEF, BSCOEF) 

Double: The double precision function name is DBS3IG. 

Description 

The routine BS3IG computes the integral of a tensor-product three-dimensional spline, given its  

B-spline representation. Specifically, given the knot sequence tx = XKNOT, ty = YKNOT, tz = ZKNOT, 

the order kx = KXORD, ky = KYORD, kz = KZORD, the coefficients β = BSCOEF, the number of 

coefficients nx = NXCOEF, ny = NYCOEF, nz = NZCOEF, and a three-dimensional rectangle [a, b] by 

[c, d] by [e, f], BS3IG returns the value 
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This routine uses the identity (22) on page 151 of de Boor (1978). It assumes (for all knot 

sequences) that the first and last k knots are stacked, that is, t1 = … = tk and tn + 1 = … = tn + k, 

where k is the order of the spline in the x, y, or z direction. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B23IG/DB23IG. The 

reference is: 

CALL B23IG(A, B, C, D, E, F, KXORD, KYORD, KZORD, XKNOT, 

YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, WK) 

The additional argument is: 

WK — Work array of length 4 * (MAX(KXORD, KYORD, KZORD) + 1) + 
NYCOEF + NZCOEF. 

2. Informational errors 

Type Code 

3 1 The lower limit of the X-integration is less than XKNOT(KXORD). 

3 2 The upper limit of the X-integration is greater than  

XKNOT(NXCOEF + 1). 

3 3 The lower limit of the Y-integration is less than YKNOT(KYORD). 

3 4 The upper limit of the Y-integration is greater than  

YKNOT(NYCOEF + 1). 

3 5 The lower limit of the Z- integration is less than ZKNOT(KZORD). 

3 6 The upper limit of the Z-integration is greater than  

ZKNOT(NZCOEF + 1). 

4  13 Multiplicity of the knots cannot exceed the order of the spline. 

4 14 The knots must be nondecreasing. 

Example 

We integrate the three-dimensional tensor-product quartic (kx = 5) by linear (ky = 2) by quadratic 

(kz = 3) spline which interpolates x
3
 + xyz at the points 

  /10, / 5, / 7 : 10, ,10, 0, , 5, and 0, , 7i j m i j m   
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over the rectangle [0, 1] × [.5, 1] × [0, .5]. The exact answer is 11/128. 
 

      USE BS3IG_INT 

      USE BS3IN_INT 

      USE BSNAK_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                  SPECIFICATIONS FOR PARAMETERS 

      INTEGER    KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT,& 

                 NYDATA, NYKNOT, NZDATA, NZKNOT 

      PARAMETER  (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NYDATA=6,& 

                 NZDATA=8, LDF=NXDATA, MDF=NYDATA,& 

                 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,& 

                 NZKNOT=NZDATA+KZORD) 

!  

      INTEGER    I, J, K, NOUT, NXCOEF, NYCOEF, NZCOEF 

      REAL       A, B, BSCOEF(NXDATA,NYDATA,NZDATA), C , D, E,& 

                 F, FDATA(LDF,MDF,NZDATA), FF, FIG, FLOAT, G, H, RI,& 

                 RJ, VAL, X, XDATA(NXDATA), XKNOT(NXKNOT), Y,& 

                 YDATA(NYDATA), YKNOT(NYKNOT), Z, ZDATA(NZDATA),& 

                 ZKNOT(NZKNOT) 

      INTRINSIC  FLOAT 

!                                  Define function 

      F(X,Y,Z) = X*X*X + X*Y*Z 

!                                  Set up interpolation points 

      DO 10  I=1, NXDATA 

         XDATA(I) = FLOAT(I-11)/10.0 

   10 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 

!                                  Set up interpolation points 

      DO 20  I=1, NYDATA 

         YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1) 

   20 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 

!                                  Set up interpolation points 

      DO 30  I=1, NZDATA 

         ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1) 

   30 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT) 

!                                  Generate FDATA 

      DO 50  K=1, NZDATA 

         DO 40  I=1, NYDATA 

            DO 40  J=1, NXDATA 

               FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K)) 

   40  CONTINUE 

   50 CONTINUE 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Interpolate 

      CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT, & 

                  YKNOT, ZKNOT, BSCOEF) 
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!  

      NXCOEF = NXDATA 

      NYCOEF = NYDATA 

      NZCOEF = NZDATA 

      A      = 0.0 

      B      = 1.0 

      C      = 0.5 

      D      = 1.0 

      E      = 0.0 

      FF     = 0.5 

!                                  Integrate 

      VAL    = BS3IG(A,B,C ,D,E,FF,KXORD,KYORD,KZORD,XKNOT,YKNOT,ZKNOT,& 

               NXCOEF,NYCOEF,NZCOEF,BSCOEF) 

!                                  Calculate integral directly 

      G   = .5*(B**4-A**4) 

      H   = (B-A)*(B+A) 

      RI  = G*(D-C ) 

      RJ  = .5*H*(D-C )*(D+C ) 

      FIG = .5*(RI*(FF-E)+.5*RJ*(FF-E)*(FF+E)) 

!                                  Print results 

      WRITE (NOUT,99999) VAL, FIG, FIG - VAL 

99999 FORMAT (' Computed Integral = ', F10.5, /, ' Exact Integral    '& 

             , '= ', F10.5,/, ' Error             '& 

             , '= ', F10.6, /) 

      END 

Output 
 

Computed Integral =    0.08594 

Exact Integral    =    0.08594 

Error             =   0.000000 

BSCPP 
Converts a spline in B-spline representation to piecewise polynomial representation. 

Required Arguments 

KORDER — Order of the spline.   (Input) 

XKNOT — Array of length KORDER + NCOEF containing the knot sequence.   (Input)  

XKNOT must be nondecreasing. 

NCOEF — Number of B-spline coefficients.   (Input) 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Input) 

NPPCF —  Number of piecewise polynomial pieces.   (Output)  

NPPCF is always less than or equal to NCOEF − KORDER + 1. 
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BREAK — Array of length (NPPCF + 1) containing the breakpoints of the piecewise 

polynomial representation.   (Output)  

BREAK must be dimensioned at least NCOEF − KORDER + 2. 

PPCOEF — Array of length KORDER * NPPCF containing the local coefficients of the 

polynomial pieces.   (Output)  

PPCOEF is treated internally as a matrix of size KORDER by NPPCF. 

FORTRAN 90 Interface 

Generic: CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF) 

Specific: The specific interface names are S_BSCPP and D_BSCPP. 

FORTRAN 77 Interface 

Single: CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF) 

Double: The double precision name is DBSCPP. 

Description 

The routine BSCPP is based on the routine BSPLPP by de Boor (1978, page 140). This routine is 

used to convert a spline in B-spline representation to a piecewise polynomial (pp) representation 

which can then be evaluated more efficiently. There is some overhead in converting from the  

B-spline representation to the pp representation, but the conversion to pp form is recommended 

when 3 or more function values are needed per polynomial piece. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2CPP/DB2CPP. The 

reference is: 

CALL B2CPP (KORDER, XKNOT, NCOEF, BSCOEFF, NPPCF, BREAK, 

PPCOEF, WK) 

The additional argument is 

WK — Work array of length (KORDER + 3) * KORDER. 

2. Informational errors 

Type Code 

4 4 Multiplicity of the knots cannot exceed the order of the spline. 

4 5 The knots must be nondecreasing. 
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Example 

For an example of the use of BSCPP, see PPDER. 

PPVAL 
This function evaluates a piecewise polynomial. 

Function Return Value 

PPVAL — Value of the piecewise polynomial at X.   (Output) 

Required Arguments 

X — Point at which the polynomial is to be evaluated.   (Input) 

BREAK — Array of length NINTV + 1 containing the breakpoints of the piecewise 

polynomial representation.   (Input)  

BREAK must be strictly increasing. 

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise 

polynomial pieces.   (Input)  

PPCOEF is treated internally as a matrix of size KORDER by NINTV. 

Optional Arguments 

KORDER — Order of the polynomial.   (Input) 

Default: KORDER = size (PPCOEF,1). 

NINTV — Number of polynomial pieces.   (Input) 

Default: NINTV = size (PPCOEF,2). 

FORTRAN 90 Interface 

Generic: PPVAL (X, BREAK, PPCOEF [,…]) 

Specific: The specific interface names are S_PPVAL and D_PPVAL. 

FORTRAN 77 Interface 

Single: PPVAL (X, KORDER, NINTV, BREAK, PPCOEF) 

Double: The double precision function name is DPPVAL. 

Description 

The routine PPVAL evaluates a piecewise polynomial at a given point. This routine is a special 

case of the routine PPDER, which evaluates the derivative of a piecewise polynomial. (The value 

of a piecewise polynomial is its zero-th derivative.) 
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The routine PPDER is based on the routine PPVALU in de Boor (1978, page 89). 

Example 

In this example, a spline interpolant to a function f is computed using the IMSL routine BSINT. 

This routine represents the interpolant as a linear combination of B-splines. This representation is 

then converted to piecewise polynomial representation by calling the IMSL routine BSCPP. The 

piecewise polynomial is evaluated using PPVAL. These values are compared to the corresponding 

values of f. 
 

      USE PPVAL_INT 

      USE BSNAK_INT 

      USE BSCPP_INT 

      USE BSINT_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    KORDER, NCOEF, NDATA, NKNOT 

      PARAMETER  (KORDER=4, NCOEF=20, NDATA=20, NKNOT=NDATA+KORDER) 

!  

      INTEGER    I, NOUT, NPPCF 

      REAL       BREAK(NCOEF), BSCOEF(NCOEF), EXP, F, FDATA(NDATA),& 

                 FLOAT, PPCOEF(KORDER,NCOEF), S, X, XDATA(NDATA),& 

                 XKNOT(NKNOT) 

      INTRINSIC  EXP, FLOAT 

!                                  Define function 

      F(X) = X*EXP(X) 

!                                  Set up interpolation points 

      DO 30  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   30 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

!                                  Compute the B-spline interpolant 

      CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

!                                  Convert to piecewise polynomial 

      CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Print the interpolant on a uniform 

!                                  grid 

      DO 40  I=1, NDATA 

         X = FLOAT(I-1)/FLOAT(NDATA-1) 

!                                  Compute value of the piecewise 

!                                  polynomial 

         S = PPVAL(X,BREAK,PPCOEF) 

         WRITE (NOUT,'(2F12.3, E14.3)') X, S, F(X) - S 

 

 

   40 CONTINUE 

99999 FORMAT (11X, 'X', 8X, 'S(X)', 7X, 'Error') 

      END 
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Output 
 

    X        S(X)       Error 

0.000       0.000     0.000E+00 

0.053       0.055    -0.745E-08 

0.105       0.117     0.000E+00 

0.158       0.185     0.000E+00 

0.211       0.260    -0.298E-07 

0.263       0.342     0.298E-07 

0.316       0.433     0.000E+00 

0.368       0.533     0.000E+00 

0.421       0.642     0.000E+00 

0.474       0.761     0.596E-07 

0.526       0.891     0.000E+00 

0.579       1.033     0.000E+00 

0.632       1.188     0.000E+00 

0.684       1.356     0.000E+00 

0.737       1.540    -0.119E-06 

0.789       1.739     0.000E+00 

0.842       1.955     0.000E+00 

0.895       2.189     0.238E-06 

0.947       2.443     0.238E-06 

1.000       2.718     0.238E-06 

PPDER 
This function evaluates the derivative of a piecewise polynomial. 

Function Return Value 

PPDER — Value of the IDERIV-th derivative of the piecewise polynomial at X.   (Output) 

Required Arguments 

X — Point at which the polynomial is to be evaluated.   (Input) 

BREAK — Array of length NINTV + 1 containing the breakpoints of the piecewise 

polynomial representation.   (Input)  

BREAK must be strictly increasing. 

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise 

polynomial pieces.   (Input)  

PPCOEF is treated internally as a matrix of size KORDER by NINTV. 

Optional Arguments 

IDERIV — Order of the derivative to be evaluated.   (Input)  

In particular, IDERIV = 0 returns the value of the polynomial. 

Default: IDERIV = 1. 

KORDER — Order of the polynomial.   (Input) 

Default: KORDER = size (PPCOEF,1). 
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NINTV — Number of polynomial pieces.   (Input) 

Default: NINTV = size (PPCOEF,2). 

FORTRAN 90 Interface 

Generic: PPDER (X, BREAK, PPCOEF [,…]) 

Specific: The specific interface names are S_PPDER and D_PPDER. 

FORTRAN 77 Interface 

Single: PPDER (IDERIV, X, KORDER, NINTV, BREAK, PPCOEF) 

Double: The double precision function name is DPPDER. 

Description 

The routine PPDER evaluates the derivative of a piecewise polynomial function f at a given point. 

This routine is based on the subroutine PPVALU by de Boor (1978, page 89). In particular, if the 

breakpoint sequence is stored in ξ (a vector of length N = NINTV + 1), and if the coefficients of the 

piecewise polynomial representation are stored in c, then the value of the j-th derivative of f at x 

in[ξi, ξi + 1) is 

   
 

 

1

1,
!

m jk
j i

m i

m j
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f x c

m j














 

when j = 0 to k − 1 and zero otherwise. Notice that this representation forces the function to be 

right continuous. If x is less than ξ1, then i is set to 1 in the above formula; if x is greater than or 

equal to ξN , then i is set to N − 1. This has the effect of extending the piecewise polynomial 

representation to the real axis by extrapolation of the first and last pieces. 

Example 

In this example, a spline interpolant to a function f is computed using the IMSL routine BSINT. 

This routine represents the interpolant as a linear combination of B-splines. This representation is 

then converted to piecewise polynomial representation by calling the IMSL routine BSCPP. The 

piecewise polynomial‘s zero-th and first derivative are evaluated using PPDER. These values are 

compared to the corresponding values of f. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    KORDER, NCOEF, NDATA, NKNOT 

      PARAMETER  (KORDER=4, NCOEF=20, NDATA=20, NKNOT=NDATA+KORDER) 

!  

      INTEGER    I, NOUT, NPPCF 

      REAL       BREAK(NCOEF), BSCOEF(NCOEF), DF, DS, EXP, F,& 
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                 FDATA(NDATA), FLOAT, PPCOEF(KORDER,NCOEF), S,& 

                 X, XDATA(NDATA), XKNOT(NKNOT) 

      INTRINSIC  EXP, FLOAT 

!  

      F(X)  = X*EXP(X) 

      DF(X) = (X+1.)*EXP(X) 

!                                  Set up interpolation points 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

!                                  Compute the B-spline interpolant 

      CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

!                                  Convert to piecewise polynomial 

      CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Print the interpolant on a uniform 

!                                  grid 

      DO 20  I=1, NDATA 

         X = FLOAT(I-1)/FLOAT(NDATA-1) 

!                                  Compute value of the piecewise 

!                                  polynomial 

         S = PPDER(X,BREAK,PPCOEF, IDERIV=0, NINTV=NPPCF) 

!                                  Compute derivative of the piecewise 

!                                  polynomial 

         DS = PPDER(X,BREAK,PPCOEF, IDERIV=1, NINTV=NPPCF) 

         WRITE (NOUT,'(2F12.3,F12.6,F12.3,F12.6)') X, S, F(X) - S, DS,& 

                DF(X), DS 

   20 CONTINUE 

99999 FORMAT (11X, 'X', 8X, 'S(X)', 7X, 'Error', 7X, 'S''(X)', 7X,& 

             'Error') 

      END 

Output 
 

    X        S(X)       Error       S‘(X)       Error 

0.000       0.000    0.000000       1.000   -0.000112 

0.053       0.055    0.000000       1.109    0.000030 

0.105       0.117    0.000000       1.228   -0.000008 

0.158       0.185    0.000000       1.356    0.000002 

0.211       0.260    0.000000       1.494    0.000000 

0.263       0.342    0.000000       1.643    0.000000 

0.316       0.433    0.000000       1.804   -0.000001 

0.368       0.533    0.000000       1.978    0.000002 

0.421       0.642    0.000000       2.165    0.000001 

0.474       0.761    0.000000       2.367    0.000000 

0.526       0.891    0.000000       2.584   -0.000001 

0.579       1.033    0.000000       2.817    0.000001 

0.632       1.188    0.000000       3.068    0.000001 

0.684       1.356    0.000000       3.338    0.000001 

0.737       1.540    0.000000       3.629    0.000001 

0.789       1.739    0.000000       3.941    0.000000 
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0.842       1.955    0.000000       4.276   -0.000006 

0.895       2.189    0.000000       4.636    0.000024 

0.947       2.443    0.000000       5.022   -0.000090 

1.000       2.718    0.000000       5.436    0.000341 

PP1GD 
Evaluates the derivative of a piecewise polynomial on a grid. 

Required Arguments 

XVEC — Array of length N containing the points at which the piecewise polynomial is to be 

evaluated.   (Input)  

The points in XVEC should be strictly increasing. 

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise 

polynomial representation.   (Input)  

BREAK must be strictly increasing. 

PPCOEF —  Matrix of size KORDER by NINTV containing the local coefficients of the 

polynomial pieces.   (Input) 

VALUE — Array of length N containing the values of the IDERIV-th derivative of the 

piecewise polynomial at the points in XVEC.   (Output) 

Optional Arguments 

IDERIV — Order of the derivative to be evaluated.   (Input)  

In particular, IDERIV = 0 returns the values of the piecewise polynomial. 

Default: IDERIV = 1. 

N — Length of vector XVEC.   (Input) 

Default: N = size (XVEC,1). 

KORDER — Order of the polynomial.   (Input) 

Default: KORDER = size (PPCOEF,1). 

NINTV — Number of polynomial pieces.   (Input) 

Default: NINTV = size (PPCOEF,2). 

FORTRAN 90 Interface 

Generic: CALL PP1GD (XVEC, BREAK, PPCOEF, VALUE [,…]) 

Specific: The specific interface names are S_PP1GD and D_PP1GD. 
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FORTRAN 77 Interface 

Single: CALL PP1GD (IDERIV, N, XVEC, KORDER, NINTV, BREAK, PPCOEF, VALUE) 

Double: The double precision name is DPP1GD. 

Description 

The routine PP1GD evaluates a piecewise polynomial function f (or its derivative) at a vector of 

points. That is, given a vector x of length n satisfying xi < xi + 1 for i = 1, …, n − 1, a derivative 

value j, and a piecewise polynomial function f that is represented by a breakpoint sequence and 

coefficient matrix this routine returns the values 

    1, ,
j

if x i n
 

in the array VALUE. The functionality of this routine is the same as that of PPDER called in a loop, 

however PP1GD is much more efficient. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of P21GD/DP21GD. The 

reference is: 

CALL P21GD (IDERIV, N, XVEC, KORDER, NINTV, BREAK, PPCOEF, 

VALUE, IWK, WORK1, WORK2) 

The additional arguments are as follows: 

IWK — Array of length N. 

WORK1 — Array of length N. 

WORK2 — Array of length N. 

2. Informational error 

Type Code 

4 4 The points in XVEC must be strictly increasing. 

Example 

To illustrate the use of PP1GD, we modify the example program for PPDER. In this example, a 

piecewise polynomial interpolant to F is computed. The values of this polynomial are then 

compared with the exact function values. The routine PP1GD is based on the routine PPVALU in de 

Boor (1978, page 89). 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    KORDER, N, NCOEF, NDATA, NKNOT 

      PARAMETER  (KORDER=4, N=20, NCOEF=20, NDATA=20,& 
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                 NKNOT=NDATA+KORDER) 

!  

      INTEGER    I, NINTV, NOUT, NPPCF 

      REAL       BREAK(NCOEF), BSCOEF(NCOEF), DF, EXP, F,& 

                 FDATA(NDATA), FLOAT, PPCOEF(KORDER,NCOEF), VALUE1(N),& 

                 VALUE2(N), X, XDATA(NDATA), XKNOT(NKNOT), XVEC(N) 

      INTRINSIC  EXP, FLOAT 

!  

      F(X)  = X*EXP(X) 

      DF(X) = (X+1.)*EXP(X) 

!                                  Set up interpolation points 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

!                                  Compute the B-spline interpolant 

      CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

!                                  Convert to piecewise polynomial 

      CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF) 

!                                  Compute evaluation points 

      DO 20  I=1, N 

         XVEC(I) = FLOAT(I-1)/FLOAT(N-1) 

   20 CONTINUE 

!                                  Compute values of the piecewise 

!                                  polynomial 

      NINTV = NPPCF 

      CALL PP1GD (XVEC, BREAK, PPCOEF, VALUE1, IDERIV=0, NINTV=NINTV) 

!                                  Compute the values of the first 

!                                  derivative of the piecewise 

!                                  polynomial 

      CALL PP1GD (XVEC, BREAK, PPCOEF, VALUE2, IDERIV=1, NINTV=NINTV) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99998) 

!                                  Print the results on a uniform 

!                                  grid 

      DO 30  I=1, N 

         WRITE (NOUT,99999) XVEC(I), VALUE1(I), F(XVEC(I)) - VALUE1(I)& 

                           , VALUE2(I), DF(XVEC(I)) - VALUE2(I) 

   30 CONTINUE 

99998 FORMAT (11X, 'X', 8X, 'S(X)', 7X, 'Error', 7X, 'S''(X)', 7X,& 

             'Error') 

99999 FORMAT (' ', 2F12.3, F12.6, F12.3, F12.6) 

      END 

Output 
 

   X        S(X)       Error       S‘(X)       Error 

0.000       0.000    0.000000       1.000   -0.000112 

0.053       0.055    0.000000       1.109    0.000030 

0.105       0.117    0.000000       1.228   -0.000008 

0.158       0.185    0.000000       1.356    0.000002 
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0.211       0.260    0.000000       1.494    0.000000 

0.263       0.342    0.000000       1.643    0.000000 

0.316       0.433    0.000000       1.804   -0.000001 

0.368       0.533    0.000000       1.978    0.000002 

0.421       0.642    0.000000       2.165    0.000001 

0.474       0.761    0.000000       2.367    0.000000 

0.526       0.891    0.000000       2.584   -0.000001 

0.579       1.033    0.000000       2.817    0.000001 

0.632       1.188    0.000000       3.068    0.000001 

0.684       1.356    0.000000       3.338    0.000001 

0.737       1.540    0.000000       3.629    0.000001 

0.789       1.739    0.000000       3.941    0.000000 

0.842       1.955    0.000000       4.276   -0.000006 

0.895       2.189    0.000000       4.636    0.000024 

0.947       2.443    0.000000       5.022   -0.000090 

1.000       2.718    0.000000       5.436    0.000341 

PPITG 
This function evaluates the integral of a piecewise polynomial. 

Function Return Value 

PPITG — Value of the integral from A to B of the piecewise polynomial.   (Output) 

Required Arguments 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise 

polynomial.   (Input)  

BREAK must be strictly increasing. 

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise 

polynomial pieces.   (Input)  

PPCOEF is treated internally as a matrix of size KORDER by NINTV. 

Optional Arguments 

KORDER — Order of the polynomial.   (Input) 

Default: KORDER = size (PPCOEF,1). 

NINTV — Number of piecewise polynomial pieces.   (Input) 

Default: NINTV = size (PPCOEF,2). 

FORTRAN 90 Interface 

Generic: PP1TG (A, B, BREAK, PPCOEF [,…]) 
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Specific: The specific interface names are S_PP1TG and D_PP1TG. 

FORTRAN 77 Interface 

Single: PP1TG (A, B, KORDER, NINTV, BREAK, PPCOEF) 

Double: The double precision function name is DPP1TG. 

Description 

The routine PPITG evaluates the integral of a piecewise polynomial over an interval. 

Example 

In this example, we compute a quadratic spline interpolant to the function x
2
 using the IMSL 

routine BSINT. We then evaluate the integral of the spline interpolant over the intervals [0, 1/2] 

and [0, 2]. The interpolant reproduces x
2
, and hence, the values of the integrals are 1/24 and 8/3, 

respectively. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    KORDER, NDATA, NKNOT 

      PARAMETER  (KORDER=3, NDATA=10, NKNOT=NDATA+KORDER) 

!  

      INTEGER    I, NOUT, NPPCF 

      REAL       A, B, BREAK(NDATA), BSCOEF(NDATA), EXACT, F,& 

                 FDATA(NDATA), FI, FLOAT, PPCOEF(KORDER,NDATA),& 

                 VALUE, X, XDATA(NDATA), XKNOT(NKNOT) 

      INTRINSIC  FLOAT 

!  

      F(X)  = X*X 

      FI(X) = X*X*X/3.0 

!                                  Set up interpolation points 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Generate knot sequence 

      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

!                                  Interpolate 

      CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

!                                  Convert to piecewise polynomial 

      CALL BSCPP (KORDER, XKNOT, NDATA, BSCOEF, NPPCF, BREAK, PPCOEF) 

!                                  Compute the integral of F over 

!                                  [0.0,0.5] 

      A     = 0.0 

      B     = 0.5 

      VALUE = PPITG(A,B,BREAK,PPCOEF,NINTV=NPPCF) 

      EXACT = FI(B) - FI(A) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 
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!                                  Print the result 

      WRITE (NOUT,99999) A, B, VALUE, EXACT, EXACT - VALUE 

!                                  Compute the integral of F over 

!                                  [0.0,2.0] 

      A     = 0.0 

      B     = 2.0 

      VALUE = PPITG(A,B,BREAK,PPCOEF,NINTV=NPPCF) 

      EXACT = FI(B) - FI(A) 

!                                  Print the result 

      WRITE (NOUT,99999) A, B, VALUE, EXACT, EXACT - VALUE 

99999 FORMAT (' On the closed interval (', F3.1, ',', F3.1,& 

             ') we have :', /, 1X, 'Computed Integral = ', F10.5, /,& 

             1X, 'Exact Integral    = ', F10.5, /, 1X, 'Error         '& 

             , '    = ', F10.6, /, /) 

!  

      END 

Output 
 

On the closed interval (0.0,0.5) we have : 

Computed Integral =    0.04167 

Exact Integral    =    0.04167 

Error             =   0.000000 

 

On the closed interval (0.0,2.0) we have : 

Computed Integral =    2.66667 

Exact Integral    =    2.66667 

Error             =   0.000001 

QDVAL 
This function evaluates a function defined on a set of points using quadratic interpolation. 

Function Return Value 

QDVAL — Value of the quadratic interpolant at X.   (Output) 

Required Arguments 

X — Coordinate of the point at which the function is to be evaluated.   (Input) 

XDATA — Array of length NDATA containing the location of the data points.   (Input)  

XDATA must be strictly increasing. 

FDATA — Array of length NDATA containing the function values.   (Input)  

FDATA(I) is the value of the function at XDATA(I). 

Optional Arguments 

NDATA —  Number of data points.   (Input)  

NDATA must be at least 3. 

Default: NDATA = size (XDATA,1). 
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CHECK — Logical variable that is .TRUE. if checking of XDATA is required or .FALSE. if 

checking is not required.   (Input) 

Default: CHECK = .TRUE. 

FORTRAN 90 Interface 

Generic: QDVAL (X, XDATA, FDATA [,…]) 

Specific: The specific interface names are S_QDVAL and D_QDVAL. 

FORTRAN 77 Interface 

Single: QDVAL (X, NDATA, XDATA, FDATA, CHECK) 

Double: The double precision name is DQDVAL. 

Description 

The function QDVAL interpolates a table of values, using quadratic polynomials, returning an 

approximation to the tabulated function. Let (xi, fi) for i = 1, …, n be the tabular data. Given a 

number x at which an interpolated value is desired, we first find the nearest interior grid point xi. A 

quadratic interpolant q is then formed using the three points (xi-1, fi-1), (xi, fi), and (xi+1, fi+1). The 

number returned by QDVAL is q(x). 

Comments 

Informational error 

Type Code  

4 3 The XDATA values must be strictly increasing. 

Example 

In this example, the value of sin x is approximated at π/4 by using QDVAL on a table of 33 equally 

spaced values. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    NDATA 

      PARAMETER  (NDATA=33) 

!  

      INTEGER    I, NOUT 

      REAL       F, FDATA(NDATA), H, PI, QT, SIN, X,& 

                 XDATA(NDATA) 

      INTRINSIC  SIN 

!                                  Define function 

      F(X) = SIN(X) 

!                                  Generate data points 
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      XDATA(1) = 0.0 

      FDATA(1) = F(XDATA(1)) 

      H        = 1.0/32.0 

      DO 10  I=2, NDATA 

         XDATA(I) = XDATA(I-1) + H 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Get value of PI and set X 

      PI = CONST('PI') 

      X  = PI/4.0 

!                                  Evaluate at PI/4 

      QT = QDVAL(X,XDATA,FDATA) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Print results 

      WRITE (NOUT,99999) X, F(X), QT, (F(X)-QT) 

!  

99999 FORMAT (15X, 'X', 6X, 'F(X)', 6X, 'QDVAL', 5X, 'ERROR', //, 6X,& 

             4F10.3, /) 

      END 

Output 
 

    X      F(X)      QDVAL     ERROR 

 

0.785     0.707     0.707     0.000 

QDDER 
This function evaluates the derivative of a function defined on a set of points using quadratic 

interpolation. 

Function Return Value 

QDDER — Value of the IDERIV-th derivative of the quadratic interpolant at X.   (Output) 

Required Arguments 

IDERIV — Order of the derivative.   (Input) 

X — Coordinate of the point at which the function is to be evaluated.   (Input) 

XDATA — Array of length NDATA containing the location of the data points.   (Input) XDATA 

must be strictly increasing. 

FDATA — Array of length NDATA containing the function values.   (Input)  

FDATA(I) is the value of the function at XDATA(I). 
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Optional Arguments 

NDATA — Number of data points.   (Input)  

NDATA must be at least three. 

Default: NDATA = size (XDATA,1). 

CHECK — Logical variable that is .TRUE. if checking of XDATA is required or .FALSE. if 

checking is not required.   (Input) 

Default: CHECK = .TRUE. 

FORTRAN 90 Interface 

Generic: QDDER(IDERIV, X, XDATA, FDATA [,…]) 

Specific: The specific interface names are S_QDVAL and D_QDVAL. 

FORTRAN 77 Interface 

Single: QDDER(IDERIV, X, NDATA, XDATA, FDATA, CHECK) 

Double: The double precision function name is DQDVAL. 

Description  

The function QDDER interpolates a table of values, using quadratic polynomials, returning an 

approximation to the derivative of the tabulated function. Let (xi, fi) for i = 1, …, n be the tabular 

data. Given a number x at which an interpolated value is desired, we first find the nearest interior 

grid point xi. A quadratic interpolant q is then formed using the three points (xi-1, fi-1) 

(xi, fi), and (xi+1, fi+1). The number returned by QDDER is q
(j)

(x), where j = IDERIV.  

Comments 

1. Informational error 

Type Code 

4 3 The XDATA values must be strictly increasing. 

2. Because quadratic interpolation is used, if the order of the derivative is greater than 

two, then the returned value is zero. 

Example 

In this example, the value of sin x and its derivatives are approximated at π/4 by using QDDER on a 

table of 33 equally spaced values. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 
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      INTEGER    NDATA 

      PARAMETER  (NDATA=33) 

!  

      INTEGER    I, IDERIV, NOUT 

      REAL       COS, F, F1, F2, FDATA(NDATA), H, PI,& 

                 QT, SIN, X, XDATA(NDATA) 

      LOGICAL CHECK     

      INTRINSIC  COS, SIN 

!                                  Define function and derivatives 

      F(X)  = SIN(X) 

      F1(X) = COS(X) 

      F2(X) = -SIN(X) 

!                                  Generate data points 

      XDATA(1) = 0.0 

      FDATA(1) = F(XDATA(1)) 

      H        = 1.0/32.0 

      DO 10  I=2, NDATA 

         XDATA(I) = XDATA(I-1) + H 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Get value of PI and set X 

      PI = CONST('PI') 

      X  = PI/4.0 

!                                  Check XDATA 

      CHECK = .TRUE. 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99998) 

!                                  Evaluate quadratic at PI/4 

      IDERIV = 0 

      QT     = QDDER(IDERIV,X,XDATA,FDATA, CHECK=CHECK) 

      WRITE (NOUT,99999) X, IDERIV, F(X), QT, (F(X)-QT) 

      CHECK = .FALSE. 

!                                  Evaluate first derivative at PI/4 

      IDERIV = 1 

      QT     = QDDER(IDERIV,X,XDATA,FDATA) 

      WRITE (NOUT,99999) X, IDERIV, F1(X), QT, (F1(X)-QT) 

!                                  Evaluate second derivative at PI/4 

      IDERIV = 2 

      QT     = QDDER(IDERIV,X,XDATA,FDATA, CHECK=CHECK) 

      WRITE (NOUT,99999) X, IDERIV, F2(X), QT, (F2(X)-QT) 

!  

99998 FORMAT (33X, 'IDER', /, 15X, 'X', 6X, 'IDER', 6X, 'F    (X)',& 

             5X, 'QDDER', 6X, 'ERROR', //) 

99999 FORMAT (7X, F10.3, I8, 3F12.3/) 

      END 

Output 
 

                      IDER 

   X      IDER      F    (X)     QDDER      ERROR 

 

0.785       0       0.707       0.707       0.000 

 

0.785       1       0.707       0.707       0.000 
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0.785       2      -0.707      -0.704      -0.003 

QD2VL 
This function evaluates a function defined on a rectangular grid using quadratic interpolation. 

Function Return Value 

QD2VL — Value of the function at (X, Y).   (Output) 

Required Arguments 

X — x-coordinate of the point at which the function is to be evaluated.   (Input) 

Y — y-coordinate of the point at which the function is to be evaluated.   (Input) 

XDATA — Array of length NXDATA containing the location of the data points in the  

x-direction.   (Input)  

XDATA must be increasing. 

YDATA — Array of length NYDATA containing the location of the data points in the  

y-direction.   (Input)  

YDATA must be increasing. 

FDATA — Array of size NXDATA by NYDATA containing function values.   (Input) 

FDATA (I, J) is the value of the function at (XDATA (I), YDATA(J)). 

Optional Arguments 

NXDATA — Number of data points in the x-direction.   (Input)  

NXDATA must be at least three. 

Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the y-direction.   (Input)  

NYDATA must be at least three. 

Default: NYDATA = size (YDATA,1). 

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the 

calling program.   (Input)  

LDF must be at least as large as NXDATA. 

Default: LDF = size (FDATA,1). 

CHECK — Logical variable that is .TRUE. if checking of XDATA and YDATA is required or 

.FALSE. if checking is not required.   (Input) 

Default: CHECK = .TRUE. 
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FORTRAN 90 Interface 

Generic: QD2VL(X, Y, XDATA, YDATA, FDATA [,…]) 

Specific: The specific interface names are S_QD2VL and D_QD2VL. 

FORTRAN 77 Interface 

Single: QD2VL(X, Y, NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, CHECK) 

Double: The double precision function name is DQD2VL. 

Description 

The function QD2VL interpolates a table of values, using quadratic polynomials, returning an 

approximation to the tabulated function. Let (xi, yj, fij) for i = 1, …, nx and j = 1, …, ny be the 

tabular data. Given a point (x, y) at which an interpolated value is desired, we first find the nearest 

interior grid point (xi, yj). A bivariate quadratic interpolant q is then formed using six points near 

(x, y). Five of the six points are (xi, yj), (xi ±1, yj), and (xi, yj ±1). The sixth point is the nearest point 

to (x, y) of the grid points (xi±1, yj±1). The value q(x, y) is returned by QD2VL. 

Comments 

Informational errors 

Type Code  

4 6 The XDATA values must be strictly increasing. 

4 7 The YDATA values must be strictly increasing. 

Example 

In this example, the value of sin(x + y) at x = y = π/4 is approximated by using QDVAL on a table 

of size 21 × 42 equally spaced values on the unit square. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    LDF, NXDATA, NYDATA 

      PARAMETER  (NXDATA=21, NYDATA=42, LDF=NXDATA) 

!  

      INTEGER    I, J, NOUT 

      REAL       F, FDATA(LDF,NYDATA), FLOAT, PI, Q, & 

                 SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA) 

      INTRINSIC  FLOAT, SIN 

!                                  Define function 

      F(X,Y) = SIN(X+Y) 

!                                  Set up X-grid 

      DO 10  I=1, NXDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NXDATA-1) 

   10 CONTINUE 

!                                  Set up Y-grid 
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      DO 20  I=1, NYDATA 

         YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1) 

   20 CONTINUE 

!                                  Evaluate function on grid 

      DO 30  I=1, NXDATA 

         DO 30  J=1, NYDATA 

            FDATA(I,J) = F(XDATA(I),YDATA(J)) 

   30 CONTINUE 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Get value for PI and set X and Y 

      PI = CONST('PI') 

      X  = PI/4.0 

      Y  = PI/4.0 

!                                  Evaluate quadratic at (X,Y) 

      Q = QD2VL(X,Y,XDATA,YDATA,FDATA) 

!                                  Print results 

      WRITE (NOUT,'(5F12.4)') X, Y, F(X,Y), Q, (Q-F(X,Y)) 

99999 FORMAT (10X, 'X', 11X, 'Y', 7X, 'F(X,Y)', 7X, 'QD2VL', 9X,& 

             'DIF') 

      END 

Output 
 

     X           Y       F(X,Y)       QD2VL         DIF 

0.7854      0.7854      1.0000      1.0000      0.0000 

QD2DR 
This function evaluates the derivative of a function defined on a rectangular grid using quadratic 

interpolation. 

Function Return Value 

QD2DR — Value of the (IXDER, IYDER) derivative of the function at (X, Y).   (Output) 

Required Arguments 

IXDER — Order of the x-derivative.   (Input) 

IYDER — Order of the y-derivative.   (Input) 

X — X-coordinate of the point at which the function is to be evaluated.   (Input) 

Y — Y-coordinate of the point at which the function is to be evaluated.   (Input) 

XDATA — Array of length NXDATA containing the location of the data points in the  

x-direction.   (Input)  

XDATA must be increasing. 
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YDATA — Array of length NYDATA containing the location of the data points in the  

y-direction.   (Input)  

YDATA must be increasing. 

FDATA — Array of size NXDATA by NYDATA containing function values.   (Input) 

FDATA(I, J) is the value of the function at (XDATA(I), YDATA(J)). 

Optional Arguments  

NXDATA — Number of data points in the x-direction.   (Input)  

NXDATA must be at least three. 

Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the y-direction.   (Input)  

NYDATA must be at least three. 

Default: NYDATA = size (YDATA,1). 

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the 

calling program.   (Input)  

LDF must be at least as large as NXDATA. 

Default: LDF = size (FDATA,1). 

CHECK — Logical variable that is .TRUE. if checking of XDATA and YDATA is required or 

.FALSE. if checking is not required.   (Input) 

Default: CHECK = .TRUE. 

FORTRAN 90 Interface 

Generic: QD2DR (IXDER, IYDER, X, Y, XDATA, YDATA, FDATA [,…]) 

Specific: The specific interface names are S_QD2DR and D_QD2DR. 

FORTRAN 77 Interface 

Single: QD2DR (IXDER, IYDER, X, Y, NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, 
CHECK) 

Double: The double precision fucntion name is DQD2DR. 

Description  

The function QD2DR interpolates a table of values, using quadratic polynomials, returning an 

approximation to the tabulated function. Let (xi, yj, fij) for i = 1, …, nx and j = 1, …, ny be the 

tabular data. Given a point (x, y) at which an interpolated value is desired, we first find the nearest 

interior grid point (xi, yj). A bivariate quadratic interpolant q is then formed using six points near 

(x, y). Five of the six points are (xi, yj), (xi±1, yj), and (xi, yj±1). The sixth point is the nearest point to 

(x, y) of the grid points (xi±1, yj±1). The value q
(p,

 
r) 

(x, y) is returned by QD2DR, where p = IXDER 

and r = IYDER. 
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Comments 

1. Informational errors 

Type Code 

4 6 The XDATA values must be strictly increasing. 

4 7 The YDATA values must be strictly increasing. 

2. Because quadratic interpolation is used, if the order of any derivative is greater than 

two, then the returned value is zero. 

Example 

In this example, the partial derivatives of sin(x + y) at x = y = π/3 are approximated by using 

QD2DR on a table of size 21 × 42 equally spaced values on the rectangle [0, 2] × [0, 2]. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    LDF, NXDATA, NYDATA 

      PARAMETER  (NXDATA=21, NYDATA=42, LDF=NXDATA) 

!  

      INTEGER    I, IXDER, IYDER, J, NOUT 

      REAL       F, FDATA(LDF,NYDATA), FLOAT, FU, FUNC, PI, Q,& 

                 SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA) 

      INTRINSIC  FLOAT, SIN 

      EXTERNAL   FUNC 

!                                  Define function 

      F(X,Y) = SIN(X+Y) 

!                                  Set up X-grid 

      DO 10  I=1, NXDATA 

         XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) 

   10 CONTINUE 

!                                  Set up Y-grid 

      DO 20  I=1, NYDATA 

         YDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NYDATA-1)) 

   20 CONTINUE 

!                                  Evaluate function on grid 

      DO 30  I=1, NXDATA 

         DO 30  J=1, NYDATA 

            FDATA(I,J) = F(XDATA(I),YDATA(J)) 

   30 CONTINUE 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99998) 

!                                  Check XDATA and YDATA 

!                                  Get value for PI and set X and Y 

      PI = CONST('PI') 

      X  = PI/3.0 

      Y  = PI/3.0 

!                                  Evaluate and print the function 
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!                                  and its derivatives at X=PI/3 and 

!                                  Y=PI/3. 

      DO 40  IXDER=0, 1 

         DO 40  IYDER=0, 1 

            Q  = QD2DR(IXDER,IYDER,X,Y,XDATA,YDATA,FDATA) 

            FU = FUNC(IXDER,IYDER,X,Y) 

            WRITE (NOUT,99999) X, Y, IXDER, IYDER, FU, Q, (FU-Q) 

   40 CONTINUE 

!  

99998 FORMAT (32X, '(IDX,IDY)', /, 8X, 'X', 8X, 'Y', 3X, 'IDX', 2X,& 

             'IDY', 3X, 'F       (X,Y)', 3X, 'QD2DR', 6X, 'ERROR') 

99999 FORMAT (2F9.4, 2I5, 3X, F9.4, 2X, 2F11.4) 

      END 

      REAL FUNCTION FUNC (IX, IY, X, Y) 

      INTEGER    IX, IY 

      REAL       X, Y 

!  

      REAL       COS, SIN 

      INTRINSIC  COS, SIN 

!  

      IF (IX.EQ.0 .AND. IY.EQ.0) THEN 

!                                  Define (0,0) derivative 

         FUNC = SIN(X+Y) 

      ELSE IF (IX.EQ.0 .AND. IY.EQ.1) THEN 

!                                  Define (0,1) derivative 

         FUNC = COS(X+Y) 

      ELSE IF (IX.EQ.1 .AND. IY.EQ.0) THEN 

!                                  Define (1,0) derivative 

         FUNC = COS(X+Y) 

      ELSE IF (IX.EQ.1 .AND. IY.EQ.1) THEN 

!                                  Define (1,1) derivative 

         FUNC = -SIN(X+Y) 

      ELSE 

         FUNC = 0.0 

      END IF 

      RETURN 

      END 

Output 
 

                             (IDX,IDY) 

     X        Y   IDX  IDY   F       (X,Y)   QD2DR      ERROR 

1.0472   1.0472    0    0      0.8660       0.8661    -0.0001 

1.0472   1.0472    0    1     -0.5000      -0.4993    -0.0007 

1.0472   1.0472    1    0     -0.5000      -0.4995    -0.0005 

1.0472   1.0472    1    1     -0.8660      -0.8634    -0.0026 

QD3VL 
This function evaluates a function defined on a rectangular three-dimensional grid using quadratic 

interpolation. 

Function Return Value 

QD3VL — Value of the function at (X, Y, Z).   (Output) 



     

     
 

844  Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY  

     

     

 

Required Arguments 

X — x-coordinate of the point at which the function is to be evaluated.   (Input) 

Y — y-coordinate of the point at which the function is to be evaluated.   (Input) 

Z — z-coordinate of the point at which the function is to be evaluated.   (Input) 

XDATA — Array of length NXDATA containing the location of the data points in the  

x-direction.   (Input)  

XDATA must be increasing. 

YDATA — Array of length NYDATA containing the location of the data points in the  

y-direction.   (Input)  

YDATA must be increasing. 

ZDATA — Array of length NZDATA containing the location of the data points in the  

z-direction.   (Input)  

ZDATA must be increasing. 

FDATA — Array of size NXDATA by NYDATA by NZDATA containing function values.   (Input)  

FDATA(I, J, K) is the value of the function at (XDATA(I), YDATA(J), ZDATA(K)). 

Optional Arguments  

NXDATA — Number of data points in the x-direction.   (Input)  

NXDATA must be at least three. 

Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the y-direction.   (Input)  

NYDATA must be at least three. 

Default: NYDATA = size (YDATA,1). 

NZDATA — Number of data points in the z-direction.   (Input)  

NZDATA must be at least three. 

Default: NZDATA = size (ZDATA,1). 

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the 

calling program.   (Input)  

LDF must be at least as large as NXDATA.  

Default: LDF = size (FDATA,1). 

MDF — Middle (second) dimension of FDATA exactly as specified in the dimension 

statement of the calling program.   (Input)  

MDF must be at least as large as NYDATA. 

Default: MDF = size (FDATA,2). 



 

 

IMSL MATH LIBRARY Chapter 3: Interpolation and Approximation  845 

     

     

 

CHECK — Logical variable that is .TRUE. if checking of XDATA, YDATA, and ZDATA is 

required or .FALSE. if checking is not required.   (Input) 

Default: CHECK = .TRUE. 

FORTRAN 90 Interface 

Generic: QD3VL (X, Y, Z, XDATA, YDATA, ZDATA, FDATA [,…]) 

Specific: The specific interface names are S_QD3VL and D_QD3VL. 

FORTRAN 77 Interface 

Single: QD3VL(X, Y, Z, NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, FDATA, LDF, 

MDF, CHECK) 

Double: The double precision function name is DQD3VL. 

Description 

The function QD3VL interpolates a table of values, using quadratic polynomials, returning an 

approximation to the tabulated function. Let (xi, yj, zk, fijk) for i = 1, …, nx, j = 1, …, ny, and  

k = 1, …, nz be the tabular data. Given a point (x, y, z) at which an interpolated value is desired, we 

first find the nearest interior grid point (xi, yj, zk,). A trivariate quadratic interpolant q is then 

formed. Ten points are needed for this purpose. Seven points have the form 

       1 1 1, , , , , , , , and , ,i j k i j k i j k i j kx y z x y z x y z x y z    

The last three points are drawn from the vertices of the octant containing (x, y, z). There are four of 

these vertices remaining, and we choose to exclude the vertex farthest from the center. This has 

the slightly deleterious effect of not reproducing the tabular data at the eight exterior corners of the 

table. The value q(x, y, z) is returned by QD3VL. 

Comments 

Informational errors 

Type Code  

4 9 The XDATA values must be strictly increasing. 

4 10 The YDATA values must be strictly increasing. 

4 11 The ZDATA values must be strictly increasing. 

Example 

In this example, the value of sin(x + y + z) at x = y = z = π/3 is approximated by using QD3VL on a 

grid of size 21 × 42 × 18 equally spaced values on the cube [0, 2]
3
. 

 

      USE IMSL_LIBRARIES 
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      IMPLICIT   NONE 

      INTEGER    LDF, MDF, NXDATA, NYDATA, NZDATA 

      PARAMETER  (NXDATA=21, NYDATA=42, NZDATA=18, LDF=NXDATA,& 

                 MDF=NYDATA) 

!  

      INTEGER    I, J, K, NOUT 

      REAL       F, FDATA(LDF,MDF,NZDATA), FLOAT, PI, Q, & 

                 SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA), Z,& 

                 ZDATA(NZDATA) 

      INTRINSIC  FLOAT, SIN 

!                                  Define function 

      F(X,Y,Z) = SIN(X+Y+Z) 

!                                  Set up X-grid 

      DO 10  I=1, NXDATA 

         XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) 

   10 CONTINUE 

!                                  Set up Y-grid 

      DO 20  J=1, NYDATA 

         YDATA(J) = 2.0*(FLOAT(J-1)/FLOAT(NYDATA-1)) 

   20 CONTINUE 

!                                  Set up Z-grid 

      DO 30  K=1, NZDATA 

         ZDATA(K) = 2.0*(FLOAT(K-1)/FLOAT(NZDATA-1)) 

   30 CONTINUE 

!                                  Evaluate function on grid 

      DO 40  I=1, NXDATA 

         DO 40  J=1, NYDATA 

            DO 40  K=1, NZDATA 

               FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K)) 

   40 CONTINUE 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Get value for PI and set values 

!                                  for X, Y, and Z 

      PI = CONST('PI') 

      X  = PI/3.0 

      Y  = PI/3.0 

      Z  = PI/3.0 

!                                  Evaluate quadratic at (X,Y,Z) 

      Q = QD3VL(X,Y,Z,XDATA,YDATA,ZDATA,FDATA) 

!                                  Print results 

      WRITE (NOUT,'(6F11.4)') X, Y, Z, F(X,Y,Z), Q, (Q-F(X,Y,Z)) 

99999 FORMAT (10X, 'X', 10X, 'Y', 10X, 'Z', 5X, 'F(X,Y,Z)', 4X,& 

             'QD3VL', 6X, 'ERROR') 

      END 
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Output 
 

      X          Y          Z     F(X,Y,Z)    QD3VL      ERROR 

1.0472     1.0472     1.0472     0.0000     0.0001     0.0001 

QD3DR 
This function evaluates the derivative of a function defined on a rectangular three-dimensional 

grid using quadratic interpolation. 

Function Return Value 

QD3DR — Value of the appropriate derivative of the function at (X, Y, Z).   (Output) 

Required Arguments 

IXDER — Order of the x-derivative.   (Input) 

IYDER — Order of the y-derivative.   (Input) 

IZDER — Order of the z-derivative.   (Input) 

X — x-coordinate of the point at which the function is to be evaluated.   (Input) 

Y — y-coordinate of the point at which the function is to be evaluated.   (Input) 

Z — z-coordinate of the point at which the function is to be evaluated.   (Input) 

XDATA — Array of length NXDATA containing the location of the data points in the  

x-direction.   (Input)  

XDATA must be increasing. 

YDATA — Array of length NYDATA containing the location of the data points in the  

y-direction.   (Input)  

YDATA must be increasing. 

ZDATA — Array of length NZDATA containing the location of the data points in the  

z-direction.   (Input)  

ZDATA must be increasing. 

FDATA — Array of size NXDATA by NYDATA by NZDATA containing function values.   (Input)  

FDATA(I, J, K) is the value of the function at (XDATA(I), YDATA(J), ZDATA(K)). 

Optional Arguments 

NXDATA — Number of data points in the x-direction.   (Input)  

NXDATA must be at least three. 

Default: NXDATA = size (XDATA,1). 
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NYDATA — Number of data points in the y-direction.   (Input) 

NYDATA must be at least three. 

Default: NYDATA = size (YDATA,1). 

NZDATA — Number of data points in the z-direction.   (Input)  

NZDATA must be at least three. 

Default: NZDATA = size (ZDATA,1). 

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the 

calling program.   (Input)  

LDF must be at least as large as NXDATA. 

Default: LDF = size (FDATA,1). 

MDF — Middle (second) dimension of FDATA exactly as specified in the dimension 

statement of the calling program.   (Input)  

MDF must be at least as large as NYDATA. 

Default: MDF = size (FDATA,2). 

CHECK — Logical variable that is .TRUE. if checking of XDATA, YDATA, and ZDATA is 

required or .FALSE. if checking is not required.   (Input) 

Default: CHECK = .TRUE. 

FORTRAN 90 Interface 

Generic: QD3DR (IXDER, IYDER, IZDER, X, Y, Z, XDATA, YDATA, ZDATA, FDATA [,…]) 

Specific:  The specific interface names are S_QD3DR and D_QD3DR. 

FORTRAN 77 Interface 

Single: QD3DR (IXDER, IYDER, IZDER, X, Y, Z, NXDATA, XDATA, NYDATA, YDATA, 

NZDATA, ZDATA, FDATA, LDF, MDF, CHECK) 

Double: The double precision function name is DQD3DR. 

Description 

The function QD3DR interpolates a table of values, using quadratic polynomials, returning an 

approximation to the partial derivatives of the tabulated function. Let 

(xi, yj, zk, fijk) 

for i = 1, …, nx, j = 1, …, ny, and k = 1, …, nz be the tabular data.  Given a point (x, y, z) at which 

an interpolated value is desired, we first find the nearest interior grid point (xi, yj, zk). A trivariate 

quadratic interpolant q is then formed. Ten points are needed for this purpose. Seven points have 

the form 
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       1 1 1, , , , , , , , and , ,i j k i j k i j k i j kx y z x y z x y z x y z  
 

The last three points are drawn from the vertices of the octant containing (x, y, z). There are four of 

these vertices remaining, and we choose to exclude the vertex farthest from the center. This has 

the slightly deleterious effect of not reproducing the tabular data at the eight exterior corners of the 

table. The value q
(p,r,t)

(x, y, z) is returned by QD3DR, where p = IXDER, r = IYDER, and t = IZDER. 

Comments 

1. Informational errors 

Type Code 

4 9 The XDATA values must be strictly increasing. 

4 10 The YDATA values must be strictly increasing. 

4 11 The ZDATA values must be strictly increasing. 

2. Because quadratic interpolation is used, if the order of any derivative is greater than 

two, then the returned value is zero. 

Example 

In this example, the derivatives of sin(x + y + z) at x = y = z = π/5 are approximated by using 

QD3DR on a grid of size 21 × 42 × 18 equally spaced values on the cube [0, 2]
3
. 

 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    LDF, MDF, NXDATA, NYDATA, NZDATA 

      PARAMETER  (NXDATA=21, NYDATA=42, NZDATA=18, LDF=NXDATA,& 

                 MDF=NYDATA) 

!  

      INTEGER    I, IXDER, IYDER, IZDER, J, K, NOUT 

      REAL       F, FDATA(NXDATA,NYDATA,NZDATA), FLOAT, FU,& 

                 FUNC, PI, Q, SIN, X, XDATA(NXDATA), Y,& 

                 YDATA(NYDATA), Z, ZDATA(NZDATA) 

      INTRINSIC  FLOAT, SIN 

      EXTERNAL   FUNC 

!                                 Define function 

      F(X,Y,Z) = SIN(X+Y+Z) 

!                                  Set up X-grid 

      DO 10  I=1, NXDATA 

         XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) 

   10 CONTINUE 

!                                  Set up Y-grid 

      DO 20  J=1, NYDATA 

         YDATA(J) = 2.0*(FLOAT(J-1)/FLOAT(NYDATA-1)) 

   20 CONTINUE 

!                                  Set up Z-grid 

      DO 30  K=1, NZDATA 

         ZDATA(K) = 2.0*(FLOAT(K-1)/FLOAT(NZDATA-1)) 

   30 CONTINUE 
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!                                  Evaluate function on grid 

      DO 40  I=1, NXDATA 

         DO 40  J=1, NYDATA 

            DO 40  K=1, NZDATA 

               FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K)) 

   40 CONTINUE 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Get value for PI and set X, Y, and Z 

      PI = CONST('PI') 

      X  = PI/5.0 

      Y  = PI/5.0 

      Z  = PI/5.0 

!                                  Compute derivatives at (X,Y,Z) 

!                                  and print results 

      DO 50  IXDER=0, 1 

         DO 50  IYDER=0, 1 

            DO 50  IZDER=0, 1 

               Q  = QD3DR(IXDER,IYDER,IZDER,X,Y,Z,XDATA,YDATA,ZDATA,FDATA) 

               FU = FUNC(IXDER,IYDER,IZDER,X,Y,Z) 

               WRITE (NOUT,99998) X, Y, Z, IXDER, IYDER, IZDER, FU, Q,& 

                                 (FU-Q) 

   50 CONTINUE 

!  

99998 FORMAT (3F7.4, 3I5, 4X, F7.4, 8X, 2F10.4) 

99999 FORMAT (39X, '(IDX,IDY,IDZ)', /, 6X, 'X', 6X, 'Y', 6X,& 

             'Z', 3X, 'IDX', 2X, 'IDY', 2X, 'IDZ', 2X, 'F          ',& 

             '(X,Y,Z)', 3X, 'QD3DR', 5X, 'ERROR') 

      END 

!  

      REAL FUNCTION FUNC (IX, IY, IZ, X, Y, Z) 

      INTEGER    IX, IY, IZ 

      REAL       X, Y, Z 

!  

      REAL       COS, SIN 

      INTRINSIC  COS, SIN 

!  

      IF (IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.0) THEN 

!                                  Define (0,0,0) derivative 

         FUNC = SIN(X+Y+Z) 

      ELSE IF (IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.1) THEN 

!                                  Define (0,0,1) derivative 

         FUNC = COS(X+Y+Z) 

      ELSE IF (IX.EQ.0 .AND. IY.EQ.1 .AND. IZ.EQ.0) THEN 

!                                  Define (0,1,0,) derivative 

         FUNC = COS(X+Y+Z) 

      ELSE IF (IX.EQ.0 .AND. IY.EQ.1 .AND. IZ.EQ.1) THEN 

!                                  Define (0,1,1) derivative 

         FUNC = -SIN(X+Y+Z) 

      ELSE IF (IX.EQ.1 .AND. IY.EQ.0 .AND. IZ.EQ.0) THEN 

!                                  Define (1,0,0) derivative 

         FUNC = COS(X+Y+Z) 

      ELSE IF (IX.EQ.1 .AND. IY.EQ.0 .AND. IZ.EQ.1) THEN 

!                                  Define (1,0,1) derivative 
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         FUNC = -SIN(X+Y+Z) 

      ELSE IF (IX.EQ.1 .AND. IY.EQ.1 .AND. IZ.EQ.0) THEN 

!                                  Define (1,1,0) derivative 

         FUNC = -SIN(X+Y+Z) 

      ELSE IF (IX.EQ.1 .AND. IY.EQ.1 .AND. IZ.EQ.1) THEN 

!                                  Define (1,1,1) derivative 

         FUNC = -COS(X+Y+Z) 

      ELSE 

         FUNC = 0.0 

      END IF 

      RETURN 

      END 

Output 
 

                                    (IDX,IDY,IDZ) 

    X      Y      Z   IDX  IDY  IDZ  F          (X,Y,Z)   QD3DR     ERROR 

0.6283 0.6283 0.6283    0    0    0     0.9511            0.9511   -0.0001 

0.6283 0.6283 0.6283    0    0    1    -0.3090           -0.3080   -0.0010 

0.6283 0.6283 0.6283    0    1    0    -0.3090           -0.3088    0.0002 

0.6283 0.6283 0.6283    0    1    1    -0.9511           -0.9587    0.0077 

0.6283 0.6283 0.6283    1    0    0    -0.3090           -0.3078   -0.0012 

0.6283 0.6283 0.6283    1    0    1    -0.9511           -0.9348   -0.0162 

0.6283 0.6283 0.6283    1    1    0    -0.9511           -0.9613    0.0103 

0.6283 0.6283 0.6283    1    1    1     0.3090            0.0000    0.3090 

SURF 

 

 

 

Computes a smooth bivariate interpolant to scattered data that is locally a quintic polynomial in 

two variables. 

Required Arguments 

XYDATA — A 2 by NDATA array containing the coordinates of the interpolation points.   

(Input)  

These points must be distinct. The x-coordinate of the I-th data point is stored in 

XYDATA(1, I) and the y-coordinate of the I-th data point is stored in XYDATA(2, I). 

FDATA — Array of length NDATA containing the interpolation values.   (Input) FDATA(I) 

contains the value at (XYDATA(1, I), XYDATA(2, I)). 

XOUT — Array of length NXOUT containing an increasing sequence of points.   (Input)  

These points are the x-coordinates of a grid on which the interpolated surface is to be 

evaluated. 
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YOUT — Array of length NYOUT containing an increasing sequence of points.   (Input)  

These points are the y-coordinates of a grid on which the interpolated surface is to be 

evaluated. 

SUR — Matrix of size NXOUT by NYOUT.   (Output)  

This matrix contains the values of the surface on the XOUT by YOUT grid, i.e. SUR(I, J) 

contains the interpolated value at (XOUT(I), YOUT(J)). 

Optional Arguments  

NDATA — Number of data points.   (Input)  

NDATA must be at least four. 

Default: NDATA = size (FDATA,1). 

NXOUT — The number of elements in XOUT.   (Input) 

Default: NXOUT = size (XOUT,1). 

NYOUT — The number of elements in YOUT.   (Input) 

Default: NYOUT = size (YOUT,1). 

LDSUR — Leading dimension of SUR exactly as specified in the dimension statement of the 

calling program.   (Input)  

LDSUR must be at least as large as NXOUT. 

Default: LDSUR = size (SUR,1). 

FORTRAN 90 Interface 

Generic: CALL SURF (XYDATA, FDATA, XOUT, YOUT, SUR [,…]) 

Specific: The specific interface names are S_SURF and D_SURF. 

FORTRAN 77 Interface 

Single: CALL SURF (NDATA, XYDATA, FDATA, NXOUT, NYOUT, XOUT, YOUT, SUR, 
LDSUR) 

Double: The double precision name is DSURF. 

Description 

This routine is designed to compute a C 
1
 interpolant to scattered data in the plane. Given the data 

points 

   3

1
, ,

N

i i i i
x y f in


R

 

SURF returns (in SUR, the user-specified grid) the values of the interpolant s. The computation of s 

is as follows: First the Delaunay triangulation of the points  
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is computed. On each triangle T in this triangulation, s has the form 
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s x y c x y x y T

 
   

 

Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In addition, we have  

s(xi, yi) = fi  for i = 1, …, N 

and s is continuously differentiable across the boundaries of neighboring triangles. These 

conditions do not exhaust the freedom implied by the above representation. This additional 

freedom is exploited in an attempt to produce an interpolant that is faithful to the global shape 

properties implied by the data. For more information on this routine, we refer the reader to the 

article by Akima (1978). The grid is specified by the two integer variables NXOUT, NYOUT that 

represent, respectively, the number of grid points in the first (second) variable and by two real 

vectors that represent, respectively, the first (second) coordinates of the grid. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of S2RF/DS2RF. The 

reference is: 

CALL S2RF (NDATA, XYDATA, FDATA, NXOUT, NYOUT, XOUT, YOUT, 

SUR, LDSUR, IWK, WK) 

The additional arguments are as follows: 

IWK — Work array of length 31 * NDATA + 2*(NXOUT * NYOUT). 

WK — Work array of length 6 * NDATA. 

2. Informational errors 

Type Code 

4 5 The data point values must be distinct. 

4 6 The XOUT values must be strictly increasing. 

4 7 The YOUT values must be strictly increasing. 

3. This method of interpolation reproduces linear functions. 

Example 

In this example, the interpolant to the linear function 3 + 7x + 2y is computed from 20 data points 

equally spaced on the circle of radius 3. We then print the values on a 3 × 3 grid. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 
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      INTEGER    LDSUR, NDATA, NXOUT, NYOUT 

      PARAMETER  (NDATA=20, NXOUT=3, NYOUT=3, LDSUR=NXOUT) 

!  

      INTEGER    I, J, NOUT 

      REAL       ABS, COS, F, FDATA(NDATA), FLOAT, PI,& 

                 SIN, SUR(LDSUR,NYOUT), X, XOUT(NXOUT),& 

                 XYDATA(2,NDATA), Y, YOUT(NYOUT) 

      INTRINSIC  ABS, COS, FLOAT, SIN 

!                                  Define function 

      F(X,Y) = 3.0 + 7.0*X + 2.0*Y 

!                                  Get value for PI 

      PI     = CONST('PI') 

!                                  Set up X, Y, and F data on a circle 

      DO 10  I=1, NDATA 

         XYDATA(1,I) = 3.0*SIN(2.0*PI*FLOAT(I-1)/FLOAT(NDATA)) 

         XYDATA(2,I) = 3.0*COS(2.0*PI*FLOAT(I-1)/FLOAT(NDATA)) 

         FDATA(I)    = F(XYDATA(1,I),XYDATA(2,I)) 

   10 CONTINUE 

!                                  Set up XOUT and YOUT data on [0,1] by 

!                                  [0,1] grid. 

      DO 20  I=1, NXOUT 

         XOUT(I) = FLOAT(I-1)/FLOAT(NXOUT-1) 

   20 CONTINUE 

      DO 30  I=1, NXOUT 

         YOUT(I) = FLOAT(I-1)/FLOAT(NYOUT-1) 

   30 CONTINUE 

!                                  Interpolate scattered data 

      CALL SURF (XYDATA, FDATA, XOUT, YOUT, SUR) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99998) 

!                                  Print results 

      DO 40  I=1, NYOUT 

         DO 40  J=1, NXOUT 

            WRITE (NOUT,99999) XOUT(J), YOUT(I), SUR(J,I),& 

                              F(XOUT(J),YOUT(I)),& 

                              ABS(SUR(J,I)-F(XOUT(J),YOUT(I))) 

   40 CONTINUE 

99998 FORMAT (' ', 10X, 'X', 11X, 'Y', 9X, 'SURF', 6X, 'F(X,Y)', 7X,& 

             'ERROR', /) 

99999 FORMAT (1X, 5F12.4) 

      END 

Output 
 

     X           Y         SURF      F(X,Y)       ERROR 

 

0.0000      0.0000      3.0000      3.0000      0.0000 

0.5000      0.0000      6.5000      6.5000      0.0000 

1.0000      0.0000     10.0000     10.0000      0.0000 

0.0000      0.5000      4.0000      4.0000      0.0000 

0.5000      0.5000      7.5000      7.5000      0.0000 

1.0000      0.5000     11.0000     11.0000      0.0000 

0.0000      1.0000      5.0000      5.0000      0.0000 
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0.5000      1.0000      8.5000      8.5000      0.0000 

1.0000      1.0000     12.0000     12.0000      0.0000 

SURFND 
Performs multidimensional interpolation and differentiation for up to 7 dimensions. 

The dimension, n, of the problem is determined by the rank of FDATA, and cannot be greater than 

seven. The number of gridpoints in the i-th direction, di, is determined by the corresponding 

dimension for FDATA. 

Function Return Value 

SURFND — Interpolated value of the function. 

Required Arguments 

X — Array of length n containing the point at which interpolation is to be done.   (Input) 

An interpolant is to be calculated at the point: 

(X1, X2, …, Xn) 

XDATA — Array of size n by max(d1, …, dn) giving the gridpoint values for the function to 

be interpolated.   (Input) 

The gridpoints need not be uniformly spaced.   See FDATA for more details. 

FDATA  —   n dimensional array, dimensioned  d1× d2× …× dn giving the values at the 

gridpoints of the function to be interpolated.  (Input)   

FDATA(i, j, k, …) is the value of the function at 

(XDATA1,i, XDATA2,j, XDATA3,k, …) 

for i =1, …, d1,  j =1, …, d2, k=1, …, d3,  … 

Optional Arguments 

NDEG   — Array of length n, giving the degree of polynomial interpolation to be used in 

each dimension.   (Input) 

NDEG(i) must be less than or equal to 15. 

Default:  NDEG(i) = 5, for i = 1, …,  n. 

NDERS  — Maximum order of derivatives to be computed with respect to each variable.   

(Input) 

NDERS cannot be larger than max (7- n, 2). See DERIV for more details. 

Default: NDERS = 0. 

DERIV  — n dimensional array, dimensioned (NDERS+1) × (NDERS+1) ×… containing 

derivative estimates at the interpolation point.  (Output) 

DERIV (i,  j, …) will hold an estimate of the derivative with respect to X1 i times, and 

with respect to X2 j times, etc.  where i = 0, …, NDERS,  j = 0, …, NDERS, ….  The 0-th 

derivative means the function value, thus, DERIV (0, 0, …) = SURFND. 
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ERROR  — Estimate of the error in SURFND.   (Output) 

FORTRAN 90 Interface 

Generic: SURFND (X,XDATA,FDATA [,…]) 

Specific: The specific interface names are Sn_SURFND and Dn_SURFND, where ―n‖ 

indicates the dimension of the problem (n = 1, 2, 3, 4, 5, 6 or 7). 

Description 

The function SURFND interpolates a function of up to 7 variables, defined on a (possibly 

nonuniform) grid.  It fits a polynomial of up to degree 15 in each variable through the grid points 

nearest the interpolation point. Approximations of partial derivatives are calculated, if requested. 

If derivatives are desired, high precision is strongly recommended. For more details, see Krogh 

(1970).  

Comments 

Informational errors 

Type Code 

3 1 NDERS is too large, it has been reset to  max(7- n,2). 

3 2 The interpolation point is outside the domain of the table, so 

extrapolation is used. 

4 3 Too many derivatives requested for the polynomial degree used. 

4 4 One of the polynomial degrees requested is too large for the number 

of gridlines in that direction. 

Example 

The 3D function f(x, y, z) = exp(x + 2 y+ 3z), defined on a 20 by 30 by 40 uniform grid, is 

interpolated. 
 

      USE SURFND_INT 

      USE UMACH_INT 

      IMPLICIT NONE 

       

      INTEGER, PARAMETER :: N=3, ND1=20, ND2=30, ND3=40, NDERS=1 

      REAL         X(N),DEROUT(0:NDERS,0:NDERS,0:NDERS), & 

                   XDATA(N,MAX(ND1,ND2,ND3)),FDATA(ND1,ND2,ND3), & 

                   ERROR,XX,YY,ZZ,TRUE,RELERR,YOUT 

      INTEGER      NDEG(N),I,J,K,NOUT 

      CHARACTER*1  ORDER(3) 

      INTRINSIC    EXP, MAX 

       

!                             20 by 30 by 40 uniform grid used for 

!                             interpolation of F(x,y,z) = exp(x+2*y+3*z) 

      NDEG(1) =  8  
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      NDEG(2) =  7  

      NDEG(3) =  9  

       

      DO I=1,ND1 

         XDATA(1,I) = 0.05*(I-1) 

      END DO 

       

      DO J=1,ND2 

         XDATA(2,J) = 0.03*(J-1) 

      END DO 

       

      DO K=1,ND3 

         XDATA(3,K) = 0.025*(K-1) 

      END DO 

       

      DO I=1,ND1 

         DO J=1,ND2 

            DO K=1,ND3 

               XX = XDATA(1,I) 

               YY = XDATA(2,J) 

               ZZ = XDATA(3,K) 

               FDATA(I,J,K) =  EXP(XX+2*YY+3*ZZ)  

            END DO 

         END DO 

      END DO 

       

!                             Interpolate at (0.18,0.43,0.35) 

      X(1) =  0.18 

      X(2) =  0.43 

      X(3) =  0.35  

       

!                             Call SURFND  

      YOUT = SURFND(X,XDATA,FDATA,NDEG=NDEG,DERIV=DEROUT,ERROR=ERROR, & 

        NDERS=NDERS) 

         

!                             Output F,Fx,Fy,Fz,Fxy,Fxz,Fyz,Fxyz at 

!                             interpolation point 

      XX = X(1) 

      YY = X(2) 

      ZZ = X(3) 

      CALL UMACH (2, NOUT) 

      WRITE(NOUT, 10) YOUT,ERROR 

                

      DO K=0,NDERS 

         DO J=0,NDERS 

            DO I=0,NDERS 

               ORDER(1:3) = ' ' 

               IF (I.EQ.1) ORDER(1) = 'x'       

               IF (J.EQ.1) ORDER(2) = 'y' 

               IF (K.EQ.1) ORDER(3) = 'z' 

               TRUE = 2**J*3**K*EXP(XX+2*YY+3*ZZ)  

               RELERR = (DEROUT(I,J,K)-TRUE)/TRUE  

               WRITE(NOUT, 20) ORDER,DEROUT(I,J,K),TRUE,RELERR 

            END DO 

         END DO 

      END DO 

   10 FORMAT (' EST. VALUE = ',F10.6,', EST. ERROR = ',E11.3,//, & 
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              11X,'Computed Der.',5X,'True Der.',4X,'Rel. Err') 

   20 FORMAT (2X,'F',3A1,2F15.6,E15.3) 

      END 

Output 

 

EST. VALUE =   8.084915, EST. ERROR =   0.419E-05 

 

           Computed Der.     True Der.    Rel. Err 

  F          8.084915       8.084914      0.118E-06 

  Fx         8.084907       8.084914     -0.944E-06 

  F y       16.169882      16.169828      0.330E-05 

  Fxy       16.171101      16.169828      0.787E-04 

  F  z      24.254705      24.254742     -0.149E-05 

  Fx z      24.255133      24.254742      0.161E-04 

  F yz      48.505203      48.509483     -0.882E-04 

  Fxyz      48.464718      48.509483     -0.923E-03 

RLINE 
Fits a line to a set of data points using least squares. 

Required Arguments 

XDATA — Vector of length NOBS containing the x-values.   (Input) 

YDATA — Vector of length NOBS containing the y-values.   (Input) 

B0 — Estimated intercept of the fitted line.   (Output) 

B1 — Estimated slope of the fitted line.   (Output) 

Optional Arguments  

NOBS — Number of observations.   (Input) 

Default: NOBS = size (XDATA,1). 

STAT — Vector of length 12 containing the statistics described below.   (Output)  

I STAT(I) 

1 Mean of XDATA 

2 Mean of YDATA 

3 Sample variance of XDATA 

4 Sample variance of YDATA 
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I STAT(I) 

5 Correlation 

6 Estimated standard error of B0 

7 Estimated standard error of B1 

8 Degrees of freedom for regression 

9 Sum of squares for regression 

10 Degrees of freedom for error 

11 Sum of squares for error 

12 Number of (x, y) points containing NaN (not a number) as either 

the x or  y value 

FORTRAN 90 Interface 

Generic: CALL RLINE (XDATA, YDATA, B0, B1 [,…]) 

Specific: The specific interface names are S_RLINE and D_RLINE. 

FORTRAN 77 Interface 

Single: CALL RLINE (NOBS, XDATA, YDATA, B0, B1, STAT) 

Double: The double precision name is DRLINE. 

Description 

Routine RLINE fits a line to a set of (x, y) data points using the method of least squares. Draper 

and Smith (1981, pages 1− 69) discuss the method. The fitted model is 

0 1
ˆ ˆŷ x  

 

where 0̂  (stored in B0) is the estimated intercept and 1̂  (stored in B1) is the estimated slope. In 

addition to the fit, RLINE produces some summary statistics, including the means, sample 

variances, correlation, and the error (residual) sum of squares. The estimated standard errors of 

0 1
ˆ ˆand   are computed under the simple linear regression model. The errors in the model are 

assumed to be uncorrelated and with constant variance. 

If the x values are all equal, the model is degenerate. In this case, RLINE sets 1̂  

to zero and 0̂  to the mean of the y values. 
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Comments 

Informational error 

Type Code 

4 1 Each (x, y) point contains NaN (not a number). There are no valid 

data. 

Example 

This example fits a line to a set of data discussed by Draper and Smith (1981, Table 1.1, pages 9− 

33). The response y is the amount of steam used per month (in pounds), and the independent 

variable x is the average atmospheric temperature (in degrees Fahrenheit). 
 

      USE RLINE_INT 

      USE UMACH_INT 

      USE WRRRL_INT 

 

      IMPLICIT   NONE 

      INTEGER    NOBS 

      PARAMETER  (NOBS=25) 

!  

      INTEGER    NOUT 

      REAL       B0, B1, STAT(12), XDATA(NOBS), YDATA(NOBS) 

      CHARACTER  CLABEL(13)*15, RLABEL(1)*4 

!  

      DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7,& 

           57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0,& 

           74.5, 72.1, 58.1, 44.6, 33.4, 28.6/ 

      DATA YDATA/10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5,& 

           7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09,& 

           8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/ 

      DATA RLABEL/'NONE'/, CLABEL/' ', 'Mean of X', 'Mean of Y',& 

           'Variance X', 'Variance Y', 'Corr.', 'Std. Err. B0',& 

           'Std. Err. B1', 'DF Reg.', 'SS Reg.', 'DF Error',& 

           'SS Error', 'Pts. with NaN'/ 

!  

      CALL RLINE (XDATA, YDATA, B0, B1, STAT=STAT) 

!  

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) B0, B1 

99999 FORMAT (' B0 = ', F7.2, '  B1 = ', F9.5) 

      CALL WRRRL ('%/STAT', STAT, RLABEL, CLABEL, 1, 12, 1, & 

                  FMT = '(12W10.4)') 

!  

      END 

Output 
 

B0 =   13.62  B1 =  -0.07983 

 

                                STAT 

Mean of X   Mean of Y  Variance X  Variance Y       Corr.  Std. Err. B0 

      52.6          9.424       298.1       2.659     -0.8452         0.5815 
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Std. Err. B1     DF Reg.     SS Reg.    DF Error    SS Error  Pts. with NaN 

0.01052           1       45.59          23       18.22              0 

 

Figure 3- 5  Plot of the Data and the Least Squares Line 

RCURV 
Fits a polynomial curve using least squares. 

Required Arguments 

XDATA — Vector of length NOBS containing the x values.   (Input) 

YDATA — Vector of length NOBS containing the y values.   (Input) 

B — Vector of length NDEG + 1 containing the coefficients ̂ . 

(Output)  

The fitted polynomial is 

2
0 1 2

ˆ ˆ ˆ ˆˆ k
ky x x x       

 

Optional Arguments  

NOBS — Number of observations.   (Input) 

Default: NOBS = size (XDATA,1). 
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NDEG — Degree of polynomial.   (Input) 

Default: NDEG = size (B,1) – 1. 

SSPOLY — Vector of length NDEG + 1 containing the sequential sums of squares.   (Output)  

SSPOLY(1) contains the sum of squares due to the mean. For i = 1, 2, …, NDEG, 

SSPOLY(i + 1) contains the sum of squares due to x
i
 adjusted for the mean, x, x

2
,…, 

and x
i-1

. 

STAT — Vector of length 10 containing statistics described below.   (Output)  

i Statistics 

1 Mean of x 

2 Mean of y 

3 Sample variance of x 

4 Sample variance of y 

5 R-squared (in percent) 

6 Degrees of freedom for regression 

7 Regression sum of squares 

8 Degrees of freedom for error 

9 Error sum of squares 

10 Number of data points (x, y) containing NaN (not a number) as a x or y value 

FORTRAN 90 Interface 

Generic: CALL RCURV (XDATA, YDATA, B [,…]) 

Specific: The specific interface names are S_RCURV and D_RCURV. 

FORTRAN 77 Interface 

Single: CALL RCURV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY, STAT) 

Double: The double precision name is DRCURV. 
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Description 

Routine RCURV computes estimates of the regression coefficients in a polynomial (curvilinear) 

regression model. In addition to the computation of the fit, RCURV computes some summary 

statistics. Sequential sums of squares attributable to each power of the independent variable 

(stored in SSPOLY) are computed. These are useful in assessing the importance of the higher order 

powers in the fit. Draper and Smith (1981, pages 101− 102) and Neter and Wasserman (1974, 

pages 278− 287) discuss the interpretation of the sequential sums of squares. The statistic R
2
 

(stored in STAT(5)) is the percentage of the sum of squares of y about its mean explained by the 

polynomial curve. Specifically, 
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where  

ˆiy
 

is the fitted y value at xi and  

y
  

(stored in STAT(2)) is the mean of y. This statistic is useful in assessing the overall fit of the 

curve to the data. R
2
 must be between 0% and 100%, inclusive. R

2
 = 100% indicates a perfect fit to 

the data. 

Routine RCURV computes estimates of the regression coefficients in a polynomial model using 

orthogonal polynomials as the regressor variables. This reparameterization of the polynomial 

model in terms of orthogonal polynomials has the advantage that the loss of accuracy resulting 

from forming powers of the x-values is avoided. All results are returned to the user for the original 

model. 

The routine RCURV is based on the algorithm of Forsythe (1957). A modification to Forsythe‘s 

algorithm suggested by Shampine (1975) is used for computing the polynomial coefficients. A 

discussion of Forsythe‘s algorithm and Shampine‘s modification appears in Kennedy and Gentle 

(1980, pages 342− 347). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of R2URV/DR2URV. The 

reference is: 

CALL R2URV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY, STAT, WK, 

IWK) 

The additional arguments are as follows: 

WK — Work vector of length 11 * NOBS + 11 * NDEG + 5 + (NDEG + 
1) * (NDEG + 3). 

IWK — Work vector of length NOBS. 



     

     
 

864  Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY  

     

     

 

2. Informational errors 

Type Code 

4 3 Each (x, y) point contains NaN (not a number). There are no valid 

data. 

4 7 The x values are constant. At least NDEG + 1 distinct x values are 

needed to fit a NDEG polynomial. 

3 4 The y values are constant. A zero order polynomial is fit. High order 

coefficients are set to zero. 

3 5 There are too few observations to fit the desired degree polynomial. 

High order coefficients are set to zero. 

3 6 A perfect fit was obtained with a polynomial of degree less than 

NDEG. High order coefficients are set to zero. 

3. If NDEG is greater than 10, the accuracy of the results may be questionable. 

Example 

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pages 279− 285). 

The data set contains the response variable y measuring coffee sales (in hundred gallons) and the 

number of self-service coffee dispensers. Responses for fourteen similar cafeterias are in the data 

set. 
 

      USE RCURV_INT 

      USE WRRRL_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    NDEG, NOBS 

      PARAMETER  (NDEG=2, NOBS=14) 

!  

      REAL       B(NDEG+1), SSPOLY(NDEG+1), STAT(10), XDATA(NOBS),& 

                 YDATA(NOBS) 

      CHARACTER  CLABEL(11)*15, RLABEL(1)*4 

!  

      DATA RLABEL/'NONE'/, CLABEL/' ', 'Mean of X', 'Mean of Y',& 

                 'Variance X', 'Variance Y', 'R-squared',& 

                 'DF Reg.', 'SS Reg.', 'DF Error', 'SS Error',& 

                 'Pts. with NaN'/ 

      DATA XDATA/0., 0., 1., 1., 2., 2., 4., 4., 5., 5., 6., 6., 7.,& 

           7./ 

      DATA YDATA/508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,& 

           758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4/ 

!  

      CALL RCURV (XDATA, YDATA, B, SSPOLY=SSPOLY, STAT=STAT) 

!  

      CALL WRRRN ('B', B, 1, NDEG+1, 1) 

      CALL WRRRN ('SSPOLY', SSPOLY, 1, NDEG+1, 1) 

 

      CALL WRRRL ('%/STAT', STAT, RLABEL, CLABEL, 1, 10, 1, & 
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                  FMT='(2W10.4)') 

      END 

Output 
 

           B 

    1       2       3 

503.3    78.9    -4.0 

 

             SSPOLY 

        1           2           3 

7077152.0    220644.2      4387.7 

 

                               STAT 

Mean of X   Mean of Y  Variance X  Variance Y   R-squared    DF Reg. 

     3.571       711.0       6.418     17364.8       99.69           2 

 

 SS Reg.    DF Error    SS Error  Pts. with NaN 

225031.9          11       710.5              0 

 

Figure 3- 6  Plot of Data and Second Degree Polynomial Fit 

FNLSQ 
Computes a least-squares approximation with user-supplied basis functions. 
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Required Arguments 

F — User-supplied function to evaluate basis functions. The form is F(K, X), 

where 

K – Number of the basis function.   (Input)  

K may be equal to 1, 2, …, NBASIS. 

X – Argument for evaluation of the K-th basis function.   (Input) 

F – The function value.   (Output) 

F must be declared EXTERNAL in the calling program. The data FDATA is approximated 

by A(1) * F(1, X) + A(2) * F(2, X) +…+ A(NBASIS) * F(NBASIS, X) if INTCEP = 0 and 

is approximated by A(1) + A(2) * F(1, X) +…+ A(NBASIS + 1) * F(NBASIS, X) if 

INTCEP = 1. 

XDATA — Array of length NDATA containing the abscissas of the data points.   (Input) 

FDATA — Array of length NDATA containing the ordinates of the data points.   (Input) 

A — Array of length INTCEP + NBASIS containing the coefficients of the approximation.   

(Output)  

If INTCEP = 1, A(1) contains the intercept. A(INTCEP + I) contains the coefficient of 

the I-th basis function. 

SSE — Sum of squares of the errors.   (Output) 

Optional Arguments 

INTCEP — Intercept option.   (Input)  

Default: INTCEP = 0. 

INTCEP Action 

0  No intercept is automatically included in the model. 

1  An intercept is automatically included in the model. 

NBASIS — Number of basis functions.   (Input) 

Default: NBASIS = size (A,1) 

NDATA — Number of data points.   (Input) 

Default: NDATA = size (XDATA,1). 

IWT — Weighting option.   (Input)  

Default: IWT = 0. 
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IWT Action 

0 Weights of one are assumed. 

1 Weights are supplied in WEIGHT. 

WEIGHT — Array of length NDATA containing the weights.   (Input if IWT = 1)  

If IWT = 0, WEIGHT is not referenced and may be dimensioned of length one. 

FORTRAN 90 Interface 

Generic: CALL FNLSQ (F, XDATA, FDATA, A, SSE [,…]) 

Specific: The specific interface names are S_FNLSQ and D_FNLSQ. 

FORTRAN 77 Interface 

Single: CALL FNLSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA, IWT, WEIGHT, A, 
SSE) 

Double: The double precision name is DFNLSQ. 

Description 

The routine FNLSQ computes a best least-squares approximation to given univariate data of the 

form  

  
1

,
N

i i i
x f

  

by M basis functions  

 
1

M

j
j

F
  

(where M = NBASIS). In particular, if INTCEP = 0, this routine returns the error sum of squares 

SSE and the coefficients a which minimize  

 

2

1 1

N M

i i j j i

i j

w f a F x
 

 
 

 
 

 
 

where w = WEIGHT, N = NDATA, x = XDATA, and, f = FDATA. 

If INTCEP = 1, then an intercept is placed in the model; and the coefficients a, returned by FNLSQ, 

minimize the error sum of squares as indicated below. 

 

2

1 1

1 1

N M

i i j j i

i j

w f a a F x
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That is, the first element of the vector a is now the coefficient of the function that is identically 1 

and the coefficients of the Fj‘s are now aj+1. 

One additional parameter in the calling sequence for FNLSQ is IWT. If IWT is set to 0, then wi = 1 is 

assumed. If IWT is set to 1, then the user must supply the weights. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2LSQ/DF2LSQ. The 

reference is: 

CALL F2LSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA, IWT, 

WEIGHT, A, SSE, WK) 

The additional argument is 

WK — Work vector of length (INTCEP + NBASIS)**2 + 4 * (INTCEP + 

NBASIS) + IWT + 1. On output, the first (INTCEP + NBASIS)**2 

elements of WK contain the R matrix from a QR decomposition of the 

matrix containing a column of ones (if INTCEP = 1) and the evaluated 

basis functions in columns INTCEP + 1 through INTCEP + NBASIS. 

2. Informational errors 

Type Code 

3 1 Linear dependence of the basis functions exists. One or more 

components of A are set to zero. 

3 2 Linear dependence of the constant function and basis functions 

exists. One or more components of A are set to zero. 

4 1 Negative weight encountered. 

Example 

In this example, we fit the following two functions (indexed by δ) 

1 + sin x + 7 sin 3x + δɛ 

where ɛ is random uniform deviate over the range [−1, 1], and δ is 0 for the first function and 1 

for the second. These functions are evaluated at 90 equally spaced points on the interval [0, 6]. We 

use 4 basis functions, sin kx for k = 1, …, 4, with and without the intercept. 
 

      USE FNLSQ_INT 

      USE RNSET_INT 

      USE UMACH_INT 

      USE RNUNF_INT 

 

      IMPLICIT   NONE 

      INTEGER    NBASIS, NDATA 

      PARAMETER  (NBASIS=4, NDATA=90) 
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!  

      INTEGER    I, INTCEP, NOUT 

      REAL       A(NBASIS+1), F, FDATA(NDATA), FLOAT, G, RNOISE,& 

                 SIN, SSE, X, XDATA(NDATA) 

      INTRINSIC  FLOAT, SIN 

      EXTERNAL   F 

!  

      G(X) = 1.0 + SIN(X) + 7.0*SIN(3.0*X) 

!                                  Set random number seed 

      CALL RNSET (1234579) 

!                                  Set up data values 

      DO 10  I=1, NDATA 

         XDATA(I) = 6.0*(FLOAT(I-1)/FLOAT(NDATA-1)) 

         FDATA(I) = G(XDATA(I)) 

   10 CONTINUE 

 

!                                  Compute least squares fit with no 

!                                  intercept 

      CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, & 

                  NBASIS=NBASIS) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99996) 

!                                  Write output 

      WRITE (NOUT,99999) SSE, (A(I),I=1,NBASIS) 

!  

      INTCEP = 1 

!                                  Compute least squares fit with 

!                                  intercept 

      CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, & 

                  NBASIS=NBASIS) 

!                                  Write output 

      WRITE (NOUT,99998) SSE, A(1), (A(I),I=2,NBASIS+1) 

!                                  Introduce noise 

      DO 20  I=1, NDATA 

         RNOISE = RNUNF() 

         RNOISE   = 2.0*RNOISE - 1.0 

         FDATA(I) = FDATA(I) + RNOISE 

   20 CONTINUE 

      INTCEP = 0 

!                                  Compute least squares fit with no 

!                                  intercept 

      CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, & 

                  NBASIS=NBASIS) 

!                                  Write heading 

      WRITE (NOUT,99997) 

!                                  Write output 

      WRITE (NOUT,99999) SSE, (A(I),I=1,NBASIS) 

!  

      INTCEP = 1 

!                                  Compute least squares fit with 

!                                  intercept 

      CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, & 

                  NBASIS=NBASIS) 

!                                  Write output 

      WRITE (NOUT,99998) SSE, A(1), (A(I),I=2,NBASIS+1) 
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!  

99996 FORMAT (//, ' Without error introduced we have :', /,& 

             '    SSE          Intercept      Coefficients  ', /) 

99997 FORMAT (//, ' With error introduced we have :', /, '    SSE     '& 

             , '     Intercept      Coefficients  ', /) 

99998 FORMAT (1X, F8.4, 5X, F9.4, 5X, 4F9.4, /) 

99999 FORMAT (1X, F8.4, 14X, 5X, 4F9.4, /) 

      END 

      REAL FUNCTION F (K, X) 

      INTEGER    K 

      REAL       X 

!  

      REAL       SIN 

      INTRINSIC  SIN 

!  

      F = SIN(K*X) 

      RETURN 

      END 

Output 
 

Without error introduced we have : 

SSE          Intercept      Coefficients 

 

89.8776                      1.0101   0.0199   7.0291   0.0374 

 0.0000        1.0000        1.0000   0.0000   7.0000   0.0000 

 

With error introduced we have : 

SSE          Intercept      Coefficients 

 

112.4662                     0.9963  -0.0675   6.9825   0.0133 

 30.9831       0.9522        0.9867  -0.0864   6.9548  -0.0223 

BSLSQ 
Computes the least-squares spline approximation, and return the B-spline coefficients. 

Required Arguments 

XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

KORDER — Order of the spline.   (Input)  

KORDER must be less than or equal to NDATA. 

XKNOT — Array of length NCOEF + KORDER containing the knot sequence.   (Input)  

XKNOT must be nondecreasing. 

NCOEF — Number of B-spline coefficients.   (Input)  

NCOEF cannot be greater than NDATA. 
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BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Output) 

Optional Arguments 

NDATA — Number of data points.   (Input) 

Default: NDATA = size(XDATA, 1) 

WEIGHT — Array of length NDATA containing the weights.   (Input) 

Default: WEIGHT = 1.0. 

FORTRAN 90 Interface 

Generic: CALL BSLSQ (XDATA, FDATA, KORDER, XKNOT, NCOEF, BSCOEF 
[,…]) 

Specific: The specific interface names are S_BSLSQ and D_BSLSQ. 

FORTRAN 77 Interface 

Single: CALL BSLSQ (NDATA, XDATA, FDATA, WEIGHT, KORDER, XKNOT, NCOEF, 
BSCOEF) 

Double: The double precision name is DBSLSQ. 

Description 

The routine BSLSQ is based on the routine L2APPR by de Boor (1978, page 255). The IMSL 

routine BSLSQ computes a weighted discrete L2 approximation from a spline subspace to a given 

data set (xi, fi) for i = 1, …, N (where N = NDATA). In other words, it finds B-spline coefficients,  

a = BSCOEF, such that 

 

2

1 1

N m

i j j i i

i j

f a B x w
 

 
 

is a minimum, where m = NCOEF and Bj denotes the j-th B-spline for the given order, KORDER, and 

knot sequence, XKNOT. This linear least squares problem is solved by computing and solving the 

normal equations. While the normal equations can sometimes cause numerical difficulties, their 

use here should not cause a problem because the B-spline basis generally leads to well-conditioned 

banded matrices. 

The choice of weights depends on the problem. In some cases, there is a natural choice for the 

weights based on the relative importance of the data points. To approximate a continuous function 

(if the location of the data points can be chosen), then the use of Gauss quadrature weights and 

points is reasonable. This follows because BSLSQ is minimizing an approximation to the integral  

2
F s dx  
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The Gauss quadrature weights and points can be obtained using the IMSL routine GQRUL (see 

Chapter 4, Integration and Differentiation). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2LSQ/DB2LSQ. The 

reference is: 

CALL B2LSQ (NDATA, XDATA, FDATA, WEIGHT, KORDER, XKNOT, 

NCOEF, BSCOEF, WK1, WK2, WK3, WK4, IWK) 

The additional arguments are as follows: 

WK1 — Work array of length (3 + NCOEF) * KORDER. 

WK2 — Work array of length NDATA. 

WK3 — Work array of length NDATA. 

WK4 — Work array of length NDATA. 

IWK — Work array of length NDATA. 

2. Informational errors 

Type Code 

4 5 Multiplicity of the knots cannot exceed the order of the spline. 

4  6 The knots must be nondecreasing. 

4  7 All weights must be greater than zero. 

4 8 The smallest element of the data point array must be greater than or 

equal to the KORDth knot. 

4 9 The largest element of the data point array must be less than or equal 

to the (NCOEF + 1)st knot. 

3. The B-spline representation can be evaluated using BSVAL, and its derivative can be 

evaluated using BSDER. 

Example 

In this example, we try to recover a quadratic polynomial using a quadratic spline with one interior 

knot from two different data sets. The first data set is generated by evaluating the quadratic at 50 

equally spaced points in the interval (0, 1) and then adding uniformly distributed noise to the data. 

The second data set includes the first data set, and, additionally, the values at 0 and at 1 with no 

noise added. Since the first and last data points are uncontaminated by noise, we have chosen 

weights equal to 10
5
 for these two points in this second problem. The quadratic, the first 

approximation, and the second approximation are then evaluated at 11 equally spaced points. This 

example illustrates the use of the weights to enforce interpolation at certain of the data points. 
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      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    KORDER, NCOEF 

      PARAMETER  (KORDER=3, NCOEF=4) 

!  

      INTEGER    I, NDATA, NOUT 

      REAL       ABS, BSCOF1(NCOEF), BSCOF2(NCOEF), F,& 

                 FDATA1(50), FDATA2(52), FLOAT, RNOISE, S1,& 

                 S2, WEIGHT(52), X, XDATA1(50), XDATA2(52),& 

                 XKNOT(KORDER+NCOEF), XT, YT 

      INTRINSIC  ABS, FLOAT 

!  

      DATA WEIGHT/52*1.0/ 

!                                  Define function 

      F(X) = 8.0*X*(1.0-X) 

!                                  Set random number seed 

      CALL RNSET (12345679) 

      NDATA = 50 

!                                  Set up interior knots 

      DO 10  I=1, NCOEF - KORDER + 2 

         XKNOT(I+KORDER-1) = FLOAT(I-1)/FLOAT(NCOEF-KORDER+1) 

   10 CONTINUE 

!                                  Stack knots 

      DO 20  I=1, KORDER - 1 

         XKNOT(I) = XKNOT(KORDER) 

         XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1) 

   20 CONTINUE 

!                                  Set up data points excluding 

!                                  the endpoints 0 and 1. 

!                                  The function values have noise 

!                                  introduced. 

      DO 30  I=1, NDATA 

         XDATA1(I) = FLOAT(I)/51.0 

         RNOISE    = RNUNF() 

         RNOISE    = RNOISE - 0.5 

         FDATA1(I) = F(XDATA1(I)) + RNOISE 

   30 CONTINUE 

!                                  Compute least squares B-spline 

!                                  representation. 

      CALL BSLSQ (XDATA1, FDATA1, KORDER, XKNOT, NCOEF, BSCOF1) 

!                                  Now use same XDATA values but with 

!                                  the endpoints included.  These 

!                                  points will have large weights. 

      NDATA = 52 

      CALL SCOPY (50, XDATA1, 1, XDATA2(2:), 1) 

      CALL SCOPY (50, FDATA1, 1, FDATA2(2:), 1) 

!  

      WEIGHT(1) = 1.0E5 

      XDATA2(1) = 0.0 

      FDATA2(1) = F(XDATA2(1)) 

      WEIGHT(NDATA) = 1.0E5 

      XDATA2(NDATA) = 1.0 

      FDATA2(NDATA) = F(XDATA2(NDATA)) 

!                                  Compute least squares B-spline 

!                                  representation. 
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      CALL BSLSQ (XDATA2, FDATA2, KORDER, XKNOT, NCOEF, BSCOF2, & 

                  WEIGHT=WEIGHT) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99998) 

!                                  Print the two interpolants 

!                                  at 11 points. 

      DO 40  I=1, 11 

         XT = FLOAT(I-1)/10.0 

         YT = F(XT) 

!                                  Evaluate splines 

         S1 = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOF1) 

         S2 = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOF2) 

         WRITE (NOUT,99999) XT, YT, S1, S2, (S1-YT), (S2-YT) 

   40 CONTINUE 

!  

99998 FORMAT (7X, 'X', 9X, 'F(X)', 6X, 'S1(X)', 5X, 'S2(X)', 7X,& 

             'F(X)-S1(X)', 7X, 'F(X)-S2(X)') 

99999 FORMAT (' ', 4F10.4, 4X, F10.4, 7X, F10.4) 

      END 

Output 
 

X         F(X)      S1(X)     S2(X)       F(X)-S1(X)       F(X)-S2(X) 

0.0000    0.0000    0.0515    0.0000       0.0515           0.0000 

0.1000    0.7200    0.7594    0.7490       0.0394           0.0290 

0.2000    1.2800    1.3142    1.3277        0.0342          0.0477 

0.3000    1.6800    1.7158    1.7362       0.0358           0.0562 

0.4000    1.9200    1.9641    1.9744       0.0441           0.0544 

0.5000    2.0000    2.0593    2.0423       0.0593           0.0423 

0.6000    1.9200    1.9842    1.9468       0.0642           0.0268 

0.7000    1.6800    1.7220    1.6948       0.0420           0.0148 

0.8000    1.2800    1.2726    1.2863      -0.0074           0.0063 

0.9000    0.7200    0.6360    0.7214      -0.0840           0.0014 

1.0000    0.0000   -0.1878    0.0000      -0.1878           0.0000 

BSVLS 
Computes the variable knot B-spline least squares approximation to given data. 

Required Arguments 

XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

KORDER — Order of the spline.   (Input)  

KORDER must be less than or equal to NDATA. 

NCOEF — Number of B-spline coefficients.   (Input)  

NCOEF must be less than or equal to NDATA. 
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XGUESS — Array of length NCOEF + KORDER containing the initial guess of knots.   (Input)  

XGUESS must be nondecreasing. 

XKNOT — Array of length NCOEF + KORDER containing the (nondecreasing) knot sequence.   

(Output) 

BSCOEF — Array of length NCOEF containing the B-spline representation.   (Output) 

SSQ — The square root of the sum of the squares of the error.   (Output) 

Optonal Arguments 

NDATA — Number of data points.   (Input)  

NDATA must be at least 2. 

Default: NDATA = size(XDATA, 1) 

WEIGHT — Array of length NDATA containing the weights.   (Input) 

Default: WEIGHT = 1.0. 

FORTRAN 90 Interface 

Generic: CALL BSVLS (NDATA, XDATA, FDATA, WEIGHT, KORDER, NCOEF, XGUESS, 

XKNOT, BSCOEF, SSQ) 

Specific: The specific interface names are S_BSVLS and D_BSVLS. 

FORTRAN 77 Interface 

Single: CALL BSVLS (XDATA, FDATA, KORDER, NCOEF, XGUESS, XKNOT, BSCOEF,  
SSQ [,…]) 

Double: The double precision name is DBSVLS. 

Description 

The routine BSVLS attempts to find the best placement of knots that will minimize the leastsquares 

error to given data by a spline of order k = KORDER with N = NCOEF coefficients. The user 

provides the order k of the spline and the number of coefficients N. For this problem to make 

sense, it is necessary that N > k. We then attempt to find the minimum of the functional  

   
2
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 t t

 

The user must provide the weights w = WEIGHT, the data xi = XDATA  and fi = FDATA, and  

M = NDATA. The minimum is taken over all admissible knot sequences t. 
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The technique employed in BSVLS uses the fact that for a fixed knot sequence t the minimization 

in a is a linear least-squares problem that can be solved by calling the IMSL routine BSLSQ. Thus, 

we can think of our objective function F as a function of just t by setting 

   min ,
a

G F at t
 

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the new objective 

function G. In addition to this local method, there is a global heuristic built into the algorithm that 

will be useful if the data arise from a smooth function. This heuristic is based on the routine 

NEWNOT of de Boor (1978, pages 184 and 258− 261). 

The user must input an initial guess, t
g
 = XGUESS, for the knot sequence. This guess must be a 

valid knot sequence for the splines of order k with 

1 1 , 1, ,g g g g
i Nk N kx i M       t t t t

 

with t
g
 nondecreasing, and  

1, ,gg
i i k i N t t

 

The routine BSVLS returns the B-spline representation of the best fit found by the algorithm as 

well as the square root of the sum of squares error in SSQ. If this answer is unsatisfactory, you may 

reinitialize BSVLS with the return from BSVLS to see if an improvement will occur. We have found 

that this option does not usually (substantially) improve the result. In regard to execution speed, 

this routine can be several orders of magnitude slower than one call to the least-squares routine 

BSLSQ. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2VLS/DB2VLS. The 

reference is: 

CALL B2VLS (NDATA, XDATA, FDATA, WEIGHT, KORDER, NCOEF, 

XGUESS, XKNOT, BSCOEF, SSQ, IWK, WK) 

The additional arguments are as follows: 

IWK — Work array of length NDATA. 

WK — Work array of length NCOEF * (6 + 2 * KORDER) + KORDER * (7 − 

KORDER) +  

3 * NDATA + 3. 

2. Informational errors 

Type Code 

3 12 The knots found to be optimal are stacked more than KORDER. This 

indicates fewer knots will produce the same error sum of squares. 

The knots have been separated slightly. 
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4 9 The multiplicity of the knots in XGUESS cannot exceed the order of 

the spline. 

4 10 XGUESS must be nondecreasing. 

Example 

In this example, we try to fit the function |x − .33| evaluated at 100 equally spaced points on [0, 

1]. We first use quadratic splines with 2 interior knots initially at .2 and .8. The eventual error 

should be zero since the function is a quadratic spline with two knots stacked at .33. As a second 

example, we try to fit the same data with cubic splines with three interior knots initially located at 

.1, .2, and, .5. Again, the theoretical error is zero when the three knots are stacked at .33. 

We include a graph of the initial least-squares fit using the IMSL routine BSLSQ for the above 

quadratic spline example with knots at .2 and .8. This graph overlays the graph of the spline 

computed by BSVLS, which is indistinguishable from the data. 
 

      USE BSVLS_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    KORD1, KORD2, NCOEF1, NCOEF2, NDATA 

      PARAMETER  (KORD1=3, KORD2=4, NCOEF1=5, NCOEF2=7, NDATA=100) 

!  

      INTEGER    I, NOUT 

      REAL       ABS, BSCOEF(NCOEF2), F, FDATA(NDATA), FLOAT, SSQ,& 

                 WEIGHT(NDATA), X, XDATA(NDATA), XGUES1(NCOEF1+KORD1),& 

                 XGUES2(KORD2+NCOEF2), XKNOT(NCOEF2+KORD2) 

      INTRINSIC  ABS, FLOAT 

!  

      DATA XGUES1/3*0.0, .2, .8, 3*1.0001/ 

      DATA XGUES2/4*0.0, .1, .2, .5, 4*1.0001/ 

      DATA WEIGHT/NDATA*.01/ 

!                                  Define function 

      F(X) = ABS(X-.33) 

!                                  Set up data 

      DO 10  I=1, NDATA 

         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Compute least squares B-spline 

!                                  representation with KORD1, NCOEF1, 

!                                  and XGUES1. 

      CALL BSVLS (XDATA, FDATA, KORD1, NCOEF1, XGUES1,& 

                  XKNOT, BSCOEF, SSQ, WEIGHT=WEIGHT) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Print heading 

      WRITE (NOUT,99998) 'quadratic' 

!                                  Print SSQ and the knots 

      WRITE (NOUT,99999) SSQ, (XKNOT(I),I=1,KORD1+NCOEF1) 

!                                  Compute least squares B-spline 

!                                  representation with KORD2, NCOEF2, 

!                                  and XGUES2. 

      CALL BSVLS (XDATA, FDATA, KORD2, NCOEF2, XGUES2,& 

                  XKNOT, BSCOEF, SSQ, WEIGHT=WEIGHT) 
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!                                  Print SSQ and the knots 

      WRITE (NOUT,99998) 'cubic' 

      WRITE (NOUT,99999) SSQ, (XKNOT(I),I=1,KORD2+NCOEF2) 

!  

99998 FORMAT (' Piecewise ', A, /) 

99999 FORMAT (' Square root of the sum of squares : ', F9.4, /,& 

             ' Knot sequence : ', /, 1X, 11(F9.4,/,1X)) 

      END 

Output 
 

Piecewise quadratic 

 

Square root of the sum of squares :    0.0008 

Knot sequence : 

   0.0000 

   0.0000 

   0.0000 

   0.3137 

   0.3464 

   1.0001 

   1.0001 

   1.0001 

 

Piecewise cubic 

 

Square root of the sum of squares :    0.0005 

Knot sequence : 

   0.0000 

   0.0000 

   0.0000  

   0.0000 

   0.3167 

   0.3273 

   0.3464 

   1.0001 

   1.0001 

   1.0001 

   1.0001 
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Figure 3- 7  BSVLS vs. BSLSQ 

CONFT 

 

Computes the least-squares constrained spline approximation, returning the B-spline coefficients. 

Required Arguments 

XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

FDATA — Array of size NDATA containing the values to be approximated.   (Input)  

FDATA(I) contains the value at XDATA(I). 

XVAL — Array of length NXVAL containing the abscissas at which the fit is to be constrained.   

(Input) 

NHARD — Number of entries of XVAL involved in the ‗hard‘ constraints.   (Input)  

Note: (0 ≤ NHARD ≤ NXVAL). Setting NHARD to zero always results in a fit, while 

setting NHARD to NXVAL forces all constraints to be met. The ‗hard‘ constraints must be 
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satisfied or else the routine signals failure. The ‗soft‘ constraints need not be satisfied, 

but there will be an attempt to satisfy the ‗soft‘ constraints. The constraints must be 

ordered in terms of priority with the most important constraints first. Thus, all of the 

‗hard‘ constraints must preceed the ‗soft‘ constraints. If infeasibility is detected among 

the soft constraints, we satisfy (in order) as many of the soft constraints as possible. 

IDER — Array of length NXVAL containing the derivative value of the spline that is to be 

constrained.   (Input) 

If we want to constrain the integral of the spline over the closed interval (c, d), then we 

set IDER(I) = IDER(I + 1) = − 1 and XVAL(I) = c and XVAL(I + 1) = d. For 

consistency, we insist that ITYPE(I) = ITYPE(I + 1) .GE. 0 and c .LE. d. Note that 

every entry in IDER must be at least − 1. 

ITYPE — Array of length NXVAL indicating the types of general constraints.   (Input) 
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In order to set two point constraints, we must have ITYPE(I) = ITYPE(I + 1) and ITYPE(I) 

must be negative.  
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BL — Array of length NXVAL containing the lower limit of the general constraints, if there is 

no lower limit on the I-th constraint, then BL(I) is not referenced.   (Input) 

BU — Array of length NXVAL containing the upper limit of the general constraints, if there is 

no upper limit on the I-th constraint, then BU(I) is not referenced; if there is no range 

constraint, BL and BU can share the same storage locations.   (Input)  

If the I-th constraint is an equality constraint, BU(I) is not referenced. 

KORDER — Order of the spline.   (Input) 

XKNOT — Array of length NCOEF + KORDER containing the knot sequence.   (Input)  

The entries of XKNOT must be nondecreasing. 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Output) 

Optional Arguments 

NDATA — Number of data points.   (Input) 

Default: NDATA = size (XDATA,1). 

WEIGHT — Array of length NDATA containing the weights.   (Input) 

Default: WEIGHT = 1.0. 

NXVAL — Number of points in the vector XVAL.   (Input) 

Default: NXVAL = size (XVAL,1). 

NCOEF — Number of B-spline coefficients.   (Input) 

Default: NCOEF = size (BSCOEF,1). 

FORTRAN 90 Interface 

Generic: CALL CONFT (XDATA, FDATA, XVAL, NHARD, IDER, ITYPE, BL, BU, KORDER, 

XKNOT, BSCOEF [,…]) 

Specific: The specific interface names are S_CONFT and D_CONFT. 
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FORTRAN 77 Interface 

Single: CALL CONFT (NDATA, XDATA, FDATA, WEIGHT, NXVAL, XVAL, NHARD, IDER, 

ITYPE, BL, BU, KORDER, XKNOT, NCOEF, BSCOEF) 

Double: The double precision name is DCONFT. 

Description 

The routine CONFT produces a constrained, weighted least-squares fit to data from a spline 

subspace. Constraints involving one point, two points, or integrals over an interval are allowed. 

The types of constraints supported by the routine are of four types. 
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An interval, Ip, (which may be a point, a finite interval , or semi-infinite interval) is associated 

with each of these constraints. 

The input for this routine consists of several items, first, the data set (xi, fi) for i = 1, …, N (where 

N = NDATA), that is the data which is to be fit. Second, we have the weights to be used in the least 

squares fit (w = WEIGHT). The vector XVAL of length NXVAL contains the abscissas of the points 

involved in specifying the constraints. The algorithm tries to satisfy all the constraints, but if the 

constraints are inconsistent then it will drop constraints, in the reverse order specified, until either 

a consistent set of constraints is found or the ―hard‖ constraints are determined to be inconsistent 

(the ―hard‖ constraints are those involving XVAL(1), …, XVAL(NHARD)). Thus, the algorithm 

satisfies as many constraints as possible in the order specified by the user. In the case when 

constraints are dropped, the user will receive a message explaining how many constraints had to 

be dropped to obtain the fit. The next several arguments are related to the type of constraint and 

the constraint interval. The last four arguments determine the spline solution. The user chooses the 

spline subspace (KORDER, XKNOT, and NCOEF), and the routine returns the B-spline coefficients in 

BSCOEF. 

Let nf denote the number of feasible constraints as described above. Then, the routine solves the 

problem. 
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This linearly constrained least-squares problem is treated as a quadratic program and is solved by 

invoking the IMSL routine QPROG (see Chapter 8, Optimization). 

The choice of weights depends on the data uncertainty in the problem. In some cases, there is a 

natural choice for the weights based on the estimates of errors in the data points. 

Determining feasibility of linear constraints is a numerically sensitive task. If you encounter 

difficulties, a quick fix would be to widen the constraint intervals Ip. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of C2NFT/DC2NFT. The 

reference is: 

CALL C2NFT (NDATA, XDATA, FDATA, WEIGHT, NXVAL, XVAL, 

NHARD, IDER, ITYPE, BL, BU, KORDER, XKNOT, NCOEF, 

BSCOEF, H, G, A, RHS, WK, IPERM, IWK) 

The additional arguments are as follows: 

H — Work array of size NCOEF by NCOEF. Upon output, H contains the 

Hessian matrix of the objective function used in the call to QPROG (see 

Chapter 8, Optimization). 

G — Work array of size NCOEF. Upon output, G contains the coefficients of 

the linear term used in the call to QPROG. 

A — Work array of size (2 * NXVAL + KORDER) by (NCOEF + 1). Upon output, 

A contains the constraint matrix used in the call QPROG. The last 

column of A is used to keep record of the original order of the 

constraints. 

RHS — Work array of size 2 * NXVAL + KORDER . Upon output, RHS contains 

the right hand side of the constraint matrix A used in the call to QPROG. 

WK — Work array of size (KORDER + 1) * (2 * KORDER + 1) + (3 * NCOEF * 

NCOEF + 13 * NCOEF)/2 + (2 * NXVAL + KORDER +30)*(2*NXVAL + 

KORDER) + NDATA + 1. 

IPERM — Work array of size NXVAL. Upon output, IPERM contains the 

permutaion of the original constraints used to generate the matrix A. 

IWK — Work array of size NDATA + 30 * (2 * NXVAL + KORDER) + 4 * 

NCOEF. 

2. Informational errors 

Type Code 

3 11 Soft constraints had to be removed in order to get a fit. 

4 12 Multiplicity of the knots cannot exceed the order of the spline. 
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4 13 The knots must be nondecreasing. 

4 14 The smallest element of the data point array must be greater than or 

equal to the KORD-th knot. 

4  15 The largest element of the data point array must be less than or equal 

to the (NCOEF + 1)st knot. 

4 16 All weights must be greater than zero. 

4 17 The hard constraints could not be met. 

4 18 The abscissas of the constrained points must lie within knot interval. 

4 19 The upperbound must be greater than or equal to the lowerbound for 

a range constaint. 

4 20 The upper limit of integration must be greater than the lower limit of 

integration for constraints involving the integral of the 

approximation. 

Example 1 

This is a simple application of CONFT. We generate data from the function 

sin
2 2

x x 
  

   

contaminated with random noise and fit it with cubic splines. The function is increasing so we 

would hope that our least-squares fit would also be increasing. This is not the case for the 

unconstrained least squares fit generated by BSLSQ. We then force the derivative to be greater than 

0 at NXVAL = 15 equally spaced points and call CONFT. The resulting curve is monotone. We print 

the error for the two fits averaged over 100 equally spaced points. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    KORDER, NCOEF, NDATA, NXVAL 

      PARAMETER  (KORDER=4, NCOEF=8, NDATA=15, NXVAL=15) 

!  

      INTEGER    I, IDER(NXVAL), ITYPE(NXVAL), NHARD, NOUT 

      REAL       ABS, BL(NXVAL), BSCLSQ(NDATA), BSCNFT(NDATA), & 

                 BU(NXVAL), ERRLSQ, ERRNFT, F1, FDATA(NDATA), FLOAT,& 

                 GRDSIZ, SIN, WEIGHT(NDATA), X, XDATA(NDATA),& 

                 XKNOT(KORDER+NDATA), XVAL(NXVAL) 

      INTRINSIC  ABS, FLOAT, SIN 

!  

      F1(X) = .5*X + SIN(.5*X) 

!                                  Initialize random number generator 

!                                  and get output unit number. 

      CALL RNSET (234579) 

      CALL UMACH (2, NOUT) 

!                                  Use default weights of one. 

!      

!                                  Compute original XDATA and FDATA 
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!                                  with random noise. 

      GRDSIZ = 10.0 

      DO 10  I=1, NDATA 

         XDATA(I) = GRDSIZ*((FLOAT(I-1)/FLOAT(NDATA-1))) 

         FDATA(I) = RNUNF() 

         FDATA(I) = F1(XDATA(I)) + (FDATA(I)-.5) 

   10 CONTINUE 

!                                  Compute knots 

      DO 20  I=1, NCOEF - KORDER + 2 

         XKNOT(I+KORDER-1) = GRDSIZ*((FLOAT(I-1)/FLOAT(NCOEF-KORDER+1))& 

                             ) 

   20 CONTINUE 

      DO 30  I=1, KORDER - 1 

         XKNOT(I) = XKNOT(KORDER) 

         XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1) 

   30 CONTINUE 

!  

!                                  Compute BSLSQ fit. 

      CALL BSLSQ (XDATA, FDATA, KORDER, XKNOT, NCOEF, BSCLSQ) 

!                                  Construct the constraints for 

!                                  CONFT. 

      DO 40  I=1, NXVAL 

         XVAL(I)  = GRDSIZ*FLOAT(I-1)/FLOAT(NXVAL-1) 

         ITYPE(I) = 3 

         IDER(I)  = 1 

         BL(I)    = 0.0 

   40 CONTINUE 

!                                  Call CONFT 

      NHARD = 0 

      CALL CONFT (XDATA, FDATA, XVAL, NHARD, IDER, ITYPE, BL, BU, KORDER,& 

                  XKNOT, BSCNFT, NCOEF=NCOEF) 

!                                  Compute the average error 

!                                  of 100 points in the interval. 

      ERRLSQ = 0.0 

      ERRNFT = 0.0 

      DO 50  I=1, 100 

         X      = GRDSIZ*FLOAT(I-1)/99.0 

         ERRNFT = ERRNFT + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCNFT)& 

                  ) 

         ERRLSQ = ERRLSQ + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCLSQ)& 

                  ) 

   50 CONTINUE 

!                                  Print results 

      WRITE (NOUT,99998) ERRLSQ/100.0 

      WRITE (NOUT,99999) ERRNFT/100.0 

!  

99998 FORMAT (' Average error with BSLSQ fit:  ', F8.5) 

99999 FORMAT (' Average error with CONFT fit:  ', F8.5) 

      END 
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Output 
 

Average error with BSLSQ fit:   0.20250 

Average error with CONFT fit:   0.14334 

 

Figure 3- 8  CONFT vs. BSLSQ Forcing Monotonicity 

Additional Examples 

Example 2 

We now try to recover the function 

4

1

1 x  

from noisy data. We first try the unconstrained least-squares fit using BSLSQ. Finding that fit 

somewhat unsatisfactory, we apply several constraints using CONFT. First, notice that the 

unconstrained fit oscillates through the true function at both ends of the interval. This is common 

for flat data. To remove this oscillation, we constrain the cubic spline to have zero second 
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derivative at the first and last four knots. This forces the cubic spline to reduce to a linear 

polynomial on the first and last three knot intervals. In addition, we constrain the fit (which we 

will call s) as follows: 

 

 

   

7

7

7 0

2.3

7 7

s

s x dx

s s



 



 



 

Notice that the last constraint was generated using the periodic option (requiring only the zeroeth 

derivative to be periodic). We print the error for the two fits averaged over 100 equally spaced 

points. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    KORDER, NCOEF, NDATA, NXVAL 

      PARAMETER  (KORDER=4, NCOEF=13, NDATA=51, NXVAL=12) 

!  

      INTEGER    I, IDER(NXVAL), ITYPE(NXVAL), NHARPT, NOUT 

      REAL       ABS, BL(NXVAL), BSCLSQ(NDATA), BSCNFT(NDATA),& 

                 BU(NXVAL), ERRLSQ, ERRNFT, F1, FDATA(NDATA), FLOAT,& 

                 GRDSIZ, WEIGHT(NDATA), X, XDATA(NDATA),& 

                 XKNOT(KORDER+NDATA), XVAL(NXVAL) 

      INTRINSIC  ABS, FLOAT 

!  

      F1(X) = 1.0/(1.0+X**4) 

!                                  Initialize random number generator 

!                                  and get output unit number. 

      CALL UMACH (2, NOUT) 

      CALL RNSET (234579) 

!                                  Use deafult weights of one. 

!       

!                                  Compute original XDATA and FDATA 

!                                  with random noise. 

      GRDSIZ = 14.0 

      DO 10  I=1, NDATA 

         XDATA(I) = GRDSIZ*((FLOAT(I-1)/FLOAT(NDATA-1))) - GRDSIZ/2.0 

         FDATA(I) = RNUNF()  

         FDATA(I) = F1(XDATA(I)) + 0.125*(FDATA(I)-.5) 

   10 CONTINUE 

!                                  Compute KNOTS 

      DO 20  I=1, NCOEF - KORDER + 2 

         XKNOT(I+KORDER-1) = GRDSIZ*((FLOAT(I-1)/FLOAT(NCOEF-KORDER+1))& 

                             ) - GRDSIZ/2.0 

   20 CONTINUE 

      DO 30  I=1, KORDER - 1 

         XKNOT(I) = XKNOT(KORDER) 

         XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1) 

   30 CONTINUE 

!                                  Compute BSLSQ fit 

      CALL BSLSQ (XDATA, FDATA, KORDER, XKNOT, NCOEF, BSCLSQ) 

!                                  Construct the constraints for 

!                                  CONFT 

      DO 40  I=1, 4 



     

     
 

888  Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY  

     

     

 

         XVAL(I)    = XKNOT(KORDER+I-1) 

         XVAL(I+4)  = XKNOT(NCOEF-3+I) 

         ITYPE(I)   = 1 

         ITYPE(I+4) = 1 

         IDER(I)    = 2 

         IDER(I+4)  = 2 

         BL(I)      = 0.0 

         BL(I+4)    = 0.0 

   40 CONTINUE 

!  

      XVAL(9)  = -7.0 

      ITYPE(9) = 3 

      IDER(9)  = 0 

      BL(9)    = 0.0 

!  

      XVAL(10)  = -7.0 

      ITYPE(10) = 2 

      IDER(10)  = -1 

      BU(10)    = 2.3 

!  

      XVAL(11)  = 7.0 

      ITYPE(11) = 2 

      IDER(11)  = -1 

      BU(11)    = 2.3 

!  

      XVAL(12)  = -7.0 

      ITYPE(12) = 10 

      IDER(12)  = 0 

!                                  Call CONFT 

      CALL CONFT (XDATA, FDATA, XVAL, NHARPT, IDER, ITYPE, BL, BU,& 

                  KORDER, XKNOT, BSCNFT, NCOEF=NCOEF) 

!                                  Compute the average error 

!                                  of 100 points in the interval. 

      ERRLSQ = 0.0 

      ERRNFT = 0.0 

      DO 50  I=1, 100 

         X      = GRDSIZ*FLOAT(I-1)/99.0 - GRDSIZ/2.0 

         ERRNFT = ERRNFT + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCNFT)& 

                  ) 

         ERRLSQ = ERRLSQ + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCLSQ)& 

                  ) 

   50 CONTINUE 

!                                  Print results 

      WRITE (NOUT,99998) ERRLSQ/100.0 

      WRITE (NOUT,99999) ERRNFT/100.0 

!  

99998 FORMAT (' Average error with BSLSQ fit:  ', F8.5) 

99999 FORMAT (' Average error with CONFT fit:  ', F8.5) 

      END 
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Output 
 

Average error with BSLSQ fit:   0.01783 

Average error with CONFT fit:   0.01339 

 

Figure 3- 9  CONFT vs. BSLSQ Approximating 1/(1 + x
4
) 

BSLS2 
Computes a two-dimensional tensor-product spline approximant using least squares, returning the 

tensor-product B-spline coefficients. 

Required Arguments 

XDATA — Array of length NXDATA containing the data points in the X-direction.   (Input)  

XDATA must be nondecreasing. 

YDATA — Array of length NYDATA containing the data points in the Y-direction.   (Input)  

YDATA must be nondecreasing. 

FDATA — Array of size NXDATA by NYDATA containing the values on the X − Y grid to be 

interpolated.   (Input)  

FDATA(I, J) contains the value at (XDATA(I), YDATA(I)). 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 
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XKNOT — Array of length KXORD + NXCOEF containing the knots in the X-direction.   (Input)  

XKNOT must be nondecreasing. 

YKNOT — Array of length KYORD + NYCOEF containing the knots in the Y-direction.   (Input)  

YKNOT must be nondecreasing. 

BSCOEF — Array of length NXCOEF * NYCOEF that contains the tensor product B-spline 

coefficients.   (Output) 

BSCOEF is treated internally as an array of size NXCOEF by NYCOEF. 

Optional Arguments 

NXDATA — Number of data points in the X-direction.   (Input) 

Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the Y-direction.   (Input) 

Default: NYDATA = size (YDATA,1). 

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of 

calling program.   (Input) 

Default: LDF = size (FDATA,1). 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

Default: NXCOEF = size (XKNOT,1) – KXORD. 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 

Default: NYCOEF = size (YKNOT,1) – KYORD. 

XWEIGH — Array of length NXDATA containing the positive weights of XDATA.   (Input) 

Default: XWEIGH = 1.0. 

YWEIGH — Array of length NYDATA containing the positive weights of YDATA.   (Input) 

Default: YWEIGH = 1.0. 

FORTRAN 90 Interface 

Generic: CALL BSLS2 (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, YKNOT,  
BSCOEF [,…]) 

Specific: The specific interface names are S_BSLS2 and D_BSLS2. 

FORTRAN 77 Interface 

Single: CALL BSLS2 (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, KXORD, KYORD, 

XKNOT, YKNOT, NXCOEF, NYCOEF, XWEIGH, YWEIGH, BSCOEF) 

Double: The double precision name is DBSLS2. 
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Description 

The routine BSLS2 computes the coefficients of a tensor-product spline least-squares 

approximation to weighted tensor-product data. The input for this subroutine consists of data 

vectors to specify the tensor-product grid for the data, two vectors with the weights, the values of 

the surface on the grid, and the specification for the tensor-product spline. The grid is specified by 

the two vectors x = XDATA and y = YDATA of length n = NXDATA and m = NYDATA, respectively. A 

two-dimensional array f = FDATA contains the data values that are to be fit. The two vectors  

wx = XWEIGH and wy = YWEIGH contain the weights for the weighted least-squares problem. The 

information for the approximating tensor-product spline must also be provided. This information 

is contained in kx = KXORD, tx = XKNOT, and N = NXCOEF for the spline in the first variable, and in 

ky = KYORD , ty = YKNOT and M = NYCOEF for the spline in the second variable. The coefficients of 

the resulting tensor-product spline are returned in c = BSCOEF, which is an N * M array. The 

procedure computes coefficients by solving the normal equations in tensor-product form as 

discussed 

in de Boor (1978, Chapter 17). The interested reader might also want to study the paper by E. 

Grosse (1980). 

The final result produces coefficients c minimizing 
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where the function Bkl is the tensor-product of two B-splines of order kx and ky. Specifically, we 

have  

     , , , ,,
x x y ykl k k l kB x y B x B y t t

 

The spline 
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can be evaluated using BS2VL and its partial derivatives can be evaluated using BS2DR. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2LS2/DB2LS2. The 

reference is: 

CALL B2LS2 (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, 

KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, XWEIGH, 

YWEIGH, BSCOEF, WK) 

The additional argument is: 

WK — Work array of length (NXCOEF + 1) * NYDATA + KXORD * NXCOEF + 

KYORD * NYCOEF + 3 * MAX(KXORD, KYORD). 

2. Informational errors 
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Type Code 

3 14 There may be less than one digit of accuracy in the least squares fit. 

Try using higher precision if possible. 

4 5 Multiplicity of the knots cannot exceed the order of the spline. 

4 6 The knots must be nondecreasing. 

4 7 All weights must be greater than zero. 

4 9 The data point abscissae must be nondecreasing. 

4 10 The smallest element of the data point array must be greater than or 

equal to the K_ORDth knot. 

4 11 The largest element of the data point array must be less than or equal 

to the (N_COEF + 1)st knot. 

Example 

The data for this example arise from the function e
x
 sin(x + y) + ɛ on the rectangle [0, 3] × [0, 5]. 

Here, ɛ is a uniform random variable with range [−1, 1]. We sample this function on a 100 × 50 

grid and then try to recover it by using cubic splines in the x variable and quadratic splines in the y 

variable. We print out the values of the function e
x
 sin(x + y) on a 3 × 5 grid and compare these 

values with the values of the tensor-product spline that was computed using the IMSL routine 

BSLS2. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    KXORD, KYORD, LDF, NXCOEF, NXDATA, NXVEC, NYCOEF,& 

                 NYDATA, NYVEC 

      PARAMETER  (KXORD=4, KYORD=3, NXCOEF=15, NXDATA=100, NXVEC=4,& 

                 NYCOEF=7, NYDATA=50, NYVEC=6, LDF=NXDATA) 

!  

      INTEGER    I, J, NOUT 

      REAL       BSCOEF(NXCOEF,NYCOEF), EXP, F, FDATA(NXDATA,NYDATA),& 

                 FLOAT, RNOISE, SIN, VALUE(NXVEC,NYVEC), X,& 

                 XDATA(NXDATA), XKNOT(NXCOEF+KXORD), XVEC(NXVEC),& 

                 XWEIGH(NXDATA), Y, YDATA(NYDATA),& 

                 YKNOT(NYCOEF+KYORD), YVEC(NYVEC), YWEIGH(NYDATA) 

      INTRINSIC  EXP, FLOAT, SIN 

!                                  Define function 

      F(X,Y) = EXP(X)*SIN(X+Y) 

!                                  Set random number seed 

      CALL RNSET (1234579) 

!                                  Set up X knot sequence. 

      DO 10  I=1, NXCOEF - KXORD + 2 

         XKNOT(I+KXORD-1) = 3.0*(FLOAT(I-1)/FLOAT(NXCOEF-KXORD+1)) 

   10 CONTINUE 

      XKNOT(NXCOEF+1) = XKNOT(NXCOEF+1) + 0.001 

!                                  Stack knots. 

      DO 20  I=1, KXORD - 1 

         XKNOT(I) = XKNOT(KXORD) 
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         XKNOT(I+NXCOEF+1) = XKNOT(NXCOEF+1) 

   20 CONTINUE 

!                                  Set up Y knot sequence. 

      DO 30  I=1, NYCOEF - KYORD + 2 

         YKNOT(I+KYORD-1) = 5.0*(FLOAT(I-1)/FLOAT(NYCOEF-KYORD+1)) 

   30 CONTINUE 

      YKNOT(NYCOEF+1) = YKNOT(NYCOEF+1) + 0.001 

!                                  Stack knots. 

      DO 40  I=1, KYORD - 1 

         YKNOT(I) = YKNOT(KYORD) 

         YKNOT(I+NYCOEF+1) = YKNOT(NYCOEF+1) 

   40 CONTINUE 

!                                  Set up X-grid. 

      DO 50  I=1, NXDATA 

         XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) 

   50 CONTINUE 

!                                  Set up Y-grid. 

      DO 60  I=1, NYDATA 

         YDATA(I) = 5.0*(FLOAT(I-1)/FLOAT(NYDATA-1)) 

   60 CONTINUE 

!                                  Evaluate function on grid and 

!                                  introduce random noise in [1,-1]. 

      DO 70  I=1, NYDATA 

         DO 70  J=1, NXDATA 

            RNOISE     = RNUNF() 

            RNOISE     = 2.0*RNOISE - 1.0 

            FDATA(J,I) = F(XDATA(J),YDATA(I)) + RNOISE 

   70 CONTINUE 

!                                  Use default weights equal to 1. 

!     

!                                  Compute least squares approximation. 

      CALL BSLS2 (XDATA, YDATA, FDATA, KXORD, KYORD, & 

                  XKNOT, YKNOT, BSCOEF) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Print interpolated values 

!                                  on [0,3] x [0,5]. 

      DO 80  I=1, NXVEC 

         XVEC(I) = FLOAT(I-1) 

   80 CONTINUE 

      DO 90  I=1, NYVEC 

         YVEC(I) = FLOAT(I-1) 

   90 CONTINUE 

!                                  Evaluate spline 

      CALL BS2GD (0, 0, XVEC, YVEC, KXORD, KYORD, XKNOT,& 

                  YKNOT, BSCOEF, VALUE) 

      DO 110  I=1, NXVEC 

         DO 100  J=1, NYVEC 

            WRITE (NOUT,'(5F15.4)') XVEC(I), YVEC(J),& 

                                   F(XVEC(I),YVEC(J)), VALUE(I,J),& 

                                   (F(XVEC(I),YVEC(J))-VALUE(I,J)) 

  100    CONTINUE 

  110 CONTINUE 

99999 FORMAT (13X, 'X', 14X, 'Y', 10X, 'F(X,Y)', 9X, 'S(X,Y)', 10X,& 

             'Error') 
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      END   

Output 
 

     X              Y          F(X,Y)         S(X,Y)          Error 

0.0000         0.0000         0.0000         0.2782        -0.2782 

0.0000         1.0000         0.8415         0.7762         0.0653 

0.0000         2.0000         0.9093         0.8203         0.0890 

0.0000         3.0000         0.1411         0.1391         0.0020 

0.0000         4.0000        -0.7568        -0.5705        -0.1863 

0.0000         5.0000        -0.9589        -1.0290         0.0701 

1.0000         0.0000         2.2874         2.2678         0.0196 

1.0000         1.0000         2.4717         2.4490         0.0227 

1.0000         2.0000         0.3836         0.4947        -0.1111 

1.0000         3.0000        -2.0572        -2.0378        -0.0195 

1.0000         4.0000        -2.6066        -2.6218         0.0151 

1.0000         5.0000        -0.7595        -0.7274        -0.0321 

2.0000         0.0000         6.7188         6.6923         0.0265 

2.0000         1.0000         1.0427         0.8492         0.1935 

2.0000         2.0000        -5.5921        -5.5885        -0.0035 

2.0000         3.0000        -7.0855        -7.0955         0.0099 

2.0000         4.0000        -2.0646        -2.1588         0.0942 

2.0000         5.0000         4.8545         4.7339         0.1206 

3.0000         0.0000         2.8345         2.5971         0.2373 

3.0000         1.0000       -15.2008       -15.1079        -0.0929 

3.0000         2.0000       -19.2605       -19.1698        -0.0907 

3.0000         3.0000        -5.6122        -5.5820        -0.0302 

3.0000         4.0000        13.1959        12.6659         0.5300 

3.0000         5.0000        19.8718        20.5170        -0.6452 

BSLS3 
Computes a three-dimensional tensor-product spline approximant using least squares, returning 

the tensor-product B-spline coefficients. 

Required Arguments 

XDATA — Array of length NXDATA containing the data points in the x-direction.   (Input)  

XDATA must be nondecreasing. 

YDATA — Array of length NYDATA containing the data points in the y-direction.   (Input)  

YDATA must be nondecreasing. 

ZDATA — Array of length NZDATA containing the data points in the z-direction.   (Input)  

ZDATA must be nondecreasing. 

FDATA — Array of size NXDATA by NYDATA by NZDATA containing the values to be 

interpolated.   (Input)  

FDATA(I, J, K) contains the value at (XDATA(I), YDATA(J), ZDATA(K)). 

KXORD — Order of the spline in the x-direction.   (Input) 
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KYORD — Order of the spline in the y-direction.   (Input) 

KZORD — Order of the spline in the z-direction.   (Input) 

XKNOT — Array of length KXORD + NXCOEF containing the knots in the x-direction.   (Input)  

XKNOT must be nondecreasing. 

YKNOT — Array of length KYORD + NYCOEF containing the knots in the y-direction.   (Input)  

YKNOT must be nondecreasing. 

ZKNOT — Array of length KZORD + NZCOEF containing the knots in the z-direction.   (Input)  

ZKNOT must be nondecreasing. 

BSCOEF — Array of length NXCOEF*NYCOEF*NZCOEF that contains the tensor product  

B-spline coefficients.   (Output) 

Optional Arguments 

NXDATA — Number of data points in the x-direction.   (Input)  

NXDATA must be greater than or equal to NXCOEF. 

Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the y-direction.   (Input)  

NYDATA must be greater than or equal to NYCOEF. 

Default: NYDATA = size (YDATA,1). 

NZDATA — Number of data points in the z-direction.   (Input)  

NZDATA must be greater than or equal to NZCOEF. 

Default: NZDATA = size (ZDATA,1). 

LDFDAT — Leading dimension of FDATA exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFDAT = size (FDATA,1). 

MDFDAT — Second dimension of FDATA exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: MDFDAT = size (FDATA,2). 

NXCOEF — Number of B-spline coefficients in the x-direction.   (Input) 

Default: NXCOEF = size (XKNOT,1) – KXORD. 

NYCOEF — Number of B-spline coefficients in the y-direction.   (Input) 

Default: NYCOEF = size (YKNOT,1) – KYORD. 

NZCOEF — Number of B-spline coefficients in the z-direction.   (Input) 

Default: NZCOEF = size (ZKNOT,1) – KZORD. 

XWEIGH — Array of length NXDATA containing the positive weights of XDATA.   (Input) 

Default: XWEIGH = 1.0. 
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YWEIGH — Array of length NYDATA containing the positive weights of YDATA.   (Input) 

Default: YWEIGH = 1.0. 

ZWEIGH — Array of length NZDATA containing the positive weights of ZDATA.   (Input) 

Default: ZWEIGH = 1.0. 

FORTRAN 90 Interface 

Generic: CALL BSLS3 (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT, 

YKNOT, ZKNOT, BSCOEF [,…]) 

Specific:  The specific interface names are S_BSLS3 and D_BSLS3. 

FORTRAN 77 Interface 

Single: CALL BSLS3 (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, FDATA, 

LDFDAT, MDFDAT, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, 

NYCOEF, NZCOEF, XWEIGH, YWEIGH, ZWEIGH, BSCOEF) 

Double: The double precision name is DBSLS3. 

Description 

The routine BSLS3 computes the coefficients of a tensor-product spline least-squares 

approximation to weighted tensor-product data. The input for this subroutine consists of data 

vectors to specify the tensor-product grid for the data, three vectors with the weights, the values of 

the surface on the grid, and the specification for the tensor-product spline. The grid is specified by 

the three vectors x = XDATA, y = YDATA, and z = ZDATA of length k = NXDATA, l = NYDATA , and  

m = NYDATA, respectively. A three-dimensional array f = FDATA contains the data values which are 

to be fit. The three vectors wx = XWEIGH, wy = YWEIGH, and wz = ZWEIGH contain the weights for 

the weighted least-squares problem. The information for the approximating tensor-product spline 

must also be provided. This information is contained in kx = KXORD, tx = XKNOT, and K = NXCOEF 

for the spline in the first variable, in ky = KYORD, ty = YKNOT and L = NYCOEF for the spline in the 

second variable, and in kz = KZORD, tz = ZKNOT and M = NZCOEF for the spline in the third 

variable. 

The coefficients of the resulting tensor product spline are returned in c = BSCOEF, which is an  

K × L × M array. The procedure computes coefficients by solving the normal equations in tensor-

product form as discussed in de Boor (1978, Chapter 17). The interested reader might also want to 

study the paper by E. Grosse (1980). 

The final result produces coefficients c minimizing 
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where the function Bstu is the tensor-product of three B-splines of order kx, ky, and kz. Specifically, 

we have 

       , , , , , ,, ,
x x y y z zstu s k t k u kB x y z B x B y B z t t t

 

The spline 
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can be evaluated at one point using BS3VL and its partial derivatives can be evaluated using 

BS3DR. If the values on a grid are desired then we recommend BS3GD. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2LS3/DB2LS3. The 

reference is: 

CALL B2LS3 (NXDATA, XDATA, NYDATA, NZDATA, ZDATA, YDATA, 

FDATA, LDFDAT, KXORD, KYORD, KZORD, XKNOT, YKNOT, 

ZKNOT, NXCOEF, NYCOEF, NZCOEF, XWEIGH, YWEIGH, 

ZWEIGH, BSCOEF, WK) 

The additional argument is: 

WK — Work array of length NYCOEF * (NZDATA + KYORD + NZCOEF) + 

NZDATA * (1 + NYDATA) + NXCOEF * (KXORD + NYDATA * NZDATA) + 

KZORD * NZCOEF + 3 * MAX0(KXORD, KYORD, KZORD). 

2. Informational errors 

Type Code 

3 13 There may be less than one digit of accuracy in the least squares fit. 

Try using higher precision if possible. 

4 7 Multiplicity of knots cannot exceed the order of the spline. 

4 8 The knots must be nondecreasing. 

4 9 All weights must be greater than zero. 

4 10 The data point abscissae must be nondecreasing. 

4 11 The smallest element of the data point array must be greater than or 

equal to the K_ORDth knot. 

4 12 The largest element of the data point array must be less than or equal 

to the (N_COEF + 1)st knot. 

Example 

The data for this example arise from the function e
(y - z)

 sin(x + y) + ɛ on the rectangle  

[0, 3] × [0, 2] × [0, 1]. Here, ɛ is a uniform random variable with range [−.5, .5]. We sample this 
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function on a 4 × 3 × 2 grid and then try to recover it by using tensor-product cubic splines in all 

variables. We print out the values of the function e
(y - z)

 sin(x + y) on a 4 × 3 × 2 grid and compare 

these values with the values of the tensor-product spline that was computed using the IMSL 

routine BSLS3. 
 

      USE BSLS3_INT 

      USE RNSET_INT 

      USE RNUNF_INT 

      USE UMACH_INT 

      USE BS3GD_INT 

 

      IMPLICIT   NONE 

      INTEGER    KXORD, KYORD, KZORD, LDFDAT, MDFDAT, NXCOEF, NXDATA,& 

                 NXVAL, NYCOEF, NYDATA, NYVAL, NZCOEF, NZDATA, NZVAL 

      PARAMETER  (KXORD=4, KYORD=4, KZORD=4, NXCOEF=8, NXDATA=15,& 

                 NXVAL=4, NYCOEF=8, NYDATA=15, NYVAL=3, NZCOEF=8,& 

                 NZDATA=15, NZVAL=2, LDFDAT=NXDATA, MDFDAT=NYDATA) 

!  

      INTEGER    I, J, K, NOUT 

      REAL       BSCOEF(NXCOEF,NYCOEF,NZCOEF), EXP, F,& 

                 FDATA(NXDATA,NYDATA,NZDATA), FLOAT, RNOISE,& 

                 SIN, SPXYZ(NXVAL,NYVAL,NZVAL), X, XDATA(NXDATA),& 

                 XKNOT(NXCOEF+KXORD), XVAL(NXVAL), XWEIGH(NXDATA), Y,& 

                 YDATA(NYDATA), YKNOT(NYCOEF+KYORD), YVAL(NYVAL),& 

                 YWEIGH(NYDATA), Z, ZDATA(NZDATA),& 

                 ZKNOT(NZCOEF+KZORD), ZVAL(NZVAL), ZWEIGH(NZDATA) 

      INTRINSIC  EXP, FLOAT, SIN 

!                                  Define a function 

      F(X,Y,Z) = EXP(Y-Z)*SIN(X+Y) 

!  

      CALL RNSET (1234579) 

      CALL UMACH (2, NOUT) 

!                                  Set up knot sequences 

!                                  X-knots 

      DO 10  I=1, NXCOEF - KXORD + 2 

         XKNOT(I+KXORD-1) = 3.0*(FLOAT(I-1)/FLOAT(NXCOEF-KXORD+1)) 

   10 CONTINUE 

      DO 20  I=1, KXORD - 1 

         XKNOT(I) = XKNOT(KXORD) 

         XKNOT(I+NXCOEF+1) = XKNOT(NXCOEF+1) 

   20 CONTINUE 

!                                  Y-knots 

      DO 30  I=1, NYCOEF - KYORD + 2 

         YKNOT(I+KYORD-1) = 2.0*(FLOAT(I-1)/FLOAT(NYCOEF-KYORD+1)) 

   30 CONTINUE 

      DO 40  I=1, KYORD - 1 

         YKNOT(I) = YKNOT(KYORD) 

         YKNOT(I+NYCOEF+1) = YKNOT(NYCOEF+1) 

   40 CONTINUE 

!                                  Z-knots 

      DO 50  I=1, NZCOEF - KZORD + 2 

         ZKNOT(I+KZORD-1) = 1.0*(FLOAT(I-1)/FLOAT(NZCOEF-KZORD+1)) 

   50 CONTINUE 

      DO 60  I=1, KZORD - 1 
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         ZKNOT(I) = ZKNOT(KZORD) 

         ZKNOT(I+NZCOEF+1) = ZKNOT(NZCOEF+1) 

   60 CONTINUE 

!                                  Set up X-grid. 

      DO 70  I=1, NXDATA 

         XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) 

   70 CONTINUE 

!                                  Set up Y-grid. 

      DO 80  I=1, NYDATA 

         YDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NYDATA-1)) 

   80 CONTINUE 

!                                  Set up Z-grid 

      DO 90  I=1, NZDATA 

         ZDATA(I) = 1.0*(FLOAT(I-1)/FLOAT(NZDATA-1)) 

   90 CONTINUE 

!                                  Evaluate the function on the grid 

!                                  and add noise. 

      DO 100  I=1, NXDATA 

         DO 100  J=1, NYDATA 

            DO 100  K=1, NZDATA 

               RNOISE = RNUNF() 

               RNOISE = RNOISE - 0.5 

               FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K)) + RNOISE 

  100 CONTINUE 

!                                  Use default weights equal to 1.0 

! 

!                                  Compute least-squares 

      CALL BSLS3 (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT, & 

                  YKNOT, ZKNOT, BSCOEF) 

!                                  Set up grid for evaluation. 

      DO 110  I=1, NXVAL 

         XVAL(I) = FLOAT(I-1) 

  110 CONTINUE 

      DO 120  I=1, NYVAL 

         YVAL(I) = FLOAT(I-1) 

  120 CONTINUE 

      DO 130  I=1, NZVAL 

         ZVAL(I) = FLOAT(I-1) 

  130 CONTINUE 

!                                  Evaluate on the grid. 

      CALL BS3GD (0, 0, 0, XVAL, YVAL, ZVAL, KXORD, KYORD, KZORD, XKNOT, & 

                  YKNOT, ZKNOT, BSCOEF, SPXYZ) 

!                                  Print results. 

      WRITE (NOUT,99998) 

      DO 140  I=1, NXVAL 

         DO 140  J=1, NYVAL 

            DO 140  K=1, NZVAL 

               WRITE (NOUT,99999) XVAL(I), YVAL(J), ZVAL(K),& 

                                 F(XVAL(I),YVAL(J),ZVAL(K)),& 

                                 SPXYZ(I,J,K), F(XVAL(I),YVAL(J),ZVAL(K)& 

                                 ) - SPXYZ(I,J,K) 

  140 CONTINUE 

99998 FORMAT (8X, 'X', 9X, 'Y', 9X, 'Z', 6X, 'F(X,Y,Z)', 3X,& 

             'S(X,Y,Z)', 4X, 'Error') 

99999 FORMAT (' ', 3F10.3, 3F11.4) 

      END 
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Output 
 

   X         Y         Z      F(X,Y,Z)   S(X,Y,Z)    Error 

0.000     0.000     0.000     0.0000     0.1987    -0.1987 

0.000     0.000     1.000     0.0000     0.1447    -0.1447 

0.000     1.000     0.000     2.2874     2.2854     0.0019 

0.000     1.000     1.000     0.8415     1.0557    -0.2142 

0.000     2.000     0.000     6.7188     6.4704     0.2484 

0.000     2.000     1.000     2.4717     2.2054     0.2664 

1.000     0.000     0.000     0.8415     0.8779    -0.0365 

1.000     0.000     1.000     0.3096     0.2571     0.0524 

1.000     1.000     0.000     2.4717     2.4015     0.0703 

1.000     1.000     1.000     0.9093     0.8995     0.0098 

1.000     2.000     0.000     1.0427     1.1330    -0.0902 

1.000     2.000     1.000     0.3836     0.4951    -0.1115 

2.000     0.000     0.000     0.9093     0.8269     0.0824 

2.000     0.000     1.000     0.3345     0.3258     0.0087 

2.000     1.000     0.000     0.3836     0.3564     0.0272 

2.000     1.000     1.000     0.1411     0.1905    -0.0494 

2.000     2.000     0.000    -5.5921    -5.5362    -0.0559 

2.000     2.000     1.000    -2.0572    -1.9659    -0.0913 

3.000     0.000     0.000     0.1411     0.4841    -0.3430 

3.000     0.000     1.000     0.0519    -0.4257     0.4776 

3.000     1.000     0.000    -2.0572    -1.9710    -0.0862 

3.000     1.000     1.000    -0.7568    -0.8479     0.0911 

3.000     2.000     0.000    -7.0855    -7.0957     0.0101 

3.000     2.000     1.000    -2.6066    -2.1650    -0.4416 

CSSED 
Smooths one-dimensional data by error detection. 

Required Arguments 

XDATA — Array of length NDATA containing the abscissas of the data points.   (Input) 

FDATA — Array of length NDATA containing the ordinates (function values) of the data 

points.   (Input) 

DIS — Proportion of the distance the ordinate in error is moved to its interpolating curve.   

(Input)  

It must be in the range 0.0 to 1.0. A suggested value for DIS is one. 

SC — Stopping criterion.   (Input)  

SC should be greater than or equal to zero. A suggested value for SC is zero. 

MAXIT — Maximum number of iterations allowed.   (Input) 

SDATA — Array of length NDATA containing the smoothed data.   (Output) 
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Optional Arguments 

NDATA — Number of data points.   (Input) 

Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 

Generic: CALL CSSED (XDATA, FDATA, DIS, SC, MAXIT, SDATA [,…]) 

Specific: The specific interface names are S_CSSED and D_CSSED. 

FORTRAN 77 Interface 

Single: CALL CSSED (NDATA, XDATA, FDATA, DIS, SC, MAXIT, SDATA) 

Double: The double precision name is DCSSED. 

Description 

The routine CSSED is designed to smooth a data set that is mildly contaminated with isolated 

errors. In general, the routine will not work well if more than 25% of the data points are in error. 

The routine CSSED is based on an algorithm of Guerra and Tapia (1974). 

Setting NDATA = n, FDATA = f, SDATA = s and XDATA = x, the algorithm proceeds as follows. 

Although the user need not input an ordered XDATA sequence, we will assume that x is increasing 

for simplicity. The algorithm first sorts the XDATA values into an increasing sequence and then 

continues. A cubic spline interpolant is computed for each of the 6-point data sets (initially setting 

s = f) 

(xj, sj) j = i − 3, …, i + 3 j ≠ i, 

where i = 4, …, n − 3 using CSAKM. For each i the interpolant, which we will call Si, is compared 

with the current value of si, and a ‗point energy‘ is computed as 

pei = Si(xi) − si 

Setting sc = SC, the algorithm terminates either if MAXIT iterations have taken place or if 

 3 3 / 6 4, , 3i i ipe sc x x i n    
 

If the above inequality is violated for any i, then we update the i-th element of s by setting  

si = si + d(pei), where d = DIS. Note that neither the first three nor the last three data points are 

changed. Thus, if these points are inaccurate, care must be taken to interpret the results. 

The choice of the parameters d, sc and MAXIT are crucial to the successful usage of this 

subroutine. If the user has specific information about the extent of the contamination, then he 

should choose the parameters as follows: d = 1, sc = 0 and MAXIT to be the number of data points 

in error. On the other hand, if no such specific information is available, then choose d = .5,  

MAXIT ≤2n, and 
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max min
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n

s s
sc

x x





 

In any case, we would encourage the user to experiment with these values. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of C2SED/DC2SED. The 

reference is: 

CALL C2SED (NDATA, XDATA, FDATA, DIS, SC, MAXIT, DATA, WK, 

IWK) 

The additional arguments are as follows: 

WK — Work array of length 4 * NDATA + 30. 

IWK — Work array of length 2 * NDATA. 

2. Informational error 

Type Code 

3 1 The maximum number of iterations allowed has been reached. 

3. The arrays FDATA and SDATA may the the same. 

Example 

We take 91 uniform samples from the function 5 + (5 + t
2
 sin t)/t on the interval [1, 10]. Then, we 

contaminate 10 of the samples and try to recover the original function values. 
 

      USE CSSED_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    NDATA 

      PARAMETER  (NDATA=91) 

!  

      INTEGER    I, MAXIT, NOUT, ISB(10) 

      REAL       DIS, F, FDATA(91), SC, SDATA(91), SIN, X, XDATA(91),& 

                 RNOISE(10) 

      INTRINSIC  SIN 

!  

      DATA ISB/6, 17, 26, 34, 42, 49, 56, 62, 75, 83/ 

      DATA RNOISE/2.5, -3.0, -2.0, 2.5, 3.0, -2.0, -2.5, 2.0, -2.0, 3.0/ 

!  

      F(X) = (X*X*SIN(X)+5.0)/X + 5.0 

!                                  EX. #1; No specific information 

!                                  available 

      DIS   = 0.5 

      SC    = 0.56 
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      MAXIT = 182 

!                                  Set values for XDATA and FDATA 

      XDATA(1) = 1.0 

      FDATA(1) = F(XDATA(1)) 

      DO 10  I=2, NDATA 

         XDATA(I) = XDATA(I-1) + .1 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Contaminate the data 

      DO 20 I=1, 10 

         FDATA(ISB(I)) = FDATA(ISB(I)) + RNOISE(I) 

   20 CONTINUE 

!                                  Smooth data 

      CALL CSSED (XDATA, FDATA, DIS, SC, MAXIT, SDATA) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99997) 

!                                  Write data 

      DO 30 I=1, 10 

         WRITE (NOUT,99999) F(XDATA(ISB(I))), FDATA(ISB(I)),& 

                            SDATA(ISB(I)) 

   30 CONTINUE 

!                                  EX. #2; Specific information 

!                                  available 

      DIS   = 1.0 

      SC    = 0.0 

      MAXIT = 10 

!                                  A warning message is produced 

!                                  because the maximum number of 

!                                  iterations is reached. 

!  

!                                  Smooth data 

      CALL CSSED (XDATA, FDATA, DIS, SC, MAXIT, SDATA) 

!                                  Write heading 

      WRITE (NOUT,99998) 

!                                  Write data 

      DO 40 I=1, 10 

         WRITE (NOUT,99999) F(XDATA(ISB(I))), FDATA(ISB(I)),& 

                            SDATA(ISB(I)) 

   40 CONTINUE 

!  

99997 FORMAT (' Case A - No specific information available', /,& 

             '    F(X)       F(X)+NOISE          SDATA(X)', /) 

99998 FORMAT (' Case B - Specific information available', /,& 

             '    F(X)       F(X)+NOISE          SDATA(X)', /) 

99999 FORMAT (' ', F7.3, 8X, F7.3, 11X, F7.3) 

      END 

Output 
 

Case A - No specific information available 

 F(X)       F(X)+NOISE          SDATA(X) 

 

 9.830         12.330             9.870 

 8.263          5.263             8.215 

 5.201          3.201             5.168 
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 2.223          4.723             2.264 

 1.259          4.259             1.308 

 3.167          1.167             3.138 

 7.167          4.667             7.131 

10.880         12.880            10.909 

12.774         10.774            12.708 

 7.594         10.594             7.639 

 

 *** WARNING  ERROR 1 from CSSED.  Maximum number of iterations limit MAXIT  

 ***          =10 exceeded.  The best answer found is returned. 

Case B - Specific information available 

 F(X)       F(X)+NOISE          SDATA(X) 

 

 9.830         12.330             9.831 

 8.263          5.263             8.262 

 5.201          3.201             5.199 

 2.223          4.723             2.225 

 1.259          4.259             1.261 

 3.167          1.167             3.170 

 7.167          4.667             7.170 

10.880         12.880            10.878 

12.774         10.774            12.770 

 7.594         10.594             7.592 

CSSMH 
Computes a smooth cubic spline approximation to noisy data. 

Required Arguments 

XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

XDATA must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

SMPAR — A nonnegative number which controls the smoothing.   (Input)  

The spline function S returned is such that the sum from I = 1 to NDATA of 

((S(XDATA(I))FDATA(I)) / WEIGHT(I))**2 is less than or equal to SMPAR. It is 

recommended that SMPAR lie in the confidence interval of this sum, i.e.,  

NDATA − SQRT(2 * NDATA).LE. SMPAR.LE. NDATA + SQRT(2 * NDATA). 

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 

representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   

(Output) 
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Optional Arguments 

NDATA — Number of data points.   (Input) 

NDATA must be at least 2. 

Default: NDATA = size (XDATA,1). 

WEIGHT — Array of length NDATA containing estimates of the standard deviations of 

FDATA.   (Input)  

All elements of WEIGHT must be positive. 

Default: WEIGHT = 1.0. 

FORTRAN 90 Interface 

Generic: CALL CSSMH (XDATA, FDATA, SMPAR, BREAK, CSCOEF [,…]) 

Specific: The specific interface names are S_CSSMH and D_CSSMH. 

FORTRAN 77 Interface 

Single: CALL CSSMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR, BREAK, CSCOEF) 

Double: The double precision name is DCSSMH. 

Description 

The routine CSSMH is designed to produce a C
2
 cubic spline approximation to a data set in which 

the function values are noisy. This spline is called a smoothing spline. It is a natural cubic spline 

with knots at all the data abscissas x = XDATA, but it does not interpolate the data (xi, fi). The 

smoothing spline S is the unique C
2
 function which minimizes 

 
2b

a
S x dx

 

subject to the constraint 

 
2

1

N
i i

ii

S x f

w







 

where w = WEIGHT, σ = SMPAR is the smoothing parameter, and N = NDATA.  

Recommended values for σ depend on the weights w. If an estimate for the standard deviation of 

the error in the value fi is available, then wi should be set to this value and the smoothing parameter 

σ should be chosen in the confidence interval corresponding to the left side of the above 

inequality. That is, 

2 2N N N N     

The routine CSSMH is based on an algorithm of Reinsch (1967). This algorithm is also discussed in 

de Boor (1978, pages 235− 243). 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of C2SMH/DC2SMH. The 

reference is: 

CALL C2SMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR, BREAK, 

CSCOEF, WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length 8 * NDATA + 5. 

IWK — Work array of length NDATA. 

2. Informational errors 

Type Code 

3 1 The maximum number of iterations has been reached. The best 

approximation is returned. 

4 3 All weights must be greater than zero. 

3. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using 

CSDER. 

Example 

In this example, function values are contaminated by adding a small ―random‖ amount to the 

correct values. The routine CSSMH is used to approximate the original, uncontaminated data. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    NDATA 

      PARAMETER  (NDATA=300) 

!  

      INTEGER    I, NOUT 

      REAL       BREAK(NDATA), CSCOEF(4,NDATA), ERROR, F,& 

                 FDATA(NDATA), FLOAT, FVAL, SDEV, SMPAR, SQRT,& 

                 SVAL, WEIGHT(NDATA), X, XDATA(NDATA), XT, RN 

      INTRINSIC  FLOAT, SQRT 

!  

      F(X) = 1.0/(.1+(3.0*(X-1.0))**4) 

!                                  Set up a grid 

      DO 10  I=1, NDATA 

         XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1)) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Set the random number seed 

      CALL RNSET (1234579) 

!                                  Contaminate the data 

      DO 20  I=1, NDATA 
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         RN = RNUNF()  

         FDATA(I) = FDATA(I) + 2.0*RN - 1.0 

   20 CONTINUE 

!                                  Set the WEIGHT vector 

      SDEV = 1.0/SQRT(3.0) 

      CALL SSET (NDATA, SDEV, WEIGHT, 1) 

      SMPAR = NDATA 

!                                  Smooth the data 

      CALL CSSMH (XDATA, FDATA, SMPAR, BREAK, CSCOEF, WEIGHT=WEIGHT) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 

!                                  Write heading 

      WRITE (NOUT,99999) 

!                                  Print 10 values of the function. 

      DO 30  I=1, 10 

         XT    = 90.0*(FLOAT(I-1)/FLOAT(NDATA-1)) 

!                                  Evaluate the spline 

         SVAL  = CSVAL(XT,BREAK,CSCOEF) 

         FVAL  = F(XT) 

         ERROR = SVAL - FVAL 

         WRITE (NOUT,'(4F15.4)') XT, FVAL, SVAL, ERROR 

   30 CONTINUE 

!  

99999 FORMAT (12X, 'X', 9X, 'Function', 7X, 'Smoothed', 10X,& 

             'Error') 

      END 

Output 
 

     X         Function       Smoothed          Error 

 0.0000         0.0123         0.1118         0.0995 

 0.3010         0.0514         0.0646         0.0131 

 0.6020         0.4690         0.2972        -0.1718 

 0.9030         9.3312         8.7022        -0.6289 

 1.2040         4.1611         4.7887         0.6276 

 1.5050         0.1863         0.2718         0.0856 

 1.8060         0.0292         0.1408         0.1116 

 2.1070         0.0082         0.0826         0.0743 

 2.4080         0.0031         0.0076         0.0045 

 2.7090         0.0014        -0.1789        -0.1803 

CSSCV 
Computes a smooth cubic spline approximation to noisy data using cross-validation to estimate the 

smoothing parameter. 

Required Arguments 

XDATA — Array of length NDATA containing the data point abscissas.   (Input) XDATA must 

be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

IEQUAL — A flag alerting the subroutine that the data is equally spaced.   (Input) 
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BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 

representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   

(Output) 

Optional Arguments 

NDATA — Number of data points.   (Input)  

NDATA must be at least 3. 

Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 

Generic: CALL CSSCV (XDATA, FDATA, IEQUAL, BREAK, CSCOEF [,…]) 

Specific: The specific interface names are S_CSSCV and D_CSSCV. 

FORTRAN 77 Interface 

Single: CALL CSSCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF) 

Double: The double precision name is DCSSCV. 

Description 

The routine CSSCV is designed to produce a C
2
 cubic spline approximation to a data set in which 

the function values are noisy. This spline is called a smoothing spline. It is a natural cubic spline 

with knots at all the data abscissas x = XDATA, but it does not interpolate the data (xi, fi). The 

smoothing spline Ss is the unique C
2
 function that minimizes 

 
2b

a
S x dx

 

subject to the constraint 

 
2

1

N

i i

i

S x f 


 
 

where σ is the smoothing parameter and N = NDATA. The reader should consult Reinsch (1967) for 

more information concerning smoothing splines. The IMSL subroutine CSSMH solves the above 

problem when the user provides the smoothing parameter σ. This routine attempts to find the 

‗optimal‘ smoothing parameter using the statistical technique known as cross-validation. This 

means that (in a very rough sense) one chooses the value of σ so that the smoothing spline (Ss) 

best approximates the value of the data at xi, if it is computed using all the data except the i-th; this 
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is true for all i = 1, …, N. For more information on this topic, we refer the reader to Craven and 

Wahba (1979). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of C2SCV/DC2SCV. The 

reference is: 

CALL C2SCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF, 

WK, SDWK, IPVT) 

The additional arguments are as follows: 

WK — Work array of length 7 * (NDATA + 2). 

SDWK — Work array of length 2 * NDATA. 

IPVT — Work array of length NDATA. 

2. Informational error 

Type Code 

4 2 Points in the data point abscissas array, XDATA, must be distinct. 

Example 

In this example, function values are computed and are contaminated by adding a small ―random‖ 

amount. The routine CSSCV is used to try to reproduce the original, uncontaminated data. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    NDATA 

      PARAMETER  (NDATA=300) 

!  

      INTEGER    I, IEQUAL, NOUT 

      REAL       BREAK(NDATA), CSCOEF(4,NDATA), ERROR, F,& 

                 FDATA(NDATA), FLOAT, FVAL, SVAL, X,& 

                 XDATA(NDATA), XT, RN 

      INTRINSIC  FLOAT 

!  

      F(X) = 1.0/(.1+(3.0*(X-1.0))**4) 

!  

      CALL UMACH (2, NOUT) 

!                                  Set up a grid 

      DO 10  I=1, NDATA 

         XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1)) 

         FDATA(I) = F(XDATA(I)) 

   10 CONTINUE 

!                                  Introduce noise on [-.5,.5] 

!                                  Contaminate the data 

      CALL RNSET (1234579) 

      DO 20  I=1, NDATA 
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      RN = RNUNF () 

         FDATA(I) = FDATA(I) + 2.0*RN - 1.0 

   20 CONTINUE 

!  

!                                  Set IEQUAL=1 for equally spaced data 

      IEQUAL = 1 

!                                  Smooth data 

      CALL CSSCV (XDATA, FDATA, IEQUAL, BREAK, CSCOEF) 

!                                  Print results 

      WRITE (NOUT,99999) 

      DO 30  I=1, 10 

         XT    = 90.0*(FLOAT(I-1)/FLOAT(NDATA-1)) 

         SVAL  = CSVAL(XT,BREAK,CSCOEF) 

         FVAL  = F(XT) 

         ERROR = SVAL - FVAL 

         WRITE (NOUT,'(4F15.4)') XT, FVAL, SVAL, ERROR 

   30 CONTINUE 

99999 FORMAT (12X, 'X', 9X, 'Function', 7X, 'Smoothed', 10X,& 

             'Error') 

      END 

Output 
 

    X         Function       Smoothed          Error 

 0.0000         0.0123         0.2528         0.2405 

 0.3010         0.0514         0.1054         0.0540 

 0.6020         0.4690         0.3117        -0.1572 

 0.9030         9.3312         8.9461        -0.3850 

 1.2040         4.1611         4.6847         0.5235 

 1.5050         0.1863         0.3819         0.1956 

 1.8060         0.0292         0.1168         0.0877 

 2.1070         0.0082         0.0658         0.0575 

 2.4080         0.0031         0.0395         0.0364 

 2.7090         0.0014        -0.2155        -0.2169 

RATCH 

 

 

 

Computes a rational weighted Chebyshev approximation to a continuous function on an interval. 

Required Arguments 

F — User-supplied FUNCTION to be approximated. The form is F(X), where 

 X – Independent variable.   (Input) 

F – The function value.   (Output) 
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 F must be declared EXTERNAL in the calling program. 

PHI — User-supplied FUNCTION to supply the variable transformation which must be 

continuous and monotonic. The form is PHI(X), where 

X – Independent variable.   (Input) 

PHI – The function value.   (Output) 

PHI must be declared EXTERNAL in the calling program. 

WEIGHT — User-supplied FUNCTION to scale the maximum error. It must be continuous 

and nonvanishing on the closed interval (A, B). The form is WEIGHT(X), where 

 X – Independent variable.   (Input) 

WEIGHT – The function value.   (Output) 

 WEIGHT must be declared EXTERNAL in the calling program. 

A — Lower end of the interval on which the approximation is desired.   (Input) 

B — Upper end of the interval on which the approximation is desired.   (Input) 

P — Vector of length N + 1 containing the coefficients of the numerator polynomial.   

(Output) 

Q — Vector of length M + 1 containing the coefficients of the denominator polynomial.   

(Output) 

ERROR — Min-max error of approximation.   (Output) 

Optional Arguments 

N — The degree of the numerator.   (Input) 

Default: N = size (P,1) – 1. 

M — The degree of the denominator.   (Input) 

Default: M = size (Q,1) – 1. 

FORTRAN 90 Interface 

Generic: CALL RATCH (F, PHI, WEIGHT, A, B, P, Q, ERROR [,…]) 

Specific: The specific interface names are S_RATCH and D_RATCH. 

FORTRAN 77 Interface 

Single: CALL RATCH (F, PHI, WEIGHT, A, B, N, M, P, Q, ERROR) 



     

     
 

912  Chapter 3: Interpolation and Approximation IMSL MATH LIBRARY  

     

     

 

Double: The double precision name is DRATCH. 

Description 

The routine RATCH is designed to compute the best weighted L∞ (Chebyshev) approximant to a 

given function. Specifically, given a weight function w = WEIGHT, a monotone function ɸ = PHI, 

and a function f to be approximated on the interval [a, b], the subroutine RATCH returns the 

coefficients (in P and Q) for a rational approximation to f on [a, b]. The user must supply the 

degree of the numerator N and the degree of the denominator M of the rational function  

N
MR

 

The goal is to produce coefficients which minimize the expression 
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Notice that setting ɸ(x) = x yields ordinary rational approximation. A typical use of the function ɸ 

occurs when one wants to approximate an even function on a symmetric interval, say [−a, a] 

using ordinary rational functions. In this case, it is known that the answer must be an even 

function. Hence, one can set ɸ(x) = x
2
, only approximate on [0, a], and decrease by one half the 

degrees in the numerator and denominator. 

The algorithm implemented in this subroutine is designed for fast execution. It assumes that the 

best approximant has precisely N + M + 2 equi-oscillations. That is, that there exist N + M + 2 

points t1 < … < tN+M+2 satisfying  

   1

N
M

i i

f R
e e

w



   t t

 

Such points are called alternants. Unfortunately, there are many instances in which the best 

rational approximant to the given function has either fewer alternants or more alternants. In this 

case, it is not expected that this subroutine will perform well. For more information on rational 

Chebyshev approximation, the reader can consult Cheney (1966). The subroutine is based on work 

of Cody, Fraser, and Hart (1968). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of R2TCH/DR2TCH. The 

reference is: 

CALL R2TCH (F, PHI, WEIGHT, A, B, N, M, P, Q, ERROR, 

ITMAX, IWK, WK) 

The additional arguments are as follows: 
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ITMAX — Maximum number of iterations.   (Input) 

The default value is 20. 

IWK — Workspace vector of length (N + M + 2). (Workspace) 

WK — Workspace vector of length (N + M + 8) * (N + M + 2). (Workspace) 

2. Informational errors 

Type Code 

3 1 The maximum number of iterations has been reached. The routine 

R2TCH may be called directly to set a larger value for ITMAX. 

3 2 The error was reduced as far as numerically possible. A good 

approximation is returned in P and Q, but this does not necessarily 

give the Chebyshev approximation. 

4 3 The linear system that defines P and Q was found to be 

algorithmically singular. This indicates the possibility of a 

degenerate approximation. 

4 4 A sequence of critical points that was not monotonic generated. This 

indicates the possibility of a degenerate approximation. 

4 5 The value of the error curve at some critical point is too large. This 

indicates the possibility of poles in the rational function. 

4 6 The weight function cannot be zero on the closed interval (A, B). 

Example 

In this example, we compute the best rational approximation to the gamma function, Γ, on the 

interval [2, 3] with weight function w = 1 and N = M = 2. We display the maximum error and the 

coefficients. This problem is taken from the paper of Cody, Fraser, and Hart (1968). We compute 

in double precision due to the conditioning of this problem. 
 

      USE RATCH_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    M, N 

      PARAMETER  (M=2, N=2) 

!  

      INTEGER    NOUT 

      DOUBLE PRECISION  A, B, ERROR, F, P(N+1), PHI, Q(M+1), WEIGHT 

      EXTERNAL   F, PHI, WEIGHT 

!  

      A = 2.0D0 

      B = 3.0D0 

!                                  Compute double precision rational 

!                                  approximation 

      CALL RATCH (F, PHI, WEIGHT, A, B, P, Q, ERROR) 

!                                  Get output unit number 

      CALL UMACH (2, NOUT) 
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!                                  Print P, Q and min-max error 

      WRITE (NOUT,'(1X,A)') 'In double precision we have:' 

      WRITE (NOUT,99999) 'P      = ', P 

      WRITE (NOUT,99999) 'Q      = ', Q 

      WRITE (NOUT,99999) 'ERROR  = ', ERROR 

99999 FORMAT (' ', A, 5X, 3F20.12, /) 

      END 

! ----------------------------------------------------------------------- 

!  

      DOUBLE PRECISION FUNCTION F (X) 

      DOUBLE PRECISION X 

!  

      DOUBLE PRECISION DGAMMA 

      EXTERNAL   DGAMMA 

!  

      F = DGAMMA(X) 

      RETURN 

      END 

! ----------------------------------------------------------------------- 

!  

      DOUBLE PRECISION FUNCTION PHI (X) 

      DOUBLE PRECISION X 

!  

      PHI = X 

      RETURN 

      END 

! ----------------------------------------------------------------------- 

!  

      DOUBLE PRECISION FUNCTION WEIGHT (X) 

      DOUBLE PRECISION X 

!  

      DOUBLE PRECISION DGAMMA 

      EXTERNAL   DGAMMA 

!  

      WEIGHT = DGAMMA(X) 

      RETURN 

      END 

Output 
 

In double precision we have: 

P      =            1.265583562487     -0.650585004466      0.197868699191 

 

Q      =            1.000000000000     -0.064342721236     -0.028851461855 

 

ERROR  =           -0.000026934190 
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Chapter 4: Integration and 
Differentiation 

Routines 

4.1.  Univariate Quadrature 
Adaptive general-purpose endpoint singularities................ QDAGS 918 
Adaptive general purpose ..................................................... QDAG 922 
Adaptive general-purpose points of singularity ................... QDAGP 925 
Adaptive general-purpose with a possible internal or  
endpoint singularity ........................................................... QDAG1D 929 
Adaptive general-purpose infinite interval ........................... QDAGI 935 
Adaptive weighted oscillatory (trigonometric) .................... QDAWO 938 
Adaptive weighted Fourier (trigonometric) ..........................QDAWF 942 
Adaptive weighted algebraic endpoint singularities ........... QDAWS 946 
Adaptive weighted Cauchy principal value ........................ QDAWC 949 
Nonadaptive general purpose ............................................... QDNG 953 

4.2.  Multidimensional Quadrature 
Two-dimensional quadrature (iterated integral) ................. TWODQ 955 
Two-dimensional quadrature with a possible  
internal or endpoint singularity .......................................... QDAG2D 960 
Three-dimensional quadrature with a possible  
internal or endpoint singularity .......................................... QDAG3D 966 
Adaptive N-dimensional quadrature 
over a hyper-rectangle ...........................................................QAND 973 
Integrates a function over a hyperrectangle using a  
quasi-Monte Carlo method ...................................................... QMC 976 

4.3.  Gauss Rules and Three-term Recurrences 
Gauss quadrature rule for classical weights ....................... GQRUL 979 
Gauss quadrature rule from recurrence coefficients .......... GQRCF 983 
Recurrence coefficients for classical weights ......................RECCF 986 
Recurrence coefficients from quadrature rule .................... RECQR 988 
Fejer quadrature rule ........................................................... FQRUL 991 

4.4. Differentiation 
Approximation to first, second, or third derivative ................. DERIV 995 
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Usage Notes 

Univariate Quadrature 

The first ten routines described in this chapter are designed to compute approximations to integrals 

of the form  

   
b

a
f x w x dx

 

The weight function w is used to incorporate known singularities (either algebraic or logarithmic), 

to incorporate oscillations, or to indicate that a Cauchy principal value is desired. For general 

purpose integration, we recommend the use of QDAGS (even if no endpoint singularities are 

present). If more efficiency is desired, then the use of QDAG (or QDAG*) should be considered. 

These routines are organized as follows: 

 w = 1 

− QDAGS 

− QDAG 

− QDAGP 

− QDAG1D 

− QDAGI 

− QDNG 

 w(x) = sin ωx or w(x) = cos ωx 

− QDAWO (for a finite interval) 

− QDAWF (for an infinite interval) 

 w(x) = (x − a)
α
 (b − x)

β
 ln(x − a) ln(b −x), where the ln factors are optional 

− QDAWS 

 w(x) = 1/(x −c) Cauchy principal value 

− QDAWC 

The calling sequences for these routines are very similar. The function to be integrated is always 

F; the lower and upper limits are, respectively, A and B. The requested absolute error ɛ is ERRABS, 

while the requested relative error ρ is ERRREL. These quadrature routines return two numbers of 

interest, namely, RESULT and ERREST, which are the approximate integral R and the error estimate 

E, respectively. These numbers are related as follows: 
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        max ,
b b

a a
f x w x dx R E f x w x dx    

 

The requested absolute and relative errors must be interpreted as ‗tuning knobs.‘  The actual errors 

may be much larger than these values indicate if the sampling of the integrand function misses a 

peak.  Coarse sampling of the integration interval occurs with larger values of ERRABS or ERRREL.  

We recommend experimenting with these values, starting with small positive values and then 

increasing them until the required accuracy is obtained.   

One situation that occasionally arises in univariate quadrature concerns the approximation of 

integrals when only tabular data are given. The routines described above do not directly address 

this question. However, the standard method for handling this problem is first to interpolate the 

data and then to integrate the interpolant. This can be accomplished by using the IMSL spline 

interpolation routines described in Chapter 3, ―Interpolation and Approximation‖, with one of the 

integration routines CSINT, BSINT, or PPITG. 

Multivariate Quadrature 

Four routines are described in this chapter that are of use in approximating certain multivariate 

integrals. In particular, the routine TWODQ and QDAG2D return an approximation to an iterated two-

dimensional integral of the form 

 
 

 
,

b h x

a g x
f x y dy dx 

 

while QDAG3D returns an approximation to an iterated three-dimensional integral of the form 

 
 

 

 

  ,

,
, ,

b h x q x y

a g x p x y
f x y z dz dy dx  

 

The fourth routine QAND returns an approximation to the integral of a function of n variables over 

a hyper-rectangle 

 
1

1
1 1, ,

n

n

b b

n na a
f x x dx dx 

 

If one has two- or three-dimensional tensor-product tabular data, use the IMSL spline interpolation 

routines BS2IN or BS3IN, followed by the IMSL spline integration routines BS2IG and BS3IG 

that are described in Chapter 3, Interpolation and Approximation. 

Gauss Rules and Three-term Recurrences 

The routines described in this section deal with the constellation of problems encountered in 

Gauss quadrature. These problems arise when quadrature formulas, which integrate polynomials 

of the highest degree possible, are computed. Once a member of a family of seven weight 

functions is specified, the routine GQRUL produces the points {xi} and weights {wi} for i = 1, …, N 

that satisfy 

     
1

N
b

i ia
i

f x w x dx f x w



 



     

     
 

918  Chapter 4: Integration and Differentiation IMSL MATH LIBRARY  

     

     

 

for all functions f that are polynomials of degree less than 2N. The weight functions w may be 

selected from the following table: 

 

 

 

 

 

     

 

   

2

2

2

1 1,1 Legendre

1/ 1- 1,1 Chebyshev 1st kind

1 1,1 Chebyshev 2nd kind

, Hermite

1 1 1,1 Jacobi

0, Generalized Laguerre

1/ cosh Hyperbolic cosine

x

x

w x

x

x

e

x x

e x

x

 











 

 

  



 

NameInterval

 

Where permissible, GQRUL will also compute Gauss-Radau and Gauss-Lobatto quadrature rules. 

The routine RECCF produces the three-term recurrence relation for the monic orthogonal 

polynomials with respect to the above weight functions. 

Another routine, GQRCF, produces the Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule 

from the three-term recurrence relation. This means Gauss rules for general weight functions may 

be obtained if the three-term recursion for the orthogonal polynomials is known. The routine 

RECQR is an inverse to GQRCF in the sense that it produces the recurrence coefficients given the 

Gauss quadrature formula. 

The last routine described in this section, FQRUL, generates the Fejér quadrature rules for the 

following family of weights: 

 

   

     

       

       

1

1/

ln

ln

w x

w x x

w x b x x a

w x b x x a x a

w x b x x a b x

 

 

 





 

  

   

   
 

Numerical Differentiation 

We provide one routine, DERIV, for numerical differentiation. This routine provides an estimate 

for the first, second, or third derivative of a user-supplied function. 

QDAGS 
Integrates a function (which may have endpoint singularities). 



 

 

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation  919 

     

     

 

Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is 

F(X), where 

X −Independent variable.   (Input) 

F − The function value.   (Output) 

 F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

RESULT — Estimate of the integral from A to B of F.   (Output) 

Optional Required Arguments 

ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QDAGS (F, A, B, RESULT [,…]) 

Specific: The specific interface names are S_QDAGS and D_QDAGS. 

FORTRAN 77 Interface 

Single: CALL QDAGS (F, A, B, ERRABS, ERRREL, RESULT, ERREST) 

Double: The double precision name is DQDAGS. 

Description 

The routine QDAGS is a general-purpose integrator that uses a globally adaptive scheme to reduce 

the absolute error. It subdivides the interval [A, B] and uses a 21-point Gauss-Kronrod rule to 

estimate the integral over each subinterval. The error for each subinterval is estimated by 

comparison with the 10-point Gauss quadrature rule. This routine is designed to handle functions 

with endpoint singularities. However, the performance on functions, which are well-behaved at the 

endpoints, is quite good also. In addition to the general strategy described in QDAG, this routine 

uses an extrapolation procedure known as the ɛ-algorithm. The routine QDAGS is an 

implementation of the routine QAGS, which is fully documented by Piessens et al. (1983). Should 
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QDAGS fail to produce acceptable results, then either IMSL routines QDAG or QDAG* may be 

appropriate. These routines are documented in this chapter. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2AGS/DQ2AGS. The 

reference is 

CALL Q2AGS (F, A, B, ERRABS, ERRREL, RESULT, ERREST, MAXSUB, 

NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, IORD) 

The additional arguments are as follows: 

MAXSUB — Number of subintervals allowed.   (Input)  

A value of 500 is used by QDAGS. 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.   

(Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.   

(Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals 

over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values 

in RLIST.   (Output) 

IORD — Array of length MAXSUB.   (Output)  

Let k be  

NSUBIN                          if NSUBIN ≤ (MAXSUB/2 + 2); 

MAXSUB + 1 − NSUBIN  otherwise. 

The first k locations contain pointers to the error estimates over the subintervals 

such that ELIST(IORD(1)), …, ELIST(IORD(k)) form a decreasing sequence. 

2. Informational errors 

Type Code 

4 1 The maximum number of subintervals allowed has been reached. 

3 2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 

3 3 A degradation in precision has been detected. 
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3 4 Roundoff error in the extrapolation table, preventing the requested 

tolerance from being achieved, has been detected. 

4 5 Integral is probably divergent or slowly convergent. 

3. If EXACT is the exact value, QDAGS attempts to find RESULT such that  

|EXACT − RESULT| ≤ max(ERRABS, ERRREL * |EXACT|). To specify only a relative 

error, set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to 

zero. 

Example 

The value of 

 
1 1/ 2

0
ln 4x x dx  

 

is estimated. The values of the actual and estimated error are machine dependent. 
 

      USE QDAGS_INT 

      USE UMACH_INT 

 

      IMPLICIT NONE 

      INTEGER    NOUT 

      REAL       A, ABS, B, ERRABS, ERREST, ERROR, ERRREL, EXACT, F, & 

                RESULT 

      INTRINSIC  ABS 

      EXTERNAL   F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 

      A = 0.0 

      B = 1.0 

!                                 Set error tolerances 

      ERRABS = 0.0 

      CALL QDAGS (F, A, B, RESULT, ERRABS=ERRABS, ERREST=ERREST) 

!                                 Print results 

      EXACT = -4.0 

      ERROR = ABS(RESULT-EXACT) 

      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, & 

            ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3) 

      END 

! 

      REAL FUNCTION F (X) 

      REAL       X 

      REAL       ALOG, SQRT 

      INTRINSIC  ALOG, SQRT 

      F = ALOG(X)/SQRT(X) 

      RETURN 

      END 
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Output 
 

Computed =  -4.000              Exact =  -4.000 

 

Error estimate = 1.519E-04      Error = 2.098E-05 

QDAG 
Integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules. 

Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is 

F(X), where 

X − Independent variable.   (Input) 

F − The function value.   (Output) 

 F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

RESULT — Estimate of the integral from A to B of F.   (Output) 

Optional Arguments 

ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

IRULE — Choice of quadrature rule.   (Input) 

Default: IRULE = 2. 

The Gauss-Kronrod rule is used with the following points:  

IRULE Points 

1 7-15 

2 10-21 

3 15-31 

4 20-41 
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IRULE Points 

5 25-51 

6 30-61 

 

 IRULE = 2 is recommended for most functions. If the function has a peak singularity, 

use IRULE = 1. If the function is oscillatory, use IRULE = 6. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QDAG (F, A, B, RESULT [,…]) 

Specific: The specific interface names are S_QDAG and D_QDAG. 

FORTRAN 77 Interface 

Single: CALL QDAG (F, A, B, ERRABS, ERRREL, IRULE, RESULT, ERREST) 

Double: The double precision name is DQDAG. 

Description 

The routine QDAG is a general-purpose integrator that uses a globally adaptive scheme in order to 

reduce the absolute error. It subdivides the interval [A, B] and uses a (2k + 1)-point Gauss-Kronrod 

rule to estimate the integral over each subinterval. The error for each subinterval is estimated by 

comparison with the k-point Gauss quadrature rule. The subinterval with the largest estimated 

error is then bisected and the same procedure is applied to both halves. The bisection process is 

continued until either the error criterion is satisfied, roundoff error is detected, the subintervals 

become too small, or the maximum number of subintervals allowed is reached. The routine QDAG 

is based on the subroutine QAG by Piessens et al. (1983). 

Should QDAG fail to produce acceptable results, then one of the IMSL routines QDAG* may be 

appropriate. These routines are documented in this chapter. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2AG/DQ2AG. The 

reference is: 

CALL Q2AG (F, A, B, ERRABS, ERRREL, IRULE, RESULT, ERREST, 

MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, 

IORD) 

The additional arguments are as follows: 
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MAXSUB — Number of subintervals allowed.   (Input)  

A value of 500 is used by QDAG. 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left 

endpoints.   (Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right 

endpoints.   (Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN 

integrals over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the 

NSUBIN values in RLIST.   (Output) 

IORD — Array of length MAXSUB.   (Output)  

Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 − 

NSUBIN otherwise. The first K locations contain pointers to the error 

estimates over the corresponding subintervals, such that 

ELIST(IORD(1)), …, ELIST(IORD(K)) form a decreasing sequence. 

2. Informational errors 

Type Code 

4 1 The maximum number of subintervals allowed has been reached. 

3 2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 

3 3 A degradation in precision has been detected. 

3. If EXACT is the exact value, QDAG attempts to find RESULT such that  

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a 

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set 

ERRREL to zero. 

Example 

The value of 

2 2

0
1xxe dx e 

 

is estimated. Since the integrand is not oscillatory, IRULE = 1 is used. The values of the actual and 

estimated error are machine dependent. 
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      USE QDAG_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    IRULE, NOUT 

      REAL       A, ABS, B, ERRABS, ERREST, ERROR, EXACT, EXP, & 

                 F, RESULT 

      INTRINSIC  ABS, EXP 

      EXTERNAL   F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 

      A = 0.0 

      B = 2.0 

!                                 Set error tolerances 

      ERRABS = 0.0 

!                                 Parameter for non-oscillatory 

!                                 function 

      IRULE = 1 

      CALL QDAG (F, A, B, RESULT, ERRABS=ERRABS, IRULE=IRULE, ERREST=ERREST) 

!                                 Print results 

      EXACT = 1.0 + EXP(2.0) 

      ERROR = ABS(RESULT-EXACT) 

      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, & 

            ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3) 

      END 

! 

      REAL FUNCTION F (X) 

      REAL       X 

      REAL       EXP 

      INTRINSIC  EXP 

      F = X*EXP(X) 

      RETURN 

      END 

Output 
 

Computed =   8.389              Exact =   8.389 

 

Error estimate = 5.000E-05      Error = 9.537E-07 

QDAGP 
Integrates a function with singularity points given. 

Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is 

F(X), where 

X − Independent variable.   (Input) 
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F − The function value.   (Output) 

 F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

POINTS — Array of length NPTS containing breakpoints in the range of integration.   (Input)  

Usually these are points where the integrand has singularities. 

RESULT — Estimate of the integral from A to B of F.   (Output) 

Optional Arguments 

NPTS — Number of break points given.   (Input) 

Default: NPTS = size (POINTS,1). 

ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QDAGP (F, A, B, POINTS, RESULT [,…]) 

Specific: The specific interface names are S_QDAGP and D_QDAGP. 

FORTRAN 77 Interface 

Single: CALL QDAGP (F, A, B, NPTS, POINTS, ERRABS, ERRREL, RESULT, ERREST) 

Double: The double precision name is DQDAGP. 

Description 

The routine QDAGP uses a globally adaptive scheme in order to reduce the absolute error. It 

initially subdivides the interval [A, B] into NPTS + 1 user-supplied subintervals and uses a 21-point 

Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each subinterval is 

estimated by comparison with the 10-point Gauss quadrature rule. This routine is designed to 

handle endpoint as well as interior singularities. In addition to the general strategy described in the 

IMSL routine QDAG, this routine employs an extrapolation procedure known as the ɛ-algorithm. 
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The routine QDAGP is an implementation of the subroutine QAGP, which is fully documented by 

Piessens et al. (1983). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2AGP/DQ2AGP. The 

reference is: 

CALL Q2AGP (F, A, B, NPTS, POINTS, ERRABS, ERRREL, RESULT, 

ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, 

ELIST, IORD, LEVEL, WK, IWK) 

The additional arguments are as follows: 

MAXSUB — Number of subintervals allowed.   (Input)  

A value of 450 is used by QDAGP. 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left 

endpoints.   (Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right 

endpoints.   (Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN 

integrals over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the 

NSUBIN values in RLIST.   (Output) 

IORD — Array of length MAXSUB.   (Output)  

Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 − 

NSUBIN otherwise. The first K locations contain pointers to the error 

estimates over the subintervals, such that ELIST(IORD(1)), …, 

ELIST(IORD(K)) form a decreasing sequence. 

LEVEL — Array of length MAXSUB, containing the subdivision levels of the 

subinterval.   (Output)  

That is, if (AA, BB) is a subinterval of (P1, P2) where P1 as well as P2 

is a user-provided break point or integration limit, then (AA, BB) has 

level L if  

ABS(BB − AA) = ABS(P2 − P1) * 2**(−L). 

WK — Work array of length NPTS + 2. 

IWK — Work array of length NPTS + 2. 
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2. Informational errors 

Type Code 

4 1 The maximum number of subintervals allowed has been reached. 

3 2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 

3 3 A degradation in precision has been detected. 

3 4 Roundoff error in the extrapolation table, preventing the requested 

tolerance from being achieved, has been detected. 

4 5 Integral is probably divergent or slowly convergent. 

3. If EXACT is the exact value, QDAGP attempts to find RESULT such that  

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a 

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set 

ERRREL to zero. 

Example 

The value of  

  
3 3 2 2

0

77
ln 1 2 61ln 2 ln 7 27

4
x x x dx    

 

is estimated. The values of the actual and estimated error are machine dependent. Note that this 

subroutine never evaluates the user-supplied function at the user-supplied breakpoints. 
 

      USE QDAGP_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    NOUT, NPTS 

      REAL       A, ABS, ALOG, B, ERRABS, ERREST, ERROR, ERRREL, & 

                EXACT, F, POINTS(2), RESULT, SQRT 

      INTRINSIC  ABS, ALOG, SQRT 

      EXTERNAL   F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 

      A = 0.0 

      B = 3.0 

!                                 Set error tolerances 

      ERRABS = 0.0 

      ERRREL = 0.01 

!                                 Set singularity parameters 

      NPTS      = 2 

      POINTS(1) = 1.0 

      POINTS(2) = SQRT(2.0) 

      CALL QDAGP (F, A, B, POINTS, RESULT, ERRABS=ERRABS, ERRREL=ERRREL, & 

                    ERREST=ERREST) 

!                                 Print results 
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      EXACT = 61.0*ALOG(2.0) + 77.0/4.0*ALOG(7.0) - 27.0 

      ERROR = ABS(RESULT-EXACT) 

      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, & 

            ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3) 

! 

      END 

! 

      REAL FUNCTION F (X) 

      REAL       X 

      REAL       ABS, ALOG 

      INTRINSIC  ABS, ALOG 

      F = X**3*ALOG(ABS((X*X-1.0)*(X*X-2.0))) 

      RETURN 

      END 

Output 
 

Computed =  52.741              Exact =  52.741 

 

Error estimate = 5.062E-01      Error = 6.104E-04 

 

QDAG1D 
Integrates a function with a possible internal or endpoint singularity. 

Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is F(X [,…]), where 

Function Return Value 

F — The function value.   (Output) 

Required Arguments 

X — Independent variable.   (Input) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional information to/from the user-supplied function. For a detailed 

description of this argument see FCN_DATA below. 

F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration. The relative values of A and B are interpreted properly. Thus 

if one exchanges A and B, the sign of the answer is changed. When the integrand is 

positive, the sign of the result is the same as the sign of B – A.   (Input) 
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RESULT — Estimate of the integral from A to B of F.   (Output) 

Optional Arguments 

ERRABS — Absolute error tolerance.  See Comment 1 for a discussion on the error 

tolerances.   (Input) 

Default: ERRABS = 0.0. 

ERRFRAC — A fraction expressing the (number of  correct digits of accuracy 

desired)/(number of digits of achievable precision). See Comment 1 for a discussion on 

the error tolerances.   (Input) 

Default: ERRFRAC = 0.75. 

ERRREL —The error tolerance relative to the value of the integral.  See Comment 1 for a 

discussion on the error tolerances.   (Input) 

Default: ERRREL = 0.0. 

ERRPOST — An a posteriori estimate of the absolute value of the error committed while 

evaluating the integrand.  This value may be computed during the evaluation of the 

integrand. When this optional argument is used, FCN_DATA must also be used as 

FCN_DATA%RDATA(1) will be used to pass the newly calculated value of ERRPOST 

back from the evaluator, F. In this case, the user should not use FCN_DATA%RDATA(1) 

for passing other data. (Input) 

Default: ERRPOST = 0.0. 

ERRPRIOR— An a priori estimate of the absolute value of the relative error expected to be 

committed while evaluating the integrand.  Changes to this value are not detected 

during evaluation of the integral.   (Input) 

Default: ERRPRIOR = 1.19e-7 for single precision and 2.22d-16 for double precision. 

MAXFCN —The maximum number of function values to use to compute the integral.   

(Input) 

Default: The number of function values is not bounded. 

SINGULARITY —The real part of the abscissa of a singularity or discontinuity in the 

integrand.  If this option is used, SINGULARITY_TYPE must also be used.   (Input) 

Default: It is assumed that there is no singularity in the integrand so SINGULARITY is 

not set. It is an error to set SINGULARITY without also setting SINGULARITY_TYPE. 

SINGULARITY_TYPE—A signed integer specifying the type of singularity which occurs in 

the integrand. If the singularity has a leading term of the form xα
  
where α is not an 

integer, if α is ―large‖ or has the form α = (2n-1)/2 where n is a nonnegative integer, or 

the singularity is well outside the interval, set SINGULARITY_TYPE to a positive 

integer. Otherwise, set SINGULARITY_TYPE to a negative integer.   (Input) 

Default: It is assumed that there is no singularity in the integrand so 

SINGULARITY_TYPE is not set. It is an error to set SINGULARITY_TYPE without also 

setting SINGULARITY. 
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FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional 

information to/from the user-supplied function. The derived type,  

s _fcn_data, is defined as: 

type s_fcn_data 

   real(kind(1e0)), pointer, dimension(:) :: rdata 

   integer, pointer, dimension(:) :: idata 

end type 

in module mp_types. The double precision counterpart to s_fcn_data is named 

d_fcn_data. The user must include a use mp_types statement in the calling 

program to define this derived type. Note that if this optional argument is used then this 

argument must also be used in the user-supplied function.   (Input/Output) 

NEVAL — Number of function evaluations used to calculate the integral.   (Output) 

ERREST — An estimate of the upper bound of the magnitude of the difference between 

RESULT and the true value of the integral.   (Output) 

ISTATUS — A status flag indicating the error criteria which was satisfied on exit.   

ISTATUS = -1 indicates normal termination with either the absolute or relative error 

tolerance criteria satisfied. 

ISTATUS = -2 indicates normal termination with neither the absolute nor the relative 

error tolerance criteria satisfied, but the error tolerance based on the locally achievable 

precision is satisfied. 

ISTATUS = -3 indicates normal termination with none of the error tolerance criteria 

satisfied. 

ISTATUS = any value other than the above indicates abnormal termination due to an 

error condition. (Output) 

FORTRAN 90 Interface 

Generic: CALL QDAG1D (F,A, B, RESULT [,…]) 

Specific: The specific interface names are S_QDAG1D and D_QDAG1D. 

Description 

QDAG1D is based on the JPL Library routine SINT1. The integral is estimated using quadrature 

formulae due to T. N. L. Patterson (1968). Patterson described a family of formulae in which the 

k
th  

formula used all the integrand values used in the k-1
st
  formula, and added 2

k-1 
new integrand 

values in an optimal way. The first formula is the midpoint rule, the second is the three point 

Gauss formula, and the third is the seven point Kronrod formula. Formulae of this family of higher 

degree had not previously been described. This program uses formulae up to k = 8.  

An error estimate is obtained by comparing the values of the integral estimated by two adjacent 

formulae, examining differences up to the fifteenth order, integrating round-off error, integrating 

error declared to have been committed during computation of the integrand, integrating a first 

order estimate of the effect round-off error in the abscissa has on integrand values, and including 
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errors in the limits. The latter four methods are also used to derive a bound on the achievable 

precision. 

If the integral over an interval cannot be estimated with sufficient accuracy, the interval is 

subdivided. The difference table is used to discover whether the integral is difficult to compute 

because the integrand is too complex or has singular behavior. In the former case, the estimated 

error, requested error tolerance, and difference table are used to choose a step size.  

In the latter case, the difference table is used in a search algorithm to find the abscissa of the 

singular behavior. If the singular behavior is discovered on the end of an interval, a change of 

independent variable is applied to reduce the strength of the singularity. 

The program also uses the difference table to detect nonintegrable singularities, jump 

discontinuities, and computational noise.   

Comments 

1. The user provides the absolute error tolerance through optional argument ERRABS. 

Optional argument ERRFRAC represents the ratio of the (number of  correct digits of 

accuracy desired) to (number of digits of achievable precision). Optional argument 

ERRREL represents the error tolerance relative to the value of the integral. The internal 

value for ERRFRAC is bounded between .5 and 1. By default, ERRABS and ERRREL are 

set to 0.0 and ERRFRAC is set to .75. These default values usually provide all the 

accuracy that can be obtained efficiently. 

The error tolerance relative to the value of the integral is applied globally (over the 

entire region of integration) rather than locally (one step at a time). This policy 

provides true control of error relative to the value of the integral when the integrand is 

not sign definite, as well as when the integrand is sign definite. To apply the criterion 

of error tolerance relative to the value of the integral, the value of the integral over the 

entire region, estimated without refinement of the region, is used to derive an absolute 

error tolerance that may be applied locally. If the preliminary estimate of the value of 

the integral is significantly in error, and the least restrictive error tolerance is relative to 

the value of the integral, the cost of computing the integral will be larger than the cost 

of computing the integral to the same degree of accuracy using appropriate values of 

either of the other tolerance criteria.  The preliminary estimate of the integral may be 

significantly in error if the integrand is not sign definite or has large variation. 

2. Optional arguments SINGULARITY and SINGULARITY_TYPE provide the user with a 

means to give the routine information about the location and type of any known 

singularity of the integrand. When an integrand appears to have singular behavior at the 

end of the interval, a transformation of the variable of integration is applied to reduce 

the strength of the singularity. When an integrand appears to have singular behavior 

inside the interval, the abscissa of the singularity is determined as precisely as 

necessary, depending on the error tolerance, and the interval is subdivided. The 

discovery of singular behavior and determination of the abscissa of singular behavior 

are expensive. If the user knows of the existence of a singularity, the efficiency of 

computation of the integral may be improved by requesting an immediate 

transformation of the independent variable or subdivision of the interval. It is 

recommended that the user select these optional arguments for all singularities, even 

those outside [A, B].  If the singularity has a leading term of the form x
α 

where α is not 
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an integer, if α is ―large‖ or has the form  

α = (2n-1)/2 where n is a nonnegative integer, or the singularity is well outside the 

interval, set SINGULARITY_TYPE to a positive value. Otherwise, set 

SINGULARITY_TYPE to a negative value. The meaning of ―large‖ depends on the rest 

of the integrand and the length of the interval. For the typical case, a value of about 2 is 

considered ―large‖. For a singularity of the form x
α 

log x use the above rule, even if α 

is an integer. For other types of singularities make a reasonable guess based on the 

above. If several similar integrals are to be computed, some experimentation may be 

useful. 

 When SINGULARITY_TYPE is positive, a transformation of the form  

T = TA + (X – TA)
2 
/ (TB – TA) is applied, where TA is the abscissa of the singularity 

and TB is the end of the interval. If TA is outside the interval, TB will be the end of the 

interval farthest from TA. If TA is inside the interval, the interval will immediately be 

subdivided at TA, and both parts will be separately integrated with TB equal to each 

end of the original interval, respectively. When SINGULARITY_TYPE is negative, a 

transformation of the form T = TA + (X – TA)
4 
/ (TB – TA)

3
 is applied, with TA and TB 

as above. 

 If the integrand has singularities at more than one abscissa within the region, or more 

than one pole near the real axis such that the real parts are within the region of 

integration, then the interval should be subdivided at the abscissa of the singularities or 

the real parts of the poles, and the integrals should be computed as separate problems, 

with the results summed. 

Example 1 

The value of  

  
1 1/ 2

0
ln 4x x dx  

 

is estimated. Note that the optional arguments SINGULARITY and SINGULARITY_TYPE are used. 
 

      USE QDAG1D_INT 

      USE UMACH_INT 

 

      IMPLICIT NONE 

!                                 Declare variables 

      INTEGER  NOUT, SINGULARITY_TYPE 

 

      REAL  A, B, ERREST, F, RESULT, SINGULARITY 

       

      EXTERNAL      F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 

      A = 0.0 

      B = 1.0 

!                             Set singularity value and type 

      SINGULARITY = 0.0 

      SINGULARITY_TYPE = -1 
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      CALL QDAG1D ( F, A, B, RESULT, SINGULARITY=SINGULARITY, & 

      SINGULARITY_TYPE=SINGULARITY_TYPE, ERREST=ERREST) 

!                             Print the results 

      WRITE(NOUT,*)'Result = ', RESULT 

      WRITE(NOUT,9999) ERREST 

 9999 FORMAT('Error Estimate = ', 1PE9.1) 

      END 

 

      REAL FUNCTION F (X) 

      REAL       X 

      REAL       ALOG, SQRT 

      INTRINSIC  ALOG, SQRT 

      F = ALOG(X)/SQRT(X) 

      RETURN 

      END 

Output 
 

Result = -4.0 

Error Estimate = 6.0E-07 

Example 2 

The value of  

 
2

1
2 6x kx dx   

is estimated. Note that the optional argument FCN_DATA is used to set the value of k = 2 in the 

user-supplied function, F. 

 

      USE QDAG1D_INT 

      USE UMACH_INT 

      USE MP_TYPES 

 

      IMPLICIT NONE 

!                                 Declare variables 

      INTEGER           NOUT 

 

      REAL           A, B, ERREST, F, RESULT 

      REAL, TARGET ::        RDATA(1) 

 

      TYPE (S_FCN_DATA) USER_DATA 

       

      EXTERNAL      F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 

      A = 1.0 

      B = 2.0 

!                                 Set IPARAM 

      RDATA(1) = 2.0 

      USER_DATA%RDATA=>RDATA 

      CALL QDAG1D ( F, A, B, RESULT, FCN_DATA=USER_DATA, ERREST=ERREST) 
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!                             Print the results 

      WRITE(NOUT,*)'Result = ', RESULT 

      WRITE(NOUT,9999) ERREST 

 9999 FORMAT('Error Estimate = ', 1PE9.1) 

      END 

 

      REAL FUNCTION F (X, FCN_DATA) 

      USE MP_TYPES 

      TYPE (S_FCN_DATA) FCN_DATA 

      REAL       X 

      F = 2.0 * X + FCN_DATA%RDATA(1) * X 

      RETURN 

      END 

Output 
 

Result = 6.0 

Error Estimate = 1.2E-06 

 

QDAGI 
Integrates a function over an infinite or semi-infinite interval. 

Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is 

F(X), where 

X − Independent variable.   (Input) 

F − The function value.   (Output) 

 F must be declared EXTERNAL in the calling program. 

BOUND — Finite bound of the integration range.   (Input)  

Ignored if INTERV = 2. 

INTERV — Flag indicating integration interval.   (Input)  

INTERV  Interval 

−1  (−∞, BOUND) 

1   (BOUND, + ∞) 

2   (−∞, + ∞) 

RESULT — Estimate of the integral from A to B of F.   (Output) 
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Optional Arguments 

ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.  

ERRREL — Relative accuracy desired.   (Input) 

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QDAGI (F, BOUND, INTERV, RESULT [,…]) 

Specific: The specific interface names are S_QDAGI and D_QDAGI. 

FORTRAN 77 Interface 

Single: CALL QDAGI (F, BOUND, INTERV, ERRABS, ERRREL, RESULT, ERREST) 

Double: The double precision name is DQDAGI. 

Description 

The routine QDAGI uses a globally adaptive scheme in an attempt to reduce the absolute error. It 

initially transforms an infinite or semi-infinite interval into the finite interval [0, 1]. Then, QDAGI 

uses a 21-point Gauss-Kronrod rule to estimate the integral and the error. It bisects any interval 

with an unacceptable error estimate and continues this process until termination. This routine is 

designed to handle endpoint singularities. In addition to the general strategy described in QDAG, 

this subroutine employs an extrapolation procedure known as the ɛ-algorithm. The routine QDAGI 

is an implementation of the subroutine QAGI, which is fully documented by Piessens et al. (1983). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2AGI/DQ2AGI. The 

reference is 

CALL Q2AGI (F, BOUND, INTERV, ERRABS, ERRREL, RESULT, 

ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, 

ELIST, IORD) 

The additional arguments are as follows: 

MAXSUB — Number of subintervals allowed.   (Input)  

A value of 500 is used by QDAGI. 

NEVAL — Number of evaluations of F.   (Output) 
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NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left 

endpoints.   (Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right 

endpoints.   (Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN 

integrals over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the 

NSUBIN values in RLIST.   (Output) 

IORD — Array of length MAXSUB.   (Output)  

Let K be NSUBIN if NSUBIN .LE.(MAXSUB/2 + 2), MAXSUB + 

1 − NSUBIN otherwise. The first K locations contain pointers to the 

error estimates over the subintervals, such that ELIST(IORD(1)), 

…, ELIST(IORD(K)) form a decreasing sequence. 

2. Informational errors 

Type Code 

4 1 The maximum number of subintervals allowed has been reached. 

3 2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 

3 3 A degradation in precision has been detected. 

3 4 Roundoff error in the extrapolation table, preventing the requested 

tolerance from being achieved, has been detected. 

4 5 Integral is divergent or slowly convergent. 

3. If EXACT is the exact value, QDAGI attempts to find RESULT such that  

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a 

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set 

ERRREL to zero. 

4. Since QDAGI makes a transformation of the original interval into the finite interval 

[0,1] the resulting function values can be extremely small and the resulting function 

might have ―spikes‖.  In some cases QDAGI ―overlooks‖ these spikes. The user can try 

adjusting the absolute and relative error tolerances to remedy this or, alternatively, try 

using IMSL routine QDAG1D. 

Example 

The value of 
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20

ln ln 10

201 10

x
dx

x

 





 

is estimated. The values of the actual and estimated error are machine dependent. Note that we 

have requested an absolute error of 0 and a relative error of .001. The effect of these requests, as 

documented in Comment 3 above, is to ignore the absolute error requirement. 
 

      USE QDAGI_INT 

      USE UMACH_INT 

      USE CONST_INT 

 

      IMPLICIT   NONE 

      INTEGER    INTERV, NOUT 

      REAL       ABS, ALOG, BOUND, ERRABS, ERREST, ERROR, & 

                ERRREL, EXACT, F, PI, RESULT 

      INTRINSIC  ABS, ALOG 

      EXTERNAL   F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 

      BOUND  = 0.0 

      INTERV = 1 

!                                 Set error tolerances 

      ERRABS = 0.0 

      CALL QDAGI (F, BOUND, INTERV, RESULT, ERRABS=ERRABS,  & 

                 ERREST=ERREST) 

!                                 Print results 

      PI    = CONST('PI') 

      EXACT = -PI*ALOG(10.)/20. 

      ERROR = ABS(RESULT-EXACT) 

      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3//' Error ', & 

            'estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3) 

      END 

! 

      REAL FUNCTION F (X) 

      REAL       X 

      REAL       ALOG 

      INTRINSIC  ALOG 

      F = ALOG(X)/(1.+(10.*X)**2) 

      RETURN 

      END 

Output 
 

Computed =  -0.362              Exact =  -0.362 

 

Error estimate = 2.652E-06      Error = 5.960E-08 

QDAWO 
Integrates a function containing a sine or a cosine. 
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Required Arguments 

F — User-supplied function to be integrated. The form is 

F(X), where 

X − Independent variable.   (Input) 

F − The function value.   (Output) 

 F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

IWEIGH — Type of weight function used.   (Input)  

IWEIGH Weight 

1  COS(OMEGA * X) 

2  SIN(OMEGA * X) 

OMEGA — Parameter in the weight function.   (Input) 

RESULT — Estimate of the integral from A to B of F * WEIGHT.   (Output) 

Optional Arguments 

ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QDAWO (F, A, B, IWEIGH, OMEGA, RESULT [,…]) 

Specific:  The specific interface names are S_QDAWO and D_QDAWO. 

FORTRAN 77 Interface 

Single: CALL QDAWO (F, A, B, IWEIGH, OMEGA, ERRABS, ERRREL, RESULT, ERREST) 

Double: The double precision name is DQDAWO. 
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Description 

The routine QDAWO uses a globally adaptive scheme in an attempt to reduce the absolute error. 

This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) is 

either cos ωx or sin ωx. Depending on the length of the subinterval in relation to the size of ω, 

either a modified Clenshaw-Curtis procedure or a Gauss-Kronrod 7/15 rule is employed to 

approximate the integral on a subinterval. In addition to the general strategy described for the 

IMSL routine QDAG, this subroutine uses an extrapolation procedure known as the ɛ-algorithm. 

The routine QDAWO is an implementation of the subroutine QAWO, which is fully documented by 

Piessens et al. (1983). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2AWO/DQ2AWO. The 

reference is: 

CALL Q2AWO (F, A, B, IWEIGH, OMEGA, ERRABS, ERRREL, 

RESULT, ERREST, MAXSUB, MAXCBY, NEVAL, NSUBIN, ALIST, 

BLIST, RLIST, ELIST, IORD, NNLOG, WK) 

The additional arguments are as follows: 

MAXSUB — Maximum number of subintervals allowed.   (Input)  

A value of 390 is used by QDAWO. 

MAXCBY — Upper bound on the number of Chebyshev moments which can 

be stored. That is, for the intervals of lengths ABS(B − A) * 

2**(−L), L = 0, 1, …, MAXCBY − 2, MAXCBY.GE.1. The 

routine QDAWO uses 21.   (Input) 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left 

endpoints.   (Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right 

endpoints.   (Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN 

integrals over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the 

NSUBIN values in RLIST.   (Output) 

IORD — Array of length MAXSUB. Let K be NSUBIN if NSUBIN.LE.  

(MAXSUB/2 + 2), MAXSUB + 1 − NSUBIN otherwise. The first K 
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locations contain pointers to the error estimates over the subintervals, 

such that ELIST(IORD(1)), …, ELIST(IORD(K)) form a 

decreasing sequence.   (Output) 

NNLOG — Array of length MAXSUB containing the subdivision levels of the 

subintervals, i.e. NNLOG(I) = L means that the subinterval numbered I 

is of length ABS(B − A) * (1− L).   (Output) 

WK — Array of length 25 * MAXCBY. (Workspace) 

2. Informational errors 

Type Code 

4 1 The maximum number of subintervals allowed has been reached. 

3 2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 

3 3 A degradation in precision has been detected. 

3 4 Roundoff error in the extrapolation table, preventing the requested 

tolerances from being achieved, has been detected. 

 4 5 Integral is probably divergent or slowly convergent. 

3. If EXACT is the exact value, QDAWO attempts to find RESULT such that  

ABS(EXACT − RESULT) .LE. MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a 

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set 

ERRREL to zero. 

Example 

The value of 

   
1

0
ln sin 10x x dx

 

is estimated. The values of the actual and estimated error are machine dependent. Notice that the 

log function is coded to protect for the singularity at zero. 
 

      USE QDAWO_INT 

      USE UMACH_INT 

      USE CONST_INT 

 

      IMPLICIT   NONE 

      INTEGER    IWEIGH, NOUT 

      REAL       A, ABS, B, ERRABS, ERREST, ERROR, & 

                EXACT, F, OMEGA, PI, RESULT 

      INTRINSIC  ABS 

      EXTERNAL   F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 
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      A = 0.0 

      B = 1.0 

!                                 Weight function = sin(10.*pi*x) 

      IWEIGH = 2 

      PI     = CONST('PI') 

      OMEGA  = 10.*PI 

!                                 Set error tolerances 

      ERRABS = 0.0 

      CALL QDAWO (F, A, B, IWEIGH, OMEGA, RESULT, ERRABS=ERRABS, &  

                 ERREST=ERREST) 

!                                 Print results 

      EXACT = -0.1281316 

      ERROR = ABS(RESULT-EXACT) 

      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, & 

            ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3) 

      END 

! 

      REAL FUNCTION F (X) 

      REAL       X 

      REAL       ALOG 

      INTRINSIC  ALOG 

      IF (X .EQ. 0.) THEN 

         F = 0.0 

      ELSE 

         F = ALOG(X) 

      END IF 

      RETURN 

      END 

Output 
 

Computed =  -0.128              Exact =  -0.128 

 

Error estimate = 7.504E-05      Error = 5.260E-06 

QDAWF 
Computes a Fourier integral. 

Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is 

F(X), where 

X − Independent variable.   (Input) 

F − The function value.   (Output) 

 F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 
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IWEIGH — Type of weight function used.   (Input)  

IWEIGH Weight 

1 COS(OMEGA * X) 

2 SIN(OMEGA * X) 

OMEGA — Parameter in the weight function.   (Input) 

RESULT — Estimate of the integral from A to infinity of F * WEIGHT.   (Output) 

Optional Arguments 

ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 

Default: ERREST = 1.e-3 for single precision and 1.d-8 for double precision. 

FORTRAN 90 Interface 

Generic: CALL QDAWF (F, A, IWEIGH, OMEGA, RESULT [,…]) 

Specific: The specific interface names are S_QDAWF and D_QDAWF. 

FORTRAN 77 Interface 

Single: CALL QDAWF (F, A, IWEIGH, OMEGA, ERRABS, RESULT, ERREST) 

Double: The double precision name is DQDAWF. 

Description 

The routine QDAWF uses a globally adaptive scheme in an attempt to reduce the absolute error. 

This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) is 

either cos ωx or sin ωx. The integration interval is always semi-infinite of the form [A, ∞]. These 

Fourier integrals are approximated by repeated calls to the IMSL routine QDAWO followed by 

extrapolation. The routine QDAWF is an implementation of the subroutine QAWF, which is fully 

documented by Piessens et al. (1983). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2AWF/DQ2AWF. The 

reference is: 

CALL Q2AWF (F, A, IWEIGH, OMEGA, ERRABS, RESULT, ERREST, 

MAXCYL, MAXSUB, MAXCBY, NEVAL, NCYCLE, RSLIST, 

ERLIST, IERLST, NSUBIN, WK, IWK) 
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The additional arguments are as follows: 

MAXSUB — Maximum number of subintervals allowed.   (Input)  

A value of 365 is used by QDAWF. 

MAXCYL — Maximum number of cycles allowed.   (Input)  

MAXCYL must be at least 3. QDAWF uses 50. 

MAXCBY — Maximum number of Chebyshev moments allowed.   (Input)  

QDAWF uses 21. 

NEVAL — Number of evaluations of F.   (Output) 

NCYCLE — Number of cycles used.   (Output) 

RSLIST — Array of length MAXCYL containing the contributions to the 

integral over the interval (A + (k − 1) * C, A + k * C), for k = 1, …, 

NCYCLE.   (Output)  

C = (2 * INT(ABS(OMEGA)) + 1) * PI/ABS(OMEGA). 

ERLIST — Array of length MAXCYL containing the error estimates for the 

intervals defined in RSLIST.   (Output) 

IERLST — Array of length MAXCYL containing error flags for the intervals 

defined in RSLIST.   (Output)  

IERLST(K) Meaning 

 

IERLST(K) Meaning 

1 

The maximum number of subdivisions 

(MAXSUB) has been achieved on the k-th 

cycle. 

2 

Roundoff error prevents the desired 

accuracy from being  achieved on the k-th 
cycle. 

3 
Extremely bad integrand behavior occurs at 

some points of the k-th cycle. 

4 

Integration procedure does not converge (to 

the desired accuracy) due to roundoff in the 

extrapolation procedure on the k-th cycle. It 

is assumed that the result on this interval is 
the best that can be obtained. 

5 
Integral over the k-th cycle is divergent or 

slowly convergent. 

 

NSUBIN — Number of subintervals generated.   (Output) 
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WK — Work array of length 4 * MAXSUB + 25 * MAXCBY. 

IWK — Work array of length 2 * MAXSUB. 

2. Informational errors 

Type Code 

3 1 Bad integrand behavior occurred in one or more cycles. 

4 2 Maximum number of cycles allowed has been reached. 

3 3 Extrapolation table constructed for convergence acceleration of the 

series formed by the integral contributions of the cycles does not 

converge to the requested accuracy. 

3. If EXACT is the exact value, QDAWF attempts to find RESULT such that  

ABS(EXACT − RESULT) .LE. ERRABS. 

Example 

The value of  

 1/ 2

0
cos / 2 1x x dx

  
 

is estimated. The values of the actual and estimated error are machine dependent. Notice that F is 

coded to protect for the singularity at zero. 
 

      USE QDAWF_INT 

      USE UMACH_INT 

      USE CONST_INT 

 

      IMPLICIT   NONE 

      INTEGER    IWEIGH, NOUT 

      REAL       A, ABS, ERRABS, ERREST, ERROR, EXACT, F, & 

                OMEGA, PI, RESULT 

      INTRINSIC  ABS 

      EXTERNAL   F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set lower limit of integration 

      A = 0.0 

!                                 Select weight W(X) = COS(PI*X/2) 

      IWEIGH = 1 

      PI     = CONST('PI') 

      OMEGA  = PI/2.0 

!                                 Set error tolerance 

      CALL QDAWF (F, A, IWEIGH, OMEGA, RESULT, ERREST=ERREST) 

!                                 Print results 

      EXACT = 1.0 

      ERROR = ABS(RESULT-EXACT) 

      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, & 

            ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3) 

      END 
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! 

      REAL FUNCTION F (X) 

      REAL       X 

      REAL       SQRT 

      INTRINSIC  SQRT 

      IF (X .GT. 0.0) THEN 

         F = 1.0/SQRT(X) 

      ELSE 

         F = 0.0 

      END IF 

      RETURN 

      END 

Output 
 

Computed =   1.000              Exact =   1.000 

 

Error estimate = 6.267E-04      Error = 2.205E-06 

QDAWS 
Integrates a function with algebraic-logarithmic singularities. 

Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is 

F(X), where 

X − Independent variable.   (Input) 

F − The function value.   (Output) 

 F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

B must be greater than A 

IWEIGH — Type of weight function used.   (Input)  

IWEIGH Weight 

1  (X − A)**ALPHA * (B − X)**BETAW 

2  (X − A)**ALPHA * (B − X)**BETAW * LOG(X − A) 

3  (X − A)**ALPHA * (B − X)**BETAW * LOG(B − X) 
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4  (X − A)**ALPHA * (B − X)**BETAW * LOG (X− A) * LOG (B − X) 

ALPHA — Parameter in the weight function.   (Input)  

ALPHA must be greater than −1.0. 

BETAW — Parameter in the weight function.   (Input)  

BETAW must be greater than −1.0. 

RESULT — Estimate of the integral from A to B of F * WEIGHT.   (Output) 

Optional Arguments 

ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETAW, RESULT[,…] ) 

Specific: The specific interface names are S_QDAWS and D_QDAWS. 

FORTRAN 77 Interface 

Single: CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETAW, ERRABS, ERRREL, RESULT, 
ERREST) 

Double: The double precision name is DQDAWS. 

Description 

The routine QDAWS uses a globally adaptive scheme in an attempt to reduce the absolute error. 

This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) is a 

weight function described above. A combination of modified Clenshaw-Curtis and Gauss-Kronrod 

formulas is employed. In addition to the general strategy described for the IMSL routine QDAG, 

this routine uses an extrapolation procedure known as the ɛ-algorithm. The routine QDAWS is an 

implementation of the routine QAWS, which is fully documented by Piessens et al. (1983). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2AWS/DQ2AWS. The 

reference is 
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CALL Q2AWS (F, A, B, IWEIGH, ALPHA, BETAW, ERRABS, ERRREL, 

RESULT, ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, 

RLIST, ELIST, IORD) 

The additional arguments are as follows: 

MAXSUB — Maximum number of subintervals allowed.   (Input)  

A value of 500 is used by QDAWS. 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left 

endpoints.   (Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right 

endpoints.   (Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN 

integrals over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the 

NSUBIN values in RLIST.   (Output) 

IORD — Array of length MAXSUB. Let k be NSUBIN if NSUBIN.LE.  

(MAXSUB/2 + 2), MAXSUB + 1 − NSUBIN otherwise. The first k 

locations contain pointers to the error estimates over the subintervals, 

such that ELIST(IORD(1)), …, ELIST(IORD(k)) form a decreasing 

sequence.   (Output) 

2. Informational errors 

Type Code 

4 1 The maximum number of subintervals allowed has been reached. 

3 2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 

3 3 A degradation in precision has been detected. 

3. If EXACT is the exact value, QDAWS attempts to find RESULT such that  

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a 

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set 

ERRREL to zero. 

Example 

The value of 
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 1/ 21

0

3ln 2 4
1 1 ln

9
x x x x dx


    

 

is estimated. The values of the actual and estimated error are machine dependent. 
 

      USE QDAWS_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    IWEIGH, NOUT 

      REAL       A, ABS, ALOG, ALPHA, B, BETAW, ERRABS, ERREST, ERROR, & 

                EXACT, F, RESULT 

      INTRINSIC  ABS, ALOG 

      EXTERNAL   F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 

      A = 0.0 

      B = 1.0 

!                                 Select weight 

      ALPHA  = 1.0 

      BETAW   = 0.5 

      IWEIGH = 2 

!                                 Set error tolerances 

      ERRABS = 0.0 

      CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETAW, RESULT, & 

                ERRABS=ERRABS, ERREST=ERREST) 

!                                 Print results 

      EXACT = (3.*ALOG(2.)-4.)/9. 

      ERROR = ABS(RESULT-EXACT) 

      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, & 

            ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3) 

      END 

! 

      REAL FUNCTION F (X) 

      REAL       X 

      REAL       SQRT 

      INTRINSIC  SQRT 

      F = SQRT(1.0+X) 

      RETURN 

      END 

Output 
 

Computed =  -0.213              Exact =  -0.213 

 

Error estimate = 1.261E-08      Error = 2.980E-08 

QDAWC 
Integrates a function f(x)/(x-c) in the Cauchy principal value sense. 
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Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is 

F(X), where 

X − Independent variable.   (Input) 

F − The function value.   (Output) 

 F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

C — Singular point.   (Input)  

C must not equal A or B. 

RESULT — Estimate of the integral from A to B of F(X)/(X − C).   (Output) 

Optional Arguments 

ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 

Default: ERREL =1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QDAWC (F, A, B, C, RESULT [,…]) 

Specific: The specific interface names are S_QDAWC and D_QDAWC. 

FORTRAN 77 Interface 

Single: CALL QDAWC (F, A, B, C, ERRABS, ERRREL, RESULT, ERREST) 

Double: The double precision name is DQDAWC. 

Description 

The routine QDAWC uses a globally adaptive scheme in an attempt to reduce the absolute error. 

This routine computes integrals whose integrands have the special form w(x) f(x), where  

w(x) = 1/(x − c). If c lies in the interval of integration, then the integral is interpreted as a Cauchy 

principal value. A combination of modified Clenshaw-Curtis and Gauss-Kronrod formulas are 
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employed. In addition to the general strategy described for the IMSL routine QDAG, this routine 

uses an extrapolation procedure known as the ɛ-algorithm. The routine QDAWC is an 

implementation of the subroutine QAWC, which is fully documented by Piessens et al. (1983). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2AWC/DQ2AWC. The 

reference is: 

CALL Q2AWC (F, A, B, C, ERRABS, ERRREL, RESULT, ERREST, 

MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, 

IORD) 

The additional arguments are as follows: 

MAXSUB — Number of subintervals allowed.   (Input)  

A value of 500 is used by QDAWC. 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left 

endpoints.   (Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right 

endpoints.   (Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN 

integrals over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the 

NSUBIN values in RLIST.   (Output) 

IORD — Array of length MAXSUB.   (Output)  

Let k be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 − 

NSUBIN otherwise. The first k locations contain pointers to the error 

estimates over the subintervals, such that ELIST(IORD(1)), …, 

ELIST(IORD(k)) form a decreasing sequence. 

2. Informational errors 

Type Code 

4 1 The maximum number of subintervals allowed has been reached. 

3 2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 

3 3 A degradation in precision has been detected. 
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3. If EXACT is the exact value, QDAWC attempts to find RESULT such that  

ABS(EXACT − RESULT) .LE. MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a 

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set 

ERRREL to zero. 

Example 

The Cauchy principal value of 

 
 5

31

ln 125/ 6311

185 6
dx

x x





 

is estimated. The values of the actual and estimated error are machine dependent. 
 

      USE QDAWC_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    NOUT 

      REAL       A, ABS, ALOG, B, C, ERRABS, ERREST, ERROR, EXACT, & 

                 F, RESULT 

      INTRINSIC  ABS, ALOG 

      EXTERNAL   F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration and C 

      A = -1.0 

      B = 5.0 

      C = 0.0 

!                                 Set error tolerances 

      ERRABS = 0.0 

      CALL QDAWC (F, A, B, C, RESULT, ERRABS=ERRABS, ERREST=ERREST) 

!                                 Print results 

      EXACT = ALOG(125./631.)/18. 

      ERROR = 2*ABS(RESULT-EXACT) 

      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 

99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, & 

            ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3) 

      END 

! 

      REAL FUNCTION F (X) 

      REAL       X 

      F = 1.0/(5.*X**3+6.0) 

      RETURN 

      END 

Output 
 

Computed =  -0.090              Exact =  -0.090 

 

Error estimate = 2.022E-06      Error = 2.980E-08 
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QDNG 
Integrates a smooth function using a nonadaptive rule. 

Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is 

F(X), where 

X – Independent variable.   (Input) 

F – The function value.   (Output) 

 F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

RESULT — Estimate of the integral from A to B of F.   (Output) 

Optional Arguments 

ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QDNG (F, A, B, RESULT [,…]) 

Specific: The specific interface names are S_QDNG and D_QDNG. 

FORTRAN 77 Interface 

Single: CALL QDNG (F, A, B, ERRABS, ERRREL, RESULT, ERREST) 

Double: The double precision name is DQDNG. 

Description 

The routine QDNG is designed to integrate smooth functions. This routine implements a 

nonadaptive quadrature procedure based on nested Paterson rules of order 10, 21, 43, and 87. 

These rules are positive quadrature rules with degree of accuracy 19, 31, 64, and 130, respectively. 

The routine QDNG applies these rules successively, estimating the error, until either the error 
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estimate satisfies the user-supplied constraints or the last rule is applied. The routine QDNG is based 

on the routine QNG by Piessens et al. (1983). 

This routine is not very robust, but for certain smooth functions it can be efficient. If QDNG should 

not perform well, we recommend the use of the IMSL routine QDAGS. 

Comments 

1. Informational error 

Type Code 

4 1 The maximum number of steps allowed have been taken. The 

integral is too difficult for QDNG. 

2. If EXACT is the exact value, QDNG attempts to find RESULT such that  

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a 

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set 

ERRREL to zero. 

3. This routine is designed for efficiency, not robustness. If the above error is 

encountered, try QDAGS. 

Example 

The value of 

2 2

0
1xxe dx e 

 

is estimated. The values of the actual and estimated error are machine dependent. 
 

      USE QDNG_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    NOUT 

      REAL       A, ABS, B, ERRABS, ERREST, ERROR, EXACT, EXP, & 

                F, RESULT 

      INTRINSIC  ABS, EXP 

      EXTERNAL   F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 

      A = 0.0 

      B = 2.0 

!                                 Set error tolerances 

      ERRABS = 0.0 

      CALL QDNG (F, A, B, RESULT, ERRABS=ERRABS, ERREST=ERREST) 

!                                 Print results 

      EXACT = 1.0 + EXP(2.0) 

      ERROR = ABS(RESULT-EXACT) 

      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 
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99999 FORMAT (' Computed =', F8.3, 13X, ' Exact =', F8.3, /, /, & 

            ' Error estimate =', 1PE10.3, 6X, 'Error =', 1PE10.3) 

      END 

! 

      REAL FUNCTION F (X) 

      REAL       X 

      REAL       EXP 

      INTRINSIC  EXP 

      F = X*EXP(X) 

      RETURN 

      END 

Output 
 

Computed =   8.389              Exact =   8.389 

 

Error estimate = 5.000E-05      Error = 9.537E-07 

TWODQ 
Computes a two-dimensional iterated integral. 

Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is 

F(X,Y), where 

X – First argument of F.   (Input) 

Y – Second argument of F.   (Input) 

F – The function value.   (Output) 

 F must be declared EXTERNAL in the calling program. 

A — Lower limit of outer integral.   (Input) 

B — Upper limit of outer integral.   (Input) 

G — User-supplied FUNCTION to evaluate the lower limits of the inner integral. The form is 

G(X), where 

X – Only argument of G.   (Input) 

G – The function value.   (Output) 

 G must be declared EXTERNAL in the calling program. 

H — User-supplied FUNCTION to evaluate the upper limits of the inner integral. The form is 

H(X), where 

X – Only argument of H.   (Input) 

H – The func`tion value.   (Output) 
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 H must be declared EXTERNAL in the calling program. 

RESULT — Estimate of the integral from A to B of F.   (Output) 

Optional Arguments 

ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

IRULE --- Choice of quadrature rule.  (Input)  

Default: IRULE = 2. 

The Gauss-Kronrod rule is used with the following points: 

 

 

IRULE Points 

1   7-15 

2 10-21 

3 15-31 

4 20-41 

5 25-51 

6 30-61 

 

If the function has a peak singularity, use IRULE = 1.  If the function is oscillatory, use 

IRULE = 6. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 

Generic: CALL TWODQ (F, A, B, G, H, RESULT [,…]) 

Specific: The specific interface names are S_TWODQ and D_TWODQ. 

FORTRAN 77 Interface 

Single: CALL TWODQ (F, A, B, G, H, ERRABS, ERRREL, IRULE, RESULT, ERREST) 

Double: The double precision name is DTWODQ. 

Description 

The routine TWODQ approximates the two-dimensional iterated integral 
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,

b h x

a g x
f x y dy dx 

 

with the approximation returned in RESULT. An estimate of the error is returned in ERREST. The 

approximation is achieved by iterated calls to QDAG. Thus, this algorithm will share many of the 

characteristics of the routine QDAG. As in QDAG, several options are available. The absolute and 

relative error must be specified, and in addition, the Gauss-Kronrod pair must be specified 

(IRULE). The lower-numbered rules are used for less smooth integrands while the higher-order 

rules are more efficient for smooth (oscillatory) integrands. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of T2ODQ/DT2ODQ. The 

reference is:  

CALL T2ODQ (F, A, B, G, H, ERRABS, ERRREL, IRULE, RESULT, 

ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, 

ELIST, IORD, WK, IWK) 

The additional arguments are as follows: 

MAXSUB — Number of subintervals allowed.   (Input)  

A value of 250 is used by TWODQ. 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated in the outer integral.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left 

endpoints for the outer integral.   (Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right 

endpoints for the outer integral.   (Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN 

integrals over the intervals defined by ALIST, BLIST, pertaining only 

to the outer integral.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the 

NSUBIN values in RLIST.   (Output) 

IORD — Array of length MAXSUB.   (Output) 

Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 − 

NSUBIN otherwise. Then the first K locations contain pointers to the 

error estimates over the corresponding subintervals, such that 

ELIST(IORD(1)), …, ELIST(IORD(K)) form a decreasing sequence. 

WK — Work array of length 4 * MAXSUB, needed to evaluate the inner 

integral. 
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IWK — Work array of length MAXSUB, needed to evaluate the inner integral. 

2. Informational errors 

Type Code 

4 1 The maximum number of subintervals allowed has been reached. 

3 2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 

3 3  A degradation in precision has been detected. 

3. If EXACT is the exact value, TWODQ attempts to find RESULT such that  

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a 

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set 

ERRREL to zero. 

Example 1 

In this example, we approximate the integral 

 
1 3 2

0 1
cosy x y dy dx 

 

The value of the error estimate is machine dependent. 
 

      USE TWODQ_INT 

      USE UMACH_INT 

      IMPLICIT   NONE 

      INTEGER    IRULE, NOUT 

      REAL       A, B, ERRABS, ERREST, ERRREL, F, G, H, RESULT 

      EXTERNAL   F, G, H 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 

      A = 0.0 

      B = 1.0 

!                                 Set error tolerances 

      ERRABS = 0.0 

      ERRREL = 0.01 

!                                 Parameter for oscillatory function 

      IRULE = 6 

      CALL TWODQ (F, A, B, G, H, RESULT, ERRABS, ERRREL, IRULE, ERREST) 

!                                 Print results 

      WRITE (NOUT,99999) RESULT, ERREST 

99999 FORMAT (‘ Result =‘, F8.3, 13X, ‘ Error estimate = ‘, 1PE9.3) 

      END 

! 

      REAL FUNCTION F (X, Y) 

      REAL       X, Y 

      REAL       COS 

      INTRINSIC  COS 

      F = Y*COS(X+Y*Y) 
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      RETURN 

      END 

! 

      REAL FUNCTION G (X) 

      REAL       X 

      G = 1.0 

      RETURN 

      END 

! 

      REAL FUNCTION H (X) 

      REAL       X 

      H = 3.0 

      RETURN 

      END 

Output 
 

Result =  -0.514              Error estimate = 3.065E-06 

Additional Examples 

Example 2 

We modify the above example by assuming that the limits for the inner integral depend on x and, 

in particular, are g(x) = −2x and h(x) = 5x. The integral now becomes 

 
1 5 2

0 2
cos

x

x
y x y dy dx


 

 

The value of the error estimate is machine dependent. 
 

      USE TWODQ_INT 

      USE UMACH_INT 

!                               Declare F, G, H 

      INTEGER    IRULE, NOUT 

      REAL       A, B, ERRABS, ERREST, ERRREL, F, G, H, RESULT 

      EXTERNAL   F, G, H 

! 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 

      A = 0.0 

      B = 1.0 

!                                 Set error tolerances 

      ERRABS = 0.001 

      ERRREL = 0.0 

!                                 Parameter for oscillatory function 

      IRULE = 6 

      CALL TWODQ (F, A, B, G, H, RESULT, ERRABS, ERRREL, IRULE, ERREST) 

!                                 Print results 

      WRITE (NOUT,99999) RESULT, ERREST 

99999 FORMAT (‘ Computed =‘, F8.3, 13X, ‘ Error estimate = ‘, 1PE9.3) 

      END 

      REAL FUNCTION F (X, Y) 

      REAL       X, Y 

! 

      REAL       COS 
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      INTRINSIC  COS 

! 

      F = Y*COS(X+Y*Y) 

      RETURN 

      END 

      REAL FUNCTION G (X) 

      REAL       X 

! 

      G = -2.0*X 

      RETURN 

      END 

      REAL FUNCTION H (X) 

      REAL       X 

! 

      H = 5.0*X 

      RETURN 

      END 

Output 
 

Computed =  -0.083              Error estimate = 2.095E-06 

QDAG2D 
Integrates a function of  two variables with a possible internal or end point singularity. 

Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is F(X, Y [,]), where 

Function Return Value 

F — The function value.   (Output) 

Required Arguments 

X — Independent variable.   (Input) 

Y — Independent variable.   (Input) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional information to/from the user-supplied function. For a detailed 

description of this argument see FCN_DATA below. 

 F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration for outer dimension.   (Input) 
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B — Upper limit of integration. The relative values of A and B are interpreted properly. Thus 

if one exchanges A and B, the sign of the answer is changed. When the integrand is 

positive, the sign of the result is the same as the sign of B – A.   (Input) 

G — User-supplied FUNCTION to compute the lower limit of integration for the inner 

dimension. The form is G(X [,]), where 

Function Return Value 

G — The function value.   (Output) 

Required Arguments 

X — Independent variable.   (Input) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional information to/from the user-supplied function. For a detailed 

description of this argument see FCN_DATA below. 

 G must be declared EXTERNAL in the calling program. 

H — User-supplied FUNCTION to compute the upper limit of integration for the inner 

dimension. The form is H(X [,]), where 

Function Return Value 

H — The function value.   (Output) 

Required Arguments 

X — Independent variable.   (Input) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional information to/from the user-supplied function. For a detailed 

description of this argument see FCN_DATA below. 

 H must be declared EXTERNAL in the calling program. 

RESULT — Estimate of the integral from A to B of the integral from  G(X) to H(X) of G(X,Y).   

(Output) 

Optional Arguments 

ERRABS — Absolute error tolerance.  See Comment 1 for a discussion of the error 

tolerances.   (Input) 

Default: ERRABS = 0.0. 
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ERRFRAC — A fraction expressing the (number of  correct digits of accuracy 

desired)/(number of digits of achievable precision). See Comment 1 for a discussion of 

the error tolerances.   (Input) 

Default: ERRFRAC = 0.75. 

ERRREL— Relative error tolerance.  See Comment 1 for a discussion of the error tolerances.   

(Input) 

Default: ERRABS = 0.0. 

ERRPOST — An a posteriori estimate of the absolute value of the error committed while 

evaluating the integrand.  This value may be computed during the evaluation of the 

integrand. When this optional argument is used, FCN_DATA must also be used as 

FCN_DATA%RDATA(1) will be used to pass the newly calculated value of ERRPOST 

back from the evaluator, F. In this case, the user should not use FCN_DATA%RDATA(1) 

for passing other data. (Input) 

Default: ERRPOST = 0.0. 

ERRPRIOR— An a priori estimate of the absolute value of the relative error expected to be 

committed while evaluating the integrand.  Changes to this value are not detected 

during evaluation of the integral. (Input) 

Default: ERRPRIOR = 1.19e-7 for single precision and 2.22d-16 for double precision. 

MAXFCN — The maximum number of function values to use to compute the integral.   

(Input) 

Default: The number of function values is not bounded. 

SINGULARITY — The real part of the abscissa of a singularity or discontinuity in the 

innermost integrand.  If this option is used, SINGULARITY_TYPE must also be used. 

(Input) 

Default: It is assumed that there is no singularity in the innermost integrand so 

SINGULARITY is not set. It is an error to set SINGULARITY without also setting 

SINGULARITY_TYPE. 

SINGULARITY_TYPE— A signed integer specifying the type of singularity which occurs in 

the innermost integrand. If the singularity has a leading term of the form xα
  
where α is 

not an integer, if α is ―large‖ or has the form α = (2n-1)/2 where n is a nonnegative 

integer, or the singularity is well outside the interval, set SINGULARITY_TYPE to a 

positive integer. Otherwise, set SINGULARITY_TYPE to a negative integer.   (Input) 

Default: It is assumed that there is no singularity in the innermost integrand so 

SINGULARITY_TYPE is not set. It is an error to set SINGULARITY_TYPE without also 

setting SINGULARITY. 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional 

information to/from the user-supplied function. The derived type, s_fcn_data, is 

defined as: 

type s_fcn_data 

   real(kind(1e0)), pointer, dimension(:) :: rdata 
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   integer, pointer, dimension(:) :: idata 

end type 

in module mp_types. The double precision counterpart to s_fcn_data is named 

d_fcn_data. The user must include a use mp_types statement in the calling 

program to define this derived type.  (Input/Output) 

NEVAL — Number of function evaluations used to calculate the integral.   (Output) 

ERREST — An estimate of the upper bound of the magnitude of the difference between 

RESULT and the true value of the integral.   (Output) 

ISTATUS — A status flag indicating the error criteria which was satisfied on exit.   

ISTATUS = -1 indicates normal termination with either the absolute or relative error 

tolerance criteria satisfied. 

ISTATUS = -2 indicates normal termination with neither the absolute nor the relative 

error tolerance criteria satisfied, but the error tolerance based on the locally achievable 

precision is satisfied. 

ISTATUS = -3 indicates normal termination with none of the error tolerance criteria 

satisfied. 

ISTATUS = any value other than the above indicates abnormal termination due to an 

error condition.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QDAG2D (F, A, B, G, H, RESULT [,…]) 

Specific: The specific interface names are S_QDAG2D and D_QDAG2D. 

Description 

QDAG2D, based on the JPL Library routine SINTM, approximates an iterated two-dimensional 

integral of the form 

 
( )

( )
,

b h x

a g x
f x y dy dx 

 

The integral over two dimensions is computed by repeated integration over one dimension. The 

integration over one dimension is estimated using quadrature formulae due to T. N. L. Patterson 

(1968). Patterson described a family of formulae in which the k
th  

formula used all the integrand 

values used in the k-1
st
  formula, and added 2

k-1 
new integrand values in an optimal way. The first 

formula is the midpoint rule, the second is the three point Gauss formula, and the third is the seven 

point Kronrod formula. Formulae of this family of higher degree had not previously been 

described. This program uses formulae up to k = 8.  

An error estimate is obtained by comparing the values of the integral estimated by two adjacent 

formulae, examining differences up to the fifteenth order, integrating round-off error, integrating 

error declared to have been committed during computation of the integrand, integrating a first 

order estimate of the effect round-off error in the abscissa has on integrand values, and including 

errors in the limits. The latter four methods are also used to derive a bound on the achievable 

precision. 
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If the integral over an interval cannot be estimated with sufficient accuracy, the interval is 

subdivided. The difference table is used to discover whether the integral is difficult to compute 

because the integrand is too complex or has singular behavior. In the former case, the estimated 

error, requested error tolerance, and difference table are used to choose a step size.  

In the latter case, the difference table is used in a search algorithm to find the abscissa of the 

singular behavior. If the singular behavior is discovered on the end of an interval, a change of 

independent variable is applied to reduce the strength of the singularity. 

The program also uses the difference table to detect nonintegrable singularities, jump 

discontinuities, and computational noise. 

Comments 

1. The user provides the absolute error tolerance through optional argument ERRABS. 

Optional argument ERRFRAC represents the ratio of the (number of  correct digits of 

accuracy desired) to (number of digits of achievable precision). The internal value for 

ERRFRAC is bounded between .5 and 1.The error tolerance relative to the value of the 

integral is specified via optional argument ERRREL. By default, ERRABS and ERRREL 

are set to 0.0 and ERRFRAC is set to .75. These default values usually provide all the 

accuracy that can be obtained efficiently. 

 

The error tolerance relative to the value of the integral is applied globally (over the 

entire region of integration) rather than locally (one step at a time). This policy 

provides true control of error relative to the value of the integral when the integrand is 

not sign definite, as well as when the integrand is sign definite. To apply the criterion 

of error tolerance relative to the value of the integral, the value of the integral over the 

entire region, estimated without refinement of the region, is used to derive an absolute 

error tolerance that may be applied locally. If the preliminary estimate of the value of 

the integral is significantly in error, and the least restrictive error tolerance is relative to 

the value of the integral, the cost of computing the integral will be larger than the cost 

of computing the integral to the same degree of accuracy using appropriate values of 

either of the other tolerance criteria.  The preliminary estimate of the integral may be 

significantly in error if the integrand is not sign definite or has large variation. 

2. Optional arguments SINGULARITY and SINGULARITY_TYPE provide the user with a 

means to give the routine information about the location and type of any known 

singularity of the innermost integrand. When an integrand appears to have singular 

behavior at the end of the interval, a transformation of the variable of integration is 

applied to reduce the strength of the singularity. When an integrand appears to have 

singular behavior inside the interval, the abscissa of the singularity is determined as 

precisely as necessary, depending on the error tolerance, and the interval is subdivided. 

The discovery of singular behavior and determination of the abscissa of singular 

behavior are expensive. If the user knows of the existence of a singularity, the 

efficiency of computation of the integral may be improved by requesting an immediate 

transformation of the independent variable or subdivision of the interval. It is 

recommended that the user select these optional arguments for all singularities, even 

those outside [A, B].  If the singularity has a leading term of the form x
α 

where α is not 

an integer, if α is ―large‖ or has the form α = (2n-1)/2 where n is a nonnegative 

integer, or the singularity is well outside the interval, set SINGULARITY_TYPE to a 
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positive value. Otherwise, set SINGULARITY_TYPE to a negative value. The meaning 

of ―large‖ depends on the rest of the integrand and the length of the interval. For the 

typical case, a value of about 2 is considered ―large‖. For a singularity of the form x
α 

log x use the above rule, even if α is an integer. For other types of singularities make a 

reasonable guess based on the above. If several similar integrals are to be computed, 

some experimentation may be useful. 

 

When SINGULARITY_TYPE is positive, a transformation of the form  

T = TA + (X – TA)
2 
/ (TB – TA) is applied, where TA is the abscissa of the singularity 

and TB is the end of the interval. If TA is outside the interval, TB will be the end of the 

interval farthest from TA. If TA is inside the interval, the interval will immediately be 

subdivided at TA, and both parts will be separately integrated with TB equal to each 

end of the original interval, respectively. When SINGULARITY_TYPE is negative, a 

transformation of the form T = TA + (X – TA)
4 
/ (TB – TA)

3
 is applied, with TA and TB 

as above. 

 

If the integrand has singularities at more than one abscissa within the region, or more 

than one pole near the real axis such that the real parts are within the region of 

integration, then the interval should be subdivided at the abscissa of the singularities or 

the real parts of the poles, and the integrals should be computed as separate problems, 

with the results summed. 

Example 

The value of  

 
1 3 2

0 1
cosy x y dy dx 

 

is estimated.  
 

      USE QDAG2D_INT 

      USE UMACH_INT 

 

      IMPLICIT NONE 

!                                 Declare variables 

      INTEGER  NOUT 

 

      REAL  A, B, ERREST, F, G, H, RESULT 

       

      EXTERNAL      F, G, H 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 

      A = 0.0 

      B = 1.0 

!                             Set singularity value and type 

      CALL QDAG2D ( F, A, B, G, H, RESULT, ERREST=ERREST) 

!                             Print the results 

      WRITE(NOUT,*)'Result = ', RESULT 

      WRITE(NOUT,9999) ERREST 

 9999 FORMAT('Error Estimate = ', 1PE9.1) 
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      END 

 

      REAL FUNCTION F (X, Y) 

      REAL       X, Y 

      REAL       COS 

      INTRINSIC  COS 

      F = Y*COS(X+Y*Y) 

      RETURN 

      END 

 

      REAL FUNCTION G (X) 

      REAL       X 

      G = 1.0 

      RETURN 

      END 

 

      REAL FUNCTION H (X) 

      REAL       X 

      H = 3.0 

      RETURN 

      END 

Output 
 

RESULT = -0.51425 

Error Estimate = 5.3-06 

 

QDAG3D 
Integrates a function of three variables with a possible internal or endpoint singularity. 

Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is F(X, Y, Z [,]), where 

Function Return Value 

F — The function value.   (Output) 

Required Arguments 

X — Independent variable.   (Input) 

Y — Independent variable.   (Input) 

Z — Independent variable.   (Input) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional information to/from the user-supplied function. For a detailed 

description of this argument see FCN_DATA below. 
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 F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration for outer dimension.   (Input) 

B — Upper limit of integration for outer dimension. The relative values of A and B are 

interpreted properly. Thus if one exchanges A and B, the sign of the answer is changed. 

When the integrand is positive, the sign of the result is the same as the sign of B – A.   

(Input) 

G — User-supplied FUNCTION to compute the lower limit of integration for the middle 

dimension. The form is G(X [,]), where 

Function Return Value 

G — The function value.   (Output) 

Required Arguments 

X — Independent variable.   (Input) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional information to/from the user-supplied function. For a detailed 

description of this argument see FCN_DATA below. 

 G must be declared EXTERNAL in the calling program. 

H — User-supplied FUNCTION to compute the upper limit of integration for the middle 

dimension. The form is H(X [,]), where 

Function Return Value 

H — The function value.   (Output) 

Required Arguments 

X — Independent variable.   (Input) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional information to/from the user-supplied function. For a detailed 

description of this argument see FCN_DATA below. 

 H must be declared EXTERNAL in the calling program 

P — User-supplied FUNCTION to compute the lower limit of integration for the inner 

dimension. The form is P(X, Y [,]), where 

Function Return Value 

P — The function value.   (Output) 
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Required Arguments 

X — Independent variable.   (Input) 

Y — Independent variable.   (Input) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional information to/from the user-supplied function. For a detailed 

description of this argument see FCN_DATA below. 

 P must be declared EXTERNAL in the calling program. 

Q — User-supplied FUNCTION to compute the upper limit of integration for the inner 

dimension. The form is Q(X, Y [,]), where 

Function Return Value 

Q —   The function value.   (Output) 

Required Arguments 

X — Independent variable.   (Input) 

Y — Independent variable.   (Input) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional information to/from the user-supplied function. For a detailed 

description of this argument see FCN_DATA below. 

 Q must be declared EXTERNAL in the calling program 

RESULT — Estimate of the integral from A to B of the integral from G(X) to H(X) of the 

integral from P(X,Y) to Q(X,Y) of F(X,Y,Z).   (Output) 

Optional Arguments 

ERRABS — Absolute error tolerance.  See Comment 1 for a discussion of the error 

tolerances.  (Input) 

Default: ERRABS = 0.0. 

ERRFRAC — A fraction expressing the (number of  correct digits of accuracy 

desired)/(number of digits of achievable precision). See Comment 1 for a discussion of 

the error tolerances. (Input) 

Default: ERRFRAC = 0.75. 

ERRREL —  The error tolerance relative to the value of the integral. See Comment 1 for a 

discussion of the error tolerances.  (Input) 

Default: ERRREL = 0.0. 
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ERRPOST — An a posteriori estimate of the absolute value of the error committed while 

evaluating the integrand.  This value may be computed during the evaluation of the 

integrand. When this optional argument is used, FCN_DATA must also be used as 

FCN_DATA%RDATA(1) will be used to pass the newly calculated value of ERRPOST 

back from the evaluator, F. In this case, the user should not use FCN_DATA%RDATA(1) 

for passing other data. (Input) 

Default: ERRPOST = 0.0. 

ERRPRIOR— An a priori estimate of the absolute value of the relative error expected to be 

committed while evaluating the integrand. Changes to this value are not detected 

during evaluation of the integral.   (Input) 

Default: ERRPRIOR = 1.19e-7 for single precision and 2.22d-16 for double precision. 

MAXFCN — The maximum number of function values to use to compute the integral.   

(Input) 

Default: The number of function values is not bounded. 

SINGULARITY — The real part of the abscissa of a singularity or discontinuity in the 

innermost integrand.  If this option is used, SINGULARITY_TYPE must also be used. 

(Input) 

Default: It is assumed that there is no singularity in the innermost integrand so 

SINGULARITY is not set. It is an error to set SINGULARITY without also setting 

SINGULARITY_TYPE. 

SINGULARITY_TYPE— A signed integer specifying the type of singularity which occurs in 

the innermost integrand. If the singularity has a leading term of the form xα
  
where α is 

not an integer, if α is ―large‖ or has the form α = (2n-1)/2 where n is a nonnegative 

integer, or the singularity is well outside the interval, set SINGULARITY_TYPE to a 

positive integer. Otherwise, set SINGULARITY_TYPE to a negative integer.   (Input) 

Default: It is assumed that there is no singularity in the innermost integrand so 

SINGULARITY_TYPE is not set. It is an error to set SINGULARITY_TYPE without also 

setting SINGULARITY. 

 FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional 

information to/from the user-supplied function. The derived type, s_fcn_data, is 

defined as: 

type s_fcn_data 

   real(kind(1e0)), pointer, dimension(:) :: rdata 

   integer, pointer, dimension(:) :: idata 

end type 

in module mp_types. The double precision counterpart to s_fcn_data is named 

d_fcn_data. The user must include a use mp_types statement in the calling 

program to define this derived type.  (Input/Output) 

NEVAL — Number of function evaluations used to calculate the integral.   (Output) 
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ERREST — An estimate of the upper bound of the magnitude of the difference between 

RESULT and the true value of the integral.   (Output) 

ISTATUS — A status flag indicating the error criteria which was satisfied on exit.   

ISTATUS = -1 indicates normal termination with either the absolute or relative error 

tolerance criteria satisfied. 

ISTATUS = -2 indicates normal termination with neither the absolute nor the relative 

error tolerance criteria satisfied, but the error tolerance based on the locally achievable 

precision is satisfied. 

ISTATUS = -3 indicates normal termination with none of the error tolerance criteria 

satisfied. 

ISTATUS = any value other than the above indicates abnormal termination due to an 

error condition.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QDAG3D (F, A,  B,  G, H,  P, Q,  RESULT [,…]) 

Specific: The specific interface names are S_QDAG3D and D_QDAG3D. 

Description 

QDAG3D, based on the JPL Library routine SINTM, approximates an iterated three-dimensional 

integral of the form 

 
 

 ( ) ,

( ) ,
, ,

b h x q x y

a g x p x y
f x y z dz dy dx  

 

The integral over three dimensions is computed by repeated integration over one dimension. The 

integration over one dimension is estimated using quadrature formulae due to T. N. L. Patterson 

(1968). Patterson described a family of formulae in which the k
th  

formula used all the integrand 

values used in the k-1
st
 formula, and added 2

k-1 
new integrand values in an optimal way. The first 

formula is the midpoint rule, the second is the three point Gauss formula, and the third is the seven 

point Kronrod formula. Formulae of this family of higher degree had not previously been 

described. This program uses formulae up to k = 8.  

An error estimate is obtained by comparing the values of the integral estimated by two adjacent 

formulae, examining differences up to the fifteenth order, integrating round-off error, integrating 

error declared to have been committed during computation of the integrand, integrating a first 

order estimate of the effect round-off error in the abscissa has on integrand values, and including 

errors in the limits. The latter four methods are also used to derive a bound on the achievable 

precision. 

If the integral over an interval cannot be estimated with sufficient accuracy, the interval is 

subdivided. The difference table is used to discover whether the integral is difficult to compute 

because the integrand is too complex or has singular behavior. In the former case, the estimated 

error, requested error tolerance, and difference table are used to choose a step size.  
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In the latter case, the difference table is used in a search algorithm to find the abscissa of the 

singular behavior. If the singular behavior is discovered on the end of an interval, a change of 

independent variable is applied to reduce the strength of the singularity. 

The program also uses the difference table to detect nonintegrable singularities, jump 

discontinuities, and computational noise.   

Comments 

1. The user provides the absolute error tolerance through optional argument ERRABS. 

Optional argument ERRFRAC represents the ratio of the (number of  correct digits of 

accuracy desired) to (number of digits of achievable precision). Optional argument 

ERRREL represents the error tolerance relative to the value of the integral. The internal 

value for ERRFRAC is bounded between .5 and 1. By default, ERRABS and ERRREL are 

set to 0.0 and ERRFRAC is set to .75. These default values usually provide all the 

accuracy that can be obtained efficiently. 

 

The error tolerance relative to the value of the integral is applied globally (over the 

entire region of integration) rather than locally (one step at a time). This policy 

provides true control of error relative to the value of the integral when the integrand is 

not sign definite, as well as when the integrand is sign definite. To apply the criterion 

of error tolerance relative to the value of the integral, the value of the integral over the 

entire region, estimated without refinement of the region, is used to derive an absolute 

error tolerance that may be applied locally. If the preliminary estimate of the value of 

the integral is significantly in error, and the least restrictive error tolerance is relative to 

the value of the integral, the cost of computing the integral will be larger than the cost 

of computing the integral to the same degree of accuracy using appropriate values of 

either of the other tolerance criteria.  The preliminary estimate of the integral may be 

significantly in error if the integrand is not sign definite or has large variation. 

2. Optional arguments SINGULARITY and SINGULARITY_TYPE provide the user with a 

means to give the routine information about the location and type of any known 

singularity of the innermost integrand. When an integrand appears to have singular 

behavior at the end of the interval, a transformation of the variable of integration is 

applied to reduce the strength of the singularity. When an integrand appears to have 

singular behavior inside the interval, the abscissa of the singularity is determined as 

precisely as necessary, depending on the error tolerance, and the interval is subdivided. 

The discovery of singular behavior and determination of the abscissa of singular 

behavior are expensive. If the user knows of the existence of a singularity, the 

efficiency of computation of the integral may be improved by requesting an immediate 

transformation of the independent variable or subdivision of the interval. It is 

recommended that the user select these optional arguments for all singularities, even 

those outside [A, B].  If the singularity has a leading term of the form x
α 

where α is not 

an integer, if α is ―large‖ or has the form α = (2n-1)/2 where n is a nonnegative 

integer, or the singularity is well outside the interval, set SINGULARITY_TYPE to a 

positive value. Otherwise, set SINGULARITY_TYPE to a negative value. The meaning 

of ―large‖ depends on the rest of the integrand and the length of the interval. For the 

typical case, a value of about 2 is considered ―large‖. For a singularity of the form x
α 

log x use the above rule, even if α is an integer. For other types of singularities make a 

reasonable guess based on the above. If several similar integrals are to be computed, 
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some experimentation may be useful. 

 

When SINGULARITY_TYPE is positive, a transformation of the form  

T = TA + (X – TA)
2 
/ (TB – TA) is applied, where TA is the abscissa of the singularity 

and TB is the end of the interval. If TA is outside the interval, TB will be the end of the 

interval farthest from TA. If TA is inside the interval, the interval will immediately be 

subdivided at TA, and both parts will be separately integrated with TB equal to each 

end of the original interval, respectively. When SINGULARITY_TYPE is negative, a 

transformation of the form T = TA + (X – TA)
4 
/ (TB – TA)

3
 is applied, with TA and TB 

as above. 

 

If the integrand has singularities at more than one abscissa within the region, or more 

than one pole near the real axis such that the real parts are within the region of 

integration, then the interval should be subdivided at the abscissa of the singularities or 

the real parts of the poles, and the integrals should be computed as separate problems, 

with the results summed. 

Example 

The value of  

 
1 1 1

0 0 0
1.0 2

x x y
x y z dz dy dx

  
    

 

is estimated.  
 

      USE QDAG3D_INT 

      USE UMACH_INT 

 

      IMPLICIT NONE 

!                                 Declare variables 

      INTEGER  NOUT 

 

      REAL  A, B, ERREST, F, G, H, P, Q, RESULT 

       

      EXTERNAL      F, G, H, P, Q 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set limits of integration 

      A = 0.0 

      B = 1.0 

!                             Set singularity value and type 

      CALL QDAG3D ( F, A, B, G, H, P, Q, RESULT, & 

      ERREST=ERREST) 

!                             Print the results 

      WRITE(NOUT,*) 'Result = ', RESULT 

      WRITE(NOUT,9999) ERREST 

 9999 FORMAT('Error Estimate = ', 1PE9.1) 

      END 

 

      REAL FUNCTION F (X, Y, Z) 

      REAL       X, Y, Z 
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      F = 1.0 + X + Y + 2.0*Z 

      RETURN 

      END 

 

      REAL FUNCTION G (X) 

      REAL       X 

      G = 0.0 

      RETURN 

      END 

 

      REAL FUNCTION H (X) 

      REAL       X 

      H = 1.0 - X 

      RETURN 

      END 

 

      REAL FUNCTION P (X, Y) 

      REAL       X, Y 

      P = 0.0 

      RETURN 

      END 

 

      REAL FUNCTION Q (X, Y) 

      REAL       X, Y 

      Q = 1.0 – X - Y 

      RETURN 

      END 

Output 
 

RESULT = 0.333333 

Error Estimate = 1.9E-07 

QAND 
Integrates a function on a hyper-rectangle. 

Required Arguments 

F — User-supplied FUNCTION to be integrated. The form is 

F(N, X), where 

N – The dimension of the hyper-rectangle.   (Input) 

X – The independent variable of dimension N.   (Input) 

F – The value of the integrand at X.   (Output) 

 F must be declared EXTERNAL in the calling program. 

N — The dimension of the hyper-rectangle.   (Input)  

N must be less than or equal to 20. 
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A — Vector of length N.   (Input)  

Lower limits of integration. 

B — Vector of length N.   (Input)  

Upper limits of integration. 

RESULT — Estimate of the integral from A to B of F.   (Output)  

The integral of F is approximated over the N-dimensional hyper-rectangle 

A.LE.X.LE.B. 

Optional Arguments 

ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 

Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

MAXFCN — Approximate maximum number of function evaluations to be permitted.  

(Input) 

MAXFCN cannot be greater than 256N or IMACH(5) if N is greater than 3. 

Default: MAXFCN = 32**N. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QAND (F, N, A, B, RESULT [,…]) 

Specific: The specific interface names are S_QAND and D_QAND. 

FORTRAN 77 Interface 

Single: CALL QAND (F, N, A, B, ERRABS, ERRREL, MAXFCN, RESULT, ERREST) 

Double: The double precision name is DQAND. 

Description 

The routine QAND approximates the n-dimensional iterated integral 

 
1

1
1 1, ,

n

n

b b

n na a
f x x dx dx 

 

with the approximation returned in RESULT. An estimate of the error is returned in ERREST. The 

approximation is achieved by iterated applications of product Gauss formulas. The integral is first 

estimated by a two-point tensor product formula in each direction. Then for i = 1, …, n the routine 

calculates a new estimate by doubling the number of points in the i-th direction, but halving the 
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number immediately afterwards if the new estimate does not change appreciably. This process is 

repeated until either one complete sweep results in no increase in the number of sample points in 

any dimension, or the number of Gauss points in one direction exceeds 256, or the number of 

function evaluations needed to complete a sweep would exceed MAXFCN. 

Comments 

1. Informational errors 

Type Code 

3 1 MAXFCN was set greater than 256
N
. 

4 2 The maximum number of function evaluations has been reached, and 

convergence has not been attained. 

2. If EXACT is the exact value, QAND attempts to find RESULT such that  

ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a 

relative error, set ERRABS to zero. Similarly, to specify only an absolute error, set 

ERRREL to zero. 

Example 

In this example, we approximate the integral of 

 2 2 2
1 2 3x x x

e
  

 

on an expanding cube. The values of the error estimates are machine dependent. The exact integral 

over  

3 3/ 2is R
 

 

      USE QAND_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    I, J, MAXFCN, N, NOUT 

      REAL       A(3), B(3), CNST, ERRABS, ERREST, ERRREL, F, RESULT 

      EXTERNAL   F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

! 

      N      = 3 

      MAXFCN = 100000 

!                                 Set error tolerances 

      ERRABS = 0.0001 

      ERRREL = 0.001 

! 

      DO 20  I=1, 6 

         CNST = I/2.0 

!                                 Set limits of integration 

!                                 As CNST approaches infinity, the 

!                                 answer approaches PI**1.5 

         DO 10  J=1, 3 
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            A(J) = -CNST 

            B(J) = CNST 

   10  CONTINUE 

         CALL QAND (F, N, A, B, RESULT, ERRABS, ERRREL, MAXFCN, ERREST) 

         WRITE (NOUT,99999) CNST, RESULT, ERREST 

   20 CONTINUE 

99999 FORMAT (1X, 'For CNST = ', F4.1, ', result = ', F7.3, ' with ', & 

             'error estimate ', 1PE10.3) 

      END 

! 

      REAL FUNCTION F (N, X) 

      INTEGER    N 

      REAL       X(N) 

      REAL       EXP 

      INTRINSIC  EXP 

      F = EXP(-(X(1)*X(1)+X(2)*X(2)+X(3)*X(3))) 

      RETURN 

      END 

Output 
 

For CNST =  0.5, result =   0.785 with error estimate  3.934E-06 

For CNST =  1.0, result =   3.332 with error estimate  2.100E-03 

For CNST =  1.5, result =   5.021 with error estimate  1.192E-05 

For CNST =  2.0, result =   5.491 with error estimate  2.413E-04 

For CNST =  2.5, result =   5.561 with error estimate  4.232E-03 

For CNST =  3.0, result =   5.568 with error estimate  2.580E-04 

QMC 
Integrates a function over a hyper rectangle using a quasi-Monte Carlo method. 

Required Arguments 

FCN —   User-supplied FUNCTION to be integrated.  The form is FCN(X), where  

X −  The independent variable.  (Input) 

FCN − The value of the integrand at X. (Output) 

 

FCN must be declared EXTERNAL in the calling program. 

A —   Vector containing lower limits of integration.   (Input) 

B —   Vector containing upper limits of integration.   (Input) 

RESULT —   The value of 

 
1

1
1 1, ,

n

n

b b

n na a
f x x dx dx 
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is returned, where n is the dimension of X.  If no value can be computed, then NaN is 

returned. (Output) 

Optional Arguments 

ERRABS —  Absolute accuracy desired. (Input) 

Default: 1.0e-2. 

ERRREL —  Relative accuracy desired. (Input) 

Default: 1.0e-2. 

ERREST —  Estimate of the absolute value of the error. (Output)  

MAXEVALS  —  Number of evaluations allowed.   (Input) 

Default: No limit. 

BASE —  The base of the Faure sequence. (Input) 

Default: The smallest prime number greater than or equal to the number of dimensions 

(length of a and b).  

SKIP —  The number of points to be skipped at the beginning of the Faure sequence.  (Input) 

Default: 
/ 2 1m  

 
base , where log logBm    / base  and B is the largest 

representable integer. 

FORTRAN 90 Interface 

Generic: CALL QMC (FCN, A, B, RESULT [,…]) 

Specific: The specific interface names are S_QMC and D_QMC. 

Description 

Integration of functions over hyper rectangle by direct methods, such as QAND, is practical only for 

fairly low dimensional hypercubes. This is because the amount of work required increases 

exponentially as the dimension increases. 

An alternative to direct methods is QMC, in which the integral is evaluated as the value of the 

function averaged over a sequence of randomly chosen points. Under mild assumptions on the 

function, this method will converge like  

1/ k  

 where k is the number of points at which the function is evaluated. 

It is possible to improve on the performance of QMC by carefully choosing the points at which the 

function is to be evaluated. Randomly distributed points tend to be non-uniformly distributed. The 

alternative to a sequence of random points is a low-discrepancy sequence. A low-discrepancy 

sequence is one that is highly uniform. 



     

     
 

978  Chapter 4: Integration and Differentiation IMSL MATH LIBRARY  

     

     

 

This function is based on the low-discrepancy Faure sequence as computed by FAURE_NEXT, see 

Stat Library, Chapter 18, Random Number Generation. 

Example 

This example evaluates the n-dimensional integral 

 
1

1 1

0 0
1 1

1 1
1 1

3 2

nin
i

j n

i j

x dx dx
 

  
      

   
 

 

with n=10. 
 

 use qmc_int 

       implicit none 

       integer, parameter   :: ndim=10 

       real(kind(1d0))      :: a(ndim) 

       real(kind(1d0))      :: b(ndim) 

       real(kind(1d0))      :: result 

       integer              :: I 

       external fcn              

 

       a = 0.d0 

       b = 1.d0 

 

       call qmc(fcn, a, b, result) 

       write (*,*) 'result = ', result 

      end  

 

        real(kind(1d0)) function fcn(x) 

            implicit none 

            real(kind(1d0)), dimension(:)  :: x 

            integer  :: i, j 

            real(kind(1d0)) :: prod, sum, sign 

 

            sign = -1.d0 

            sum = 0.d0 

            do i=1, size(x) 

                prod = 1.d0 

                prod = product(x(1:i)) 

                sum = sum + (sign * prod) 

                sign = -sign 

            end do 

            fcn = sum 

        end function fcn 

Output 
 

         result = -0.3334789 



 

 

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation  979 

     

     

 

GQRUL 
Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various classical weight 

functions. 

Required Arguments 

N — Number of quadrature points.   (Input) 

QX — Array of length N containing quadrature points.   (Output) 

QW — Array of length N containing quadrature weights.   (Output) 

Optional Arguments 

IWEIGH — Index of the weight function.   (Input)  

Default: IWEIGH = 1. 

 

 

 

 

 

     

 

   

2

2

2

1 1 1, 1 Legendre

2 1/ 1 1, 1 Chebyshev 1st kind

3 1 1, 1 Chebyshev 2nd kind

4 , Hermite

5 1 1 1, 1 Jacobi

6 0, Generalized Laguerre

7 1/ cosh , COSH

X

X

X

X

e

X X

e X

X

 







 

  

  

 

   



 

Interval NameIWEIGH WT X

 

ALPHA — Parameter used in the weight function with some values of IWEIGH, otherwise it 

is ignored.   (Input) 

Default: ALPHA = 2.0. 

BETAW — Parameter used in the weight function with some values of IWEIGH, otherwise it 

is ignored.   (Input) 

Default: BETAW = 2.0. 

NFIX — Number of fixed quadrature points.   (Input)  

NFIX = 0, 1 or 2. For the usual Gauss quadrature rules, NFIX = 0. 

Default: NFIX = 0. 

QXFIX — Array of length NFIX (ignored if NFIX = 0) containing the preset quadrature 

point(s).   (Input) 
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FORTRAN 90 Interface 

Generic: CALL GQRUL (N, QX, QW [,…]) 

Specific: The specific interface names are S_GQRUL and D_GQRUL. 

FORTRAN 77 Interface 

Single: CALL GQRUL (N, IWEIGH, ALPHA, BETAW, NFIX, QXFIX, QX, QW) 

Double: The double precision name is DGQRUL. 

Description 

The routine GQRUL produces the points and weights for the Gauss, Gauss-Radau, or Gauss-Lobatto 

quadrature formulas for some of the most popular weights. In fact, it is slightly more general than 

this suggests because the extra one or two points that may be specified do not have to lie at the 

endpoints of the interval. This routine is a modification of the subroutine GAUSSQUADRULE (Golub 

and Welsch 1969). 

In the simple case when NFIX = 0, the routine returns points in x = QX and weights in w = QW so 

that  

     
1

N
b

i ia
i

f x w x dx f x w



 

for all functions f that are polynomials of degree less than 2N. 

If NFIX = 1, then one of the above xi equals the first component of QXFIX. Similarly, if NFIX = 2, 

then two of the components of x will equal the first two components of QXFIX. In general, the 

accuracy of the above quadrature formula degrades when NFIX increases. The quadrature rule will 

integrate all functions f that are polynomials of degree less than 2N − NFIX. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of G2RUL/DG2RUL. The 

reference is 

CALL G2RUL (N, IWEIGH, ALPHA, BETAW, NFIX, QXFIX, QX, QW, 

WK) 

The additional argument is 

WK — Work array of length N. 

2. If IWEIGH specifies the weight WT(X) and the interval (a, b), then approximately 
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1

*
N

b

a
I

F X WT X dX F QX I QW I


 *

 

3. Gaussian quadrature is always the method of choice when the function F(X) behaves 

like a polynomial. Gaussian quadrature is also useful on infinite intervals (with 

appropriate weight functions), because other techniques often fail. 

4. The weight function 1/cosh(X) behaves like a polynomial near zero and like e
|X|

 far 

from zero. 

Example 1 

In this example, we obtain the classical Gauss-Legendre quadrature formula, which is accurate for 

polynomials of degree less than 2N, and apply this when N = 6 to the function x
8
 on the interval  

[−1, 1]. This quadrature rule is accurate for polynomials of degree less than 12. 
 

      USE GQRUL_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER (N=6) 

      INTEGER    I, NOUT 

      REAL       ANSWER, QW(N), QX(N), SUM 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

! 

!                                 Get points and weights from GQRUL 

      CALL GQRUL (N, QX, QW) 

!                                 Write results from GQRUL 

      WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N) 

99998 FORMAT (6(6X,'QX(',I1,') = ',F8.4,7X,'QW(',I1,') = ',F8.5,/)) 

!                                 Evaluate the integral from these 

!                                 points and weights 

      SUM = 0.0 

      DO 10  I=1, N 

         SUM = SUM + QX(I)**8*QW(I) 

   10 CONTINUE 

      ANSWER = SUM 

      WRITE (NOUT,99999) ANSWER 

99999 FORMAT (/, ' The quadrature result making use of these ', & 

             'points and weights is ', 1PE10.4, '.') 

      END 

Output 
 

QX(1) =  -0.9325       QW(1) =  0.17132 

QX(2) =  -0.6612       QW(2) =  0.36076 

QX(3) =  -0.2386       QW(3) =  0.46791 

QX(4) =   0.2386       QW(4) =  0.46791 

QX(5) =   0.6612       QW(5) =  0.36076 

QX(6) =   0.9325       QW(6) =  0.17132 
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The quadrature result making use of these points and weights is 2.2222E-01. 

Additional Examples 

Example 2 

We modify Example 1 by requiring that both endpoints be included in the quadrature formulas and 

again apply the new formulas to the function x
8
 on the interval [−1, 1]. This quadrature rule is 

accurate for polynomials of degree less than 10. 
 

      USE GQRUL_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER (N=6) 

      INTEGER    I, IWEIGH, NFIX, NOUT 

      REAL       ALPHA, ANSWER, BETAW, QW(N), QX(N), QXFIX(2), SUM 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

! 

      IWEIGH   = 1 

      ALPHA    = 0.0 

      BETAW     = 0.0 

      NFIX     = 2 

      QXFIX(1) = -1.0 

      QXFIX(2) = 1.0 

!                                 Get points and weights from GQRUL 

      CALL GQRUL (N, QX, QW, ALPHA=ALPHA, BETAW=BETAW, NFIX=NFIX,  & 

                 QXFIX=QXFIX) 

!                                 Write results from GQRUL 

      WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N) 

99998 FORMAT (6(6X,'QX(',I1,') = ',F8.4,7X,'QW(',I1,') = ',F8.5,/)) 

!                                 Evaluate the integral from these 

!                                 points and weights 

      SUM = 0.0 

      DO 10  I=1, N 

         SUM = SUM + QX(I)**8*QW(I) 

   10 CONTINUE 

      ANSWER = SUM 

      WRITE (NOUT,99999) ANSWER 

99999 FORMAT (/, ' The quadrature result making use of these ', & 

            'points and weights is ', 1PE10.4, '.') 

      END 

Output 
 

QX(1) =  -1.0000       QW(1) =  0.06667 

QX(2) =  -0.7651       QW(2) =  0.37847 

QX(3) =  -0.2852       QW(3) =  0.55486 

QX(4) =   0.2852       QW(4) =  0.55486 

QX(5) =   0.7651       QW(5) =  0.37847 

QX(6) =   1.0000       QW(6) =  0.06667 
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The quadrature result making use of these points and weights is 2.2222E-01. 

GQRCF 
Computes a Gauss, Gauss-Radau or Gauss-Lobatto quadra ture rule given the recurrence 

coefficients for the monic polynomials orthogonal with respect to the weight function. 

Required Arguments 

N — Number of quadrature points.   (Input) 

B — Array of length N containing the recurrence coefficients.   (Input)  

See Comments for definitions. 

C — Array of length N containing the recurrence coefficients.   (Input)  

See Comments for definitions. 

QX — Array of length N containing quadrature points.   (Output) 

QW — Array of length N containing quadrature weights.   (Output) 

Optional Arguments 

NFIX — Number of fixed quadrature points.   (Input)  

NFIX = 0, 1 or 2. For the usual Gauss quadrature rules NFIX = 0. 

Default: NFIX = 0. 

QXFIX — Array of length NFIX (ignored if NFIX = 0) containing the preset quadrature 

point(s).   (Input) 

FORTRAN 90 Interface 

Generic: CALL GQRCF (N, B, C, QX, QW [,…]) 

Specific: The specific interface names are S_GQRCF and D_GQRCF. 

FORTRAN 77 Interface 

Single: CALL GQRCF (N, B, C, NFIX, QXFIX, QX, QW) 

Double: The double precision name is DGQRCF. 

Description 

The routine GQRCF produces the points and weights for the Gauss, Gauss-Radau, or Gauss-Lobatto 

quadrature formulas given the three-term recurrence relation for the orthogonal polynomials. In 

particular, it is assumed that the orthogonal polynomials are monic, and hence, the three-term 

recursion may be written as 
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       1 2 for =1, ,i i i i ip x x b p x c p x i N   
 

where p0 = 1 and p-1 = 0. It is obvious from this representation that the degree of pi is i and that pi 

is monic. In order for the recurrence to give rise to a sequence of orthogonal polynomials (with 

respect to a nonnegative measure), it is necessary and sufficient that ci > 0. This routine is a 

modification of the subroutine GAUSSQUADRULE (Golub and Welsch 1969). In the simple case 

when NFIX = 0, the routine returns points in x = QX and weights in w = QW so that  

     
1

N
b

i ia
i

f x w x dx f x w



 

for all functions f that are polynomials of degree less than 2N. Here, w is any weight function for 

which the above recurrence produces the orthogonal polynomials pi on the interval [a, b] and w is 

normalized by 

  1

b

a
w x dx c

 

If NFIX = 1, then one of the above xi equals the first component of QXFIX. Similarly, if NFIX = 2, 

then two of the components of x will equal the first two components of QXFIX. In general, the 

accuracy of the above quadrature formula degrades when NFIX increases. The quadrature rule will 

integrate all functions f that are polynomials of degree less than 2N − NFIX. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of G2RCF/DG2RCF. The 

reference is: 

CALL G2RCF (N, B, C, NFIX, QXFIX, QX, QW, WK) 

The additional argument is: 

WK — Work array of length N. 

2. Informational error  

Type  Code 

4 1 No convergence in 100 iterations. 

3. The recurrence coefficients B(I) and C(I) define the monic polynomials via the relation 

P(I) = (X − B(I + 1)) * P(I − 1) − C(I + 1) * P(I − 2). C(1) contains the zero-th 

moment 

( )WT X dX  

 of the weight function. Each element of C must be greater than zero. 



 

 

IMSL MATH LIBRARY Chapter 4: Integration and Differentiation  985 

     

     

 

4. If WT(X) is the weight specified by the coefficients and the interval is (a, b), then 

approximately  

        
1

* *
N

b

a
I

F X WT X dX F QX I QW I



 

5. Gaussian quadrature is always the method of choice when the function F(X) behaves 

like a polynomial. Gaussian quadrature is also useful on infinite intervals (with 

appropriate weight functions) because other techniques often fail. 

Example 

We compute the Gauss quadrature rule (with N = 6) for the Chebyshev weight, (1 + x
2
) (-

1/2), from 

the recurrence coefficients. These coefficients are obtained by a call to the IMSL routine RECCF. 
 

      USE GQRCF_INT 

      USE UMACH_INT 

      USE RECCF_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER (N=6) 

      INTEGER    I, NFIX, NOUT 

      REAL       B(N), C(N), QW(N), QX(N), QXFIX(2) 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Recursion coefficients will come from 

!                                 routine RECCF. 

!                                 The call to RECCF finds recurrence 

!                                 coefficients for Chebyshev 

!                                 polynomials of the 1st kind. 

      CALL RECCF (N, B, C) 

! 

!                                  The call to GQRCF will compute the 

!                                 quadrature rule from the recurrence 

!                                 coefficients determined above. 

      CALL GQRCF (N, B, C, QX, QW) 

      WRITE (NOUT,99999) (I,QX(I),I,QW(I),I=1,N) 

99999 FORMAT (6(6X,'QX(',I1,') = ',F8.4,7X,'QW(',I1,') = ',F8.5,/)) 

! 

      END 

Output 
 

QX(1) =  -0.9325       QW(1) =  0.17132 

QX(2) =  -0.6612       QW(2) =  0.36076 

QX(3) =  -0.2386       QW(3) =  0.46791 

QX(4) =   0.2386       QW(4) =  0.46791 

QX(5) =   0.6612       QW(5) =  0.36076 

QX(6) =   0.9325       QW(6) =  0.17132 
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RECCF 
Computes recurrence coefficients for various monic polynomials. 

Required Arguments 

N — Number of recurrence coefficients.   (Input) 

B — Array of length N containing recurrence coefficients.   (Output) 

C — Array of length N containing recurrence coefficients.   (Output) 

Optional Arguments 

IWEIGH — Index of the weight function.   (Input)  

Default: IWEIGH = 1. 
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7 1/ cosh , COSH
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Interval NameIWEIGH WT X

 

 

ALPHA — Parameter used in the weight function with some values of IWEIGH, otherwise it 

is ignored.   (Input) 

Default: ALPHA=1.0. 

BETAW — Parameter used in the weight function with some values of IWEIGH, otherwise it 

is ignored.   (Input) 

Default: BETAW=1.0. 

FORTRAN 90 Interface 

Generic: CALL RECCF (N, B, C [,…]) 

Specific: The specific interface names are S_RECCF and D_RECCF. 
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FORTRAN 77 Interface 

Single: CALL RECCF (N, IWEIGH, ALPHA, BETAW, B, C) 

Double: The double precision name is DRECCF. 

Description 

The routine RECCF produces the recurrence coefficients for the orthogonal polynomials for some 

of the most important weights. It is assumed that the orthogonal polynomials are monic; hence, the 

three-term recursion may be written as 

       1 2 for =1, , i i i i ip x x b p x c p x i N   
 

where p0 = 1 and p-1 = 0. It is obvious from this representation that the degree of pi is i and that pi 

is monic. In order for the recurrence to give rise to a sequence of orthogonal polynomials (with 

respect to a nonnegative measure), it is necessary and sufficient that ci > 0. 

Comments 

The recurrence coefficients B(I) and C(I) define the monic polynomials via the relation  

P(I) = (X − B(I + 1)) * P(I − 1) − C(I + 1) * P(I − 2). The zero-th moment  

 ( )WT X dX
  

of the weight function is returned in C(1). 

Example 

Here, we obtain the well-known recurrence relations for the first six monic Legendre polynomials, 

Chebyshev polynomials of the first kind, and Laguerre polynomials. 
 

      USE RECCF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER (N=6) 

      INTEGER    I, IWEIGH, NOUT 

      REAL       ALPHA, B(N), C(N), BETAW 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

! 

      CALL RECCF (N, B, C) 

      WRITE (NOUT,99996) 

      WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N) 

! 

      IWEIGH = 2 

      CALL RECCF (N, B, C, IWEIGH=IWEIGH) 

      WRITE (NOUT,99997) 

      WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N) 

! 
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      IWEIGH = 6 

      ALPHA = 0.0 

      BETAW  = 0.0 

      CALL RECCF (N, B, C, IWEIGH=IWEIGH, ALPHA=ALPHA) 

      WRITE (NOUT,99998) 

      WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N) 

! 

99996 FORMAT (1X, 'Legendre') 

99997 FORMAT (/, 1X, 'Chebyshev, first kind') 

99998 FORMAT (/, 1X, 'Laguerre') 

99999 FORMAT (6(6X,'B(',I1,') = ',F8.4,7X,'C(',I1,') = ',F8.5,/)) 

      END 

Output 
 

Legendre 

B(1) =   0.0000       C(1) =  2.00000 

B(2) =   0.0000       C(2) =  0.33333 

B(3) =   0.0000       C(3) =  0.26667 

B(4) =   0.0000       C(4) =  0.25714 

B(5) =   0.0000       C(5) =  0.25397 

B(6) =   0.0000       C(6) =  0.25253 

 

Chebyshev, first kind 

B(1) =   0.0000       C(1) =  3.14159 

B(2) =   0.0000       C(2) =  0.50000 

B(3) =   0.0000       C(3) =  0.25000 

B(4) =   0.0000       C(4) =  0.25000 

B(5) =   0.0000       C(5) =  0.25000 

B(6) =   0.0000       C(6) =  0.25000 

 

Laguerre 

B(1) =   1.0000       C(1) =  1.00000 

B(2) =   3.0000       C(2) =  1.00000 

B(3) =   5.0000       C(3) =  4.00000 

B(4) =   7.0000       C(4) =  9.00000 

B(5) =   9.0000       C(5) = 16.00000 

B(6) =  11.0000       C(6) = 25.00000 

RECQR 
Computes recurrence coefficients for monic polynomials given a quadrature rule. 

Required Arguments 

QX — Array of length N containing the quadrature points.   (Input) 

QW — Array of length N containing the quadrature weights.   (Input) 

B — Array of length NTERM containing recurrence coefficients.   (Output) 

C — Array of length NTERM containing recurrence coefficients.   (Output) 
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Optional Arguments 

N — Number of quadrature points.   (Input) 

Default: N = size (QX,1). 

NTERM — Number of recurrence coefficients.   (Input)  

NTERM must be less than or equal to N. 

Default: NTERM = size (B,1). 

FORTRAN 90 Interface 

Generic: CALL RECQR (QX, QW, B, C [,…]) 

Specific: The specific interface names are S_RECQR and D_RECQR. 

FORTRAN 77 Interface 

Single: CALL RECQR (N, QX, QW, NTERM, B, C) 

Double: The double precision name is DRECQR. 

Description 

The routine RECQR produces the recurrence coefficients for the orthogonal polynomials given the 

points and weights for the Gauss quadrature formula. It is assumed that the orthogonal 

polynomials are monic; hence the three-term recursion may be written  

       1 2 for =1, , i i i i ip x x b p x c p x i N   
 

where p0 = 1 and p-1 = 0. It is obvious from this representation that the degree of pi is i and that pi 

is monic. In order for the recurrence to give rise to a sequence of orthogonal polynomials (with 

respect to a nonnegative measure), it is necessary and sufficient that ci > 0. 

This routine is an inverse routine to GQRCF. Given the recurrence coefficients, the routine GQRCF 

produces the corresponding Gauss quadrature formula, whereas the routine RECQR produces the 

recurrence coefficients given the quadrature formula. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of R2CQR/DR2CQR. The 

reference is: 

CALL R2CQR (N, QX, QW, NTERM, B, C, WK) 

The additional argument is: 

WK — Work array of length 2 * N. 

2. The recurrence coefficients B(I) and C(I) define the monic polynomials via the relation 

P(I) = (X − B(I + 1)) * P(I − 1) − C(I + 1) * P(I − 2). The zero-th moment 
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 ( )WT X dX  

 of the weight function is returned in C(1). 

Example 

To illustrate the use of RECQR, we will input a simple choice of recurrence coefficients, call GQRCF 

for the quadrature formula, put this information into RECQR, and recover the recurrence 

coefficients. 
 

      USE RECQR_INT 

      USE UMACH_INT 

      USE GQRCF_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER (N=5) 

      INTEGER    I, J, NFIX, NOUT, NTERM 

      REAL       B(N), C(N), FLOAT, QW(N), QX(N), QXFIX(2) 

      INTRINSIC  FLOAT 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

      NFIX = 0 

!                                 Set arrays B and C of recurrence 

!                                 coefficients 

      DO 10  J=1, N 

         B(J) = FLOAT(J) 

         C(J) = FLOAT(J)/2.0 

   10 CONTINUE 

      WRITE (NOUT,99995) 

99995 FORMAT (1X, 'Original recurrence coefficients') 

      WRITE (NOUT,99996) (I,B(I),I,C(I),I=1,N) 

99996 FORMAT (5(6X,'B(',I1,') = ',F8.4,7X,'C(',I1,') = ',F8.5,/)) 

! 

!                                 The call to GQRCF will compute the 

!                                 quadrature rule from the recurrence 

!                                 coefficients given above. 

! 

      CALL GQRCF (N, B, C, QX, QW) 

      WRITE (NOUT,99997) 

99997 FORMAT (/, 1X, 'Quadrature rule from the recurrence coefficients' & 

            ) 

      WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N) 

99998 FORMAT (5(6X,'QX(',I1,') = ',F8.4,7X,'QW(',I1,') = ',F8.5,/)) 

! 

!                                 Call RECQR to recover the original 

!                                 recurrence coefficients 

      NTERM = N 

      CALL RECQR (QX, QW, B, C) 

      WRITE (NOUT,99999) 

99999 FORMAT (/, 1X, 'Recurrence coefficients determined by RECQR') 

      WRITE (NOUT,99996) (I,B(I),I,C(I),I=1,N) 

! 
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      END 

Output 
 

Original recurrence coefficients 

B(1) =   1.0000       C(1) =  0.50000 

B(2) =   2.0000       C(2) =  1.00000 

B(3) =   3.0000       C(3) =  1.50000 

B(4) =   4.0000       C(4) =  2.00000 

B(5) =   5.0000       C(5) =  2.50000 

 

Quadrature rule from the recurrence coefficients 

QX(1) =   0.1525       QW(1) =  0.25328 

QX(2) =   1.4237       QW(2) =  0.17172 

QX(3) =   2.7211       QW(3) =  0.06698 

QX(4) =   4.2856       QW(4) =  0.00790 

QX(5) =   6.4171       QW(5) =  0.00012 

 

Recurrence coefficients determined by RECQR 

B(1) =   1.0000       C(1) =  0.50000 

B(2) =   2.0000       C(2) =  1.00000 

B(3) =   3.0000       C(3) =  1.50000 

B(4) =   4.0000       C(4) =  2.00000 

B(5) =   5.0000       C(5) =  2.50000 

FQRUL 
Computes a Fejér quadrature rule with various classical weight functions. 

Required Arguments 

N — Number of quadrature points.   (Input) 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input)  

B must be greater than A. 

QX — Array of length N containing quadrature points.   (Output) 

QW — Array of length N containing quadrature weights.   (Output) 

Optional Arguments 

IWEIGH — Index of the weight function.   (Input) 

Default: IWEIGH = 1. 

  IWEIGH WT(X) 

   1 1 

   2 1/(X − ALPHA)  
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   3 (B − X)
α  

(X − A)β 

   4 (B − X)
 α  

(X − A)β
 
log(X − A)  

   5 (B − X)
α 
(X – A)βlog(B − X) 

ALPHA — Parameter used in the weight function (except if IWEIGH = 1, it is ignored).   

(Input)  

If IWEIGH = 2, then it must satisfy A.LT.ALPHA.LT.B. If IWEIGH = 3, 4, or 5, then 

ALPHA must be greater than −1. 

Default: ALPHA= 0.0. 

BETAW — Parameter used in the weight function (ignored if IWEIGH = 1 or 2).   (Input)  

BETAW must be greater than −1.0. 

Default: BETAW= 0.0. 

FORTRAN 90 Interface 

Generic: CALL FQRUL (N, A, B, QX, QW [,…]) 

Specific: The specific interface names are S_FQRUL and D_FQRUL. 

FORTRAN 77 Interface 

Single: CALL FQRUL (N, A, B, IWEIGH, ALPHA, BETAW, QX, QW) 

Double: The double precision name is DFQRUL. 

Description 

The routine FQRUL produces the weights and points for the Fejér quadrature rule. Since this 

computation is based on a quarter-wave cosine transform, the computations are most efficient 

when N, the number of points, is a product of small primes. These quadrature formulas may be an 

intermediate step in a more complicated situation, see for instance Gautschi and Milovanofic 

(1985). 

The Fejér quadrature rules are based on polynomial interpolation. First, choose classical abscissas 

(in our case, the Gauss points for the Chebyshev weight function (1 − x
2
)-1/2

), then derive the 

quadrature rule for a different weight. In order to keep the presentation simple, we will describe 

the case where the interval of integration is [−1, 1] even though FQRUL allows rescaling to an 

arbitrary interval [a, b]. 

We are looking for quadrature rules of the form 

   
1

:
N

j j

j

Q f w f x
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where the 

1{ }N
j jx   

are the zeros of the N-th Chebyshev polynomial (of the first kind) TN (x) = cos(N arccos x). The 

weights in the quadrature rule Q are chosen so that, for all polynomials p of degree less than N, 

       
1

1
1

N

j j

j

Q p w p x p x w x dx




  
 

for some weight function w. In FQRUL, the user has the option of choosing w from five families of 

functions with various algebraic and logarithmic endpoint singularities. 

These Fejér rules are important because they can be computed using specialized FFT quarter-wave 

transform routines. This means that rules with a large number of abscissas may be computed 

efficiently. If we insert Tl for p in the above formula, we obtain 

       
1

1
1

N

l j l j l

j

Q T w T x T x w x dx




  
 

for l = 0, …, N − 1. This is a system of linear equations for the unknown weights wj that can be 

simplified by noting that 

 2 1
cos 1, ,

2
j

j
x j N

N


 

 

and hence, 

     

 

1

1
1

1

2 1
cos

2

N

l j l j

j

N

j

j

T x w x dx w T x

l j
w

N
















 

The last expression is the cosine quarter-wave forward transform for the sequence  

1{ }N
j jw   

that is implemented in Chapter 6, Transforms under the name QCOSF. More importantly, QCOSF 

has an inverse QCOSB. It follows that if the integrals on the left in the last expression can be 

computed, then the Fejér rule can be derived efficiently for highly composite integers N utilizing 

QCOSB. For more information on this topic, consult Davis and Rabinowitz (1984, pages 84−86) 

and Gautschi (1968, page 259). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2RUL/DF2RUL. The 

reference is: 
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CALL F2RUL (N, A, B, IWEIGH, ALPHA, BETAW, QX, QW, WK) 

The additional argument is: 

WK — Work array of length 3 * N + 15. 

2. If IWEIGH specifies the weight WT(X) and the interval (A, B), then approximately  

        
1

* *
N

B

A
I

F X WT X dX F QX I QW I



 

3. The routine FQRUL uses an fft, so it is most efficient when N is the product of small 

primes. 

Example 

Here, we obtain the Fejér quadrature rules using 10, 100, and 200 points. With these rules, we get 

successively better approximations to the integral 

 
1 2

0

1
sin 41

41
x x dx




 
 

      USE FQRUL_INT 

      USE UMACH_INT 

      USE CONST_INT 

       

      IMPLICIT   NONE 

      INTEGER    NMAX 

      PARAMETER (NMAX=200) 

      INTEGER    I, K, N, NOUT 

      REAL       A, ANSWER, B, F, QW(NMAX), & 

                QX(NMAX), SIN, SUM, X, PI, ERROR 

      INTRINSIC  SIN, ABS 

! 

      F(X) = X*SIN(41.0*PI*X**2) 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

! 

      PI = CONST('PI') 

      DO 20  K=1, 3 

         IF (K .EQ. 1) N = 10 

         IF (K .EQ. 2) N = 100 

         IF (K .EQ. 3) N = 200 

         A      = 0.0 

         B      = 1.0 

          

!                                 Get points and weights from FQRUL 

         CALL FQRUL (N, A, B, QX, QW) 

!                                 Evaluate the integral from these 

!                                 points and weights 

         SUM = 0.0 
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         DO 10  I=1, N 

            SUM = SUM + F(QX(I))*QW(I) 

   10  CONTINUE 

         ANSWER = SUM 

         ERROR = ABS(ANSWER - 1.0/(41.0*PI)) 

         WRITE (NOUT,99999) N, ANSWER, ERROR 

   20 CONTINUE 

! 

99999 FORMAT (/, 1X, 'When N = ', I3, ', the quadrature result making ' & 

            , 'use of these points ', /, ' and weights is ', 1PE11.4, & 

            ', with error ', 1PE9.2, '.') 

      END 

Output 
 

When N =  10, the quadrature result making use of these points and weights 

is -1.6523E-01, with error  1.73E-01. 

 

When N = 100, the quadrature result making use of these points and weights 

is  7.7637E-03, with error  2.79E-08. 

 

When N = 200, the quadrature result making use of these points and weights 

is  7.7636E-03, with error  1.40E-08. 

DERIV 
This function computes the first, second or third derivative of a user-supplied function. 

Function Return Value 

DERIV — Estimate of the first (KORDER = 1), second (KORDER = 2) or third (KORDER = 3) 

derivative of FCN at X.   (Output) 

Required Arguments 

FCN — User-supplied FUNCTION whose derivative at X will be computed. The  form is 

FCN(X), where 

X – Independent variable.   (Input) 

FCN – The function value.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

X — Point at which the derivative is to be evaluated.   (Input) 

Optional Arguments 

KORDER — Order of the derivative desired (1, 2 or 3).   (Input) 

Default: KORDER = 1. 
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BGSTEP — Beginning value used to compute the size of the interval used in computing the 

derivative.   (Input)  

The interval used is the closed interval (X − 4 * BGSTEP, X + 4 * BGSTEP). BGSTEP 

must be positive. 

Default: BGSTEP = .01. 

TOL — Relative error desired in the derivative estimate.   (Input) 

Default: TOL = 1.e-2 for single precision and 1.d-4 for double precision. 

FORTRAN 90 Interface 

Generic: DERIV (FCN, X [,…]) 

Specific: The specific interface names are S_DERIV and D_DERIV. 

FORTRAN 77 Interface 

Single: DERIV (FCN, KORDER, X, BGSTEP, TOL) 

Double: The double precision function name is DDERIV. 

Description 

DERIV produces an estimate to the first, second, or third derivative of a function. The estimate 

originates from first computing a spline interpolant to the input function using values within the 

interval (X − 4.0 * BGSTEP, X + 4.0 * BGSTEP), then differentiating the spline at X. 

Comments 

1. Informational errors 

Type Code 

3 2 Roundoff error became dominant before estimates converged. 

Increase precision and/or increase BGSTEP. 

4 1 Unable to achieve desired tolerance in derivative estimation. 

Increase precision, increase TOL and/or change BGSTEP. If this error 

continues, the function may not have a derivative at X. 

2. Convergence is assumed when  

2
D2 D1 TOL

3
  

 

 for two successive derivative estimates D1 and D2. 
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3. The initial step size, BGSTEP, must be chosen small enough that FCN is defined and 

reasonably smooth in the interval (X − 4 * BGSTEP, X + 4 * BGSTEP), yet large enough 

to avoid roundoff problems. 

Example 1 

In this example, we obtain the approximate first derivative of the function 

f(x) = −2 sin(3x/2) 

at the point x = 2. 
 

      USE DERIV_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    KORDER, NCOUNT, NOUT 

      REAL       BGSTEP, DERV, TOL, X 

      EXTERNAL   FCN 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

! 

      X      = 2.0 

      BGSTEP = 0.2 

      NCOUNT = 1 

      DERV   = DERIV(FCN,X, BGSTEP=BGSTEP) 

      WRITE (NOUT,99999) DERV 

99999 FORMAT (/, 1X, 'First derivative of FCN is ', 1PE10.3) 

      END 

! 

      REAL FUNCTION FCN (X) 

      REAL       X 

      REAL       SIN 

      INTRINSIC  SIN 

      FCN = -2.0*SIN(1.5*X) 

      RETURN 

      END 

Output 
 

First derivative of FCN is  2.970E+00 

Additional Example 

Example 2 

In this example, we attempt to approximate in single precision the third derivative of the function 

f(x) = 2x
4
 + 3x 

at the point x = 0.75. Although the function is well-behaved near x = 0.75, finding derivatives is 

often computationally difficult on 32-bit machines. The difficulty is overcome in double precision. 
 

      USE IMSL_LIBRARIES 
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      IMPLICIT   NONE 

      INTEGER    KORDER, NOUT 

      REAL       BGSTEP, DERV, X, TOL 

      DOUBLE PRECISION DBGSTE, DDERV, DFCN, DTOL, DX 

      EXTERNAL   DFCN, FCN 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Turn off stopping due to error 

!                                 condition 

      CALL ERSET (0, -1, 0) 

! 

      X      = 0.75 

      BGSTEP = 0.1 

      KORDER = 3 

!                                 In single precision, on a 32-bit 

!                                 machine, the following attempt 

!                                 produces an error message 

      DERV = DERIV(FCN, X, KORDER, BGSTEP,TOL) 

!                                 In double precision, we get good 

!                                 results 

      DX     = 0.75D0 

      DBGSTE = 0.1D0 

      DTOL   = 0.01D0 

      KORDER = 3 

      DDERV  = DERIV(DFCN, DX,KORDER, DBGSTE, DTOL) 

      WRITE (NOUT,99999) DDERV 

99999 FORMAT (/, 1X, 'The third derivative of DFCN is ', 1PD10.4) 

      END 

! 

      REAL FUNCTION FCN (X) 

      REAL       X 

      FCN = 2.0*X**4 + 3.0*X 

      RETURN 

      END 

! 

      DOUBLE PRECISION FUNCTION DFCN (X) 

      DOUBLE PRECISION X 

      DFCN = 2.0D0*X**4 + 3.0D0*X 

      RETURN 

      END 

Output 
 

*** FATAL    ERROR 1 from DERIV.  Unable to achieve desired tolerance. 

***          Increase precision, increase TOL = 1.000000E-02 and/or change 

***          BGSTEP = 1.000000E-01.  If this error continues the function 

***          may not have a derivative at X = 7.500000E-01 

 

The third derivative of DFCN is 3.6000D+01 
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Chapter 5: Differential Equations 

Routines 

5.1 First-Order Ordinary Differential Equations 

5.1.1 Solution of the Initial-Value Problem for ODEs 
Runge-Kutta method ............................................................. IVPRK 1003 
Runge-Kutta method, various orders ....................................IVMRK 1011 
Adams or Gear method ........................................................ IVPAG 1021 

5.1.2 Solution of the Boundary-Value Problem for ODEs 
Finite-difference method ...................................................... BVPFD 1037 
Multiple-shooting method .................................................... BVPMS 1050 

5.1.3 Solution of the Differential-Algebraic Systems 
Solves a first order differential-algebraic system  
of equations ......................................................................... DAESL 1057 

5.1.4  First-and-Second-Order Ordinary Differential Equations 

5.1.5 Solution of the  Initial-Value Problem for ODEs  
Solves an initial-value problem for a system of ODEs  
using a variable order Adams method  ................................ IVOAM 1072 

5.2 Partial Differential Equations 

5.2.1 Solution of Systems of PDEs in One Dimension 
Method of lines with Variable Griddings .................... PDE_1D_MG 1081 
Method of lines with a Hermite cubic basis ..................... MMOLCH 1115 
Solves a generalized Feynman-Kac equation on a  
finite interval using Hermite quintic splines ........... FEYNMAN_KAC 1128 
Computes the value of a Hermite quintic spline or the  
value of one of its derivatives ........................................... HQSVAL 1185 

5.2.2  Solution of a PDE in Two and Three Dimensions 
Two-dimensional fast Poisson solver .................................. FPS2H 1188 
Three-dimensional fast Poisson solver ................................ FPS3H 1194 

5.3.  Sturm-Liouville Problems 
Eigenvalues, eigenfunctions,  
and spectral density functions .............................................. SLEIG 1201 
Indices of eigenvalues ......................................................... SLCNT 1213 
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Usage Notes 

A differential equation is an equation involving one or more dependent variables (called yi or ui), 

their derivatives, and one or more independent variables (called t, x, and y). Users will typically 

need to relabel their own model variables so that they correspond to the variables used in the 

solvers described here. A differential equation with one independent variable is called an ordinary 

differential equation (ODE). A system of equations involving derivatives in one independent 

variable and other dependent variables is called a differential-algebraic system. A differential 

equation with more than one independent variable is called a partial differential equation (PDE).  

The order of a differential equation is the highest order of any of the derivatives in the equation. 

Some of the routines in this chapter require the user to reduce higher-order problems to systems of 

first-order differential equations. 

Ordinary Differential Equations 

It is convenient to use the vector notation below. We denote the number of equations as the value 

N. The problem statement is abbreviated by writing it as a system of first-order ODEs 

           1 1, , , , , , , ,
T T

N Ny t y t y t f t y f t y f t y         

The problem becomes 

 
 ,

dy t
y f t y

dt
  

 

with initial values y (t0). Values of y(t) for t > t0 or t < t0are required. The routines IVPRK, IVMRK, 

and IVPAG, solve the IVP for systems of ODEs of the form yʹ = f (t, y) with y(t = t0) specified. 

Here, f is a user supplied function that must be evaluated at any set of values (t, y1, …, yN);  

i = 1, …, N. The routines IVPAG, and DAESL, will also solve implicit systems of the form Ayʹ = f 

(t, y) where A is a user supplied matrix. For IVPAG, the matrix A must be nonsingular. 

The system yʹ = f (t, y) is said to be stiff if some of the eigenvalues of the Jacobian matrix  

{ fi yj} have large, negative real parts. This is often the case for differential equations 

representing the behavior of physical systems such as chemical reactions proceeding to 

equilibrium where subspecies effectively complete their reaction in different epochs. An alternate 

model concerns discharging capacitors such that different parts of the system have widely varying 

decay rates (or time constants). This definition of stiffness, based on the eigenvalues of the 

Jacobian matrix, is not satisfactory. Users typically identify stiff systems by the fact that numerical 

differential equation solvers such as IVPRK, are inefficient, or else they fail. The most common 

inefficiency is that a large number of evaluations of the functions fi are required. In such cases, use 

routine IVPAG, or DAESL. For more about stiff systems, see Gear (1971, Chapter 11) or Shampine 

and Gear (1979). 

In the boundary value problem (BVP) for ODEs, constraints on the dependent variables are given 

at the endpoints of the interval of interest, [a, b]. The routines BVPFD and BVPMS solve the BVP 

for systems of the form yʹ (t) = f (t, y), subject to the conditions 
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hi(y1(a), …, yN(a), y1 (b), …, yN(b)) = 0   i = 1, …, N 

Here, f and h = [h1 , …, hN]
T
 are user-supplied functions. 

IVOAM solves systems of ordinary differential equations of order one, order two, or mixed order 

one and two. 

Differential-algebraic Equations 

Frequently, it is not possible or not convenient to express the model of a dynamical system as a set 

of ODEs. Rather, an implicit equation is available in the form 

 1, , , , , , 0 1, ,i N Ng t y y y y i N   
 

The gi are user-supplied functions. The system is abbreviated as 

     1, , , , , , , , 0
T

Ng t y y g t y y g t y y       

With initial value y(t0). Any system of ODEs can be trivially written as a differential-algebraic 

system by defining 

   , , ,g t y y f t y y  
 

The routine DAESL solves differential-algebraic systems of index 1 or index 0. For a definition of 

index of a differential-algebraic system, see (Brenan et al. 1989). Also, see Gear and Petzold 

(1984) for an outline of the computing methods used. 

Partial Differential Equations 

The routine MMOLCH solves the IVP problem for systems of the form 

22
1 1

1 2 2
, , , , , , , , , ,i N N

i N

u u uu u
f x t u u

t x x x x

   

    

 
   

   

subject to the boundary conditions 

           

           

1 1 1

2 2 2

i i ii
i

i i ii
i

u
u a a t

x

u
u b b t

x


  




  



 

 
 

and subject to the initial conditions 

ui(x, t = t0) = gi(x) 

for i = 1, , N. Here, fi, gi, 

       and,
i i i

j j j t  
are user-supplied, j = 1, 2. 

The routines FPS2H and FPS3H solve Laplace‘s, Poisson‘s, or Helmholtz‘s equation in two or 

three dimensions. FPS2H uses a fast Poisson method to solve a PDE of the form  
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2 2

2 2
,

u u
cu f x y

x y

 

 
  

 

over a rectangle, subject to boundary conditions on each of the four sides. The scalar constant c 

and the function f are user specified. FPS3H solves the three-dimensional analogue of this 

problem. 

 

NOTE: Users wishing to solve more general PDE‘s, in more general 2-d and 3-d regions, are 

referred to Visual Numerics‘ affiliated product PDE2D (www.vni.com/pde2d).  

 

Summary 

The following table summarizes the types of problems handled by the routines in this chapter. 

With the exception of FPS2H and FPS3H, the routines can handle more than one differential 

equation.  

 

Problem Consideration Routine 

Ayʹ= f(t, y) 

y(t0) = y0 

A is a general, symmetric 

positive definite, band or 

symmetric positive definite 

band matrix. 

IVPAG 

 Stiff or expensive to evaluate 

f (t, y), banded Jacobian or 

finely spaced output needed. 

IVPAG 

yʹ = f(t, y), 

y (t0) = y0 

High accuracy needed and not 

stiff. (Uses Adams methods) 

IVPAG 

 Moderate accuracy needed and 

not stiff. 

IVPRK 

yʹ = f(t, y) 

h(y(a), y(b)) = 0 

BVP solver using finite 

differences 

BVPFD 

 BVP solver using multiple 

shooting 

BVPMS 

g(t, y, yʹ) = 0 

y(t0), yʹ(t0) given 

Stiff, differential-algebraic 

solver for systems of index 1 or 

0. 

Note: DAESL uses the user-

supplied yʹ(t0) only as an initial 

guess to help it find the correct 

initial yʹ( t0) to get started. 

DAESL 

http://www.vni.com/pde2d
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Problem Consideration Routine 

ut = f(x, t, u, ux, uxx) 

α1u(a) + β1 ux(a) = γ1 (t) 

α2 u(b) + β2 ux(b) = γ2(t) 

Method of lines using cubic 

Hermites and ODEs. 

MMOLCH 

uxx + uyy + cu = f(x, y) on a 

rectangle, given u or un on each 

edge. 

Fast Poisson solver FPS2H 

uxx + uyy + uzz + cu = f(x, y, z) on 

a box, given u or un on each 

face. 

Fast Poisson solver FPS3H 

 

    

     
    

,

1 2

1 2

0
1 2

pu qu ru

u a pu a

u a pu a

u b pu b



 

  

 

  



   

   

Sturm-Liouville problems SLEIG 

IVPRK 
Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner 

fifth-order and sixth-order method. 

Required Arguments 

IDO — Flag indicating the state of the computation.   (Input/Output) 

IDO State 

1 Initial entry 

2 Normal re-entry 

3 Final call to release workspace 

4 Return because of interrupt 1 

5 Return because of interrupt 2 with step accepted 

6 Return because of interrupt 2 with step rejected 

 Normally, the initial call is made with IDO = 1.  The routine then sets IDO = 2, and this 

value is used for all but the last call that is made with IDO = 3. This final call is used to 

release workspace, which was automatically allocated by the initial call with IDO = 1. 
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No integration is performed on this final call. See Comment 3 for a description of the 

other interrupts. 

FCN — User-supplied subroutine to evaluate functions. The usage is  

CALL FCN(N, T, Y, YPRIME), where 

N – Number of equations.   (Input) 

T – Independent variable, t.   (Input) 

Y – Array of size N containing the dependent variable values, y. (Input) 

YPRIME – Array of size N containing the values of the vector yʹ evaluated at (t, 

y).   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

T — Independent variable.   (Input/Output) 

On input, T contains the initial value. On output, T is replaced by TEND unless error 

conditions have occurred. See IDO for details. 

TEND — Value of t where the solution is required.   (Input)  

The value TEND may be less than the initial value of t. 

Y — Array of size NEQ of dependent variables. (Input/Output)  

On input, Y contains the initial values. On output, Y contains the approximate solution. 

Optional Arguments 

NEQ — Number of differential equations.   (Input) 

Default: NEQ = size (Y,1). 

TOL — Tolerance for error control.   (Input)  

An attempt is made to control the norm of the local error such that the global error is 

proportional to TOL. 

Default: TOL = machine precision. 

PARAM — A floating-point array of size 50 containing optional parameters.   (Input/ Output)  

If a parameter is zero, then a default value is used. These default values are given 

below. Parameters that concern values of step size are applied in the direction of 

integration. The following parameters may be set by the user: 

 

 PARAM Meaning 

1 HINIT Initial value of the step size. Default: 10.0 * MAX (AMACH (1), 

AMACH(4) * MAX(ABS(TEND), ABS(T))) 

2 HMIN Minimum value of the step size. Default: 0.0 

3 HMAX Maximum value of the step size. Default: 2.0 
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4 MXSTEP Maximum number of steps allowed. Default: 500 

5 MXFCN Maximum number of function evaluations allowed. Default: 

No enforced limit. 

6  Not used. 

7 INTRP1 If nonzero, then return with IDO = 4 before each step. See 

Comment 3. Default: 0. 

8 INTRP2 If nonzero, then return with IDO = 5 after every successful 

step and with IDO = 6 after every unsuccessful step. See 

Comment 3. Default: 0. 

9 SCALE A measure of the scale of the problem, such as an 

approximation to the average value of a norm of the Jacobian 

matrix along the solution. Default: 1.0 

10 INORM Switch determining error norm. In the following, ei is the 

absolute value of an estimate of the error in yi(t).  

Default: 0.0 − min(absolute error, relative error) = max(ei/wi); 

i = 1, …, NEQ, where wi = max(|yi(t)|, 1.0). 

1 − absolute error = max(ei), i = 1 …, NEQ. 

2− max(ei/wi), i = 1 …, NEQ where wi = max(|yi (t)|, FLOOR), 

and FLOOR is PARAM(11). 

3 − Scaled Euclidean norm defined as  

where wi = max(|yi (t)|, 1.0). Other definitions of YMAX can be 

specified by the user, as explained in Comment 1. 

11 FLOOR Used in the norm computation associated with parameter 

INORM. Default: 1.0. 

12-30  Not used. 

The following entries in PARAM are set by the program.  

 PARAM Meaning 

31 HTRIAL Current trial step size. 

32 HMINC Computed minimum step size allowed. 

33 HMAXC Computed maximum step size allowed. 

34 NSTEP  Number of steps taken. 

35 NFCN  Number of function evaluations used. 

36-50  Not used. 

FORTRAN 90 Interface 

Generic: CALL IVPRK (IDO, FCN, T, TEND, Y [,…]) 

Specific: The specific interface names are S_IVPRK and D_IVPRK. 
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FORTRAN 77 Interface 

Single: CALL IVPRK (IDO, NEQ, FCN, T, TEND, TOL, PARAM, Y) 

Double: The double precision name is DIVPRK. 

Description 

Routine IVPRK finds an approximation to the solution of a system of first-order differential 

equations of the form y0 = f (t, y) with given initial data. The routine attempts to keep the global 

error proportional to a user-specified tolerance. This routine is efficient for nonstiff systems where 

the derivative evaluations are not expensive. 

The routine IVPRK is based on a code designed by Hull, Enright and Jackson (1976, 1977). It uses 

Runge-Kutta formulas of order five and six developed by J. H. Verner. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of I2PRK/DI2PRK. The 

reference is: 

CALL I2PRK (IDO, NEQ, FCN, T, TEND, TOL, PARAM, Y, VNORM, 

WK) 

The additional arguments are as follows: 

2 2

1
/

NEQ

i ii
e w


 YMAX  

VNORM — A Fortran subroutine to compute the norm of the error.   

(Input)  

The routine may be provided by the user, or the IMSL routine 

I3PRK/DI3PRK may be used. In either case, the name must be declared 

in a Fortran EXTERNAL statement. If usage of the IMSL routine is 

intended, then the name I3PRK/DI3PRK should be used. The usage of 

the error norm routine is CALL VNORM (N, V, Y, YMAX, ENORM), 

where  

 

Arg Definition 

N Number of equations.   (Input). 

V 
Array of size N containing the vector 

whose norm is to be computed.   (Input) 

Y 
Array of size N containing the values of 

the dependent variable.   (Input) 

YMAX 
Array of size N containing the maximum 

values of |y(t)|.   (Input). 

ENORM Norm of the vector V.   (Output). 
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VNORM must be declared EXTERNAL in the calling program. 

WK — Work array of size 10N using the working precision. The contents of WK 

must not be changed from the first call with IDO = 1 until after the final 

call with IDO = 3. 

2. Informational errors 

Type Code 

4 1 Cannot satisfy error condition. The value of TOL may be too small. 

4 2 Too many function evaluations needed. 

4 3 Too many steps needed. The problem may be stiff. 

3. If PARAM(7) is nonzero, the subroutine returns with IDO = 4 and will resume 

calculation at the point of interruption if re-entered with IDO = 4. If PARAM(8) is 

nonzero, the subroutine will interrupt the calculations immediately after it decides 

whether or not to accept the result of the most recent trial step. The values used are  

IDO = 5 if the routine plans to accept, or IDO = 6 if it plans to reject the step. The 

values of IDO may be changed by the user (by changing IDO from 6 to 5) in order to 

force acceptance of a step that would otherwise be rejected. Some parameters the user 

might want to examine after return from an interrupt are IDO, HTRIAL, NSTEP, NFCN, 

T, and Y. The array Y contains the newly computed trial value for y(t), accepted or not. 

Example 1 

Consider a predator-prey problem with rabbits and foxes. Let r be the density of rabbits and let  

f be the density of foxes. In the absence of any predator-prey interaction, the rabbits would 

increase at a rate proportional to their number, and the foxes would die of starvation at a rate 

proportional to their number. Mathematically, 

r ʹ = 2r 

f ʹ = − f 

The rate at which the rabbits are eaten by the foxes is 2r f, and the rate at which the foxes increase, 

because they are eating the rabbits, is r f. So, the model to be solved is 

r ʹ = 2r − 2r f 

f ʹ = − f + r f 

The initial conditions are r(0) = 1 and f(0) = 3 over the interval 0 ≤ t ≤ 10. 

In the program Y(1) = r and Y(2) = f. Note that the parameter vector PARAM is first set to zero with 

IMSL routine SSET (Chapter 9, Basic Matrix/Vector Operations). Then, absolute error control is 

selected by setting PARAM(10) = 1.0. 

The last call to IVPRK with IDO = 3 deallocates IMSL workspace allocated on the first call to 

IVPRK. It is not necessary to release the workspace in this example because the program ends after 

solving a single problem. The call to release workspace is made as a model of what would be 

needed if the program included further calls to IMSL routines. 
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      USE IVPRK_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    MXPARM, N 

      PARAMETER  (MXPARM=50, N=2) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    IDO, ISTEP, NOUT 

      REAL       PARAM(MXPARM), T, TEND, TOL, Y(N) 

!                                 SPECIFICATIONS FOR SUBROUTINES 

      EXTERNAL   FCN 

! 

      CALL UMACH (2, NOUT) 

!                                 Set initial conditions 

      T = 0.0 

      Y(1) = 1.0 

      Y(2) = 3.0 

!                                 Set error tolerance 

      TOL = 0.0005 

!                                 Set PARAM to default 

      PARAM = 0.E0 

!                                 Select absolute error control 

      PARAM(10) = 1.0 

!                                 Print header 

      WRITE (NOUT,99999) 

      IDO = 1 

      ISTEP = 0 

   10 CONTINUE 

      ISTEP = ISTEP + 1 

      TEND = ISTEP 

      CALL IVPRK (IDO, FCN, T, TEND, Y, TOL=TOL, PARAM=PARAM) 

      IF (ISTEP .LE. 10) THEN 

         WRITE (NOUT,'(I6,3F12.3)') ISTEP, T, Y 

!                                 Final call to release workspace 

         IF (ISTEP .EQ. 10) IDO = 3 

         GO TO 10 

      END IF 

99999 FORMAT (4X, 'ISTEP', 5X, 'Time', 9X, 'Y1', 11X, 'Y2') 

      END 

      SUBROUTINE FCN (N, T, Y, YPRIME) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    N 

      REAL       T, Y(N), YPRIME(N) 

! 

      YPRIME(1) = 2.0*Y(1) - 2.0*Y(1)*Y(2) 

      YPRIME(2) = -Y(2) + Y(1)*Y(2) 

      RETURN 

      END 

Output 
 

 ISTEP     Time         Y1          Y2 

 1       1.000       0.078       1.465 

 2       2.000       0.085       0.578 
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 3       3.000       0.292       0.250 

 4       4.000       1.449       0.187 

 5       5.000       4.046       1.444 

 6       6.000       0.176       2.256 

 7       7.000       0.066       0.908 

 8       8.000       0.148       0.367 

 9       9.000       0.655       0.188 

10      10.000       3.157       0.352 

Additional Examples 

Example 2 

This is a mildly stiff problem (F2) from the test set of Enright and Pryce (1987). It is included here 

because it illustrates the inefficiency of requiring more function evaluations with a nonstiff solver, 

for a requested accuracy, than would be required using a stiff solver. Also, see IVPAG Example 2, 

where the problem is solved using a BDF method. The number of function evaluations may vary, 

depending on the accuracy and other arithmetic characteristics of the computer. The test problem 

has n = 2 equations: 
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tend

    

    











  
 

      USE IVPRK_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    MXPARM, N 

      PARAMETER  (MXPARM=50, N=2) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    IDO, ISTEP, NOUT 

      REAL       PARAM(MXPARM), T, TEND, TOL, Y(N) 

!                                 SPECIFICATIONS FOR SUBROUTINES 

!                                 SPECIFICATIONS FOR FUNCTIONS 

      EXTERNAL   FCN 

! 

      CALL UMACH (2, NOUT) 

!                                 Set initial conditions 

      T = 0.0 

      Y(1) = 1.0 

      Y(2) = 0.0 

!                                 Set error tolerance 

      TOL = 0.001 

!                                 Set PARAM to default 
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      PARAM = 0.0E0 

!                                 Select absolute error control 

      PARAM(10) = 1.0 

!                                 Print header 

      WRITE (NOUT,99998) 

      IDO = 1 

      ISTEP = 0 

   10 CONTINUE 

      ISTEP = ISTEP + 24 

      TEND = ISTEP 

      CALL IVPRK (IDO, FCN, T, TEND, Y, TOL=TOL, PARAM=PARAM) 

      IF (ISTEP .LE. 240) THEN 

         WRITE (NOUT,'(I6,3F12.3)') ISTEP/24, T, Y 

!                                 Final call to release workspace 

         IF (ISTEP .EQ. 240) IDO = 3 

         GO TO 10 

      END IF 

!                                 Show number of function calls. 

      WRITE (NOUT,99999) PARAM(35) 

99998 FORMAT (4X, 'ISTEP', 5X, 'Time', 9X, 'Y1', 11X, 'Y2') 

99999 FORMAT (4X, 'Number of fcn calls with IVPRK =', F6.0) 

      END 

      SUBROUTINE FCN (N, T, Y, YPRIME) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    N 

      REAL       T, Y(N), YPRIME(N) 

!                                 SPECIFICATIONS FOR DATA VARIABLES 

      REAL       AK1, AK2, AK3 

! 

      DATA AK1, AK2, AK3/294.0E0, 3.0E0, 0.01020408E0/ 

! 

      YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2) 

      YPRIME(2) = -AK2*Y(2) + AK3*(1.0E0-Y(2))*Y(1) 

      RETURN 

      END 

Output 
 

ISTEP     Time         Y1           Y2 

 1      24.000       0.688       0.002 

 2      48.000       0.634       0.002 

 3      72.000       0.589       0.002 

 4      96.000       0.549       0.002 

 5     120.000       0.514       0.002 

 6     144.000       0.484       0.002 

 7     168.000       0.457       0.002 

 8     192.000       0.433       0.001 

 9     216.000       0.411       0.001 

10     240.000       0.391       0.001 

Number of fcn calls with IVPRK = 2153. 
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IVMRK 

Solves an initial-value problem yʹ = f(t, y) for ordinary differential equations using Runge-Kutta 

pairs of various orders. 

Required Arguments 

IDO — Flag indicating the state of the computation.   (Input/Output) 

IDO State 

1 Initial entry 

2 Normal re-entry 

3 Final call to release workspace 

4 Return after a step 

5 Return for function evaluation (reverse communication) 

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this 

value is used for all but the last call that is made with IDO = 3. This final call is used to 

release workspace, which was automatically allocated by the initial call with IDO = 1. 

FCN — User-supplied subroutine to evaluate functions. The usage is  

CALL FCN (N, T, Y, YPRIME), where 

N — Number of equations.   (Input) 

T — Independent variable.   (Input) 

Y — Array of size N containing the dependent variable values, y.   (Input) 

YPRIME — Array of size N containing the values of the vector yʹ evaluated at 

(t, y).   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

T — Independent variable.   (Input/Output) 

On input, T contains the initial value. On output, T is replaced by TEND unless error 

conditions have occurred. 

TEND — Value of t where the solution is required.   (Input) 

The value of TEND may be less than the initial value of t. 

Y — Array of size N of dependent variables.   (Input/Output) 

On input, Y contains the initial values. On output, Y contains the approximate solution. 

YPRIME — Array of size N containing the values of the vector y' evaluated at (t, y).   

(Output) 

Optional Arguments 

N — Number of differential equations.   (Input) 

Default: N= size (Y,1). 
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FORTRAN 90 Interface 

Generic: CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME [,…]) 

Specific: The specific interface names are S_IVMRK and D_IVMRK. 

FORTRAN 77 Interface 

Single: CALL IVMRK (IDO, N, FCN, T, TEND, Y, YPRIME) 

Double: The double precision name is DIVMRK. 

Description 

Routine IVMRK finds an approximation to the solution of a system of first-order differential 

equations of the form yʹ = f(t, y) with given initial data. Relative local error is controlled according 

to a user-supplied tolerance. For added efficiency, three Runge-Kutta formula pairs, of orders 3, 5, 

and 8, are available.  

Optionally, the values of the vector yʹ can be passed to IVMRK by reverse communication, 

avoiding the user-supplied subroutine FCN. Reverse communication is especially useful in 

applications that have complicated algorithmic requirement for the evaluations of f(t, y). Another 

option allows assessment of the global error in the integration. 

The routine IVMRK is based on the codes contained in RKSUITE, developed by R. W. Brankin, I. 

Gladwell, and L. F. Shampine (1991). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of I2MRK/DI2MRK. The 

reference is: 

CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, 

PARAM, YMAX, RMSERR, WORK, IWORK) 

The additional arguments are as follows: 

TOL — Tolerance for error control.   (Input) 

THRES — Array of size N.   (Input) 

THRES(I) is a threshold for solution component Y(I). It is chosen so that the 

value of Y(L) is not important when Y(L) is smaller in magnitude than 

THRES(L). THRES(L) must be greater than or equal to sqrt(amach(4)). 

PARAM — A floating-point array of size 50 containing optional parameters.   

(Input/Output) 

If a parameter is zero, then a default value is used. These default values are 

given below. The following parameters must be set by the user: 
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PARAM Definition 

1  HINIT Initial value of the step size. Must be chosen such 

that 0.01 ≥ HINIT ≥ 10.0 amach(4). Default: 

automatic selection of stepsize 

2  METHOD 1 - use the (2, 3) pair 

2 - use the (4, 5) pair 

3 - use the (7, 8) pair. 

Default: METHOD = 1 if 1.e-2 ≥ tol > 1.e-4 

METHOD = 2 if 1.e-4 ≥ tol > 1.e-6 

METHOD = 3 if 1.e-6 ≥ tol 

 

3  ERREST ERREST = 1 attempts to assess the true error, the 

difference between the numerical solution and the true 

solution. The cost of this is roughly twice the cost  of the 

integration itself with METHOD = 2 or METHOD = 3, and 

three times with METHOD = 1. 

Default: ERREST = 0. 

4  INTRP If nonzero, then return the IDO = 4 before each 

step. See Comment 3.  

Default: 0. 

5  RCSTAT If nonzero, then reverse communication is used to 

get derivative information. See Comment 4. 

Default: 0. 

6 - 30 Not used. 

The following entries are set by the program: 

31  HTRIAL Current trial step size. 

32  NSTEP Number of steps taken. 

33  NFCN Number of function evaluations. 

34  ERRMAX The maximum approximate weighted true error 

taken over all solution components and all steps 

from T 

35  TERRMX First value of the independent variable where an 

YMAX Array of size N, where YMAX(L) is the largest value of ABS(Y(L)) 

computed at any step in the integration so far.  

RMSERR — Array of size N where RMSERR(L) approximates the RMS average of the 

true error of the numerical solution for the L-th solution component, 

L = 1,..., N. The average is taken over all steps from T through the current 

integration point. RMSERR is accessed and set only if PARAM(3) = 1. 

WORK — Floating point work array of size 39N using the working precision. The 

contents of WORK must not be changed from the first call with IDO = 1 until after 

the final call with IDO = 3. 
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IWORK — Length of array work. (Input)  

2. Informational errors 

Type Code 

4 1 It does not appear possible to achieve the accuracy specified by TOL 

and THRES(*) using the current precision and METHOD. A larger 

value for METHOD, if possible, will permit greater accuracy with this 

precision. The integration must be restarted. 

4 2 The global error assessment may not be reliable beyond the current 

integration point T. This may occur because either too little or too 

much accuracy has been requested or because f(t, y) is not smooth 

enough for values of t just past TEND and current values of the 

solution y. This return does not mean that you cannot integrate past 

TEND, rather that you cannot do it with PARAM(3) = 1.  

3 If PARAM(4) is nonzero, the subroutine returns with IDO = 4 and will resume 

calculation at the point of interruption if re-entered with IDO = 4. Some parameters the 

user might want to examine are IDO, HTRIAL, NSTEP, NFCN, T, and Y. The array Y 

contains the newly computed trial value for y(t), accepted or not. 

4 If PARAM(5) is nonzero, the subroutine will return with IDO = 5. At this time, evaluate 

the derivatives at T, place the result in YPRIME, and call IVMRK again. The dummy 

function I40RK/DI40RK may be used in place of FCN. 

Example 1 

This example integrates the small system (A.2.B2) from the test set of Enright and Pryce (1987): 
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      USE IVMRK_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

 

      PARAMETER  (N=3) 

!                                  Specifications for local variables 

      INTEGER    IDO 

      REAL       T, TEND, Y(N), YPRIME(N) 
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      EXTERNAL FCN 

!                                  Set initial conditions 

      T = 0.0 

      TEND = 20.0 

      Y(1) = 2.0 

      Y(2) = 0.0 

      Y(3) = 1.0 

      IDO = 1 

      CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME) 

! 

!                                  Final call to release workspace 

      IDO = 3 

      CALL IVMRK (IDO, FCN, T, TEND, Y, YPRIME) 

! 

      CALL WRRRN ('Y', Y) 

      END 

! 

      SUBROUTINE FCN (N, T, Y, YPRIME) 

!                                  Specifications for arguments 

      INTEGER    N 

      REAL       T, Y(*), YPRIME(*) 

! 

      YPRIME(1) = -Y(1) + Y(2) 

      YPRIME(2) = Y(1) - 2.0*Y(2) + Y(3) 

      YPRIME(3) = Y(2) - Y(3) 

      RETURN 

      END 

Output 
 

        Y 

1   1.000 

2   1.000 

3   1.000 

Additional Examples 

Example 2 

This problem is the same mildly stiff problem (A.1.F2) from the test set of Enright and Pryce as 

Example 2 for IVPRK. 
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Although not a stiff solver, one notes the greater efficiency of IVMRK over IVPRK, in terms of 

derivative evaluations. Reverse communication is also used in this example. Users will find this 

feature particularly helpful if their derivative evaluation scheme is difficult to isolate in a separate 

subroutine. 
 

      USE I2MRK_INT 

      USE UMACH_INT 

      USE AMACH_INT 

    

      IMPLICIT   NONE 

      INTEGER    N 

 

      PARAMETER  (N=2) 

!                                  Specifications for local variables 

      INTEGER    IDO, ISTEP, LWORK, NOUT 

      REAL       PARAM(50), PREC, RMSERR(N), T, TEND, THRES(N), TOL, & 

                  WORK(1000), Y(N), YMAX(N), YPRIME(N) 

      REAL       AK1, AK2, AK3 

      SAVE       AK1, AK2, AK3 

!                                  Specifications for intrinsics 

      INTRINSIC  SQRT 

      REAL       SQRT 

!                                  Specifications for subroutines 

      EXTERNAL   I40RK 

!                                  Specifications for functions 

! 

      DATA AK1, AK2, AK3/294.0, 3.0, 0.01020408/ 

! 

      CALL UMACH (2, NOUT) 

!                                  Set initial conditions 

      T    = 0.0 

      Y(1) = 1.0 

      Y(2) = 0.0 

!                                  Set tolerance for error control, 

!                                  threshold vector and parameter 

!                                  vector 

      TOL = .001 

      PREC = AMACH(4) 

      THRES = SQRT (PREC) 

      PARAM = 0.0E0 

      LWORK = 1000 

!                                  Turn on derivative evaluation by 

!                                  reverse communication 

      PARAM(5) = 1 

      IDO      = 1 

      ISTEP    = 24 

!                                  Print header 

      WRITE (NOUT,99998) 

   10 CONTINUE 

      TEND = ISTEP 

      CALL I2MRK (IDO, N, I40RK, T, TEND, Y, YPRIME, TOL, THRES, PARAM,& 

                 YMAX, RMSERR, WORK, LWORK) 

      IF (IDO .EQ. 5) THEN 

!                                  Evaluate derivatives 

! 
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         YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2) 

         YPRIME(2) = -AK2*Y(2) + AK3*(1.0-Y(2))*Y(1) 

         GO TO 10 

      ELSE IF (ISTEP .LE. 240) THEN 

! 

!                                  Integrate to 10 equally spaced points 

! 

         WRITE (NOUT,'(I6,3F12.3)') ISTEP/24, T, Y 

         IF (ISTEP .EQ. 240) IDO = 3 

         ISTEP = ISTEP + 24 

         GO TO 10 

      END IF 

!                                  Show number of derivative evaluations 

! 

      WRITE (NOUT,99999) PARAM(33) 

99998 FORMAT (3X, 'ISTEP', 5X, 'TIME', 9X, 'Y1', 10X, 'Y2') 

99999 FORMAT (/, 4X, 'NUMBER OF DERIVATIVE EVALUATIONS WITH IVMRK =', & 

            F6.0) 

      END 

 

!     DUMMY FUNCTION TO TAKE THE PLACE OF DERIVATIVE EVALUATOR 

      SUBROUTINE I40RK (N, T, Y, YPRIME) 

      INTEGER N 

      REAL     T, y(*), YPRIME(*) 

      RETURN 

      END 

Output 

 

ISTEP     TIME          Y1          Y2 

1       24.000       0.688       0.002 

2       48.000       0.634       0.002 

3       72.000       0.589       0.002 

4       96.000       0.549       0.002 

5      120.000       0.514       0.002 

6      144.000       0.484       0.002 

7      168.000       0.457       0.002 

8      192.000       0.433       0.001 

9      216.000       0.411       0.001 

10     240.000       0.391       0.001 

NUMBER OF DERIVATIVE EVALUATIONS WITH IVMRK = 1375.  

Example 3 

This example demonstrates how exceptions may be handled. The problem is from Enright and 

Pryce (A.2.F1), and has discontinuities. We choose this problem to force a failure in the global 

error estimation scheme, which requires some smoothness in y. We also request an initial relative 

error tolerance which happens to be unsuitably small in this precision. 

If the integration fails because of problems in global error assessment, the assessment option is 

turned off, and the integration is restarted. If the integration fails because the requested accuracy is 

not achievable, the tolerance is increased, and global error assessment is requested. The reason 

error assessment is turned on is that prior assessment failures may have been due more in part to 

an overly stringent tolerance than lack of smoothness in the derivatives. 
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When the integration is successful, the example prints the final relative error tolerance, and 

indicates whether or not global error estimation was possible. 

 

 
 

 

1 2

2 2
2 1

2
2 2

2 1

1

2

2 1, even

2 1, odd

0 0

0 0

0.1

largest integer 

y y

ay a y x
y

ay a y x

y

y

a

x x





 

      
  

     







      
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=2) 

!                                  Specifications for local variables 

      INTEGER    IDO, LWORK, NOUT 

      REAL       PARAM(50), PREC, RMSERR(N), T, TEND, THRES(N), TOL,& 

                WORK(100), Y(N), YMAX(N), YPRIME(N) 

! 

!                                  Specifications for intrinsics 

      INTRINSIC  SQRT 

      REAL       SQRT 

!                                  Specifications for subroutines 

! 

! 

!                                  Specifications for functions 

      EXTERNAL   FCN 

! 

! 

      CALL UMACH (2, NOUT) 

!                                  Turn off stopping for FATAL errors 

      CALL ERSET (4, -1, 0) 

!                                  Initialize input, turn on global 

!                                  error assessment 

      LWORK = 100 

      PREC = AMACH(4) 

      TOL   = SQRT(PREC) 

      PARAM = 0.0E01 

      THRES = TOL 

      TEND     = 20.0E0 

      PARAM(3) = 1 

! 

   10 CONTINUE 

!                                  Set initial values 

      T    = 0.0E0 

      Y(1) = 0.0E0 
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      Y(2) = 0.0E0 

      IDO  = 1 

      CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM,& 

                 YMAX, RMSERR, WORK, LWORK) 

      IF (IERCD() .EQ. 32) THEN 

!                                  Unable to achieve requested 

!                                  accuracy, so increase tolerance. 

!                                  Activate global error assessment 

         TOL      = 10.0*TOL 

         PARAM(3) = 1 

         WRITE (NOUT,99995) TOL 

         GO TO 10 

      ELSE IF (IERCD() .EQ. 34) THEN 

!                                  Global error assessment has failed, 

!                                  cannot continue from this point, 

!                                  so restart integration 

         WRITE (NOUT,99996) 

         PARAM(3) = 0 

         GO TO 10 

      END IF 

! 

!                                  Final call to release workspace 

      IDO = 3 

      CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM,& 

                 YMAX, RMSERR, WORK, LWORK) 

! 

!                                  Summarize status 

      WRITE (NOUT,99997) TOL 

      IF (PARAM(3) .EQ. 1) THEN 

         WRITE (NOUT,99998) 

      ELSE 

         WRITE (NOUT,99999) 

      END IF 

      CALL WRRRN ('Y', Y) 

! 

99995 FORMAT (/, 'CHANGING TOLERANCE TO ', E9.3, ' AND RESTARTING ...'& 

            , /, 'ALSO (RE)ENABLING GLOBAL ERROR ASSESSMENT', /) 

99996 FORMAT (/, 'DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ...'& 

            , /) 

99997 FORMAT (/, 72('-'), //, 'SOLUTION OBTAINED WITH TOLERANCE = ',& 

            E9.3) 

99998 FORMAT ('GLOBAL ERROR ASSESSMENT IS AVAILABLE') 

99999 FORMAT ('GLOBAL ERROR ASSESSMENT IS NOT AVAILABLE') 

! 

      END 

! 

      SUBROUTINE FCN (N, T, Y, YPRIME) 

      USE CONST_INT  

!                                  Specifications for arguments 

      INTEGER    N 

      REAL       T, Y(*), YPRIME(*) 

!                                  Specifications for local variables 

      REAL       A 

      REAL       PI 

      LOGICAL    FIRST 

      SAVE       FIRST, PI 

!                                  Specifications for intrinsics 
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      INTRINSIC  INT, MOD 

      INTEGER    INT, MOD 

!                                  Specifications for functions 

! 

      DATA FIRST/.TRUE./ 

! 

      IF (FIRST) THEN 

         PI    = CONST('PI') 

         FIRST = .FALSE. 

      END IF 

! 

      A         = 0.1E0 

      YPRIME(1) = Y(2) 

      IF (MOD(INT(T),2) .EQ. 0) THEN 

         YPRIME(2) = 2.0E0*A*Y(2) - (PI*PI+A*A)*Y(1) + 1.0E0 

      ELSE 

         YPRIME(2) = 2.0E0*A*Y(2) - (PI*PI+A*A)*Y(1) - 1.0E0 

      END IF 

      RETURN 

      END 

Output 
 

 *** FATAL    ERROR 34 from i2mrk.  The global error assessment may not 

 ***          be reliable for T past 9.994749E-01.  The integration is 

 ***          being terminated. 

 

 

DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ... 

 

 

 *** FATAL    ERROR 32 from i2mrk.  In order to satisfy the error  

 ***          requirement I6MRK would have to use a step size of 

 ***          3.647129E- 06 at TNOW = 9.999932E-01.  This is too small 

 ***          for the current precision. 

 

 

CHANGING TOLERANCE TO 0.345E-02 AND RESTARTING ... 

ALSO (RE)ENABLING GLOBAL ERROR ASSESSMENT 

 

 

 *** FATAL    ERROR 34 from i2mrk.  The global error assessment may 

 ***          not be reliable for T past 9.986024E-01.  The integration 

 ***          is being terminated. 

 

DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ... 

 

 

------------------------------------------------------------------------ 

 

SOLUTION OBTAINED WITH TOLERANCE = 0.345E-02 

GLOBAL ERROR ASSESSMENT IS NOT AVAILABLE 

   

     Y 

 1  -12.30 
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 2    0.95 

IVPAG 

 

 

 

Solves an initial-value problem for ordinary differential equations using either Adams-Moulton‘s 

or Gear‘s BDF method. 

Required Arguments 

IDO — Flag indicating the state of the computation.   (Input/Output)  

IDO State 

1 Initial entry 

2 Normal re-entry 

3 Final call to release workspace 

4 Return because of interrupt 1 

5 Return because of interrupt 2 with step accepted 

6 Return because of interrupt 2 with step rejected 

7 Return for new value of matrix A. 

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this 

value is then used for all but the last call that is made with IDO = 3. This final call is 

only used to release workspace, which was automatically allocated by the initial call 

with IDO = 1. See Comment 5 for a description of the interrupts. 

 When IDO = 7, the matrix A at t must be recomputed and IVPAG/DIVPAG called again. 

No other argument (including IDO) should be changed. This value of IDO is returned 

only if PARAM(19) = 2. 

FCN — User-supplied subroutine to evaluate functions. The usage is 

CALL FCN (N, T, Y, YPRIME), where 

N – Number of equations.   (Input) 

T – Independent variable, t.   (Input) 

Y – Array of size N containing the dependent variable values, y. (Input) 



     

     
 

1022  Chapter 5: Differential Equations IMSL MATH LIBRARY  

     

     

 

YPRIME – Array of size N containing the values of the vector yʹ evaluated at (t, 

y).   (Output)  

See Comment 3. 

 FCN must be declared EXTERNAL in the calling program. 

FCNJ — User-supplied subroutine to compute the Jacobian. The usage is  

CALL FCNJ (N, T, Y, DYPDY) where 

N – Number of equations.   (Input) 

T – Independent variable, t.   (Input) 

Y – Array of size N containing the dependent variable values, y(t).   (Input) 

DYPDY – An array, with data structure and type determined by PARAM(14) = 

MTYPE, containing the required partial derivatives ∂fi∕∂yj.   (Output) 

 These derivatives are to be evaluated at the current values of (t, y). When the Jacobian 

is dense, MTYPE = 0 or = 2, the leading dimension of DYPDY has the value N. When the 

Jacobian matrix is banded, MTYPE = 1, and the leading dimension of DYPDY has the 

value 2 * NLC + NUC + 1. If the matrix is banded positive definite symmetric, 

MTYPE = 3, and the leading dimension of DYPDY has the value NUC + 1. 

 FCNJ must be declared EXTERNAL in the calling program. If PARAM(19) = IATYPE is 

nonzero, then FCNJ should compute the Jacobian of the righthand side of the equation 

Ayʹ = f(t, y). The subroutine FCNJ is used only if PARAM(13) = MITER = 1. 

T — Independent variable, t.   (Input/Output)  

On input, T contains the initial independent variable value. On output, T is replaced by 

TEND unless error or other normal conditions arise. See IDO for details. 

TEND — Value of t = tend where the solution is required.   (Input)  

The value tend may be less than the initial value of t. 

Y — Array of size NEQ of dependent variables, y(t).   (Input/Output)  

On input, Y contains the initial values, y(t0). On output, Y contains the approximate 

solution, y(t). 

Optional Arguments 

NEQ— Number of differential equations.   (Input) 

Default: NEQ = size (Y,1) 

A — Matrix structure used when the system is implicit.   (Input) 

The matrix A is referenced only if PARAM(19) = IATYPE is nonzero. Its data structure is 

determined by PARAM(14) = MTYPE. The matrix A must be nonsingular and MITER 

must be 1 or 2. See Comment 3. 

TOL — Tolerance for error control.   (Input)  

An attempt is made to control the norm of the local error such that the global error is 
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proportional to TOL. 

Default: TOL = .001 

PARAM — A floating-point array of size 50 containing optional parameters.   (Input/Output)  

If a parameter is zero, then the default value is used. These default values are given 

below. Parameters that concern values of the step size are applied in the direction of 

integration. The following parameters may be set by the user: 

 PARAM Meaning 

1 HINIT Initial value of the step size H. Always nonnegative.  

Default: 0.001|tend − t0|. 

2 HMIN Minimum value of the step size H. Default: 0.0. 

3 HMAX Maximum value of the step size H. Default: No limit, 

beyond the machine scale, is imposed on the step size. 

4 MXSTEP Maximum number of steps allowed. Default: 500. 

5 MXFCN Maximum number of function evaluations allowed. Default: 

No enforced limit. 

6 MAXORD Maximum order of the method. Default: If Adams-Moulton 

method is used, then 12. If Gear‘s or BDF method is used, 

then 5. The defaults are the maximum values allowed. 

7 INTRP1 If this value is set nonzero, the subroutine will return before 

every step with IDO = 4. See Comment 5. Default: 0. 

8 INTRP2 If this value is nonzero, the subroutine will return after 

every successful step with IDO = 5 and return with IDO = 6 

after every unsuccessful step. See Comment 5. Default: 0 

9 SCALE A measure of the scale of the problem, such as an 

approximation to the average value of a norm of the 

Jacobian along the solution. Default: 1.0 

10 INORM Switch determining error norm. In the following, ei is the 

absolute value of an estimate of the error in yi(t).  

Default: 0. 

0 — min(absolute error, relative error) = max(eiwi); i = 1, 

…, N, where wi = max(|yi(t)|, 1.0). 

1 — absolute error = max(ei), i = 1 …, NEQ. 

2 — max(ei / wi), i = 1 …, N where wi = max(|yi(t)|, FLOOR), 

and FLOOR is the value PARAM(11). 

3 — Scaled Euclidean norm defined as  

         
2 2

1
YMAX /

NEQ

i ii
e w


   

where wi = max(|yi(t)|, 1.0). Other definitions of YMAX can 

be specified by the user, as explained in Comment 1. 
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11 FLOOR Used in the norm computation associated the parameter 

INORM. Default: 1.0. 

12 METH Integration method indicator. 

1 = METH selects the Adams-Moulton method. 

2 = METH selects Gear‘s BDF method. 

Default: 1. 

13 MITER Nonlinear solver method indicator. 

Note: If the problem is stiff and a chord or modified 

Newton method is most efficient, use MITER = 1 or = 2. 

0 = MITER selects functional iteration. The value IATYPE 

must be set to zero with this option. 

1 = MITER selects a chord method with a user-provided 

Jacobian. 

2 = MITER selects a chord method with a divided-difference 

Jacobian. 

3 = MITER selects a chord method with the Jacobian 

replaced by a diagonal matrix based on a directional 

derivative. The value IATYPE must be set to zero with this 

option. 

Default: 0. 

14 MTYPE Matrix type for A (if used) and the Jacobian (if MITER = 1 

or = 2). When both are used, A and the Jacobian must be of 

the same type. 

0 = MTYPE selects full matrices. 

1 = MTYPE selects banded matrices. 

2 = MTYPE selects symmetric positive definite matrices. 

3 = MTYPE selects banded symmetric positive definite 

matrices. 

Default: 0. 

15 NLC Number of lower codiagonals, used if MTYPE = 1. 

Default: 0. 

16 NUC Number of upper codiagonals, used if MTYPE = 1 or MTYPE 

= 3. 

Default: 0.  

17  Not used.  

18 EPSJ Relative tolerance used in computing divided difference 

Jacobians. 

Default: SQRT(AMACH(4)) . 
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19 IATYPE Type of the matrix A. 

0 = IATYPE implies A is not used (the system is explicit). 

1 = IATYPE if A is a constant matrix. 

2 = IATYPE if A depends on t. 

Default: 0. 

20 LDA Leading dimension of array A exactly as specified in the 

dimension statement in the calling program. Used if 

IATYPE is not zero. 

Default: 

N             if MTYPE = 0 or = 2 

NUC + NLC + 1   if MTYPE = 1 

NUC + 1         if MTYPE = 3 

21−30 
 Not used. 

The following entries in the array PARAM are set by the program: 

 

 PARAM Meaning 

31 HTRIAL  Current trial step size. 

32 HMINC  Computed minimum step size. 

33 HMAXC  Computed maximum step size. 

34 NSTEP  Number of steps taken. 

35 NFCN  Number of function evaluations used.  

36 NJE  Number of Jacobian evaluations.  

37−50 
 Not used. 

FORTRAN 90 Interface 

Generic: CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y [,…]) 

Specific:  The specific interface names are S_IVPAG and D_IVPAG. 

FORTRAN 77 Interface 

Single: CALL IVPAG (IDO, NEQ, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y) 

Double: The double precision name is DIVPAG. 

Description 

The routine IVPAG solves a system of first-order ordinary differential equations of the form  

yʹ = f (t, y) or Ayʹ = f (t, y) with initial conditions where A is a square nonsingular matrix of order 

N. Two classes of implicit linear multistep methods are available. The first is the implicit Adams-

Moulton method (up to order twelve); the second uses the backward differentiation formulas BDF 
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(up to order five). The BDF method is often called Gear‘s stiff method. In both cases, because 

basic formulas are implicit, a system of nonlinear equations must be solved at each step. The 

deriviative matrix in this system has the form L = A + ηJ where η is a small number computed by 

IVPAG and J is the Jacobian. When it is used, this matrix is computed in the user-supplied routine 

FCNJ or else it is approximated by divided differences as a default. Using defaults, A is the 

identity matrix. The data structure for the matrix L may be identified to be real general, real 

banded, symmetric positive definite, or banded symmetric positive definite. The default structure 

for L is real general. 

Comments 

1. Workspace and a user-supplied error norm subroutine may be explicitly provided, if 

desired, by use of I2PAG/DI2PAG. The reference is: 

CALL I2PAG (IDO, NEQ, FCN, FCNJ, A, T, TEND, TOL, PARAM, 

Y, YTEMP, YMAX, ERROR, SAVE1, SAVE2, PW, IPVT, VNORM) 

 None of the additional array arguments should be changed from the first call with  

IDO = 1 until after the final call with IDO = 3. The additional arguments are as follows: 

YTEMP — Array of size NMETH.   (Workspace) 

YMAX — Array of size NEQ containing the maximum Y-values computed so far.   

(Output) 

ERROR — Array of size NEQ containing error estimates for each component of Y.   

(Output) 

SAVE1 — Array of size NEQ.   (Workspace) 

SAVE2 — Array of size NEQ.   (Workspace) 

PW — Array of size NPW. (Workspace) 

IPVT — Array of size NEQ.   (Workspace) 

VNORM — A Fortran subroutine to compute the norm of the error.   (Input)  

The routine may be provided by the user, or the IMSL routine I3PRK/DI3PRK 

may be used. In either case, the name must be declared in a Fortran EXTERNAL 

statement. If usage of the IMSL routine is intended, then the name 

I3PRK/DI3PRK should be specified. The usage of the error norm routine is  

CALL VNORM (NEQ, V, Y, YMAX, ENORM) where  

 

Arg Definition 

NEQ Number of equations.   (Input). 

V 
Array of size N containing the vector 

whose norm is to be computed.   (Input) 
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Arg Definition 

Y 
Array of size N containing the values of 

the dependent variable.   (Input) 

YMAX 
Array of size N containing the maximum 

values of |y(t)|.   (Input). 

ENORM Norm of the vector V.   (Output). 

 

VNORM must be declared EXTERNAL in the calling program. 

2. Informational errors 

Type Code 

4  1 After some initial success, the integration was halted by repeated 

error-test failures. 

4  2 The maximum number of function evaluations have been used. 

4  3 The maximum number of steps allowed have been used. The 

problem may be stiff. 

4 4 On the next step T + H will equal T. Either TOL is too small, or the 

problem is stiff. 

Note: If the Adams-Moulton method is the one used in the 

integration, then users can switch to the BDF methods. If the BDF 

methods are being used, then these comments are gratuitous and 

indicate that the problem is too stiff for this combination of method 

and value of TOL. 

4 5 After some initial success, the integration was halted by a test on 

TOL. 

4 6 Integration was halted after failing to pass the error test even after 

dividing the initial step size by a factor of 1.0E + 10. The value TOL 

may be too small. 

4 7 Integration was halted after failing to achieve corrector convergence 

even after dividing the initial step size by a factor of 1.0E + 10. The 

value TOL may be too small. 

4 8 IATYPE is nonzero and the input matrix A multiplying yʹ is singular. 

3. Both explicit systems, of the form yʹ = f (t, y), and implicit systems, Ayʹ = f (t, y), can 

be solved. If the system is explicit, then PARAM(19) = 0; and the matrix A is not 

referenced. If the system is implicit, then PARAM(14) determines the data structure of 

the array A. If PARAM(19) = 1, then A is assumed to be a constant matrix. The value of A 

used on the first call (with IDO = 1) is saved until after a call with IDO = 3. The value 

of A must not be changed between these calls.  

If PARAM(19) = 2, then the matrix is assumed to be a function of t. 

4. If MTYPE is greater than zero, then MITER must equal 1 or 2. 
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5. If PARAM(7) is nonzero, the subroutine returns with IDO= 4 and will resume calculation 

at the point of interruption if re-entered with IDO = 4. If PARAM(8) is nonzero, the 

subroutine will interrupt immediately after decides to accept the result of the most 

recent trial step. The value IDO = 5 is returned if the routine plans to accept, or IDO = 6 

if it plans to reject. The value IDO may be changed by the user (by changing IDO from 

6 to 5) to force acceptance of a step that would otherwise be rejected. Relevant 

parameters to observe after return from an interrupt are IDO, HTRIAL, NSTEP, NFCN, 

NJE, T and Y. The array Y contains the newly computed trial value y(t). 

Example 1 

Euler‘s equation for the motion of a rigid body not subject to external forces is 

 

 

 

1 2 3 1

2 1 3 2

3 1 2 3

0 0

0 1

0.51 0 1

y y y y

y y y y

y y y y

  

   

   
 

Its solution is, in terms of Jacobi elliptic functions, y (t) = sn(t; k), y2 (t) = cn(t; k), y3 (t) = dn(t; k) 

where k
2
 = 0.51. The Adams-Moulton method of IVPAG is used to solve this system, since this is 

the default. All parameters are set to defaults. 

The last call to IVPAG with IDO = 3 releases IMSL workspace that was reserved on the first call to 

IVPAG. It is not necessary to release the workspace in this example because the program ends after 

solving a single problem. The call to release workspace is made as a model of what would be 

needed if the program included further calls to IMSL routines. 

Because PARAM(13) = MITER = 0, functional iteration is used and so subroutine FCNJ is never 

called. It is included only because the calling sequence for IVPAG requires it. 
 

      USE IVPAG_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N, NPARAM 

      PARAMETER  (N=3, NPARAM=50) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    IDO, IEND, NOUT 

      REAL       A(1,1), T, TEND, TOL, Y(N) 

!                                 SPECIFICATIONS FOR SUBROUTINES 

!                                 SPECIFICATIONS FOR FUNCTIONS 

      EXTERNAL   FCN, FCNJ 

!                                 Initialize 

! 

      IDO  = 1 

      T    = 0.0 

      Y(1) = 0.0 

      Y(2) = 1.0 

      Y(3) = 1.0 

      TOL  = 1.0E-6 

!                                 Write title 

      CALL UMACH (2, NOUT) 
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      WRITE (NOUT,99998) 

!                                 Integrate ODE 

      IEND = 0 

   10 CONTINUE 

      IEND = IEND + 1 

      TEND = IEND 

!                                 The array a(*,*) is not used. 

      CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL) 

      IF (IEND .LE. 10) THEN 

         WRITE (NOUT,99999) T, Y 

!                                 Finish up 

         IF (IEND .EQ. 10) IDO = 3 

         GO TO 10 

      END IF 

99998 FORMAT (11X, 'T', 14X, 'Y(1)', 11X, 'Y(2)', 11X, 'Y(3)') 

99999 FORMAT (4F15.5) 

      END 

! 

      SUBROUTINE FCN (N, X, Y, YPRIME) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    N 

      REAL       X, Y(N), YPRIME(N) 

! 

      YPRIME(1) = Y(2)*Y(3) 

      YPRIME(2) = -Y(1)*Y(3) 

      YPRIME(3) = -0.51*Y(1)*Y(2) 

      RETURN 

      END 

! 

      SUBROUTINE FCNJ (N, X, Y, DYPDY) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    N 

      REAL       X, Y(N), DYPDY(N,*) 

!                                 This subroutine is never called 

      RETURN 

      END 

Output 
 

     T              Y(1)           Y(2)           Y(3) 

 1.00000        0.80220        0.59705        0.81963 

 2.00000        0.99537       -0.09615        0.70336 

 3.00000        0.64141       -0.76720        0.88892 

 4.00000       -0.26961       -0.96296        0.98129 

 5.00000       -0.91173       -0.41079        0.75899 

 6.00000       -0.95751        0.28841        0.72967 

 7.00000       -0.42877        0.90342        0.95197 

 8.00000        0.51092        0.85963        0.93106 

 9.00000        0.97567        0.21926        0.71730 

10.00000        0.87790       -0.47884        0.77906 
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Additional Examples 

Example 2 

The BDF method of IVPAG is used to solve Example 2 of IVPRK. We set PARAM(12) = 2 to 

designate the BDF method. A chord or modified Newton method, with the Jacobian computed by 

divided differences, is used to solve the nonlinear equations. Thus, we set PARAM(13) = 2. The 

number of evaluations of yʹ is printed after the last output point, showing the efficiency gained 

when using a stiff solver compared to using IVPRK on this problem. The number of evaluations 

may vary, depending on the accuracy and other arithmetic characteristics of the computer. 
 

      USE IVPAG_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    MXPARM, N 

      PARAMETER  (MXPARM=50, N=2) 

!                                 SPECIFICATIONS FOR PARAMETERS 

      INTEGER    MABSE, MBDF, MSOLVE 

      PARAMETER  (MABSE=1, MBDF=2, MSOLVE=2) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    IDO, ISTEP, NOUT 

      REAL       A(1,1), PARAM(MXPARM), T, TEND, TOL, Y(N) 

!                                 SPECIFICATIONS FOR SUBROUTINES 

!                                 SPECIFICATIONS FOR FUNCTIONS 

      EXTERNAL   FCN, FCNJ 

! 

      CALL UMACH (2, NOUT) 

!                                 Set initial conditions 

      T = 0.0 

      Y(1) = 1.0 

      Y(2) = 0.0 

!                                 Set error tolerance 

      TOL = 0.001 

!                                 Set PARAM to defaults 

      PARAM = 0.0E0 

! 

      PARAM(10) = MABSE 

!                                 Select BDF method 

      PARAM(12) = MBDF 

!                                 Select chord method and 

!                                 a divided difference Jacobian. 

      PARAM(13) = MSOLVE 

!                                 Print header 

      WRITE (NOUT,99998) 

      IDO = 1 

      ISTEP = 0 

   10 CONTINUE 

      ISTEP = ISTEP + 24 

      TEND = ISTEP 

!                                 The array a(*,*) is not used. 

      CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL, &  

                 PARAM=PARAM) 

      IF (ISTEP .LE. 240) THEN 
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         WRITE (NOUT,'(I6,3F12.3)') ISTEP/24, T, Y 

!                                 Final call to release workspace 

         IF (ISTEP .EQ. 240) IDO = 3 

         GO TO 10 

      END IF 

!                                 Show number of function calls. 

      WRITE (NOUT,99999) PARAM(35) 

99998 FORMAT (4X, 'ISTEP', 5X, 'Time', 9X, 'Y1', 11X, 'Y2') 

99999 FORMAT (4X, 'Number of fcn calls with IVPAG =', F6.0) 

      END 

      SUBROUTINE FCN (N, T, Y, YPRIME) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    N 

      REAL       T, Y(N), YPRIME(N) 

!                                 SPECIFICATIONS FOR SAVE VARIABLES 

      REAL       AK1, AK2, AK3 

      SAVE       AK1, AK2, AK3 

! 

      DATA AK1, AK2, AK3/294.0E0, 3.0E0, 0.01020408E0/ 

! 

      YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2) 

      YPRIME(2) = -AK2*Y(2) + AK3*(1.0E0-Y(2))*Y(1) 

      RETURN 

      END 

      SUBROUTINE FCNJ (N, T, Y, DYPDY) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    N 

      REAL       T, Y(N), DYPDY(N,*) 

! 

      RETURN 

      END 

Output 
 

ISTEP     Time          Y1          Y2 

 1      24.000       0.689       0.002 

 2      48.000       0.636       0.002 

 3      72.000       0.590       0.002 

 4      96.000       0.550       0.002 

 5     120.000       0.515       0.002 

 6     144.000       0.485       0.002 

 7     168.000       0.458       0.002 

 8     192.000       0.434       0.001 

 9     216.000       0.412       0.001 

10     240.000       0.392       0.001 

Number of fcn calls with IVPAG =   73. 

Example 3 

The BDF method of IVPAG is used to solve the so-called Robertson problem: 
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Output is obtained after each unit of the independent variable. A user-provided subroutine for the 

Jacobian matrix is used. An absolute error tolerance of 10-5
 is required. 

 

      USE IVPAG_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    MXPARM, N 

      PARAMETER  (MXPARM=50, N=3) 

!                                 SPECIFICATIONS FOR PARAMETERS 

      INTEGER    MABSE, MBDF, MSOLVE 

      PARAMETER  (MABSE=1, MBDF=2, MSOLVE=1) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    IDO, ISTEP, NOUT 

      REAL       A(1,1), PARAM(MXPARM), T, TEND, TOL, Y(N) 

!                                 SPECIFICATIONS FOR SUBROUTINES 

!                                 SPECIFICATIONS FOR FUNCTIONS 

      EXTERNAL   FCN, FCNJ 

! 

      CALL UMACH (2, NOUT) 

!                                 Set initial conditions 

      T = 0.0 

      Y(1) = 1.0 

      Y(2) = 0.0 

      Y(3) = 0.0 

!                                 Set error tolerance 

      TOL = 1.0E-5 

!                                 Set PARAM to defaults 

      PARAM = 0.0E0 

 

!                                 Select absolute error control 

      PARAM(10) = MABSE 

!                                 Select BDF method 

      PARAM(12) = MBDF 

!                                 Select chord method and 

!                                 a user-provided Jacobian. 

      PARAM(13) = MSOLVE 

!                                 Print header 

      WRITE (NOUT,99998) 

      IDO = 1 

      ISTEP = 0 

   10 CONTINUE 

      ISTEP = ISTEP + 1 

      TEND = ISTEP 

!                                 The array a(*,*) is not used. 

      CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y, TOL=TOL, PARAM=PARAM) 
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      IF (ISTEP .LE. 10) THEN 

         WRITE (NOUT,'(I6,F12.2,3F13.5)') ISTEP, T, Y 

!                                 Final call to release workspace 

         IF (ISTEP .EQ. 10) IDO = 3 

         GO TO 10 

      END IF 

99998 FORMAT (4X, 'ISTEP', 5X, 'Time', 9X, 'Y1', 11X, 'Y2', 11X, & 

            'Y3') 

      END 

      SUBROUTINE FCN (N, T, Y, YPRIME) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    N 

      REAL       T, Y(N), YPRIME(N) 

!                                 SPECIFICATIONS FOR SAVE VARIABLES 

      REAL       C1, C2, C3 

      SAVE       C1, C2, C3 

! 

      DATA C1, C2, C3/0.04E0, 1.0E4, 3.0E7/ 

! 

      YPRIME(1) = -C1*Y(1) + C2*Y(2)*Y(3) 

      YPRIME(3) = C3*Y(2)**2 

      YPRIME(2) = -YPRIME(1) - YPRIME(3) 

      RETURN 

      END 

      SUBROUTINE FCNJ (N, T, Y, DYPDY) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    N 

      REAL       T, Y(N), DYPDY(N,*) 

!                                 SPECIFICATIONS FOR SAVE VARIABLES 

      REAL       C1, C2, C3 

      SAVE       C1, C2, C3 

!                                 SPECIFICATIONS FOR SUBROUTINES 

      EXTERNAL   SSET 

! 

      DATA C1, C2, C3/0.04E0, 1.0E4, 3.0E7/ 

!                                 Clear array to zero 

      CALL SSET (N**2, 0.0, DYPDY, 1) 

!                                 Compute partials 

      DYPDY(1,1) = -C1 

      DYPDY(1,2) = C2*Y(3) 

      DYPDY(1,3) = C2*Y(2) 

      DYPDY(3,2) = 2.0*C3*Y(2) 

      DYPDY(2,1) = -DYPDY(1,1) 

      DYPDY(2,2) = -DYPDY(1,2) - DYPDY(3,2) 

      DYPDY(2,3) = -DYPDY(1,3) 

      RETURN 

      END 

Output 
 

 ISTEP     Time         Y1           Y2           Y3 

 1        1.00      0.96647      0.00003      0.03350 

 2        2.00      0.94164      0.00003      0.05834 

 3        3.00      0.92191      0.00002      0.07806 

 4        4.00      0.90555      0.00002      0.09443 

 5        5.00      0.89153      0.00002      0.10845 

 6        6.00      0.87928      0.00002      0.12070 
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 7        7.00      0.86838      0.00002      0.13160 

 8        8.00      0.85855      0.00002      0.14143 

 9        9.00      0.84959      0.00002      0.15039 

10       10.00      0.84136      0.00002      0.15862 

Example 4 

Solve the partial differential equation 

2

2

t u u
e

t x

 

 

 
 

with the initial condition  

u(t = 0, x) = sin x 

and the boundary conditions 

u(t, x = 0) = u(t, x = π) = 0 

on the square [0, 1] × [0, π], using the method of lines with a piecewise-linear Galerkin 

discretization. The exact solution is u(t, x) = exp(1 − e
t
) sin x. The interval [0, π] is divided into 

equal intervals by choosing breakpoints xk = kπ/(N + 1) for k = 0, …, N + 1. The unknown 

function u(t, x) is approximated by 

   
1

N

k kk
c t x


 

where ɸk (x) is the piecewiselinear function that equals 1 at xk and is zero at all of the other 

breakpoints. We approximate the partial differential equation by a system of N ordinary 

differential equations, A dc/dt = Rc where A and R are matrices of order N. The matrix A is given 

by 

   
0

2 / 3 if

/ 6 if 1

0 otherwise

t

t t
ij i j

e h i j

A e x x dx e h i j

 



 



   

 

 

where h = 1/(N + 1) is the mesh spacing. The matrix R is given by 

 

       " ' '
j0 0

2 / if

1/ if 1

0 otherwise

ij i j i

h i j

R x x dx x x dx h i j
 
   

 

      

 

The integrals involving 
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are assigned the values of the integrals on the right-hand side, by using the boundary values and 

integration by parts. Because this system may be stiff, Gear‘s BDF method is used. 

In the following program, the array Y(1:N) corresponds to the vector of coefficients, c. Note that Y 

contains N + 2 elements; Y(0) and Y(N + 1) are used to store the boundary values. The matrix A 

depends on t so we set PARAM(19) = 2 and evaluate A when IVPAG returns with IDO = 7. The 

subroutine FCN computes the vector Rc, and the subroutine FCNJ computes R. The matrices A and 

R are stored as band-symmetric positive-definite structures having one upper co-diagonal. 
 

      USE IVPAG_INT 

      USE CONST_INT 

      USE WRRRN_INT 

      USE SSET_INT 

 

      IMPLICIT   NONE 

      INTEGER    LDA, N, NPARAM, NUC 

      PARAMETER  (N=9, NPARAM=50, NUC=1, LDA=NUC+1) 

!                                 SPECIFICATIONS FOR PARAMETERS 

      INTEGER    NSTEP 

      PARAMETER  (NSTEP=4) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I, IATYPE, IDO, IMETH, INORM, ISTEP, MITER, MTYPE 

      REAL       A(LDA,N), C, HINIT, PARAM(NPARAM), PI, T, TEND, TMAX, & 

                TOL, XPOINT(0:N+1), Y(0:N+1) 

      CHARACTER  TITLE*10 

!                                 SPECIFICATIONS FOR COMMON /COMHX/ 

      COMMON     /COMHX/ HX 

      REAL       HX 

!                                 SPECIFICATIONS FOR INTRINSICS 

      INTRINSIC  EXP, REAL, SIN 

      REAL       EXP, REAL, SIN 

!                                 SPECIFICATIONS FOR SUBROUTINES 

!                                 SPECIFICATIONS FOR FUNCTIONS 

      EXTERNAL   FCN, FCNJ 

!                                 Initialize PARAM 

      HINIT  = 1.0E-3 

      INORM  = 1 

      IMETH  = 2 

      MITER  = 1 

      MTYPE  = 3 

      IATYPE = 2 

      PARAM = 0.0E0 

      PARAM(1)  = HINIT 

      PARAM(10) = INORM921 

 

      PARAM(12) = IMETH 

      PARAM(13) = MITER 

      PARAM(14) = MTYPE 

      PARAM(16) = NUC 

      PARAM(19) = IATYPE 

!                                 Initialize other arguments 

      PI = CONST('PI') 

      HX = PI/REAL(N+1) 

      CALL SSET (N-1, HX/6., A(1:,2), LDA) 
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      CALL SSET (N, 2.*HX/3., A(2:,1), LDA) 

      DO 10  I=0, N + 1 

         XPOINT(I) = I*HX 

         Y(I)      = SIN(XPOINT(I)) 

   10 CONTINUE 

      TOL  = 1.0E-6 

      T    = 0.0 

      TMAX = 1.0 

!                                 Integrate ODE 

      IDO   = 1 

      ISTEP = 0 

   20 CONTINUE 

      ISTEP = ISTEP + 1 

      TEND  = TMAX*REAL(ISTEP)/REAL(NSTEP) 

   30 CALL IVPAG (IDO, FCN, FCNJ, T, TEND, Y(1:), NEQ=N, A=A, & 

                  TOL=TOL, PARAM=PARAM) 

!                                 Set matrix A 

      IF (IDO .EQ. 7) THEN 

         C = EXP(-T) 

         CALL SSET (N-1, C*HX/6., A(1:,2), LDA) 

         CALL SSET (N, 2.*C*HX/3., A(2:,1), LDA) 

         GO TO 30 

      END IF 

      IF (ISTEP .LE. NSTEP) THEN 

!                                 Print solution 

         WRITE (TITLE,'(A,F5.3,A)') 'U(T=', T, ')' 

         CALL WRRRN (TITLE, Y, 1, N+2, 1) 

!                                 Final call to release workspace 

         IF (ISTEP .EQ. NSTEP) IDO = 3 

         GO TO 20 

       END IF 

       END 

! 

      SUBROUTINE FCN (N, T, Y, YPRIME) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    N 

      REAL       T, Y(*), YPRIME(N) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I 

!                                 SPECIFICATIONS FOR COMMON /COMHX/ 

      COMMON     /COMHX/ HX 

      REAL       HX 

!                                 SPECIFICATIONS FOR SUBROUTINES 

      EXTERNAL   SSCAL 

! 

      YPRIME(1) = -2.0*Y(1) + Y(2) 

      DO 10  I=2, N - 1 

         YPRIME(I) = -2.0*Y(I) + Y(I-1) + Y(I+1) 

   10 CONTINUE 

      YPRIME(N) = -2.0*Y(N) + Y(N-1) 

      CALL SSCAL (N, 1.0/HX, YPRIME, 1) 

      RETURN 

      END 

! 

      SUBROUTINE FCNJ (N, T, Y, DYPDY) 

!                                 SPECIFICATIONS FOR ARGUMENTS 
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      INTEGER    N 

      REAL       T, Y(*), DYPDY(2,*) 

!                                 SPECIFICATIONS FOR COMMON /COMHX/ 

      COMMON     /COMHX/ HX 

      REAL       HX 

!                                 SPECIFICATIONS FOR SUBROUTINES 

      EXTERNAL   SSET 

! 

      CALL SSET (N-1, 1.0/HX, DYPDY(1,2), 2) 

      CALL SSET (N, -2.0/HX, DYPDY(2,1), 2) 

      RETURN 

      END 

Output 
 

                            U(T=0.250) 

     1        2        3        4        5        6        7        8 

0.0000   0.2321   0.4414   0.6076   0.7142   0.7510   0.7142   0.6076 

 

 

     9       10       11 

0.4414   0.2321   0.0000 

 

 

                            U(T=0.500) 

     1        2        3        4        5        6        7        8 

0.0000   0.1607   0.3056   0.4206   0.4945   0.5199   0.4945   0.4206 

 

 

     9       10       11 

0.3056   0.1607   0.0000 

 

 

                            U(T=0.750) 

     1        2        3        4        5        6        7        8 

0.0000   0.1002   0.1906   0.2623   0.3084   0.3243   0.3084   0.2623 

 

 

     9       10       11 

0.1906   0.1002   0.0000 

 

 

                            U(T=1.000) 

     1        2        3        4        5        6        7        8 

0.0000   0.0546   0.1039   0.1431   0.1682   0.1768   0.1682   0.1431 

 

 

     9       10       11 

0.1039   0.0546   0.0000 

BVPFD 
Solves a (parameterized) system of differential equations with boundary conditions at two points, 

using a variable order, variable step size finite difference method with deferred corrections. 
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Required Arguments 

FCNEQN — User-supplied subroutine to evaluate derivatives. The usage is 

CALL FCNEQN (N, T, Y, P, DYDT), where 

N – Number of differential equations.   (Input) 

T – Independent variable, t.   (Input) 

Y – Array of size N containing the dependent variable values, y(t). (Input) 

P – Continuation parameter, p.   (Input) 

See Comment 3. 

DYDT – Array of size N containing the derivatives yʹ (t).   (Output) 

 The name FCNEQN must be declared EXTERNAL in the calling program. 

FCNJAC — User-supplied subroutine to evaluate the Jacobian. The usage is 

CALL FCNJAC (N, T, Y, P, DYPDY), where 

N – Number of differential equations.   (Input) 

T – Independent variable, t.   (Input) 

Y – Array of size N containing the dependent variable values.   (Input) 

P – Continuation parameter, p.   (Input)  

See Comments 3. 

DYPDY – N by N array containing the partial derivatives ai, j = ∂ fi ∕ ∂ yj  

evaluated at (t, y). The values ai,j are returned in DYPDY(i, j).   (Output) 

 The name FCNJAC must be declared EXTERNAL in the calling program. 

FCNBC — User-supplied subroutine to evaluate the boundary conditions. The usage is 

CALL FCNBC (N, YLEFT, YRIGHT, P, H), where 

N – Number of differential equations.   (Input) 

YLEFT – Array of size N containing the values of the dependent  variable at the 

left endpoint.   (Input) 

YRIGHT – Array of size N containing the values of the dependent variable at the 

right endpoint.   (Input) 

P – Continuation parameter, p.   (Input)  

See Comment 3. 

H – Array of size N containing the boundary condition residuals.   (Output)  

The boundary conditions are defined by hi = 0; for i = 1, …, N. The left 

endpoint conditions must be defined first, then, the conditions involving 

both endpoints, and finally the right endpoint conditions. 
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 The name FCNBC must be declared EXTERNAL in the calling program. 

FCNPEQ — User-supplied subroutine to evaluate the derivative of yʹ with respect to the 

parameter p. The usage is 

CALL FCNPEQ (N, T, Y, P, DYPDP), where 

N – Number of differential equations.   (Input) 

T – Dependent variable, t.   (Input) 

Y – Array of size N containing the dependent variable values.   (Input) 

P – Continuation parameter, p.   (Input)  

See Comment 3. 

DYPDP – Array of size N containing the derivative of yʹ evaluated at (t, y).   

(Output) 

 The name FCNPEQ must be declared EXTERNAL in the calling program. 

FCNPBC — User-supplied subroutine to evaluate the derivative of the boundary 

conditions with respect to the parameter p. The usage is 

CALL FCNPBC (N, YLEFT, YRIGHT, P, H), where 

N – Number of differential equations.   (Input) 

YLEFT – Array of size N containing the values of the dependent variable at the 

left endpoint.   (Input) 

YRIGHT – Array of size N containing the values of the dependent variable at the 

right endpoint.   (Input) 

P – Continuation parameter, p.   (Input)  

See Comment 3. 

H – Array of size N containing the derivative of fi with respect to p.   (Output) 

 The name FCNPBC must be declared EXTERNAL in the calling program. 

NLEFT — Number of initial conditions.   (Input)  

The value NLEFT must be greater than or equal to zero and less than N. 

NCUPBC — Number of coupled boundary conditions.   (Input)  

The value NLEFT + NCUPBC must be greater than zero and less than or equal to N. 

TLEFT — The left endpoint.   (Input) 

TRIGHT — The right endpoint.   (Input) 

PISTEP — Initial increment size for p.   (Input)  

If this value is zero, continuation will not be used in this problem. The routines FCNPEQ 

and FCNPBC will not be called. 
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TOL — Relative error control parameter.   (Input)  

The computations stop when ABS(ERROR(J, I))/MAX(ABS(Y(J, I)), 1.0).LT.TOL for all 

J = 1, …, N and I = 1, …, NGRID. Here, ERROR(J, I) is the estimated error in Y(J, I). 

TINIT — Array of size NINIT containing the initial grid points.   (Input) 

YINIT — Array of size N by NINIT containing an initial guess for the values of Y at the 

points in TINIT.   (Input) 

LINEAR — Logical .TRUE. if the differential equations and the boundary conditions are 

linear.   (Input) 

MXGRID — Maximum number of grid points allowed.   (Input) 

NFINAL — Number of final grid points, including the endpoints.   (Output) 

TFINAL — Array of size MXGRID containing the final grid points.   (Output)  

Only the first NFINAL points are significant. 

YFINAL — Array of size N by MXGRID containing the values of Y at the points in TFINAL.   

(Output) 

ERREST — Array of size N.   (Output)  

ERREST(J) is the estimated error in Y(J). 

Optional Arguments 

N — Number of differential equations.   (Input) 

Default: N = size (YINIT,1). 

NINIT — Number of initial grid points, including the endpoints.   (Input)  

It must be at least 4. 

Default: NINIT = size (TINIT,1). 

LDYINI — Leading dimension of YINIT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDYINI = size (YINIT,1). 

PRINT — Logical .TRUE. if intermediate output is to be printed.   (Input) 

Default: PRINT = .FALSE. 

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDYFIN = size (YFINAL,1). 
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FORTRAN 90 Interface 

Generic: CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, NLEFT, NCUPBC, 

TLEFT, TRIGHT, PISTEP, TOL, TINIT, YINIT, LINEAR, MXGRID, NFINAL, 

TFINAL, YFINAL, ERREST [,…]) 

Specific: The specific interface names are S_BVPFD and D_BVPFD. 

FORTRAN 77 Interface 

Single: CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, N, NLEFT, NCUPBC, 

TLEFT, TRIGHT, PISTEP, TOL, NINIT, TINIT, YINIT, LDYINI, LINEAR, PRINT, 

MXGRID, NFINAL, TFINAL, YFINAL, LDYFIN, ERREST) 

Double: The double precision name is DBVPFD. 

Description 

The routine BVPFD is based on the subprogram PASVA3 by M. Lentini and V. Pereyra (see Pereyra 

1978). The basic discretization is the trapezoidal rule over a nonuniform mesh. This mesh is 

chosen adaptively, to make the local error approximately the same size everywhere. Higher-order 

discretizations are obtained by deferred corrections. Global error estimates are produced to control 

the computation. The resulting nonlinear algebraic system is solved by Newton‘s method with step 

control. The linearized system of equations is solved by a special form of Gauss elimination that 

preserves the sparseness. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2PFD/DB2PFD. The 

reference is: 

CALL B2PFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, N, 

NLEFT, NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, NINIT, 

TINIT, YINIT, LDYINI, LINEAR, PRINT, MXGRID, NFINAL, 

TFINAL, YFINAL, LDYFIN, ERREST, RWORK, IWORK) 

The additional arguments are as follows: 

RWORK — Floating-point work array of size N(3N * MXGRID + 4N + 1) 
+ MXGRID * (7N + 2). 

IWORK — Integer work array of size 2N * MXGRID + N + MXGRID. 

2. Informational errors 

Type Code 

4 1 More than MXGRID grid points are needed to solve the problem. 

4 2 Newton‘s method diverged. 

3 3 Newton‘s method reached roundoff error level. 
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3. If the value of PISTEP is greater than zero, then the routine BVPFD assumes that the 

user has embedded the problem into a one-parameter family of problems: 

yʹ = yʹ(t, y, p)  

h(ytleft, ytright, p) = 0 

 such that for p = 0 the problem is simple. For p = 1, the original problem is recovered. 

The routine BVPFD automatically attempts to increment from p = 0 to p = 1. The value 

PISTEP is the beginning increment used in this continuation. The increment will 

usually be changed by routine BVPFD, but an arbitrary minimum of 0.01 is imposed. 

4. The vectors TINIT and TFINAL may be the same. 

5. The arrays YINIT and YFINAL may be the same. 

Example 1 

This example solves the third-order linear equation 

2 siny y y y t     
 

subject to the boundary conditions y(0) = y(2π) and yʹ(0) = yʹ(2π) = 1. (Its solution is y = sin t.) 

To use BVPFD, the problem is reduced to a system of first-order equations by defining  

y1 = y, y2= yʹ and y3 = y″. The resulting system is 

 

   

 

1 2 2

2 3 1 1

3 3 2 1 2

0 1 0

0 2 0

2 sin 2 1 0

y y y

y y y y

y y y y t y





   

   

      
 

Note that there is one boundary condition at the left endpoint t = 0 and one boundary condition 

coupling the left and right endpoints. The final boundary condition is at the right endpoint. The 

total number of boundary conditions must be the same as the number of equations (in this case 3). 

Note that since the parameter p is not used in the call to BVPFD, the routines FCNPEQ and FCNPBC 

are not needed. Therefore, in the call to BVPFD, FCNEQN and FCNBC were used in place of FCNPEQ 

and FCNPBC. 
 

      USE BVPFD_INT 

      USE UMACH_INT 

      USE CONST_INT 

 

      IMPLICIT   NONE 

!                                 SPECIFICATIONS FOR PARAMETERS 

      INTEGER    LDYFIN, LDYINI, MXGRID, NEQNS, NINIT 

      PARAMETER  (MXGRID=45, NEQNS=3, NINIT=10, LDYFIN=NEQNS, & 

                LDYINI=NEQNS) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I, J, NCUPBC, NFINAL, NLEFT, NOUT 

      REAL       ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TINIT(NINIT), & 
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                TLEFT, TOL, TRIGHT, YFINAL(LDYFIN,MXGRID), & 

                YINIT(LDYINI,NINIT) 

      LOGICAL    LINEAR, PRINT 

!                                 SPECIFICATIONS FOR INTRINSICS 

      INTRINSIC  FLOAT 

      REAL       FLOAT 

!                                 SPECIFICATIONS FOR SUBROUTINES 

!                                 SPECIFICATIONS FOR FUNCTIONS 

      EXTERNAL   FCNBC, FCNEQN, FCNJAC 

!                                 Set parameters 

      NLEFT  = 1 

      NCUPBC = 1 

      TOL    = .001 

      TLEFT  = 0.0 

      TRIGHT = CONST('PI') 

      TRIGHT = 2.0*TRIGHT 

      PISTEP = 0.0 

      PRINT  = .FALSE. 

      LINEAR = .TRUE. 

!                                 Define TINIT 

      DO 10  I=1, NINIT 

      TINIT(I) = TLEFT + (I-1)*(TRIGHT-TLEFT)/FLOAT(NINIT-1) 

   10 CONTINUE 

!                                 Set YINIT to zero 

      YINIT = 0.0E0 

!                                 Solve problem 

      CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNEQN, FCNBC, NLEFT, & 

                 NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT, & 

                 YINIT, LINEAR, MXGRID, NFINAL, & 

                 TFINAL, YFINAL, ERREST) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99997) 

      WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1, & 

                       NFINAL) 

      WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS) 

99997 FORMAT (4X, 'I', 7X, 'T', 14X, 'Y1', 13X, 'Y2', 13X, 'Y3') 

99998 FORMAT (I5, 1P4E15.6) 

99999 FORMAT (' Error estimates', 4X, 1P3E15.6) 

      END 

      SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDX) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       T, P, Y(NEQNS), DYDX(NEQNS) 

!                                 SPECIFICATIONS FOR INTRINSICS 

      INTRINSIC  SIN 

      REAL       SIN 

!                                 Define PDE 

      DYDX(1) = Y(2) 

      DYDX(2) = Y(3) 

      DYDX(3) = 2.0*Y(3) - Y(2) + Y(1) + SIN(T) 

      RETURN 

      END 

      SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS) 
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!                                 Define d(DYDX)/dY 

      DYPDY(1,1) = 0.0 

      DYPDY(1,2) = 1.0 

      DYPDY(1,3) = 0.0 

      DYPDY(2,1) = 0.0 

      DYPDY(2,2) = 0.0 

      DYPDY(2,3) = 1.0 

      DYPDY(3,1) = 1.0 

      DYPDY(3,2) = -1.0 

      DYPDY(3,3) = 2.0 

      RETURN 

      END 

      SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS) 

!                                 Define boundary conditions 

      F(1) = YLEFT(2) - 1.0 

      F(2) = YLEFT(1) - YRIGHT(1) 

      F(3) = YRIGHT(2) - 1.0 

      RETURN 

      END 

Output 
 

 I       T              Y1             Y2             Y3 

 1   0.000000E+00  -1.123191E-04   1.000000E+00   6.242319E-05 

 2   3.490659E-01   3.419107E-01   9.397087E-01  -3.419580E-01 

 3   6.981317E-01   6.426908E-01   7.660918E-01  -6.427230E-01 

 4   1.396263E+00   9.847531E-01   1.737333E-01  -9.847453E-01 

 5   2.094395E+00   8.660529E-01  -4.998747E-01  -8.660057E-01 

 6   2.792527E+00   3.421830E-01  -9.395474E-01  -3.420648E-01 

 7   3.490659E+00  -3.417234E-01  -9.396111E-01   3.418948E-01 

 8   4.188790E+00  -8.656880E-01  -5.000588E-01   8.658733E-01 

 9   4.886922E+00  -9.845794E-01   1.734571E-01   9.847518E-01 

10   5.585054E+00  -6.427721E-01   7.658258E-01   6.429526E-01 

11   5.934120E+00  -3.420819E-01   9.395434E-01   3.423986E-01 

12   6.283185E+00  -1.123186E-04   1.000000E+00   6.743190E-04 

Error estimates     2.840430E-04   1.792939E-04   5.588399E-04 

Additional Examples 

Example 2 

In this example, the following nonlinear problem is solved: 

y″ − y
3
 + (1 + sin

2
t) sin t = 0 

with y(0) = y(π) = 0. Its solution is y = sin t. As in Example 1, this equation is reduced to a system 

of first-order differential equations by defining y1 = y and y2= yʹ. The resulting system is  
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1 2 1

3 2
2 1 1

0 0

1 sin sin 0

y y y

y y t t y 

  

    
 

In this problem, there is one boundary condition at the left endpoint and one at the right endpoint; 

there are no coupled boundary conditions.  

Note that since the parameter p is not used, in the call to BVPFD the routines FCNPEQ and FCNPBC 

are not needed. Therefore, in the call to BVPFD, FCNEQN and FCNBC were used in place of FCNPEQ 

and FCNPBC. 
 

      USE BVPFD_INT 

      USE UMACH_INT 

      USE CONST_INT 

 

      IMPLICIT   NONE 

 

!                                 SPECIFICATIONS FOR PARAMETERS 

      INTEGER    LDYFIN, LDYINI, MXGRID, NEQNS, NINIT 

      PARAMETER  (MXGRID=45, NEQNS=2, NINIT=12, LDYFIN=NEQNS, & 

                LDYINI=NEQNS) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I, J, NCUPBC, NFINAL, NLEFT, NOUT 

      REAL       ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TINIT(NINIT), & 

                TLEFT, TOL, TRIGHT, YFINAL(LDYFIN,MXGRID), & 

                YINIT(LDYINI,NINIT) 

      LOGICAL    LINEAR, PRINT 

!                                 SPECIFICATIONS FOR INTRINSICS 

      INTRINSIC  FLOAT 

      REAL       FLOAT 

!                                 SPECIFICATIONS FOR FUNCTIONS 

      EXTERNAL   FCNBC, FCNEQN, FCNJAC 

!                                 Set parameters 

      NLEFT  = 1 

      NCUPBC = 0 

      TOL    = .001 

      TLEFT  = 0.0 

      TRIGHT = CONST('PI') 

      PISTEP = 0.0 

      PRINT  = .FALSE. 

      LINEAR = .FALSE. 

!                                 Define TINIT and YINIT 

      DO 10  I=1, NINIT 

         TINIT(I)   = TLEFT + (I-1)*(TRIGHT-TLEFT)/FLOAT(NINIT-1) 

         YINIT(1,I) = 0.4*(TINIT(I)-TLEFT)*(TRIGHT-TINIT(I)) 

         YINIT(2,I) = 0.4*(TLEFT-TINIT(I)+TRIGHT-TINIT(I)) 

   10 CONTINUE 

!                                 Solve problem 

      CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNEQN, FCNBC, NLEFT, & 

                 NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, TINIT, & 

                 YINIT, LINEAR, MXGRID, NFINAL, & 

                 TFINAL, YFINAL, ERREST) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99997) 

      WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1, & 
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                       NFINAL) 

      WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS) 

99997 FORMAT (4X, 'I', 7X, 'T', 14X, 'Y1', 13X, 'Y2') 

99998 FORMAT (I5, 1P3E15.6) 

99999 FORMAT (' Error estimates', 4X, 1P2E15.6) 

      END 

      SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDT) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       T, P, Y(NEQNS), DYDT(NEQNS) 

!                                 SPECIFICATIONS FOR INTRINSICS 

      INTRINSIC  SIN 

      REAL       SIN 

!                                 Define PDE 

      DYDT(1) = Y(2) 

      DYDT(2) = Y(1)**3 - SIN(T)*(1.0+SIN(T)**2) 

      RETURN 

      END 

      SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS) 

!                                 Define d(DYDT)/dY 

      DYPDY(1,1) = 0.0 

      DYPDY(1,2) = 1.0 

      DYPDY(2,1) = 3.0*Y(1)**2 

      DYPDY(2,2) = 0.0 

      RETURN 

      END 

      SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS) 

!                                 Define boundary conditions 

      F(1) = YLEFT(1) 

      F(2) = YRIGHT(1) 

      RETURN 

      END 

Output 
 

 I       T              Y1             Y2 

 1   0.000000E+00   0.000000E+00   9.999277E-01 

 2   2.855994E-01   2.817682E-01   9.594315E-01 

 3   5.711987E-01   5.406458E-01   8.412407E-01 

 4   8.567980E-01   7.557380E-01   6.548904E-01 

 5   1.142397E+00   9.096186E-01   4.154530E-01 

 6   1.427997E+00   9.898143E-01   1.423307E-01 

 7   1.713596E+00   9.898143E-01  -1.423307E-01 

 8   1.999195E+00   9.096185E-01  -4.154530E-01 

 9   2.284795E+00   7.557380E-01  -6.548903E-01 

10   2.570394E+00   5.406460E-01  -8.412405E-01 

11   2.855994E+00   2.817683E-01  -9.594313E-01 

12   3.141593E+00   0.000000E+00  -9.999274E-01 

Error estimates     3.906105E-05   7.124186E-05 
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Example 3 

In this example, the following nonlinear problem is solved: 

2 /3 8
3 40 1 1

9 2 2
y y t t

   
        

     

with y(0) = y(1) = π/2. As in the previous examples, this equation is reduced to a system of first-

order differential equations by defining y1 = y and y2 = yʹ. The resulting system is 

 

 

1 2 1

2 / 3 8
3

2 1 1

0 / 2

40 1 1
1 / 2

9 2 2

y y y

y y t t y





  

   
         

     

The problem is embedded in a family of problems by introducing the parameter p and by changing 

the second differential equation to 

2/3 8
3

2 1

40 1 1

9 2 2
y py t t

   
        

     

At p = 0, the problem is linear; and at p = 1, the original problem is recovered. The derivatives 

 ∂yʹ/∂p must now be specified in the subroutine FCNPEQ. The derivatives ∂f/∂p are zero in 

FCNPBC. 
 

      USE BVPFD_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 SPECIFICATIONS FOR PARAMETERS 

      INTEGER    LDYFIN, LDYINI, MXGRID, NEQNS, NINIT 

      PARAMETER  (MXGRID=45, NEQNS=2, NINIT=5, LDYFIN=NEQNS, & 

                LDYINI=NEQNS) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    NCUPBC, NFINAL, NLEFT, NOUT 

      REAL       ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TLEFT, TOL, & 

                XRIGHT, YFINAL(LDYFIN,MXGRID) 

      LOGICAL    LINEAR, PRINT 

!                                 SPECIFICATIONS FOR SAVE VARIABLES 

      INTEGER    I, J 

      REAL       TINIT(NINIT), YINIT(LDYINI,NINIT) 

      SAVE       I, J, TINIT, YINIT 

!                                 SPECIFICATIONS FOR FUNCTIONS 

      EXTERNAL   FCNBC, FCNEQN, FCNJAC, FCNPBC, FCNPEQ 

! 

      DATA TINIT/0.0, 0.4, 0.5, 0.6, 1.0/ 

      DATA ((YINIT(I,J),J=1,NINIT),I=1,NEQNS)/0.15749, 0.00215, 0.0, & 

          0.00215, 0.15749, -0.83995, -0.05745, 0.0, 0.05745, 0.83995/ 

!                                 Set parameters 

      NLEFT  = 1 

      NCUPBC = 0 

      TOL    = .001 

      TLEFT  = 0.0 
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      XRIGHT = 1.0 

      PISTEP = 0.1 

      PRINT  = .FALSE. 

      LINEAR = .FALSE. 

! 

      CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, NLEFT, & 

                  NCUPBC, TLEFT, XRIGHT, PISTEP, TOL, TINIT, & 

                  YINIT, LINEAR, MXGRID, NFINAL,TFINAL, YFINAL, ERREST)  

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99997) 

      WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1, & 

                       NFINAL) 

      WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS) 

99997 FORMAT (4X, 'I', 7X, 'T', 14X, 'Y1', 13X, 'Y2') 

99998 FORMAT (I5, 1P3E15.6) 

99999 FORMAT (' Error estimates', 4X, 1P2E15.6) 

      END 

      SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDT) 

!                                  SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       T, P, Y(NEQNS), DYDT(NEQNS) 

!                                 Define PDE 

      DYDT(1) = Y(2) 

      DYDT(2) = P*Y(1)**3 + 40./9.*((T-0.5)**2)**(1./3.) - (T-0.5)**8 

      RETURN 

      END 

      SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS) 

!                                 Define d(DYDT)/dY 

      DYPDY(1,1) = 0.0 

      DYPDY(1,2) = 1.0 

      DYPDY(2,1) = P*3.*Y(1)**2 

      DYPDY(2,2) = 0.0 

      RETURN 

      END 

      SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F) 

      USE CONST_INT 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      REAL       PI 

!                                 Define boundary conditions 

      PI   = CONST('PI') 

      F(1) = YLEFT(1) - PI/2.0 

      F(2) = YRIGHT(1) - PI/2.0 

      RETURN 

      END 

      SUBROUTINE FCNPEQ (NEQNS, T, Y, P, DYPDP) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       T, P, Y(NEQNS), DYPDP(NEQNS) 

!                                 Define d(DYDT)/dP 
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      DYPDP(1) = 0.0 

      DYPDP(2) = Y(1)**3 

      RETURN 

      END 

      SUBROUTINE FCNPBC (NEQNS, YLEFT, YRIGHT, P, DFDP) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       P, YLEFT(NEQNS), YRIGHT(NEQNS), DFDP(NEQNS) 

!                                 SPECIFICATIONS FOR SUBROUTINES 

      EXTERNAL   SSET 

!                                 Define dF/dP 

      CALL SSET (NEQNS, 0.0, DFDP, 1) 

      RETURN 

      END 

Output 
 

 I       T              Y1             Y2 

 1   0.000000E+00   1.570796E+00  -1.949336E+00 

 2   4.444445E-02   1.490495E+00  -1.669567E+00 

 3   8.888889E-02   1.421951E+00  -1.419465E+00 

 4   1.333333E-01   1.363953E+00  -1.194307E+00 

 5   2.000000E-01   1.294526E+00  -8.958461E-01 

 6   2.666667E-01   1.243628E+00  -6.373191E-01 

 7   3.333334E-01   1.208785E+00  -4.135206E-01 

 8   4.000000E-01   1.187783E+00  -2.219351E-01 

 9   4.250000E-01   1.183038E+00  -1.584200E-01 

10   4.500000E-01   1.179822E+00  -9.973146E-02 

11   4.625000E-01   1.178748E+00  -7.233893E-02 

12   4.750000E-01   1.178007E+00  -4.638248E-02 

13   4.812500E-01   1.177756E+00  -3.399763E-02 

14   4.875000E-01   1.177582E+00  -2.205547E-02 

15   4.937500E-01   1.177480E+00  -1.061177E-02 

16   5.000000E-01   1.177447E+00  -1.479182E-07 

17   5.062500E-01   1.177480E+00   1.061153E-02 

18   5.125000E-01   1.177582E+00   2.205518E-02 

19   5.187500E-01   1.177756E+00   3.399727E-02 

20   5.250000E-01   1.178007E+00   4.638219E-02 

21   5.375000E-01   1.178748E+00   7.233876E-02 

22   5.500000E-01   1.179822E+00   9.973124E-02 

23   5.750000E-01   1.183038E+00   1.584199E-01 

24   6.000000E-01   1.187783E+00   2.219350E-01 

25   6.666667E-01   1.208786E+00   4.135205E-01 

26   7.333333E-01   1.243628E+00   6.373190E-01 

27   8.000000E-01   1.294526E+00   8.958461E-01 

28   8.666667E-01   1.363953E+00   1.194307E+00 

29   9.111111E-01   1.421951E+00   1.419465E+00 

30   9.555556E-01   1.490495E+00   1.669566E+00 

31   1.000000E+00   1.570796E+00   1.949336E+00 

Error estimates     3.448358E-06   5.549869E-05 
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BVPMS 

 

Solves a (parameterized) system of differential equations with boundary conditions at two points, 

using a multiple-shooting method. 

Required Arguments 

FCNEQN — User-supplied subroutine to evaluate derivatives. The usage is 

CALL FCNEQN (NEQNS, T, Y, P, DYDT), where 

NEQNS – Number of equations.   (Input) 

T – Independent variable, t.   (Input) 

Y – Array of length NEQNS containing the dependent variable.   (Input) 

P – Continuation parameter used in solving highly nonlinear problems.   (Input)  

See Comment 4. 

DYDT – Array of length NEQNS containing yʹ at T.   (Output) 

 The name FCNEQN must be declared EXTERNAL in the calling program. 

FCNJAC — User-supplied subroutine to evaluate the Jacobian. The usage is 

CALL FCNJAC (NEQNS, T, Y, P, DYPDY), where 

NEQNS – Number of equations.   (Input) 

T – Independent variable.   (Input) 

Y – Array of length NEQNS containing the dependent variable.   (Input) 

P – Continuation parameter used in solving highly nonlinear problems.   (Input)  

See Comment 4. 

DYPDY – Array of size NEQNS by NEQNS containing the Jacobian.   (Output)  

The entry DYPDY(i, j) contains the partial derivative ∂ fi∕∂ yj evaluated at 

(t, y). 

 The name FCNJAC must be declared EXTERNAL in the calling program. 

FCNBC — User-supplied subroutine to evaluate the boundary conditions. The usage is 

CALL FCNBC (NEQNS, YLEFT, YRIGHT, P, H), where 

NEQNS – Number of equations.   (Input) 

YLEFT – Array of length NEQNS containing the values of Y at TLEFT.   (Input) 

YRIGHT – Array of length NEQNS containing the values of Y at TRIGHT.   (Input) 
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P – Continuation parameter used in solving highly nonlinear problems.   (Input)  

See Comment 4. 

H – Array of length NEQNS containing the boundary function values.   (Output) 

The computed solution satisfies (within BTOL) the conditions hi = 0, i = 1, 

…, NEQNS. 

 The name FCNBC must be declared EXTERNAL in the calling program. 

TLEFT — The left endpoint.   (Input) 

TRIGHT — The right endpoint.   (Input) 

NMAX — Maximum number of shooting points to be allowed.   (Input)  

If NINIT is nonzero, then NMAX must equal NINIT. It must be at least 2. 

NFINAL — Number of final shooting points, including the endpoints.   (Output) 

TFINAL — Vector of length NMAX containing the final shooting points.   (Output) 

Only the first NFINAL points are significant. 

YFINAL — Array of size NEQNS by NMAX containing the values of Y at the points in TFINAL.   

(Output) 

Optional Arguments 

NEQNS — Number of differential equations.   (Input) 

DTOL — Differential equation error tolerance.   (Input)  

An attempt is made to control the local error in such a way that the global error is 

proportional to DTOL. 

Default: DTOL = 1.0e-4. 

BTOL — Boundary condition error tolerance.   (Input)  

The computed solution satisfies the boundary conditions, within BTOL tolerance. 

Default: BTOL = 1.0e-4. 

MAXIT — Maximum number of Newton iterations allowed.   (Input)  

Iteration stops if convergence is achieved sooner. Suggested values are MAXIT = 2 for 

linear problems and MAXIT = 9 for nonlinear problems. 

Default: MAXIT = 9. 

NINIT — Number of shooting points supplied by the user.   (Input)  

It may be 0. A suggested value for the number of shooting points is 10. 

Default: NINIT = 0. 

TINIT — Vector of length NINIT containing the shooting points supplied by the user.   

(Input)  

If NINIT = 0, then TINIT is not referenced and the routine chooses all of the shooting 

points. This automatic selection of shooting points may be expensive and should only 
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be used for linear problems. If NINIT is nonzero, then the points must be an increasing 

sequence with TINIT(1) = TLEFT and TINIT(NINIT) = TRIGHT. By default, TINIT is 

not used. 

YINIT — Array of size NEQNS by NINIT containing an initial guess for the values of Y at the 

points in TINIT.   (Input)  

YINIT is not referenced if NINIT = 0. By default, YINIT is not used. 

LDYINI — Leading dimension of YINIT exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDYINI = size (YINIT ,1). 

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDYFIN = size (YFINAL,1). 

FORTRAN 90 Interface 

Generic: CALL BVPMS (FCNEQN, FCNJAC, FCNBC, TLEFT, TRIGHT, NMAX, NFINAL, 

TFINAL, YFINAL [,…]) 

Specific: The specific interface names are S_BVPMS and D_BVPMS. 

FORTRAN 77 Interface 

Single: CALL BVPMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT, DTOL, BTOL, 

MAXIT, NINIT, TINIT, YINIT, LDYINI, NMAX, NFINAL, TFINAL, YFINAL, 
LDYFIN) 

Double: The double precision name is DBVPMS. 

Description 

Define N = NEQNS, M = NFINAL, ta = TLEFT and tb = TRIGHT. The routine BVPMS uses a multiple-

shooting technique to solve the differential equation system yʹ = f (t, y) with boundary conditions 

of the form 

hk(y1 (ta), …, yN (ta), y1 (tb), …, yN (tb)) = 0     for k = 1, …, N 

A modified version of IVPRK is used to compute the initial-value problem at each ―shot.‖ If there 

are M shooting points (including the endpoints ta and tb), then a system of NM simultaneous 

nonlinear equations must be solved. Newton‘s method is used to solve this system, which has a 

Jacobian matrix with a ―periodic band‖ structure. Evaluation of the NM functions and the  

NM × NM (almost banded) Jacobian for one iteration of Newton‘s method is accomplished in one 

pass from ta to tb of the modified IVPRK, operating on a system of N(N + 1) differential equations. 

For most problems, the total amount of work should not be highly dependent on M. Multiple 

shooting avoids many of the serious ill-conditioning problems that plague simple shooting 

methods. For more details on the algorithm, see Sewell (1982). 
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The boundary functions should be scaled so that all components hk are of comparable magnitude 

since the absolute error in each is controlled. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2PMS/DB2PMS. The 

reference is: 

CALL B2PMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT, 

DTOL, BTOL, MAXIT, NINIT, TINIT, YINIT, LDYINI, NMAX, 

NFINAL, TFINAL, YFINAL, LDYFIN, WORK, IWK) 

The additional arguments are as follows: 

WORK — Work array of length NEQNS * (NEQNS + 1)(NMAX + 12) +  
NEQNS + 30. 

IWK — Work array of length NEQNS. 

2. Informational errors 

Type Code 

1 5 Convergence has been achieved; but to get acceptably accurate 

approximations to y(t), it is often necessary to start an initial-value 

solver, for example IVPRK, at the nearest TFINAL(i) point to t with t 

≥ TFINAL (i). The vectors YFINAL(j, i), j = 1, …, NEQNS are used as 

the initial values. 

4 1 The initial-value integrator failed. Relax the tolerance DTOL or see 

Comment 3. 

4 2 More than NMAX shooting points are needed for stability. 

4 3 Newton‘s iteration did not converge in MAXIT iterations. If the 

problem is linear, do an extra iteration. If this error still occurs, 

check that the routine FCNJAC is giving the correct derivatives. If 

this does not fix the problem, see Comment 3. 

4 4 Linear-equation solver failed. The problem may not have a unique 

solution, or the problem may be highly nonlinear. In the latter case, 

see Comment 3. 

3. Many linear problems will be successfully solved using program-selected shooting 

points. Nonlinear problems may require user effort and input data. If the routine fails, 

then increase NMAX or parameterize the problem. With many shooting points the 

program essentially uses a finite-difference method, which has less trouble with 

nonlinearities than shooting methods. After a certain point, however, increasing the 

number of points will no longer help convergence. To parameterize the problem, see 

Comment 4. 

4. If the problem to be solved is highly nonlinear, then to obtain convergence it may be 

necessary to embed the problem into a one-parameter family of boundary value 
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problems, yʹ = f(t, y, p), h(y(ta, tb, p)) = 0 such that for p = 0, the problem is simple, 

e.g., linear; and for p = 1, the stated problem is solved. The routine BVPMS/DBVPMS 

automatically moves the parameter from p = 0 toward p = 1. 

5. This routine is not recommended for stiff systems of differential equations. 

Example 

The differential equations that model an elastic beam are (see Washizu 1968, pages 142−143): 
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where U is the axial displacement, W is the transverse displacement, N is the axial force, M is the 

bending moment, E is the elastic modulus, I is the moment of inertia, A0
 is the cross-sectional 

area, and L(x) is the transverse load. 

Assume we have a clamped cylindrical beam of radius 0.1in, a length of 10in, and an elastic 

modulus E = 10.6 × 10
6
 lb/in

2
. Then, I = 0.784 × 10-4

, and A0= π10-2
 in

2
, and the boundary 

conditions are U = W = Wx= 0 at each end. If we let y1= U, y2 = N/EA0, y3 = W, y4 = Wx,  

y5= M/EI , and y6 = Mx/EI, then the above nonlinear equations can be written as a system of six 

first-order equations. 
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The boundary conditions are y1 = y3 = y4 = 0 at x = 0 and at x = 10. The loading function is  

L(x) = −2, if 3 ≤ x ≤ 7, and is zero elsewhere. 

The material parameters, A0 = A0, I = AI, and E, are passed to the evaluation subprograms using 

the common block PARAM. 
 

      USE BVPMS_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 
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      INTEGER    LDY, NEQNS, NMAX 

      PARAMETER  (NEQNS=6, NMAX=21, LDY=NEQNS) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I, MAXIT, NFINAL, NINIT, NOUT 

      REAL       TOL, X(NMAX), XLEFT, XRIGHT, Y(LDY,NMAX) 

!                                 SPECIFICATIONS FOR COMMON /PARAM/ 

      COMMON     /PARAM/ A0, A1, E 

      REAL       A0, A1, E 

!                                 SPECIFICATIONS FOR INTRINSICS 

      INTRINSIC  REAL 

      REAL       REAL 

!                                 SPECIFICATIONS FOR SUBROUTINES 

      EXTERNAL   FCNBC, FCNEQN, FCNJAC 

!                                 Set material parameters 

      A0 = 3.14E-2 

      A1 = 0.784E-4 

      E  = 10.6E6 

!                                 Set parameters for BVPMS 

      XLEFT  = 0.0 

      XRIGHT = 10.0 

      MAXIT  = 19 

      NINIT  = NMAX 

      Y = 0.0E0 

!                                 Define the shooting points 

      DO 10  I=1, NINIT 

         X(I) = XLEFT + REAL(I-1)/REAL(NINIT-1)*(XRIGHT-XLEFT) 

   10 CONTINUE 

!                                 Solve problem 

      CALL BVPMS (FCNEQN, FCNJAC, FCNBC, XLEFT, XRIGHT, NMAX, NFINAL, & 

                  X, Y,  MAXIT=MAXIT, NINIT=NINIT, TINIT=X, YINIT=Y) 

                   

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,'(26X,A/12X,A,10X,A,7X,A)') 'Displacement', & 

                                           'X', 'Axial', 'Transvers'// & 

                                           'e' 

      WRITE (NOUT,'(F15.1,1P2E15.3)') (X(I),Y(1,I),Y(3,I),I=1,NFINAL) 

      END 

      SUBROUTINE FCNEQN (NEQNS, X, Y, P, DYDX) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       X, P, Y(NEQNS), DYDX(NEQNS) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      REAL       FORCE 

!                                 SPECIFICATIONS FOR COMMON /PARAM/ 

      COMMON     /PARAM/ A0, A1, E 

      REAL       A0, A1, E 

!                                 Define derivatives 

      FORCE = 0.0 

      IF (X.GT.3.0 .AND. X.LT.7.0) FORCE = -2.0 

      DYDX(1) = Y(2) - P*0.5*Y(4)**2 

      DYDX(2) = 0.0 

      DYDX(3) = Y(4) 

      DYDX(4) = -Y(5) 

      DYDX(5) = Y(6) 

      DYDX(6) = P*A0*Y(2)*Y(5)/A1 - FORCE/E/A1 

      RETURN 
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      END 

      SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS) 

!                                 SPECIFICATIONS FOR COMMON /PARAM/ 

      COMMON     /PARAM/ A0, A1, E 

      REAL       A0, A1, E 

!                                 Define boundary conditions 

      F(1) = YLEFT(1) 

      F(2) = YLEFT(3) 

      F(3) = YLEFT(4) 

      F(4) = YRIGHT(1) 

      F(5) = YRIGHT(3) 

      F(6) = YRIGHT(4) 

      RETURN 

      END 

      SUBROUTINE FCNJAC (NEQNS, X, Y, P, DYPDY) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    NEQNS 

      REAL       X, P, Y(NEQNS), DYPDY(NEQNS,NEQNS) 

!                                 SPECIFICATIONS FOR COMMON /PARAM/ 

      COMMON     /PARAM/ A0, A1, E 

      REAL       A0, A1, E 

!                                 SPECIFICATIONS FOR SUBROUTINES 

!                                 Define partials, d(DYDX)/dY 

      DYPDY = 0.0E0 

      DYPDY(1,2) = 1.0 

      DYPDY(1,4) = -P*Y(4) 

      DYPDY(3,4) = 1.0 

      DYPDY(4,5) = -1.0 

      DYPDY(5,6) = 1.0 

      DYPDY(6,2) = P*Y(5)*A0/A1 

      DYPDY(6,5) = P*Y(2)*A0/A1 

      RETURN 

      END 

Output 
 

                 Displacement 

  X          Axial       Transverse 

  0.0      1.631E-11     -8.677E-10 

  5.0      1.914E-05     -1.273E-03 

 10.0      2.839E-05     -4.697E-03 

 15.0      2.461E-05     -9.688E-03 

 20.0      1.008E-05     -1.567E-02 

 25.0     -9.550E-06     -2.206E-02 

 30.0     -2.721E-05     -2.830E-02 

 35.0     -3.644E-05     -3.382E-02 

 40.0     -3.379E-05     -3.811E-02 

 45.0     -2.016E-05     -4.083E-02 

 50.0     -4.414E-08     -4.176E-02 

 55.0      2.006E-05     -4.082E-02 

 60.0      3.366E-05     -3.810E-02 

 65.0      3.627E-05     -3.380E-02 
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 70.0      2.702E-05     -2.828E-02 

 75.0      9.378E-06     -2.205E-02 

 80.0     -1.021E-05     -1.565E-02 

 85.0     -2.468E-05     -9.679E-03 

 90.0     -2.842E-05     -4.692E-03 

 95.0     -1.914E-05     -1.271E-03 

100.0      0.000E+00      0.000E+00 

DAESL 

 

Solves a first order differential-algebraic system of equations, g(t, y, yʹ) = 0, with optional 

additional constraints and user-defined linear system solver. 

Note: DAESL replaces deprecated routine DASPG.  

Required Arguments 

T — Independent variable, t.   (Input/Output) 

Set T to the starting value t0 at the first step. On output, T is set to the value to which 

the integration has advanced.  Normally, this new value is TEND. 

TEND — Final value of the independent variable.   (Input) 

Update this value when re-entering after output with IDO = 2. 

IDO — Flag indicating the state of the computation.   (Input/Output)  

IDO State 

1 Initial entry 

2 Normal re-entry after obtaining output 

3 Release workspace, last call 

 The user sets IDO = 1 on the first call at T = t0.  The routine then sets IDO =2, and this 

value is used for all but the last entry, which is made with IDO = 3. 

Y — Array of size NEQ containing the dependent variable values, y.   (Input/Output)   

On input, Y must contain initial values.  On output, Y contains the computed solution at 

TEND. 

YPRIME — Array of size NEQ containing derivative values, yʹ.   (Input/Output) 

This array must contain initial values, but they need not be such that g(t, y, yʹ) = 0 at 

 t= t0.  See the description of parameter IYPR for more information. 

LinkedDocuments/daspg.pdf
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GCN — User-supplied subroutine to evaluate g(t, y, yʹ), and any constraints.   Also partial 

derivative evaluations and optionally linear solving steps occur here.  The equations  

g(t, y, yʹ) = 0 consist of NEQ differential-algebraic equations of the form. 

1 1( , , , , , , ) ( , , ') 0, 1, ,i NEQ NEQ i NEQF t y y y y F t y y i    
 

The routine GCN is also used to evaluate the NCON additional algebraic constraints  

1 ,( , , , ) ( , ) 0, 1, , 0i NEQ i NCON NCONG t y y G t y i   
 

The usage is CALL GCN (T, Y, YPRIME, DELTA, D, LDD, IRES [,…]) where 

Required Arguments 

T — Integration variable t.   (Input) 

Y — Array of NEQ dependent variables, y.   (Input) 

YPRIME — Array of NEQ derivative values, yʹ.   (Input) 

DELTA — Output array of length MAX(NEQ, NCON) containing residuals. See 

parameter IRES for definition.   (Input/Output) 

D — Output array dimensioned D(LDD,NEQ), containing partial derivatives.  See 

parameter IRES for definition.   (Input/Output) 

LDD — Leading dimension of D.   (Input) 

IRES — Flag indicating what is to be calculated in the user routine, GCN.   

(Input/Output) 

Note: IRES is input only, except when IRES = 6. It is input/output when  

IRES = 6. For a detailed description see the table below.   

The code calls GCN with IRES = 0, 1, 2, 3, 4, 5,  6, or 7, defined as follows: 

 

IRES 
Value 

Explanation 

0 Do initializations, if any are required. 

1 Compute DELTA(i) = ( , , ')iF t y y , the i-th residual, for i=1,…,NEQ. 

2 (Required only if IUJAC=1 and MATSTR = 0 or 1).   

Compute D(i, j) = 
( , , ')i

j

F t y y

y




, the partial derivative matrix.  These 

are derivatives of iF with respect to jy , for i =1,…, NEQ and 

 j = 1,…,NEQ. 
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IRES 
Value 

Explanation 

3 (Required only if IUJAC =1 and MATSTR = 0 or 1).   

Compute D(i, j) = 
( , , ')i

j

F t y y

y




, the partial derivative of 

iF  with 

respect to jy , for i =1,…,NEQ and j =1,…,NEQ. 

4 (Required only if IYPR=2).   

Compute DELTA(i) = 

( , , ')iF t y y

t



 , the partial derivative of iF
 

with respect to t , for i =1,…,NEQ. 

5 (Required only if NCON > 0).    

Compute DELTA(i) = ( , )iG t y , the i-th residual in the additional 

constraints, for i =1,…,NCON, and D(i, j) = 
( , )i

j

G t y

y




, the partial 

derivative of 
iG  with respect to jy  for i =1,…,NCON and j =1,…, 

NEQ. 

6 (Required only if ISOLVE = 1.)   

If MATSTR = 2, the user must compute the matrix '

F F
A cj

y y

 
 
  ,  

where cj = DELTA (1), and save this matrix in any user-defined 

format. This is for later use when  

IRES = 7. The matrix may also be factored in this step, if desired. 

The array D is not referenced if MATSTR = 2. 

If MATSTR = 0 or 1, the A matrix will already be defined and passed 

to GCN in the array D, which will be in full matrix format if  

MATSTR = 0, and band matrix format, if MATSTR = 1.  

The user may factor D in this step, if desired.  

Note: For MATSTR = 0, 1, or 2, the user must set IRES = 0 to signal 

that A is nonsingular. If A is nearly singular, leave IRES = 6. This 

results in using a smaller step-size internally. 

7 (Required only if ISOLVE = 1.)  The user must solve Ax b , where 

b  is passed to GCN in the vector DELTA, and x is returned in DELTA. 

If MATSTR = 2, A is the matrix which was computed and saved at the 

call with IRES = 6; if MATSTR = 0 or 1, A is passed to GCN in the 

array D. In either case, the A matrix will remain factored if the user 

factored it when IRES = 6.  

 

Optional Arguments 
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FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional integer or floating point information to or from the user-supplied 

subroutine. For a description of this argument see FCN_DATA below.   

(Input/Output) 

 GCN must be declared EXTERNAL in the calling program. 

Optional Arguments 

NEQ — Number of dependent variables, and number of differential/algebraic equations, not 

counting any additional constraints.   (Input) 

Default: NEQ = size (Y). 

NCON — Number of additional constraints.   (Input) 

Default: NCON = 0. 

IUJAC — Jacobian calculation option.   (Input) 
 

Value Description 

0 Calculates using finite difference 

approximations. 

1 User supplies the Jacobian matrices of 

partial derivatives of , 1, , ,iF i NEQ   

in the subroutine GCN, when IRES = 2 

and 3. 

 Default: IUJAC = 0 for MATSTR = 0 or 1. 

   IUJAC = 1 for MATSTR = 2. 

IYPR — Initial yʹ calculation method.   (Input) 
 

Value Description 

0 The initial input values of YPRIME are 

already consistent with the input values 

of Y. That is g(t, y, yʹ) = 0 at t = t0.  Any 

constraints must be satisfied at t = t0. 

1 Consistent values of YPRIME are 

calculated by Petzold‘s original DASSL 

algorithm. 

2 Consistent values of YPRIME are 

calculated using a new algorithm 

[Hanson and Krogh, 2008], which is 

generally more robust but requires that 

IUJAC= 1 and ISOLVE = 0, and 

additional derivatives corresponding to 
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Value Description 

IRES= 4 are to be calculated in GCN. 

 Default: IYPR = 1. 

MATSTR — Parameter specifying the Jacobian matrix structure   (Input) 

Set to: 

Value Description 

0 The Jacobian matrices (whether IUJAC = 0 or 1) are to 

be stored in full storage mode. 

1 The Jacobian matrices are to be stored in band storage 

mode. In this case, if IUJAC= 1, the partial derivative 

matrices have their entries for row i and column j,  

stored as array elements D(i- j + MU+1, j).  This occurs 

when IRES= 2 or 3 in GCN. 

2 A user-defined matrix structure is used (see the 

documentation for IRES = 6 or 7 for more details).  If 

MATSTR = 2, ISOLVE and IUJAC are set to 1 internally. 

 

 Default: MATSTR = 0. 

ISOLVE — Solve method.   (Input) 

Value Description 

0 DAESL solves the linear systems. 

1 The user wishes to solve the linear system in 

routine GCN. See parameter GCN for details. 

 Default: ISOLVE = 0 for MATSTR = 0 or 1. 

   ISOLVE = 1 for MATSTR = 2. 

ML — Number of non-zero diagonals below the main diagonal in the Jacobian matrices when 

band storage mode is used.   (Input) 

ML is ignored if MATSTR ≠ 1. 

Default: ML = NEQ-1. 

MU — Number of non-zero diagonals above the main diagonal in the Jacobian matrices when 

band storage mode is used.   (Input) 

MU is ignored if MATSTR ≠ 1. 

Default: MU = NEQ-1. 

RTOL — Relative error tolerance for solver.  (Input)   

The program attempts to maintain a local error in Y(i) less than  

RTOL*│Y(i)│ + ATOL(i). 

Default: RTOL =  , where   is machine precision. 
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ATOL — Array of size NEQ containing absolute error tolerances.   (Input) 

See description of RTOL.

Default: ATOL(i) = 0. 

H0 — Initial stepsize used by the solver.   (Input) 

If H0 = 0, the routine defines the initial stepsize. 

Default: H0 = 0. 

HMAX — Maximum stepsize used by the solver.   (Input) 

If HMAX=0, the routine defines the maximum stepsize. 

Default: HMAX = 0. 

MAXORD — Maximum order of the backward difference formulas used.   (Input). 

1  MAXORD  5. 

Default: MAXORD = 5. 

MAXSTEPS — Maximum number of steps taken from T to TEND.   (Input). 

Default: MAXSTEPS = 500. 

TSTOP — Integration limit point.   (Input) 

For efficiency reasons, the code sometimes integrates past TEND and interpolates a 

solution at TEND. If a value for TSTOP is specified, the code will never integrate past 

T=TSTOP. 

Default: No TSTOP value is specified. 

FMAG — Order-of-magnitude estimate.   (Input) 

FMAG is used as an order-of-magnitude estimate of the magnitude of the functions Fi 

(see description of GCN), for convergence testing, if IYPR=2.  FMAG is ignored if 

IYPR=0 or 1. 

Default: FMAG = 1. 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional 

information to/from the user-supplied subroutine.   (Input/Output) 

The derived type, s_fcn_data, is defined as: 

type s_fcn_data 

   real(kind(1e0)), pointer, dimension(:) :: rdata 

   integer, pointer, dimension(:) :: idata 

end type 

 in module mp_types. The double precision counterpart to s_fcn_data is named 

d_fcn_data.  The user must include a use mp_types statement in the calling 

program to define this derived type. 

 Note that if this optional argument is present then FCN_DATA must also be defined as 

an optional argument in the user-supplied subroutine. 
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FORTRAN 90 Interface 

Generic: CALL DAESL (T, TEND, IDO, Y, YPRIME, GCN [,…]) 

Specific: The specific interface names are S_DAESL and D_DAESL. 

Description 

Routine DAESL finds an approximation to the solution of a system of differential-algebraic 

equations  , , 0g t y y   with given initial data for y  and y .  The routine uses BDF formulas, 

which are appropriate for stiff systems.  DAESL is based on the code DASSL designed by Linda 

Petzold [1982], and has been modified by Hanson and Krogh [2008] Solving Constrained 

Differential-Algebraic Systems Using Projections to allow the inclusion of additional constraints, 

including conservation principles, after each time step.  The modified code also provides a more 

robust algorithm to calculate initial y  values consistent with the given initial y  values.  This 

occurs when the initial y  are not known.  

A differential-algebraic system of equations is said to have ―index 0‖ if the Jacobian matrix of 

partial derivatives of the 
iF with respect to the jy  is nonsingular.  Thus it is possible to solve for 

all the initial values of jy  and put the system in the form of a standard ODE system.  If it is 

possible to reduce the system to a system of index 0 by taking first derivatives of some of the 

equations, the system has index 1, otherwise the index is greater than 1.  See Brenan [1989] for a 

definition of index.  DAESL can generally only solve systems of index 0 or 1; other systems will 

usually have to be reduced to such a form through differentiation. 

Examples 

Example 1 – Method of Lines PDE Problem 

This example solves the partial differential equation
t xxU U U  , with initial condition 

 ,0 1U x x  , and boundary conditions  0, tU t e ,  1, 2 tU t e  which has exact 

solution    , 1 tU x t x e  .  If we approximate the 
xxU  term using finite differences, where  

 1ix i h  , and  1/ 1h n  , we get: 

 1 , tU x t e
 

         2

1 1, , 2 , , / , , 2 , 1i i i i iU x t U x t U x t U x t h U x t i n 
          

 , 2 t

nU x t e
 

If Yi(t) = U(xi,t), the first and last equations are algebraic and the others are differential equations, 

so this is a system of differential-algebraic equations.  The system has index=1, since it could be 

transformed into an ODE system by differentiating the first and last equations.  Note that the 

Jacobian matrices are banded (tridiagonal), with ML = MU = 1.  We use this and specify the option 

http://www.vni.com/company/whitepapers/SolvingConstrainedDifferentialAlgebraicSystems.pdf
http://www.vni.com/company/whitepapers/SolvingConstrainedDifferentialAlgebraicSystems.pdf
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for dealing with banded matrices in DAESL.  The parameter h and the number of equations is 

passed to the evaluation routine, GCN, with the optional argument USER_DATA. 

Link to example source (daesl_ex1.f90) 
 

      USE DAESL_INT 

      USE MP_TYPES 

      IMPLICIT NONE  

   

!                             NEQ = Number of equations 

      INTEGER, PARAMETER :: NEQ=101 

      REAL T, Y(NEQ), YPRIME(NEQ), TEND, X, TRUE, HX, ERRMAX 

      INTEGER NOUT, IDO, I, NSTEPS 

      REAL, TARGET :: RPARAM(1) 

      INTEGER, TARGET :: IPARAM(1) 

      TYPE (S_FCN_DATA) USER_DATA 

      EXTERNAL GCN 

       

!                             Pass NEQ, HX to GCN  

      HX = 1.0 / (NEQ-1) 

      IPARAM(1) = NEQ  

      RPARAM(1) = HX  

      USER_DATA%RDATA=>RPARAM 

      USER_DATA%IDATA=>IPARAM 

!                             Initial values for y, initial guesses for y' 

      DO I = 1, NEQ 

        X = (I-1) * HX  

        Y(I) = 1 + X  

      END DO 

      YPRIME = 0.0 

       

      NSTEPS = 10 

!                             Always set IDO=1 on first call 

      IDO = 1 

      DO I = 1, NSTEPS 

!                             Output solution at T=0.1,0.2,...,1.0 

        T = 0.1 * (I-1) 

        TEND = 0.1 * I  

         

!                             Set IDO = 3 on last call 

        IF (I == NSTEPS) IDO = 3 

         

!                             User-supplied Jacobian matrix (IUJAC=1) 

!                             Banded Jacobian (MATSTR=1)  

        CALL DAESL (T, TEND, IDO, Y, YPRIME, GCN, IYPR=1, IUJAC=1, & 

               MATSTR=1, ML=1, MU=1, RTOL=1.0E-4, FCN_DATA=USER_DATA) 

      END DO  

       

      ERRMAX = 0.0 

      DO I = 1, NEQ 

         X = (I-1) * HX  

         TRUE = (1+X) * EXP(T)  

         ERRMAX = MAX(ERRMAX, ABS(Y(I) - TRUE)) 

      END DO 

       

LinkedDocuments/daesl_ex1.f90
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      CALL UMACH(2, NOUT) 

      WRITE (NOUT, *) ' Max Error at T=1 is ', ERRMAX 

      END 

   

   

      SUBROUTINE GCN (T, Y, YPRIME, DELTA, D, LDD, IRES, FCN_DATA) 

      USE MP_TYPES 

      IMPLICIT NONE 

       

      REAL T, Y(*), YPRIME(*), DELTA(*), D(LDD,*), HX 

      INTEGER IRES, LDD, I, J, NEQ, MU 

      TYPE (S_FCN_DATA), OPTIONAL, INTENT(INOUT) :: FCN_DATA 

       

      NEQ = FCN_DATA%IDATA(1) 

      HX = FCN_DATA%RDATA(1) 

      MU = 1 

       

      SELECT CASE (IRES) 

       

!                             F_I defined here 

      CASE(1) 

        DELTA(1) = Y(1) - EXP(T) 

        DO I = 2, NEQ-1 

           DELTA(I) = -YPRIME(I) + (Y(I+1) - 2.0 * Y(I) + Y(I-1)) & 

                      / HX**2 + Y(I)   

        END DO 

        DELTA(NEQ) = Y(NEQ) - 2.0 * EXP(T) 

         

!                             D(I-J+MU+1,J) = D(F_I)/D(Y_J) 

!                             in band storage mode  

      CASE(2) 

        D(MU+1,1) = 1.0 

        DO I = 2, NEQ-1 

           J = I-1 

           D(I-J+MU+1, J) = 1.0 / HX**2 

           J = I 

           D(I-J+MU+1, J) = -2.0 / HX**2 + 1.0 

           J = I+1 

           D(I-J+MU+1, J) = 1.0 / HX**2 

        END DO 

        D(MU+1, NEQ) = 1.0 

         

!                             D(I-J+MU+1,J) = D(F_I)/D(YPRIME_J) 

      CASE(3) 

        DO I = 2, NEQ-1 

           D(MU+1, I) = -1.0 

        END DO 

 

      END SELECT 

      END 

   

Output 
 

  Max Error at T=1 is  5.6743621E-5 



     

     
 

1066  Chapter 5: Differential Equations IMSL MATH LIBRARY  

     

     

 

Example 2 – Pendulum Problem 

The first-order equations of motion of a point-mass m suspended on a massless wire of length L  

under the influence of gravity, mg, and wire tension, λ , in Cartesian coordinates (p,q) are 

2 2 2
0

p u

q v

mu p

mv q mg

p q L





 

 

  

   

  
 

The problem above has an index number equal to 3, thus it cannot be solved with DAESL directly. 

Unfortunately, the fact that the index is greater than 1 is not obvious, but an attempt to solve it will 

generally produce an error message stating the corrector equation did not converge, or if IYPR=2 

an error message stating that the index appears to be greater than 1 should be issued.  The user 

then differentiates the last equation, which after replacing pʹ by u and qʹ by v, gives pu+qv=0.  

This system still has index=2 (again not obvious, the user discovers this by unsuccessfully trying 

to solve the new system) and the last equation must be differentiated again, to finally (after 

appropriate substitutions) give the equation of total energy balance: 

2 2 2
0( )m u v mgq L    

 

With initial conditions and appropriate definitions of the dependent variables, the system becomes: 

         

1

2

3

4

5

0 , 0 0 0 0 0p L q u v

y p

y q

y u

y v

y





    










 

 

1 3 1

2 4 2

3 1 5 3

4 2 5 4

2 2 2
5 3 4 2 5

0

0

0

0

0

F y y

F y y

F y y my

F y y mg my

F m y y mgy L y

  

  

   

    

    
 

The initial conditions correspond to the pendulum starting in a horizontal position. 

Since we have replaced the original constraint, 
2 2 2

1 0G p q L    , which requires that the 

pendulum length be L, by differentiating it twice, this constraint is no longer explicitly enforced, 

and if we try to solve the above system alone (ie, with NCON=0), the pendulum length drifts 
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substantially from L at larger times. DAESL therefore allows the user to add additional constraints, 

to be re-enforced after each time step, so we add this original constraint, as well as the 

intermediate constraint 2 0G pu qv   . Using these two supplementary constraints, 

(NCON=2), the pendulum length is constant. 

Link to example source (daesl_ex2.f90) 
 

      USE DAESL_INT 

      USE MP_TYPES 

      IMPLICIT NONE  

   

!              NEQ = Number of equations 

!              NCON = Number of extra constraints 

      INTEGER, PARAMETER :: NEQ=5, NCON = 2 

      REAL, PARAMETER :: MASS=1.0, LENGTH=1.1, GRAVITY=9.806650 

   

      REAL T, Y(NEQ), YPRIME(NEQ), TEND, ATOL(NEQ), TOL, LEN 

      INTEGER NOUT, IDO, I, NSTEPS 

      REAL, TARGET :: RPARAM(3) 

      TYPE (S_FCN_DATA) USER_DATA 

      EXTERNAL GCN  

       

!              Pass Mass, Pendulum length and G as parameters 

      RPARAM(1) = MASS 

      RPARAM(2) = LENGTH 

      RPARAM(3) = GRAVITY 

      USER_DATA%RDATA=>RPARAM 

       

!              Initial values for y, guesses for initial y' 

      Y = 0.0 

      Y(1) = LENGTH 

       

      YPRIME = 0.0 

      TOL = 1.0E-5 

      ATOL = TOL 

       

      CALL UMACH(2, NOUT) 

      WRITE (NOUT, 5)  

 

      NSTEPS = 5 

!              Always set IDO=1 on first call 

      IDO = 1 

      DO I = 1, NSTEPS 

!              Output solution at T=10,20,30,40,50 

        T = 10.0 * (I-1) 

        TEND = 10.0 * I  

         

!              Set IDO = 3 on last call 

        IF (I.EQ.NSTEPS) IDO = 3 

         

!              User-supplied Jacobian matrix (IUJAC=1) 

!              Use new algorithm to get compatible y'  

        CALL DAESL (T, TEND, IDO, Y, YPRIME, GCN, NCON=NCON, RTOL=TOL, & 

          ATOL=ATOL, IYPR=2, IUJAC=1, MAXSTEPS=50000, & 

          FCN_DATA=USER_DATA) 

           

LinkedDocuments/daesl_ex2.f90
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!              LEN = pendulum length (should be constant)  

        LEN = SQRT(Y(1)**2 + Y(2)**2) 

        WRITE (NOUT, 10) T, Y(1), Y(2), LEN 

      END DO 

       

    5 FORMAT (8X,'T',14X,'Y(1)',11X,'Y(2)',11X,'Length',/) 

   10 FORMAT (4F15.7) 

      END 

   

   

      SUBROUTINE GCN (T, Y, YPRIME, DELTA, D, LDD, IRES, FCN_DATA) 

      USE MP_TYPES 

      IMPLICIT NONE 

       

!              Simple swinging pendulum problem 

      REAL T, Y(*), YPRIME(*), DELTA(*), D(LDD,*), MASS, & 

           LENGTH, GRAVITY, MG, LSQ 

      INTEGER IRES, LDD 

      TYPE (S_FCN_DATA), OPTIONAL, INTENT(INOUT) :: FCN_DATA 

       

      MASS = FCN_DATA%RDATA(1) 

      LENGTH = FCN_DATA%RDATA(2) 

      GRAVITY = FCN_DATA%RDATA(3) 

      MG = MASS * GRAVITY 

      LSQ = LENGTH**2 

       

      SELECT CASE (IRES) 

       

!              F_I defined here 

      CASE(1) 

        DELTA(1) = Y(3) - YPRIME(1) 

        DELTA(2) = Y(4) - YPRIME(2) 

        DELTA(3) = -Y(1) * Y(5) - MASS * YPRIME(3) 

        DELTA(4) = -Y(2) * Y(5) - MASS * YPRIME(4) - MG 

        DELTA(5) = MASS * (Y(3)**2 + Y(4)**2) - MG * Y(2) - LSQ * Y(5) 

         

!              D(I,J) = D(F_I)/D(Y_J) 

      CASE(2) 

        D(1, 3) = 1.0 

        D(2, 4) = 1.0 

        D(3, 1) = -Y(5) 

        D(3, 5) = -Y(1) 

        D(4, 2) = -Y(5) 

        D(4, 5) = -Y(2) 

        D(5, 2) = -MG 

        D(5, 3) = MASS * 2.0 * Y(3) 

        D(5, 4) = MASS * 2.0 * Y(4) 

        D(5, 5) = -LSQ 

         

!              D(I,J) = D(F_I)/D(YPRIME_J) 

      CASE(3) 

        D(1, 1)= -1.0 

        D(2, 2)= -1.0 

        D(3, 3)= -MASS 

        D(4, 4)= -MASS 
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!              DELTA(I) = D(F_I)/DT 

      CASE(4) 

        DELTA(1:5) = 0.0 

         

!              DELTA(I) = G_I 

!              D(I,J) = D(G_I)/D(Y_J) 

      CASE(5) 

        DELTA(1) = Y(1)**2 + Y(2)**2 - LSQ 

        DELTA(2) = Y(1) * Y(3) + Y(2) * Y(4) 

        D(1, 1) = 2.0 * Y(1) 

        D(1, 2) = 2.0 * Y(2) 

        D(1, 3) = 0.0 

        D(1, 4) = 0.0 

        D(1, 5) = 0.0 

        D(2, 1) = Y(3) 

        D(2, 2) = Y(4) 

        D(2, 3) = Y(1) 

        D(2, 4) = Y(2) 

        D(2, 5) = 0.0 

   

      END SELECT 

      END 

Output 
 

        T              Y(1)           Y(2)           Length 

 

     10.0000000      1.0998126     -0.0203017      1.0999999 

     20.0000000      1.0970103     -0.0810476      1.1000000 

     30.0000000      1.0850314     -0.1808525      1.1000004 

     40.0000000      1.0535675     -0.3162208      1.1000000 

     50.0000000      0.9896186     -0.4802662      1.1000003 

Example 3 – User Solves Linear System 

Consider the system of ordinary differential equations, yʹ = By, where B is the bi-diagonal matrix 

with (-1, -1/2, -1/3, ..., -1/(n-1), 0) on the main diagonal and with 1‘s along the first sub-diagonal. 

The initial condition is y(0) = (1,0,0,...,0)T, and since yʹ (0) = By(0) = (-1,1,0,...,0) T, yʹ (0) is also 

known for this problem. 

Since B T v = 0, where vi = 1/(i-1)!, v is an eigenvector of B T corresponding to the eigenvalue 0. 

Thus  

     0
T

T T T T Tv y By v y B v y v y v y
       
 

so v T y(t) is constant.  Since it has the value v T y(0) = v1 = 1 at t = 0, the constraint  

v T y(t) = 1 is satisfied for all t. This constraint is imposed in this example. 

This example also illustrates how the user can solve his/her own linear systems (MATSTR=2).  

Normally, when IRES= 6, the matrix 

g g
A cj

y y
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is computed, saved and possibly factored, using a sparse matrix factorization routine of the user‘s 

choice.  Then when IRES=7, the system Ax = DELTA is solved, using the matrix B saved and 

factored earlier, and the solution is returned in DELTA.  In this case, B is just a bidiagonal matrix, 

so there is no need to save or factor A when IRES = 6, since a bi-diagonal system can be solved 

directly using forward substitution, when IRES = 7. 

Link to example source (daesl_ex3.f90) 
 

      USE DAESL_INT 

      USE MP_TYPES 

      IMPLICIT NONE  

 

!              NEQ = Number of equations 

      INTEGER, PARAMETER :: NEQ=100 

      REAL T, Y(NEQ), YPRIME(NEQ), TEND, ATOL(NEQ), CON 

      INTEGER NOUT, IDO, I, NSTEPS 

      REAL, TARGET :: RPARAM(NEQ) 

      INTEGER, TARGET :: IPARAM(1) 

      TYPE (S_FCN_DATA) USER_DATA 

      EXTERNAL GCN 

       

!              Pass NEQ and A^T eigenvector V to GCN  

      IPARAM(1) = NEQ  

      RPARAM(1) = 1.0 

      DO I = 2, NEQ  

         RPARAM(I) = RPARAM(I-1) / FLOAT(I-1)  

      END DO 

      USER_DATA%RDATA=>RPARAM 

      USER_DATA%IDATA=>IPARAM 

       

!              Initial values for y, y' 

      Y = 0.0 

      Y(1) = 1.0 

       

      YPRIME = 0.0 

      YPRIME(1) = -1.0 

      YPRIME(2) =  1.0 

 

      ATOL = 1.0E-4 

      NSTEPS = 10 

       

!              Always set IDO=1 on first call 

      IDO = 1 

      DO I = 1, NSTEPS 

!              Output solution at T=1,2,...,10 

        T = I-1 

        TEND = I  

!              Set IDO = 3 on last call 

        IF (I == NSTEPS) IDO = 3 

!              User-defined Jacobian matrix structure (MATSTR=2)  

        CALL DAESL (T, TEND, IDO, Y, YPRIME, GCN, IYPR=0, MATSTR=2, & 

                    NCON=1, ATOL=ATOL, FCN_DATA=USER_DATA) 

      END DO  

       

!              Check if solution satisfies constraint 

LinkedDocuments/daesl_ex3.f90
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      CON = 0.0 

      DO I = 1, NEQ 

         CON = CON + RPARAM(I) * Y(I) 

      END DO 

       

      CALL UMACH(2, NOUT) 

      WRITE (NOUT, *) ' V dot Y =', CON  

      END 

   

   

      SUBROUTINE GCN (T, Y, YPRIME, DELTA, D, LDD, IRES, FCN_DATA) 

      USE MP_TYPES 

      IMPLICIT NONE 

       

      REAL T, Y(*), YPRIME(*), DELTA(*), D(LDD,*), CON, CJ 

      INTEGER IRES, LDD, I, NEQ 

      SAVE CJ 

      TYPE (S_FCN_DATA), OPTIONAL, INTENT(INOUT) :: FCN_DATA 

 

      NEQ = FCN_DATA%IDATA(1) 

      SELECT CASE (IRES) 

       

!              F_I defined here 

      CASE(1) 

        DELTA(1) = YPRIME(1) + Y(1) 

        DO I = 2, NEQ-1 

           DELTA(I) = YPRIME(I) - Y(I-1) + Y(I) / FLOAT(I)    

        END DO 

        DELTA(NEQ) = YPRIME(NEQ) - Y(NEQ-1) 

         

!              Constraint is V dot Y = 1 

      CASE(5) 

        CON = -1.0 

        DO I = 1, NEQ 

           CON = CON + FCN_DATA%RDATA(I) * Y(I) 

           D(1,I) = FCN_DATA%RDATA(I) 

        END DO  

        DELTA(1) = CON 

         

!              Normally, compute matrix A = dF/dY + CJ*dF/dY'   

!              = -B + CJ*I here.  Only CJ needs to be saved  

!              in this case, however, since B is bidiagonal,  

!              so A*x=DELTA can be solved (IRES=7) without  

!              saving or factoring B. 

      CASE(6) 

        CJ = DELTA(1) 

!              If CJ > 0 not close to zero, A is nonsingular, 

!              so set IRES = 0. 

        IF (CJ >= 1.0E-4) IRES = 0 

         

!              Solve A*x=DELTA and return x in DELTA. 

      CASE(7) 

        DELTA(1) = DELTA(1) / (1.0 + CJ) 

        DO I = 2, NEQ-1 

           DELTA(I) = (DELTA(I) + DELTA(I-1)) / (1.0 / FLOAT(I) + CJ)   

        END DO 

        DELTA(NEQ) = (DELTA(NEQ) + DELTA(NEQ-1)) / CJ 
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      END SELECT 

      END 

Output 

  V dot Y = 1.0 

DASPG 

Deprecated Routine: DASPG is a deprecated routine and has been replaced with DAESL. Click 

here to view the DASPG documentation. 

IVOAM 
Solves an initial-value problem for a system of ordinary differential equations of order one or two 

using a variable order Adams method. 

Required Arguments 

IDO — Flag indicating the state of the computation.   (Input/Output)  

IDO State 

  1 Initial entry input value. 

  2 Normal re-entry input value. On output, if IDO = 2 then the integration is 

finished. If the integrator is called with a new value for TEND, the integration 

continues. If the integrator is called with TEND unchanged, an error message is 

issued. 

  3 Input value to use on final call to release workspace. 

>3 Output value that indicates that a fatal error has occurred.  

 The initial call is made with IDO = 1.  The routine then sets IDO = 2, and this value is 

used for all but the last call that is made with IDO = 3. This final call is only used to 

release workspace which was automatically allocated by the initial call with IDO = 1. 

FCN — User-supplied subroutine to evaluate functions.  

The usage is CALL FCN (IDO, T, Y, HIDRVS[, …]), where 

Required Arguments 

IDO — Flag indicating the state of the computation.   (Input) 

This flag corresponds to the IDO argument described above. If FCN has 

complicated subexpressions, which depend only weakly or not at all on Y 

LinkedDocuments/daspg.pdf


 

 

IMSL MATH LIBRARY Chapter 5: Differential Equations  1073 

     

     

 

then these subexpressions need only be computed when IDO = 1 and their 

values then reused when IDO = 2. 

T — Independent variable, t.   (Input) 

Y — Array of length k containing the dependent variable values, y, and first 

derivatives, if any.  k will be the sum of the orders of the equations in the 

system of equations to solve. (Input) 

HIDRVS — Array of length n = NEQ, where n is the number of equations in the 

system to solve, containing the values of the highest order derivatives 

evaluated at (t, y).   (Output) 

 IVOAM uses size(HIDRVS) to set the default value of NEQ unless the 

optional argument NEQ is used. 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional integer or floating point information to or from the user-supplied 

subroutine.   (Input/Output) 

 For a detailed description of this argument see FCN_DATA below. 

 FCN must be declared EXTERNAL in the calling program. 

T — Independent variable, t.  (Input/Output) 

On input, T contains the initial independent variable value.  On output, T is replaced by 

TEND unless error conditions arise.  See IDO for details.   (Input/Output)  

TEND — Value of t = tend where the solution is required.   (Input) 

Y — Array of length k containing the dependent variables, y(t), and first derivatives, if any. 

(Input/Output) 

k will be the sum of the orders of the equations in the system of equations to solve. On 

input, Y contains the initial values, y(t0) and y’(t0) (if needed).  On output, Y contains 

the approximate solution, y(t). For example, for a system of first order equations, Y(i) is 

the i-th dependent variable. For a system of second order equations, Y(2i-1) is the i-th 

dependent variable and Y(2i) is the derivative of the i-th dependent variable. For 

systems of equations in which one or more equations is of order 2, optional argument 

KORDER must be used to denote the order of each equation so that the derivatives in Y 

can be identified. By default it is assumed that all equations are of order 1 and Y 

contains only dependent variables.  

HIDRVS — Array of length n = NEQ, where n is the number of equations in the system to 

solve, containing the highest order derivatives at the point Y.   (Output) 

IVOAM uses size(HIDRVS) to set the default value of NEQ unless the optional 

argument NEQ is used. 
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Optional Arguments 

NEQ — Number of differential equations in the system of equations to solve.   (Input) 

Default: NEQ = size (HIDRVS). 

KORDER — An array of length NEQ specifying the orders of the equations in the system of 

equations to solve. The elements of  KORDER can be 1 or 2. KORDER must be used with 

argument Y to define systems of mixed or higher order. (Input) 

Default: KORDER = (1,1,1,...,1). 

EQNERR — An array of length NEQ specifying the error tolerance for each equation.   

(Input) 

Let e(i) be the error tolerance for equation i. Then 

 

Value Explanation 

e(i) > 0 Implies an absolute error tolerance of e(i) is to be used for 

equation i. 

e(i) = 0 implies no error checking is to be performed for equation i. 

e(i) < 0 Implies a relative error test is to be performed for equation 

i. In this case, the base error  tolerance used will be |e(i)| 

and the relative  error factor used will be (15/16 * |e(i)|). 

Thus the actual absolute error tolerance used will be |e(i)| * 

( (15/16 * |e(i)|). 

 

 Default: An absolute error tolerance of 1.E-5 is used for single precision and 1.D-10 

for double precision for all equations. 

HINC — Factor used for increasing the stepsize.   (Input) 

One should set HINC such that 9/8 <= HINC <= 4. 

Default: HINC = 2.0. 

HDEC — Factor used for decreasing the stepsize.   (Input) 

One should set HDEC such that 1/4 <= HDEC <= 7/8. 

Default: HDEC = 0.5. 

HMIN — Absolute value of the minimum stepsize permitted.   (Input) 

Default: HMIN = 10.0/amach(2) for single precision and 10.0/dmach(2) for double 

precision. 

HMAX — Absolute value of the maximum stepsize permitted.   (Input)  

Default: HMAX = amach(2) for single precision and dmach(2) for double precision. 

FCN_DATA – A derived type, s_fcn_data, which may be used to pass additional 

information to/from the user-supplied subroutine.   (Input/Output) 

The derived type, s_fcn_data, is defined as: 
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type s_fcn_data 

   real(kind(1e0)), pointer, dimension(:) :: rdata 

   integer, pointer, dimension(:) :: idata 

end type 

in module mp_types. The double precision counterpart to s_fcn_data is named 

d_fcn_data. The user must include a use mp_types statement in the calling 

program to define this derived type. 

Note that if this optional argument is present then FCN_DATA must also be defined as 

an optional argument in the user-supplied subroutine. 

Fortran 90 Interface 

Generic: CALL IVOAM (IDO, FCN, T, TEND, Y, HIDRVS [,…]) 

Specific: The specific interface names are S_IVOAM and D_IVOAM. 

Description 

Routine IVOAM is based on the JPL Library routine SIVA. IVOAM uses a variable order Adams 

method to solve the initial value problem 

 

 

1 2

0

, , , ,
, 1, 2, ,

i
i NEQ

i i

dy
f t y y y

dt i NEQ

y t 


 


   

 

or more generally 

     0 0, , , 1, 2, , ,id
i iz f t y y t i NEQ  

 

where y is the vector 

   1
11

1 1 21, , , , , , ,
NEQdd

NEQz z z z z
 

 
   

 k
iz   is the 

thk  derivative of iz  with respect to t , id  is the order of the 
thi  differential 

equation, and   is a vector with the same dimension as y . 

Note that the systems of equations solved by IVOAM can be of order one, order two, or mixed order 

one and two. 

Comments 

Informational errors 

Type  Code 
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3  1 The requested error tolerance is too small. 

3  2 The stepsize has been reduced too rapidly. The integrator is going 

to do a restart. 

Example 1 

In this example a system of two equations of order two is solved. 

 
3

2 2 2
1 1 1 2/Y Y Y Y

 
    

 
   

 
3

2 2 2
2 2 1 2/Y Y Y Y

 
    

 
   

The initial conditions are  

       1 1 2 20 1.0, 0 0.0, 0 0.0, 0 1.0Y Y Y Y    
 

Since the system is of order two, optional argument KORDER must be used to specify the orders of 

the equations. Also, because the system is of order two, Y(1) contains the first dependent variable, 

Y(2) contains the derivative of the first dependent variable, Y(3) contains the second dependent 

variable, and Y(4) contains the derivative of the second dependent variable.  
 

      USE IVOAM_INT 

      USE UMACH_INT 

      USE CONST_INT 

 

      IMPLICIT   NONE 

      INTEGER    IDO, IEND, NOUT, KORDER(2) 

      REAL       T, TEND, Y(4), HIDRVS(2), DELTA 

 

      EXTERNAL   FCN 

!                                 Initialize 

      IDO  = 1 

      T    = 0.0 

      Y(1) = 1.0 

      Y(2) = 0.0 

      Y(3) = 0.0 

      Y(4) = 1.0 

      KORDER = 2 

!                                 Write title 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99997) 

!                                 Integrate ODE 

      IEND = 0 

      DELTA = CONST('PI') 

      DELTA = 2.0*DELTA 

      DO 

         IEND = IEND + 1 

         TEND = T + DELTA 
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         IF(TEND .GT. 20.0) TEND = 20.0 

         CALL IVOAM (IDO, FCN, T, TEND, Y, HIDRVS, KORDER=KORDER) 

         IF (IEND .LE. 4) THEN 

            WRITE (NOUT,99998) T, Y(1), Y(2), HIDRVS(1) 

            WRITE (NOUT,99999) Y(3), Y(4), HIDRVS(2) 

!                                 Finish up 

            IF (IEND .EQ. 4) IDO = 3 

            CYCLE 

         END IF 

         EXIT 

      END DO 

99997 FORMAT (11X, 'T', 12X, 'Y1/Y2', 9X, 'Y1P/Y2P', 7X, 'Y1PP/Y2PP') 

99998 FORMAT (4F15.4) 

99999 FORMAT (15X, 3F15.4) 

      END 

  

      SUBROUTINE FCN (IDO, T, Y, HIDRVS) 

      INTEGER    IDO 

      REAL       T, Y(*), HIDRVS(*) 

      REAL       TP 

 

      TP = Y(1)*Y(1) + Y(3)*Y(3) 

      TP = 1.0E0/(TP*SQRT(TP)) 

      HIDRVS(1) = -Y(1)*TP 

      HIDRVS(2) = -Y(3)*TP 

      RETURN 

      END 

Output 
 

    T            Y1/Y2        Y1P/Y2P      Y1PP/Y2PP 

  6.2832         1.0000       -0.0000       -1.0000 

                 0.0000        1.0000        0.0000 

 12.5664         1.0000       -0.0000       -1.0000 

                 0.0000        1.0000       -0.0000 

 18.8496         1.0000       -0.0000       -1.0000 

                 0.0000        1.0000       -0.0000 

 20.0000         0.4081       -0.9129       -0.4081 

                 0.9129        0.4081       -0.9129 

  

Example 2 

This contrived example illustrates how to use IVOAM to solve a system of equations of mixed 

order. 

The height, y(t), of an object of mass m above the surface of the Earth can be modelled using 

Newton's second law as: 

my mg ky   
  

or 

 /y g k m y         (1) 
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where -mg is the downward force of gravity and -ky' is the force due to air resistance, in a 

direction opposing the velocity.  If the object is a meteor, the mass, m, and air resistance, k, will 

decrease as the meteor  burns up in the atmosphere.  The mass is proportional to r
3
 (r=radius) and 

the air resistance, presumably dependent on the surface area, may be assumed to be proportional to 

r
2
, so that k/m = k0/r. The rate at which the meteor's radius decreases as it burns up may depend on 

r, on the velocity y', and, since the density of the atmosphere depends on y, on y itself.  However, 

we will construct a very simple model where the rate is just proportional to the square of the 

velocity, 

 
2

0r c y          (2) 

We solve (1) and (2), with k0 = 0.005, c0 = 10
-8

, g = 9.8 and initial conditions y(0) = 100,000 

meters, y'(0) = -1000 meters/second, r(0) = 1 meter. 
 

      USE IVOAM_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    IDO, IEND, NOUT, KORDER(2) 

      REAL       T, TEND, Y(3), HIDRVS(2), DELTA, EQNERR(2) 

      EXTERNAL   FCN 

!                                 Initialize 

      IDO  = 1 

      T    = 0.0 

      Y(1) = 100000.0 

      Y(2) = -1000.0 

      Y(3) = 1.0 

      KORDER(1) = 2 

      KORDER(2) = 1 

      EQNERR = .003 

!                                 Write title 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99997) 

!                                 Integrate ODE 

      IEND = 0 

      DELTA = 10.0 

      DO 

         IEND = IEND + 1 

         TEND = T + DELTA 

         IF(TEND .GT. 50.0) TEND = 50.0 

         CALL IVOAM (IDO, FCN, T, TEND, Y, HIDRVS, & 

                     KORDER=KORDER, EQNERR=EQNERR) 

         IF (IEND .LE. 5) THEN 

            WRITE (NOUT,99998) T, Y(1), Y(2), HIDRVS(1) 

            WRITE (NOUT,99999) Y(3), HIDRVS(2) 

!                                 Finish up 

            IF (IEND .EQ. 5) IDO = 3 

            CYCLE 

         END IF 

         EXIT 

      END DO 

99997 FORMAT (11X, 'T', 10X, 'Y1/Y2', 11X, 'Y1P', 11X, 'Y1PP/Y2PP') 

99998 FORMAT (4F15.4) 

99999 FORMAT (2(15X, F15.4)) 
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      END 

  

      SUBROUTINE FCN (IDO, T, Y, HIDRVS) 

      INTEGER    IDO 

      REAL       T, Y(*), HIDRVS(*) 

 

      HIDRVS(1) = -9.8 - .005/Y(3)*Y(2) 

      HIDRVS(2) = -1.0E-8 * Y(2)*Y(2) 

      RETURN 

      END 

Output 

 

           T          Y1/Y2          Y1P          Y1PP/Y2PP 

       10.0000     89773.0391    -1044.0096        -3.9701 

                       0.8954                      -0.0109 

       20.0000     79150.9844    -1078.6334        -2.9083 

                       0.7826                      -0.0116 

       30.0000     68240.9453    -1101.0380        -1.5031 

                       0.6635                      -0.0121 

       40.0000     57184.9062    -1106.9635         0.4253 

                       0.5413                      -0.0121 

       50.0000     46178.1367    -1089.8292         3.1700 

                       0.4201                      -0.0119 
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Introduction to Subroutine PDE_1D_MG 
The section describes an algorithm and a corresponding integrator subroutine PDE_1D_MG for 

solving a system of partial differential equations 

  0, , , ,t L R

u
u f u x t x x x t t

t


    
  

Equation 1 

This software is a one-dimensional solver.  It requires initial and boundary conditions in addition 

to values of tu .  The integration method is noteworthy due to the maintenance of grid lines in the 

space variable, x.  Details for choosing new grid lines are given in Blom and Zegeling, (1994).  

The class of problems solved with PDE_1D_MG is expressed by equations: 

 

      

 

,

1

, 0

, , , , , , , , , ,

1, , , , 0,1,2

kNPDE
m m

j k x j x j x

k

L R

u
C x t u u x x R x t u u Q x t u u

t x

j NPDE x x x t t m





 
 

 

    



 

Equation 2 

The vector  

,
T

NPDEu u u 
   

is the solution.  The integer value NPDE ≥1 is the number of differential equations.  The 

functions Rj and Qj  can be regarded, in special cases, as flux and source terms.  The functions  

u C R Qj k j j, ,,  and 
  

are expected to be continuous.  Allowed values  

m=0, m-1, and m=2  

are for problems in Cartesian, cylindrical or polar, and spherical coordinates.  In the two cases  

m > 0 , the interval 

x xL R,
  

must not contain x = 0 as an interior point. 

The boundary conditions have the master equation form 

     , , , , , , , ,

at  and ,  1,...,

j j x j x

L R

x t R x t u u x t u u

x x x x j NPDE

 

  
 

Equation 3 

In the boundary conditions the  
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 j j and 
 

are continuous functions of their arguments.  In the two cases m > 0 and an endpoint occurs at 0, 

the finite value of the solution at x = 0 must be ensured.  This requires the specification of the 

solution at x = 0, or implies that  

0
L

j x x
R




 

 or  

R j
x xR

 0
.   

The initial values satisfy 

     0 0, , ,L Ru x t u x x x x 
,  

where u0 is a piece-wise continuous vector function of x with NPDE  components.  

The user must pose the problem so that mathematical definitions are known for the functions  

, 0, , , , andk j j j j jC R Q u 
.   

These functions are provided to the routine PDE_1D_MG in the form of three subroutines.  

Optionally, this information can be provided by reverse communication.  These forms of the 

interface are explained below and illustrated with examples.  Users may turn directly to the 

examples if they are comfortable with the description of the algorithm. 

PDE_1D_MG 

 

 

 

Invokes a module, with the statement USE PDE_1D_MG, near the second line of the program unit.  

The integrator is provided with single or double precision arithmetic, and a generic named 

interface is provided.  We do not recommend using 32-bit floating point arithmetic here.  The 

routine is called within the following loop, and is entered with each value of IDO.  The loop 

continues until a value of IDO results in an exit. 

IDO=1 

DO 

 CASE(IDO == 1) {Do required initialization steps} 

 CASE(IDO == 2) {Save solution, update T0 and TOUT } 

  IF{Finished with integration} IDO=3 

 CASE(IDO == 3) EXIT {Normal} 

 CASE(IDO == 4) EXIT {Due to errors} 
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 CASE(IDO == 5) {Evaluate initial data} 

 CASE(IDO == 6) {Evaluate differential equations} 

 CASE(IDO == 7) {Evaluate boundary conditions} 

 CASE(IDO == 8) {Prepare to solve banded system} 

 CASE(IDO == 9) {Solve banded system} 

 CALL PDE_1D_MG (T0, TOUT, IDO, U, & 
 initial_conditions,& 

 pde_system_definition,& 

 boundary_conditions, IOPT) 

END DO 

The arguments to PDE_1D_MG are required or optional. 

Required Arguments 

T0—(Input/Output) 

This is the value of the independent variable t where the integration of ut begins.  It is 

set to the value TOUT on return. 

TOUT—(Input) 

This is the value of the independent variable t where the integration of ut ends.  Note:  

Values of T0 < TOUT imply integration in the forward direction, while values of  

T0 > TOUT imply integration in the backward direction.  Either direction is permitted. 

IDO—(Input/Output) 

This in an integer flag that directs program control and user action.  Its value is used 

for initialization, termination, and for directing user response during reverse 

communication: 

IDO—(Input/Output) 

This in an integer flag that directs program control and user action.  Its value is used 

for initialization, termination, and for directing user response during reverse 

communication: 

IDO=1  This value is assigned by the user for the start of a new problem.  Internally it 

causes allocated storage to be reallocated, conforming to the problem size.  

Various initialization steps are performed. 

IDO=2  This value is assigned by the routine when the integrator has successfully 

reached the end point, TOUT. 

IDO=3  This value is assigned by the user at the end of a problem. The routine is called 

by the user with this value.  Internally it causes termination steps to be 

performed.  

IDO=4  This value is assigned by the integrator when a type FATAL or TERMINAL error 

condition has occurred, and error processing is set NOT to STOP for these 
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types of errors.  It is not necessary to make a final call to the integrator with 

IDO=3 in this case. 

Values of IDO = 5,6,7,8,9 are reserved for applications that provide problem 

information or linear algebra computations using reverse communication.  When 

problem information is provided using reverse communication, the differential 

equations, boundary conditions and initial data must all be given.  The absence 

of optional subroutine names in the calling sequence directs the routine to use 

reverse communication.  In the module PDE_1D_MG_INT, scalars and arrays for 

evaluating results are named below.  The names are preceded by the prefix 

―s_pde_1d_mg_‖ or ―d_pde_1d_mg_‖, depending on the precision.  We use 

the prefix ―?_pde_1d_mg_‖, for the appropriate choice. 

IDO=5  This value is assigned by the integrator, requesting data for the initial 

conditions.  Following this evaluation the integrator is re-entered. 

 (Optional) Update the grid of values in array locations U(NPDE +1, j) j = 2, , 

N.  This grid is returned to the user equally spaced, but can be updated as 

desired, provided the values are increasing. 

 (Required) Provide initial values for all components of the system at the grid of 

values U(NPDE +1, j) j = 1, , N. If the optional step of updating the initial 

grid is performed, then the initial values are evaluated at the updated grid. 

IDO=6  This value is assigned by the integrator, requesting data for the differential 

equations.  Following this evaluation the integrator is re-entered.  Evaluate the 

terms of the system of Equation 2.  A default value of m 0 is assumed, but this 

can be changed to one of the other choices m1 2 or .  Use the optional 

argument IOPT(:) for that purpose.  Put the values in the arrays as indicated1. 

 

 

   

   

,

?_ _1 _ _

?_ _1 _ _

?_ _1 _ _ ( )

?_ _1 _ _

?_ _1 _ _ ( , ) : , , ,

?_ _1 _ _ : , , ,

?_ _1 _ _ : , , ,

, 1,...,

j

j
j
x

j k x

j x

j x

x pde d mg x

t pde d mg t

u pde d mg u j

u
u pde d mg dudx j

x

pde d mg c j k C x t u u

pde d mg r j r x t u u

pde d mg q j q x t u u

j k NPDE











 








 

                                                           

1 The assign-to equality, 
a b:

, used here and below, is read ―the expression b  is evaluated and 

then assigned to the location a .‖ 
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 If any of the functions cannot be evaluated, set pde_1d_mg_ires=3.  

Otherwise do not change its value. 

IDO=7  This value is assigned by the integrator, requesting data for the boundary 

conditions, as expressed in Equation 3.  Following the evaluation the integrator 

is re-entered. 

 

   

   

?_ _1 _ _

?_ _1 _ _

?_ _1 _ _ ( )

?_ _1 _ _

?_ _1 _ _ : , , ,

?_ _1 _ _ : , , ,

1,...,

j

j
j
x

j x

j x

x pde d mg x

t pde d mg t

u pde d mg u j

u
u pde d mg dudx j

x

pde d mg beta j x t u u

pde d mg gamma j x t u u

j NPDE















 






 

 The value x{xL, xR}, and the logical flag pde_1d_mg_LEFT=.TRUE. for x = 

xL.  It has the value pde_1d_mg_LEFT=.FALSE. for x = xR. If any of the 

functions cannot be evaluated, set pde_1d_mg_ires=3.  Otherwise do not 

change its value. 

IDO=8  This value is assigned by the integrator, requesting the calling program to 

prepare for solving a banded linear system of algebraic equations.  This value 

will occur only when the option for ―reverse communication solving‖ is set in 

the array IOPT(:), with option PDE_1D_MG_REV_COMM_FACTOR_SOLVE.  The 

matrix data for this system is in Band Storage Mode, described in the section: 

Reference Material for the IMSL Fortran Numerical Libraries. 

 

PDE_1D_MG_IBAND Half band-width of linear system 

PDE_1D_MG_LDA The value 3*PDE_1D_MG_IBAND+1, with NEQ 

= (NPDE+1)N 

?_PDE_1D_MG_A Array of size PDE_1D_MG_LDA by NEQ holding 

the problem matrix in Band Storage Mode 

PDE_1D_MG_PANIC_FLAG Integer set to a non-zero value only if the linear 

system is detected as singular 

IDO=9  This value is assigned by the integrator , requesting the calling program to 

solve a linear system with the matrix defined as noted with IDO=8. 
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?_PDE_1D_MG_RHS Array of size NEQ holding the linear system 

problem right-hand side 

PDE_1D_MG_PANIC_FLAG Integer set to a non-zero value only if the linear 

system is singular 

?_PDE_1D_MG_SOL Array of size NEQ to receive the solution, after 

the solving step 

U(1:NPDE+1,1:N)—(Input/Output) 

This assumed-shape array specifies Input information about the problem size and 

boundaries.  The dimension of the problem is obtained from NPDE +1 = size(U,1). The 

number of grid points is obtained by N = size(U,2). Limits for the variable x are 

assigned as input in array locations, U(NPDE +1, 1) = xL, U(NPDE +1, N) =xR.  It is 

not required to define U(NPDE +1, j), j=2, , N-1.  At completion, the array 

U(1:NPDE,1:N)contains the approximate solution value Ui(xj(TOUT),TOUT) in 

location U(I,J).  The grid value xj(TOUT) is in location U(NPDE+1,J).  Normally the 

grid values are equally spaced as the integration starts.  Variable spaced grid values can 

be provided by defining them as Output from the subroutine initial_conditions 

or during reverse communication, IDO=5. 

Optional Arguments 

initial_conditions—(Input) 

The name of an external subroutine, written by the user, when using forward 

communication.  If this argument is not used, then reverse communication is used to 

provide the problem information.  The routine gives the initial values for the system at 

the starting independent variable value T0.  This routine can also provide a non-

uniform grid at the initial value. 

SUBROUTINE initial_conditions (NPDE,N,U) 

  Integer NPDE,N 

  REAL(kind(T0)) U(:,) 

END SUBROUTINE 

(Optional) Update the grid of values in array locations 

U NPDE j j N( , ), ,...,  1 2 1.  This grid is input equally spaced, but can be 

updated as desired, provided the values are increasing. 

(Required) Provide initial values U j j N(:, ), ,...,1  for all components of the system 

at the grid of values U NPDE j j N( , ), ,..., 1 1 .  If the optional step of 

updating the initial grid is performed, then the initial values are evaluated at 

the updated grid. 

pde_system_definition—(Input) 

The name of an external subroutine, written by the user, when using forward 

communication.  It gives the differential equation, as expressed in Equation 2. 
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SUBROUTINE pde_system_definition&

 (t, x, NPDE, u, dudx, c, q, r, IRES)

 

  Integer NPDE, IRES

  REAL(kind(T0)) t, x, u(:), dudx(:)

  REAL(kind(T0)) c(:,:), q(:), r(:)

END SUBROUTINE  

 Evaluate the terms of the system of . A default value of m 0  is assumed, but this can 

be changed to one of the other choices m1 2 or .  Use the optional argument 

IOPT(:) for that purpose.  Put the values in the arrays as indicated. 

 

 

 

   

   

   

,, : , , ,

: , , ,

: , , ,

, 1,...,

j
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j
x

j k x

j x

j x

u u j

u
u dudx j

x

c j k C x t u u

r j r x t u u

q j q x t u u

j k NPDE







 








 

 If any of the functions cannot be evaluated, set IRES=3.  Otherwise do not change its 

value. 

boundary_conditions—(Input) 

The name of an external subroutine, written by the user when using forward 

communication.  It gives the boundary conditions, as expressed in Equation 2. 

SUBROUTINE BOUNDARY_CONDITIONS(T,BETA,GAMMA,U,DUDX,NPDE,LEFT,IRES) 

        real(kind(1d0)),intent(in)::t 

    real(kind(1d0)),intent(out),dimension(:)::BETA, GAMMA 

    real(kind(1d0)),intent(in),dimension(:)::U,DUDX 

    integer,intent(in)::NPDE 

    logical,intent(in)::LEFT 

    integer,intent(out)::IRES 

END SUBROUTINE 
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j x

u u j

u
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x

beta j x t u u

gamma j x t u u

j NPDE











 






 

 The value  ,L Rx x x , and the logical flag LEFT=.TRUE. for x xL .  The flag has 

the value LEFT=.FALSE. for x xR . 

IOPT—(Input) 

Derived type array s_options or d_options, used for passing optional data to 

PDE_1D_MG.  See the section Optional Data in the Introduction for an explanation of 

the derived type and its use.  It is necessary to invoke a module, with the statement USE 

ERROR_OPTION_PACKET, near the second line of the program unit.  Examples 2-8 use 

this optional argument. The choices are as follows: 

 

Packaged Options for PDE_1D_MG 

Option Prefix = ? Option Name Option Value 

S_, d_ PDE_1D_MG_CART_COORDINATES 1 

S_, d_ PDE_1D_MG_CYL_COORDINATES 2 

S_, d_ PDE_1D_MG_SPH_COORDINATES 3 

S_, d_ PDE_1D_MG_TIME_SMOOTHING 4 

S_, d_ PDE_1D_MG_SPATIAL_SMOOTHING 5 

S_, d_ PDE_1D_MG_MONITOR_REGULARIZING 6 

S_, d_ PDE_1D_MG_RELATIVE_TOLERANCE 7 

S_, d_ PDE_1D_MG_ABSOLUTE_TOLERANCE 8 

S_, d_ PDE_1D_MG_MAX_BDF_ORDER 9 

S_, d_ PDE_1D_MG_REV_COMM_FACTOR_SOLVE 10 

s_, d_ PDE_1D_MG_NO_NULLIFY_STACK 11 

IOPT(IO) = PDE_1D_MG_CART_COORDINATES 

Use the value m 0 in Equation 2.  This is the default. 

IOPT(IO) = PDE_1D_MG_CYL_COORDINATES 

Use the value m1 in Equation 2.  The default value is m 0. 

IOPT(IO) = PDE_1D_MG_SPH_COORDINATES 

Use the value m 2 in Equation 2.  The default value is m 0. 
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IOPT(IO) =  

?_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,TAU) 

This option resets the value of the parameter   0, described above.   

The default value is   0. 

IOPT(IO) =  

?_OPTIONS(PDE_1D_MG_SPATIAL_SMOOTHING,KAP) 

This option resets the value of the parameter   0, described above.   

The default value is   2 . 

IOPT(IO) =  

?_OPTIONS(PDE_1D_MG_MONITOR_REGULARIZING,ALPH) 

This option resets the value of the parameter   0 , described above.   

The default value is   0 01. . 

IOPT(IO) = ?_OPTIONS 

(PDE_1D_MG_RELATIVE_TOLERANCE,RTOL) 

This option resets the value of the relative accuracy parameter used in DASPG.   

The default value is RTOL=1E-2 for single precision and RTOL=1D-4 for double 

precision. 

IOPT(IO) = ?_OPTIONS 

(PDE_1D_MG_ABSOLUTE_TOLERANCE,ATOL) 

This option resets the value of the absolute accuracy parameter used in DASPG.  The 

default value is ATOL=1E-2 for single precision and 

ATOL=1D-4 for double precision. 

IOPT(IO) = PDE_1D_MG_MAX_BDF_ORDER 

IOPT(IO+1) = MAXBDF 

Reset the maximum order for the BDF formulas used in DASPG.  The default value is 

MAXBDF=2.  The new value can be any integer between 1 and 5.  Some problems will 

benefit by making this change.  We used the default value due to the fact that DASPG 

may cycle on its selection of order and step-size with orders higher than value 2. 

IOPT(IO) = PDE_1D_MG_REV_COMM_FACTOR_SOLVE 

The calling program unit will solve the banded linear systems required in the stiff 

differential-algebraic equation integrator.  Values of IDO=8, 9 will occur only when 

this optional value is used. 

IOPT(IO) = PDE_1D_MG_NO_NULLIFY_STACK 

To maintain an efficient interface, the routine PDE_1D_MG collapses the subroutine call 

stack with CALL_E1PSH(―NULLIFY_STACK‖).  This implies that the overhead of 

maintaining the stack will be eliminated, which may be important with reverse 

communication.  It does not eliminate error processing.  However, precise information 

of which routines have errors will not be displayed.  To see the full call chain, this 

option should be used.  Following completion of the integration, stacking is turned 

back on with CALL_E1POP(―NULLIFY_STACK‖). 
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FORTRAN 90 Interface 

Generic: CALL PDE_1D_MG (T0, TOUT, IDO, [,…]) 

Specific: The specific interface names are S_PDE_1D_MG and D_PDE_1D_MG. 

Description 

The equation  

u f u x t x x x t tt L R   ( , , ), , 0,  

is approximated at N  time-dependent grid values  

   0 1L i i N Rx x x t x t x x      
.   

 

Using the total differential 

du

dt
u u

dx

dt
t x 

 

 transforms the differential equation to 

 , ,x t

du dx
u u f u x t

dt dt
  

.   

Using central divided differences for the factor ux leads to the system of ordinary differential 

equations in implicit form 

 

 
1 1

0
1 1

, , 1, ,
i ii i

i
i i

U UdU dx
F t t i N

dt x x dt

 

 


   


. 

 

The terms Ui, Fi respectively represent the approximate solution to the partial differential equation 

and the value of f(u,x,t) at the point (x,t) = (xi,(t),t). The truncation error is second-order in the 

space variable, x.  The above ordinary differential equations are underdetermined, so additional 

equations are added for the variation of the time-dependent grid points.  It is necessary to discuss 

these equations, since they contain parameters that can be adjusted by the user.  Often it will be 

necessary to modify these parameters to solve a difficult problem.  For this purpose the following 

quantities are defined2: 

 

  

1

1

1 1

1 0 1

,

1 2 , 0

,

i i i i i

i i i i i

N N

x x x n x

n n n n i N

n n n n

  





 

 

    

      

 
 

                                                           

2 The three-tiered equal sign, used here and below, is read ―a  b or a and b are exactly the same 

object or value.‖ 
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The values ni are the so-called point concentration of the grid, and   0 denotes a spatial 

smoothing parameter.  Now the grid points are defined implicitly so that 

1 1
1

1

,1

i
i i

i i

d d

dt dt i N
M M

 
   





 

  

, 

where τ ≥ 1 is a time-smoothing parameter.  Choosing τ very large results in a fixed grid. 

Increasing the value of τ from its default avoids the error condition where grid lines cross.  The 

divisors are  

 
 

2

12 1

2
1

j j
NPDE

ii

i

j i

U U
M NPDE

x







 




. 

The value κ determines the level of clustering or spatial smoothing of the grid points.  Decreasing 

κ from its default decrease the amount of spatial smoothing.  The parameters Mi approximate arc 

length and help determine the shape of the grid or xi-distribution.  The parameter τ prevents the 

grid movement from adjusting immediately to new values of the Mi, thereby avoiding oscillations 

in the grid that cause large relative errors.  This is important when applied to solutions with steep 

gradients. 

The discrete form of the differential equation and the smoothing equations are combined to yield 

the implicit system of differential equations. κ 

 

1 1
1 1 1

( ) ,

, , , , , , , ,
T

NPDE NPDE
j j j

dY
A Y L Y

dt

Y U U x U U x



 
   

This is frequently a stiff differential-algebraic system.  It is solved using the integrator DASPG and 

its subroutines, including D2SPG.  These are documented in this chapter.  Note that DASPG is 

restricted to use within PDE_1D_MG until the routine exits with the flag IDO = 3.  If DASPG is 

needed during the evaluations of the differential equations or boundary conditions, use of a second 

processor and inter-process communication is required.  The only options for DASPG set by 

PDE_1D_MG are the Maximum BDF Order, and the absolute and relative error values, ATOL and 

RTOL.  Users may set other options using the Options Manager.  This is described in routine 

DASPG and generally in Chapter 11 of this manual. 

Remarks on the Examples 

Due to its importance and the complexity of its interface, this subroutine is presented with several 

examples.  Many of the program features are exercised.  The problems complete without any 

change to the optional arguments, except where these changes are required to describe or to solve 

the problem. 

In many applications the solution to a PDE is used as an auxiliary variable, perhaps as part of a 

larger design or simulation process.  The truncation error of the approximate solution is 

commensurate with piece-wise linear interpolation on the grid of values, at each output point.  To 
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show that the solution is reasonable, a graphical display is revealing and helpful.  We have not 

provided graphical output as part of our documentation, but users may already have the Visual 

Numerics, Inc. product, PV-WAVE, not included with Fortran Numerical Library.  Examples 1-8 

write results in files ―PDE_ex0?.out‖ that can be visualized with PV-WAVE.  We provide a 

script of commands, ―pde_1d_mg_plot.pro‖, for viewing the solutions (see example below).  

The grid of values and each consecutive solution component is displayed in separate plotting 

windows.  The script and data files written by examples 1-8 on a SUN-SPARC system are in the 

directory for Fortran Numerical Library examples.  When inside PV-WAVE, execute the 

command line ―pde_1d_mg_plot,filename=‘PDE_ex0?.out‘‖ to view the output of a 

particular example. 

Code for PV-WAVE  Plotting (Examples Directory) 

PRO PDE_1d_mg_plot, FILENAME = filename, PAUSE = pause 

; 

   if keyword_set(FILENAME) then file = filename else file = "res.dat" 

   if keyword_set(PAUSE) then twait = pause else twait = .1 

; 

;      Define floating point variables that will be read  

;      from the first line of the data file. 

   xl = 0D0 

   xr = 0D0 

   t0 = 0D0 

   tlast = 0D0 

; 

;      Open the data file and read in the problem parameters. 

   openr, lun, filename, /get_lun 

   readf, lun, npde, np, nt, xl, xr, t0, tlast 

 

;      Define the arrays for the solutions and grid. 

   u = dblarr(nt, npde, np) 

   g = dblarr(nt, np) 

   times = dblarr(nt) 

; 

;      Define a temporary array for reading in the data. 

   tmp = dblarr(np) 

   t_tmp = 0D0 

; 

;      Read in the data. 

   for i = 0, nt-1 do begin     ; For each step in time 

    readf, lun, t_tmp 

    times(i) = t_tmp 

 

    for k = 0, npde-1 do begin  ;    For each PDE: 

       rmf, lun, tmp 

       u(i,k,*) = tmp           ;    Read in the components. 

    end 

 

    rmf, lun, tmp 

    g(i,*) = tmp                ;    Read in the grid. 

   end 

; 

;      Close the data file and free the unit. 

   close, lun 

   free_lun, lun 

;  
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;      We now have all of the solutions and grids. 

; 

;      Delete any window that is currently open. 

   while (!d.window NE -1) do WDELETE 

; 

;      Open two windows for plotting the solutions 

;      and grid. 

   window, 0, xsize = 550, ysize = 420 

   window, 1, xsize = 550, ysize = 420 

; 

;       Plot the grid. 

   wset, 0 

   plot, [xl, xr], [t0, tlast], /nodata, ystyle = 1, $ 

         title = "Grid Points", xtitle = "X", ytitle = "Time" 

   for i = 0, np-1 do begin 

      oplot, g(*, i), times, psym = -1 

   end 

; 

;      Plot the solution(s): 

   wset, 1 

   for k = 0, npde-1 do begin 

      umin = min(u(*,k,*)) 

      umax = max(u(*,k,*)) 

      for i = 0, nt-1 do begin 

         title = strcompress("U_"+string(k+1), /remove_all)+ $ 

                 " at time "+string(times(i)) 

         plot, g(i, *), u(i,k,*), ystyle = 1, $ 

               title = title, xtitle = "X", $ 

               ytitle = strcompress("U_"+string(k+1), /remove_all), $ 

               xr = [xl, xr], yr = [umin, umax], $ 

               psym = -4 

         wait, twait 

      end 

   end 

 

end 

Example 1 - Electrodynamics Model 

This example is from Blom and Zegeling (1994).  The system is 

 

( )

( ),

where ( ) ( / 3) ( 2 / 3)

0 1,0 4

0 and 0at 0

1 and 0at 1

0.143, 0.1743, 17.19

t xx

t xx

x

x

u pu g u v

v pv g u v

g z exp z exp z

x t

u v x

u v x

p
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We make the connection between the model problem statement and the example: 

2

1 2

1 2 1

0, ,

( ),

x x

C I

m R pu R pv

Q g u v Q Q





  

   
 

The boundary conditions are 

1 2 1 2

1 2 1 2

1, 0, 0, , at 0

0, 1, 1, 0, at 1

L

R

v x x

u x x

   

   

     

      
 

Rationale: Example 1 

This is a non-linear problem with sharply changing conditions near t  0.  The default settings of 

integration parameters allow the problem to be solved.  The use of PDE_1D_MG with forward 

communication requires three subroutines provided by the user to describe the initial conditions, 

differential equations, and boundary conditions. 
 

     program PDE_EX1 

! Electrodynamics Model:  

        USE PDE_1d_mg_int 

        IMPLICIT NONE 

 

        INTEGER, PARAMETER :: NPDE=2, N=51, NFRAMES=5 

        INTEGER I, IDO 

 

! Define array space for the solution. 

        real(kind(1d0)) U(NPDE+1,N), T0, TOUT 

        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, & 

          DELTA_T=10D0, TEND=4D0 

        EXTERNAL IC_01, PDE_01, BC_01 

 

! Start loop to integrate and write solution values. 

        IDO=1 

        DO 

           SELECT CASE (IDO) 

 

! Define values that determine limits. 

           CASE (1) 

              T0=ZERO 

              TOUT=1D-3 

              U(NPDE+1,1)=ZERO;U(NPDE+1,N)=ONE 

              OPEN(FILE='PDE_ex01.out',UNIT=7) 

              WRITE(7, "(3I5, 4F10.5)") NPDE, N, NFRAMES,& 

                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 

! Update to the next output point. 

! Write solution and check for final point. 

           CASE (2) 

 

              WRITE(7,"(F10.5)")TOUT 

              DO I=1,NPDE+1 

                WRITE(7,"(4E15.5)")U(I,:) 

              END DO 

              T0=TOUT;TOUT=TOUT*DELTA_T 
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              IF(T0 >= TEND) IDO=3 

              TOUT=MIN(TOUT, TEND) 

 

! All completed.  Solver is shut down. 

           CASE (3) 

              CLOSE(UNIT=7) 

              EXIT 

 

           END SELECT 

 

! Forward communication is used for the problem data. 

           CALL PDE_1D_MG (T0, TOUT, IDO, U,& 

             initial_conditions= IC_01,& 

             PDE_system_definition= PDE_01,& 

             boundary_conditions= BC_01) 

 

        END DO 

     END 

 

     SUBROUTINE IC_01(NPDE, NPTS, U) 

! This is the initial data for Example 1. 

        IMPLICIT NONE 

        INTEGER NPDE, NPTS 

        REAL(KIND(1D0)) U(NPDE+1,NPTS) 

        U(1,:)=1D0;U(2,:)=0D0 

     END SUBROUTINE 

 

     SUBROUTINE PDE_01(T, X, NPDE, U, DUDX, C, Q, R, IRES) 

! This is the differential equation for Example 1. 

        IMPLICIT NONE 

        INTEGER NPDE, IRES 

        REAL(KIND(1D0)) T, X, U(NPDE), DUDX(NPDE),& 

          C(NPDE,NPDE), Q(NPDE), R(NPDE) 

        REAL(KIND(1D0)) :: EPS=0.143D0, P=0.1743D0,& 

          ETA=17.19D0, Z, TWO=2D0, THREE=3D0 

 

        C=0D0;C(1,1)=1D0;C(2,2)=1D0 

        R=P*DUDX;R(1)=R(1)*EPS 

        Z=ETA*(U(1)-U(2))/THREE 

        Q(1)=EXP(Z)-EXP(-TWO*Z) 

        Q(2)=-Q(1) 

 

     END SUBROUTINE 

 

     SUBROUTINE BC_01(T, BTA, GAMA, U, DUDX, NPDE, LEFT, IRES) 

! These are the boundary conditions for Example 1. 

        IMPLICIT NONE 

        INTEGER NPDE, IRES 

        LOGICAL LEFT 

        REAL(KIND(1D0)) T, BTA(NPDE), GAMA(NPDE),& 

          U(NPDE), DUDX(NPDE) 

 

        IF(LEFT) THEN 

           BTA(1)=1D0;BTA(2)=0D0 

           GAMA(1)=0D0;GAMA(2)=U(2) 

        ELSE 
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           BTA(1)=0D0;BTA(2)=1D0 

           GAMA(1)=U(1)-1D0;GAMA(2)=0D0 

        END IF 

     END SUBROUTINE 

Additional Examples 

Example 2 - Inviscid Flow on a Plate 

This example is a first order system from Pennington and Berzins, (1994).  The equations are 

       

   

, implying that 

0, 0, 0, , , 1, 0

, 0 1, , 0 0, 0

t x

t x xx

x t x xx

R

u v

uu vu w

w u uu vu u

u t v t u t u x t t

u x v x x

 

  

   

     

  
 

Following elimination of w , there remain NPDE  2 differential equations. The variable t is not 

time, but a second space variable. The integration goes from t  0 to t 5 .  It is necessary to 

truncate the variable x at a finite value, say x xRmax   25.  In terms of the integrator, the system 

is defined by letting m 0 and  

  01 0
, ,

0

v
C C R Qjk

u vuu x x


   

    
    

       

The boundary conditions are satisfied by 

 20
0, ,at 

1
0, ,at 

L

R
x

u exp t
x x

v

u
x x

v

 

 

 
 
  

 
 
 

 
  


  

 

We use N   10 51 61 grid points and output the solution at steps of t  01. . 

Rationale: Example 2 

This is a non-linear boundary layer problem with sharply changing conditions near t  0.   The 

problem statement was modified so that boundary conditions are continuous near t  0.  Without 

this change the underlying integration software, DASPG,  cannot solve the problem.  The 

continuous blending function  20u exp t  is arbitrary and artfully chosen.  This is a 

mathematical change to the problem, required because of the stated discontinuity at t  0.  Reverse 

communication is used for the problem data.  No additional user-written subroutines are required 

when using reverse communication.  We also have chosen 10 of the initial grid points to be 

concentrated near xL  0 , anticipating rapid change in the solution near that point.  Optional 

changes are made to use a pure absolute error tolerance and non-zero time-smoothing. 
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        program PDE_1D_MG_EX02 

! Inviscid Flow Over a Plate 

        USE PDE_1d_mg_int 

        USE ERROR_OPTION_PACKET 

        IMPLICIT NONE 

 

        INTEGER, PARAMETER :: NPDE=2, N1=10, N2=51, N=N1+N2 

        INTEGER I, IDO, NFRAMES 

! Define array space for the solution. 

        real(kind(1d0)) U(NPDE+1,N), T0, TOUT, DX1, DX2, DIF 

        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-1,& 

          TEND=5D0, XMAX=25D0 

        real(kind(1d0)) :: U0=1D0, U1=0D0, TDELTA=1D-1, TOL=1D-2 

        TYPE(D_OPTIONS) IOPT(3) 

! Start loop to integrate and record solution values. 

        IDO=1 

        DO 

           SELECT CASE (IDO) 

! Define values that determine limits and options. 

           CASE (1) 

              T0=ZERO 

              TOUT=DELTA_T 

              U(NPDE+1,1)=ZERO;U(NPDE+1,N)=XMAX 

              OPEN(FILE='PDE_ex02.out',UNIT=7) 

              NFRAMES=NINT((TEND+DELTA_T)/DELTA_T) 

              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 

                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 

              DX1=XMAX/N2;DX2=DX1/N1 

              IOPT(1)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO) 

              IOPT(2)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,TOL) 

              IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D-3) 

 

! Update to the next output point. 

! Write solution and check for final point. 

           CASE (2) 

              T0=TOUT 

              IF(T0 <= TEND) THEN 

                 WRITE(7,"(F10.5)")TOUT 

                 DO I=1,NPDE+1 

                    WRITE(7,"(4E15.5)")U(I,:) 

                 END DO 

                 TOUT=MIN(TOUT+DELTA_T,TEND) 

                 IF(T0 == TEND)IDO=3 

              END IF 

 

! All completed.  Solver is shut down. 

           CASE (3) 

 

              CLOSE(UNIT=7) 

              EXIT 

 

! Define initial data values. 

           CASE (5) 

              U(:NPDE,:)=ZERO;U(1,:)=ONE 

              DO I=1,N1 
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                 U(NPDE+1,I)=(I-1)*DX2 

              END DO 

              DO I=N1+1,N 

                 U(NPDE+1,I)=(I-N1)*DX1 

              END DO 

              WRITE(7,"(F10.5)")T0 

              DO I=1,NPDE+1 

                 WRITE(7,"(4E15.5)")U(I,:) 

              END DO 

 

! Define differential equations. 

           CASE (6) 

              D_PDE_1D_MG_C=ZERO 

              D_PDE_1D_MG_C(1,1)=ONE 

              D_PDE_1D_MG_C(2,1)=D_PDE_1D_MG_U(1) 

 

              D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_U(2) 

              D_PDE_1D_MG_R(2)= D_PDE_1D_MG_DUDX(1) 

 

              D_PDE_1D_MG_Q(1)= ZERO 

              D_PDE_1D_MG_Q(2)= & 

                D_PDE_1D_MG_U(2)*D_PDE_1D_MG_DUDX(1) 

! Define boundary conditions. 

           CASE (7) 

              D_PDE_1D_MG_BETA=ZERO 

              IF(PDE_1D_MG_LEFT) THEN 

                 DIF=EXP(-20D0*D_PDE_1D_MG_T) 

! Blend the left boundary value down to zero. 

                 D_PDE_1D_MG_GAMMA=(/D_PDE_1D_MG_U(1)-DIF,D_PDE_1D_MG_U(2)/) 

              ELSE 

                 D_PDE_1D_MG_GAMMA=(/D_PDE_1D_MG_U(1)-

ONE,D_PDE_1D_MG_DUDX(2)/) 

              END IF 

           END SELECT 

 

! Reverse communication is used for the problem data. 

           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT) 

        END DO 

     end program 
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Example 3 - Population Dynamics 

This example is from Pennington and Berzins (1994).  The system is  
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This is a notable problem because it involves the unknown  
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across the entire domain.  The software can solve the problem by introducing two dependent 

algebraic equations: 
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This leads to the modified system  
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In the interface to the evaluation of the differential equation and boundary conditions, it is 

necessary to evaluate the integrals, which are computed with the values of  ,u x t  on the grid.  

The integrals are approximated using the trapezoid rule, commensurate with the truncation error in 

the integrator. 

Rationale: Example 3 

This is a non-linear integro-differential problem involving non-local conditions for the differential 

equation and boundary conditions.  Access to evaluation of these conditions is provided using 

reverse communication.  It is not possible to solve this problem with forward communication, 

given the current subroutine interface.  Optional changes are made to use an absolute error 

tolerance and non-zero time-smoothing.  The time-smoothing value 1 prevents grid lines from 

crossing. 
 

     program PDE_1D_MG_EX03 

! Population Dynamics Model. 

        USE PDE_1d_mg_int 

        USE ERROR_OPTION_PACKET 

        IMPLICIT NONE 

        INTEGER, PARAMETER :: NPDE=1, N=101 

        INTEGER IDO, I, NFRAMES 

! Define array space for the solution. 

        real(kind(1d0)) U(NPDE+1,N), MID(N-1), T0, TOUT, V_1, V_2 

        real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, ONE=1D0,& 

          TWO=2D0, FOUR=4D0, DELTA_T=1D-1,TEND=5D0, A=5D0 

        TYPE(D_OPTIONS) IOPT(3) 

! Start loop to integrate and record solution values. 

        IDO=1 

        DO 

           SELECT CASE (IDO) 

! Define values that determine limits. 

           CASE (1) 

              T0=ZERO 

              TOUT=DELTA_T 

              U(NPDE+1,1)=ZERO;U(NPDE+1,N)=A 

              OPEN(FILE='PDE_ex03.out',UNIT=7) 

              NFRAMES=NINT((TEND+DELTA_T)/DELTA_T) 

              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 

                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 

              IOPT(1)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO) 

              IOPT(2)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2) 

              IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D0) 

! Update to the next output point. 

! Write solution and check for final point. 

           CASE (2) 

              T0=TOUT 

              IF(T0 <= TEND) THEN 

                WRITE(7,"(F10.5)")TOUT 

                DO I=1,NPDE+1 

                  WRITE(7,"(4E15.5)")U(I,:) 

                END DO 

                TOUT=MIN(TOUT+DELTA_T,TEND) 

                IF(T0 == TEND)IDO=3 

              END IF 

! All completed.  Solver is shut down. 
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           CASE (3) 

              CLOSE(UNIT=7) 

              EXIT 

! Define initial data values. 

           CASE (5) 

              U(1,:)=EXP(-U(2,:))/(TWO-EXP(-A)) 

              WRITE(7,"(F10.5)")T0 

              DO I=1,NPDE+1 

                WRITE(7,"(4E15.5)")U(I,:) 

              END DO 

! Define differential equations. 

           CASE (6) 

              D_PDE_1D_MG_C(1,1)=ONE 

              D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_U(1) 

! Evaluate the approximate integral, for this t. 

              V_1=HALF*SUM((U(1,1:N-1)+U(1,2:N))*& 

                          (U(2,2:N) - U(2,1:N-1))) 

              D_PDE_1D_MG_Q(1)=V_1*D_PDE_1D_MG_U(1) 

! Define boundary conditions. 

           CASE (7) 

              IF(PDE_1D_MG_LEFT) THEN 

! Evaluate the approximate integral, for this t. 

! A second integral is needed at the edge. 

              V_1=HALF*SUM((U(1,1:N-1)+U(1,2:N))*& 

                          (U(2,2:N) - U(2,1:N-1))) 

              MID=HALF*(U(2,2:N)+U(2,1:N-1)) 

              V_2=HALF*SUM(MID*EXP(-MID)*& 

              (U(1,1:N-1)+U(1,2:N))*(U(2,2:N)-U(2,1:N-1))) 

                 D_PDE_1D_MG_BETA=ZERO 

                 

D_PDE_1D_MG_GAMMA=G(ONE,D_PDE_1D_MG_T)*V_1*V_2/(V_1+ONE)**2-& 

                   D_PDE_1D_MG_U 

              ELSE 

                 D_PDE_1D_MG_BETA=ZERO 

                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX(1) 

              END IF 

            END SELECT 

! Reverse communication is used for the problem data. 

           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT) 

        END DO 

CONTAINS 

        FUNCTION G(z,t) 

        IMPLICIT NONE 

          REAL(KIND(1d0)) Z, T, G 

          G=FOUR*Z*(TWO-TWO*EXP(-A)+EXP(-T))**2 

          G=G/((ONE-EXP(-A))*(ONE-(ONE+TWO*A)*& 

            EXP(-TWO*A))*(1-EXP(-A)+EXP(-T))) 

        END FUNCTION 

     end program 
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Example 4 - A Model in Cylindrical Coordinates 

This example is from Blom and Zegeling (1994).  The system models a reactor-diffusion problem: 
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The axial direction z  is treated as a time coordinate.  The radius r  is treated as the single space 

variable.   

Rationale: Example 4 

This is a non-linear problem in cylindrical coordinates. Our example illustrates assigning m1 in 

Equation 2.  We provide an optional argument that resets this value from its default, m 0 .  

Reverse communication is used to interface with the problem data. 
 

     program PDE_1D_MG_EX04 

! Reactor-Diffusion problem in cylindrical coordinates. 

        USE pde_1d_mg_int 

        USE error_option_packet 

        IMPLICIT NONE 

        INTEGER, PARAMETER :: NPDE=1, N=41 

        INTEGER IDO, I, NFRAMES 

! Define array space for the solution. 

        real(kind(1d0)) T(NPDE+1,N), Z0, ZOUT 

        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_Z=1D-1,& 

          ZEND=1D0, ZMAX=1D0, BTA=1D-4, GAMA=1D0, EPS=1D-1 

        TYPE(D_OPTIONS) IOPT(1) 

! Start loop to integrate and record solution values. 

        IDO=1 

        DO 

           SELECT CASE (IDO) 

! Define values that determine limits. 

           CASE (1) 

              Z0=ZERO 

              ZOUT=DELTA_Z 

              T(NPDE+1,1)=ZERO;T(NPDE+1,N)=ZMAX 

              OPEN(FILE='PDE_ex04.out',UNIT=7) 

              NFRAMES=NINT((ZEND+DELTA_Z)/DELTA_Z) 

              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 

                T(NPDE+1,1), T(NPDE+1,N), Z0, ZEND 

              IOPT(1)=PDE_1D_MG_CYL_COORDINATES 

! Update to the next output point. 

! Write solution and check for final point. 

           CASE (2) 

              IF(Z0 <= ZEND) THEN 

                WRITE(7,"(F10.5)")ZOUT 

                DO I=1,NPDE+1 

                  WRITE(7,"(4E15.5)")T(I,:) 

                END DO 
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                ZOUT=MIN(ZOUT+DELTA_Z,ZEND) 

                IF(Z0 == ZEND)IDO=3 

              END IF 

! All completed.  Solver is shut down. 

           CASE (3) 

              CLOSE(UNIT=7) 

              EXIT 

! Define initial data values. 

           CASE (5) 

              T(1,:)=ZERO 

              WRITE(7,"(F10.5)")Z0 

              DO I=1,NPDE+1 

                WRITE(7,"(4E15.5)")T(I,:) 

              END DO 

! Define differential equations. 

           CASE (6) 

              D_PDE_1D_MG_C(1,1)=ONE 

              D_PDE_1D_MG_R(1)=BTA*D_PDE_1D_MG_DUDX(1) 

              D_PDE_1D_MG_Q(1)= -GAMA*EXP(D_PDE_1D_MG_U(1)/& 

                (ONE+EPS*D_PDE_1D_MG_U(1))) 

! Define boundary conditions. 

           CASE (7) 

              IF(PDE_1D_MG_LEFT) THEN 

                 D_PDE_1D_MG_BETA=ONE; D_PDE_1D_MG_GAMMA=ZERO 

              ELSE 

                 D_PDE_1D_MG_BETA=ZERO; D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U(1) 

              END IF 

           END SELECT 

! Reverse communication is used for the problem data. 

! The optional derived type changes the internal model 

! to use cylindrical coordinates. 

           CALL PDE_1D_MG (Z0, ZOUT, IDO, T, IOPT=IOPT) 

        END DO 

     end program 

Example 5 - A Flame Propagation Model 

This example is presented more fully in Verwer, et al., (1989).  The system is a normalized 

problem relating mass density  ,u x t  and temperature  ,v x t : 
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Rationale: Example 5 

This is a non-linear problem.  The example shows the model steps for replacing the banded solver 

in the software with one of the user‘s choice.  Reverse communication is used for the interface to 

the problem data and the linear solver.  Following the computation of the matrix factorization in 

DL2CRB, we declare the system to be singular when the reciprocal of the condition number is 

smaller than the working precision.  This choice is not suitable for all problems.  Attention must 

be given to detecting a singularity when this option is used. 
 

     program PDE_1D_MG_EX05 

! Flame propagation model 

        USE pde_1d_mg_int 

        USE ERROR_OPTION_PACKET 

        USE Numerical_Libraries, ONLY :& 

         dl2crb, dlfsrb 

        IMPLICIT NONE 

 

        INTEGER, PARAMETER :: NPDE=2, N=40, NEQ=(NPDE+1)*N 

        INTEGER I, IDO, NFRAMES, IPVT(NEQ) 

 

! Define array space for the solution. 

        real(kind(1d0)) U(NPDE+1,N), T0, TOUT 

! Define work space for the banded solver. 

        real(kind(1d0)) WORK(NEQ), RCOND 

        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-4,& 

          TEND=6D-3, XMAX=1D0, BTA=4D0, GAMA=3.52D6 

        TYPE(D_OPTIONS) IOPT(1) 

! Start loop to integrate and record solution values. 

        IDO=1 

        DO 

           SELECT CASE (IDO) 

 

! Define values that determine limits. 

           CASE (1) 

              T0=ZERO 

              TOUT=DELTA_T 

              U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX 

              OPEN(FILE='PDE_ex05.out',UNIT=7) 
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              NFRAMES=NINT((TEND+DELTA_T)/DELTA_T) 

              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 

                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 

              IOPT(1)=PDE_1D_MG_REV_COMM_FACTOR_SOLVE 

! Update to the next output point. 

! Write solution and check for final point. 

           CASE (2) 

             T0=TOUT 

              IF(T0 <= TEND) THEN 

                WRITE(7,"(F10.5)")TOUT 

                DO I=1,NPDE+1 

                  WRITE(7,"(4E15.5)")U(I,:) 

                END DO 

                TOUT=MIN(TOUT+DELTA_T,TEND) 

                IF(T0 == TEND)IDO=3 

              END IF 

 

! All completed.  Solver is shut down. 

           CASE (3) 

              CLOSE(UNIT=7) 

              EXIT 

 

! Define initial data values. 

           CASE (5) 

              U(1,:)=ONE; U(2,:)=2D-1 

              WRITE(7,"(F10.5)")T0 

              DO I=1,NPDE+1 

                WRITE(7,"(4E15.5)")U(I,:) 

              END DO 

! Define differential equations. 

           CASE (6) 

              D_PDE_1D_MG_C=ZERO 

              D_PDE_1D_MG_C(1,1)=ONE; D_PDE_1D_MG_C(2,2)=ONE 

 

              D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX 

 

              D_PDE_1D_MG_Q(1)=  D_PDE_1D_MG_U(1)*F(D_PDE_1D_MG_U(2)) 

              D_PDE_1D_MG_Q(2)= -D_PDE_1D_MG_Q(1) 

! Define boundary conditions. 

           CASE (7) 

              IF(PDE_1D_MG_LEFT) THEN 

                 D_PDE_1D_MG_BETA=ZERO;D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX 

              ELSE 

                 D_PDE_1D_MG_BETA(1)=ONE 

                 D_PDE_1D_MG_GAMMA(1)=ZERO 

                 D_PDE_1D_MG_BETA(2)=ZERO 

                 IF(D_PDE_1D_MG_T >= 2D-4) THEN 

                   D_PDE_1D_MG_GAMMA(2)=12D-1 

                 ELSE 

                   D_PDE_1D_MG_GAMMA(2)=2D-1+5D3*D_PDE_1D_MG_T 

                 END IF 

                 D_PDE_1D_MG_GAMMA(2)=D_PDE_1D_MG_GAMMA(2)-& 

                  D_PDE_1D_MG_U(2) 

              END IF 

           CASE(8) 

! Factor the banded matrix.  This is the same solver used 
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! internally but that is not required.  A user can substitute 

! one of their own. 

             call dl2crb (neq, d_pde_1d_mg_a, pde_1d_mg_lda, & 

             pde_1d_mg_iband, pde_1d_mg_iband, d_pde_1d_mg_a, & 

             pde_1d_mg_lda, ipvt, rcond, work) 

             IF(rcond <= EPSILON(ONE)) pde_1d_mg_panic_flag = 1 

           CASE(9) 

! Solve using the factored banded matrix. 

             call dlfsrb(neq, d_pde_1d_mg_a, pde_1d_mg_lda, & 

             pde_1d_mg_iband, pde_1d_mg_iband, ipvt, & 

             d_pde_1d_mg_rhs, 1, d_pde_1d_mg_sol) 

           END SELECT 

 

! Reverse communication is used for the problem data. 

           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT) 

        END DO 

CONTAINS 

        FUNCTION F(Z) 

        IMPLICIT NONE 

        REAL(KIND(1D0)) Z, F 

          F=GAMA*EXP(-BTA/Z) 

        END FUNCTION 

     end program 

Example 6 - A ‘Hot Spot’ Model 

This example is presented more fully in Verwer, et al., (1989).  The system is a normalized 

problem relating the temperature  ,u x t , of a reactant in a chemical system.  The formula for 

 h z is equivalent to their example. 
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Rationale: Example 6 

This is a non-linear problem.  The output shows a case where a rapidly changing front, or hot-spot, 

develops after a considerable way into the integration.  This causes rapid change to the grid.  An 

option sets the maximum order BDF formula from its default value of 2 to the theoretical stable 

maximum value of 5. 
 

        USE pde_1d_mg_int 

        USE error_option_packet 

        IMPLICIT NONE 
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        INTEGER, PARAMETER :: NPDE=1, N=80 

        INTEGER I, IDO, NFRAMES 

 

! Define array space for the solution. 

        real(kind(1d0)) U(NPDE+1,N), T0, TOUT 

        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-2,& 

          TEND=29D-2, XMAX=1D0, A=1D0, DELTA=2D1, R=5D0 

        TYPE(D_OPTIONS) IOPT(2) 

! Start loop to integrate and record solution values. 

        IDO=1 

        DO 

           SELECT CASE (IDO) 

 

! Define values that determine limits. 

           CASE (1) 

              T0=ZERO 

              TOUT=DELTA_T 

              U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX 

              OPEN(FILE='PDE_ex06.out',UNIT=7) 

              NFRAMES=(TEND+DELTA_T)/DELTA_T 

              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 

                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 

! Illustrate allowing the BDF order to increase 

! to its maximum allowed value. 

              IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER 

                IOPT(2)=5 

! Update to the next output point. 

! Write solution and check for final point. 

           CASE (2) 

              T0=TOUT 

              IF(T0 <= TEND) THEN 

                WRITE(7,"(F10.5)")TOUT 

                DO I=1,NPDE+1 

                  WRITE(7,"(4E15.5)")U(I,:) 

                END DO 

                TOUT=MIN(TOUT+DELTA_T,TEND) 

                IF(T0 == TEND)IDO=3 

              END IF 

! All completed.  Solver is shut down. 

           CASE (3) 

              CLOSE(UNIT=7) 

              EXIT 

 

! Define initial data values. 

           CASE (5) 

              U(1,:)=ONE 

              WRITE(7,"(F10.5)")T0 

              DO I=1,NPDE+1 

                WRITE(7,"(4E15.5)")U(I,:) 

              END DO 

! Define differential equations. 

           CASE (6) 

              D_PDE_1D_MG_C=ONE 

              D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX 

              D_PDE_1D_MG_Q= - H(D_PDE_1D_MG_U(1)) 
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! Define boundary conditions. 

           CASE (7) 

              IF(PDE_1D_MG_LEFT) THEN 

                 D_PDE_1D_MG_BETA=ZERO 

                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX 

              ELSE 

 

                 D_PDE_1D_MG_BETA=ZERO 

                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U(1)-ONE 

              END IF 

           END SELECT 

 

! Reverse communication is used for the problem data. 

           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT) 

        END DO 

CONTAINS 

        FUNCTION H(Z) 

        real(kind(1d0)) Z, H 

          H=(R/(A*DELTA))*(ONE+A-Z)*EXP(-DELTA*(ONE/Z-ONE)) 

        END FUNCTION 

     end program 

Example 7 - Traveling Waves 

This example is presented more fully in Verwer, et al., (1989).  The system is a normalized 

problem relating the interaction of two waves,  ,u x t  and  ,v x t  moving in opposite 

directions.  The waves meet and reduce in amplitude, due to the non-linear terms in the equation.  

Then they separate and travel onward, with reduced amplitude. 
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Rationale: Example 7 

This is a non-linear system of first order equations. 
 

     program PDE_1D_MG_EX07 

! Traveling Waves 

        USE pde_1d_mg_int 

        USE error_option_packet 

        IMPLICIT NONE 
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        INTEGER, PARAMETER :: NPDE=2, N=50 

        INTEGER I, IDO, NFRAMES 

 

! Define array space for the solution. 

        real(kind(1d0)) U(NPDE+1,N), TEMP(N), T0, TOUT 

        real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, & 

          ONE=1D0, DELTA_T=5D-2,TEND=5D-1, PI 

        TYPE(D_OPTIONS) IOPT(5) 

! Start loop to integrate and record solution values. 

        IDO=1 

        DO 

           SELECT CASE (IDO) 

 

! Define values that determine limits. 

           CASE (1) 

              T0=ZERO 

              TOUT=DELTA_T 

              U(NPDE+1,1)=-HALF; U(NPDE+1,N)=HALF 

              OPEN(FILE='PDE_ex07.out',UNIT=7) 

              NFRAMES=(TEND+DELTA_T)/DELTA_T 

              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 

                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 

              IOPT(1)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D-3) 

              IOPT(2)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO) 

              IOPT(3)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-3) 

              IOPT(4)=PDE_1D_MG_MAX_BDF_ORDER 

                IOPT(5)=3 

! Update to the next output point. 

! Write solution and check for final point. 

           CASE (2) 

              T0=TOUT 

              IF(T0 <= TEND) THEN 

                WRITE(7,"(F10.5)")TOUT 

                DO I=1,NPDE+1 

                  WRITE(7,"(4E15.5)")U(I,:) 

                END DO 

                TOUT=MIN(TOUT+DELTA_T,TEND) 

                IF(T0 == TEND)IDO=3 

              END IF 

 

! All completed.  Solver is shut down. 

           CASE (3) 

              CLOSE(UNIT=7) 

              EXIT 

 

! Define initial data values. 

           CASE (5) 

              TEMP=U(3,:) 

              U(1,:)=PULSE(TEMP); U(2,:)=U(1,:) 

              WHERE (TEMP < -3D-1 .or. TEMP > -1D-1) U(1,:)=ZERO 

              WHERE (TEMP <  1D-1 .or. TEMP >  3D-1) U(2,:)=ZERO 

              WRITE(7,"(F10.5)")T0 

              DO I=1,NPDE+1 

                WRITE(7,"(4E15.5)")U(I,:) 

              END DO 
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! Define differential equations. 

           CASE (6) 

              D_PDE_1D_MG_C=ZERO 

              D_PDE_1D_MG_C(1,1)=ONE; D_PDE_1D_MG_C(2,2)=ONE 

 

              D_PDE_1D_MG_R=D_PDE_1D_MG_U 

              D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_R(1) 

 

              D_PDE_1D_MG_Q(1)= 100D0*D_PDE_1D_MG_U(1)*D_PDE_1D_MG_U(2) 

              D_PDE_1D_MG_Q(2)= D_PDE_1D_MG_Q(1) 

 

! Define boundary conditions. 

           CASE (7) 

              D_PDE_1D_MG_BETA=ZERO;D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U 

 

           END SELECT 

 

! Reverse communication is used for the problem data. 

           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT) 

        END DO 

CONTAINS 

        FUNCTION PULSE(Z) 

        real(kind(1d0)) Z(:), PULSE(SIZE(Z)) 

          PI=ACOS(-ONE) 

          PULSE=HALF*(ONE+COS(10D0*PI*Z)) 

        END FUNCTION 

     end program 

Example 8 - Black-Scholes  

The value of a European ―call option,‖  ,c s t , with exercise price e and expiration date T , 

satisfies the ―asset-or-nothing payoff ‖  , , ; 0,c s T s s e s e    .  Prior to expiration 

 ,c s t  is estimated by the Black-Scholes differential equation 

   
2 2

2 2 2 0
2 2

t ss s t s s
s

c s c rsc rc c s c r sc rc
 

        
. 

The parameters in the model are the risk-free interest rate, r , and the stock volatility, .  The 

boundary conditions are  0, 0c t   and  , 1,sc s t s  .  This development is described 

in Wilmott, et al. (1995), pages 41-57.  There are explicit solutions for this equation based on the 

Normal Curve of Probability.  The normal curve, and the solution itself, can be efficiently 

computed with the IMSL function ANORDF, IMSL (1994), page 186.  With numerical 

integrationthe equation itself or the payoff can be readily changed to include other formulas, 

 ,c s T , and corresponding boundary conditions.  We use 

e r T t s sL R      100 008 025 004 0 1502, . , . , . , ,  and . 
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Rationale: Example 8 

This is a linear problem but with initial conditions that are discontinuous.  It is necessary to use a 

positive time-smoothing value to prevent grid lines from crossing.  We have used an absolute 

tolerance of 10 3 .  In $US, this is one-tenth of a cent. 
 

     program PDE_1D_MG_EX08 

! Black-Scholes call price 

        USE pde_1d_mg_int 

        USE error_option_packet 

        IMPLICIT NONE 

 

        INTEGER, PARAMETER :: NPDE=1, N=100 

        INTEGER I, IDO, NFRAMES 

 

! Define array space for the solution. 

        real(kind(1d0)) U(NPDE+1,N), T0, TOUT, SIGSQ, XVAL 

        real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, ONE=1D0, & 

          DELTA_T=25D-3, TEND=25D-2, XMAX=150, SIGMA=2D-1, & 

          R=8D-2, E=100D0 

        TYPE(D_OPTIONS) IOPT(5) 

! Start loop to integrate and record solution values. 

        IDO=1 

        DO 

           SELECT CASE (IDO) 

 

! Define values that determine limits. 

           CASE (1) 

              T0=ZERO 

              TOUT=DELTA_T 

              U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX 

              OPEN(FILE='PDE_ex08.out',UNIT=7) 

              NFRAMES=NINT((TEND+DELTA_T)/DELTA_T) 

              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,& 

                U(NPDE+1,1), U(NPDE+1,N), T0, TEND 

                SIGSQ=SIGMA**2 

! Illustrate allowing the BDF order to increase 

! to its maximum allowed value. 

              IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER 

                IOPT(2)=5 

              IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,5D-3) 

              IOPT(4)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO) 

              IOPT(5)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2) 

! Update to the next output point. 

! Write solution and check for final point. 

           CASE (2) 

              T0=TOUT 

              IF(T0 <= TEND) THEN 

                WRITE(7,"(F10.5)")TOUT 

                DO I=1,NPDE+1 

                  WRITE(7,"(4E15.5)")U(I,:) 

                END DO 

                TOUT=MIN(TOUT+DELTA_T,TEND) 

                IF(T0 == TEND)IDO=3 

              END IF 
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! All completed.  Solver is shut down. 

           CASE (3) 

              CLOSE(UNIT=7) 

              EXIT 

 

! Define initial data values. 

           CASE (5) 

              U(1,:)=MAX(U(NPDE+1,:)-E,ZERO)  ! Vanilla European Call 

              U(1,:)=U(NPDE+1,:)              ! Asset-or-nothing Call 

              WHERE(U(1,:) <= E) U(1,:)=ZERO  ! on these two lines 

              WRITE(7,"(F10.5)")T0 

              DO I=1,NPDE+1 

                WRITE(7,"(4E15.5)")U(I,:) 

              END DO 

! Define differential equations. 

           CASE (6) 

              XVAL=D_PDE_1D_MG_X 

              D_PDE_1D_MG_C=ONE 

              D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX*XVAL**2*SIGSQ*HALF 

              D_PDE_1D_MG_Q=-(R-SIGSQ)*XVAL*D_PDE_1D_MG_DUDX+R*D_PDE_1D_MG_U 

! Define boundary conditions. 

           CASE (7) 

              IF(PDE_1D_MG_LEFT) THEN 

                 D_PDE_1D_MG_BETA=ZERO 

                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U 

              ELSE 

 

                 D_PDE_1D_MG_BETA=ZERO 

                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX(1)-ONE 

              END IF 

           END SELECT 

 

! Reverse communication is used for the problem data. 

           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT) 

        END DO 

 

     end program 

Example 9 - Electrodynamics, Parameters Studied with MPI 

 

For a detailed description of MPI Requirements see ―Dense Matrix Parallelism Using MPI‖ in 

Chapter 10 of this manual. 

This example, described above in Example 1, is from Blom and Zegeling (1994).  The system 

parameters  , ,p  and , are varied, using uniform random numbers.  The intervals studied are 

01 02 01 02 10 20. . , . . ,      p  and .  Using N  21 grid values and other program options, 

the elapsed time, parameter values, and the value  
1, 4

,
x t

v x t
 

 are sent to the root node.  This 

information is written on a file.  The final summary includes the minimum value of  
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1, 4

,
x t

v x t
  ,  

and the maximum and average time per integration, per node. 

Rationale: Example 9 

This is a non-linear simulation problem.  Using at least two integrating processors and MPI allows 

more values of the parameters to be studied in a given time than with a single processor.  This 

code is valuable as a study guide when an application needs to estimate timing and other output 

parameters.  The simulation time is controlled at the root node.  An integration is started, after 

receiving results, within the first SIM_TIME seconds.  The elapsed time will be longer than 

SIM_TIME by the slowest processor‘s time for its last integration. 
 

     program PDE_1D_MG_EX09 

! Electrodynamics Model, parameter study. 

        USE PDE_1d_mg_int 

        USE MPI_SETUP_INT 

        USE RAND_INT 

        USE SHOW_INT 

        IMPLICIT NONE 

        INCLUDE "mpif.h" 

        INTEGER, PARAMETER :: NPDE=2, N=21 

        INTEGER I, IDO, IERROR, CONTINUE, STATUS(MPI_STATUS_SIZE) 

        INTEGER, ALLOCATABLE :: COUNTS(:) 

! Define array space for the solution. 

        real(kind(1d0)) :: U(NPDE+1,N), T0, TOUT 

        real(kind(1d0)) :: ZERO=0D0, ONE=1D0,DELTA_T=10D0, TEND=4D0 

! SIM_TIME is the number of seconds to run the simulation. 

        real(kind(1d0)) :: EPS, P, ETA, Z, TWO=2D0, THREE=3D0, SIM_TIME=60D0 

        real(kind(1d0)) :: TIMES, TIMEE, TIMEL, TIME, TIME_SIM, V_MIN, & 

        DATA(5) 

        real(kind(1d0)), ALLOCATABLE :: AV_TIME(:), MAX_TIME(:) 

        TYPE(D_OPTIONS) IOPT(4), SHOW_IOPT(2) 

        TYPE(S_OPTIONS) SHOW_INTOPT(2) 

        MP_NPROCS=MP_SETUP(1) 

        MPI_NODE_PRIORITY=(/(I-1,I=1,MP_NPROCS)/) 

! If NP_NPROCS=1, the program stops.  Change 

! MPI_ROOT_WORKS=.TRUE. if MP_NPROCS=1. 

        MPI_ROOT_WORKS=.FALSE. 

        IF(.NOT. MPI_ROOT_WORKS .and. MP_NPROCS == 1) STOP 

        ALLOCATE(AV_TIME(MP_NPROCS), MAX_TIME(MP_NPROCS), COUNTS(MP_NPROCS)) 

! Get time start for simulation timing. 

        TIME=MPI_WTIME() 

        IF(MP_RANK == 0) OPEN(FILE='PDE_ex09.out',UNIT=7) 

 SIMULATE: DO 

! Pick random parameter values. 

           EPS=1D-1*(ONE+rand(EPS)) 

           P=1D-1*(ONE+rand(P)) 

           ETA=10D0*(ONE+rand(ETA)) 

! Start loop to integrate and communicate solution times. 

           IDO=1 

! Get time start for each new problem. 

           DO 
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              IF(.NOT. MPI_ROOT_WORKS .and. MP_RANK == 0) EXIT 

              SELECT CASE (IDO) 

! Define values that determine limits. 

              CASE (1) 

                 T0=ZERO 

                 TOUT=1D-3 

                 U(NPDE+1,1)=ZERO;U(NPDE+1,N)=ONE 

                 IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER 

                 IOPT(2)=5 

                 IOPT(3)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,1D-2) 

                 IOPT(4)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2) 

 

                 TIMES=MPI_WTIME() 

! Update to the next output point. 

! Write solution and check for final point. 

              CASE (2) 

                 T0=TOUT;TOUT=TOUT*DELTA_T 

                 IF(T0 >= TEND) IDO=3 

                 TOUT=MIN(TOUT, TEND) 

! All completed.  Solver is shut down. 

              CASE (3) 

                 TIMEE=MPI_WTIME() 

                 EXIT 

! Define initial data values. 

              CASE (5) 

                 U(1,:)=1D0;U(2,:)=0D0 

! Define differential equations. 

              CASE (6) 

                 

D_PDE_1D_MG_C=0D0;D_PDE_1D_MG_C(1,1)=1D0;D_PDE_1D_MG_C(2,2)=1D0 

                 D_PDE_1D_MG_R=P*D_PDE_1D_MG_DUDX 

D_PDE_1D_MG_R(1)=D_PDE_1D_MG_R(1)*EPS 

                 Z=ETA*(D_PDE_1D_MG_U(1)-D_PDE_1D_MG_U(2))/THREE 

                 D_PDE_1D_MG_Q(1)=EXP(Z)-EXP(-TWO*Z) 

                 D_PDE_1D_MG_Q(2)=-D_PDE_1D_MG_Q(1) 

! Define boundary conditions. 

              CASE (7) 

                 IF(PDE_1D_MG_LEFT) THEN 

                    D_PDE_1D_MG_BETA(1)=1D0;D_PDE_1D_MG_BETA(2)=0D0 

                    

D_PDE_1D_MG_GAMMA(1)=0D0;D_PDE_1D_MG_GAMMA(2)=D_PDE_1D_MG_U(2) 

                 ELSE 

                    D_PDE_1D_MG_BETA(1)=0D0;D_PDE_1D_MG_BETA(2)=1D0 

                    D_PDE_1D_MG_GAMMA(1)=D_PDE_1D_MG_U(1)- & 

                    1D0;D_PDE_1D_MG_GAMMA(2)=0D0 

                 END IF 

              END SELECT 

! Reverse communication is used for the problem data. 

              CALL PDE_1D_MG (T0, TOUT, IDO, U) 

           END DO 

           TIMEL=TIMEE-TIMES 

           DATA=(/EPS, P, ETA, U(2,N), TIMEL/) 

           IF(MP_RANK > 0) THEN 

! Send parameters and time to the root. 

              CALL MPI_SEND(DATA, 5, MPI_DOUBLE_PRECISION,0, MP_RANK, & 

              MP_LIBRARY_WORLD, IERROR) 

! Receive back a "go/stop" flag. 
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              CALL MPI_RECV(CONTINUE, 1, MPI_INTEGER, 0, MPI_ANY_TAG, & 

              MP_LIBRARY_WORLD, STATUS, IERROR) 

! If root notes that time is up, it sends node a quit flag. 

              IF(CONTINUE == 0) EXIT SIMULATE 

           ELSE 

! If root is working, record its result and then stand ready 

! for other nodes to send. 

              IF(MPI_ROOT_WORKS) WRITE(7,*) MP_RANK, DATA 

! If all nodes have reported, then quit. 

              IF(COUNT(MPI_NODE_PRIORITY >= 0) == 0) EXIT SIMULATE 

! See if time is up. Some nodes still must report. 

              IF(MPI_WTIME()-TIME >= SIM_TIME) THEN 

                 CONTINUE=0 

              ELSE 

                 CONTINUE=1 

              END IF 

! Root receives simulation data and finds which node sent it. 

              IF(MP_NPROCS > 1) THEN 

                 CALL MPI_RECV(DATA, 5, MPI_DOUBLE_PRECISION, & 

                 MPI_ANY_SOURCE, MPI_ANY_TAG, MP_LIBRARY_WORLD, & 

                 STATUS, IERROR) 

                 WRITE(7,*) STATUS(MPI_SOURCE), DATA 

! If time at the root has elapsed, nodes receive signal to stop. 

! Send the reporting node the "go/stop" flag. 

! Mark if a node has been stopped. 

                 CALL MPI_SEND(CONTINUE, 1, MPI_INTEGER, & 

                 STATUS(MPI_SOURCE), &0, MP_LIBRARY_WORLD, IERROR) 

                 IF (CONTINUE == 0) MPI_NODE_PRIORITY(STATUS(MPI_SOURCE)+1)& 

                 =- MPI_NODE_PRIORITY(STATUS(MPI_SOURCE)+1)-1 

              END IF 

              IF (CONTINUE == 0) MPI_NODE_PRIORITY(1)=-1 

           END IF 

        END DO SIMULATE 

        IF(MP_RANK == 0) THEN 

           ENDFILE(UNIT=7);REWIND(UNIT=7) 

! Read the data. Find extremes and averages. 

           MAX_TIME=ZERO;AV_TIME=ZERO;COUNTS=0;V_MIN=HUGE(ONE) 

           DO 

              READ(7,*, END=10) I, DATA 

              COUNTS(I+1)=COUNTS(I+1)+1 

              AV_TIME(I+1)=AV_TIME(I+1)+DATA(5) 

              IF(MAX_TIME(I+1) < DATA(5)) MAX_TIME(I+1)=DATA(5) 

              V_MIN=MIN(V_MIN, DATA(4)) 

           END DO 

10         CONTINUE 

           CLOSE(UNIT=7) 

! Set printing Index to match node numbering. 

           SHOW_IOPT(1)= SHOW_STARTING_INDEX_IS 

           SHOW_IOPT(2)=0 

           SHOW_INTOPT(1)=SHOW_STARTING_INDEX_IS 

           SHOW_INTOPT(2)=0 

           CALL SHOW(MAX_TIME,"Maximum Integration Time, per 

process:",IOPT=SHOW_IOPT) 

           AV_TIME=AV_TIME/MAX(1,COUNTS) 

           CALL SHOW(AV_TIME,"Average Integration Time, per 

process:",IOPT=SHOW_IOPT) 
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           CALL SHOW(COUNTS,"Number of Integrations",IOPT=SHOW_INTOPT) 

           WRITE(*,"(1x,A,F6.3)") "Minimum value for v(x,t),at x=1,t=4:  

",V_MIN 

        END IF 

        MP_NPROCS=MP_SETUP("Final") 

     end program 

 

MMOLCH 

 

 

 

Solves a system of partial differential equations of the form ut = f(x, t, u, ux, uxx) using the method 

of lines. The solution is represented with cubic Hermite polynomials. 

Note: .MMOLCH replaces deprecated routine MOLCH. 

Required Arguments 

IDO — Flag indicating the state of the computation.   (Input/Output)  

IDO State 

1 Initial entry 

2 Normal reentry 

3 Final call, release workspace 

Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this 

value is then used for all but the last call that is made with IDO = 3. 

FCNUT — User-supplied subroutine to evaluate the function ut. The usage is CALL 

FCNUT (NPDES, X, T, U, UX, UXX, UT[,…]) where 

Required Arguments 

NPDES — Number of equations.   (Input) 

X — Space variable, x.   (Input) 

T — Time variable, t.   (Input) 

U — Array of length NPDES containing the dependent variable values,  

u.   (Input) 

UX — Array of length NPDES containing the first derivatives ux.  (Input) 

UXX — Array of length NPDES containing the second derivative uxx.   (Input) 

LinkedDocuments/molch.pdf
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UT — Array of length NPDES containing the computed derivatives, ut.   

(Output) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional integer or floating point information to or from the user-supplied 

subroutine. For a detailed description of this argument see FCN_DATA 

below.   (Input/Output) 

FCNUT must be declared EXTERNAL in the calling program. 

FCNBC — User-supplied subroutine to evaluate the boundary conditions. The boundary 

conditions accepted by MMOLCH are αk uk + βk ux =γk (t). Users must supply the values 

αk and βk, and functions  γk (t). The usage is CALL FCNBC (NPDES, X, T, ALPHA, BETA, 

GAMMA[,…]), where 

Required Arguments 

NPDES – Number of equations.   (Input) 

X — Space variable, x. This value directs which boundary condition to 

compute.   (Input) 

T — Time variable, t.   (Input) 

ALPHA — Array of length NPDES containing the αk values.   (Output) 

BETA — Array of length NPDES containing the βk values.   (Output) 

GAMMA — Array of length NPDES containing the values of  γk (t).   (Output) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional integer or floating point information to or from the user-supplied 

subroutine. For a detailed description of this argument see FCN_DATA 

below.   (Input/Output) 

FCNBC must be declared EXTERNAL in the calling program. 

T — Independent variable, t. (Input/Output)  

On input, T supplies the initial time, t0. On output, T is set to the value to which the 

integration has been updated. Normally, this new value is TEND. 

TEND — Value of t = tend at which the solution is desired.   (Input) 

XBREAK — Array of length NX containing the break points for the cubic Hermite splines 

used in the x discretization.   (Input)  

The points in the array XBREAK must be strictly increasing. The values XBREAK(1) and 

XBREAK(NX) are the endpoints of the interval. 
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Y — Array of size NPDES by NX containing the solution. (Input/Output)  

The array Y contains the solution as Y(k, i) = uk(x, t) at x = XBREAK(i). On input, Y 

contains the initial values.  On output, Y contains the computed solution.  

The user can optionally supply the derivative values, ux(x, t0). The user allocates twice 

the space for Y to pass this information. The optional derivative information is input as  

   0, ,ku
k i x t

x




 Y NX  

at x = XBREAK(i). The array Y contains the optional derivative values as output:  

   , ,ku
k i x tend

x




 Y NX  

at x = XBREAK(i). To signal that this information is provided, set INPDER = 1. 

Optional Arguments 

NPDES — Number of differential equations.   (Input) 

Default: NPDES = size (Y,1). 

NX — Number of mesh points or lines.   (Input) 

Default: NX = size (XBREAK,1). 

TOL — Differential equation error tolerance.   (Input)  

An attempt is made to control the local error in such a way that the global error is 

proportional to TOL. 

Default: TOL = 100. * machine precision. 

HINIT — Initial step size in the t integration.   (Input)  

This value must be nonnegative. If HINIT is zero, an initial step size of 0.001|tend  t0| 

will be arbitrarily used. The step will be applied in the direction of integration. 

Default: HINIT = 0.0. 

INPDER — Set INPDER = 1 if the user is supplying the derivative values,  ux(x, t0), in the 

array Y.   (Input) 

Default: INPDER = 0. 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional 

information to/from the user-supplied function.   (Input/Output) 

The derived type, s_fcn_data, is defined as: 

type s_fcn_data 

   real(kind(1e0)), pointer, dimension(:) :: rdata 

   integer, pointer, dimension(:) :: idata 

end type 
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in module mp_types. The double precision counterpart to s_fcn_data is named 

d_fcn_data. The user must include a use mp_types statement in the calling 

program to define this derived type. 

FORTRAN 90 Interface 

Generic: CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y [,…]) 

Specific: The specific interface names are S_MMOLCH and D_MMOLCH. 

Description 

Let M = NPDES, N = NX and xi = XBREAK(I). The routine MMOLCH uses the method of lines to solve 

the partial differential equation system 

2 2
1 1

1 2 2
, , , , , , ,k M M

k M

u u u u u
f x t u u

t x x x x

    

    

 
   

   

with the initial conditions  

  0atk ku u x t t 
 

and the boundary conditions 

1( )at  and at  k
k k k k N

u
u t x x x x

x


  


   

 

for k = 1, …, M. 

Cubic Hermite polynomials are used in the x variable approximation so that the trial solution is 

expanded in the series 

          , ,

1

ˆ ,
N

k i k i i k i

i

bu x t a t x t x 



 

where ɸi(x) and Ψi(x) are the standard basis functions for the cubic Hermite polynomials with the 

knots x1 < x2 < … < xN. These are piecewise cubic polynomials with continuous first derivatives. 

At the breakpoints, they satisfy 

   

   

0

0

i l il i l

i i
l l il

x x

d d
x x

dx dx

  

 


 

 
 

According to the collocation method, the coefficients of the approximation are obtained so that the 

trial solution satisfies the differential equations at the two Gaussian points in each subinterval, 
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for j = 1, …, N. The collocation approximation to the differential equation is 

   

            

, ,

1

1 1ˆ ˆ ˆ ˆ, , , , , , , ,

N
i k i k

i j i j

i

k j j M j j M jxx xx

da db
p p

dt dt

f p t u p u p u p u p

 


 

 

for k = 1, …, M and j = 1, …, 2(N − 1). 

This is a system of 2M(N − 1) ordinary differential equations in 2M N unknown coefficient 

functions, ai, k and bi, k. This system can be written in the matrix−vector form as  ,
dc

A F t c
dt

  

with c(t0) = c0 where c is a vector of coefficients of length 2M N and c0 holds the initial values of 

the coefficients. The last 2M equations are obtained from the boundary conditions. 

If αk = βk = 0, it is assumed that no boundary condition is desired for the k-th unknown at the left 

endpoint. A similar comment holds for the right endpoint. Thus, collocation is done at the 

endpoint. This is generally a useful feature for systems of first-order partial differential equations. 

The input/output array Y contains the values of the ai,k. The initial values of the bi,k are obtained by 

using the IMSL cubic spline routine CSINT (see Chapter 3, Interpolation and Approximation) to 

construct functions  

 0ˆ ,ku x t
 

such that  

 0 ,ˆ ,k i i ku x t a
 

The IMSL routine CSDER, (see Chapter 3, Interpolation and Approximation), is used to 

approximate the values  

 0 ,

ˆ
,k

i i k

du
x t b

dx


 

If INPDER = 1, the user should  provide the initial values of bi,k. 

The order of matrix A is 2M N and its maximum bandwidth is 6M  1. The band structure of the 

Jacobian of F with respect to c is the same as the band structure of A. This system is solved using 

a modified version of IVPAG.  Numerical Jacobians are used exclusively. The algorithm is 

unchanged. Gear‘s BDF method is used as the default because the system is typically stiff. For 

more details, see Sewell (1982). 
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We now present three examples of PDEs that illustrate how users can interface their problems 

with IMSL PDE solving software. The examples are small and not indicative of the complexities 

that most practitioners will face in their applications. A set of seven sample application problems, 

some of them with more than one equation, is given in Sincovec and Madsen (1975). Two further 

examples are given in Madsen and Sincovec (1979). 

Comments 

Informational errors 

Type Code 

4 1 After some initial success, the integration was halted by repeated 

error test failures. 

4 2 On the next step, X + H will equal X. Either TOL is too small or the 

problem is stiff. 

4 3 After some initial success, the integration was halted by a test on 

TOL. 

4 4 Integration was halted after failing to pass the error test even after 

reducing the step size by a factor of 1.0E + 10. TOL may be too 

small. 

4 5 Integration was halted after failing to achieve corrector convergence 

even after reducing the step size by a factor of 1.0E + 10. TOL may 

be too small. 

Example 1 

The normalized linear diffusion PDE, ut = uxx, 0  x  1, t > 0, is solved. The initial values are  

u(x, 0) = u0 = 1. There is a ―zero-flux‖ boundary condition at x = 1, namely ux(1, t) = 0,  

(t > 0). The boundary value of u(0, t) is abruptly changed from u0 to the value  0, for  t > 0. 

When the boundary conditions are discontinuous, or incompatible with the initial conditions such 

as in this example, it may be important to use double precision. 

 

      USE MMOLCH_INT 

      USE WRRRN_INT 

      IMPLICIT    NONE 

 

      INTEGER, PARAMETER ::  NPDES=1, NX=8 

 

      INTEGER            ::  I, IDO, J, NSTEP 

      REAL               ::  HINIT, T, TEND, TOL 

      REAL               ::  XBREAK(NX), Y(NPDES,NX), U0 

      CHARACTER          ::  TITLE*19 

 

      EXTERNAL    FCNBC, FCNUT 

!                                SET BREAKPOINTS AND INITIAL CONDITIONS 

      U0 = 1.0 

      DO I=1,NX 

         XBREAK(I) = FLOAT(I-1)/FLOAT(NX-1)       

         Y(1,I)    = U0 



 

 

IMSL MATH LIBRARY Chapter 5: Differential Equations  1121 

     

     

 

      END DO 

!                                SET PARAMETERS FOR MMOLCH 

      TOL    = 10.e-4  

      HINIT  = 0.01*TOL 

      T      = 0.0 

      IDO    = 1 

      NSTEP  = 10 

      DO J=1,NSTEP 

         TEND = FLOAT(J)/FLOAT(NSTEP) 

!                                SOLVE THE PROBLEM 

         CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, TOL=TOL, & 

           HINIT=HINIT) 

!                                PRINT RESULTS 

         WRITE (TITLE,'(A,F4.2)') 'Solution at T =', TEND 

         CALL WRRRN (TITLE, Y) 

      END DO 

!                                LAST CALL, TO RELEASE WORKSPACE 

      IDO = 3 

      CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, TOL=TOL, & 

        HINIT=HINIT) 

      STOP 

      END 

 

      SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT) 

 

      INTEGER    NPDES 

      REAL       X, T, U(*), UX(*), UXX(*), UT(*) 

!                                DEFINE THE PDE 

      UT(1) = UXX(1) 

      RETURN 

      END 

 

      SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAM) 

 

      INTEGER    NPDES 

      REAL       X, T, ALPHA(*), BTA(*), GAM(*) 

!                                DEFINE THE BOUNDARY CONDITIONS 

      IF (X .EQ. 0.0) THEN 

!                                THESE ARE FOR X=0 

         ALPHA(1) = 1.0 

         BTA(1) = 0.0 

         GAM(1) = 0.0 

      ELSE 

!                                THESE ARE FOR X=1 

         ALPHA(1) = 0.0 

         BTA(1) = 1.0 

         GAM(1) = 0.0 

      END IF 

      RETURN 

      END 

Output 
     

 

                           Solution at T =0.10 

       1        2        3        4        5        6        7        8 

  0.0000   0.2507   0.4771   0.6617   0.7972   0.8857   0.9341   0.9493 
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                           Solution at T =0.20 

       1        2        3        4        5        6        7        8 

  0.0000   0.1762   0.3424   0.4893   0.6100   0.6992   0.7538   0.7721 

   

                           Solution at T =0.30 

       1        2        3        4        5        6        7        8 

  0.0000   0.1356   0.2642   0.3793   0.4751   0.5471   0.5916   0.6067 

   

                           Solution at T =0.40 

       1        2        3        4        5        6        7        8 

  0.0000   0.1057   0.2060   0.2960   0.3711   0.4276   0.4626   0.4745 

   

                           Solution at T =0.50 

       1        2        3        4        5        6        7        8 

  0.0000   0.0825   0.1610   0.2313   0.2900   0.3341   0.3616   0.3708 

   

                           Solution at T =0.60 

       1        2        3        4        5        6        7        8 

  0.0000   0.0645   0.1258   0.1808   0.2267   0.2612   0.2826   0.2899 

   

                           Solution at T =0.70 

       1        2        3        4        5        6        7        8 

  0.0000   0.0504   0.0983   0.1413   0.1772   0.2041   0.2209   0.2266 

   

                           Solution at T =0.80 

       1        2        3        4        5        6        7        8 

  0.0000   0.0394   0.0769   0.1105   0.1385   0.1597   0.1728   0.1772 

   

                           Solution at T =0.90 

       1        2        3        4        5        6        7        8 

  0.0000   0.0309   0.0602   0.0865   0.1084   0.1249   0.1352   0.1387 

   

                           Solution at T =1.00 

       1        2        3        4        5        6        7        8 

  0.0000   0.0242   0.0471   0.0677   0.0849   0.0979   0.1059   0.1086 

Additonal Examples 

Example 2 

In this example, using MMOLCH, we solve the linear normalized diffusion PDE ut = uxx but with an 

optional usage that provides values of the derivatives, ux, of the initial data. Due to errors in the 

numerical derivatives computed by spline interpolation, more precise derivative values are 

required when the initial data is u(x, 0) = 1 + cos[(2n  1)x], n > 1. The boundary conditions are 

―zero flux‖ conditions ux(0, t) = ux(1, t) = 0 for t > 0.  
 

      USE MMOLCH_INT 

      USE CONST_INT 

      USE WRRRN_INT 

      USE PGOPT_INT 

      IMPLICIT    NONE 

 

      INTEGER, PARAMETER  :: NPDES=1, NX=10  
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      INTEGER             :: I, IDO, J, NSTEP, N, IPAGE 

      REAL                :: HINIT, T, TEND, TOL, XBREAK(NX)  

      REAL                :: Y(NPDES,2*NX), PI, ARG1 

      CHARACTER           :: TITLE*36 

 

      EXTERNAL    FCNBC, FCNUT 

      REAL        FLOAT 

 

      N    = 5 

      PI   = CONST('pi') 

      DO I=1,NX 

         XBREAK(I) = FLOAT(I-1)/FLOAT(NX-1)       

         ARG1 = (2.*N-1)*PI 

!                                SET FUNCTION VALUES 

         Y(1,I)    = 1. + COS(ARG1*XBREAK(I)) 

!                                SET FIRST DERIVATIVE VALUES  

         Y(1,I+NX) = -ARG1*SIN(ARG1*XBREAK(I)) 

      END DO 

!                                SET PARAMETERS FOR MMOLCH 

      TOL    = 10.0e-4 

      HINIT  = 0.01*TOL 

!                                OUTPUT AT STEPS OF 0.001 

      TEND   = 0. 

      T      = 0.0 

      IDO    = 1 

      NSTEP  = 10 

      DO J=1,NSTEP 

         TEND = TEND + 0.001  

!                                SOLVE THE PROBLEM 

         CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, NPDES=NPDES, & 

           NX=NX, HINIT=HINIT, TOL=TOL, INPDER=1) 

!                                PRINT RESULTS 

         IPAGE = 70  

         CALL PGOPT(-1, IPAGE) 

         WRITE (TITLE,'(A,F5.3)') 'Solution and derivatives at T =', T 

         CALL WRRRN (TITLE, Y) 

      END DO 

!                                LAST CALL, TO RELEASE WORKSPACE 

      IDO = 3 

      CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, NPDES=NPDES, & 

        NX=NX, HINIT=HINIT, TOL=TOL, INPDER=1) 

      END 

 

      SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT) 

 

      INTEGER    NPDES 

      REAL       X, T, U(*), UX(*), UXX(*), UT(*) 

!                                DEFINE THE PDE 

      UT(1) = UXX(1) 

      RETURN 

      END 

 

      SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAM) 

 

      INTEGER    NPDES 

      REAL       X, T, ALPHA(*), BTA(*), GAM(*) 

!                                DEFINE THE BOUNDARY CONDITIONS 
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      ALPHA(1) = 0.0 

      BTA(1) = 1.0 

      GAM(1) = 0.0 

      RETURN 

      END 

Output 

 

                   Solution and derivatives at T =0.001 

      1       2       3       4       5       6       7       8       9 

  1.482   0.518   1.482   0.518   1.482   0.518   1.482   0.518   1.482 

   

     10      11      12      13      14      15      16      17      18 

  0.518   0.000   0.000   0.000   0.000  -0.000   0.000  -0.000   0.000 

   

     19      20 

 -0.000  -0.000 

   

                  Solution and derivatives at T =0.002 

      1       2       3       4       5       6       7       8       9 

  1.235   0.765   1.235   0.765   1.235   0.765   1.235   0.765   1.235 

   

     10      11      12      13      14      15      16      17      18 

  0.765   0.000   0.000   0.000   0.000  -0.000   0.000  -0.000   0.000 

   

     19      20 

 -0.000   0.000 

   

                  Solution and derivatives at T =0.003 

      1       2       3       4       5       6       7       8       9 

  1.114   0.886   1.114   0.886   1.114   0.886   1.114   0.886   1.114 

   

     10      11      12      13      14      15      16      17      18 

  0.886   0.000   0.000   0.000   0.000  -0.000   0.000  -0.000   0.000 

   

     19      20 

 -0.000  -0.000 

   

                  Solution and derivatives at T =0.004 

      1       2       3       4       5       6       7       8       9 

  1.055   0.945   1.055   0.945   1.055   0.945   1.055   0.945   1.055 

   

     10      11      12      13      14      15      16      17      18 

  0.945   0.000   0.000   0.000   0.000  -0.000  -0.000   0.000   0.000 

   

     19      20 

 -0.000  -0.000 

   

                  Solution and derivatives at T =0.005 

      1       2       3       4       5       6       7       8       9 

  1.027   0.973   1.027   0.973   1.027   0.973   1.027   0.973   1.027 

   

     10      11      12      13      14      15      16      17      18 

  0.973   0.000  -0.000   0.000   0.000   0.000  -0.000  -0.000   0.000 
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     19      20 

 -0.000  -0.000 

   

                  Solution and derivatives at T =0.006 

      1       2       3       4       5       6       7       8       9 

  1.013   0.987   1.013   0.987   1.013   0.987   1.013   0.987   1.013 

   

     10      11      12      13      14      15      16      17      18 

  0.987   0.000   0.000   0.000  -0.000   0.000   0.000  -0.000   0.000 

   

     19      20 

 -0.000  -0.000 

   

                  Solution and derivatives at T =0.007 

      1       2       3       4       5       6       7       8       9 

  1.006   0.994   1.006   0.994   1.006   0.994   1.006   0.994   1.006 

   

     10      11      12      13      14      15      16      17      18 

  0.994   0.000   0.000   0.000  -0.000   0.000   0.000  -0.000  -0.000 

   

     19      20 

 -0.000  -0.000 

   

                  Solution and derivatives at T =0.008 

      1       2       3       4       5       6       7       8       9 

  1.003   0.997   1.003   0.997   1.003   0.997   1.003   0.997   1.003 

   

     10      11      12      13      14      15      16      17      18 

  0.997   0.000   0.000   0.000  -0.000  -0.000   0.000   0.000  -0.000 

   

     19      20 

 -0.000  -0.000 

   

                  Solution and derivatives at T =0.009 

      1       2       3       4       5       6       7       8       9 

  1.002   0.998   1.002   0.998   1.002   0.998   1.002   0.998   1.002 

   

     10      11      12      13      14      15      16      17      18 

  0.998   0.000   0.000   0.000  -0.000  -0.000  -0.000   0.000  -0.000 

   

     19      20 

 -0.000   0.000 

   

                  Solution and derivatives at T =0.010 

      1       2       3       4       5       6       7       8       9 

  1.001   0.999   1.001   0.999   1.001   0.999   1.001   0.999   1.001 

   

     10      11      12      13      14      15      16      17      18 

  0.999   0.000   0.000   0.000  -0.000  -0.000  -0.000   0.000  -0.000 

   

     19      20 

 -0.000  -0.000  
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Example 3 

In this example, we consider the linear normalized hyperbolic PDE, utt = uxx, the ―vibrating string‖ 

equation. This naturally leads to a system of first order PDEs. Define a new dependent variable  

ut = v. Then, vt = uxx is the second equation in the system. We take as initial data u(x, 0) = sin(x) 

and ut(x, 0) = v(x, 0) = 0. The ends of the string are fixed so u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0. 

The exact solution to this problem is u(x, t) = sin(x) cos(t). Residuals are computed at the output 

values of t for 0 < t  2. Output is obtained at 200 steps in increments of 0.01. 

Even though the sample code MMOLCH gives satisfactory results for this PDE, users should be 

aware that for nonlinear problems, ―shocks‖ can develop in the solution. The appearance of 

shocks may cause the code to fail in unpredictable ways. See Courant and Hilbert (1962), pages 

488-490, for an introductory discussion of shocks in hyperbolic systems. 
 

      USE MMOLCH_INT 

      USE UMACH_INT 

      USE CONST_INT 

 

      IMPLICIT    NONE 

 

      INTEGER, PARAMETER  :: NPDES=2, NX=10 

      INTEGER             :: I, IDO, J, NOUT, NSTEP 

      REAL                :: HINIT, T, TEND, TOL, XBREAK(NX)  

      REAL                :: Y(NPDES,2*NX), PI, ERROR, ERRU 

      CHARACTER           :: TITLE*36 

 

      EXTERNAL    FCNBC, FCNUT 

      REAL        FLOAT 

      CALL UMACH (2,NOUT) 

!                                SET BREAKPOINTS AND INITIAL CONDITIONS 

      PI   = CONST('pi') 

      DO I=1,NX 

         XBREAK(I) = FLOAT(I-1)/FLOAT(NX-1)       

!                                SET FUNCTION VALUES 

         Y(1,I)    = SIN(PI*XBREAK(I))  

         Y(2,I)    = 0. 

!                                SET FIRST DERIVATIVE VALUES  

         Y(1,I+NX) = PI*COS(PI*XBREAK(I)) 

         Y(2,I+NX) = 0. 

      END DO 

!                                SET PARAMETERS FOR MMOLCH 

      TOL    = 10.0e-4 

      HINIT  = 0.01*TOL 

!                                OUTPUT AT STEPS OF 0.01 

      TEND   = 0. 

      T      = 0.0 

      IDO    = 1 

      NSTEP  = 200  

      DO J=1,NSTEP 

         TEND = TEND + 0.01  

!                                SOLVE THE PROBLEM 

         CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, & 

           HINIT=HINIT, TOL=TOL, INPDER=1) 

!                                COMPUTE MAXIMUM ERROR 
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         ERRU = 0.0 

         DO I=1,NX 

            ERROR = Y(1,I) - SIN(PI*XBREAK(I))*COS(PI*TEND) 

            ERRU = AMAX1(ERRU,ABS(ERROR)) 

         END DO 

      END DO 

!                                PRINT ERROR 

         WRITE (NOUT, *) ' Maximum error in u(x,t): ', ERRU 

!                                LAST CALL, TO RELEASE WORKSPACE 

      IDO = 3 

      CALL MMOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, & 

        HINIT=HINIT, TOL=TOL, INPDER=1) 

      END 

 

      SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT) 

 

      INTEGER    NPDES 

      REAL       X, T, U(*), UX(*), UXX(*), UT(*) 

!                                DEFINE THE PDEs 

      UT(1) = U(2) 

      UT(2) = UXX(1) 

      RETURN 

      END 

 

      SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAM) 

 

      INTEGER    NPDES 

      REAL       X, T, ALPHA(*), BTA(*), GAM(*) 

!                                DEFINE THE BOUNDARY CONDITIONS 

      ALPHA(1) = 1.0 

      BTA(1) = 0.0 

      GAM(1) = 0.0 

      ALPHA(2) = 1.0 

      BTA(2) = 0.0 

      GAM(2) = 0.0 

      RETURN 

      END 
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Output 
 

  Maximum error in u(x,t):  5.49525E-3 

 

MOLCH 

Deprecated Routine: MOLCH is a deprecated routine and has been replaced with MMOLCH.   

Click here to view the MOLCH documentation. 

FEYNMAN_KAC 

 

 

 

Solves the generalized Feynman-Kac PDE on a rectangular grid using a finite element Galerkin 

method. Initial and boundary conditions are provided. The solution is represented by a series of C
2
 

Hermite quintic splines. 

Required Arguments 

XGRID — Rank-1 array containing the set of breakpoints that define the end points for the 

Hermite quintic splines.   (Input) 

Let m = size(XGRID). The points in XGRID must be in strictly increasing order, and m 

  2. 

TGRID — Rank-1 array containing the set of time points (in time-remaining units) at which 

an approximate solution is computed.   (Input) 

Let n = size(TGRID). The points in TGRID must be strictly positive and in strictly 

increasing order and n ≥ 1. 

NLBC — The number of left boundary conditions.   (Input) 

1≤  NLBC ≤ 3. 

NRBC — The number of right boundary conditions.   (Input) 

1≤ NRBC ≤ 3. 

FKCOEF — User-supplied FUNCTION to evaluate the coefficients , ,   and  of the 

Feynman-Kac PDE. The usage is FKCOEF (X, TX, IFLAG[,…]), where 

Function Return Value 

FKCOEF — Value of the coefficient function. Which value is computed 

depends on the input value for IFLAG, see description of IFLAG. 

LinkedDocuments/molch.pdf
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Required Arguments 

X — Point in the x-space at which the coefficient is to be evaluated.   (Input) 

TX — Time point at which the coefficient is to be evaluated.   (Input) 

IFLAG — Flag related to the coefficient that has to be computed   

(Input/Output). 

On entry, IFLAG indicates which coefficient is to be computed. The 

following table shows which value has to be returned by FKCOEF for all 

possible values of IFLAG: 

 

IFLAG Computed coefficient 

1 

( , )x t

x





 

  
 

2 
  

 

3 


 

 

4 


 
 

 

 One indicates when a coefficient does not depend on t by setting IFLAG = 

0 after the coefficient is defined. If there is time dependence, the value of 

IFLAG should not be changed. This action will usually yield a more 

efficient algorithm because some finite element matrices do not have to be 

reassembled for each t value. 

Optional Arguments 

FCN_DATA —  A derived type, s_fcn_data, which may be used to pass 

additional integer or floating point information to or from the user-supplied 

function. For a detailed description of this argument see FCN_DATA below.   

(Input/Output) 

 FKCOEF must be declared EXTERNAL in the calling program. 

FKINITCOND — User-supplied FUNCTION to evaluate the initial condition function ( )p x  

in the Feynman-Kac PDE. The usage is FKINITCOND (X[,…]), where 

Function Return Value 

FKINITCOND — Value of the initial condition function ( )p x . 

Required Arguments 

X — Point in the x-space at which the initial condition is to be evaluated.   

(Input) 
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Optional Arguments 

FCN_DATA —  A derived type, s_fcn_data, which may be used to pass 

additional integer or floating point information to or from the user-supplied 

function. For a detailed description of this argument see FCN_DATA below.   

(Input/Output) 

 FKINITCOND must be declared EXTERNAL in the calling program.  

FKBC — User-supplied subroutine to evaluate the coefficients for the left and right 

boundary conditions the Feynman-Kac PDE must satisfy. There are NLBC conditions 

specified at the left end, 
min

x , and NRBC conditions at the right end, 
max

x . The 

boundary conditions can be vectors of dimension 1, 2 or 3 and are defined by 

min max
( , ) ( , ) ( , ) ( , ), or 

x xx
a x t f b x t f c x t f d x t x x x x      

 The usage is FKBC (TX, IFLAG, BCCOEFS[,…]) where 

Required Arguments 

TX — Time point at which the coefficients are to be evaluated. (Input) 

IFLAG — Flag related to the boundary conditions that have to be computed 

(Input/Output). 

On input, IFLAG indicates whether the coefficients for the left or right 

boundary conditions have to be computed: 

 

IFLAG Computed boundary conditions 

1 Left end, x = xmin 

2 Right end, x = xmax 

 

If there is no time dependence for one of the boundaries then set IFLAG = 0 

after the array BCCOEFS is defined for either end point.  This can avoid 

unneeded continued computation of the finite element matrices. 

BCCOEFS — Array of size 3 × 4 containing the coefficients of the left or right 

boundary conditions in its first NLBC or NRBC rows, respectively.   (Output) 

The coefficients for minx  are stored row-wise according to the following 

matrix-scheme: 

       

       

1 min 1 min 1 min 1 min

min min min min

, , , , , , ,

, , , , , , ,

a x t b x t c x t d x t

a x t b x t c x t d x t

 
 
 
 
 NLBC NLBC NLBC NLBC

 

The coefficients for maxx are stored similarly. 
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Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional integer or floating point information to or from the user-supplied 

subroutine. For a detailed description of this argument see FCN_DATA 

below.   (Input/Output) 

 FKBC must be declared EXTERNAL in the calling program.   

Y — Array of size (3*m) by (n+1) containing the coefficients of the Hermite representation of 

the approximate solution for the Feynman-Kac PDE at time points (in time-remaining 

units) 0, TGRID(1), …, TGRID(n). (Output) 

For ,t  TGRID(j) j= 1,…,n , the coefficients are stored in columns 1,…,n of array Y 

and  the  approximate solution is given by 

  3* ( ), m xf x t  Y(i,j) ii=1 . 

 The coefficients of the representation for the initial data are given in column 0 of array 

Y and are defined by 

3* ( )( ) m xp x  Y(i,0) ii=1 . 

 The starting coefficients Y(i,0), i =1, ,m  are estimated using least-squares. 

 After the integrations, use Y(:,0) and Y(:,j) as input argument COEFFS to 

function HQSVAL to obtain an array of values for f(x, t) or its partials ,,f f fx xx xxx  at 

time points t=0 and t=TGRID(j), j=1,…,n, respectively. 

 The expressions for the basis functions ( )i x are represented piece-wise and can be 

found in Hanson, R. (2008) ―Integrating Feynman-Kac Equations Using Hermite 

Quintic Finite Elements‖. 

YPRIME — Array of size (3*m) by (n + 1) containing the first derivatives of the coefficients 

of the Hermite representation of the approximate solution for the Feynman-Kac PDE at 

time points (in time-remaining units) 0, TGRID(1), …, TGRID(n).  (Output) 

For t 0 and , nt  TGRID(j) j= 1,…, , the derivatives of the coefficients are stored 

in column 0 and columns 1 to n of array YPRIME, respectively. The  columns in 

YPRIME represent 

  3* ( ), m xtf x t  YPRIME(i,0) ii=1   for 
, nt  TGRID(j) j=1,…,

, 

 and 

  3* ( ), m xtf x t  YPRIME(i,0) ii=1   for t  0 . 

http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf
http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf
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 After the integrations, use YPRIME(:,j) as input argument COEFFS to function 

HQSVAL to obtain an array of values for the partials , , ,f f f ft tx txx txxx  at time points 

t = TGRID(j), j = 1,…,n, and YPRIME(:,0) for the partials at t = 0. 

Optional Arguments 

FKINIT — User-supplied subroutine that allows for adjustment of initial data or as an 

opportunity for output during the integration steps.  

 The usage is CALL FKINIT (XGRID, TGRID, TX, YPRIME, Y, ATOL, 

RTOL[,…]) where 

Required Arguments 

XGRID — Array of size m containing the set of breakpoints that define the end 

points for the Hermite quintic splines.   (Input) 

TGRID — Array of size n containing the set of time points (in time-remaining 

units) at which an approximate solution is computed.   (Input) 

TX — Time point for the evaluation.   (Input) 

Possible values are 0 (the initial or ―terminal‖ time point) and all values in 

array TGRID. 

YPRIME — Array of length 3*m containing the derivatives of the Hermite 

quintic spline coefficients at time point TX.   (Input) 

Y — Array of length 3* m containing the Hermite quintic spline coefficients at 

time point TX.   (Input/Output) 

For the initial time point TX=0 this array can be used to reset the Hermite 

quintic spline coefficients to user defined values. For all other values of 

TX array Y is an input array. 

ATOL — Array of length 3* m containing absolute error tolerances used in the 

integration routine that determines the Hermite quintic spline coefficients 

and its derivatives.   (Input/Output) 

RTOL — Array of length 3*m containing relative error tolerances used in the 

integration routine that determines the Hermite quintic spline coefficients 

and its derivatives.   (Input/Output) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional integer or floating point information to or from the user-supplied 

function. For a detailed description of this argument see FCN_DATA below.   

(Input/Output) 

 FKINIT must be declared EXTERNAL in the calling program. 

FKFORCE — User-supplied subroutine that computes local contributions 
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1 ˆ: ( , , ) ( )
i

i

x
i

t
x

f x t x dx  


 
 and 

1 ( , , ) ˆ ˆ: ( ) ( )
i

i

i
x

Tt

x

f x t
x x dx

y f

 
 

 


 
. 

 The usage is CALL FKFORCE (I, T, WIDTH, Y, XLOCAL, QW, U, PHI, DPHI[,,…]) where  

Required Arguments 

I — Index related to the integration interval (XGRID(I), XGRID(I+1)).   

(Input) 

T — Time point at which the local contributions are computed.   (Input) 

WIDTH — Width of the integration interval I, WIDTH= XGRID(I+1)- 

XGRID(I).   (Input) 

Y — Array of length 3*m containing the coefficients of the Hermite quintic 

spline representing the solution of the Feynman-Kac PDE at time point T.   

(Input) 

For each 

[ , ], , ( ) / , 1, ,
1 1

x x x h x x z x x h i mi i i i ii i
     

 
-1

, 

the approximate solution is locally defined by 

( , ) ( ) (1 ) ( )
0 1 0 1

2 2
                      (1 ) ( ) (1 ).

1 1 2 1 2

f x t f b z f b z h f b zi i ii

h f b z h f b z h f b zi i i ii i

   


      
   

Here, the functions ( ), ( ), ( )
0 1 2

b z b z b z  are basis polynomials of order 5 and 

: ( , ), : ( , ), : ( , )f f x t f f x t f f x tx xxi i i i i i
   

. 

The values  

3 2 3 1 3, , , 1, ,i i i i iy f y f y f i mi 
    

,  

are stored as successive triplets in array Y. 

XLOCAL — Array containing the Gauss-Legendre points translated and 

normalized to the interval [XGRID(I),XGRID(I+1)].   (Input) 

The size of the array is equal to the degree of the Gauss-Legendre 

polynomials used for constructing the finite element matrices. 

QW — Array containing the Gauss-Legendre weights.   (Input) 

The size of the array is equal to the degree of the Gauss-Legendre 

polynomials used for constructing the finite element matrices. 

U — Array of size size(XLOCAL) × 12 containing the basis function values that 

define ˆ ( )x at the Gauss-Legendre points XLOCAL.   (Input) 

Let 
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[ , ], : , ( ) : ( ) /
1 1

x x x h x x z x x x hI I I I II I
    

  . 

Using the local approximation in the I-th interval, defined by 

3

3 32
( , ) ( )I k I kk

f x t y x 


, 

and setting 

:
,

u
j k

 U(j,k)

, 
:x j  XLOCAL(j)

 and 
( ) :z x zj j

, 

vector 1 6
ˆ ˆ ˆ( ) ( ( ), , ( ))j j jx x x    is defined as 

3 2 3 3

2 2
0 1 2 0 1 2

,1 ,2 ,3 ,7 ,8 ,9 .

ˆ ( ) : ( ( ), , ( ))

: ( ( ), ( ), ( ), (1 ), (1 ), (1 ))

: ( , , , , , )

j I j I j

T
j I j I j j I j I j

j j j j j j

T
x x x

b z h b z h b z b z h b z h b z

T
u u u u u u

   

    


 

PHI — Array of size 6 containing a Gauss-Legendre approximation for the local 

contribution ˆ: ( , , ) ( )I

t f x t x dx   
XGRID(I+1)

XGRID(I)
, where t T and 

3 2 3 3
ˆ( ) : ( ( ), , ( ))

T

I Ix x x   
.   (Output) 

Setting NDEG:=SIZE(XLOCAL) and :jx  XLOCAL(j), array PHI 

contains elements 

PHI(i) = WIDTH 1
ˆ( ) ( ) ( , , )j i j jj x f x t  

NDEG
QW  

for i= 1,…, 6. 

DPHI — Array of size 6×6, a Gauss-Legendre approximation for the Jacobian of 

the local contribution 
I

t  at time point t = T,  

( , , )
ˆ ˆ( ) ( ):

I
Tt f x t

x x dx
y f

 
 

 

 
 

XGRID(I+1)

XGRID(I)

.   (Output) 

The approximation to this symmetric matrix is stored row-wise, i.e. 

DPHI(i,j) = WIDTH 

,

ˆ ˆ( ) ( )
1

x t

x xi jk k k f


 

 


 


XLOCAL(k)

NDEG
QW(k)

T

 

or i, j = 1,…,6. 

Optional Arguments 

FCN_DATA —  A derived type, s_fcn_data, which may be used to pass 

additional integer or floating point information to or from the user-supplied 
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subroutine. For a detailed description of this argument see FCN_DATA 

below.   (Input/Output) 

 FKFORCE must be declared EXTERNAL in the calling program. 

 If subroutine FKFORCE is not used as an optional argument then it is assumed that the 

forcing term   in the Feynman-Kac equation is identically zero. 

ATOL — Array of non-negative values containing absolute error tolerances used in the 

computation of each column of solution array Y via integration routine DASPH.   (Input) 

The size of array ATOL can be 1 or 3×m. In the first case, ATOL(1:1) is applied to all 

solution components, in the latter each component of ATOL is assigned to the 

corresponding solution component allowing for individual control of the error 

tolerances. At least one entry in arrays ATOL or RTOL must be greater than 0. 

Default: ATOL(1:1) = 1.0e-3 for single and 1.0d-5 for double precision. 

RTOL — Array of non-negative values containing relative error tolerances used in the 

computation of each column of solution array Y via integration routine DASPH.   (Input) 

The size of array RTOL can be 1 or 3×m. In the first case, RTOL(1:1) is applied to all 

solution components, in the latter each component of RTOL is assigned to the 

corresponding solution component allowing for individual control of the error 

tolerances. At least one entry in arrays ATOL or RTOL must be greater than 0. 

Default: RTOL(1:1) = 1.0e-3 for single and 1.0d-5 for double precision. 

NDEG — Degree of the Gauss-Legendre formulas used for constructing the finite element 

matrices.   (Input) 

NDEG ≥ 6. 

Default: NDEG = 6. 

RINITSTEPSIZE — Starting step size for the integration.   (Input) 

RINITSTEPSIZE must be strictly negative since the integration is internally done from 

T = 0 to T = TGRID(n) in a negative direction. 

Default: Program defined initial stepsize. 

MAXBDFORDER — Maximum order of the backward differentiation formulas (BDF) used 

in the integrator DASPH.   (Input) 

1 ≤ MAXBDFORDER ≤ 5. 

Default: MAXBDFORDER = 5. 

RMAXSTEPSIZE — Maximum step size the integrator may take.   (Input) 

RMAXSTEPSIZE must be strictly positive. 

Default: RMAXSTEPSIZE = AMACH(2), the largest possible machine number. 

MAXIT — Maximum number of internal integration steps between two consecutive time 

points in TGRID.   (Input) 

MAXIT must be strictly positive. 

Default: MAXIT = 500000. 
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IMETHSTEPCTRL — Indicates which step control algorithm is used in the integration.   

(Input) 

If IMETHSTEPCTRL = 0, then the step control method of Söderlind is used. If  

IMETHSTEPCTRL =1, then the method used by the original Petzold code SASSL is 

used. 
 

IMETHSTEPCTRL Method used 

0 Method of Söderlind.. 

1 Method from Petzold code SASSL. 

 

Default: IMETHSTEPCTRL = 0. 

TBARRIER — Time barrier past which the integration routine DASPH will not go during 

integration.   (Input) 

TBARRIER ≥ TGRID(n). 

Default: TBARRIER = TGRID(n). 

ISTATE — Array of size 5 whose entries flag the state of computation for the matrices and 

vectors required in the integration.  (Output) 

For each entry, a zero indicates that no computation has been done or that there is a 

time dependence. A one indicates that the entry has been computed and there is no time 

dependence. 

The ISTATE entries are as follows: 

 

I ISTATE(I) 

1 State of computation of Mass matrix, M. 

2 State of computation of Stiffness matrix, N. 

3 State of computation of Bending matrix, R. 

4 State of computation of Weighted mass matrix, K. 

5 State of computation of initial data. 

 

NVAL — Array of size 3 summarizing the number of evaluations required during the 

integration. (Output) 

 

I NVAL(I) 

1 
Number of residual function evaluations 

of the DAE used in the model. 

2 
Number of factorizations of the differential 

matrix associated with solving the DAE. 

3 
Number of linear system solve steps using  

the differential matrix. 
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ITDEPEND — Logical array of size 7 indicating time dependence of the coefficients, 

boundary conditions and forcing term  in the Feynman-Kac equation.   (Output) 

If ITDEPEND(I)=.FALSE. then argument I is not time dependent, if ITDEPEND(I) 

=.TRUE. then argument I is time dependent. 

 

I ITDEPEND(I) 

1 Time dependence of   . 

2 Time dependence of  . 

3 Time dependence of  . 

4 Time dependence of  . 

5 Time dependence of left boundary conditions. 

6 Time dependence of right boundary conditions. 

7 Time dependence of  . 

 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional 

information to/from the user-supplied function.   (Input/Output) 

The derived type, s_fcn_data, is defined as: 

type s_fcn_data 

   real(kind(1e0)), pointer, dimension(:) :: rdata 

   integer, pointer, dimension(:) :: idata 

end type 

 in module mp_types. The double precision counterpart to s_fcn_data is named 

d_fcn_data. The user must include a use mp_types statement in the calling 

program to define this derived type. 

 Note that if user-supplied data are required in one of the user-defined functions or 

subroutines available for routine FEYNMAN_KAC then these data must be defined via 

FCN_DATA. 

FORTRAN 90 Interface 

Generic: CALL FEYNMAN_KAC (XGRID, TGRID, NLBC, NRBC, FKCOEF, FKINITCOND, 

FKBC, Y, YPRIME [,…]) 

Specific: The specific interface names are S_FEYNMAN_KAC and D_FEYNMAN_KAC. 

Description 

The generalized Feynman-Kac differential equation has the form 

2
( , )

( , ) ( , ) ( , , )
2

x t
f x t f f x t f f x tx xxt


     

, 
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where the initial data satisfies 

( , ) ( )f x T p x
. 

The derivatives are ,
f f

f
t xt x

f
 


 

  etc. 

FEYNMAN_KAC uses a finite element Galerkin method over the rectangle3 

min max[ , ] [ , ]x x T T
 

in ( , )x t  to compute the approximate solution. The interval 
min max[ , ]x x  is decomposed with a 

grid 

min 1 2 max( ) ( )mx x x x x    
. 

On each subinterval the solution is represented by  

( , ) ( ) (1 ) ( )
0 1 0 1

2 2
                      (1 ) ( ) (1 ).

1 1 2 1 2

f x t f b z f b z h f b zi i ii

h f b z h f b z h f b zi i i ii i

   


      
   

The values 
1 1 1, , , , ,i i i i i if f f f f f  

     are time-dependent coefficients associated with each interval. 

The basis functions 
0 1 2, ,b b b are given for 

1 1 [0,1][ , ], : , ( ) : ( ) /i i i i i i ix x x h x x z x x x h       , 

by 

0

1

2

5 4 3 3 2
( ) 6 15 10 1 (1 ) (6 3 1)

5 4 3 3
( ) 3 8 6 (1 ) (3 1)

1 15 4 3 2 3 2
( ) ( 3 3 ) (1 )

2 2

b z z z z z z z

b z z z z z z z z

b z z z z z z z

        

       

      

 

The Galerkin principle is then applied. Using the provided initial and boundary conditions leads to 

an index 1 differential-algebraic equation (DAE) for the time-dependent coefficients 

3 2 3 1 3: : :, , , 1, ,i i i i i iy f y f y f i m     
. 

This system is integrated using the variable order, variable step algorithm DASPH. Solution values 

and their time derivatives are returned at a grid preceding time T, expressed in units of time 

remaining. 

More mathematical details are found in Hanson, R. (2008) ―Integrating Feynman-Kac Equations 

Using Hermite Quintic Finite Elements‖. 

                                                           

3SuperLU is used to support the sparse matrix operations used by FEYNMAN_KAC. SuperLU is 

well-tested. Distributed and threaded versions are available but these are not used in our software. 

SuperLU was developed by James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. 

Li, and Joseph W. H. Liu. The authors do not support the package in the context used in the IMSL 

Libraries. 

http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf
http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf
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Examples 

Example 1 – A Diffusion Model For Call Options 

In Beckers (1980) there is a model for a Stochastic Differential Equation of option pricing.  The 

idea is a ―constant elasticity of variance diffusion (or CEV) class‖ 

/ 2 , 0 2dS Sdt S dW     
 

The Black-Scholes model is the limiting case 2  .  A numerical solution of this diffusion 

model yields the price of a call option.  Various values of the strike price K , time values,  and 

power coefficient are used to evaluate the option price at values of the underlying price.  The 

sets of parameters in the computation are: 

1. power {2.0,1.0,0.0}   

2. strike price {15.0,20.0,25.0}K   

3. volatility {0.2,0.3,0.4}   

4. times until expiration {1/12, 4 /12, 7 /12}  

5. underlying prices {19.0, 20.0, 21.0}  

6. interest rate 0.05r   

7. min max0, 60x x   

8. 121, 3 363nx n nx     

With this model the Feynman-Kac differential equation is defined by identifying: 

:x S
 

  / 2 / 2 1
, : ;

2

a
x t x x

x

  
 




  

 , :x t rx
 

 , :x t r
 

 , , 0f x t 
 

The payoff function is the ―vanilla option‖,   max( , 0)p x x K  . 

Link to example source (feynman_kac_ex1.f90) 

 

! Compute Constant Elasticity of Variance Model for Vanilla Call 

      use feynman_kac_int 

      use hqsval_int 

      use mp_types 

      use umach_int 

 

      implicit none 

LinkedDocuments/feynman_kac_ex1.f90
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! The set of strike prices 

      real(kind(1e0)) :: ks(3)=(/15.0e0,20.0e0,25.0e0/) 

! The set of sigma values 

      real(kind(1e0)) :: sigma(3) = (/0.2e0, 0.3e0, 0.4e0/) 

! The set of model diffusion powers 

      real(kind(1e0)) :: alpha(3) = (/2.0e0,1.0e0,0.0e0/) 

! Time values for the options 

      integer, parameter :: nt = 3 

      real(kind(1e0)) :: time(nt)=(/1.e0/12., 4.e0/12., 7.e0/12./) 

! Values of the underlying where evaluation are made 

      integer, parameter :: nv = 3, nlbc = 3, nrbc = 3 

      real(kind(1e0)) :: xs(nv) = (/19.0e0,20.0e0,21.0e0/) 

! Value of the interest rate and continuous dividend 

      real(kind(1e0)) :: r = 0.05e0, dividend = 0.0e0 

! Values of the min and max underlying values modeled 

      real(kind(1e0)) :: x_min = 0.0e0, x_max = 60.0e0 

  

! Define parameters for the integration step. 

      integer, parameter :: nx = 121, nint = nx-1, n = 3*nx 

      real(kind(1e0)) :: xgrid(nx), y(n,0:nt), yprime(n,0:nt),& 

                         dx, f(nv,nt) 

      type(s_fcn_data) fcn_data 

      integer :: nout 

      real(kind(1e0)), external :: fkcoef, fkinitcond                

      external fkbc       

 

      integer :: i,i1,i2,i3,j 

! Allocate space inside the derived type for holding 

! data values. These are for the evaluation routines. 

      allocate(fcn_data % rdata (6)) 

! Define an equally-spaced grid of points for the underlying price 

      dx = (x_max-x_min)/real(nint) 

      xgrid(1) = x_min 

      xgrid(nx) = x_max 

      do i = 2,nx-1 

        xgrid(i) = xgrid(i-1) + dx 

      end do 

 

      call umach(2, nout) 

      write(nout,'(T05,A)') "Constant Elasticity of Variance Model "//& 

                            "for Vanilla Call" 

      write(nout,'(T10,"Interest Rate ", F7.3, T38,"Continuous '//& 

                   'Dividend ", F7.3  )') r, dividend 

      write(nout,'(T10,"Minimum and Maximum Prices of Underlying ",'//& 

                   '2F7.2)') x_min, x_max 

      write(nout,'(T10,"Number of equally spaced spline knots ",I4,'//& 

                   '/T10,"Number of unknowns ",I4)')& 

                   nx-1,n 

      write(nout,'(/T10,"Time in Years Prior to Expiration ",2X,'//& 

                   '3F7.4)') time 

      write(nout,'(T10,"Option valued at Underlying Prices  ",'//& 

                   '3F7.2)') xs 

 

      do i1 = 1,3       ! Loop over power 

        do i2=1,3     ! Loop over volatility 
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          do i3=1,3  ! Loop over strike price 

! Pass data through into evaluation routines.        

            fcn_data % rdata =&  

               (/ks(i3),x_max,sigma(i2),alpha(i1),r,dividend/) 

            call feynman_kac (xgrid, time, nlbc, nrbc, fkcoef,& 

                              fkinitcond, fkbc, y, yprime,& 

                              FCN_DATA = fcn_data) 

! Evaluate solution at vector of points XS(:), at each time value 

! prior to expiration.                         

            do i=1,nt 

              f(:,i) = hqsval (xs, xgrid, y(:,i)) 

            end do  

            write(nout,'(/T05,"Strike=",F5.2," Sigma=", F5.2,'//& 

              '" Alpha=", F5.2,/(T25," Call Option Values ",'//& 

              'X,3F7.4))') ks(I3),sigma(I2),& 

              alpha(i1),(f(i,:),i=1,nv) 

          end do !i3 - Strike price loop 

        end do !i2 - Sigma loop 

      end do !i1 - Alpha loop 

      end 

 

! These functions and routines define the coefficients, payoff 

! and boundary conditions. 

      function fkcoef (X, TX, iflag, fcn_data) 

        use mp_types 

        implicit none 

        real(kind(1e0)), intent(in) :: X, TX 

        integer, intent(inout) :: iflag 

         type(s_fcn_data), optional :: fcn_data 

         real(kind(1e0)) :: fkcoef 

         real(kind(1e0)) :: sigma, interest_rate, alpha, dividend,& 

                            zero = 0.0e0, half = 0.5e0 

                    

        sigma = fcn_data % rdata(3) 

        alpha = fcn_data % rdata(4) 

        interest_rate = fcn_data % rdata(5) 

        dividend = fcn_data % rdata(6) 

        select case (iflag) 

          case (1) 

! The coefficient derivative d(sigma)/dx 

            fkcoef = half*alpha*sigma*x**(alpha*half-1.0e0) 

! The coefficient sigma(x)     

          case (2) 

            fkcoef = sigma*x**(alpha*half)  

          case (3) 

! The coefficient mu(x) 

            fkcoef = (interest_rate - dividend) * x 

          case (4) 

! The coefficient kappa(x) 

            fkcoef = interest_rate 

          end select 

! Note that there is no time dependence 

        iflag = 0 

        return  

      end function fkcoef 

 

      function fkinitcond(x, fcn_data) 
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        use mp_types 

        implicit none 

        real(kind(1e0)), intent(in) :: x 

        type (s_fcn_data), optional :: fcn_data 

        real(kind(1e0)) :: fkinitcond 

        real(kind(1e0)) :: zero = 0.0e0 

        real(kind(1e0)) :: strike_price 

 

        strike_price = fcn_data % rdata(1) 

! The payoff function 

        fkinitcond = max(x - strike_price, zero) 

        return 

      end function fkinitcond 

 

      subroutine fkbc (tx, iflag, bccoefs, fcn_data) 

        use mp_types 

        implicit none 

        real(kind(1e0)), intent(in) :: tx 

        integer, intent(inout) :: iflag 

        real(kind(1e0)), dimension(:,:), intent(out) :: bccoefs 

        type (s_fcn_data), optional :: fcn_data 

        real(kind(1e0)) :: x_max, df, interest_rate, strike_price 

         

        strike_price = fcn_data % rdata(1) 

        x_max = fcn_data % rdata(2) 

        interest_rate = fcn_data % rdata(5) 

        select case (iflag) 

          case (1) 

            bccoefs(1,1:4) = (/1.0e0, 0.0e0, 0.0e0, 0.0e0/) 

            bccoefs(2,1:4) = (/0.0e0, 1.0e0, 0.0e0, 0.0e0/) 

            bccoefs(3,1:4) = (/0.0e0, 0.0e0, 1.0e0, 0.0e0/) 

! Note no time dependence at left end   

            iflag = 0 

          case (2) 

            df = exp(interest_rate * tx) 

            bccoefs(1,1:4) = (/1.0e0, 0.0e0, 0.0e0,& 

                             x_max - df*strike_price/)    

            bccoefs(2,1:4) = (/0.0e0, 1.0e0, 0.0e0, 1.0e0/) 

            bccoefs(3,1:4) = (/0.0e0, 0.0e0, 1.0e0, 0.0e0/) 

        end select 

      end subroutine fkbc 

Output 
    Constant Elasticity of Variance Model for Vanilla Call 

         Interest Rate   0.050       Continuous Dividend   0.000 

         Minimum and Maximum Prices of Underlying    0.00  60.00 

         Number of equally spaced spline knots  120 

         Number of unknowns  363 

 

         Time in Years Prior to Expiration    0.0833 0.3333 0.5833 

         Option valued at Underlying Prices    19.00  20.00  21.00 

 

    Strike=15.00 Sigma= 0.20 Alpha= 2.00 

                         Call Option Values   4.0624 4.2575 4.4730 

                         Call Option Values   5.0624 5.2506 5.4490 
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                         Call Option Values   6.0624 6.2486 6.4385 

 

    Strike=20.00 Sigma= 0.20 Alpha= 2.00 

                         Call Option Values   0.1310 0.5955 0.9699 

                         Call Option Values   0.5018 1.0887 1.5101 

                         Call Option Values   1.1977 1.7483 2.1752 

 

    Strike=25.00 Sigma= 0.20 Alpha= 2.00 

                         Call Option Values   0.0000 0.0112 0.0745 

                         Call Option Values   0.0000 0.0372 0.1621 

                         Call Option Values   0.0007 0.1027 0.3141 

 

    Strike=15.00 Sigma= 0.30 Alpha= 2.00 

                         Call Option Values   4.0637 4.3398 4.6622 

                         Call Option Values   5.0626 5.2944 5.5786 

                         Call Option Values   6.0624 6.2708 6.5240 

 

    Strike=20.00 Sigma= 0.30 Alpha= 2.00 

                         Call Option Values   0.3109 1.0276 1.5494 

                         Call Option Values   0.7326 1.5424 2.1017 

                         Call Option Values   1.3765 2.1690 2.7379 

 

    Strike=25.00 Sigma= 0.30 Alpha= 2.00 

                         Call Option Values   0.0006 0.1112 0.3543 

                         Call Option Values   0.0038 0.2169 0.5548 

                         Call Option Values   0.0184 0.3857 0.8222 

 

    Strike=15.00 Sigma= 0.40 Alpha= 2.00 

                         Call Option Values   4.0755 4.5138 4.9675 

                         Call Option Values   5.0662 5.4201 5.8326 

                         Call Option Values   6.0634 6.3579 6.7301 

 

    Strike=20.00 Sigma= 0.40 Alpha= 2.00 

                         Call Option Values   0.5115 1.4640 2.1273 

                         Call Option Values   0.9621 1.9951 2.6929 

                         Call Option Values   1.5814 2.6105 3.3216 

 

    Strike=25.00 Sigma= 0.40 Alpha= 2.00 

                         Call Option Values   0.0083 0.3286 0.7790 

                         Call Option Values   0.0285 0.5167 1.0657 

                         Call Option Values   0.0813 0.7687 1.4103 

 

    Strike=15.00 Sigma= 0.20 Alpha= 1.00 

                         Call Option Values   4.0624 4.2479 4.4311 

                         Call Option Values   5.0624 5.2479 5.4311 

                         Call Option Values   6.0624 6.2479 6.4311 

 

    Strike=20.00 Sigma= 0.20 Alpha= 1.00 

                         Call Option Values   0.0000 0.0218 0.1045 

                         Call Option Values   0.1498 0.4109 0.6485 

                         Call Option Values   1.0832 1.3314 1.5773 

 

    Strike=25.00 Sigma= 0.20 Alpha= 1.00 

                         Call Option Values   0.0000 0.0000 0.0000 

                         Call Option Values   0.0000 0.0000 0.0000 

                         Call Option Values   0.0000 0.0000 0.0000 
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    Strike=15.00 Sigma= 0.30 Alpha= 1.00 

                         Call Option Values   4.0624 4.2477 4.4309 

                         Call Option Values   5.0624 5.2477 5.4309 

                         Call Option Values   6.0624 6.2477 6.4309 

 

    Strike=20.00 Sigma= 0.30 Alpha= 1.00 

                         Call Option Values   0.0011 0.0781 0.2201 

                         Call Option Values   0.1994 0.5000 0.7543 

                         Call Option Values   1.0835 1.3443 1.6023 

 

    Strike=25.00 Sigma= 0.30 Alpha= 1.00 

                         Call Option Values   0.0000 0.0000 0.0000 

                         Call Option Values   0.0000 0.0000 0.0000 

                         Call Option Values   0.0000 0.0000 0.0005 

 

    Strike=15.00 Sigma= 0.40 Alpha= 1.00 

                         Call Option Values   4.0624 4.2479 4.4312 

                         Call Option Values   5.0624 5.2479 5.4312 

                         Call Option Values   6.0624 6.2479 6.4312 

 

    Strike=20.00 Sigma= 0.40 Alpha= 1.00 

                         Call Option Values   0.0076 0.1563 0.3452 

                         Call Option Values   0.2495 0.5907 0.8706 

                         Call Option Values   1.0868 1.3779 1.6571 

 

    Strike=25.00 Sigma= 0.40 Alpha= 1.00 

                         Call Option Values   0.0000 0.0000 0.0001 

                         Call Option Values   0.0000 0.0000 0.0008 

                         Call Option Values   0.0000 0.0003 0.0063 

 

    Strike=15.00 Sigma= 0.20 Alpha= 0.00 

                         Call Option Values   4.0626 4.2479 4.4311 

                         Call Option Values   5.0623 5.2480 5.4311 

                         Call Option Values   6.0624 6.2480 6.4312 

 

    Strike=20.00 Sigma= 0.20 Alpha= 0.00 

                         Call Option Values   0.0001 0.0001 0.0002 

                         Call Option Values   0.0816 0.3316 0.5748 

                         Call Option Values   1.0818 1.3308 1.5748 

 

    Strike=25.00 Sigma= 0.20 Alpha= 0.00 

                         Call Option Values   0.0000 0.0000 0.0000 

                         Call Option Values   0.0000 0.0000 0.0000 

                         Call Option Values   0.0000 0.0000 0.0000 

 

    Strike=15.00 Sigma= 0.30 Alpha= 0.00 

                         Call Option Values   4.0625 4.2479 4.4312 

                         Call Option Values   5.0623 5.2479 5.4312 

                         Call Option Values   6.0624 6.2479 6.4312 

 

    Strike=20.00 Sigma= 0.30 Alpha= 0.00 

                         Call Option Values   0.0000 0.0000 0.0029 

                         Call Option Values   0.0894 0.3326 0.5753 

                         Call Option Values   1.0826 1.3306 1.5749 

 

    Strike=25.00 Sigma= 0.30 Alpha= 0.00 
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                         Call Option Values   0.0000 0.0000 0.0000 

                         Call Option Values   0.0000 0.0000 0.0000 

                         Call Option Values   0.0000 0.0000 0.0000 

 

    Strike=15.00 Sigma= 0.40 Alpha= 0.00 

                         Call Option Values   4.0624 4.2479 4.4312 

                         Call Option Values   5.0623 5.2479 5.4312 

                         Call Option Values   6.0624 6.2479 6.4312 

 

    Strike=20.00 Sigma= 0.40 Alpha= 0.00 

                         Call Option Values   0.0000 0.0002 0.0113 

                         Call Option Values   0.0985 0.3383 0.5781 

                         Call Option Values   1.0830 1.3306 1.5749 

 

    Strike=25.00 Sigma= 0.40 Alpha= 0.00 

                         Call Option Values   0.0000 0.0000 0.0000 

                         Call Option Values   0.0000 0.0000 0.0000 

                         Call Option Values   0.0000 0.0000 0.0000 

 

Example 2 – American Option vs. European Option On a Vanilla Put 

The value of the American Option on a Vanilla Put can be no smaller than its European 

counterpart.  That is due to the American Option providing the opportunity to exercise at any time 

prior to expiration.  This example compares this difference – or premium value of the American 

Option – at two time values using the Black-Scholes model. The example is based on Wilmott et 

al. (1996, p. 176), and uses the non-linear forcing or weighting term described in Hanson, R. 

(2008), ―Integrating Feynman-Kac Equations Using Hermite Quintic Finite Elements‖, for 

evaluating the price of the American Option. A call to the subroutine fkinit_put sets the initial 

conditions. One breakpoint is set exactly at the strike price. 

The sets of parameters in the computation are: 

1. Strike price {10.0}K   

2. Volatility {0.4}   

3. Times until expiration {1/ 4,1/ 2}  

4. Interest rate 0.1r   

5. min max0.0, 30.0x x   

6. 121, 3 363nx n nx     

The payoff function is the ―vanilla option‖,   max( , 0)p x K x  . 

Link to example source (feynman_kac_ex2.f90) 

 

! Compute American Option Premium for Vanilla Put 

      use feynman_kac_int 

      use hqsval_int 

      use mp_types 

      use umach_int 

      implicit none 

! The strike price 

http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf
LinkedDocuments/feynman_kac_ex2.f90
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      real(kind(1e0)) :: ks = 10.0e0 

! The sigma value 

      real(kind(1e0)) :: sigma = 0.4e0 

 

! Time values for the options 

      integer, parameter :: nt = 2 

      real(kind(1e0)) :: time(nt)=(/0.25e0, 0.5e0/) 

! Values of the underlying where evaluations are made 

      integer, parameter :: nv = 9 

      integer, parameter :: nlbc = 2, nrbc = 3, ndeg = 6 

 

      integer :: i 

      real(kind(1e0)) :: xs(nv) = (/((i-1)*2.0e0,i=1,nv)/) 

! Value of the interest rate and continuous dividend 

      real(kind(1e0)) :: r = 0.1e0, dividend = 0.0e0 

! Values of the min and max underlying values modeled 

      real(kind(1e0)) :: x_min = 0.0e0, x_max = 30.0e0 

      real(kind(1e0)) :: atol(1), rtol(1) 

  

! Define parameters for the integration step.   

      integer, parameter :: nx = 121, nint = nx-1, n = 3*nx 

      real(kind(1e0)) :: xgrid(nx), ye(n,0:nt), yeprime(n,0:nt),& 

                         ya(n,0:nt), yaprime(n,0:nt),& 

                         dx, fe(nv,nt), fa(nv,nt) 

      type(s_fcn_data) fcn_data 

      integer :: nout 

      real(kind(1e0)), external :: fkcoef_put, fkinitcond_put 

      external fkbc_put, fkinit_put, fkforce_put 

       

      call umach(2, nout) 

! Allocate space inside the derived type for holding 

! data values. These are for the evaluation routines. 

      allocate(fcn_data % rdata (6), fcn_data % idata (1)) 

! Define an equally-spaced grid of points for the underlying price 

      dx = (x_max-x_min)/real(nint) 

      xgrid(1) = x_min 

      xgrid(nx) = x_max 

      do i=2,nx-1 

        xgrid(i) = xgrid(i-1) + dx 

      end do 

 

! Place a breakpoint at the strike price. 

      do i = 1,nx 

        if (xgrid(i) > ks) then 

          xgrid(i-1) = ks 

          exit 

        end if 

      end do 

! Request less accuracy than the default values provide. 

      atol(1) = 0.5e-2 

      rtol(1) = 0.5e-2 

      fcn_data % rdata = (/ks,x_max,sigma,r,dividend,atol(1)/) 

      fcn_data % idata = (/ndeg/) 

 

! Compute European then American Put Option Values. 

      call feynman_kac (xgrid, time, nlbc, nrbc, fkcoef_put,& 
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                        fkinitcond_put, fkbc_put, ye, yeprime,& 

                        FKINIT=fkinit_put, ATOL=atol,RTOL=rtol,& 

                        FCN_DATA = fcn_data) 

      call feynman_kac (xgrid, time, nlbc, nrbc, fkcoef_put,& 

                        fkinitcond_put, fkbc_put, ya, yaprime,& 

                        FKINIT=fkinit_put, ATOL=atol, RTOL=rtol,& 

                        FKFORCE=fkforce_put, FCN_DATA = fcn_data) 

 

! Evaluate solutions at vector of points XS(:), at each time value 

! prior to expiration.                         

      do i=1,nt 

        fe(:,i) = hqsval (xs, xgrid, ye(:,I)) 

        fa(:,I) = hqsval (xs, xgrid, ya(:,I)) 

      end do  

      write(nout,'(T05,A,/,T05,A)')& 

         "American Option Premium for Vanilla Put, 3 and 6 Months "//& 

         "Prior to", "Expiry" 

      write(nout,'(T08,"Number of equally spaced spline knots ",I4,'//& 

                  '/T08,"Number of unknowns ",I4)') nx,n           

      write(nout,'(T08,"Strike= ",F5.2,", Sigma=", F5.2,", Interest'//& 

               ' Rate=",F5.2,/T08,"Underlying", T26,"European",'//& 

               'T42,"American",/(T10,5F8.4))') ks,sigma,r,& 

               (xs(i), fe(i,1:nt), fa(i,1:nt),i=1,nv) 

      end 

! These routines define the coefficients, payoff, boundary  

! conditions, forcing term and initial conditions for American and 

! European Options. 

      function fkcoef_put(x, tx, iflag, fcn_data) 

        use mp_types 

        implicit none 

        integer, intent(inout) :: iflag 

        real(kind(1e0)), intent(in) :: x, tx 

        type(s_fcn_data), optional :: fcn_data 

        real(kind(1e0)) :: fkcoef_put 

 

        real(kind(1e0)) :: sigma, strike_price, interest_rate, & 

                           dividend, zero=0.e0 

        sigma = fcn_data % rdata(3) 

        interest_rate = fcn_data % rdata(4) 

        dividend = fcn_data % rdata(5) 

        select case (iflag) 

          case (1) 

! The coefficient derivative d(sigma)/dx 

            fkcoef_put = sigma 

! The coefficient sigma(x) 

          case (2) 

            fkcoef_put = sigma*x  

          case (3) 

! The coefficient mu(x) 

            fkcoef_put = (interest_rate - dividend)*x 

          case (4) 

! The coefficient kappa(x) 

            fkcoef_put = interest_rate 

        end select 

! Note that there is no time dependence   

        iflag = 0 

        return 
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      end function fkcoef_put 

 

      function fkinitcond_put(x, fcn_data) 

        use mp_types 

        implicit none 

        real(kind(1e0)), intent(in) :: x 

        type (s_fcn_data), optional :: fcn_data 

        real(kind(1e0)) :: fkinitcond_put 

        real(kind(1e0)) :: zero = 0.0e0 

        real(kind(1e0)) :: strike_price 

 

        strike_price = fcn_data % rdata(1) 

! The payoff function     

        fkinitcond_put = max(strike_price - x, zero) 

        return 

      end function fkinitcond_put 

 

      subroutine fkbc_put (tx, iflag, bccoefs, fcn_data) 

        use mp_types 

        implicit none 

        real(kind(1e0)), intent(in) :: tx 

        integer, intent(inout) :: iflag 

        real(kind(1e0)), dimension(:,:), intent(out) :: bccoefs 

        type (s_fcn_data), optional :: fcn_data 

 

        select case (iflag) 

          case (1)        

            bccoefs(1,1:4) = ((/0.0e0, 1.0e0, 0.0e0, -1.0e0/)) 

            bccoefs(2,1:4) = ((/0.0e0, 0.0e0, 1.0e0,  0.0e0/)) 

          case (2) 

            bccoefs(1,1:4) = ((/1.0e0, 0.0e0, 0.0e0, 0.0e0/)) 

            bccoefs(2,1:4) = ((/0.0e0, 1.0e0, 0.0e0, 0.0e0/)) 

            bccoefs(3,1:4) = ((/0.0e0, 0.0e0, 1.0e0, 0.0e0/)) 

        end select 

! Note no time dependence 

        iflag = 0   

      end subroutine fkbc_put 

 

      subroutine fkforce_put (interval, t, hx, y, xlocal, qw, u,& 

                              phi, dphi, fcn_data) 

        use mp_types 

        implicit none 

        integer, parameter :: local = 6 

        integer :: i, j, l, ndeg 

        integer, intent(in) :: interval 

        real(kind(1e0)), intent(in) :: y(:), t, hx, qw(:),& 

                                       xlocal(:), u(:,:) 

        real(kind(1e0)), intent(out) :: phi(:), dphi(:,:) 

        type (s_fcn_data), optional :: fcn_data 

 

        real(kind(1e0)) :: yl(local), bf(local) 

        real(kind(1e0)) :: value, strike_price, interest_rate,& 

                           zero=0.0e0, one=1.0e0, rt, mu 

 

        yl = y(3*interval-2:3*interval+3) 

        phi = zero 
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        value = fcn_data % rdata(6) 

        strike_price = fcn_data % rdata(1) 

        interest_rate = fcn_data % rdata(4) 

        ndeg = fcn_data % idata(1) 

 

        mu = 2 

! This is the local definition of the forcing term 

        do j=1,local 

          do l=1,ndeg 

            bf(1:3) = u(l,1:3) 

            bf(4:6) = u(l,7:9) 

            rt = dot_product(yl,bf) 

            rt = value/(rt + value - (strike_price - xlocal(l))) 

            phi(j) = phi(j) + qw(l) * bf(j) * rt**mu 

          end do 

        end do 

        phi = -phi*hx*interest_rate*strike_price 

 

! This is the local derivative matrix for the forcing term 

 

        dphi = zero 

        do j =1,local 

          do i = 1,local 

            do l=1,ndeg 

              bf(1:3) = u(l,1:3) 

              bf(4:6) = u(l,7:9) 

              rt = dot_product(yl,bf) 

              rt = one/(rt + value - (strike_price - xlocal(l))) 

              dphi(i,j) = dphi(i,j) + qw(l) * bf(I) * bf(j) *& 

                          rt**(mu+1) 

            end do 

          end do 

        end do 

        dphi = mu*dphi*hx*value**mu*interest_rate*strike_price 

        return 

      end subroutine fkforce_put 

 

      subroutine fkinit_put(xgrid,tgrid,t,yprime,y,atol,rtol,& 

                            fcn_data) 

        use mp_types 

        implicit none 

        real(kind(1e0)), intent(in) :: xgrid(:), tgrid(:), t,& 

                                       yprime(:) 

        real(kind(1e0)), intent(inout) :: y(:), atol(:), rtol(:) 

        type (s_fcn_data), optional :: fcn_data 

        integer :: i 

 

        if (t == 0.0e0) then 

! Set initial data precisely.  The strike price is a breakpoint. 

! Average the derivative limit values from either side. 

          do i=1,size(xgrid) 

            if (xgrid(i) < fcn_data % rdata(1)) then 

              y(3*i-2) = fcn_data % rdata(1) - xgrid(i) 

              y(3*i-1) = -1.0e0 

              y(3*i)= 0.0e0 

            else if (xgrid(i) ==  fcn_data % rdata(1)) then 



     

     
 

1150  Chapter 5: Differential Equations IMSL MATH LIBRARY  

     

     

 

              y(3*i-2) = 0.0e0 

              y(3*i-1) = -0.5e0 

              y(3*i) = 0.0e0 

            else 

              y(3*i-2) = 0.0e0 

              y(3*i-1) = 0.0e0 

              y(3*i) = 0.0e0 

            end if 

          end do 

        end if 

      end subroutine fkinit_put 

Output 
    American Option Premium for Vanilla Put, 3 and 6 Months Prior to  

    Expiry 

       Number of equally spaced spline knots  121 

       Number of unknowns  363 

       Strike= 10.00, Sigma= 0.40, Interest Rate= 0.10 

       Underlying        European        American 

           0.0000  9.7536  9.5137 10.0000 10.0000 

           2.0000  7.7536  7.5138  8.0000  8.0000 

           4.0000  5.7537  5.5156  6.0000  6.0000 

           6.0000  3.7614  3.5680  4.0000  4.0000 

           8.0000  1.9064  1.9162  2.0214  2.0909 

          10.0000  0.6516  0.8540  0.6767  0.9034 

          12.0000  0.1625  0.3365  0.1675  0.3515 

          14.0000  0.0369  0.1266  0.0374  0.1322 

          16.0000  0.0088  0.0481  0.0086  0.0504 

 

Example 3 – European Option With Two Payoff Strategies 

This example evaluates the price of a European Option using two payoff strategies: Cash-or-

Nothing and Vertical Spread.  In the first case the payoff function is 

 
0,

,

x K
p x

B x K


 

 .  

The value B is regarded as the bet on the asset price, see Wilmott et al. (1995, p. 39-40). The 

second case has the payoff function 

  1 2 2 1max( ) max( ),p x x K x K K K    
 

Both problems use the same boundary conditions.  Each case requires a separate integration of the 

Black-Scholes differential equation, but only the payoff function evaluation differs in each case.  

The sets of parameters in the computation are: 

1. Strike and bet prices K1={10.0}, K2 = {15.0}, and B = {2.0} 

2. Volatility  = {0.4}. 

3. Times until expiration = {1/4, 1/2}. 

4. Interest rate r = 0.1. 
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5. xmin = 0, xmax = 30.  

6. nx =121, n = 3  nx = 363. 

Link to example source (feynman_kac_ex3.f90) 

 

! Compute European Option Premium for a Cash-or-Nothing 

! and a Vertical Spread Call. 

      use feynman_kac_int 

      use hqsval_int 

      use mp_types 

      use umach_int 

      implicit none 

! The strike price 

      real(kind(1e0)) :: ks1 = 10.0e0 

! The spread value 

      real(kind(1e0)) :: ks2 = 15.0e0 

! The Bet for the Cash-or-Nothing Call 

      real(kind(1e0)) :: bet = 2.0e0 

! The sigma value 

      real(kind(1e0)) :: sigma = 0.4e0 

 

! Time values for the options 

      integer, parameter :: nt = 2 

      real(kind(1e0)) :: time(nt)=(/0.25e0, 0.5e0/) 

! Values of the underlying where evaluation are made 

      integer, parameter :: nv = 12, nlbc = 3, nrbc = 3 

      integer :: i 

      real(kind(1e0)) :: xs(nv) = (/(2+(I-1)*2.0e0,I=1,NV)/) 

! Value of the interest rate and continuous dividend - 

      real(kind(1e0)) :: r = 0.1e0, dividend = 0.0e0 

! Values of the min and max underlying values modeled - 

      real(kind(1e0)) :: x_min = 0.0e0, x_max = 30.0e0 

  

! Define parameters for the integration step.   

      integer, parameter :: nx = 61, nint = nx-1, n=3*nx 

      real(kind(1e0)) :: xgrid(nx), yb(n,0:nt), ybprime(n,0:nt),& 

                         yv(n,0:nt), yvprime(n,0:nt),& 

                         dx, fb(nv,nt), fv(nv,nt) 

      type(s_fcn_data) fcn_data 

      integer :: nout 

      real(kind(1e0)), external :: fkcoef_call, fkinitcond_call 

      external fkbc_call 

       

      call umach(2, nout) 

! Allocate space inside the derived type for holding 

! data values. These are for the evaluation routines. 

      allocate(fcn_data % rdata (7), fcn_data % idata (1)) 

! Define an equally-spaced grid of points for the underlying price 

      dx = (x_max-x_min)/real(nint) 

      xgrid(1) = x_min 

      xgrid(nx) = x_max 

      do i = 2,nx-1 

        xgrid(i) = xgrid(i-1) + dx 

      end do 

 

      fcn_data % rdata = (/ks1,bet,ks2,x_max,sigma,r,dividend/) 

LinkedDocuments/feynman_kac_ex3.f90
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! Flag the difference in payoff functions -  

! 1 for the Bet, 2 for the Vertical Spread 

      fcn_data % idata(1) = 1 

      call feynman_kac (xgrid, time, nlbc, nrbc, fkcoef_call,& 

                        fkinitcond_call, fkbc_call, yb, ybprime,& 

                        FCN_DATA = fcn_data) 

 

      fcn_data % idata(1) = 2  

      call feynman_kac (Xgrid, time, nlbc, nrbc, fkcoef_call,& 

                        fkinitcond_call, fkbc_call, yv, yvprime,& 

                        FCN_DATA = fcn_data) 

 

! Evaluate solutions at vector of points XS(:), at each time value 

! prior to expiration.                         

      do i=1,nt 

        fb(:,i) = hqsval (xs, xgrid, yb(:,I)) 

        fv(:,i) = hqsval (xs, xgrid, yv(:,I)) 

      end do  

      write(nout,'(T05,A)') "European Option Value for A Bet",& 

                       " and a Vertical Spread, 3 and 6 Months "//& 

                       "Prior to Expiry" 

      write(nout,'(T08,"Number of equally spaced spline knots "'//& 

                  ',I4,/T08,"Number of unknowns ",I4)') NX,N 

      write(nout,'(T08,"Strike = ",F5.2,", Sigma =", F5.2,'//& 

           '", Interest Rate =",F5.2,'//& 

           '/T08,"Bet = ",F5.2,", Spread Value = ", F5.2/'//& 

           '/T10,"Underlying", T32,"A Bet", T40,"Vertical Spread",'//& 

           '/(T10,5F9.4))') ks1, sigma, r, bet, ks2, & 

             (xs(i), fb(i,1:nt), fv(i,1:nt),i=1,nv) 

      end 

 

! These routines define the coefficients, payoff, boundary 

! conditions and forcing term for American and European Options. 

      function fkcoef_call (x, tx, iflag, fcn_data) result(value) 

      use mp_types 

      implicit none 

 

      integer, intent(inout) :: iflag 

      real(kind(1e0)), intent(in) :: x, tx 

      type(s_fcn_data), optional :: fcn_data 

      real(kind(1e0)) :: value 

 

      real(kind(1e0)) :: sigma, interest_rate, dividend 

! Data passed through using allocated components 

! of the derived type s_fcn_data 

      sigma = fcn_data % rdata(5) 

      interest_rate = fcn_data % rdata(6) 

      dividend = fcn_data % rdata(7) 

      select case (iflag) 

        case (1) 

! The coefficient derivative d(sigma)/dx   

          value = sigma 

! The coefficient sigma(x)     

        case (2) 

          value = sigma * x 
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        case (3) 

! The coefficient mu(x)    

          value = (interest_rate - dividend) * x 

        case (4) 

! The coefficient kappa(x) 

          value = interest_rate 

      end select 

! Note that there is no time dependence 

      iflag = 0 

      return  

      end function fkcoef_call 

 

      function fkinitcond_call(x, fcn_data) result(value) 

      use mp_types 

      implicit none 

 

      real(kind(1e0)), intent(in) :: x 

      type(s_fcn_data), optional :: fcn_data 

      real(kind(1e0)) :: value 

 

      real(kind(1e0)) :: strike_price, spread, bet 

      real(kind(1e0)), parameter :: zero = 0.0e0 

 

      strike_price = fcn_data % rdata(1) 

      bet = fcn_data % rdata(2) 

      spread = fcn_data % rdata(3) 

! The payoff function - Use flag passed to decide which 

      select case (fcn_data % idata(1)) 

        case(1) 

! After reaching the strike price the payoff jumps 

! from zero to the bet value.                      

        value = zero 

        if (x > strike_price) value = bet 

        case(2) 

! Function is zero up to strike price. 

! Then linear between strike price and spread. 

! Then has constant value Spread-Strike Price after 

! the value Spread.                        

          value = max(x-strike_price, zero) - max(x-spread, zero) 

      end select 

      return 

      end function fkinitcond_call 

 

      subroutine fkbc_call (TX, iflag, bccoefs, fcn_data) 

      use mp_types 

      implicit none 

 

      real(kind(1e0)), intent(in) :: tx 

      integer, intent(inout) :: iflag 

      real(kind(1e0)), dimension(:,:), intent(out) :: bccoefs 

      type(s_fcn_data), optional :: fcn_data 

 

      real(kind(1e0)) :: strike_price, spread, bet,& 

                         interest_rate, df 

 

      strike_price = fcn_data % rdata(1) 

      bet = fcn_data % rdata(2) 
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      spread = fcn_data % rdata(3) 

      interest_rate = fcn_data % rdata(6) 

      select case (iflag) 

        case (1) 

          bccoefs(1,1:4) = ((/1.0e0, 0.0e0, 0.0e0, 0.0e0/)) 

          bccoefs(2,1:4) = ((/0.0e0, 1.0e0, 0.0e0, 0.0e0/)) 

          bccoefs(3,1:4) = ((/0.0e0, 0.0e0, 1.0e0, 0.0e0/)) 

        case (2) 

! This is the discount factor using the risk-free 

! interest rate 

          df = exp(interest_rate * tx) 

! Use flag passed to decide on boundary condition - 

          select case (fcn_data % idata(1)) 

            case(1)  

              bccoefs(1,1:4) = (/1.0e0, 0.0e0, 0.0e0, bet*df/)  

            case(2)     

              bccoefs(1,1:4) = (/1.0e0, 0.0e0, 0.0e0,& 

                               (spread-strike_price)*df/)  

          end select 

          bccoefs(2,1:4) = (/0.0e0, 1.0e0, 0.0e0, 0.0e0/) 

          bccoefs(3,1:4) = (/0.0e0, 0.0e0, 1.0e0, 0.0e0/) 

          return             

      end select 

! Note no time dependence in case (1) for iflag 

      iflag = 0 

      end subroutine fkbc_call 

Output 
    European Option Value for A Bet 

     and a Vertical Spread, 3 and 6 Months Prior to Expiry 

       Number of equally spaced spline knots   61 

       Number of unknowns  183 

       Strike= 10.00, Sigma= 0.40, Interest Rate= 0.10 

       Bet =  2.00, Spread Value = 15.00 

 

         Underlying            A Bet   Vertical Spread 

            2.0000   0.0000   0.0000   0.0000   0.0000 

            4.0000   0.0000   0.0014   0.0000   0.0006 

            6.0000   0.0110   0.0723   0.0039   0.0447 

            8.0000   0.2691   0.4302   0.1478   0.3832 

           10.0000   0.9948   0.9781   0.8909   1.1926 

           12.0000   1.6094   1.4290   2.1911   2.2273 

           14.0000   1.8655   1.6922   3.4254   3.1553 

           16.0000   1.9338   1.8175   4.2263   3.8264 

           18.0000   1.9476   1.8700   4.6264   4.2492 

           20.0000   1.9501   1.8904   4.7911   4.4921 

           22.0000   1.9505   1.8979   4.8497   4.6231 

           24.0000   1.9506   1.9007   4.8685   4.6909 

 

Example 4 – Convertible Bonds 

This example evaluates the price of a convertible bond. Here, convertibility means that the bond 

may, at any time of the holder‘s choosing, be converted to a multiple of the specified asset.  Thus a 

convertible bond with price x returns an amount K at time T unless the owner has converted the 
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bond to , 1,x   units of the asset at some time prior toT . This definition, the differential 

equation and boundary conditions are given in Chapter 18 of  Wilmott et al. (1996). Using a 

constant interest rate and volatility factor, the parameters and boundary conditions are: 

1. Bond face value {1}K  , conversion factor 1.125   

2. Volatility {0.25}   

3. Times until expiration {1/ 2,1}  

4. Interest rate 0.1r  , dividend 0.02D   

5. min max0, 4x x   

6. 61, 3 183nx n nx     

7. Boundary conditions    max max0, exp( ( )), ,f t K r T t f x t x     

8. Terminal data  , max( , )f x T K x  

9. Constraint for bond holder  ,f x t x  

Note that the error tolerance is set to a pure absolute error of value
3

10


.  The free boundary 

constraint  ,f x t x  is achieved by use of a non-linear forcing term in the subroutine 

fkforce_cbond.  The terminal conditions are provided with the user subroutine fkinit_cbond. 

Link to example source (feynman_kac_ex4.f90) 

 

! Compute value of a Convertible Bond 

      use feynman_kac_int 

      use hqsval_int 

      use mp_types 

      use umach_int 

 

      implicit none 

! The face value 

      real(kind(1e0)) :: ks = 1.0e0 

! The sigma  or volatility value 

      real(kind(1e0)) :: sigma = 0.25e0 

 

! Time values for the options 

      integer, parameter :: nt = 2 

      real(kind(1e0)) :: time(nt)=(/0.5e0, 1.0e0/) 

! Values of the underlying where evaluation are made 

      integer, parameter :: nv = 13 

      integer, parameter :: nlbc = 3, nrbc = 3, ndeg = 6 

      integer :: i 

      real(kind(1e0)) :: xs(nv) = (/((i-1)*0.25e0,i=1,nv)/) 

! Value of the interest rate, continuous dividend and factor 

      real(kind(1e0)) :: r = 0.1e0, dividend = 0.02e0,& 

LinkedDocuments/feynman_kac_ex4.f90
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                         factor =1.125e0 

! Values of the min and max underlying values modeled 

      real(kind(1e0)) :: x_min = 0.0e0, x_max = 4.0e0 

! Define parameters for the integration step.   

      integer, parameter :: nx = 61, nint = nx-1, n = 3*nx 

      real(kind(1e0)) :: xgrid(nx), y(n,0:nt), yprime(n,0:nt),& 

                         dx, f(nv,0:nt) 

! Relative and absolute error tolerances 

      real(kind(1e0)) :: atol(1), rtol(1) 

      type(s_fcn_data) fcn_data 

      real(kind(1e0)), external :: fkcoef_cbond, fkinitcond_cbond 

      external fkbc_cbond, fkforce_cbond, fkinit_cbond 

 

      integer :: nout 

 

      call umach(2,nout) 

! Allocate space inside the derived type for holding 

! data values. These are for the evaluation routines. 

      allocate(fcn_data % rdata (7), fcn_data % idata (1)) 

 

! Define an equally-spaced grid of points for the underlying price 

      dx = (x_max - x_min)/real(nint) 

      xgrid(1) = x_min 

      xgrid(nx) = x_max 

 

      do i=2,nx-1 

        xgrid(i) = xgrid(i-1) + dx 

      end do 

 

! Use a pure absolute error tolerance for the integration 

! The default values require too much integation time. 

      atol(1) = 1.0e-3 

      rtol(1) = 0.0e0 

 

! Pass the data for evaluation   

      fcn_data % rdata = (/ks,x_max,sigma,r,dividend,factor,& 

                           atol(1)/) 

      fcn_data % idata = (/ndeg/) 

           

! Compute value of convertible bond                  

      call feynman_kac (xgrid, time, nlbc, nrbc, fkcoef_cbond,& 

                     fkinitcond_cbond, fkbc_cbond, y, yprime,& 

                     ATOL=atol, RTOL=rtol, FKINIT = fkinit_cbond,& 

                     FKFORCE = fkforce_cbond, FCN_DATA = fcn_data) 

    

! Evaluate and display solutions at vector of points XS(:), at each 

! time value prior to expiration.                         

      do i=0,nt 

        f(:,i) = hqsval (xs, xgrid, y(:,i)) 

      end do 

 

      write(nout,'(T05,A)')& 

      "Convertible Bond Value, 0+, 6 and 12 Months Prior to Expiry" 

 

      write(nout,'(T08,"Number of equally spaced spline knots ",I4,'//& 

                '/T08,"Number of unknowns ",I4)') NX,N 
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      write(nout,'(T08,"Strike = ",F5.2,", Sigma =", F5.2,/'//& 

         'T08,"Interest Rate =",F5.2,", Dividend =",F5.2,'//& 

         '", Factor = ",F5.3,//T08,"Underlying", T26,"Bond Value",'//& 

         '/(T10,4F8.4))') ks,sigma,r,dividend,factor,& 

           (xs(i), f(i,0:nt),i=1,nv) 

      end 

 

! These routines define the coefficients, payoff, boundary  

! conditions and forcing term. 

      function fkcoef_cbond(x, tx, iflag, fcn_data) result(value) 

      use mp_types 

      implicit none 

      integer, intent(inout) :: iflag 

      real(kind(1e0)), intent(in) :: x, tx 

      type(s_fcn_data), optional :: fcn_data 

      real(kind(1e0)) :: value 

 

      real(kind(1e0)) :: sigma, interest_rate, & 

                         dividend, zero = 0.e0 

 

      sigma = fcn_data % rdata(3) 

      interest_rate = fcn_data % rdata(4) 

      dividend = fcn_data % rdata(5) 

 

      select case (iflag) 

        case (1) 

! The coefficient derivative d(sigma)/dx    

          value = sigma 

! The coefficient sigma(x)     

        case (2) 

          value = sigma * x  

        case (3) 

! The coefficient mu(x)    

          value = (interest_rate - dividend) * x 

        case (4) 

! The coefficient kappa(x)    

          value = interest_rate 

      end select 

! Note that there is no time dependence  

      iflag = 0 

      return 

      end function fkcoef_cbond 

 

      function fkinitcond_cbond(x, fcn_data) result(value) 

      use mp_types 

      implicit none 

      real(kind(1e0)), intent(in) :: x 

      type (s_fcn_data), optional :: fcn_data 

      real(kind(1e0)) :: value 

 

      real(kind(1e0)) :: strike_price, factor 

 

      strike_price = fcn_data % rdata(1) 

      factor = fcn_data % rdata(6) 

      value = max(factor * x, strike_price) 

      return 
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      end function fkinitcond_cbond 

 

      subroutine fkbc_cbond (tx, iflag, bccoefs, fcn_data) 

      use mp_types 

      implicit none 

      real(kind(1e0)), intent(in) :: tx 

      integer, intent(inout) :: iflag 

      real(kind(1e0)), dimension(:,:), intent(out) :: bccoefs 

      type(s_fcn_data), optional :: fcn_data 

 

      real(kind(1e0)) :: interest_rate, strike_price, dp,& 

                         factor, x_max 

 

      select case (iflag) 

        case (1) 

          strike_price = fcn_data % rdata(1) 

          interest_rate = fcn_data % rdata(4) 

          dp = strike_price * exp(tx*interest_rate) 

          bccoefs(1,1:4) = (/1.0e0, 0.0e0, 0.0e0,    dp/) 

          bccoefs(2,1:4) = (/0.0e0, 1.0e0, 0.0e0,  0.0e0/) 

          bccoefs(3,1:4) = (/0.0e0, 0.0e0, 1.0e0,  0.0e0/) 

          return 

        case (2) 

          x_max = fcn_data % rdata(2) 

          factor = fcn_data % rdata(6) 

          bccoefs(1,1:4) = (/1.0e0, 0.0e0, 0.0e0, factor * x_max/) 

          bccoefs(2,1:4) = (/0.0e0, 1.0e0, 0.0e0, factor/) 

          bccoefs(3,1:4) = (/0.0e0, 0.0e0, 1.0e0, 0.0e0/) 

      end select 

! Note no time dependence                   

      iflag = 0 

      return 

      end subroutine fkbc_cbond 

 

      subroutine fkforce_cbond (interval, t, hx, y, xlocal, qw, u,& 

                                phi, dphi, fcn_data) 

      use mp_types 

      implicit none 

      integer :: i, j, l 

      integer, parameter :: local = 6 

      integer, intent(in) :: interval 

      real(kind(1.e0)), intent(in) :: y(:), t, hx, qw(:),xlocal(:),& 

                                      u(:,:) 

      real(kind(1.e0)), intent(out) :: phi(:), dphi(:,:) 

 

      integer :: ndeg 

      real(kind(1.e0)) :: yl(local), bf(local) 

      real(kind(1.e0)) :: value, strike_price, interest_rate,& 

                          zero = 0.0e0, one = 1.0e0, rt, mu, factor 

      type(s_fcn_data), optional :: fcn_data 

 

      yl = y(3*interval-2:3*interval+3) 

      phi = zero 

      dphi = zero 

      value = fcn_data % rdata(7) 

      strike_price = fcn_data % rdata(1) 
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      interest_rate = fcn_data % rdata(4) 

      factor = fcn_data % rdata(6) 

      ndeg = fcn_data % idata(1) 

      mu = 2 

! This is the local definition of the forcing term 

! It "forces" the constraint f >= factor*x.         

      do j=1,local 

        do l = 1,ndeg 

          bf(1:3) = u(l,1:3) 

          bf(4:6) = u(l,7:9) 

          rt = dot_product(yl,bf) 

          rt = value/(rt + value - factor * xlocal(l)) 

          phi(j) = phi(j) + qw(l) * bf(j) * rt**mu 

        end do 

      end do 

      phi = -phi * hx * factor * strike_price 

! This is the local derivative matrix for the forcing term -         

      do j=1,local 

        do i = 1,local 

          do l=1,ndeg 

            bf(1:3) = u(L,1:3) 

            bf(4:6) = u(L,7:9)  

            rt = dot_product(yl,bf) 

            rt = one/(rt + value - factor * xlocal(l)) 

            dphi(i,j) = dphi(i,j) + qw(l) * bf(i) * bf(j)& 

                     * (value * rt)**mu * rt 

          end do 

        end do 

      end do 

      dphi = -mu * dphi * hx * factor * strike_price 

      return                  

      end subroutine fkforce_cbond 

      

      subroutine fkinit_cbond(xgrid,tgrid,t,yprime,y,atol,rtol,& 

                              fcn_data) 

      use mp_types 

      implicit none 

      real(kind(1e0)), intent(inout) :: y(:), atol(:), rtol(:) 

      real(kind(1e0)), intent(in) :: xgrid(:), tgrid(:), yprime(:),& 

                                     t 

      type(s_fcn_data), optional :: fcn_data 

 

      integer :: i 

      if (t == 0.0e0) then 

! Set initial data precisely. 

        do i=1,size(Xgrid) 

          if (xgrid(i)*fcn_data % rdata(6) <& 

              fcn_data % rdata(1)) then 

            y(3*i-2) = fcn_data % rdata(1) 

            y(3*i-1) = 0.0e0 

            y(3*i  ) = 0.0e0 

          else 

            y(3*i-2) = xgrid(i) * fcn_data % rdata(6) 

            y(3*i-1) = fcn_data % rdata(6) 

            y(3*i  ) = 0.0e0 

          end if 

        end do 
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      end if 

      end subroutine fkinit_cbond 

Output 

    Convertible Bond Value, 0+, 6 and 12 Months Prior to Expiry 

       Number of equally spaced spline knots   61 

       Number of unknowns  183 

       Strike=  1.00, Sigma= 0.25 

       Interest Rate= 0.10, Dividend= 0.02, Factor= 1.125 

  

       Underlying        Bond Value 

           0.0000  1.0000  0.9512  0.9048 

           0.2500  1.0000  0.9512  0.9049 

           0.5000  1.0000  0.9513  0.9065 

           0.7500  1.0000  0.9737  0.9605 

           1.0000  1.1250  1.1416  1.1464 

           1.2500  1.4062  1.4117  1.4121 

           1.5000  1.6875  1.6922  1.6922 

           1.7500  1.9688  1.9731  1.9731 

           2.0000  2.2500  2.2540  2.2540 

           2.2500  2.5312  2.5349  2.5349 

           2.5000  2.8125  2.8160  2.8160 

           2.7500  3.0938  3.0970  3.0970 

           3.0000  3.3750  3.3781  3.3781 

Example 5 – A Non-Standard American Option 

This example illustrates a method for evaluating a certain ―Bermudan Style‖ or non-standard 

American option.  These options are American Style options restricted to certain dates where the 

option may be exercised.  Since this agreement gives the holder more opportunity than a European 

option, it is worth more.  But since the holder can only exercise at certain times it is worth no 

more than the American style option value that can be exercised at any time.  Our solution method 

uses the same model and data as in Example 2, but allows exercise at weekly intervals.  Thus we 

integrate, for half a year, over each weekly interval using a European style Black-Scholes model, 

but with initial data at each new week taken from the corresponding values of the American style 

option. 

Link to example source (feynman_kac_ex5.f90) 

 

! Compute Bermudan-Style Option Premium for Vanilla Put 

      use feynman_kac_int 

      use hqsval_int 

      use mp_types 

      use umach_int 

 

      implicit none 

      integer :: nout 

! The strike price 

      real(kind(1e0)) :: ks = 10.0e0 

! The sigma value 

      real(kind(1e0)) :: sigma = 0.4e0 

! Program working stores 

      real(kind(1e0)) :: week 

LinkedDocuments/feynman_kac_ex5.f90
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! Time values for the options 

      integer, parameter :: nt = 26 

      integer, parameter :: ndeg = 6 

      real(kind(1e0)) :: time(nt), time_end = 0.5e0 

! Values of the underlying where evaluation are made 

      integer, parameter :: nv = 9, nlbc = 2, nrbc = 3 

      integer :: i 

      real(kind(1e0)) :: xs(nv) = (/((i-1)*2.0e0,i=1,nv)/) 

! Value of the interest rate and continuous dividend 

      real(kind(1e0)) :: r = 0.1e0, dividend = 0.0e0 

! Values of the min and max underlying values modeled 

      real(kind(1e0)) :: x_min = 0.0e0, x_max = 30.0e0 

 

! Define parameters for the integration step.   

      integer, parameter :: nx = 61, nint = nx-1, n = 3*nx 

      real(kind(1e0)) :: xgrid(nx), yb(n,0:nt), ybprime(n,0:nt),& 

                         ya(n,0:nt), yaprime(n,0:nt),& 

                         ytemp(n,0:1), ytempprime(n,0:1),& 

                         dx, fb(nv,nt), fa(nv,nt) 

      real(kind(1e0)) :: atol 

      type(s_fcn_data) fcn_data_amer, fcn_data_berm 

      real(kind(1e0)), external :: fkcoef_put, fkinitcond_put 

      external fkbc_put, fkforce_put, fkinit_amer_put, fkinit_berm_put 

 

      call umach(2, nout) 

! Allocate space inside the derived type for holding 

! data values. These are for the evaluation routines. 

      allocate(fcn_data_amer % rdata (6), fcn_data_amer % idata (1)) 

! Define an equally-spaced grid of points for the underlying price 

      dx = (x_max-x_min)/real(nint) 

      xgrid(1) = x_min 

      xgrid(nx)= x_max 

      do i=2,nx-1 

        xgrid(i) = xgrid(i-1) + dx 

      end do 

 

! Place a breakpoint at the strike price. 

      do i=1,nx 

        if (xgrid(i) > ks) then 

          xgrid(i-1) = ks 

          exit 

        end if 

      end do 

 

! Compute time values where American option is computed 

      week = time_end/real(nt,kind(week)) 

      time(1) = week 

      do i=2,nt-1 

        time(i) = time(i-1) + week 

      end do 

      time(nt) = time_end 

 

      atol = 1.0e-3 

      fcn_data_amer % rdata = (/ks,x_max,sigma,r,dividend,atol/) 

      fcn_data_amer % idata = (/ndeg/) 

 

! Compute American Put Option Values at the weekly grid. 
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      call feynman_kac (xgrid, time, nlbc, nrbc, fkcoef_put,& 

                        fkinitcond_put, fkbc_put, ya, yaprime,& 

                        FKINIT = fkinit_amer_put,& 

                        FKFORCE = fkforce_put,& 

                        FCN_DATA = fcn_data_amer) 

! Integrate once again over the weekly grid, using the American 

! Option values as initial data for a piece-wise European option 

!integration. 

 

! Allocate space to hold coefficient data and initial values. 

      allocate(fcn_data_berm % rdata(5+n)) 

      fcn_data_berm % rdata(1:5) = fcn_data_amer % rdata(1:5) 

! Copy initial data so the payoff value is the same for 

! American and Bermudan option values.         

      yb(1:n,0) = ya(1:n,0) 

      ybprime(1:n,0) = ya(1:n,0) 

 

      do i=0,nt-1 

! Move American Option values into place as initial conditions, 

! but now integrating with European style over each period of 

! the weekly grid.        

        fcn_data_berm % rdata(6:) = ya(1:n,i) 

        if (i .eq. 0) then 

          call feynman_kac (xgrid, (/time(1)/), nlbc, nrbc,& 

                            fkcoef_put, fkinitcond_put, fkbc_put,& 

                            ytemp(:,0:1), ytempprime(:,0:1),& 

                            FKINIT = fkinit_berm_put,& 

                            FCN_DATA = fcn_data_berm) 

        else 

          call feynman_kac (xgrid, (/time(i+1)-time(i)/),& 

                            nlbc, nrbc, fkcoef_put,& 

                            fkinitcond_put, fkbc_put,& 

                            ytemp(:,0:1), ytempprime(:,0:1),& 

                            FKINIT = fkinit_berm_put,& 

                            FCN_DATA = fcn_data_berm) 

        end if 

! Record values of the Bermudan option at the end of each integration. 

        yb(1:n,i+1) = ytemp(1:n,1) 

        ybprime(1:n,i+1) = ytempprime(1:n,1)  

      end do                                             

! Evaluate solutions at vector of points XS(:), at each time value 

! prior to expiration.                         

      do i=1,nt 

        fa(:,i) = hqsval (xs, xgrid, ya(:,i)) 

        fb(:,i) = hqsval (xs, xgrid, yb(:,i)) 

      end do 

 

      write(nout,'(T05,A)')& 

        "American Option Premium for Vanilla Put, 6 Months "//& 

        "Prior to Expiry" 

      write(nout,'(T05,A)')& 

        "Exercise Opportunities At Weekly Intervals" 

      write(nout,'(T08,"Number of equally spaced spline knots ",'//& 

                   'I4,/T08,"Number of unknowns ",I4)') nx, n 

      write(nout,'(T08,"Strike = ",F5.2,", Sigma =", F5.2,'//& 

                   '", Interest Rate =",F5.2,//T08,"Underlying",'//& 
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                   'T20,"Bermudan Style", T42,"American",'//& 

                   '/(T10,F8.4, T26, F8.4, T42, F8.4))')& 

                   KS,SIGMA,R,& 

                  (xs(i), fb(i,nt:nt), fa(i,nt:nt),i=1,nv) 

      end 

 

! These subprograms set the coefficients, payoff, boundary 

! conditions and forcing term for American and European Options. 

      function fkcoef_put(x, tx, iflag, fcn_data_amer)& 

                          result(value) 

      use mp_types 

      implicit none 

      integer, intent(inout) :: iflag 

      real(kind(1e0)), intent(in) :: x, tx 

      type(s_fcn_data), optional :: fcn_data_amer 

      real(kind(1e0)) :: value 

 

      real(kind(1e0)) :: sigma, interest_rate, dividend, zero=0.0e0 

 

      sigma = fcn_data_amer % rdata(3) 

      interest_rate = fcn_data_amer % rdata(4) 

      dividend = fcn_data_amer % rdata(5) 

      select case (iflag) 

        case (1) 

! The coefficient derivative d(sigma)/dx 

          value = sigma 

! The coefficient sigma(x) 

        case (2) 

          value = sigma * x  

        case (3) 

! The coefficient mu(x) 

          value = (interest_rate - dividend) * x 

        case (4) 

! The coefficient kappa(x) 

          value = interest_rate 

      end select 

! Note that there is no time dependence 

      iflag = 0 

      return 

      end function fkcoef_put 

 

      function fkinitcond_put(x, fcn_data_amer) result(value) 

      use mp_types 

      implicit none 

 

      real(kind(1e0)), intent(in) :: x 

      type (s_fcn_data), optional :: fcn_data_amer 

 

      real(kind(1e0)) :: value 

      real(kind(1e0)) :: strike_price, zero = 0.0e0 

 

      strike_price = fcn_data_amer % rdata(1) 

! The payoff function 

      value = max(strike_price - x, zero) 

      return 

      end function fkinitcond_put 
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      subroutine fkbc_put (tx, iflag, bccoefs, fcn_data) 

      use mp_types 

      implicit none 

      real(kind(1e0)), intent(in) :: tx 

      integer, intent(inout) :: iflag 

      real(kind(1e0)), dimension(:,:), intent(out) :: bccoefs 

      type (s_fcn_data), optional :: fcn_data 

 

      select case (iflag) 

        case (1) 

          bccoefs(1,1:4) = ((/0.0e0, 1.0e0, 0.0e0, -1.0e0/)) 

          bccoefs(2,1:4) = ((/0.0e0, 0.0e0, 1.0e0,  0.0e0/)) 

        case (2) 

          bccoefs(1,1:4) = ((/1.0e0, 0.0e0, 0.0e0, 0.0e0/))    

          bccoefs(2,1:4) = ((/0.0e0, 1.0e0, 0.0e0, 0.0e0/)) 

          bccoefs(3,1:4) = ((/0.0e0, 0.0e0, 1.0e0, 0.0e0/)) 

      end select 

! Note no time dependence 

      iflag = 0 

      end subroutine fkbc_put 

 

      subroutine fkforce_put (interval, t, hx, y, xlocal, qw, u,& 

                              phi, dphi, fcn_data_amer) 

      use mp_types 

      implicit none 

      integer, parameter :: local = 6 

      integer :: i, j, l, ndeg 

      integer, intent(in) :: interval 

      real(kind(1.e0)), intent(in) :: y(:), t, hx, qw(:),& 

                                      xlocal(:), u(:,:) 

      real(kind(1.e0)), intent(out) :: phi(:), dphi(:,:) 

      type (s_fcn_data), optional :: fcn_data_amer 

 

      real(kind(1.e0)) :: yl(local), bf(local) 

      real(kind(1.e0)) :: value, strike_price, interest_rate,& 

                          zero = 0.e0, one = 1.e0, rt, mu 

 

      yl = y(3*interval-2:3*interval+3) 

      phi = zero 

      value = fcn_data_amer % rdata(6) 

      strike_price = fcn_data_amer % rdata(1) 

      interest_rate = fcn_data_amer % rdata(4) 

      ndeg = fcn_data_amer % idata(1) 

 

      mu = 2 

! This is the local definition of the forcing term 

      do j=1,local 

        do l=1,ndeg 

          bf(1:3) = U(L,1:3) 

          bf(4:6) = U(L,7:9)  

          rt = dot_product(YL,BF) 

          rt = value/(rt + value-(strike_price-xlocal(l))) 

          phi(j) = phi(j) + qw(l) * bf(j) * rt**mu 

        end do 

      end do 

      phi = -phi * hx * interest_rate * strike_price 



 

 

IMSL MATH LIBRARY Chapter 5: Differential Equations  1165 

     

     

 

! This is the local derivative matrix for the forcing term 

      dphi = zero 

      do j=1,local 

        do i = 1,local 

          do l=1,ndeg 

            bf(1:3) = u(L,1:3) 

            bf(4:6) = u(L,7:9)  

            rt = dot_product(yl,bf) 

            rt = one/(rt + value - (strike_price - xlocal(l))) 

            dphi(i,j) = dphi(i,j) + qw(l) * bf(i) * bf(j) *& 

                        rt**(mu+1) 

          end do 

        end do 

      end do 

      dphi = mu * dphi * hx * value**mu * interest_rate *& 

             strike_price 

      end subroutine fkforce_put 

 

      subroutine fkinit_amer_put(xgrid,tgrid,t,yprime,y,atol,rtol,& 

                                 fcn_data_amer) 

      use mp_types 

      implicit none 

 

      real(kind(1e0)), intent(in) :: xgrid(:), tgrid(:), t,& 

                                     yprime(:) 

      real(kind(1e0)), intent(inout) :: y(:), atol(:), rtol(:) 

      type(s_fcn_data), optional :: fcn_data_amer 

      integer :: i 

 

      if (t == 0.0e0) then 

! Set initial data precisely.  The strike price is a breakpoint. 

! Average the derivative limit values from either side. 

        do i=1,size(xgrid) 

          if (xgrid(i) < fcn_data_amer % rdata(1)) then 

            y(3*i-2) = fcn_data_amer % rdata(1) - xgrid(i) 

            y(3*i-1) = -1.0e0 

            y(3*i) = 0.0e0 

          else if (xgrid(i) == fcn_data_amer % rdata(1)) then 

            y(3*i-2) = 0.0e0 

            y(3*i-1) = -0.5e0 

            y(3*i) = 0.0e0 

          else 

            y(3*i-2) = 0.0e0 

            y(3*i-1) = 0.0e0 

            y(3*i) = 0.0e0 

          end if 

        end do 

      end if 

      end subroutine fkinit_amer_put 

 

      subroutine fkinit_berm_put(xgrid,tgrid,t,yprime,y,atol,rtol,& 

                                 fcn_data_berm) 

      use mp_types 

      implicit none 

 

      real(kind(1e0)), intent(in) :: xgrid(:), tgrid(:), t,& 

                                     yprime(:) 
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      real(kind(1e0)), intent(inout) :: y(:), atol(:), rtol(:) 

      type(s_fcn_data), optional :: fcn_data_berm 

      integer :: i 

 

      if (t == 0.0e0) then 

! Set initial data for each week at the previously computed 

! American Option values.  These coefficients are passed  

! in the derived type fcn_data_berm. 

        do i=1,size(xgrid) 

          y(3*i-2) = fcn_data_berm % rdata(3+3*i) 

          y(3*i-1) = fcn_data_berm % rdata(4+3*i) 

          y(3*i  ) = fcn_data_berm % rdata(5+3*i) 

        end do 

      end if 

      end subroutine fkinit_berm_put 

Output 

    American Option Premium for Vanilla Put, 6 Months Prior to Expiry 

    Exercise Opportunities At Weekly Intervals 

       Number of equally spaced spline knots   61 

       Number of unknowns  183 

       Strike= 10.00, Sigma= 0.40, Interest Rate= 0.10 

 

       Underlying  Bermudan Style        American 

           0.0000          9.9808         10.0000 

           2.0000          7.9808          8.0000 

           4.0000          5.9808          6.0000 

           6.0000          3.9808          4.0000 

           8.0000          2.0924          2.0926 

          10.0000          0.9139          0.9138 

          12.0000          0.3570          0.3569 

          14.0000          0.1309          0.1309 

          16.0000          0.0468          0.0469 

Example 6 – Oxygen Diffusion Problem 

Our previous examples are from the field of financial engineering.   A final example is a physical 

model.  The Oxygen Diffusion Problem is summarized in Crank [4], p. 10-20, 261-262.  We 

present the numerical treatment of the transformed one-dimensional system 
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A slight difference from the Crank development is that we have reflected the time 

variable t t  to match our form of the Feynman-Kac equation. We have a free boundary 

problem because the interface  s t is implicit.  This interface is implicitly defined by solving the 

variational relation  1 0, 0t xxf f f f    .  The first factor is zero for  0 x s t   and 

the second factor is zero for   1s t x  .  We list the Feynman-Kac equation coefficients, 

forcing term and boundary conditions, followed by comments. 
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The   forcing term has the property of being almost the value 1 when the solution is larger than 

the factor .  As the solution 0f  , the forcing term   is almost the value zero. These properties 

combine to approximately achieve the variational relation that defines the free boundary.  Note 

that the arc of the free boundary is not explicitly available with this numerical method.  We have 

used ,ATOL  the requested absolute error tolerance for the numerical integration. 

The boundary condition  , 0 0, 0,
x

f t t  is discontinuous as 0t  , since the initial data 

yields  0, 0 1
x

f  .  For the numerical integration we have chosen a boundary value function that 

starts with the value 1  at 0t   and rapidly blends to the value zero as the integration proceeds in 

the negative direction.  It is necessary to give the integrator the opportunity to severely limit the 

step size near 0t   to achieve continuity during the blending. 

In the example code, values of  0,f t  are checked against published values for certain values of 

t .  Also checked are values of  0, ( ) 0f s t  at published values of the free boundary, for the 

same values of t . 

Link to example source (feynman_kac_ex6.f90) 

 

! Integrate Oxygen Diffusion Model found in the book 

! Crank, John. Free and Moving Boundary Problems, 

! Oxford Univ. Press, (1984), p. 19-20 and p. 261-262. 

      use feynman_kac_int 

      use hqsval_int 

      use mp_types 

      use norm_int 

      use umach_int 

      implicit none 

 

      integer :: nout 

      real(kind(1e0)), allocatable :: xgrid(:), tgrid(:), y(:,:),& 

                                      yprime(:,:), f(:,:), s(:) 

      real(kind(1e0)) :: dx, x_min, x_max, zero=0.0e0, one=1.0e0 

LinkedDocuments/feynman_kac_ex6.f90
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      real(kind(1e0)) :: atol(1), rtol(1) 

      type(s_fcn_data) :: fk_ox2 

      integer :: i, nint, n, nunit, ntimes = 8 

      integer, parameter :: ndeg = 6, nlbc = 1, nrbc = 2 

      real(kind(1e0)), external :: fkcoef_ox2, fkinitcond_ox2 

      external fkbc_ox2, fkforce_ox2 

       

      call umach(2,nout) 

 

! Define number of equally spaced intervals for elements 

      nint = 100 

! Allocate the space needed for the integration process 

      n = 3*(nint+1) 

      allocate(xgrid(nint+1), y(n,0:ntimes), yprime(n,0:ntimes),& 

               tgrid(ntimes), f(1,ntimes), s(ntimes)) 

 

! Allocate space inside the derived type for holding 

! data values. These are for the evaluation routines. 

      allocate(fk_ox2 % rdata (1), fk_ox2 % idata (1)) 

 

      atol(1) = 0.5e-2 

      rtol(1) = 0.5e-2 

      fk_ox2 % rdata(1) = atol(1) 

      fk_ox2 % idata(1) = ndeg 

 

! Define interval endpoints 

      x_min = zero 

      x_max = one 

! Define interval widths 

      dx = (x_max-x_min)/real(nint) 

      xgrid(1) = x_min 

      xgrid(nint+1) = x_max 

! Define grid points of interval 

      do i=2,nint 

        xgrid(i) = xgrid(i-1) + dx 

      end do 

! Define time integration output points 

! These correspond to published values in Crank's book, p. 261-262  

      tgrid = (/0.04e0,0.06e0,0.10e0,0.12e0,0.14e0,& 

                0.16e0,0.18e0,0.185e0/) 

      call feynman_kac (xgrid, tgrid, nlbc, nrbc, fkcoef_ox2,& 

                        fkinitcond_ox2, fkbc_ox2, y, yprime,& 

                        ATOL = atol, RTOL = rtol,& 

                        FKFORCE = fkforce_ox2, FCN_DATA = fk_ox2) 

! Summarize output at the left end 

      do i=1,ntimes 

        f(:,i)= hqsval ((/zero/), xgrid, y(:,i)) 

      end do 

! Check differences of evaluation and published left end values 

      f(1,:) = f(1,:) - (/2.743e-01, 2.236e-01, 1.432e-01,& 

           1.091e-01, 7.786e-02, 4.883e-02, 2.179e-02, 1.534e-02/) 

      write(nout,*) "Oxygen Depletion Model, from Crank's "//& 

                    "Book, p. 261-262," 

      write(nout,*) "'Free and Moving Boundary Value Problems'" 

      if (norm(f(1,:)) < ntimes * atol(1)) then 

        write(nout,*) "FEYNMAN_KAC Example 6 - Fixed Sealed "//& 
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                      "Surface Values are correct" 

      else 

        write(nout,*) "FEYNMAN_KAC Example 6 - does not agree with"//& 

                      " published left end values" 

      end if 

! Define known position of free boundary at the time points 

      s = (/0.9992e0,0.9918e0,0.9350e0,0.8792e0,& 

            0.7989e0,0.6834e0,0.5011e0,0.4334e0/) 

                        

! Evaluate and verify solution is small near free boundary - 

      do i=1,ntimes 

        f(:,i) = hqsval ((/s(i)/), xgrid, y(:,i)) 

      end do 

 

      if (norm(f(1,:)) < ntimes * atol(1)) then 

        write(nout,*) "FEYNMAN_KAC Example 6 - Free Boundary "//& 

                   "Position Values are correct" 

      else 

        write(nout,*) "FEYNMAN_KAC Example 6 - does not agree "//& 

                   "with published free boundary values" 

      end if 

      end 

 

      function fkcoef_ox2 (x, tx, iflag, fk_ox2) result(value) 

      use mp_types 

      implicit none 

! Coefficient valuation routine for the Oxygen Diffusion 

! Model found in Crank's book, p. 20 

! Input/Ouput variables 

      integer, intent(inout) :: iflag 

      real(kind(1e0)), intent(in) :: x, tx 

      type(s_fcn_data), optional :: fk_ox2 

      real(kind(1e0)) :: value 

 

! Local variables 

      real(kind(1e0)) :: zero = 0.0e0, two = 2.0e0          

 

      select case (iflag) 

        case (1) ! Factor DSigma/Dx(x,t) 

          value = zero 

        case (2) !  Factor Sigma(x,t) 

          value = sqrt(two) 

        case (3) !  Factor Mu (x,t) 

          value = zero 

        case (4) !  Factor Kappa (x,t) 

          value = zero 

      end select 

! Signal no dependence on tx=t=time for any coefficient. 

      iflag = 0 

      return 

      end function fkcoef_ox2 

 

      function fkinitcond_ox2(x, fk_ox2) result(value) 

      use mp_types 

      implicit none 

      real(kind(1e0)), intent(in) :: x 

      type (s_fcn_data), optional :: fk_ox2 
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      real(kind(1e0)) :: value 

 

      real(kind(1e0)) :: half = 0.5e0, one = 1.0e0 

 

      value = half * (one - x)**2 

      return            

      end function fkinitcond_ox2 

 

      subroutine fkbc_ox2 (tx, iflag, bccoefs, fk_ox2) 

      use mp_types 

      implicit none 

! Evaluation routine for Oxygen Diffusion Model  

! boundary conditions.   

! Input/Ouput variables 

      real(kind(1e0)), intent(in) :: tx 

      integer, intent(inout) :: iflag 

      real(kind(1e0)), dimension(:,:), intent(out) :: bccoefs 

      type (s_fcn_data), optional :: fk_ox2 

 

! Local variables 

      real(kind(1e0)) :: zero = 0.0e0, one = 1.0e0, atol 

 

      atol = fk_ox2 % rdata(1) 

      select case (iflag) 

        case (1) ! Left Boundary Condition,  at X_min=0 

! There is a rapid blending of the boundary condition to achieve 

! a zero derivative value at the left end. 

! The initial data has the derivative with value one. 

! This boundary condition essentially abruptly changes that 

! derivative value to zero. 

! Returning iflag=1 signals time dependence.  This is important 

! for this problem. 

          bccoefs(1,1:4) = (/0.0e0, one, 0.0e0, exp(tx/atol**2)/) 

          return                      

        case (2) ! Right Boundary Condition, at X_max=1 

          bccoefs(1,1:4) = (/one, 0.0e0, 0.0e0, 0.0e0/) 

          bccoefs(2,1:4) = (/0.0e0, one, 0.0e0, 0.0e0/) 

      end select  

      iflag = 0 ! Signal no dependence on tx=time. 

      end subroutine fkbc_ox2 

 

      subroutine fkforce_ox2 (interval, t, hx, y, xlocal, qw, u,& 

                              phi, dphi, fk_ox2) 

! Evaluation routine for Oxygen Diffusion model forcing function. 

      use mp_types 

      implicit none 

      integer, parameter :: local = 6 

      integer :: i, j, l, mu, ndeg 

      integer, intent(in) :: interval  

 

      real(kind(1e0)), intent(in) :: y(:), t, hx, qw(:),& 

                                     xlocal(:), u(:,:) 

      real(kind(1e0)), intent(out) :: phi(:), dphi(:,:) 

      type (s_fcn_data), optional :: fk_ox2 

 

      real(kind(1e0)) :: yl(local), bf(local) 
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      real(kind(1e0)) :: value, zero = 0.0e0, one = 1.0e0, rt 

 

      yl = y(3*interval-2:3*interval+3) 

      phi = zero 

 

      value = fk_ox2 % rdata(1) 

      ndeg = fk_ox2 % idata(1) 

 

      mu = 2 

      do j=1,local 

        do l=1,ndeg 

          bf(1:3) = u(l,1:3) 

          bf(4:6) = u(l,7:9)  

          rt = dot_product(yl,bf) 

          rt = one - (value/(rt + value))**mu               

          phi(j) = phi(j) + qw(l) * bf(j) * RT 

        end do 

      end do 

      phi = phi * hx 

! This is the local derivative matrix for the forcing term -         

      dphi = zero 

      do j=1,local 

        do i = 1,local 

          do l=1,ndeg 

            bf(1:3) = u(l,1:3) 

            bf(4:6) = u(l,7:9) 

            rt = dot_product(yl,bf) 

            rt = one/(rt + value) 

            dphi(i,j) = dphi(i,j) + qw(l) * bf(i) * bf(j) *& 

                        rt**(mu+1) 

          end do 

        end do 

      end do 

      dphi = mu * dphi * hx * value**mu 

      return                                 

      end subroutine fkforce_ox2 

Output 

Oxygen Depletion Model, from Crank's Book, p. 261-262, 

'Free and Moving Boundary Value Problems' 

FEYNMAN_KAC Example 6 - Fixed Sealed Surface Values are correct 

FEYNMAN_KAC Example 6 - Free Boundary Position Values are correct 

Example 7 – Calculating the Greeks 

In this example, routine FEYNMAN_KAC is used to solve for the Greeks, i.e. various derivatives of 

Feynman-Kac (FK) solutions applicable to the pricing of options and related financial derivatives. 

In order to illustrate and verify these calculations, the Greeks are calculated by two methods. The 

first method involves the FK solution to the diffusion model for call options given in Example 1 

for the Black-Scholes (BS) case, i.e. 2  . The second method calculates the Greeks using the 

closed-form BS evaluations which can be found at http://en.wikipedia.org/wiki/The_Greeks. 

This example calculates FK and BS solutions ( , )V S t  to the BS problem and the following 

Greeks: 

http://en.wikipedia.org/wiki/The_Greeks
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 Delta = 
V

S





 

 is the first derivative of the Value, ( , )V S t , of a portfolio of derivative security derived from 

underlying instrument with respect to the underlying instrument‘s price S; 

 Gamma = 

2

2

V

S





; 

 Theta = 
V

t





  is the negative first derivative of V with respect to time t; 

 Charm = 

2
V

S t



 

; 

 Color = 

3

2

V

S t



 

; 

 Rho = 
V

r





  is the first derivative of V with respect to the risk-free rate r; 

 Vega = 
V







 measures sensivity to volatility parameter   of the underlying S; 

 Volga = 

2

2

V







; 

 Vanna = 

2
V

S 



 

; 

 Speed = 

3

3

V

S





. 

Intrinsic Greeks include derivatives involving only S and t, the intrinsic FK arguments. In the 

above list, Value, Delta, Gamma, Theta, Charm, Color and Speed are all intrinsic Greeks. As is 

discussed in Hanson, R. (2008) ―Integrating Feynman-Kac Equations Using Hermite Quintic 

Finite Elements‖, the expansion of the FK solution function ( , )V S t  in terms of quintic 

polynomial functions defined on S-grid subintervals and subject to continuity constraints in 

derivatives 0, 1 and 2 across the boundaries of these subintervals allows Value, Delta, Gamma, 

Theta, Charm and Color to be calculated directly by routines FEYNMAN_KAC and HQSVAL. 

Non-intrinsic Greeks are derivatives of V involving FK parameters other than the intrinsic 

arguments S and t, such as r and  . Non-intrinsic Greeks in the above list include Rho, Vega, 

Volga and Vanna. In order to calculate non-intrinsic Greek (parameter) derivatives or intrinsic 

Greek S-derivatives beyond the second (such as Speed) or t-derivatives beyond the first, the entire 

FK solution must be calculated 3 times (for a parabolic fit) or five times (for a quartic fit), at the 

http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf
http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf


 

 

IMSL MATH LIBRARY Chapter 5: Differential Equations  1173 

     

     

 

point where the derivative is to be evaluated and at nearby points located symmetrically on either 

side. 

Using a Taylor series expansion of  ( )f    truncated to 1m   terms (to allow an m-degree 

polynomial fit of  m+1 data points), 

( )

0

( )
( )

!

n
n

n

m f
f

n


  



  , 

we are able to derive the following parabolic (3 point) estimation of first and second derivatives 
(1)

( )f   and  
(2)

( )f   in terms of the three values ( )f   , ( )f   and ( )f   , where 

frac
    and 0 <  frac <<1: 

(1) [1]
( )

( ) ( ) ( )
( , )

2
f

f f f
f

    
 

 

   

 
  , 

2

(2) [2]

2 2
( )

( ) ( ) ( ) 2 ( )
( , )f

f f f f
f

     
 

 

    

 
 . 

Similarly, the quartic (5 point) estimation of 
(1)

( )f   and 
( 2 )

( )f   in terms of ( 2 )f   , 

( )f   , ( )f  , ( )f    and ( 2 )f    is: 

(1) [1] [1]
( ) ( , ) ( , 2 )

4 1

3 3
f f f     

 

( 2) [ 2] [ 2]
( ) ( , ) ( , 2 )

4 1

3 3
f f f     

. 

For our example, the quartic estimate does not appear to be significantly better than the parabolic 

estimate, so we have produced only parabolic estimates by setting variable iquart to 0. The user 

may try the example with the quartic estimate simply by setting iquart to 1. 

As is pointed out in Integrating Feynman-Kac Equations Using Hermite Quintic Finite Elements, 

the quintic polynomial expansion function used by FEYNMAN_KAC only allows for continuous 

derivatives through the second derivative. While up to fifth derivatives can be calculated from the 

quintic expansion (indeed  function HQSVAL will allow the third derivative to be calculated by 

setting optional argument IDERIV to 3, as is done in this example), the accuracy is compromised 

by the inherent lack of continuity across grid points (i.e. subinterval boundaries). 

The accurate second derivatives in S returned by function HQSVAL can be leveraged into a third 

derivative estimate by calculating three FK second derivative solutions, the first solution for grid 

and evaluation point  set 
( 2 )

{ , ( )}S f S  and the second and third solutions for solution grid and 

evaluation point sets  
( 2 )

{ , ( )}S f S    and 
( 2 )

{ , ( )}S f S   , where the solution grid and 

evaluation point sets are shifted up and down by  . In this example,  is set to 
frac

S , where S  

is the average value of S over the range of grid values and 0 1
frac

 . The third derivative 

solution can then be obtained using the parabolic estimate 

http://www.vni.com/company/whitepapers/IntegratingFeynman-KacEquations.pdf
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(3)

(2) (2) (2)

( )
( ) ( ) ( )

2
f S

f f S f S

S

  



   


  

This procedure is implemented in the current example to calculate the Greek Speed. (For 

comparison purposes, Speed  is also calculated directly by setting the optional argument IDERIV 

to 3 in the call to function HQSVAL. The output from this direct calculation is called ―Speed2‖.) 

To reach better accuracy results, all computations are done in double precision. 

The average and maximum relative errors (defined as the absolute value of the difference between 

the BS and FK values divided by the BS value) for each of the Greeks is given at the end of the 

output. (These relative error statistics are given for nine combinations of Strike Price and 

volatility, but only one of the nine combinations is actually printed in the output.) Both intrinsic 

and non-intrinsic Greeks have good accuracy (average relative error is in the range 0.01 – 

0.00001) except for Volga, which has an average relative error of about 0.05. This is probably a 

result of the fact that Volga involves differences of differences, which will more quickly erode 

accuracy than calculations using only one difference to approximate a derivative. Possible ways to 

improve upon the 2 to 4 significant digits of accuracy achieved in this example include increasing 

FK integration accuracy by reducing the initial stepsize (via optional argument RINITSTEPSIZE), 

by choosing more closely spaced S and t grid points (by adjusting FEYNMAN_KAC‘s input arrays 

XGRID and TGRID) and by adjusting  frac  so that the central differences used to calculate the 

derivatives are not too small to compromise accuracy. 

Link to example source (feynman_kac_ex7.f90) 

 

! Greeks computation 

      use feynman_kac_int 

      use hqsval_int 

      use mp_types 

      use anordf_int 

      use const_int 

      use umach_int 

 

      implicit none 

       

      real(kind(1d0)), external :: fkcoef, fkinitcond  

      external fkbc 

 

! The set of strike prices 

      real(kind(1d0)) :: ks(3) = (/15.0d0,20.0d0,25.0d0/) 

! The set of sigma values 

      real(kind(1d0)) :: sigma(3) = (/0.2d0, 0.3d0, 0.4d0/) 

! The set of model diffusion powers: alpha = 2.0 <==> Black Scholes 

      real(kind(1d0)) :: alpha(3) = (/2.0d0, 1.0d0, 0.0d0/) 

! Time values for the options 

      integer, parameter :: nt = 3 

      real(kind(1d0)) :: time(nt)=(/1.d0/12., 4.d0/12., 7.d0/12./) 

! Values of the min and max underlying values modeled 

      real(kind(1d0)) :: x_min = 0.0d0, x_max = 60.0d0 

! Value of the interest rate and continuous dividend 

      real(kind(1d0)) :: r = 0.05d0, dividend = 0.0d0 

! Values of the underlying where evaluations are made 

LinkedDocuments/feynman_kac_ex7.f90
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      integer, parameter :: nv = 3 

      real(kind(1d0)) :: eval_points(nv) = & 

                                  (/19.0d0, 20.0d0, 21.0d0/) 

! Define parameters for the integration step. 

      integer, parameter :: nx = 121, nint = nx-1, n = 3*nx 

      real(kind(1d0)) :: xgrid(nx), y(n,0:nt), yprime(n,0:nt) 

      type(d_fcn_data) fcn_data 

! Number of left/right boundary conditions 

      integer, parameter :: nlbc = 3, nrbc = 3 

! Further parameters for the integration step 

      real(kind(1d0)) :: dx, dx2, pi, sqrt2pi 

! used to calc derivatives 

      real(kind(1d0)) :: epsfrac = .001d0 

      character(len=6) :: greek_name(12) = (/& 

             " Value", " Delta", " Gamma", " Theta",& 

             " Charm", " Color", "  Vega", " Volga",& 

             " Vanna", "   Rho", " Speed", "Speed2"/) 

! Time values for the options 

      real(kind(1d0)) :: rex(12), reavg(12) 

      integer :: irect(12) 

      integer :: i, i2, i3, j, ig, iquart, nout 

 

      real(kind(1d0)) ::& 

                  spline_values(nv,nt,12), spline_values1(nv,nt),& 

                  spline_valuesp(nv,nt), spline_valuesm(nv,nt),& 

                  spline_valuespp(nv,nt), spline_valuesmm(nv,nt),& 

                  xgridp(nx), xgridm(nx),xgridpp(nx), xgridmm(nx),& 

                  eval_pointsp(nv), eval_pointspp(nv),& 

                  eval_pointsm(nv), eval_pointsmm(nv),& 

                  BS_values(nv,nt,12), sVo_array(nt) 

 

      call umach(2, nout) 

! Allocate space inside the derived type for holding 

! data values. These are for the evaluation routines. 

      allocate(fcn_data % rdata (6)) 

 

      pi = const('pi') 

      sqrt2pi = sqrt(2.0 * pi) 

      dx2 = epsfrac * 0.5d0 * (x_min + x_max) 

 

! Compute Constant Elasticity of Variance Model for Vanilla Call 

! Define equally-spaced grid of points for the underlying price 

 

      dx = (x_max - x_min)/real(nint) 

      xgrid(1) = x_min 

      xgrid(nx) = x_max 

      do i = 2,nx-1 

        xgrid(i) = xgrid(i-1) + dx 

      end do 

 

      write(nout,'(T05,A)') "Constant Elasticity of Variance"//& 

                            " Model for Vanilla Call Option" 

      write(nout,'(T10,"Interest Rate: ", F7.3, T38,'//& 

                   '"Continuous Dividend: ", F7.3  )') r, dividend 

      write(nout,'(T10,"Minimum and Maximum Prices of '//& 

                   ' Underlying: ", 2F7.2)') x_min, x_max 

      write(nout,'(T10,"Number of equally spaced spline knots:",'//& 
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                   'I4)') nx - 1 

      write(nout,'(T10,"Number of unknowns: ",I4)') n 

      write(nout,*) 

      write(nout,'(/T10,"Time in Years Prior to Expiration: ",'//& 

                   '2X,3F7.4)') time 

      write(nout,'(T10,"Option valued at Underlying Prices:  ",'//& 

                   '3F7.2)') eval_points 

      write(nout,*) 

 

! 

! iquart = 0 : derivatives estimated with 3-point fitted parabola 

! iquart = 1 : derivatives estimated with 5-point fitted quartic 

!              polynomial 

! 

 

      iquart = 0 

      if (iquart == 0) then 

        write(nout,'(T10,"3 point (parabolic) estimate of '//& 

                    'parameter derivatives")') 

      else 

        write(nout,'(T10,"5 point (quartic) estimate of parameter'//& 

                  ' derivatives")') 

      end if 

      write(nout, '(T10,"epsfrac = ", F11.8)') epsfrac 

 

      irect = 0 

      reavg = 0.0d0 

      rex = 0.0d0 

     

! alpha:  Black-Scholes 

      do i2 = 1, 3 

! Loop over volatility 

        do i3 = 1, 3 

! Loop over strike price 

          call calc_Greeks(i2, i3, iquart) 

        end do 

      end do 

 

      write(nout,*) 

      do ig = 1, 12 

        reavg(ig) = reavg(ig)/irect(ig) 

        write (nout, '(" Greek: ", A6, ";  avg rel err: ",'//& 

                     'F15.12, ";  max rel err: ", F15.12)')& 

                     greek_name(ig), reavg(ig), rex(ig) 

      end do 

 

      contains 

 

      subroutine calc_Greeks(volatility, strike_price, iquart) 

      implicit none 

      integer, intent(in) :: volatility, strike_price, iquart 

    ! Local variables 

      integer :: i1 = 1, j, iSderiv, gNi, l, k 

      integer :: nt = 3 

      real(kind(1d0)) :: x_maxp, x_maxm, x_maxpp, x_maxmm 

      real(kind(1d0)) :: eps, tau, sigsqtau, sqrt_sigsqtau, sigsq 
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      real(kind(1d0)) :: d1, d2, n01pdf_d1, nu, relerr, relerrmax 

      real(kind(1d0)) :: sVo, BSVo, S 

 

      if ((volatility == 1) .and. (strike_price == 1)) then 

        write(nout,*) 

        write(nout,'(/T10,"Strike = ",F5.2,", Sigma =", F5.2,'//& 

                    '", Alpha =",F5.2,":")') ks(strike_price),& 

                    sigma(volatility), alpha(i1) 

        write(nout,*) 

        write(nout,'(T10,"years to expiration: ", 3F7.4)')& 

                   (time(j), j=1,3) 

        write(nout,*) 

      end if 

 

      fcn_data % rdata = (/ks(strike_price), x_max,& 

              sigma(volatility), alpha(i1), r, dividend/) 

                            

      call feynman_kac(xgrid, time, nlbc, nrbc, fkcoef,& 

                       fkinitcond, fkbc, y, yprime,& 

                       FCN_DATA = fcn_data) 

        

! Compute Value, Delta, Gamma, Theta, Charm and Color 

      do l = 0,2 

        do i=1,NT 

          spline_values(:,i,l+1) = hqsval(eval_points, xgrid,& 

                                          y(:,i), IDERIV=l) 

          spline_values(:,i,l+4) = hqsval(eval_points, xgrid,& 

                                          yprime(:,i), IDERIV=l) 

        end do 

      end do 

! Signs for Charm and Color must be inverted because FEYNMAN_KAC 

! computes -d/dt instead of d/dt 

      spline_values(:,:,5:6) = -spline_values(:,:,5:6) 

               

! Speed2 

      do i=1,nt 

        spline_values(:,i,12) = hqsval(eval_points, xgrid, Y(:,i),& 

                                       IDERIV=3) 

      end do 

        

! Compute Vega, Volga, Vanna, Rho, Speed 

!     l =   7     8      9     10    11 

      do l = 7,11 

        xgridp = xgrid 

        xgridm = xgrid 

        eval_pointsp = eval_points 

        eval_pointsm = eval_points 

        x_maxp = x_max 

        x_maxm = x_max 

        fcn_data % rdata(3) = sigma(volatility) 

        fcn_data % rdata(5) = r 

        iSderiv = 0 

        if (l == 9) iSderiv = 1 ! Vanna 

        if (l == 11) iSderiv = 2 ! Speed 

        if (l == 10) then 

          fcn_data % rdata(5) = r * (1.0 + epsfrac) ! Rho 

        else if (l < 10) then 
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          fcn_data % rdata(3) = sigma(volatility) * (1.0 + epsfrac) 

        end if 

          if (l == 11) then 

             xgridp = xgrid + dx2 

             xgridm = xgrid - dx2 

             eval_pointsp = eval_points + dx2 

             eval_pointsm = eval_points - dx2 

             x_maxp = x_max + dx2 

             x_maxm = x_max - dx2 

          end if 

          fcn_data % rdata(2) = x_maxp 

          call feynman_kac(xgridp, time, nlbc, nrbc, fkcoef,& 

                      fkinitcond, fkbc, y, yprime,& 

                      FCN_DATA = fcn_data) 

          do i=1,nt 

            spline_valuesp(:,i) = hqsval(eval_pointsp, xgridp,& 

                                         y(:,i), IDERIV=iSderiv) 

          end do 

           

          if (l == 10) then 

             fcn_data % rdata(5) = r * (1.0 - epsfrac) ! Rho 

          else if (l < 10) then 

             fcn_data % rdata(3) = sigma(volatility) *& 

                                   (1.0 - epsfrac) 

          end if 

          fcn_data % rdata(2) = x_maxm 

! calculate spline values for sigmaM = sigmai2-1*(1. - epsfrac) or 

! rM = r*(1. - epsfrac): 

          call feynman_kac(xgridm, time, nlbc, nrbc, fkcoef,& 

                           fkinitcond, fkbc, y, yprime,& 

                           FCN_DATA = fcn_data) 

          do i=1,NT 

            spline_valuesm(:,i) = hqsval(eval_pointsm, xgridm,& 

                                         y(:,i), IDERIV=iSderiv) 

          end do 

 

          if (iquart == 1) then 

            xgridpp = xgrid 

            xgridmm = xgrid 

            eval_pointspp = eval_points 

            eval_pointsmm = eval_points 

            x_maxpp = x_max 

            x_maxmm = x_max 

               

            if (l == 11) then  ! Speed 

              xgridpp = xgrid + 2.0 * dx2 

              xgridmm = xgrid - 2.0 * dx2 

              eval_pointspp = eval_points + 2.0 * dx2 

              eval_pointsmm = eval_points - 2.0 * dx2 

              x_maxpp = x_max + 2.0 * dx2 

              x_maxmm = x_max - 2.0 * dx2 

            end if       

 

            fcn_data % rdata(2) = x_maxpp 

            if (l == 10) then 

! calculate spline values for rPP = r*(1. + 2.*epsfrac): 
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              fcn_data % rdata(5) = r * (1.0 + 2.0 * epsfrac) 

            else if (l < 10) then 

! calculate spline values for sigmaPP = sigma(i2)*(1. + 2.*epsfrac): 

              fcn_data % rdata(3) = sigma(volatility) *&  

                                     (1.0 + 2.0 * epsfrac) 

            end if 

            call feynman_kac (xgridpp, time, nlbc, nrbc, fkcoef,& 

                              fkinitcond, fkbc, y, yprime,& 

                              FCN_DATA = fcn_data) 

 

            do i=1,nt 

              spline_valuespp(:,i) = hqsval(eval_pointspp, xgridpp,& 

                                            Y(:,i), IDERIV=iSderiv) 

            end do 

 

            fcn_data % rdata(2) = x_maxmm 

! calculate spline values for sigmaMM = sigmai2-1*(1. - 2.*epsfrac) 

! or rMM = r*(1. - 2.*epsfrac) 

            if (l == 10) then 

              fcn_data % rdata(5) = r * (1.0 - 2.0 * epsfrac) 

            else if (l < 10) then 

              fcn_data % rdata(3) = sigma(volatility) *&  

                                    (1.0 - 2.0 * epsfrac) 

            end if 

            call feynman_kac (xgridmm, time, nlbc, nrbc, fkcoef,& 

                              fkinitcond, fkbc, y, yprime,& 

                              FCN_DATA = fcn_data) 

 

            do i=1,nt 

              spline_valuesmm(:,i) = hqsval(eval_pointsmm, xgridmm,& 

                                            y(:,i), IDERIV=iSderiv) 

            end do 

          end if ! if (iquart == 1) 

           

          if (l /= 8) then 

            eps = sigma(volatility) * epsfrac 

            if (l == 10) eps = r * epsfrac ! Rho 

            if (l == 11) eps = dx2 ! Speed 

 

            spline_values(:,:,l) = & 

               (spline_valuesp - spline_valuesm) / (2.0 * eps) 

            if (iquart /= 0)  then 

              spline_values1 =& 

                (spline_valuespp - spline_valuesmm) /(4.0 * eps) 

              spline_values(:,:,l)  =& 

                (4.0 * spline_values(:,:,l) - spline_values1) / 3.0 

            end if 

          end if 

 

          if (l == 8) then ! Volga 

            eps = sigma(volatility) * epsfrac                         

            spline_values(:,:,l) =& 

                 (spline_valuesp + spline_valuesm - 2.0 * & 

                  spline_values(:,:,1)) / (eps * eps) 

                         

             if (iquart /= 0) then 

               spline_values1 =& 
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                 (spline_valuespp + spline_valuesmm - 2.0 * &  

                   spline_values(:,:,1)) / (4.0 * eps * eps) 

               spline_values(:,:,l) = & 

                (4.0 * spline_values(:,:,l) - spline_values1) / 3.0 

          end if 

        end if 

      end do 

! Evaluate BS solution at vector eval_points,  

! at each time value prior to expiration. 

 

      do i = 1,nt 

! 

!  Black-Scholes (BS) European call option 

!  value = ValBSEC(S,t) = exp(-q*tau)*S*N01CDF(d1) - 

!                         exp(-r*tau)*K*N01CDF(d2), 

!  where: 

!    tau = time to maturity = T - t; 

!    q = annual dividend yield; 

!    r = risk free rate; 

!    K = strike price; 

!    S = stock price; 

!    N01CDF(x) = N(0,1)_CDF(x); 

!    d1 = ( log( S/K ) + 

!         ( r - q + 0.5*sigma**2 )*tau ) / 

!         ( sigma*sqrt(tau) ); 

!    d2 = d1 - sigma*sqrt(tau) 

! 

! BS option values for tau = time(i): 

        tau = time(i) 

        sigsqtau = (sigma(volatility)**2) * tau 

        sqrt_sigsqtau = sqrt(sigsqtau) 

        sigsq = sigma(volatility) * sigma(volatility) 

        do j = 1, nv 

! Values of the underlying price where evaluations are made: 

          S = eval_points(j) 

          d1 = (log(S / ks(strike_price)) + (r - dividend)&  

                * tau + 0.5 * sigsqtau) / sqrt_sigsqtau 

          n01pdf_d1 = exp((-0.5) * d1 * d1) / sqrt2pi 

          nu = exp((-dividend) * tau) * S * n01pdf_d1 * sqrt(tau) 

                           

          d2 = d1 - sqrt_sigsqtau 

          BS_values(j,i,1) = exp((-dividend) * tau) * S *&  

                                  anordf(d1) - exp((-r) * tau) *& 

                                  ks(strike_price) * anordf(d2) 

! greek = Rho 

          BS_values(j,i,10) = exp((-r) * tau) * ks(strike_price) *& 

                                    tau * anordf(d2) 

! greek = Vega 

          BS_values(j,i,7) = nu 

! greek = Volga 

          BS_values(j,i,8) = nu * d1 * d2 / sigma(volatility) 

! greek = delta 

          BS_values(j,i,2) = exp((-dividend) * tau) * anordf(d1) 

! greek = Vanna 

          BS_values(j,i,9) = (nu / S) * (1.0 - d1 / sqrt_sigsqtau) 

! greek = dgamma 
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          BS_values(j,i,3) = exp((-dividend) * tau) *&  

                                 n01pdf_d1 /(S * sqrt_sigsqtau) 

! greek = speed 

          BS_values(j,i,11) = (-exp((-dividend) * tau)) *& 

                         n01pdf_d1 * (1.0 + d1 / sqrt_sigsqtau)& 

                         / (S * S * sqrt_sigsqtau) 

! greek = speed 

          BS_values(j,i,12) = (-exp((-dividend) * tau)) * &  

                       n01pdf_d1 * (1.0 + d1 / sqrt_sigsqtau) / &  

                       (S * S * sqrt_sigsqtau) 

          d2 = d1 - sqrt_sigsqtau 

! greek = theta 

          BS_values(j,i,4) = exp((-dividend) * tau) * S * &  

                          (dividend * anordf(d1) - 0.5 * sigsq * & 

                           n01pdf_d1 / sqrt_sigsqtau) - r * & 

                           exp((-r) * tau) * ks(strike_price) * &  

                           anordf(d2) 

! greek = charm 

          BS_values(j,i,5) = exp((-dividend) * tau) * ((-dividend)& 

                           * anordf(d1) + n01pdf_d1 *& 

                          ((r - dividend) * tau - 0.5 * d2 *& 

                           sqrt_sigsqtau) / (tau * sqrt_sigsqtau)) 

! greek = color 

          BS_values(j,i,6) = &  

                          (-exp((-dividend) * tau)) * n01pdf_d1 *& 

                          (2.0 * dividend * tau + 1.0 + d1 *& 

                          (2.0 * (r - dividend) * tau - d2 *& 

                           sqrt_sigsqtau) / sqrt_sigsqtau) / & 

                          (2.0 * S * tau * sqrt_sigsqtau) 

        end do 

      end do 

 

      do l=1,12 

        relerrmax = 0.0 

        do i = 1,nv 

          do j = 1,nt 

            sVo = spline_values(i,j,l)  

            BSVo = BS_values(i,j,l) 

            relerr = abs((sVo - BSVo) / BSVo) 

            if (relerr > relerrmax) relerrmax = relerr 

            reavg(l) = reavg(l) + relerr 

            irect(l) = irect(l) + 1 

          end do 

        end do 

        if (relerrmax > rex(l)) rex(l) = relerrmax 

 

        if ((volatility == 1) .and. (strike_price == 1)) then 

          do i=1,nv 

            sVo_array(1:nt) = spline_values(i,1:nt,l) 

            write(nout,'("underlying price: ", F4.1,"; FK ",'//& 

                  'A6,": ", 3(F13.10,TR1))') eval_points(i),& 

                  greek_name(l),& 

                  (sVo_array(k), k=1,nt) 

            write(nout, '(T25, "BS ", A6,": ", 3(F13.10,TR1))')& 

                  greek_name(l), (BS_values(i,k,l), k=1,nt) 

           end do 

        end if 
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      end do 

      end subroutine calc_Greeks 

      end 

 

! These functions and routines  define the coefficients, payoff and boundary 

conditions. 

      function fkcoef (x, tx, iflag, fcn_data) 

      use mp_types 

      implicit none 

      real(kind(1d0)), intent(in) :: x, tx 

      integer, intent(inout) :: iflag 

      type(d_fcn_data), optional :: fcn_data 

      real(kind(1d0)) :: fkcoef 

 

      real(kind(1d0)) :: sigma, interest_rate, alpha, dividend,& 

                         half = 0.5d0 

      sigma = fcn_data % rdata(3) 

      alpha = fcn_data % rdata(4) 

      interest_rate = fcn_data % rdata(5) 

      dividend = fcn_data % rdata(6) 

      select case (iflag) 

        case (1) 

! The coefficient derivative d(sigma)/dx 

          fkcoef = half*alpha*sigma*x**(alpha*half-1.0d0) 

! The coefficient sigma(x)  

        case (2) 

          fkcoef = sigma*x**(alpha*half)  

        case (3) 

! The coefficient mu(x) 

          fkcoef = (interest_rate - dividend) * x 

        case (4) 

! The coefficient kappa(x) 

          fkcoef = interest_rate 

      end select 

! Note that there is no time dependence 

      iflag = 0 

      return  

      end function fkcoef 

 

      function fkinitcond(x, fcn_data) 

      use mp_types 

      implicit none 

      real(kind(1d0)), intent(in) :: x 

      type (d_fcn_data), optional :: fcn_data 

      real(kind(1d0)) :: fkinitcond 

      real(kind(1d0)) :: zero = 0.0d0 

      real(kind(1d0)) :: strike_price 

 

      strike_price = fcn_data % rdata(1) 

! The payoff function 

      fkinitcond = max(x - strike_price, zero) 

      return 

      end function fkinitcond 

 

      subroutine fkbc (tx, iflag, bccoefs, fcn_data) 

      use mp_types 
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      implicit none 

      real(kind(1d0)), intent(in) :: tx 

      integer, intent(inout) :: iflag 

      real(kind(1d0)), dimension(:,:), intent(out) :: bccoefs 

      type (d_fcn_data), optional :: fcn_data 

      real(kind(1d0)) :: x_max, df, interest_rate, strike_price 

 

      strike_price = fcn_data % rdata(1) 

      x_max = fcn_data % rdata(2) 

      interest_rate = fcn_data % rdata(5) 

      select case (iflag) 

        case (1) 

          bccoefs(1,1:4) = (/1.0d0, 0.0d0, 0.0d0, 0.0d0/) 

          bccoefs(2,1:4) = (/0.0d0, 1.0d0, 0.0d0, 0.0d0/) 

          bccoefs(3,1:4) = (/0.0d0, 0.0d0, 1.0d0, 0.0d0/) 

! Note no time dependence at left end 

          iflag = 0 

        case (2) 

          df = exp(interest_rate * tx) 

          bccoefs(1,1:4) = (/1.0d0, 0.0d0, 0.0d0, x_max -& 

                             df*strike_price/)    

          bccoefs(2,1:4) = (/0.0d0, 1.0d0, 0.0d0, 1.0d0/) 

          bccoefs(3,1:4) = (/0.0d0, 0.0d0, 1.0d0, 0.0d0/) 

      end select 

      end subroutine fkbc 

Output 

    Constant Elasticity of Variance Model for Vanilla Call Option 

         Interest Rate:   0.050      Continuous Dividend:   0.000 

         Minimum and Maximum Prices of Underlying:    0.00  60.00 

         Number of equally spaced spline knots:  120 

         Number of unknowns:  363 

 

 

         Time in Years Prior to Expiration:    0.0833 0.3333 0.5833 

         Option valued at Underlying Prices:    19.00  20.00  21.00 

 

         3 point (parabolic) estimate of parameter derivatives 

         epsfrac =  0.00100000 

 

 

         Strike =15.00 Sigma = 0.20 Alpha = 2.00: 

 

         years to expiration:  0.0833 0.3333 0.5833 

 

underlying price: 19.0; FK  Value:  4.0623732450  4.2575924184  4.4733805278 

                        BS  Value:  4.0623732509  4.2575929678  4.4733814062 

underlying price: 20.0; FK  Value:  5.0623700127  5.2505145764  5.4492418798 

                        BS  Value:  5.0623700120  5.2505143129  5.4492428547 

underlying price: 21.0; FK  Value:  6.0623699727  6.2485587059  6.4385718831 

                        BS  Value:  6.0623699726  6.2485585270  6.4385720688 

underlying price: 19.0; FK  Delta:  0.9999864098  0.9877532309  0.9652249945 

                        BS  Delta:  0.9999863811  0.9877520034  0.9652261127 

underlying price: 20.0; FK  Delta:  0.9999998142  0.9964646548  0.9842482622 

                        BS  Delta:  0.9999998151  0.9964644003  0.9842476147 

underlying price: 21.0; FK  Delta:  0.9999999983  0.9990831687  0.9932459040 
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                        BS  Delta:  0.9999999985  0.9990834124  0.9932451927 

underlying price: 19.0; FK  Gamma:  0.0000543456  0.0144908955  0.0264849216 

                        BS  Gamma:  0.0000547782  0.0144911447  0.0264824761 

underlying price: 20.0; FK  Gamma:  0.0000008315  0.0045912854  0.0129288434 

                        BS  Gamma:  0.0000008437  0.0045925328  0.0129280372 

underlying price: 21.0; FK  Gamma:  0.0000000080  0.0012817012  0.0058860348 

                        BS  Gamma:  0.0000000077  0.0012818272  0.0058865489 

underlying price: 19.0; FK  Theta: -0.7472631891 -0.8301000450 -0.8845209253 

                        BS  Theta: -0.7472638978 -0.8301108199 -0.8844992143 

underlying price: 20.0; FK  Theta: -0.7468881086 -0.7706770630 -0.8152217385 

                        BS  Theta: -0.7468880640 -0.7706789470 -0.8152097697 

underlying price: 21.0; FK  Theta: -0.7468815742 -0.7479185416 -0.7728950748 

                        BS  Theta: -0.7468815673 -0.7479153725 -0.7728982104 

underlying price: 19.0; FK  Charm: -0.0014382828 -0.0879903285 -0.0843323992 

                        BS  Charm: -0.0014397520 -0.0879913927 -0.0843403333 

underlying price: 20.0; FK  Charm: -0.0000284881 -0.0364107814 -0.0547260337 

                        BS  Charm: -0.0000285354 -0.0364209077 -0.0547074804 

underlying price: 21.0; FK  Charm: -0.0000003396 -0.0126436426 -0.0313343015 

                        BS  Charm: -0.0000003190 -0.0126437838 -0.0313252716 

underlying price: 19.0; FK  Color:  0.0051622176  0.0685064195  0.0299871130 

                        BS  Color:  0.0051777484  0.0684737183  0.0300398444 

underlying price: 20.0; FK  Color:  0.0001188761  0.0355826975  0.0274292189 

                        BS  Color:  0.0001205713  0.0355891884  0.0274307898 

underlying price: 21.0; FK  Color:  0.0000015432  0.0143174420  0.0190897159 

                        BS  Color:  0.0000015141  0.0143247729  0.0190752019 

underlying price: 19.0; FK   Vega:  0.0003289870  0.3487168323  1.1153520921 

                        BS   Vega:  0.0003295819  0.3487535501  1.1153536190 

underlying price: 20.0; FK   Vega:  0.0000056652  0.1224632724  0.6032458218 

                        BS   Vega:  0.0000056246  0.1224675413  0.6033084039 

underlying price: 21.0; FK   Vega:  0.0000000623  0.0376974472  0.3028275297 

                        BS   Vega:  0.0000000563  0.0376857196  0.3028629419 

underlying price: 19.0; FK  Volga:  0.0286254576  8.3705173459 16.7944554708 

                        BS  Volga:  0.0286064650  8.3691191978 16.8219823169 

underlying price: 20.0; FK  Volga:  0.0007137402  4.2505025277 12.9315441466 

                        BS  Volga:  0.0007186004  4.2519372748 12.9612638820 

underlying price: 21.0; FK  Volga:  0.0000100364  1.7613083436  8.6626161799 

                        BS  Volga:  0.0000097963  1.7617504949  8.6676581034 

underlying price: 19.0; FK  Vanna: -0.0012418872 -0.3391850563 -0.6388552010 

                        BS  Vanna: -0.0012431594 -0.3391932673 -0.6387423326 

underlying price: 20.0; FK  Vanna: -0.0000244490 -0.1366771953 -0.3945466661 

                        BS  Vanna: -0.0000244825 -0.1367114682 -0.3945405194 

underlying price: 21.0; FK  Vanna: -0.0000002904 -0.0466333335 -0.2187406645 

                        BS  Vanna: -0.0000002726 -0.0466323413 -0.2187858632 

underlying price: 19.0; FK    Rho:  1.2447807022  4.8365676561  8.0884594648 

                        BS    Rho:  1.2447806658  4.8365650322  8.0884502627 

underlying price: 20.0; FK    Rho:  1.2448021850  4.8929216544  8.3041708173 

                        BS    Rho:  1.2448021908  4.8929245641  8.3041638392 

underlying price: 21.0; FK    Rho:  1.2448024992  4.9107294560  8.4114197621 

                        BS    Rho:  1.2448024996  4.9107310444  8.4114199038 

underlying price: 19.0; FK  Speed: -0.0002124684 -0.0156265453 -0.0179534748 

                        BS  Speed: -0.0002123854 -0.0156192867 -0.0179536520 

underlying price: 20.0; FK  Speed: -0.0000037247 -0.0055877024 -0.0097502607 

                        BS  Speed: -0.0000037568 -0.0055859333 -0.0097472434 

underlying price: 21.0; FK  Speed: -0.0000000385 -0.0017085830 -0.0048143174 

                        BS  Speed: -0.0000000378 -0.0017082128 -0.0048130214 

underlying price: 19.0; FK Speed2: -0.0002310655 -0.0156276977 -0.0179516855 



 

 

IMSL MATH LIBRARY Chapter 5: Differential Equations  1185 

     

     

 

                        BS Speed2: -0.0002123854 -0.0156192867 -0.0179536520 

underlying price: 20.0; FK Speed2: -0.0000043215 -0.0055923924 -0.0097502997 

                        BS Speed2: -0.0000037568 -0.0055859333 -0.0097472434 

underlying price: 21.0; FK Speed2: -0.0000000475 -0.0017117661 -0.0048153107 

                        BS Speed2: -0.0000000378 -0.0017082128 -0.0048130214 

 

 Greek:  Value;  avg rel err:  0.000146171196;  max rel err:  0.009030737566 

 Greek:  Delta;  avg rel err:  0.000035817272;  max rel err:  0.001158483076 

 Greek:  Gamma;  avg rel err:  0.001088392379;  max rel err:  0.044845800289 

 Greek:  Theta;  avg rel err:  0.000054196359;  max rel err:  0.001412847300 

 Greek:  Charm;  avg rel err:  0.001213347059;  max rel err:  0.064576457415 

 Greek:  Color;  avg rel err:  0.003323954467;  max rel err:  0.136355681544 

 Greek:   Vega;  avg rel err:  0.001514753397;  max rel err:  0.106255126885 

 Greek:  Volga;  avg rel err:  0.058531380389;  max rel err:  1.639564208085 

 Greek:  Vanna;  avg rel err:  0.001061525805;  max rel err:  0.065629483069 

 Greek:    Rho;  avg rel err:  0.000146868262;  max rel err:  0.009438788128 

 Greek:  Speed;  avg rel err:  0.002065441607;  max rel err:  0.073086615101 

 Greek: Speed2;  avg rel err:  0.008429883935;  max rel err:  0.255746328973 

HQSVAL 
This rank-1 array function evaluates a Hermite quintic spline or one of its derivatives for an array 

of input points. In particular, it computes solution values for the Feynman-Kac PDE handled by 

routine FEYNMAN_KAC. 

Function Return Value 

HQSVAL — Rank-1 array containing the values or derivatives of the Hermite quintic spline 

at the points given in array XVAL.   (Output) 

size = size(XVAL). 

Required Arguments 

XVAL — Rank-1 array containing the points at which the Hermite quintic spline is to be 

evaluated.   (Input) 

Let NXVAL = size(XVAL). The points in XVAL must lie within the range of array 

BREAK, i.e. BREAK(1) ≤ XVAL(I)≤ BREAK(NXVAL), I=1,…,NXVAL. 

BREAK — Rank-1 array containing the breakpoints for the Hermite quintic spline 

representation.   (Input) 

When applied to the output from routine FEYNMAN_KAC, array BREAK is identical to 

array XGRID. 

Let  NBREAK = size(BREAK). NBREAK must be at least 2 and the values in BREAK 

must be in strictly increasing order. 

COEFFS — Rank-1 array of size 3NBREAK containing the coefficients of the Hermite 

quintic spline representation.   (Input) 

When applied to the output arrays Y or YPRIME from routine FEYNMAN_KAC, array 

COEFFS is identical to one of the columns of arrays Y or YPRIME, respectively. 
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Optional Argument 

IDERIV —   Order of the derivative to be evaluated.   (Input) 

It is required that IDERIV = 0, 1, 2 or 3. Use 0 for the function itself, 1 for the first 

derivative, etc. 

Default: IDERIV = 0. 

FORTRAN 90 Interface 

Generic: HQSVAL (XVAL, BREAK, COEFFS [,…]) 

Specific: The specific interface names are S_HQSVAL and D_HQSVAL. 

Description 

The Hermite quintic spline interpolation is done over the composite interval  min max,x x , where 

BREAK(I) = ix  are given by    min 1 2 maxmx x x x x     . 

The Hermite quintic spline function is constructed using three primary functions, defined by 
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are the values of a given twice continuously differentiable function f  and its first two derivatives 

at the breakpoints. 

The approximating function ( )H x  is twice continuously differentiable on  min max,x x , whereas 



 

 

IMSL MATH LIBRARY Chapter 5: Differential Equations  1187 

     

     

 

the third derivative is in general only continuous within the interior of the intervals  1,i ix x  . 

From the local representation of ( )H x  it follows that 

3 2

3 1

3

( ) ( ) ,

( ) ( ) ,

( ) , 1, ,

i i i

i i i

i i

H x f x y

H x f x y

H x y i m





 

  

  
. 

The spline coefficients , 1, ,3 ,iy i m  are stored as successive triplets in array COEFFS.  For a 

given  min max,w x x , function HQSVAL uses the information in COEFFS together with the 

values of 0 1 2, ,b b b  and its derivatives at w to compute 
( )

( ), 0, , 3
d

H w d   using the local 

representation on the particular subinterval containing w . 

When using arrays XGRID and Y(:,I) from routine FEYNMAN_KAC as input arrays BREAK and 

COEFFS, function HQSVAL allows for computation of approximate solutions , , ,x xx xxxf f f f  to 

the Feynman-Kac PDE for IDERIV=0,1,2, 3, respectively. The solution values are evaluated at the 

array of points (XVAL(:),TGRID(I)) for I=1,…,size(TGRID) and (XVAL(:),0) for I=0 . 

Similarly, using arrays XGRID and YPRIME(:,I) allows for computation of approximate 

solutions , , ,t tx txx txxxf f f f  to the Feynman-Kac PDE. 

Example: Exact Interpolation with Hermite Quintic Splines 

Consider function 
5

( )f x x , a polynomial of degree 5, on the interval [ 1,1] with breakpoints 

1 . Then, the end derivative values are  

1 2 3( 1) 1, ( 1) 5, ( 1) 20y f y f y f           
  

and 

4 5 6(1) 1, (1) 5, (1) 20y f y f y f      
. 

Since the Hermite quintic interpolates all polynomials up to degree 5 exactly, the spline 

interpolation on [ 1,1]  must agree with the exact function values up to rounding errors. 

 

      use hqsval_int 

      use umach_int 

  

      implicit none    

  

      integer :: i, nout 

      real(kind(1e0)) :: break(2), xval(7), coeffs(6), interpolant(7) 

  

! Define arrays 

      break = (/ -1.0, 1.0 /) 

      xval = (/ -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75 /) 

      coeffs = (/ -1.0, 5.0, -20.0, 1.0, 5.0, 20.0 /) 

  

! Compute interpolant 
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      interpolant = hqsval(xval, break, coeffs)  

 

      call umach(2, nout) 

! Compare interpolant with exact function.  

      write(nout,'(A6,A10,A15,A10)')'x', 'F(x)', 'Interpolant', 'Error' 

      write(nout,'(f8.3,f9.3,f11.3,f15.7)') (xval(i), F(xval(i)), & 

             interpolant(i), abs(F(xval(i))-interpolant(i)), & 

             i=1,7) 

       

      contains 

      function F(x) 

        implicit none 

        real(kind(1e0)) :: F, x 

 

        F = x**5 

        return 

      end function F 

      end 

 

Output 
 

     x      F(x)    Interpolant     Error 

  -0.750   -0.237     -0.237      0.0000000 

  -0.500   -0.031     -0.031      0.0000000 

  -0.250   -0.001     -0.001      0.0000000 

   0.000    0.000      0.000      0.0000000 

   0.250    0.001      0.001      0.0000000 

   0.500    0.031      0.031      0.0000000 

   0.750    0.237      0.237      0.0000000 

FPS2H 

 

 

 

Solves Poisson‘s or Helmholtz‘s equation on a two-dimensional rectangle using a fast Poisson 

solver based on the HODIE finite-difference scheme on a uniform mesh. 

Required Arguments 

PRHS — User-supplied FUNCTION to evaluate the right side of the partial differential 

equation. The form is PRHS(X, Y), where 

 X – X-coordinate value.    (Input) 

 Y – Y-coordinate value.    (Input) 

 PRHS – Value of the right side at (X, Y).   (Output) 
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 PRHS must be declared EXTERNAL in the calling program. 

BRHS — User-supplied FUNCTION to evaluate the right side of the boundary conditions. The 

form is BRHS(ISIDE, X, Y), where 

 ISIDE – Side number.   (Input) 

See IBCTY below for the definition of the side numbers. 

 X – X-coordinate value.   (Input) 

 Y – Y-coordinate value.   (Input) 

 BRHS – Value of the right side of the boundary condition at (X, Y).   (Output) 

 BRHS must be declared EXTERNAL in the calling program. 

COEFU — Value of the coefficient of U in the differential equation.   (Input) 

NX — Number of grid lines in the X-direction.   (Input)  

NX must be at least 4. See Comment 2 for further restrictions on NX. 

NY — Number of grid lines in the Y-direction.   (Input)  

NY must be at least 4. See Comment 2 for further restrictions on NY. 

AX — The value of X along the left side of the domain.   (Input) 

BX — The value of X along the right side of the domain.   (Input) 

AY — The value of Y along the bottom of the domain.   (Input) 

BY — The value of Y along the top of the domain.   (Input) 

IBCTY — Array of size 4 indicating the type of boundary condition on each side of the 

domain or that the solution is periodic.    (Input)  

The sides are numbered 1 to 4 as follows:  

Side Location 

1 - Right (X = BX) 

2 - Bottom (Y = AY) 

3 - Left (X = AX) 

4 - Top (Y = BY) 

There are three boundary condition types.  
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IBCTY Boundary Condition 

1 Value of U is given. (Dirichlet) 

2 Value of dU/dX is given (sides 1 

and/or 3). (Neumann) Value of 

dU/dY is given (sides 2 and/or 4). 

3 Periodic. 

U — Array of size NX by NY containing the solution at the grid points.    (Output) 

Optional Arguments 

IORDER — Order of accuracy of the finite-difference approximation.    (Input)  

It can be either 2 or 4. Usually, IORDER = 4 is used. 

Default: IORDER = 4. 

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling 

program.    (Input) 

Default: LDU = size (U,1). 

FORTRAN 90 Interface 

Generic: CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY, U [,…]) 

Specific:  The specific interface names are S_FPS2H and D_FPS2H. 

FORTRAN 77 Interface 

Single: CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY, IORDER, U, 
LDU) 

Double: The double precision name is DFPS2H. 

Description 

Let c = COEFU, ax = AX, bx = BX, ay = AY, by = BY, nx = NX and ny = NY. 

FPS2H is based on the code HFFT2D by Boisvert (1984). It solves the equation 

2 2

2 2

u u
cu p

x y

 

 
  

 

on the rectangular domain (ax, bx)  (ay, by) with a user-specified combination of Dirichlet 

(solution prescribed), Neumann (first-derivative prescribed), or periodic boundary conditions. The 

sides are numbered clockwise, starting with the right side. 
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Side 3 Side 1

a y

xa bx
x

 

When c = 0 and only Neumann or periodic boundary conditions are prescribed, then any constant 

may be added to the solution to obtain another solution to the problem. In this case, the solution of 

minimum -norm is returned. 

The solution is computed using either a second-or fourth-order accurate finite-difference 

approximation of the continuous equation. The resulting system of linear algebraic equations is 

solved using fast Fourier transform techniques. The algorithm relies upon the fact that 1nx   is 

highly composite (the product of small primes). For details of the algorithm, see Boisvert (1984). 

If 1nx   is highly composite then the execution time of FPS2H is proportional to log2n n nx y x . 

If evaluations of p(x, y) are inexpensive, then the difference in running time between IORDER = 2 

and IORDER = 4 is small. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2S2H/DF2S2H. The 

reference is: 

CALL F2S2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, 

IBCTY, IORDER, U, LDU, UWORK, WORK) 

The additional arguments are as follows: 

UWORK — Work array of size NX + 2 by NY + 2. If the actual 

dimensions of U are large enough, then U and UWORK can be the same 

array. 

WORK — Work array of length (NX + 1)(NY + 1)(IORDER  2)/2 +  

6(NX + NY) + NX/2 + 16. 
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2. The grid spacing is the distance between the (uniformly spaced) grid lines. It is given 

by the formulas HX = (BX - AX)/(NX  1) and HY = (BY - AY)/(NY - 1). The grid 

spacings in the X and Y directions must be the same, i.e., NX and NY must be such that 

HX equals HY. Also, as noted above, NX and NY must both be at least 4. To increase the 

speed of the fast Fourier transform, NX - 1 should be the product of small primes. Good 

choices are 17, 33, and 65. 

3. If COEFU is nearly equal to an eigenvalue of the Laplacian with homogeneous 

boundary conditions, then the computed solution might have large errors. 

Example 

In this example, the equation 

 
2 2

2 3

2 2
3 2sin 2 16 x yu u
u x y e

x y

 

 

     

 

with the boundary conditions u/y = 2 cos(x + 2y) + 3 exp(2x + 3y) on the bottom side and  

u = sin(x + 2y) + exp(2x + 3y) on the other three sides. The domain is the rectangle[0, 1/4]  [0, 

1/2]. The output of FPS2H is a 17  33 table of U values. The quadratic interpolation routine 

QD2VL is used to print a table of values. 
 

      USE FPS2H_INT 

      USE QD2VL_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    NCVAL, NX, NXTABL, NY, NYTABL 

      PARAMETER  (NCVAL=11, NX=17, NXTABL=5, NY=33, NYTABL=5) 

! 

      INTEGER    I, IBCTY(4), IORDER, J, NOUT 

      REAL       AX, AY, BRHS, BX, BY, COEFU, ERROR, FLOAT, PRHS, & 

                TRUE, U(NX,NY), UTABL, X, XDATA(NX), Y, YDATA(NY) 

      INTRINSIC  FLOAT 

      EXTERNAL   BRHS, PRHS 

!                                 Set rectangle size 

      AX = 0.0 

      BX = 0.25 

      AY = 0.0 

      BY = 0.50 

!                                 Set boundary condition types 

      IBCTY(1) = 1 

      IBCTY(2) = 2 

      IBCTY(3) = 1 

      IBCTY(4) = 1 

!                                 Coefficient of U 

      COEFU = 3.0 

!                                 Order of the method 

      IORDER = 4 

!                                 Solve the PDE 

      CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY, U) 
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!                                 Setup for quadratic interpolation 

      DO 10  I=1, NX 

         XDATA(I) = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NX-1) 

   10 CONTINUE 

      DO 20  J=1, NY 

         YDATA(J) = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NY-1) 

   20 CONTINUE 

!                                 Print the solution 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,'(8X,A,11X,A,11X,A,8X,A)') 'X', 'Y', 'U', 'Error' 

      DO 40  J=1, NYTABL 

         DO 30  I=1, NXTABL 

            X     = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NXTABL-1) 

            Y     = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NYTABL-1) 

            UTABL = QD2VL(X,Y,XDATA,YDATA,U) 

            TRUE  = SIN(X+2.*Y) + EXP(2.*X+3.*Y) 

            ERROR = TRUE - UTABL 

            WRITE (NOUT,'(4F12.4)') X, Y, UTABL, ERROR 

   30 CONTINUE 

   40 CONTINUE 

      END 

! 

      REAL FUNCTION PRHS (X, Y) 

      REAL       X, Y 

! 

      REAL       EXP, SIN 

      INTRINSIC  EXP, SIN 

!                                 Define right side of the PDE 

      PRHS = -2.*SIN(X+2.*Y) + 16.*EXP(2.*X+3.*Y) 

      RETURN 

      END 

! 

      REAL FUNCTION BRHS (ISIDE, X, Y) 

      INTEGER    ISIDE 

      REAL       X, Y 

! 

      REAL       COS, EXP, SIN 

      INTRINSIC  COS, EXP, SIN 

!                                 Define the boundary conditions 

      IF (ISIDE .EQ. 2) THEN 

         BRHS = 2.*COS(X+2.*Y) + 3.*EXP(2.*X+3.*Y) 

      ELSE 

         BRHS = SIN(X+2.*Y) + EXP(2.*X+3.*Y) 

      END IF 

      RETURN 

      END 

Output 
 

    X           Y           U        Error 

 0.0000      0.0000      1.0000      0.0000 

 0.0625      0.0000      1.1956      0.0000 

 0.1250      0.0000      1.4087      0.0000 

 0.1875      0.0000      1.6414      0.0000 

 0.2500      0.0000      1.8961      0.0000 

 0.0000      0.1250      1.7024      0.0000 

 0.0625      0.1250      1.9562      0.0000 



     

     
 

1194  Chapter 5: Differential Equations IMSL MATH LIBRARY  

     

     

 

 0.1250      0.1250      2.2345      0.0000 

 0.1875      0.1250      2.5407      0.0000 

 0.2500      0.1250      2.8783      0.0000 

 0.0000      0.2500      2.5964      0.0000 

 0.0625      0.2500      2.9322      0.0000 

 0.1250      0.2500      3.3034      0.0000 

 0.1875      0.2500      3.7148      0.0000 

 0.2500      0.2500      4.1720      0.0000 

 0.0000      0.3750      3.7619      0.0000 

 0.0625      0.3750      4.2163      0.0000 

 0.1250      0.3750      4.7226      0.0000 

 0.1875      0.3750      5.2878      0.0000 

 0.2500      0.3750      5.9199      0.0000 

 0.0000      0.5000      5.3232      0.0000 

 0.0625      0.5000      5.9520      0.0000 

 0.1250      0.5000      6.6569      0.0000 

 0.1875      0.5000      7.4483      0.0000 

 0.2500      0.5000      8.3380      0.0000 

 

FPS3H 

 

 

 

Solves Poisson‘s or Helmholtz‘s equation on a three-dimensional box using a fast Poisson solver 

based on the HODIE finite-difference scheme on a uniform mesh. 

Required Arguments 

PRHS — User-supplied FUNCTION to evaluate the right side of the partial differential 

equation. The form is PRHS(X, Y, Z), where 

 X – The x-coordinate value.    (Input) 

 Y – The y-coordinate value.    (Input) 

 Z – The z-coordinate value.    (Input) 

 PRHS – Value of the right side at (X, Y, Z).    (Output) 

 PRHS must be declared EXTERNAL in the calling program. 

BRHS — User-supplied FUNCTION to evaluate the right side of the boundary conditions. The 

form is BRHS(ISIDE, X, Y, Z), where 

 ISIDE – Side number.    (Input)  
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See IBCTY for the definition of the side numbers. 

 X – The x-coordinate value.    (Input) 

 Y – The y-coordinate value.    (Input) 

 Z – The z-coordinate value.    (Input) 

 BRHS – Value of the right side of the boundary condition at (X, Y, Z).    (Output) 

 BRHS must be declared EXTERNAL in the calling program. 

COEFU — Value of the coefficient of U in the differential equation.    (Input) 

NX — Number of grid lines in the x-direction.    (Input)  

NX must be at least 4. See Comment 2 for further restrictions on NX. 

NY — Number of grid lines in the y-direction.    (Input)  

NY must be at least 4. See Comment 2 for further restrictions on NY. 

NZ — Number of grid lines in the y-direction.    (Input)  

NZ must be at least 4. See Comment 2 for further restrictions on NZ. 

AX — Value of X along the left side of the domain.    (Input) 

BX — Value of X along the right side of the domain.    (Input) 

AY — Value of Y along the bottom of the domain.    (Input) 

BY — Value of Y along the top of the domain.    (Input) 

AZ — Value of Z along the front of the domain.    (Input) 

BZ — Value of Z along the back of the domain.    (Input) 

IBCTY — Array of size 6 indicating the type of boundary condition on each face of the 

domain or that the solution is periodic.    (Input)  

The sides are numbers 1 to 6 as follows:  

Side          Location 

1 - Right       (X = BX) 

2 - Bottom     (Y = AY) 

3 - Left        (X = AX) 

4 - Top        (Y = BY) 
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5 - Front       (Z = BZ) 

6 - Back       (Z = AZ) 

There are three boundary condition types.  

IBCTY Boundary Condition 

1  Value of U is given. (Dirichlet) 

2  Value of dU/dX is given (sides 1 and/or 3). (Neumann) Value of dU/dY is 

 given (sides 2 and/or 4). Value of dU/dZ is given (sides 5 and/or 6). 

3  Periodic. 

U — Array of size NX by NY by NZ containing the solution at the grid points.   (Output) 

Optional Arguments 

IORDER — Order of accuracy of the finite-difference approximation.   (Input)  

It can be either 2 or 4. Usually, IORDER = 4 is used. 

Default: IORDER = 4. 

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDU = size (U,1). 

MDU — Middle dimension of U exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: MDU = size (U,2). 

FORTRAN 90 Interface 

Generic: CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, BZ, IBCTY, U 
[,…]) 

Specific:  The specific interface names are S_FPS3H and D_FPS3H. 

FORTRAN 77 Interface 

Single: CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, BZ, IBCTY, 

IORDER, U, LDU, MDU) 

Double: The double precision name is DFPS3H. 
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Description 

Let c = COEFU, ax = AX, bx = BX, nx = NX, ay = AY, by = BY, ny = NY, az = AZ, bz = BZ, and nz = NZ. 

FPS3H is based on the code HFFT3D by Boisvert (1984). It solves the equation 

2 2 2

2 2 2

u u u
cu p

x y z

  

  
   

 

on the domain (ax, bx)  (ay, by)  (az, bz) (a box) with a user-specified combination of Dirichlet 

(solution prescribed), Neumann (first derivative prescribed), or periodic boundary conditions. The 

six sides are numbered as shown in the following diagram. 

z

b

a

y

z

x

b

b
x

Front - 5

Top - 4

Right - 1

Bottom - 2

Left - 3

Back - 6

y

 

When c = 0 and only Neumann or periodic boundary conditions are prescribed, then any constant 

may be added to the solution to obtain another solution to the problem. In this case, the solution of 

minimum -norm is returned.  

The solution is computed using either a second-or fourth-order accurate finite-difference 

approximation of the continuous equation. The resulting system of linear algebraic equations is 

solved using fast Fourier transform techniques. The algorithm relies upon the fact that nx  1 and 

nz  1 are highly composite (the product of small primes). For details of the algorithm, see 

Boisvert (1984). If nx  1 and nz  1 are highly composite, then the execution time of FPS3H is 

proportional to 

 2 2
2 2log logx y z x zn n n n n

 

If evaluations of p(x, y, z) are inexpensive, then the difference in running time between  

IORDER = 2 and IORDER = 4 is small. 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of F2S3H/DF2S3H. The 

reference is: 

CALL F2S3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, 

AZ, BZ, IBCTY, IORDER, U, LDU, MDU, UWORK, WORK) 

The additional arguments are as follows: 

UWORK — Work array of size NX + 2 by NY + 2 by NZ + 2. If the 

actual dimensions of U are large enough, then U and UWORK can be the 

same array. 

WORK — Work array of length (NX + 1)(NY + 1)(NZ + 1)(IORDER  
2)/2 + 2(NX * NY + NX * NZ + NY * NZ) + 2(NX + NY + 

1) + MAX(2 * NX * NY, 2 * NX + NY + 4 * NZ + (NX + 

NZ)/2 + 29) 

2. The grid spacing is the distance between the (uniformly spaced) grid lines. It is given 

by the formulas 

HX = (BX  AX)/(NX  1), 

HY = (BY  AY)/(NY  1), and 

HZ = (BZ  AZ)/(NZ  1). 

The grid spacings in the X, Y and Z directions must be the same, i.e., NX, NY and NZ 

must be such that HX = HY = HZ. Also, as noted above, NX, NY and NZ must all be at 

least 4. To increase the speed of the Fast Fourier transform, NX  1 and NZ  1 should 

be the product of small primes. Good choices for NX and NZ are 17, 33 and 65. 

3. If COEFU is nearly equal to an eigenvalue of the Laplacian with homogeneous 

boundary conditions, then the computed solution might have large errors. 

Example 

This example solves the equation 

 
2 2 2

2 2 2
10 4 cos 3 2 12 10x zu u u

u x y z e
x y z

  

  

        

 

with the boundary conditions u/z = 2 sin(3x + y 2z)  exp(x  z) on the front side and  

u = cos(3x + y  2z) + exp(x  z) + 1 on the other five sides. The domain is the box [0, 1/4] × [0, 

1/2] × [0, 1/2]. The output of FPS3H is a 9  17  17 table of U values. The quadratic interpolation 

routine QD3VL is used to print a table of values. 
 

      USE FPS3H_INT 

      USE UMACH_INT 

      USE QD3VL_INT 

 

      IMPLICIT   NONE 
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!                                 SPECIFICATIONS FOR PARAMETERS 

      INTEGER    LDU, MDU, NX, NXTABL, NY, NYTABL, NZ, NZTABL 

      PARAMETER  (NX=5, NXTABL=4, NY=9, NYTABL=3, NZ=9, & 

                NZTABL=3, LDU=NX, MDU=NY) 

! 

      INTEGER    I, IBCTY(6), IORDER, J, K, NOUT 

      REAL       AX, AY, AZ, BRHS, BX, BY, BZ, COEFU, FLOAT, PRHS, & 

                 U(LDU,MDU,NZ), UTABL, X, ERROR, TRUE, & 

                 XDATA(NX), Y, YDATA(NY), Z, ZDATA(NZ) 

      INTRINSIC  COS, EXP, FLOAT 

      EXTERNAL   BRHS, PRHS 

!                                 Define domain 

      AX = 0.0 

      BX = 0.125 

      AY = 0.0 

      BY = 0.25 

      AZ = 0.0 

      BZ = 0.25 

!                                 Set boundary condition types 

      IBCTY(1) = 1 

      IBCTY(2) = 1 

      IBCTY(3) = 1 

      IBCTY(4) = 1 

      IBCTY(5) = 2 

      IBCTY(6) = 1 

!                                 Coefficient of U 

      COEFU = 10.0 

!                                 Order of the method 

      IORDER = 4 

!                                 Solve the PDE 

      CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, & 

                 BZ, IBCTY, U) 

!                                 Set up for quadratic interpolation 

      DO 10  I=1, NX 

         XDATA(I) = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NX-1) 

   10 CONTINUE 

      DO 20  J=1, NY 

         YDATA(J) = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NY-1) 

   20 CONTINUE 

      DO 30  K=1, NZ 

         ZDATA(K) = AZ + (BZ-AZ)*FLOAT(K-1)/FLOAT(NZ-1) 

   30 CONTINUE 

!                                 Print the solution 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,'(8X,5(A,11X))') 'X', 'Y', 'Z', 'U', 'Error' 

      DO 60  K=1, NZTABL 

         DO 50  J=1, NYTABL 

            DO 40  I=1, NXTABL 

               X     = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NXTABL-1) 

               Y     = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NYTABL-1) 

               Z     = AZ + (BZ-AZ)*FLOAT(K-1)/FLOAT(NZTABL-1) 

               UTABL = QD3VL(X,Y,Z,XDATA,YDATA,ZDATA,U, CHECK=.false.) 

               TRUE = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0 

               ERROR = UTABL - TRUE 

               WRITE (NOUT,'(5F12.4)') X, Y, Z, UTABL, ERROR 

   40       CONTINUE 

   50    CONTINUE 
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   60 CONTINUE 

      END 

! 

      REAL FUNCTION PRHS (X, Y, Z) 

      REAL       X, Y, Z 

! 

      REAL       COS, EXP 

      INTRINSIC  COS, EXP 

!                                 Right side of the PDE 

      PRHS = -4.0*COS(3.0*X+Y-2.0*Z) + 12*EXP(X-Z) + 10.0 

      RETURN 

      END 

! 

      REAL FUNCTION BRHS (ISIDE, X, Y, Z) 

      INTEGER    ISIDE 

      REAL       X, Y, Z 

! 

      REAL       COS, EXP, SIN 

      INTRINSIC  COS, EXP, SIN 

!                                 Boundary conditions 

      IF (ISIDE .EQ. 5) THEN 

         BRHS = -2.0*SIN(3.0*X+Y-2.0*Z) - EXP(X-Z) 

      ELSE 

         BRHS = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0 

      END IF 

      RETURN 

      END 

Output 
 

   X           Y           Z           U           Error 

 0.0000      0.0000      0.0000      3.0000      0.0000 

 0.0417      0.0000      0.0000      3.0348      0.0000 

 0.0833      0.0000      0.0000      3.0558      0.0001 

 0.1250      0.0000      0.0000      3.0637      0.0001 

 0.0000      0.1250      0.0000      2.9922      0.0000 

 0.0417      0.1250      0.0000      3.0115      0.0000 

 0.0833      0.1250      0.0000      3.0175      0.0000 

 0.1250      0.1250      0.0000      3.0107      0.0000 

 0.0000      0.2500      0.0000      2.9690      0.0001 

 0.0417      0.2500      0.0000      2.9731      0.0000 

 0.0833      0.2500      0.0000      2.9645      0.0000 

 0.1250      0.2500      0.0000      2.9440     -0.0001 

 0.0000      0.0000      0.1250      2.8514      0.0000 

 0.0417      0.0000      0.1250      2.9123      0.0000 

 0.0833      0.0000      0.1250      2.9592      0.0000 

 0.1250      0.0000      0.1250      2.9922      0.0000 

 0.0000      0.1250      0.1250      2.8747      0.0000 

 0.0417      0.1250      0.1250      2.9211      0.0010 

 0.0833      0.1250      0.1250      2.9524      0.0010 

 0.1250      0.1250      0.1250      2.9689      0.0000 

 0.0000      0.2500      0.1250      2.8825      0.0000 

 0.0417      0.2500      0.1250      2.9123      0.0000 

 0.0833      0.2500      0.1250      2.9281      0.0000 

 0.1250      0.2500      0.1250      2.9305      0.0000 
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 0.0000      0.0000      0.2500      2.6314     -0.0249 

 0.0417      0.0000      0.2500      2.7420     -0.0004 

 0.0833      0.0000      0.2500      2.8112     -0.0042 

 0.1250      0.0000      0.2500      2.8609     -0.0138 

 0.0000      0.1250      0.2500      2.7093      0.0000 

 0.0417      0.1250      0.2500      2.8153      0.0344 

 0.0833      0.1250      0.2500      2.8628      0.0237 

 0.1250      0.1250      0.2500      2.8825      0.0000 

 0.0000      0.2500      0.2500      2.7351     -0.0127 

 0.0417      0.2500      0.2500      2.8030     -0.0011 

 0.0833      0.2500      0.2500      2.8424     -0.0040 

 0.1250      0.2500      0.2500      2.8735     -0.0012 

SLEIG 
Determines eigenvalues, eigenfunctions and/or spectral density functions for Sturm-Liouville 

problems in the form 

       ( )  for  in ,
d du

p x q x u r x u x a b
dx dx

  
 

with boundary conditions (at regular points) 

    

 

1 2 1 2

1 2

 at 

0 at 

a u a pu a u a pu a

b u b pu b

     

 
 

Required Arguments 

CONS — Array of size eight containing 

1 1 2 2 1 2, , , , , ,  and a a a a b b a b 
 

in locations CONS(1) through CONS(8), respectively.   (Input) 

COEFFN — User-supplied subroutine to evaluate the coefficient functions. The usage is  

CALL COEFFN (X, PX, QX, RX) 

X — Independent variable.   (Input) 

PX — The value of p(x) at X.   (Output) 

QX — The value of q(x) at X.   (Output) 

RX — The value of r(x) at X.   (Output)  

 COEFFN must be declared EXTERNAL in the calling program. 

ENDFIN — Logical array of size two. ENDFIN(1) = .true. if the endpoint a is finite. 

ENDFIN(2) = .true. if endpoint b is finite.   (Input) 

INDEX — Vector of size NUMEIG containing the indices of the desired eigenvalues.   (Input) 
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EVAL — Array of length NUMEIG containing the computed approximations to the 

eigenvalues whose indices are specified in INDEX.   (Output) 

Optional Arguments 

NUMEIG — The number of eigenvalues desired.   (Input) 

Default: NUMEIG = size (INDEX,1). 

TEVLAB — Absolute error tolerance for eigenvalues.   (Input) 

Default: TEVLAB = 10.* machine precision. 

TEVLRL — Relative error tolerance for eigenvalues.   (Input) 

Default: TEVLRL = SQRT(machine precision). 

FORTRAN 90 Interface 

Generic: CALL SLEIG (CONS, COEFFN, ENDFIN, INDEX, EVAL [,…]) 

Specific:  The specific interface names are S_SLEIG and D_SLEIG. 

FORTRAN 77 Interface 

Single: CALL SLEIG (CONS, COEFFN, ENDFIN, NUMEIG, INDEX, TEVLAB, TEVLRL, 
EVAL) 

Double: The double precision name is DSLEIG. 

Description 

This subroutine is designed for the calculation of eigenvalues, eigenfunctions and/or spectral 

density functions for Sturm-Liouville problems in the form 

  
       ( )  for  in ,

d du
p x q x u r x u x a b

dx dx
  

 (1) 

with boundary conditions (at regular points) 

    

 

1 2 1 2

1 2

 at 

0 at 

a u a pu a u a pu a

b u b pu b

     

 
 

We assume that 

1 2 1 2 0a a a a  
 

when aʹ1  0 and aʹ2  0. The problem is considered regular if and only if 

 a and b are finite, 

 p(x) and r(x) are positive in (a, b), 



 

 

IMSL MATH LIBRARY Chapter 5: Differential Equations  1203 

     

     

 

 1/p(x), q(x) and r(x) are locally integrable near the endpoints. 

Otherwise the problem is called singular. The theory assumes that p, pʹ, q, and r are at least 

continuous on (a, b), though a finite number of jump discontinuities can be handled by suitably 

defining an input mesh. 

For regular problems, there are an infinite number of eigenvalues 

0 < 1 <  < k, k   

Each eigenvalue has an associated eigenfunction which is unique up to a constant. For singular 

problems, there is a wide range in the behavior of the eigenvalues. 

As presented in Pruess and Fulton (1993) the approach is to replace (1) by a new problem 

  
  ˆˆ ˆ ˆ ˆ ˆ ˆpu qu ru


  

   (2) 

with analogous boundary conditions 

           

     

1 2 1 2

1 2

ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ 0

a u a a pu a a u a a pu a

b u b b pu b

      
 

 
 

where 

ˆ ˆ ˆ,  and p q r
 

are step function approximations to p, q, and r, respectively. Given the mesh  

a = x1 < x2 <  < xN+1 = b, the usual choice for the step functions uses midpoint interpolation,  

i. e., 

  1ˆ ( )
2

n n
n

x x
p x p p 

 
 

for x in (xn, xn+1) and similarly for the other coefficient functions. This choice works well for 

regular problems. Some singular problems require a more sophisticated technique to capture the 

asymptotic behavior. For the midpoint interpolants, the differential equation (2) has the known 

closed form solution in  

(xn, xn+1) 

          ˆ ˆ ˆ ˆ /n n n n n n nu x u x x x pu x x x p     
 

with 

 

sin / , 0

sinh / , 0

, 0

n n n

n n n n

t

t t

t

  

   






 
   

where 

 ˆ /n n n nr q p  
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and 

n n 
 

Starting with, 

    ˆ ˆ ˆ and u a pu a
 

consistent with the boundary condition, 

 

  

2 2

1 1

ˆˆ

ˆˆ ˆ

u a a a

pu a a a





 

  
 

an algorithm is to compute for n = 1, 2, ..., N, 

          

           

1

1

ˆ ˆ ˆ ˆ /

ˆ ˆ ˆ ˆ ˆ

n n n n n n n n

n n n n n n n n n

u x u x h pu x h p

pu x p u x h pu x h

 

  





  

    
 

which is a shooting method. For a fixed mesh we can iterate on the approximate eigenvalue until 

the boundary condition at b is satisfied. This will yield an O(h
2
) approximation 

ˆ
k  

to some k. 

The problem (2) has a step spectral function given by 

 
   2

1
ˆ

ˆ ˆk

t
r x u x dx








  

where the sum is taken over k such that  

ˆ
k t 

 

and  

1 2 1 2a a a a   
 

Comments 

1. Workspace may be explicitly provided, if desired, by use of S2EIG/DS2EIG. The 

reference is: 

CALL S2EIG (CONS, COEFFN, ENDFIN, NUMEIG, INDEX, TEVLAB, 

TEVLRL, EVAL, JOB, IPRINT, TOLS, NUMX, XEF, NRHO, T, 

TYPE, EF, PDEF, RHO, IFLAG, WORK, IWORK) 

The additional arguments are as follows: 
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JOB — Logical array of length five.   (Input) 

JOB(1) = .true. if a set of eigenvalues are to be computed but not their 

eigenfunctions. 

JOB(2) = .true. if a set of eigenvalue and eigenfunction pairs are to be 

computed. 

JOB(3) = .true. if the spectral function is to be computed  

over some subinterval of the essential spectrum. 

JOB(4) = .true. if the normal automatic classification is overridden. If JOB(4) 

= .true. then TYPE(*,*) must be entered correctly. Most users will not 

want to override the classification process, but it might be appropriate 

for users experimenting with problems for which the coefficient 

functions do not have power-like behavior near the singular endpoints. 

The classification is considered sufficiently important for spectral 

density function calculations that JOB(4) is ignored with JOB(3) = 

.true.. 

JOB(5) = .true. if mesh distribution is chosen by SLEIG. If JOB(5) = .true. 

and NUMX is zero, the number of mesh points are also chosen by SLEIG. 

If NUMX > 0 then NUMX mesh points will be used. If JOB(5) = .false., 

the number NUMX and distribution XEF(*) must be input by the user. 

IPRINT — Control levels of internal printing.   (Input) 

No printing is performed if IPRINT = 0. If either JOB(1) or JOB(2) is true: 

 

IPRINT Printed Output 

1 Initial mesh (the first 51 or fewer points), eigenvalue 

estimate at each level. 

4 The above and at each level matching 

point for eigenfunction shooting, X(*), 

EF(*) and PDEF(*) values. 

5 The above and at each level the brackets 

for the eigenvalue search, intermediate 

shooting information for the 
eigenfunction and eigenfunction norm. 

 

 If JOB(3) = .true. 

 

IPRINT Printed Output 

1 The actual (a, b) used at each iteration and the total 

number of eigenvalues computed. 

2 The above and switchover points to the 

asymptotic formulas, and some 
intermediate (t) approximations. 
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IPRINT Printed Output 

1 The actual (a, b) used at each iteration and the total 

number of eigenvalues computed. 

3 The above and initial meshes for each 

iteration, the index of the largest 

eigenvalue which may be computed, and 

various  igenvalue and RN values. 

4 The above and ̂  values at each level. 

5 The above and RN add eigenvalues below 

the switchover point 

 

 If JOB(4) = .false. 

 

IPRINT Printed Output 

2 Output a description of the spectrum. 

3 The above and the constants for the 

Friedrichs' boundary condition(s). 

5 The above and and intermediate details of 

the classification calcualtion. 

 

TOLS — Array of length 4 containing tolerances.   (Input) 

TOLS(1) — absolute error tolerance for eigenfunctions 

TOLS(2) — relative error tolerance for eigenfunctions 

TOLS(3) — absolute error tolerance for eigenfunction derivatives 

TOLS(4) — relative error tolerance for eigenfunction derivatives 

 The absolute tolerances must be positive. 

The relative tolerances must be at least 100 *amach(4) 

NUMX — Integer whose value is the number of output points where each 

eigenfunction is to be evaluated (the number of entries in XEF(*)) when JOB(2) 

= .true.. If JOB(5)= .false. and NUMX is greater than zero, then NUMX is the 

number of points in the initial mesh used. If JOB(5) = .false., the points in 

XEF(*) should be chosen with a reasonable distribution. Since the endpoints a 

and b must be part of any mesh, NUMX cannot be one in this case. If JOB(5) = 

.false. and JOB(3) = .true., then NUMX must be positive. On output, NUMX is set to 

the number of points for eigenfunctions when input NUMX = 0, and JOB(2) or 

JOB(5) = .true..   (Input/Output) 
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XEF — Array of points on input where eigenfunction estimates are desired, if JOB(2) 

= .true.. Otherwise, if JOB(5) = .false. and NUMX is greater than zero, the user‘s 

initial mesh is entered. The entries must be ordered so that  

a = XEF(1) < XEF(2) <  < XEF(NUMX) = b. If either endpoint is infinite, the 

corresponding XEF(1) or XEF(NUMX) is ignored. However, it is required that 

XEF(2) be negative when ENDFIN(1) = .false., and that XEF(NUMX-1) be positive 

when  

ENDFIN(2) = .false.. On output, XEF(*) is changed only if JOB(2) and JOB(5) are 

true. If JOB(2) = .false., this vector is not referenced. If JOB(2) = .true. and NUMX 

is greater than zero on input, XEF(*) should be dimensioned at least NUMX + 16. 

If JOB(2) is true and NUMX is zero on input, XEF(*) should be dimensioned at 

least 31. 

NRHO — The number of output values desired for the array RHO(*). NRHO is not used 

if JOB(3) = .false..   (Input) 

T — Real vector of size NRHO containing values where the spectral function RHO(*) is 

desired. The entries must be sorted in increasing order. The existence and 

location of a continuous spectrum can be determined by calling SLEIG with the 

first four entries of JOB set to false and IPRINT set to 1. T(*) is not used if 

JOB(3) = .false..   (Input) 

TYPE — 4 by 2 logical matrix. Column 1 contains information about endpoint a and 

column 2 refers to endpoint b.  

TYPE(1,*) = .true. if and only if the endpoint is regular 

TYPE(2,*) = .true. if and only if the endpoint is limit circle 

TYPE(3,*) = .true. if and only if the endpoint is nonoscillatory for all eigenvalues 

TYPE(4,*) = .true. if and only if the endpoint is oscillatory for all eigenvalues 

Note: all of these values must be correctly input if JOB(4) = .true..  

Otherwise, TYPE(*,*) is output.   (Input/Output) 

EF — Array of eigenfunction values. EF((k  1)*NUMX + i) is the estimate of u(XEF(i)) 

corresponding to the eigenvalue in EV(k). If JOB(2) = .false. then this vector is 

not referenced. If JOB(2) = .true. and NUMX is greater than zero on entry, then 

EF(*) should be dimensioned at least NUMX * NUMEIG. If JOB(2) = .true. and 

NUMX is zero on input, then EF(*) should be dimensioned 31 * NUMEIG.   

(Output) 

PDEF — Array of eigenfunction derivative values. PDEF((k-1)*NUMX + i) is the 

estimate of (puʹ) (XEF(i)) corresponding to the eigenvalue in EV(k). If JOB(2) = 

.false. this vector is not referenced. If JOB(2) = .true., it must be dimensioned the 

same as EF(*).   (Output) 

RHO — Array of size NRHO containing values for the spectral density function (t),  

RHO(I) = (T(I)). This vector is not referenced if JOB(3) is false.   (Output) 

IFLAG — Array of size max(1, numeig) containing information about the output. 

IFLAG(K) refers to the K-th eigenvalue, when JOB(1) or JOB(2) = .true.. 
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Otherwise, only IFLAG(1) is used. Negative values are associated with fatal 

errors, and the calculations are ceased. Positive values indicate a warning.   

(Output) 

IFLAG(K) 

IFLAG(K) Description 

-1 too many levels needed for the eigenvalue calculation; 

problem seems too difficult at this tolerance. Are the 

coefficient functions nonsmooth? 

-2 too many levels needed for the eigenfunction 

calculation; problem seems too difficult at this 

tolerance. Are the eigenfunctions ill-conditioned? 

-3 too many levels needed for the spectral density 

calculation; problem seems too difficult at this 

tolerance. 

-4 the user has requested the spectral density function for 

a problem which has no continuous spectrum. 

-5 the user has requested the spectral density function for 

a problem with both endpoints generating essential 

spectrum, i.e. both endpoints either OSC or O-NO. 

-6 the user has requested the spectral density function for 

a problem in spectral category 2 for which a proper 

normalization of the solution at the NONOSC endpoint 

is not known; for example, problems with an irregular 

singular point or infinite endpoint at one end and 

continuous spectrum generated at the other.  

-7 problems were encountered in obtaining a bracket. 

-8 too small a step was used in the integration. The 

TOLS(*) values may be too small for this problem. 

-9 too small a step was used in the spectral density 

function calculation for which the continuous spectrum 

is generated by a finite endpoint. 

-10 an argument to the circular trig functions is too large. 

Try running the problem again with a finer initial mesh 

or, for singular problems, use interval truncation. 

-15 p(x) and r(x) are not positive in the interval (a, b). 

-20 eigenvalues and/or eigenfunctions were requested for a 

problem with an OSC singular endpoint. Interval 

truncation must be used on such problems. 

1 Failure in the bracketing procedure probably due to a 

cluster of eigenvalues which the code cannot separate. 

Calculations have continued but any eigenfunction 

results are suspect. Try running the problem again with 

tighter input tolerances to separate the cluster. 
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2 there is uncertainty in the classification for this 

problem. Because of the limitations of floating point 

arithmetic, and the nature of the finite sampling, the 

routine cannot be certain about the classification 

information at the requested tolerance. 

3 there may be some eigenvalues embedded in the 

essential spectrum. Use of IPRINT greater than zero 

will provide additional output giving the location of 

the approximating eigenvalues for the step function 

problem. These could be extrapolated to estimate the 

actual eigenvalue embedded in the essential spectrum. 

4 a change of variables was made to avoid potentially 

slow convergence. However, the global error estimates 

may not be as reliable. Some experimentation using 

different tolerances is recommended. 

6 there were problems with eigenfunction convergence 

in a spectral density calculation. The output (t) may 

not be accurate. 

WORK — Array of size MAX(1000, NUMEIG + 22) used for workspace. 

IWORK — Integer array of size NUMEIG + 3 used for workspace. 

Example 1 

This example computes the first ten eigenvalues of the problem from Titchmarsh (1962) given by 

p(x) = r(x) = 1 

q(x) = x 

[a, b] = [0, ] 

u(a) = u(b) = 0 

The eigenvalues are known to be the zeros of  

  3/ 2 3/ 2
1/3 1/3

2 2

3 3
f J J  

   
    

     

For each eigenvalue k, the program prints k, k and f(k). 
 

      USE SLEIG_INT 

      USE CBJS_INT 

 

      IMPLICIT   NONE 

!                                  SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I, INDEX(10), NUMEIG, NOUT 

      REAL       CONS(8), EVAL(10), LAMBDA, TEVLAB,& 

                 TEVLRL, XNU 

      COMPLEX    CBS1(1), CBS2(1), Z 

      LOGICAL    ENDFIN(2) 

!                                  SPECIFICATIONS FOR INTRINSICS 
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      INTRINSIC  CMPLX, SQRT 

      REAL       SQRT 

      COMPLEX    CMPLX 

!                                  SPECIFICATIONS FOR SUBROUTINES 

!                                  SPECIFICATIONS FOR FUNCTIONS 

      EXTERNAL   COEFF 

! 

      CALL UMACH (2, NOUT) 

!                                  Define boundary conditions 

      CONS(1) = 1.0 

      CONS(2) = 0.0 

      CONS(3) = 0.0 

      CONS(4) = 0.0 

      CONS(5) = 1.0 

      CONS(6) = 0.0 

      CONS(7) = 0.0 

      CONS(8) = 0.0 

! 

      ENDFIN(1) = .TRUE. 

      ENDFIN(2) = .FALSE. 

!                                  Compute the first 10 eigenvalues 

      NUMEIG = 10 

      DO 10  I=1, NUMEIG 

         INDEX(I) = I - 1 

   10 CONTINUE 

!                                  Set absolute and relative tolerance 

! 

      CALL SLEIG (CONS, COEFF, ENDFIN, INDEX, EVAL) 

! 

      XNU = -1.0/3.0 

      WRITE(NOUT,99998) 

      DO 20  I=1, NUMEIG 

         LAMBDA = EVAL(I) 

         Z      = CMPLX(2.0/3.0*LAMBDA*SQRT(LAMBDA),0.0) 

         CALL CBJS (XNU, Z, 1, CBS1) 

         CALL CBJS (-XNU, Z, 1, CBS2) 

         WRITE (NOUT,99999) I-1, LAMBDA, REAL(CBS1(1) + CBS2(1)) 

   20 CONTINUE 

! 

99998 FORMAT(/, 2X, 'index', 5X, 'lambda', 5X, 'f(lambda)',/) 

99999 FORMAT(I5, F13.4, E15.4) 

      END 

! 

      SUBROUTINE COEFF (X, PX, QX, RX) 

!                                  SPECIFICATIONS FOR ARGUMENTS 

      REAL       X, PX, QX, RX 

! 

      PX = 1.0 

      QX = X 

      RX = 1.0 

      RETURN 

      END 

Output 
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  index     lambda     f(lambda) 
  

    0       2.3381    -0.8285E-05 

    1       4.0879    -0.1651E-04 

    2       5.5205     0.6843E-04 

    3       6.7867    -0.4523E-05 

    4       7.9440     0.8952E-04 

    5       9.0227     0.1123E-04 

    6      10.0401     0.1031E-03 

    7      11.0084    -0.7913E-04 

    8      11.9361    -0.5095E-04 

    9      12.8293     0.4645E-03 

Additional Examples 

Example 2 

In this problem from Scott, Shampine and Wing (1969), 

p(x) = r(x) = 1 

q(x) = x
2
 + x

4
 

[a, b] = [, ] 

u(a) = u(b) = 0 

the first eigenvalue and associated eigenfunction, evaluated at selected points, are computed. As a 

rough check of the correctness of the results, the magnitude of the residual 

     ( )
d du

p x q x u r x u
dx dx

  
 

is printed. We compute a spline interpolant to uʹ and use the function CSDER to estimate the 

quantity (p(x)uʹ)ʹ. 
 

      USE S2EIG_INT 

      USE CSDER_INT 

      USE UMACH_INT 

      USE CSAKM_INT 

 

      IMPLICIT   NONE 

!                                  SPECIFICATIONS FOR LOCAL VARIABLES 

 

      INTEGER    I, IFLAG(1), INDEX(1), IWORK(100), NINTV, NOUT, NRHO, & 

                NUMEIG, NUMX 

      REAL       BRKUP(61), CONS(8), CSCFUP(4,61), EF(61), EVAL(1), & 

                LAMBDA, PDEF(61), PX, QX, RESIDUAL, RHO(1), RX, T(1), & 

                TEVLAB, TEVLRL, TOLS(4), WORK(3000), X, XEF(61) 

      LOGICAL    ENDFIN(2), JOB(5), TYPE(4,2) 

!                                  SPECIFICATIONS FOR INTRINSICS 

      INTRINSIC  ABS, REAL 

      REAL       ABS, REAL 

!                                  SPECIFICATIONS FOR SUBROUTINES 

      EXTERNAL   COEFF 

!                                  Define boundary conditions 

      CONS(1) = 1.0 
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      CONS(2) = 0.0 

      CONS(3) = 0.0 

      CONS(4) = 0.0 

      CONS(5) = 1.0 

      CONS(6) = 0.0 

      CONS(7) = 0.0 

      CONS(8) = 0.0 

!                                  Compute eigenvalue and eigenfunctions 

      JOB(1) = .FALSE. 

      JOB(2) = .TRUE. 

      JOB(3) = .FALSE. 

      JOB(4) = .FALSE. 

      JOB(5) = .FALSE. 

! 

      ENDFIN(1) = .FALSE. 

      ENDFIN(2) = .FALSE. 

!                                  Compute eigenvalue with index 0 

      NUMEIG   = 1 

      INDEX(1) = 0 

! 

      TEVLAB  = 1.0E-3 

      TEVLRL  = 1.0E-3 

      TOLS(1) = TEVLAB 

      TOLS(2) = TEVLRL 

      TOLS(3) = TEVLAB 

      TOLS(4) = TEVLRL 

      NRHO    = 0 

!                                  Set up mesh, points at which u and 

!                                  u' will be computed 

      NUMX = 61 

      DO 10  I=1, NUMX 

         XEF(I) = 0.05*REAL(I-31) 

   10 CONTINUE 

! 

      CALL S2EIG (CONS, COEFF, ENDFIN, NUMEIG, INDEX, TEVLAB, TEVLRL, & 

                 EVAL, JOB, 0, TOLS, NUMX, XEF, NRHO, T, TYPE, EF, & 

                 PDEF, RHO, IFLAG, WORK, IWORK) 

! 

      LAMBDA = EVAL(1) 

   20 CONTINUE 

!                                  Compute spline interpolant to u' 

! 

      CALL CSAKM (XEF, PDEF, BRKUP, CSCFUP) 

      NINTV = NUMX - 1 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99997) '     lambda = ', LAMBDA 

      WRITE (NOUT,99999) 

!                                  At a subset of points from the 

!                                  input mesh, compute residual = 

!                                  abs( -(u')' + q(x)u - lambda*u ). 

!                                  We know p(x) = 1 and r(x) = 1. 

      DO 30  I=1, 41, 2 

         X = XEF(I+10) 

         CALL COEFF (X, PX, QX, RX) 

! 
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!                                  Use the spline fit to u' to 

!                                  estimate u'' with CSDER 

! 

         RESIDUAL = ABS(-CSDER(1,X,BRKUP,CSCFUP)+QX*EF(I+10)- & 

                   LAMBDA*EF(I+10)) 

         WRITE (NOUT,99998) X, EF(I+10), PDEF(I+10), RESIDUAL 

   30 CONTINUE 

! 

99997 FORMAT (/, A14, F10.5, /) 

99998 FORMAT (5X, F4.1, 3F15.5) 

99999 FORMAT (7X, 'x', 11X, 'u(x)', 10X, 'u''(x)', 9X, 'residual', /) 

      END 

! 

      SUBROUTINE COEFF (X, PX, QX, RX) 

!                                  SPECIFICATIONS FOR ARGUMENTS 

      REAL       X, PX, QX, RX 

! 

      PX = 1.0 

      QX = X*X + X*X*X*X 

      RX = 1.0 

      RETURN 

      END 

Output 
 

     lambda =    1.39247  

         x           u(x)          u'(x)         residual  

      -1.0        0.38632        0.65019        0.00189 

      -0.9        0.45218        0.66372        0.00081 

      -0.8        0.51837        0.65653        0.00023 

      -0.7        0.58278        0.62827        0.00113 

      -0.6        0.64334        0.57977        0.00183 

      -0.5        0.69812        0.51283        0.00230 

      -0.4        0.74537        0.42990        0.00273 

      -0.3        0.78366        0.33393        0.00265 

      -0.2        0.81183        0.22811        0.00273 

      -0.1        0.82906        0.11570        0.00278 

       0.0        0.83473        0.00000        0.00136 

       0.1        0.82893       -0.11568        0.00273 

       0.2        0.81170       -0.22807        0.00273 

       0.3        0.78353       -0.33388        0.00267 

       0.4        0.74525       -0.42983        0.00265 

       0.5        0.69800       -0.51274        0.00230 

       0.6        0.64324       -0.57967        0.00182 

       0.7        0.58269       -0.62816        0.00113 

       0.8        0.51828       -0.65641        0.00023 

       0.9        0.45211       -0.66361        0.00081 

       1.0        0.38626       -0.65008        0.00189 

SLCNT 
Calculates the indices of eigenvalues of a Sturm-Liouville problem of the form for 

       ( )  for  in ,
d du

p x q x u r x u x a b
dx dx
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with boundary conditions (at regular points) 

    

 

1 2 1 2

1 2

 at 

0 at 

a u a pu a u a pu a

b u b pu b

     

 
 

in a specified subinterval of the real line, [, ]. 

Required Arguments 

ALPHA — Value of the left end point of the search interval.   (Input) 

BETAR — Value of the right end point of the search interval.   (Input) 

CONS — Array of size eight containing 

1 1 2 2 1 2, , , , , ,  and a a a a b b a b 
 

 in locations CONS(1)  CONS(8), respectively.   (Input) 

COEFFN — User-supplied subroutine to evaluate the coefficient functions. The usage is  

CALL COEFFN (X, PX, QX, RX) 

X — Independent variable.   (Input) 

PX — The value of p(x) at X.   (Output) 

QX — The value of q(x) at X.   (Output) 

RX — The value of r(x) at X.   (Output)  

 COEFFN must be declared EXTERNAL in the calling program. 

ENDFIN — Logical array of size two. ENDFIN = .true. if and only if the endpoint a is 

finite. ENDFIN(2) = .true. if and only if endpoint b is finite.   (Input) 

IFIRST — The index of the first eigenvalue greater than .   (Output) 

NTOTAL — Total number of eigenvalues in the interval [, ].   (Output) 

FORTRAN 90 Interface 

Generic: CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST, NTOTAL) 

Specific:  The specific interface names are S_SLCNT and D_SLCNT. 

FORTRAN 77 Interface 

Single: CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST, NTOTAL) 
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Double: The double precision name is DSLCNT. 

Description 

This subroutine computes the indices of eigenvalues, if any, in a subinterval of the real line for 

Sturm-Liouville problems in the form 

       ( )  for  in ,
d du

p x q x u r x u x a b
dx dx

  
 

with boundary conditions (at regular points) 

    

 

1 2 1 2

1 2

 at 

0 at 

a u a pu a u a pu a

b u b pu b

     

 
 

It is intended to be used in conjunction with SLEIG. SLCNT is based on the routine INTERV from 

the package SLEDGE. 

Example 

Consider the harmonic oscillator (Titchmarsh) defined by 

 p(x) = 1 

 q(x) = x
2
 

 r(x) = 1 

 [a, b] = [, ] 

 u(a) = 0 

 u(b) = 0 

The eigenvalues of this problem are known to be 

 k = 2k + 1, k = 0, 1,  

Therefore in the interval [10, 16] we expect SLCNT to note three eigenvalues, with the first of 

these having index five. 
 

      USE SLCNT_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                  SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    IFIRST, NOUT, NTOTAL 

      REAL       ALPHA, BETAR, CONS(8) 

      LOGICAL    ENDFIN(2) 

!                                  SPECIFICATIONS FOR SUBROUTINES 

!                                  SPECIFICATIONS FOR FUNCTIONS 

      EXTERNAL   COEFFN 

! 

      CALL UMACH (2, NOUT) 

!                                  set u(a) = 0, u(b) = 0 

      CONS(1) = 1.0E0 
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      CONS(2) = 0.0E0 

      CONS(3) = 0.0E0 

      CONS(4) = 0.0E0 

      CONS(5) = 1.0E0 

      CONS(6) = 0.0E0 

      CONS(7) = 0.0E0 

      CONS(8) = 0.0E0 

! 

      ENDFIN(1) = .FALSE. 

      ENDFIN(2) = .FALSE. 

! 

      ALPHA = 10.0 

      BETAR  = 16.0 

! 

      CALL SLCNT (ALPHA, BETAR, CONS, COEFFN, ENDFIN, IFIRST, NTOTAL) 

! 

      WRITE (NOUT,99998) ALPHA, BETAR, IFIRST 

      WRITE (NOUT,99999) NTOTAL 

! 

99998 FORMAT (/, 'Index of first eigenvalue in [', F5.2, ',', F5.2, & 

            '] IS ', I2) 

99999 FORMAT ('Total number of eigenvalues in this interval: ', I2) 

! 

      END 

! 

      SUBROUTINE COEFFN (X, PX, QX, RX) 

!                                  SPECIFICATIONS FOR ARGUMENTS 

      REAL       X, PX, QX, RX 

! 

      PX = 1.0E0 

      QX = X*X 

      RX = 1.0E0 

      RETURN 

      END 

Output 
 

Index of first eigenvalue in [10.00,16.00] is 5 

Total number of eigenvalues in this interval: 3 
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Chapter 6: Transforms 

Routines 

6.1.  Real Trigonometric FFT 
Computes the Discrete Fourier Transform  
of a rank-1 complex array, x. ......................................... FAST_DFT 1220 
Computes the Discrete Fourier Transform (2DFT)  
of a rank-2 complex array, x ........................................ FAST_2DFT 1227 
Computes the Discrete Fourier Transform 2DFT)  
of a rank-3 complex array, x ........................................ FAST_3DFT 1233 
Forward transform ................................................................FFTRF 1236 
Backward or inverse transform ............................................ FFTRB 1240 
Initialization routine for FFTR* ............................................... FFTRI 1243 

6.2.  Complex Exponential FFT 
Forward transform .........................................................FFTCF 1245 

Backward or inverse transform ............................................ FFTCB 1248 
Initialization routine for FFTC* ............................................... FFTCI 1251 

6.3.  Real Sine and Cosine FFTs 
Forward and inverse sine transform ......................................FSINT 1253 
Initialization routine for FSINT ................................................ FSINI 1255 
Forward and inverse cosine transform ................................ FCOST 1257 
Initialization routine for FCOST ............................................. FCOSI 1259 

6.4.  Real Quarter Sine and Quarter Cosine FFTs 
Forward quarter sine transform ............................................ QSINF 1261 
Backward or inverse transform ............................................. QSINB 1263 
Initialization routine for QSIN*................................................ QSINI 1266 
Forward quarter cosine transform....................................... QCOSF 1268 
Backward or inverse transform ........................................... QCOSB 1270 
Initialization routine for QCOS* ............................................ QCOSI 1272 

6.5.  Two- and Three-Dimensional Complex FFTs 
Forward transform ................................................................ FFT2D 1274 
Backward or inverse transform ............................................. FFT2B 1277 
Forward transform ................................................................ FFT3F 1281 
Backward or inverse transform ............................................. FFT3B 1285 

6.6.  Convolutions and Correlations 
Real convolution ................................................................. RCONV 1289 
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Complex convolution .......................................................... CCONV 1294 
Real correlation ................................................................... RCORL 1299 
Complex correlation ............................................................ CCORL 1304 

6.7.  Laplace Transform 
Inverse Laplace transform ..................................................... INLAP 1309 
Inverse Laplace transform for smooth functions ................... SINLP 1311 

Usage Notes 

Fast Fourier Transforms 

A Fast Fourier Transform (FFT) is simply a discrete Fourier transform that can be computed 

efficiently. Basically, the straightforward method for computing the Fourier transform takes 

approximately N
2
 operations where N is the number of points in the transform, while the FFT 

(which computes the same values) takes approximately N log N operations. The algorithms in this 

chapter are modeled on the Cooley-Tukey (1965) algorithm; hence, the computational savings 

occur, not for all integers N, but for N which are highly composite. That is, N (or in certain cases  

N + 1 or N  1) should be a product of small primes. 

 

All of the FFT routines compute a discrete Fourier transform. The routines accept a vector x of 

length N and return a vector 

x̂  

defined by 

1

ˆ :
N

m n nm

n

x x 



 

The various transforms are determined by the selection of ω. In the following table, we indicate 

the selection of ω for the various transforms. This table should not be mistaken for a definition 

since the precise transform definitions (at times) depend on whether N or m is even or odd. 
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-2 -1 1 /

2 -1 1 /

Routine

1 1 2
FFTRF cos or sin 

1 1 2
FFTRB cos or sin

FFTCF exp

FFTCB exp

FSINT sin 
1

1 1
FCOST cos 

1

2 1
QSINF 2 sin 

2

2 1
QSINB 4 sin 

2

2 1 1
QCOSF 2 cos 

2

QCOSB 4 co

nm

i n m N

i n m N

m n

N

m n

N

nm

N

n m

N

m n

N

n m

N

m n

N

























 

 



 







 

  2n-1 1
s 

2

m

N



 

For many of the routines listed above, there is a corresponding ―I‖ (for initialization) routine. Use 

these routines only when repeatedly transforming sequences of the same length. In this situation, 

the ―I‖ routine will compute the initial setup once, and then the user will call the corresponding 

―2‖ routine. This can result in substantial computational savings. For more information on the 

usage of these routines, the user should consult the documentation under the appropriate routine 

name. 

In addition to the one-dimensional transformations described above, we also provide complex two 

and three-dimensional FFTs and their inverses based on calls to either FFTCF or FFTCB. If you 

need a higher dimensional transform, then you should consult the example program for FFTCI, 

which suggests a basic strategy one could employ. 

Continuous versus Discrete Fourier Transform 

There is, of course, a close connection between the discrete Fourier transform and the continuous 

Fourier transform. Recall that the continuous Fourier transform is defined (Brigham, 1974) as  

       2ˆ i tf F f f t e dt  
 


    

We begin by making the following approximation: 
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/ 2 2

/ 2

2 / 2

0

2

0

ˆ

/ 2

/ 2

T i t

T

T i t T

Ti T i t

f f t e dt

f t T e dt

e f t T e dt

 

 

   

 



 





 

 






 

If we approximate the last integral using the rectangle rule with spacing h = T/N, we have 

   
1

2

0

ˆ / 2
N

i T i kh

k

f e h e f kh T   






 
 

Finally, setting ω = j/T for j = 0, …, N  1 yields 

     
1 1

2 / 2 /

0 0

ˆ / / 2 1
N N

jij ijk N ijk N h
k

k k

f j T e h e f kh T h e f  
 

 

 

    
 

where the vector f 
h
 = (f(  T/2), …, f((N  1)h  T/2)). Thus, after scaling the components by  

(1)
j
h, the discrete Fourier transform as computed in FFTCF (with input f

h
) is related to an 

approximation of the continuous Fourier transform by the above formula. This is seen more 

clearly by making a change of variables in the last sum. Set 

1, 1, and h
k nn k m j f x    

 

then, for m = 1, …, N we have 

         2 1 1 /

1

ˆ ˆ1 / 1 1
N

m m i m n N
m n

n

f m T hx h e x
  



       
 

If the function f is expressed as a FORTRAN function routine, then the continuous Fourier 

transform  

f̂
 

can be approximated using the IMSL routine QDAWF (see Chapter 4, Integration and 

Differentiation). 

Inverse Laplace Transform 

The last two routines described in this chapter, INLAP and SINLP, compute the inverse Laplace 

transforms. 

FAST_DFT 
Computes the Discrete Fourier Transform (DFT) of a rank-1 complex array, x. 
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Required Arguments 

No required arguments; pairs of optional arguments are required. These pairs are forward_in 

and forward_out or inverse_in and inverse_out. 

Optional Arguments 

forward_in = x   (Input) 

Stores the input complex array of rank-1 to be transformed. 

forward_out = y   (Output) 

Stores the output complex array of rank-1 resulting from the transform.   

inverse_in = y   (Input) 

Stores the input complex array of rank-1 to be inverted.   

inverse_out = x   (Output) 

Stores the output complex array of rank-1 resulting from the inverse transform.   

ndata = n   (Input) 

Uses the sub-array of size n for the numbers. 

Default value: n = size(x). 

ido = ido   (Input/Output) 

Integer flag that directs user action. Normally, this argument is used only when the 

working variables required for the transform and its inverse are saved in the calling 

program unit. Computing the working variables and saving them in internal arrays 

within fast_dft is the default. This initialization step is expensive.  

There is a two-step process to compute the working variables just once. Example 3 

illustrates this usage. The general algorithm for this usage is to enter fast_dft 

with ido = 0. A return occurs thereafter with ido < 0. The optional rank-1 

complex array w(:) with size(w) >= ido must be re-allocated. Then, re-enter 

fast_dft. The next return from fast_dft has the output value ido = 1. The 

variables required for the transform and its inverse are saved in w(:). Thereafter, 

when the routine is entered with ido = 1 and for the same value of n, the contents 

of w(:) will be used for the working variables. The expensive initialization step is 

avoided. The optional arguments ―ido=‖ and ―work_array=‖ must be used 

together. 

work_array = w(:)   (Output/Input) 

Complex array of rank-1 used to store working variables and values between calls to 

fast_dft. The value for size(w) must be at least as large as the value  ido for the 

value of ido < 0.  

iopt = iopt(:)   (Input/Output) 

Derived type array with the same precision as the input array; used for passing optional 

data to fast_dft. The options are as follows: 
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Packaged Options for FAST_DFT 

Option Prefix = ? Option Name Option Value 

c_, z_ fast_dft_scan_for_NaN 1 

c_, z_ fast_dft_near_power_of_2 2 

c_, z_ fast_dft_scale_forward 3 

c_, z_ Fast_dft_scale_inverse 4 

iopt(IO) = ?_options(?_fast_dft_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that  
isNaN(x(i)) ==.true.  

See the isNaN() function, Chapter 10. 

Default: Does not scan for NaNs. 

iopt(IO) = ?_options(?_fast_dft_near_power_of_2, ?_dummy) 

Nearest power of 2 ≥ n is returned as an output in iopt(IO + 1)%idummy. 

iopt(IO) = ?_options(?_fast_dft_scale_forward, real_part_of_scale)  

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale) 

Complex number defined by the factor  

cmplx(real_part_of_scale, imaginary_part_of_scale) is 

multiplied by the forward transformed array. 

Default value is 1. 

iopt(IO) = ?_options(?_fast_dft_scale_inverse, real_part_of_scale)  

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale) 

Complex number defined by the factor 

cmplx(real_part_of_scale, imaginary_part_of_scale) is 

multiplied by the inverse transformed array. 

Default value is 1. 

FORTRAN 90 Interface 

Generic: None 

Specific: The specific interface names are S_FAST_DFT, D_FAST_DFT, C_FAST_DFT, and 

Z_FAST_DFT. 

Description 

The fast_dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776). The 

maximum computing efficiency occurs when the size of the array can be factored in the form 

31 2 42 3 4 5
ii i i

n   

using non-negative integer values {i1, i2, i3, i4}. There is no further restriction on n ≥ 1. 
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Fatal and Terminal Messages 

See the messages.gls file for error messages for FAST_DFT. These error messages are numbered 

651661; 701711. 

Example 1: Transforming an Array of Random Complex Numbers 

An array of random complex numbers is obtained. The transform of the numbers is inverted and 

the final results are compared with the input array. 
 

      use fast_dft_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 1 for FAST_DFT.  

  

      integer, parameter :: n=1024  

      real(kind(1e0)), parameter :: one=1e0  

      real(kind(1e0)) err, y(2*n)  

      complex(kind(1e0)), dimension(n) :: a, b, c  

  

  

! Generate a random complex sequence.  

      call rand_gen(y)  

      a = cmplx(y(1:n),y(n+1:2*n),kind(one))  

      c = a  

  

! Transform and then invert the sequence back.  

      call c_fast_dft(forward_in=a, &  

           forward_out=b)  

      call c_fast_dft(inverse_in=b, &  

           inverse_out=a)  

  

! Check that inverse(transform(sequence)) = sequence.  

      err = maxval(abs(c-a))/maxval(abs(c))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 1 for FAST_DFT is correct.'  

      end if  

  

      end   

Output 
 

Example 1 for FAST_DFT is correct. 

Additional Examples 

Example 2: Cyclical Data with a Linear Trend 

This set of data is sampled from a function x(t) = at + b + y(t), where y(t) is a harmonic series. The 

independent variable is normalized as 1≤ t ≤ 1. Thus, the data is said to have cyclical components 

plus a linear trend. As a first step, the linear terms are effectively removed from the data using the 

least-squares system solver LIN_SOL_LSQ, Chapter 1. Then, the residuals are transformed and 

the resulting frequencies are analyzed. 
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      use fast_dft_int  

      use lin_sol_lsq_int  

      use rand_gen_int  

      use sort_real_int  

  

      implicit none  

  

! This is Example 2 for FAST_DFT.  

  

      integer i  

      integer, parameter :: n=64, k=4  

      integer ip(n)  

      real(kind(1e0)), parameter :: one=1e0, two=2e0, zero=0e0  

      real(kind(1e0)) delta_t, pi  

      real(kind(1e0)) y(k), z(2), indx(k), t(n), temp(n)  

      complex(kind(1e0)) a_trend(n,2), a, b_trend(n,1), b, c(k), f(n),&  

               r(n), x(n), x_trend(2,1)  

  

! Generate random data for linear trend and harmonic series.  

      call rand_gen(z)  

      a = z(1); b = z(2)  

      call rand_gen(y)  

! This emphasizes harmonics 2 through k+1.  

      c = y + one  

  

! Determine sampling interval.  

      delta_t = two/n  

      t=(/(-one+i*delta_t, i=0,n-1)/)        

  

! Compute pi.  

      pi = atan(one)*4E0  

      indx=(/(i*pi,i=1,k)/)  

  

! Make up data set as a linear trend plus harmonics.  

      x = a + b*t + &  

         matmul(exp(cmplx(zero,spread(t,2,k)*spread(indx,1,n),kind(one))),c)  

  

! Define least-squares matrix data for a linear trend.  

      a_trend(1:,1) = one  

      a_trend(1:,2) = t  

      b_trend(1:,1) = x  

  

! Solve for a linear trend.  

      call lin_sol_lsq(a_trend, b_trend, x_trend)  

  

! Compute harmonic residuals.  

      r = x -  reshape(matmul(a_trend,x_trend),(/n/))  

  

! Transform harmonic residuals.  

      call c_fast_dft(forward_in=r, forward_out=f)  

      ip=(/(i,i=1,n)/)  

  

! The dominant frequencies should be 2 through k+1.  

! Sort the magnitude of the transform first.  

      call s_sort_real(-(abs(f)), temp, iperm=ip)  
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! The dominant frequencies are output in ip(1:k).  

! Sort these values to compare with 2 through k+1.  

      call s_sort_real(real(ip(1:k)), temp)  

      ip(1:k)=(/(i,i=2,k+1)/)  

  

! Check the results.  

      if (count(int(temp(1:k)) /= ip(1:k)) == 0) then   

         write (*,*) 'Example 2 for FAST_DFT is correct.'  

      end if  

  

      end   

Output 
 

Example 2 for FAST_DFT is correct. 

 Example 3: Several Transforms with Initialization 

In this example, the optional arguments ido and work_array are used to save working 

variables in the calling program unit. This results in maximum efficiency of the transform and its 

inverse since the working variables do not have to be precomputed following each entry to routine 

fast_dft. 
 

      use fast_dft_int  

      use rand_gen_int 

 

      implicit none 

 

! This is Example 3 for FAST_DFT. 

 

! The value of the array size for work(:) is computed in the  

! routine fast_dft as a first step. 

      integer, parameter :: n=64 

      integer ido_value 

      real(kind(1e0)) :: one=1e0 

      real(kind(1e0)) err, y(2*n) 

      complex(kind(1e0)), dimension(n) :: a, b, save_a 

      complex(kind(1e0)), allocatable :: work(:) 

 

 

! Generate a random complex array. 

      call rand_gen(y) 

      a = cmplx(y(1:n),y(n+1:2*n),kind(one)) 

      save_a = a 

 

! Transform and then invert the sequence using the pre-computed 

! working values. 

      ido_value = 0 

      do  

         if(allocated(work)) deallocate(work) 

 

! Allocate the space required for work(:). 

         if (ido_value <= 0) allocate(work(-ido_value)) 

 

         call c_fast_dft(forward_in=a, forward_out=b, & 
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          ido=ido_value, work_array=work) 

 

         if (ido_value == 1) exit 

      end do 

 

! Re-enter routine with working values available in work(:). 

      call c_fast_dft(inverse_in=b, inverse_out=a, & 

            ido=ido_value, work_array=work) 

 

! Deallocate the space used for work(:). 

      if (allocated(work)) deallocate(work) 

 

! Check the results. 

      err = maxval(abs(save_a-a))/maxval(abs(save_a)) 

      if (err <= sqrt(epsilon(one))) then 

         write (*,*) 'Example 3 for FAST_DFT is correct.' 

      end if 

 

      end 

Output 
 

Example 3 for FAST_DFT is correct. 

Example 4: Convolutions using Fourier Transforms 

In this example we compute sums  

1

0

, 0, , 1
n

k j k j

j

c a b k n






  
 

The definition implies a matrix-vector product.  A direct approach requires about 
2n  operations 

consisisting of an add and multiply.  An efficient method consisting of computing the products of 

the transforms of the  

         ja and  jb  

then inverting this product, is preferable to the matrix-vector approach for large problems.  The 

example is also illustrated in operator_ex37, Chapter 10 using the generic function interface 

FFT and IFFT.  
 

      use fast_dft_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 4 for FAST_DFT.  

  

      integer j  

      integer, parameter :: n=40  

      real(kind(1e0)) :: one=1e0  

      real(kind(1e0)) err     
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      real(kind(1e0)), dimension(n) :: x, y, yy(n,n)  

      complex(kind(1e0)), dimension(n) :: a, b, c, d, e, f  

   

! Generate two random complex sequence 'a' and 'b'.  

   

      call rand_gen(x)  

      call rand_gen(y)  

      a=x; b=y  

   

! Compute the convolution 'c' of 'a' and 'b'.   

! Use matrix times vector for test results.  

      yy(1:,1)=y  

      do j=2,n  

        yy(2:,j)=yy(1:n-1,j-1)  

        yy(1,j)=yy(n,j-1)  

      end do  

  

      c=matmul(yy,x)  

  

! Transform the 'a' and 'b' sequences into 'd' and 'e'.  

   

      call c_fast_dft(forward_in=a, &  

           forward_out=d)  

      call c_fast_dft(forward_in=b, &  

           forward_out=e)  

  

! Invert the product d*e.  

  

      call c_fast_dft(inverse_in=d*e, &  

           inverse_out=f)  

   

! Check the Convolution Theorem:  

! inverse(transform(a)*transform(b)) = convolution(a,b).  

   

      err = maxval(abs(c-f))/maxval(abs(c))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 4 for FAST_DFT is correct.'  

      end if  

  

      end   

Output 
 

Example 4 for FAST_DFT is correct. 

FAST_2DFT 
Computes the Discrete Fourier Transform (2DFT) of a rank-2 complex array, x. 

Required Arguments 

No required arguments; pairs of optional arguments are required. These pairs are forward_in 

and forward_out or inverse_in and inverse_out. 
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Optional Arguments 

forward_in = x   (Input) 

Stores the input complex array of rank-2 to be transformed. 

forward_out = y   (Output) 

Stores the output complex array of rank-2 resulting from the transform. 

inverse_in = y   (Input) 

Stores the input complex array of rank-2 to be inverted.   

inverse_out = x   (Output) 

Stores the output complex array of rank-2 resulting from the inverse transform.   

mdata = m   (Input) 

Uses the sub-array in first dimension of size m for the numbers. 

Default value: m = size(x,1). 

ndata = n   (Input) 

Uses the sub-array in the second dimension of size n for the numbers. 

Default value: n = size(x,2). 

ido = ido   (Input/Output) 

Integer flag that directs user action. Normally, this argument is used only when the 

working variables required for the transform and its inverse are saved in the calling 

program unit. Computing the working variables and saving them in internal arrays 

within fast_2dft is the default. This initialization step is expensive.  

There is a two-step process to compute the working variables just once. Example 3 

illustrates this usage. The general algorithm for this usage is to enter fast_2dft with  

ido = 0. A return occurs thereafter with ido < 0. The optional rank-1 complex array w(:) 

with size(w) >= ido must be re-allocated. Then, re-enter fast_2dft. The next return 

from fast_2dft has the output value ido = 1. The variables required for the transform 

and its inverse are saved in w(:). Thereafter, when the routine is entered with ido = 1 

and for the same values of m and n, the contents of w(:) will be used for the working 

variables. The expensive initialization step is avoided. The optional arguments ―ido=‖ 

and ―work_array=‖ must be used together. 

work_array = w(:)   (Output/Input) 

Complex array of rank-1 used to store working variables and values between calls to 

fast_2dft. The value for size(w) must be at least as large as the value  ido for the 

value of ido < 0.  

iopt = iopt(:)   (Input/Output) 

Derived type array with the same precision as the input array; used for passing optional 

data to fast_2dft. The options are as follows: 

Packaged Options for FAST_2DFT 
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Packaged Options for FAST_2DFT 

Option Prefix = ? Option Name Option Value 

c_, z_ fast_2dft_scan_for_NaN 1 

c_, z_ fast_2dft_near_power_of_2 2 

c_, z_ fast_2dft_scale_forward 3 

c_, z_ fast_2dft_scale_inverse 4 

iopt(IO) = ?_options(?_fast_2dft_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that  
isNaN(x(i,j)) ==.true.  

See the isNaN() function, Chapter 10. 

Default: Does not scan for NaNs. 

iopt(IO) = ?_options(?_fast_2dft_near_power_of_2, ?_dummy) 

Nearest powers of 2 ≥ m and  ≥ n are returned as an outputs in iopt(IO + 

1)%idummy and iopt(IO + 2)%idummy. 

iopt(IO) = ?_options(?_fast_2dft_scale_forward, real_part_of_scale)  

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale) 

Complex number defined by the factor  

cmplx(real_part_of_scale, imaginary_part_of_scale) is 

multiplied by the forward transformed array. 

Default value is 1. 

iopt(IO) = ?_options(?_fast_2dft_scale_inverse, real_part_of_scale)  

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale) 

Complex number defined by the factor 

cmplx(real_part_of_scale, imaginary_part_of_scale) is 

multiplied by the inverse transformed array. 

Default value is 1. 

FORTRAN 90 Interface 

Generic: None 

Specific: The specific interface names are S_FAST_2DFT, D_FAST_2DFT, C_FAST_2DFT, 

and Z_FAST_2DFT. 

Description 

The fast_2dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776). 

Fatal and Terminal Messages 

See the messages.gls file for error messages for FAST_2DFT. These error messages are numbered 

670680; 720730. 
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Example 1: Transforming an Array of Random Complex Numbers 

An array of random complex numbers is obtained. The transform of the numbers is inverted and 

the final results are compared with the input array. 
 

      use fast_2dft_int  

      use rand_int  

  

      implicit none  

  

! This is Example 1 for FAST_2DFT.  

  

      integer, parameter :: n=24  

      integer, parameter :: m=40  

      real(kind(1e0)) :: err, one=1e0  

      complex(kind(1e0)), dimension(n,m) :: a, b, c  

  

  

! Generate a random complex sequence.  

      a=rand(a); c=a  

  

! Transform and then invert the transform.  

      call c_fast_2dft(forward_in=a, &  

           forward_out=b)  

      call c_fast_2dft(inverse_in=b, &  

           inverse_out=a)  

  

! Check that inverse(transform(sequence)) = sequence.  

      err = maxval(abs(c-a))/maxval(abs(c))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 1 for FAST_2DFT is correct.'  

      end if  

  

     end   

Output 
 

Example 1 for FAST_2DFT is correct. 

Additional Examples 

.Example 2: Cyclical 2D Data with a Linear Trend 

This set of data is sampled from a function x(s, t) = a + bs + ct + y(s, t) , where y(s, t)  is an 

harmonic series. The independent variables are normalized as 1 ≤ s ≤ 1 and 1 ≤ t ≤ 1. Thus, the 

data is said to have cyclical components plus a linear trend. As a first step, the linear terms are 

effectively removed from the data using the least-squares system solver . Then, the residuals are 

transformed and the resulting frequencies are analyzed. 
 

      use fast_2dft_int  

      use lin_sol_lsq_int  

      use sort_real_int  

      use rand_int  

      implicit none  
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! This is Example 2 for FAST_2DFT.  

  

      integer i  

      integer, parameter :: n=8, k=15  

      integer ip(n*n), order(k)  

      real(kind(1e0)), parameter :: one=1e0, two=2e0, zero=0e0  

      real(kind(1e0)) delta_t  

      real(kind(1e0)) rn(3), s(n), t(n), temp(n*n), new_order(k)  

      complex(kind(1e0)) a, b, c, a_trend(n*n,3), b_trend(n*n,1),  &  

               f(n,n), r(n,n), x(n,n), x_trend(3,1)  

      complex(kind(1e0)), dimension(n,n) :: g=zero, h=zero  

  

! Generate random data for planar trend.  

      rn = rand(rn)  

      a = rn(1)  

      b = rn(2)  

      c = rn(3)  

  

! Generate the frequency components of the harmonic series.  

! Non-zero random amplitudes given on two edges of the square domain.  

      g(1:,1)=rand(g(1:,1))  

      g(1,1:)=rand(g(1,1:))   

  

! Invert 'g' into the harmonic series 'h' in time domain.  

      call c_fast_2dft(inverse_in=g, inverse_out=h)  

  

  

! Compute sampling interval.  

      delta_t = two/n  

      s = (/(-one + (i-1)*delta_t, i=1,n)/)  

      t = (/(-one + (i-1)*delta_t, i=1,n)/)  

  

! Make up data set as a linear trend plus harmonics.  

      x = a + b*spread(s,dim=2,ncopies=n) +   &  

              c*spread(t,dim=1,ncopies=n) + h  

  

! Define least-squares matrix data for a planar trend.  

      a_trend(1:,1) = one  

      a_trend(1:,2) = reshape(spread(s,dim=2,ncopies=n),(/n*n/))  

      a_trend(1:,3) = reshape(spread(t,dim=1,ncopies=n),(/n*n/))  

      b_trend(1:,1) = reshape(x,(/n*n/))  

  

! Solve for a linear trend.  

      call lin_sol_lsq(a_trend, b_trend, x_trend)  

  

! Compute harmonic residuals.  

      r = x -  reshape(matmul(a_trend,x_trend),(/n,n/))  

  

! Transform harmonic residuals.  

      call c_fast_2dft(forward_in=r, forward_out=f)  

  

      ip = (/(i,i=1,n**2)/)  

  

! Sort the magnitude of the transform.  

      call s_sort_real(-(abs(reshape(f,(/n*n/)))), &  

                                      temp, iperm=ip)  
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! The dominant frequencies are output in ip(1:k).  

! Sort these values to compare with the original frequency order.   

      call s_sort_real(real(ip(1:k)), new_order)  

  

      order(1:n) = (/(i,i=1,n)/)   

      order(n+1:k) = (/((i-n)*n+1,i=n+1,k)/)   

  

! Check the results.  

      if (count(order /= int(new_order)) == 0) then   

         write (*,*) 'Example 2 for FAST_2DFT is correct.'  

      end if  

  

      end   

Output 
 

Example 2 for FAST_2DFT is correct. 

Example 3: Several 2D Transforms with Initialization 

In this example, the optional arguments ido and work_array are used to save working 

variables in the calling program unit. This results in maximum efficiency of the transform and its 

inverse since the working variables do not have to be precomputed following each entry to routine 

fast_2dft. 
  

      use fast_2dft_int  

  

      implicit none  

  

! This is Example 3 for FAST_2DFT.  

  

      integer i, j  

      integer, parameter :: n=256  

      real(kind(1e0)), parameter :: one=1e0, zero=0e0  

      real(kind(1e0)) r(n,n), err  

      complex(kind(1e0)) a(n,n), b(n,n), c(n,n)  

  

! The value of the array size for work(:) is computed in the   

! routine fast_dft as a first step.  

  

      integer ido_value  

      complex(kind(1e0)), allocatable :: work(:)  

  

  

! Fill in value one for points inside the circle with r=64.  

      a = zero  

      r = reshape((/(((i-n/2)**2 + (j-n/2)**2, i=1,n), &  

                  j=1,n)/),(/n,n/))  

      where (r <= (n/4)**2) a = one  

      c = a  

  

! Transform and then invert the sequence using the pre-computed  

! working values.  
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      ido_value = 0  

      do   

         if(allocated(work)) deallocate(work)  

  

! Allocate the space required for work(:).  

         if (ido_value <= 0) allocate(work(-ido_value))  

  

! Transform the image and then invert it back.  

      call c_fast_2dft(forward_in=a, &  

           forward_out=b, IDO=ido_value, work_array=work)  

         if (ido_value == 1) exit  

      end do  

      call c_fast_2dft(inverse_in=b, &  

           inverse_out=a, IDO=ido_value, work_array=work)  

  

! Deallocate the space used for work(:).  

      if (allocated(work)) deallocate(work)  

  

! Check that inverse(transform(image)) = image.  

      err = maxval(abs(c-a))/maxval(abs(c))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 3 for FAST_2DFT is correct.'  

      end if  

  

      end   

Output 
 

Example 3 for FAST_2DFT is correct. 

FAST_3DFT 
Computes the Discrete Fourier Transform (2DFT) of a rank-3 complex array. 

Required Arguments 

No required arguments; pairs of optional arguments are required. These pairs are forward_in 

and forward_out or inverse_in and inverse_out. 

Optional Arguments 

forward_in = x   (Input) 

Stores the input complex array of rank-3 to be transformed. 

forward_out = y   (Output) 

Stores the output complex array of rank-3 resulting from the transform. 

inverse_in = y   (Input) 

Stores the input complex array of rank-3 to be inverted.   

inverse_out = x   (Output) 

Stores the output complex array of rank-3 resulting from the inverse transform.   
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mdata = m   (Input) 

Uses the sub-array in first dimension of size m for the numbers. 

Default value: m = size(x,1). 

ndata = n   (Input) 

Uses the sub-array in the second dimension of size n for the numbers. 

Default value: n = size(x,2). 

kdata = k   (Input) 

Uses the sub-array in the third dimension of size k for the numbers. 

Default value: k = size(x,3). 

ido = ido   (Input/Output) 

Integer flag that directs user action. Normally, this argument is used only when the 

working variables required for the transform and its inverse are saved in the calling 

program unit. Computing the working variables and saving them in internal arrays 

within fast_3dft is the default. This initialization step is expensive.  

There is a two-step process to compute the working variables just once. The general 

algorithm for this usage is to enter fast_3dft with  

ido = 0. A return occurs thereafter with ido < 0. The optional rank-1 complex array w(:) 

with size(w) >= ido must be re-allocated. Then, re-enter fast_3dft. The next return 

from fast_3dft has the output value ido = 1. The variables required for the transform 

and its inverse are saved in w(:). Thereafter, when the routine is entered with ido = 1 

and for the same values of m and n, the contents of w(:) will be used for the working 

variables. The expensive initialization step is avoided. The optional arguments ―ido=‖ 

and ―work_array=‖ must be used together. 

work_array = w(:)   (Output/Input) 

Complex array of rank-1 used to store working variables and values between calls to 

fast_3dft. The value for size(w) must be at least as large as the value  ido for the 

value of ido < 0.  

iopt = iopt(:)   (Input/Output) 

Derived type array with the same precision as the input array; used for passing optional 

data to fast_3dft. The options are as follows: 

Packaged Options for FAST_3DFT 

Option Prefix = ? Option Name Option Value 

C_, z_ fast_3dft_scan_for_NaN 1 

C_, z_ fast_3dft_near_power_of_2 2 

C_, z_ fast_3dft_scale_forward 3 

C_, z_ fast_3dft_scale_inverse 4 

iopt(IO) = ?_options(?_fast_3dft_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that  
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isNaN(x(i,j,k)) ==.true.  

See the isNaN() function, Chapter 10. 

Default: Does not scan for NaNs. 

iopt(IO) = ?_options(?_fast_3dft_near_power_of_2, ?_dummy) 

Nearest powers of 2 ≥ m, ≥ n, and  ≥ k are returned as an outputs in 

iopt(IO+1)%idummy , iopt(IO+2)%idummy and iopt(IO+3)%idummy  

iopt(IO) = ?_options(?_fast_3dft_scale_forward, real_part_of_scale) 

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale) 

Complex number defined by the factor  

cmplx(real_part_of_scale, imaginary_part_of_scale) is 

multiplied by the forward transformed array. 

Default value is 1. 

iopt(IO) = ?_options(?_fast_3dft_scale_inverse, real_part_of_scale)  

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale) 

Complex number defined by the factor 

cmplx(real_part_of_scale, imaginary_part_of_scale) is 

multiplied by the inverse transformed array. 

Default value is 1. 

FORTRAN 90 Interface 

Generic: None 

Specific: The specific interface names are S_FAST_3DFT, D_FAST_3DFT, C_FAST_3DFT, 

and Z_FAST_3DFT. 

Description 

The fast_3dft routine is a Fortran 90 version of the FFT suite of IMSL (1994, pp. 772-776). 

Fatal and Terminal Messages 

See the messages.gls file for error messages for FAST_3DFT. These error messages are numbered 

685695; 740750. 

Example: Transforming an Array of Random Complex Numbers 

An array of random complex numbers is obtained. The transform of the numbers is inverted and 

the final results are compared with the input array. 
 

      use fast_3dft_int  

  

      implicit none  

  

! This is Example 1 for FAST_3DFT.  

  

      integer i, j, k  
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      integer, parameter :: n=64  

      real(kind(1e0)), parameter :: one=1e0, zero=0e0  

      real(kind(1e0)) r(n,n,n), err  

      complex(kind(1e0)) a(n,n,n), b(n,n,n), c(n,n,n)  

  

! Fill in value one for points inside the sphere  

! with radius=16.  

      a = zero  

      do i=1,n  

        do j=1,n  

          do k=1,n  

            r(i,j,k) = (i-n/2)**2+(j-n/2)**2+(k-n/2)**2  

          end do  

        end do  

      end do  

      where (r <= (n/4)**2) a = one  

      c = a  

  

! Transform the image and then invert it back.  

       call c_fast_3dft(forward_in=a, &  

           forward_out=b)  

       call c_fast_3dft(inverse_in=b, &  

           inverse_out=a)  

  

! Check that inverse(transform(image)) = image.  

      err = maxval(abs(c-a))/maxval(abs(c))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 1 for FAST_3DFT is correct.'  

      end if  

  

      end   

Output 
 

Example 1 for FAST_3DFT is correct. 

FFTRF 

 

Computes the Fourier coefficients of a real periodic sequence. 

Required Arguments 

N — Length of the sequence to be transformed.   (Input) 

SEQ — Array of length N containing the periodic sequence.   (Input) 

COEF — Array of length N containing the Fourier coefficients.   (Output) 
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FORTRAN 90 Interface 

Generic: CALL FFTRF (N, SEQ, COEF) 

Specific: The specific interface names are S_FFTRF and D_FFTRF. 

FORTRAN 77 Interface 

Single: CALL FFTRF (N, SEQ, COEF) 

Double: The double precision name is DFFTRF. 

Description 

The routine FFTRF computes the discrete Fourier transform of a real vector of size N. It uses the 

Intel
®

 Math Kernel Library or IBM Engineering and Scientific Subroutine Library for the 

computation, if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm 

that is most efficient when N is a product of small prime factors. If N satisfies this condition, then 

the computational effort is proportional to N log N. 

Specifically, given an N-vector s = SEQ, FFTRF returns in c = COEF, if N is even: 
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If N is odd, cm is defined as above for m from 2 to (N + 1)/2. 

We now describe a fairly common usage of this routine. Let f be a real valued function of time. 

Suppose we sample f at N equally spaced time intervals of length Δ seconds starting at time t0. 

That is, we have 

SEQ i:= f (t0 + (i  1)Δ) i = 1, 2, …, N 

The routine FFTRF treats this sequence as if it were periodic of period N. In particular, it assumes 

that f (t0) = f (t0 + NΔ). Hence, the period of the function is assumed to be T = NΔ. 

Now, FFTRF accepts as input SEQ and returns as output coefficients c = COEF that satisfy the 

following relation when N is odd (N even is similar): 
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This formula is very revealing. It can be interpreted in the following manner. The coefficients 

produced by FFTRF produce an interpolating trigonometric polynomial to the data. That is, if we 

define 
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then, we have 

f(t0+ (i  1)Δ) = g(t0 + (i  1)Δ) 

Now, suppose we want to discover the dominant frequencies. One forms the vector P of length 

N/2 as follows: 

 

1 1

2 2
2 2 2 1

:

: 2, 3, , 1 / 2k k k

P c

P c c k N 



   
 

These numbers correspond to the energy in the spectrum of the signal. In particular, Pk 

corresponds to the energy level at frequency 

1 1 1
1, 2, ,

2

k k N
k

T N

  
 

  

Furthermore, note that there are only (N + 1)/2 ≈ T/(2Δ) resolvable frequencies when N 

observations are taken. This is related to the Nyquist phenomenon, which is induced by discrete 

sampling of a continuous signal. 

Similar relations hold for the case when N is even. 

Finally, note that the Fourier transform hsas an (unnormalized) inverse that is implemented in 

FFTRB. The routine FFTRF is based on the real FFT in FFTPACK. The package FFTPACK was 

developed by Paul Swarztrauber at the National Center for Atmospheric Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2TRF/DF2TRF. The 

reference is: 

CALL F2TRF (N, SEQ, COEF, WFFTR) 

The additional argument is 

WFFTR — Array of length 2N + 15 initialized by FFTRI.   (Input)  

The initialization depends on N. 
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 If the Intel
®

 Math Kernel Library or IBM Engineering and Scientific 

Subroutine Library is used, WFFTR is not referenced. 

2. The routine FFTRF is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If FFTRF/FFTRB is used repeatedly with the same value of N, then call FFTRI followed 

by repeated calls to F2TRF/F2TRB. This is more efficient than repeated calls to 

FFTRF/FFTRB. 

If the Intel
®

 Math Kernel Library or IBM Engineering and Scientific Subroutine Library is 

used, parameters computed by FFTRI are not used. In this case, there is no need to call 

FFTRI. 

Example 

In this example, a pure cosine wave is used as a data vector, and its Fourier series is recovered. 

The Fourier series is a vector with all components zero except at the appropriate frequency where 

it has an N. 
 

      USE FFTRF_INT 

      USE CONST_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, NOUT 

      REAL       COEF(N), COS, FLOAT, TWOPI, SEQ(N) 

      INTRINSIC  COS, FLOAT 

      TWOPI = CONST('PI') 

! 

      TWOPI = 2.0*TWOPI 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 This loop fills out the data vector 

!                                 with a pure exponential signal 

      DO 10  I=1, N 

         SEQ(I) = COS(FLOAT(I-1)*TWOPI/FLOAT(N)) 

   10 CONTINUE 

!                                 Compute the Fourier transform of SEQ 

      CALL FFTRF (N, SEQ, COEF) 

!                                 Print results 

      WRITE (NOUT,99998) 

99998 FORMAT (9X, 'INDEX', 5X, 'SEQ', 6X, 'COEF') 

      WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 

99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2) 

      END 

Output 
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INDEX     SEQ      COEF 

  1      1.00      0.00 

  2      0.62      3.50 

  3     -0.22      0.00 

  4     -0.90      0.00 

  5     -0.90      0.00 

  6     -0.22      0.00 

  7      0.62      0.00 

FFTRB 

 

Computes the real periodic sequence from its Fourier coefficients. 

Required Arguments 

N — Length of the sequence to be transformed.   (Input) 

COEF — Array of length N containing the Fourier coefficients.   (Input) 

SEQ — Array of length N containing the periodic sequence.   (Output) 

FORTRAN 90 Interface 

Generic: CALL FFTRB (N, COEF, SEQ [,…]) 

Specific: The specific interface names are S_FFTRB and D_FFTRB. 

FORTRAN 77 Interface 

Single: CALL FFTRB (N, COEF, SEQ) 

Double: The double precision name is DFFTRB. 

Description 

The routine FFTRB is the unnormalized inverse of the routine FFTRF. This routine computes the 

discrete inverse Fourier transform of a real vector of size N. It uses the Intel
®

 Math Kernel Library 

or IBM Engineering and Scientific Subroutine Library for the computation, if available. 

Otherwise, the method used is a variant of the Cooley-Tukey algorithm, which is most efficient 

when N is a product of small prime factors. If N satisfies this condition, then the computational 

effort is proportional to N log N. 

Specifically, given an N-vector c = COEF, FFTRB returns in s = SEQ, if N is even: 
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The routine FFTRB is based on the inverse real FFT in FFTPACK. The package FFTPACK was 

developed by Paul Swarztrauber at the National Center for Atmospheric Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2TRB/DF2TRB. The 

reference is: 

CALL F2TRB (N, COEF, SEQ, WFFTR) 

The additional argument is 

WFFTR — Array of length 2N + 15 initialized by FFTRI.   (Input)  

The initialization depends on N. 

 If the Intel
®

 Math Kernel Library or IBM Engineering and Scientific 

Subroutine Library is used, WFFTR is not referenced. 

2. The routine FFTRB is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If FFTRF/FFTRB is used repeatedly with the same value of N, then call FFTRI followed 

by repeated calls to F2TRF/F2TRB. This is more efficient than repeated calls to 

FFTRF/FFTRB. 

If the Intel
®

 Math Kernel Library or IBM Engineering and Scientific Subroutine Library is 

used, parameters computed by FFTRI are not used. In this case, there is no need to call 

FFTRI. 

Example 

We compute the forward real FFT followed by the inverse operation. In this example, we first 

compute the Fourier transform 
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COEFx̂   

of the vector x, where xj = (1)
j
 for j = 1 to N. This vector 

x̂  

is now input into FFTRB with the resulting output s = Nx, that is, sj = (1)
j 
N for j = 1 to N. 

 

      USE FFTRB_INT 

      USE CONST_INT 

      USE FFTRF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, NOUT 

      REAL       COEF(N), FLOAT, SEQ(N), TWOPI, X(N) 

      INTRINSIC  FLOAT 

      TWOPI = CONST('PI') 

! 

      TWOPI = TWOPI 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Fill the data vector 

      DO 10  I=1, N 

         X(I) = FLOAT((-1)**I) 

   10 CONTINUE 

!                                 Compute the forward transform of X 

      CALL FFTRF (N, X, COEF) 

!                                 Print results 

      WRITE (NOUT,99994) 

      WRITE (NOUT,99995) 

99994 FORMAT (9X, 'Result after forward transform') 

99995 FORMAT (9X, 'INDEX', 5X, 'X', 8X, 'COEF') 

      WRITE (NOUT,99996) (I, X(I), COEF(I), I=1,N) 

99996 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2) 

!                                 Compute the backward transform of 

!                                 COEF 

      CALL FFTRB (N, COEF, SEQ) 

!                                Print results 

      WRITE (NOUT,99997) 

      WRITE (NOUT,99998) 

99997 FORMAT (/, 9X, 'Result after backward transform') 

99998 FORMAT (9X, 'INDEX', 4X, 'COEF', 6X, 'SEQ') 

      WRITE (NOUT,99999) (I, COEF(I), SEQ(I), I=1,N) 

99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2) 

      END 

Output 
 

Result after forward transform 

INDEX     X        COEF 

  1     -1.00     -1.00 
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  2      1.00     -1.00 

  3     -1.00     -0.48 

  4      1.00     -1.00 

  5     -1.00     -1.25 

  6      1.00     -1.00 

  7     -1.00     -4.38 

 

Result after backward transform 

INDEX    COEF      SEQ 

  1     -1.00     -7.00 

  2     -1.00      7.00 

  3     -0.48     -7.00 

  4     -1.00      7.00 

  5     -1.25     -7.00 

  6     -1.00      7.00 

  7     -4.38     -7.00 

FFTRI 
Computes parameters needed by FFTRF and FFTRB. 

Required Arguments 

N — Length of the sequence to be transformed.   (Input) 

WFFTR — Array of length 2N + 15 containing parameters needed by FFTRF and FFTRB.   

(Output) 

FORTRAN 90 Interface 

Generic: CALL FFTRI (N, WFFTR) 

Specific: The specific interface names are S_FFTRI and D_FFTRI. 

FORTRAN 77 Interface 

Single: CALL FFTRI (N, WFFTR) 

Double: The double precision name is DFFTRI. 

Description 

The routine FFTRI initializes the routines FFTRF and FFTRB. An efficient way to make multiple 

calls for the same N to routine FFTRF or FFTRB, is to use routine FFTRI for initialization. (In this 

case, replace FFTRF or FFTRB with F2TRF or F2TRB, respectively.) The routine FFTRI is based on 

the routine RFFTI in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the 

National Center for Atmospheric Research. 

If the Intel
®

 Math Kernel Library or IBM Engineering and Scientific Subroutine Library is used, 

parameters computed by FFTRI are not used. In this case, there is no need to call FFTRI. 



     

     
 

1244  Chapter 6: Transforms IMSL MATH LIBRARY  

     

     

 

Comments 

Different WFFTR arrays are needed for different values of N. 

Example 

In this example, we compute three distinct real FFTs by calling FFTRI once and then calling 

F2TRF three times. 
 

      USE FFTRI_INT 

      USE CONST_INT 

      USE F2TRF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, K, NOUT 

      REAL       COEF(N), COS, FLOAT, TWOPI, WFFTR(29), SEQ(N) 

      INTRINSIC  COS, FLOAT 

! 

      TWOPI = CONST('PI') 

      TWOPI = 2* TWOPI  

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Set the work vector 

      CALL FFTRI (N, WFFTR) 

! 

      DO 20  K=1, 3 

!                                 This loop fills out the data vector 

!                                 with a pure exponential signal 

         DO 10  I=1, N 

            SEQ(I) = COS(FLOAT(K*(I-1))*TWOPI/FLOAT(N)) 

   10 CONTINUE 

!                                 Compute the Fourier transform of SEQ 

         CALL F2TRF (N, SEQ, COEF, WFFTR) 

!                                 Print results 

         WRITE (NOUT,99998) 

99998    FORMAT (/, 9X, 'INDEX', 5X, 'SEQ', 6X, 'COEF') 

         WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 

99999    FORMAT (1X, I11, 5X, F5.2, 5X, F5.2) 

! 

   20 CONTINUE 

      END 

Output 
 

INDEX     SEQ      COEF 

  1      1.00      0.00 

  2      0.62      3.50 

  3     -0.22      0.00 

  4     -0.90      0.00 

  5     -0.90      0.00 
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  6     -0.22      0.00 

  7      0.62      0.00 

 

 

INDEX     SEQ      COEF 

  1      1.00      0.00 

  2     -0.22      0.00 

  3     -0.90      0.00 

  4      0.62      3.50 

  5      0.62      0.00 

  6     -0.90      0.00 

  7     -0.22      0.00 

 

 

INDEX     SEQ      COEF 

1      1.00      0.00 

2     -0.90      0.00 

3      0.62      0.00 

4     -0.22      0.00 

5     -0.22      0.00 

6      0.62      3.50 

7     -0.90      0.00 

FFTCF 

 

Computes the Fourier coefficients of a complex periodic sequence. 

Required Arguments 

N — Length of the sequence to be transformed.   (Input) 

SEQ — Complex array of length N containing the periodic sequence.   (Input) 

COEF — Complex array of length N containing the Fourier coefficients.   (Output) 

FORTRAN 90 Interface 

Generic: CALL FFTCF (N, SEQ, COEF) 

Specific: The specific interface names are S_FFTCF and D_FFTCF. 

FORTRAN 77 Interface 

Single: CALL FFTCF (N, SEQ, COEF) 

Double: The double precision name is DFFTCF. 
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Description 

The routine FFTCF computes the discrete complex Fourier transform of a complex vector of size 

N. It uses the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and 

Scientific Subroutine Library for the computation, if available. Otherwise, the method used is a 

variant of the Cooley-Tukey algorithm, which is most efficient when N is a product of small prime 

factors. If N satisfies this condition, then the computational effort is proportional to N log N. This 

considerable savings has historically led people to refer to this algorithm as the ―fast Fourier 

transform‖ or FFT. 

Specifically, given an N-vector x, FFTCF returns in c = COEF 

  2 1 1 /
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Furthermore, a vector of Euclidean norm S is mapped into a vector of norm  

NS  

Finally, note that we can invert the Fourier transform as follows: 

  2 1 1 /
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This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has the 

coefficients for a trigonometric interpolating polynomial to the data. An unnormalized inverse is 

implemented in FFTCB. FFTCF is based on the complex FFT in FFTPACK. The package 

FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2TCF/DF2TCF. The 

reference is: 

CALL F2TCF (N, SEQ, COEF, WFFTC, CPY) 

The additional arguments are as follows: 

WFFTC — Real array of length 4 * N + 15 initialized by FFTCI. The 

initialization depends on N.   (Input) 

CPY — Real array of length 2 * N. (Workspace) 

 If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM 

Engineering and Scientific Subroutine Library is used, WFFTC and CPY 

are not referenced. 

2. The routine FFTCF is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 
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4. If FFTCF/FFTCB is used repeatedly with the same value of N, then call FFTCI followed 

by repeated calls to F2TCF/F2TCB. This is more efficient than repeated calls to 

FFTCF/FFTCB. 

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and 

Scientific Subroutine Library is used, parameters computed by FFTCI are not used. In this 

case, there is no need to call FFTCI. 

Example 

In this example, we input a pure exponential data vector and recover its Fourier series, which is a 

vector with all components zero except at the appropriate frequency where it has an N. Notice that 

the norm of the input vector is  

N  

but the norm of the output vector is N. 
 

      USE FFTCF_INT 

      USE CONST_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, NOUT 

      REAL       TWOPI 

      COMPLEX    C, CEXP, COEF(N), H, SEQ(N) 

      INTRINSIC  CEXP 

! 

      C     = (0.,1.) 

      TWOPI = CONST('PI') 

      TWOPI = 2.0 * TWOPI 

!                                 Here we compute (2*pi*i/N)*3. 

      H = (TWOPI*C/N)*3. 

!                                 This loop fills out the data vector 

!                                 with a pure exponential signal of 

!                                 frequency 3. 

      DO 10  I=1, N 

         SEQ(I) = CEXP((I-1)*H) 

   10 CONTINUE 

!                                 Compute the Fourier transform of SEQ 

      CALL FFTCF (N, SEQ, COEF) 

!                                 Get output unit number and print 

!                                 results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99998) 

99998 FORMAT (9X, 'INDEX', 8X, 'SEQ', 15X, 'COEF') 

      WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 

99999 FORMAT (1X, I11, 5X,'(',F5.2,',',F5.2,')', & 

                      5X,'(',F5.2,',',F5.2,')') 

      END 
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Output 
 

INDEX        SEQ               COEF 

  1     ( 1.00, 0.00)     ( 0.00, 0.00) 

  2     (-0.90, 0.43)     ( 0.00, 0.00) 

  3     ( 0.62,-0.78)     ( 0.00, 0.00) 

  4     (-0.22, 0.97)     ( 7.00, 0.00) 

  5     (-0.22,-0.97)     ( 0.00, 0.00) 

  6     ( 0.62, 0.78)     ( 0.00, 0.00) 

  7     (-0.90,-0.43)     ( 0.00, 0.00) 

FFTCB 

 

Computes the complex periodic sequence from its Fourier coefficients. 

Required Arguments 

N — Length of the sequence to be transformed.   (Input) 

COEF — Complex array of length N containing the Fourier coefficients.   (Input) 

SEQ — Complex array of length N containing the periodic sequence.   (Output) 

FORTRAN 90 Interface 

Generic: CALL FFTCB (N, COEF, SEQ) 

Specific: The specific interface names are S_FFTCB and D_FFTCB. 

FORTRAN 77 Interface 

Single: CALL FFTCB (N, COEF, SEQ) 

Double: The double precision name is DFFTCB. 

Description 

The routine FFTCB computes the inverse discrete complex Fourier transform of a complex vector 

of size N. It uses the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering 

and Scientific Subroutine Library for the computation, if available. Otherwise, the method used is 

a variant of the Cooley-Tukey algorithm, which is most efficient when N is a product of small 

prime factors. If N satisfies this condition, then the computational effort is proportional to N log N. 

This considerable savings has historically led people to refer to this algorithm as the ―fast Fourier 

transform‖ or FFT. 
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Specifically, given an N-vector c = COEF, FFTCB returns in s = SEQ 

  2 1 1 /
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Furthermore, a vector of Euclidean norm S is mapped into a vector of norm 

NS  

Finally, note that we can invert the inverse Fourier transform as follows: 
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This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has the 

coefficients for a trigonometric interpolating polynomial to the data. FFTCB is based on the 

complex inverse FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber 

at the National Center for Atmospheric Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2TCB/DF2TCB. The 

reference is: 

CALL F2TCB (N, COEF, SEQ, WFFTC, CPY) 

The additional arguments are as follows: 

WFFTC — Real array of length 4 * N + 15 initialized by FFTCI. The 

initialization depends on N.   (Input) 

CPY — Real array of length 2 * N. (Workspace) 

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and 

Scientific Subroutine Library is used, WFFTC and CPY are not referenced. 

2. The routine FFTCB is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If FFTCF/FFTCB is used repeatedly with the same value of N; then call FFTCI followed 

by repeated calls to F2TCF/F2TCB. This is more efficient than repeated calls to 

FFTCF/FFTCB. 

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and 

Scientific Subroutine Library is used, parameters computed by FFTCI are not used. In this 

case, there is no need to call FFTCI. 
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Example 

In this example, we first compute the Fourier transform of the vector x, where xj = j for j = 1 to N. 

Note that the norm of x is (N[N + 1][2N + 1]/6) 
1/2

, and hence, the norm of the transformed vector 

x̂ c  

is N([N + 1][2N + 1]/6) 
1/2

. The vector 

x̂  

is used as input into FFTCB with the resulting output s = Nx, that is, sj = jN, for j = 1 to N. 
 

      USE FFTCB_INT 

      USE FFTCF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, NOUT 

      COMPLEX    CMPLX, SEQ(N), COEF(N), X(N) 

      INTRINSIC  CMPLX 

!                                 This loop fills out the data vector 

!                                 with X(I)=I, I=1,N 

      DO 10  I=1, N 

         X(I) = CMPLX(I,0) 

   10 CONTINUE 

!                                 Compute the forward transform of X 

      CALL FFTCF (N, X, COEF) 

!                                 Compute the backward transform of 

!                                 COEF 

      CALL FFTCB (N, COEF, SEQ) 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Print results 

      WRITE (NOUT,99998) 

      WRITE (NOUT,99999) (I, X(I), COEF(I), SEQ(I), I=1,N) 

99998 FORMAT (5X, 'INDEX', 9X, 'INPUT', 9X, 'FORWARD TRANSFORM', 3X, & 

            'BACKWARD TRANSFORM') 

99999 FORMAT (1X, I7, 7X,'(',F5.2,',',F5.2,')', & 

                     7X,'(',F5.2,',',F5.2,')', & 

                     7X,'(',F5.2,',',F5.2,')') 

      END 

Output 
 

INDEX      INPUT         FORWARD TRANSFORM   BACKWARD TRANSFORM 

 1       ( 1.00, 0.00)       (28.00, 0.00)       ( 7.00, 0.00) 

 2       ( 2.00, 0.00)       (-3.50, 7.27)       (14.00, 0.00) 

 3       ( 3.00, 0.00)       (-3.50, 2.79)       (21.00, 0.00) 

 4       ( 4.00, 0.00)       (-3.50, 0.80)       (28.00, 0.00) 

 5       ( 5.00, 0.00)       (-3.50,-0.80)       (35.00, 0.00) 



 

 

IMSL MATH LIBRARY Chapter 6: Transforms  1251 

     

     

 

 6       ( 6.00, 0.00)       (-3.50,-2.79)       (42.00, 0.00) 

 7       ( 7.00, 0.00)       (-3.50,-7.27)       (49.00, 0.00) 

FFTCI 
Computes parameters needed by FFTCF and FFTCB. 

Required Arguments 

N — Length of the sequence to be transformed.   (Input) 

WFFTC — Array of length 4N + 15 containing parameters needed by FFTCF and FFTCB.   

(Output) 

FORTRAN 90 Interface 

Generic: CALL FFTCI (N, WFFTC) 

Specific: The specific interface names are S_FFTCI and D_FFTCI. 

FORTRAN 77 Interface 

Single: CALL FFTCI (N, WFFTC) 

Double: The double precision name is DFFTCI. 

Description 

The routine FFTCI initializes the routines FFTCF and FFTCB. An efficient way to make multiple 

calls for the same N to IMSL routine FFTCF or FFTCB is to use routine FFTCI for initialization. (In 

this case, replace FFTCF or FFTCB with F2TCF or F2TCB, respectively.) The routine FFTCI is 

based on the routine CFFTI in FFTPACK. The package FFTPACK was developed by Paul 

Swarztrauber at the National Center for Atmospheric Research. 

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and Scientific 

Subroutine Library is used, parameters computed by FFTCI are not used. In this case, there is no 

need to call FFTCI. 

Comments 

Different WFFTC arrays are needed for different values of N.  

Example 

In this example, we compute a two-dimensional complex FFT by making one call to FFTCI 

followed by 2N calls to F2TCF. 
 

      USE FFTCI_INT 

      USE CONST_INT 

      USE F2TCF_INT 
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      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 SPECIFICATIONS FOR PARAMETERS 

      INTEGER    N 

      PARAMETER  (N=4) 

! 

      INTEGER    I, IR, IS, J, NOUT 

      REAL       FLOAT, TWOPI, WFFTC(35), CPY(2*N) 

      COMPLEX    CEXP, CMPLX, COEF(N,N), H, SEQ(N,N), TEMP 

      INTRINSIC  CEXP, CMPLX, FLOAT 

! 

      TWOPI = CONST('PI') 

      TWOPI = 2*TWOPI 

      IR    = 3 

      IS    = 1 

!                                 Here we compute e**(2*pi*i/N) 

      TEMP = CMPLX(0.0,TWOPI/FLOAT(N)) 

      H    = CEXP(TEMP) 

!                                 Fill SEQ with data 

      DO 20  I=1, N 

         DO 10  J=1, N 

            SEQ(I,J) = H**((I-1)*(IR-1)+(J-1)*(IS-1)) 

   10 CONTINUE 

   20 CONTINUE 

!                                 Print out SEQ 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99997) 

      DO 30  I=1, N 

         WRITE (NOUT,99998) (SEQ(I,J),J=1,N) 

   30 CONTINUE 

!                                 Set initialization vector 

      CALL FFTCI (N, WFFTC) 

!                                 Transform the columns of SEQ 

      DO 40  I=1, N 

         CALL F2TCF (N, SEQ(1:,I), COEF(1:,I), WFFTC, CPY) 

   40 CONTINUE 

!                                 Take transpose of the result 

      DO 60  I=1, N 

         DO 50  J=I + 1, N 

            TEMP      = COEF(I,J) 

            COEF(I,J) = COEF(J,I) 

            COEF(J,I) = TEMP 

   50 CONTINUE 

   60 CONTINUE 

!                                 Transform the columns of this result 

      DO 70  I=1, N 

         CALL F2TCF (N, COEF(1:,I), SEQ(1:,I), WFFTC, CPY) 

   70 CONTINUE 

!                                 Take transpose of the result 

      DO 90  I=1, N 

         DO 80  J=I + 1, N 

            TEMP     = SEQ(I,J) 

            SEQ(I,J) = SEQ(J,I) 

            SEQ(J,I) = TEMP 
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   80  CONTINUE 

   90 CONTINUE 

!                                 Print results 

      WRITE (NOUT,99999) 

      DO 100  I=1, N 

         WRITE (NOUT,99998) (SEQ(I,J),J=1,N) 

  100 CONTINUE 

! 

99997 FORMAT (1X, 'The input matrix is below') 

99998 FORMAT (1X, 4(' (',F5.2,',',F5.2,')')) 

99999 FORMAT (/, 1X, 'Result of two-dimensional transform') 

      END 

Output 
 

The input matrix is below 

 ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) 

 (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) 

 ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) 

 (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) 

 

Result of two-dimensional transform 

 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) 

 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) 

 (16.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) 

 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) 

FSINT 
Computes the discrete Fourier sine transformation of an odd sequence. 

Required Arguments 

N — Length of the sequence to be transformed. It must be greater than 1.   (Input) 

SEQ — Array of length N containing the sequence to be transformed.   (Input) 

COEF — Array of length N + 1 containing the transformed sequence.   (Output) 

FORTRAN 90 Interface 

Generic: CALL FSINT (N, SEQ, COEF) 

Specific: The specific interface names are S_FSINT and D_FSINT. 

FORTRAN 77 Interface 

Single: CALL FSINT (N, SEQ, COEF) 

Double: The double precision name is DFSINT. 
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Description 

The routine FSINT computes the discrete Fourier sine transform of a real vector of size N. The 

method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N + 1 is a 

product of small prime factors. If N satisfies this condition, then the computational effort is 

proportional to N log N. 

Specifically, given an N-vector s = SEQ, FSINT returns in c = COEF 
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Finally, note that the Fourier sine transform is its own (unnormalized) inverse. The routine FSINT 

is based on the sine FFT in FFTPACK. The package FFTPACK was developed by Paul 

Swarztrauber at the National Center for Atmospheric Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2INT/DF2INT. The 

reference is: 

CALL F2INT (N, SEQ, COEF, WFSIN) 

The additional argument is: 

WFSIN — Array of length INT(2.5 * N + 15) initialized by FSINI. The 

initialization depends on N.   (Input) 

2. The routine FSINT is most efficient when N + 1 is the product of small primes. 

3. The routine FSINT is its own (unnormalized) inverse. Applying FSINT twice will 

reproduce the original sequence multiplied by 2 * (N + 1). 

4. The arrays COEF and SEQ may be the same, if SEQ is also dimensioned at least N + 1. 

5. COEF (N + 1) is needed as workspace. 

6. If FSINT is used repeatedly with the same value of N, then call FSINI followed by 

repeated calls to F2INT. This is more efficient than repeated calls to FSINT. 

Example 

In this example, we input a pure sine wave as a data vector and recover its Fourier sine series, 

which is a vector with all components zero except at the appropriate frequency it has an N. 
 

      USE FSINT_INT 

      USE CONST_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 
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      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, NOUT 

      REAL       COEF(N+1), FLOAT, PI, SIN, SEQ(N) 

      INTRINSIC  FLOAT, SIN 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Fill the data vector SEQ 

!                                 with a pure sine wave 

      PI = CONST('PI') 

      DO 10  I=1, N 

         SEQ(I) = SIN(FLOAT(I)*PI/FLOAT(N+1)) 

   10 CONTINUE 

!                                 Compute the transform of SEQ 

      CALL FSINT (N, SEQ, COEF) 

!                                 Print results 

      WRITE (NOUT,99998) 

      WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 

99998 FORMAT (9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF') 

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 

      END 

Output 
 

INDEX      SEQ       COEF 

  1       0.38       8.00 

  2       0.71       0.00 

  3       0.92       0.00 

  4       1.00       0.00 

  5       0.92       0.00 

  6       0.71       0.00 

  7       0.38       0.00 

FSINI 
Computes parameters needed by FSINT. 

Required Arguments 

N — Length of the sequence to be transformed. N must be greater than 1.   (Input) 

WFSIN — Array of length INT(2.5 * N + 15) containing parameters needed by FSINT.   

(Output) 

FORTRAN 90 Interface 

Generic: CALL FSINI (N, WFSIN) 

Specific: The specific interface names are S_FSINI and D_FSINI. 



     

     
 

1256  Chapter 6: Transforms IMSL MATH LIBRARY  

     

     

 

FORTRAN 77 Interface 

Single: CALL FSINI (N, WFSIN) 

Double: The double precision name is DFSINI. 

Description 

The routine FSINI initializes the routine FSINT. An efficient way to make multiple calls for the 

same N to IMSL routine FSINT, is to use routine FSINI for initialization. (In this case, replace 

FSINT with F2INT.) The routine FSINI is based on the routine SINTI in FFTPACK. The package 

FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research. 

Comments 

Different WFSIN arrays are needed for different values of N. 

Example 

In this example, we compute three distinct sine FFTs by calling FSINI once and then calling 

F2INT three times. 
 

      USE FSINI_INT 

      USE UMACH_INT 

      USE CONST_INT 

      USE F2INT_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, K, NOUT 

      REAL       COEF(N+1), FLOAT, PI, SIN, WFSIN(32), SEQ(N) 

      INTRINSIC  FLOAT, SIN 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Initialize the work vector WFSIN 

      CALL FSINI (N, WFSIN) 

!                                 Different frequencies of the same 

!                                 wave will be transformed 

      DO 20  K=1, 3 

!                                 Fill the data vector SEQ 

!                                 with a pure sine wave 

         PI = CONST('PI') 

         DO 10  I=1, N 

            SEQ(I) = SIN(FLOAT(K*I)*PI/FLOAT(N+1)) 

   10    CONTINUE 

!                                 Compute the transform of SEQ 

         CALL F2INT (N, SEQ, COEF, WFSIN) 

!                                 Print results 

         WRITE (NOUT,99998) 

         WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 

   20 CONTINUE 
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99998 FORMAT (/, 9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF') 

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 

      END 

Output 
 

INDEX      SEQ       COEF 

  1       0.38       8.00 

  2       0.71       0.00 

  3       0.92       0.00 

  4       1.00       0.00 

  5       0.92       0.00 

  6       0.71       0.00 

  7       0.38       0.00 

 

INDEX      SEQ       COEF 

  1       0.71       0.00 

  2       1.00       8.00 

  3       0.71       0.00 

  4       0.00       0.00 

  5      -0.71       0.00 

  6      -1.00       0.00 

  7      -0.71       0.00 

 

INDEX      SEQ       COEF 

  1       0.92       0.00 

  2       0.71       0.00 

  3      -0.38       8.00 

  4      -1.00       0.00 

  5      -0.38       0.00 

  6       0.71       0.00 

  7       0.92       0.00 

FCOST 
Computes the discrete Fourier cosine transformation of an even sequence. 

Required Arguments 

N — Length of the sequence to be transformed. It must be greater than 1.   (Input) 

SEQ — Array of length N containing the sequence to be transformed.   (Input) 

COEF — Array of length N containing the transformed sequence.   (Output) 

FORTRAN 90 Interface 

Generic: CALL FCOST (N, SEQ, COEF) 

Specific: The specific interface names are S_FCOST and D_FCOST. 
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FORTRAN 77 Interface 

Single: CALL FCOST (N, SEQ, COEF) 

Double: The double precision name is DFCOST. 

Description 

The routine FCOST computes the discrete Fourier cosine transform of a real vector of size N. It 

uses the IBM Engineering and Scientific Subroutine Library for the computation, if available.  

Otherwise, the method used is a variant of the Cooley-Tukey algorithm , which is most efficient 

when N  1 is a product of small prime factors. If N satisfies this condition, then the computational 

effort is proportional to N log N. 

Specifically, given an N-vector s = SEQ, FCOST returns in c = COEF 
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Finally, note that the Fourier cosine transform is its own (unnormalized) inverse. Two applications 

of FCOST to a vector s produces (2N  2)s. The routine FCOST is based on the cosine FFT in 

FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center 

for Atmospheric Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2OST/DF2OST. The 

reference is: 

CALL F2OST (N, SEQ, COEF, WFCOS) 

The additional argument is 

WFCOS — Array of length 3 * N + 15 initialized by FCOSI. The initialization 

depends on N.   (Input) 

 If the IBM Engineering and Scientific Subroutine Library is used, 

WFCOS is not referenced. 

2. The routine FCOST is most efficient when N  1 is the product of small primes. 

3. The routine FCOST is its own (unnormalized) inverse. Applying FCOST twice will 

reproduce the original sequence multiplied by 2 * (N  1). 

4. The arrays COEF and SEQ may be the same. 

5. If FCOST is used repeatedly with the same value of N, then call FCOSI followed by 

repeated calls to F2OST. This is more efficient than repeated calls to FCOST. 
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If the IBM Engineering and Scientific Subroutine Library is used, parameters computed by 

FCOSI are not used. In this case, there is no need to call FCOSI. 

Example 

In this example, we input a pure cosine wave as a data vector and recover its Fourier cosine series, 

which is a vector with all components zero except at the appropriate frequency it has an N  1. 
 

      USE FCOST_INT 

      USE CONST_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, NOUT 

      REAL       COEF(N), COS, FLOAT, PI, SEQ(N) 

      INTRINSIC  COS, FLOAT 

! 

      CALL UMACH (2, NOUT) 

!                                 Fill the data vector SEQ 

!                                 with a pure cosine wave 

      PI = CONST('PI') 

      DO 10  I=1, N 

         SEQ(I) = COS(FLOAT(I-1)*PI/FLOAT(N-1)) 

   10 CONTINUE 

!                                 Compute the transform of SEQ 

      CALL FCOST (N, SEQ, COEF) 

!                                 Print results 

      WRITE (NOUT,99998) 

      WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 

99998 FORMAT (9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF') 

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 

      END 

Output 
 

INDEX      SEQ       COEF 

  1       1.00       0.00 

  2       0.87       6.00 

  3       0.50       0.00 

  4       0.00       0.00 

  5      -0.50       0.00 

  6      -0.87       0.00 

  7      -1.00       0.00 

FCOSI 
Computes parameters needed by FCOST. 

Required Arguments 

N — Length of the sequence to be transformed. N must be greater than 1.   (Input) 
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WFCOS — Array of length 3N + 15 containing parameters needed by FCOST.   (Output) 

FORTRAN 90 Interface 

Generic: CALL FCOSI (N, WFCOS) 

Specific: The specific interface names are S_FCOSI and D_FCOSI. 

FORTRAN 77 Interface 

Single: CALL FCOSI (N, WFCOS) 

Double: The double precision name is DFCOSI. 

Description 

The routine FCOSI initializes the routine FCOST. An efficient way to make multiple calls for the 

same N to IMSL routine FCOST is to use routine FCOSI for initialization. (In this case, replace 

FCOST with F2OST.) The routine FCOSI is based on the routine COSTI in FFTPACK. The package 

FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research. 

If the IBM Engineering and Scientific Subroutine Library is used, parameters computed by FCOSI 

are not used. In this case, there is no need to call FCOSI. 

Comments 

Different WFCOS arrays are needed for different values of N. 

Example 

In this example, we compute three distinct cosine FFTs by calling FCOSI once and then calling 

F2OST three times. 
 

      USE FCOSI_INT 

      USE CONST_INT 

      USE F2OST_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, K, NOUT 

      REAL       COEF(N), COS, FLOAT, PI, WFCOS(36), SEQ(N) 

      INTRINSIC  COS, FLOAT 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Initialize the work vector WFCOS 

      CALL FCOSI (N, WFCOS) 

!                                 Different frequencies of the same 

!                                 wave will be transformed 
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      PI = CONST('PI') 

      DO 20  K=1, 3 

!                                 Fill the data vector SEQ 

!                                 with a pure cosine wave 

         DO 10  I=1, N 

            SEQ(I) = COS(FLOAT(K*(I-1))*PI/FLOAT(N-1)) 

   10    CONTINUE 

!                                 Compute the transform of SEQ 

         CALL F2OST (N, SEQ, COEF, WFCOS) 

!                                 Print results 

         WRITE (NOUT,99998) 

         WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 

   20 CONTINUE 

99998 FORMAT (/, 9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF') 

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 

      END 

Output 
 

INDEX      SEQ       COEF 

  1       1.00       0.00 

  2       0.87       6.00 

  3       0.50       0.00 

  4       0.00       0.00 

  5      -0.50       0.00 

  6      -0.87       0.00 

  7      -1.00       0.00 

 

INDEX      SEQ       COEF 

  1       1.00       0.00 

  2       0.50       0.00 

  3      -0.50       6.00 

  4      -1.00       0.00 

  5      -0.50       0.00 

  6       0.50       0.00 

  7       1.00       0.00 

 

INDEX      SEQ       COEF 

  1       1.00       0.00 

  2       0.00       0.00 

  3      -1.00       0.00 

  4       0.00       6.00 

  5       1.00       0.00 

  6       0.00       0.00 

  7      -1.00       0.00 

QSINF 
Computes the coefficients of the sine Fourier transform with only odd wave numbers. 

Required Arguments 

N — Length of the sequence to be transformed.   (Input) 

SEQ — Array of length N containing the sequence.   (Input) 
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COEF — Array of length N containing the Fourier coefficients.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QSINF (N, SEQ, COEF) 

Specific: The specific interface names are S_QSINF and D_QSINF. 

FORTRAN 77 Interface 

Single: CALL QSINF (N, SEQ, COEF) 

Double: The double precision name is DQSINF. 

Description 

The routine QSINF computes the discrete Fourier quarter sine transform of a real vector of size N. 

The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N is a 

product of small prime factors. If N satisfies this condition, then the computational effort is 

proportional to N log N. 

Specifically, given an N-vector s = SEQ, QSINF returns in c = COEF 
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Finally, note that the Fourier quarter sine transform has an (unnormalized) inverse, which is 

implemented in the IMSL routine QSINB. The routine QSINF is based on the quarter sine FFT in 

FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center 

for Atmospheric Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2INF/DQ2INF. The 

reference is: 

CALL Q2INF (N, SEQ, COEF, WQSIN) 

The additional argument is: 

WQSIN — Array of length 3 * N + 15 initialized by QSINI. The initialization 

depends on N.   (Input) 

2. The routine QSINF is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 
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4. If QSINF/QSINB is used repeatedly with the same value of N, then call QSINI followed 

by repeated calls to Q2INF/Q2INB. This is more efficient than repeated calls to 

QSINF/QSINB. 

Example 

In this example, we input a pure quarter sine wave as a data vector and recover its Fourier quarter 

sine series. 
 

      USE QSINF_INT 

      USE CONST_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, NOUT 

      REAL       COEF(N), FLOAT, PI, SIN, SEQ(N) 

      INTRINSIC  FLOAT, SIN 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Fill the data vector SEQ 

!                                 with a pure sine wave 

      PI = CONST('PI') 

      DO 10  I=1, N 

         SEQ(I) = SIN(FLOAT(I)*(PI/2.0)/FLOAT(N)) 

   10 CONTINUE 

!                                 Compute the transform of SEQ 

      CALL QSINF (N, SEQ, COEF) 

!                                 Print results 

      WRITE (NOUT,99998) 

      WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 

99998 FORMAT (9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF') 

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 

      END 

Output 
 

INDEX      SEQ       COEF 

  1       0.22       7.00 

  2       0.43       0.00 

  3       0.62       0.00 

  4       0.78       0.00 

  5       0.90       0.00 

  6       0.97       0.00 

  7       1.00       0.00 

QSINB 
Computes a sequence from its sine Fourier coefficients with only odd wave numbers. 
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Required Arguments 

N — Length of the sequence to be transformed.   (Input) 

COEF — Array of length N containing the Fourier coefficients.   (Input) 

SEQ — Array of length N containing the sequence.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QSINB (N, COEF, SEQ) 

Specific: The specific interface names are S_QSINB and D_QSINB. 

FORTRAN 77 Interface 

Single: CALL QSINB (N, COEF, SEQ) 

Double: The double precision name is DQSINB. 

Description 

The routine QSINB computes the discrete (unnormalized) inverse Fourier quarter sine transform of 

a real vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is most 

efficient when N is a product of small prime factors. If N satisfies this condition, then the 

computational effort is proportional to N log N.  

Specifically, given an N-vector c = COEF, QSINB returns in s = SEQ 
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Furthermore, a vector x of length N that is first transformed by QSINF and then by QSINB will be 

returned by QSINB as 4Nx. The routine QSINB is based on the inverse quarter sine FFT in 

FFTPACK which was developed by Paul Swarztrauber at the National Center for Atmospheric 

Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2INB/DQ2INB. The 

reference is: 

CALL Q2INB (N, SEQ, COEF, WQSIN) 

The additional argument is: 

WQSIN — ray of length 3 * N + 15 initialized by QSINI. The initialization 

depends on N.(Input) 
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2. The routine QSINB is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If QSINF/QSINB is used repeatedly with the same value of N, then call QSINI followed 

by repeated calls to Q2INF/Q2INB. This is more efficient than repeated calls to 

QSINF/QSINB. 

Example 

In this example, we first compute the quarter wave sine Fourier transform c of the vector x where 

xn = n for n = 1 to N. We then compute the inverse quarter wave Fourier transform of c which is 

4Nx = s. 
 

      USE QSINB_INT 

      USE QSINF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, NOUT 

      REAL       FLOAT, SEQ(N), COEF(N), X(N) 

      INTRINSIC  FLOAT 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Fill the data vector X 

!                                 with X(I) = I, I=1,N 

      DO 10  I=1, N 

         X(I) = FLOAT(I) 

   10 CONTINUE 

!                                 Compute the forward transform of X 

      CALL QSINF (N, X, COEF) 

!                                 Compute the backward transform of W 

      CALL QSINB (N, COEF, SEQ) 

!C                                 Print results 

      WRITE (NOUT,99998) 

      WRITE (NOUT,99999) (X(I), COEF(I), SEQ(I), I=1,N) 

99998 FORMAT (5X, 'INPUT', 5X, 'FORWARD TRANSFORM', 3X, 'BACKWARD ', & 

            'TRANSFORM') 

99999 FORMAT (3X, F6.2, 10X, F6.2, 15X, F6.2) 

      END 

Output 
 

INPUT     FORWARD TRANSFORM   BACKWARD TRANSFORM 

1.00           39.88                28.00 

2.00           -4.58                56.00 

3.00            1.77                84.00 

4.00           -1.00               112.00 

5.00            0.70               140.00 

6.00           -0.56               168.00 

7.00            0.51               196.00 
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QSINI 
Computes parameters needed by QSINF and QSINB. 

Required Arguments 

N — Length of the sequence to be transformed.   (Input) 

WQSIN — Array of length 3N + 15 containing parameters needed by QSINF and QSINB.   

(Output) 

FORTRAN 90 Interface 

Generic: CALL QSINI (N, WQSIN) 

Specific: The specific interface names are S_QSINI and D_QSINI. 

FORTRAN 77 Interface 

Single: CALL QSINI (N, WQSIN) 

Double: The double precision name is DQSINI. 

Description 

The routine QSINI initializes the routines QSINF and QSINB. An efficient way to make multiple 

calls for the same N to IMSL routine QSINF or QSINB is to use routine QSINI for initialization. 

(In this case, replace QSINF or QSINB with Q2INF or Q2INB, respectively.) The routine QSINI is 

based on the routine SINQI in FFTPACK. The package FFTPACK was developed by Paul 

Swarztrauber at the National Center for Atmospheric Research. 

Comments 

Different WQSIN arrays are needed for different values of N. 

Example 

In this example, we compute three distinct quarter sine transforms by calling QSINI once and then 

calling Q2INF three times. 
 

      USE QSINI_INT 

      USE CONST_INT 

      USE Q2INF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 
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      INTEGER    I, K, NOUT 

      REAL       COEF(N), FLOAT, PI, SIN, WQSIN(36), SEQ(N) 

      INTRINSIC  FLOAT, SIN 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Initialize the work vector WQSIN 

      CALL QSINI (N, WQSIN) 

!                                 Different frequencies of the same 

!                                 wave will be transformed 

      PI = CONST('PI') 

      DO 20  K=1, 3 

!                                 Fill the data vector SEQ 

!                                 with a pure sine wave 

         DO 10  I=1, N 

            SEQ(I) = SIN(FLOAT((2*K-1)*I)*(PI/2.0)/FLOAT(N)) 

   10    CONTINUE 

!                                 Compute the transform of SEQ 

         CALL Q2INF (N, SEQ, COEF, WQSIN) 

!                                 Print results 

         WRITE (NOUT,99998) 

         WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 

   20 CONTINUE 

99998 FORMAT (/, 9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF') 

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 

      END 

Output 
 

INDEX      SEQ       COEF 

  1       0.22       7.00 

  2       0.43       0.00 

  3       0.62       0.00 

  4       0.78       0.00 

  5       0.90       0.00 

  6       0.97       0.00 

  7       1.00       0.00 

 

INDEX      SEQ       COEF 

  1       0.62       0.00 

  2       0.97       7.00 

  3       0.90       0.00 

  4       0.43       0.00 

  5      -0.22       0.00 

  6      -0.78       0.00 

  7      -1.00       0.00 

 

INDEX      SEQ       COEF 

  1       0.90       0.00 

  2       0.78       0.00 

  3      -0.22       7.00 

  4      -0.97       0.00 

  5      -0.62       0.00 

  6       0.43       0.00 

  7       1.00       0.00 
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QCOSF 
Computes the coefficients of the cosine Fourier transform with only odd wave numbers. 

Required Arguments 

N — Length of the sequence to be transformed.   (Input) 

SEQ — Array of length N containing the sequence.   (Input) 

COEF — Array of length N containing the Fourier coefficients.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QCOSF (N, SEQ, COEF [,…]) 

Specific: The specific interface names are S_QCOSF and D_QCOSF. 

FORTRAN 77 Interface 

Single: CALL QCOSF (N, SEQ, COEF) 

Double: The double precision name is DQCOSF. 

Description 

The routine QCOSF computes the discrete Fourier quarter cosine transform of a real vector of size 

N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N is 

a product of small prime factors. If N satisfies this condition, then the computational effort is 

proportional to N log N. 

Specifically, given an N-vector s = SEQ, QCOSF returns in c = COEF 

  
1

2

2 1 1
2 cos

2

N

m n

n

m n
c s s

N





  
   

 


 

Finally, note that the Fourier quarter cosine transform has an (unnormalized) inverse which is 

implemented in QCOSB. The routine QCOSF is based on the quarter cosine FFT in FFTPACK. The 

package FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric 

Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2OSF/DQ2OSF. The 

reference is: 

CALL Q2OSF (N, SEQ, COEF, WQCOS) 
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The additional argument is: 

WQCOS — Array of length 3 * N + 15 initialized by QCOSI. The initialization 

depends on N.   (Input) 

2. The routine QCOSF is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If QCOSF/QCOSB is used repeatedly with the same value of N, then call QCOSI followed 

by repeated calls to Q2OSF/Q2OSB. This is more efficient than repeated calls to 

QCOSF/QCOSB. 

Example 

In this example, we input a pure quarter cosine wave as a data vector and recover its Fourier 

quarter cosine series. 
 

      USE QCOSF_INT 

      USE CONST_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, NOUT 

      REAL       COEF(N), COS, FLOAT, PI, SEQ(N) 

      INTRINSIC  COS, FLOAT 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Fill the data vector SEQ 

!                                 with a pure cosine wave 

      PI = CONST('PI') 

      DO 10  I=1, N 

            SEQ(I) = COS(FLOAT(I-1)*(PI/2.0)/FLOAT(N)) 

   10    CONTINUE 

 

!                                 Compute the transform of SEQ 

         Call QCOSF (N, SEQ, COEF) 

!                                  Print results 

         WRITE (NOUT,99998) 

         WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 

99998 FORMAT (9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF') 

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 

      END 

Output 
 

INDEX      SEQ       COEF 

  1       1.00       7.00 

  2       0.97       0.00 

  3       0.90       0.00 

  4       0.78       0.00 
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  5       0.62       0.00 

  6       0.43       0.00 

  7       0.22       0.00 

QCOSB 
Computes a sequence from its cosine Fourier coefficients with only odd wave numbers. 

Required Arguments 

N — Length of the sequence to be transformed.   (Input) 

COEF — Array of length N containing the Fourier coefficients.   (Input) 

SEQ — Array of length N containing the sequence.   (Output) 

FORTRAN 90 Interface 

Generic: CALL QCOSB (N, COEF, SEQ) 

Specific: The specific interface names are S_QCOSB and D_QCOSB. 

FORTRAN 77 Interface 

Single: CALL QCOSB (N, COEF, SEQ) 

Double: The double precision name is DQCOSB. 

Description 

The routine QCOSB computes the discrete (unnormalized) inverse Fourier quarter cosine transform 

of a real vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is 

most efficient when N is a product of small prime factors. If N satisfies this condition, then the 

computational effort is proportional to N log N. Specifically, given an N-vector c = COEF, QCOSB 

returns in s = SEQ 

  

1

2 1 1
4 cos

2

N

m n

n

n m
s c

N





  
  

 


 

Furthermore, a vector x of length N that is first transformed by QCOSF and then by QCOSB will be 

returned by QCOSB as 4Nx. The routine QCOSB is based on the inverse quarter cosine FFT in 

FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center 

for Atmospheric Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2OSB/DQ2OSB. The 

reference is: 
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CALL Q2OSB (N, COEF, SEQ, WQCOS) 

The additional argument is: 

WQCOS — Array of length 3 * N + 15 initialized by QCOSI. The initialization 

depends on N.   (Input) 

2. The routine QCOSB is most efficient when N is the product of small primes. 

3. The arrays COEF and SEQ may be the same. 

4. If QCOSF/QCOSB is used repeatedly with the same value of N, then call QCOSI followed 

by repeated calls to Q2OSF/Q2OSB. This is more efficient than repeated calls to 

QCOSF/QCOSB. 

Example 

In this example, we first compute the quarter wave cosine Fourier transform c of the vector x, 

where xn = n for n = 1 to N. We then compute the inverse quarter wave Fourier transform of c 

which is 4Nx = s. 
 

      USE QCOSB_INT 

      USE QCOSF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, NOUT 

      REAL       FLOAT, SEQ(N), COEF(N), X(N) 

      INTRINSIC  FLOAT 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Fill the data vector X 

!                                 with X(I) = I, I=1,N 

      DO 10  I=1, N 

         X(I) = FLOAT(I) 

   10 CONTINUE 

!                                 Compute the forward transform of X 

      CALL QCOSF (N, X, COEF) 

!                                 Compute the backward transform of 

!                                 COEF 

      CALL QCOSB (N, COEF, SEQ) 

!                                 Print results 

      WRITE (NOUT,99998) 

      DO 20  I=1, N 

         WRITE (NOUT,99999) X(I), COEF(I), SEQ(I) 

   20 CONTINUE 

99998 FORMAT (5X, 'INPUT', 5X, 'FORWARD TRANSFORM', 3X, 'BACKWARD ', & 

            'TRANSFORM') 

99999 FORMAT (3X, F6.2, 10X, F6.2, 15X, F6.2) 

      END 
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Output 
 

INPUT     FORWARD TRANSFORM   BACKWARD TRANSFORM 

1.00           31.12                28.00 

2.00          -27.45                56.00 

3.00           10.97                84.00 

4.00           -9.00               112.00 

5.00            4.33               140.00 

6.00           -3.36               168.00 

7.00            0.40               196.00 

QCOSI 
Computes parameters needed by QCOSF and QCOSB. 

Required Arguments 

N — Length of the sequence to be transformed.   (Input) 

WQCOS — Array of length 3N + 15 containing parameters needed by QCOSF and QCOSB.   

(Output) 

FORTRAN 90 Interface 

Generic: CALL QCOSI (N, WQCOS) 

Specific: The specific interface names are S_QCOSI and D_QCOSI. 

FORTRAN 77 Interface 

Single: CALL QCOSI (N, WQCOS) 

Double: The double precision name is DQCOSI. 

Description 

The routine QCOSI initializes the routines QCOSF and QCOSB. An efficient way to make multiple 

calls for the same N to IMSL routine QCOSF or QCOSB is to use routine QCOSI for initialization. 

(In this case, replace QCOSF or QCOSB with Q2OSF or Q2OSB , respectively.) The routine QCOSI is 

based on the routine COSQI in FFTPACK, which was developed by Paul Swarztrauber at the 

National Center for Atmospheric Research. 

Comments 

Different WQCOS arrays are needed for different values of N. 
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Example 

In this example, we compute three distinct quarter cosine transforms by calling QCOSI once and 

then calling Q2OSF three times. 
 

      USE QCOSI_INT 

      USE CONST_INT 

      USE Q2OSF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=7) 

! 

      INTEGER    I, K, NOUT 

      REAL       COEF(N), COS, FLOAT, PI, WQCOS(36), SEQ(N) 

      INTRINSIC  COS, FLOAT 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Initialize the work vector WQCOS 

      CALL QCOSI (N, WQCOS) 

!                                 Different frequencies of the same 

!                                 wave will be transformed 

      PI = CONST('PI') 

      DO 20  K=1, 3 

!                                 Fill the data vector SEQ 

!                                 with a pure cosine wave 

         DO 10  I=1, N 

            SEQ(I) = COS(FLOAT((2*K-1)*(I-1))*(PI/2.0)/FLOAT(N)) 

   10    CONTINUE 

!                                 Compute the transform of SEQ 

         CALL Q2OSF (N, SEQ, COEF, WQCOS) 

!                                 Print results 

         WRITE (NOUT,99998) 

         WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N) 

   20 CONTINUE 

99998 FORMAT (/, 9X, 'INDEX', 6X, 'SEQ', 7X, 'COEF') 

99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2) 

      END 

Output 
 

INDEX      SEQ       COEF 

  1       1.00       7.00 

  2       0.97       0.00 

  3       0.90       0.00 

  4       0.78       0.00 

  5       0.62       0.00 

  6       0.43       0.00 

  7       0.22       0.00 

 

INDEX      SEQ       COEF 

  1       1.00       0.00 

  2       0.78       7.00 

  3       0.22       0.00 

  4      -0.43       0.00 

  5      -0.90       0.00 
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  6      -0.97       0.00 

  7      -0.62       0.00 

 

INDEX      SEQ       COEF 

  1       1.00       0.00 

  2       0.43       0.00 

  3      -0.62       7.00 

  4      -0.97       0.00 

  5      -0.22       0.00 

  6       0.78       0.00 

  7       0.90       0.00 

FFT2D 

 

Computes Fourier coefficients of a complex periodic two-dimensional array. 

Required Arguments 

A — NRA by NCA complex matrix containing the periodic data to be transformed.   (Input) 

COEF — NRA by NCA complex matrix containing the Fourier coefficients of A.   (Output) 

Optional Arguments 

NRA — The number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — The number of columns of A.   (Input) 

Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDCOEF = size (COEF,1). 

FORTRAN 90 Interface 

Generic: CALL FFT2D (A, COEF [,…]) 

Specific: The specific interface names are S_FFT2D and D_FFT2D. 
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FORTRAN 77 Interface 

Single: CALL FFT2D (NRA, NCA, A, LDA, COEF, LDCOEF) 

Double: The double precision name is DFFT2D. 

Description 

The routine FFT2D computes the discrete complex Fourier transform of a complex two 

dimensional array of size (NRA = N)  (NCA = M). It uses the Intel
®

 Math Kernel Library, Sun 

Performance Library or IBM Engineering and Scientific Subroutine Library for the computation, 

if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm , which is 

most efficient when N and M are each products of small prime factors. If N and M satisfy this 

condition, then the computational effort is proportional to N M log N M. This considerable savings 

has historically led people to refer to this algorithm as the ―fast Fourier transform‖ or FFT. 

Specifically, given an N  M array a, FFT2D returns in c = COEF 

     2 1 1 / 2 1 1 /

1 1

N M
i j n N i k m M

jk nm

n m

c a e e
      

 


 

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm 

NM S  

Finally, note that an unnormalized inverse is implemented in FFT2B. The routine FFT2D is based 

on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber 

at the National Center for Atmospheric Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2T2D/DF2T2D. The 

reference is: 

CALL F2T2D (NRA, NCA, A, LDA, COEF, LDCOEF, WFF1, WFF2, CWK, CPY) 

The additional arguments are as follows: 

WFF1 — Real array of length 4 * NRA + 15 initialized by FFTCI. The 

initialization depends on NRA.   (Input) 

WFF2 — Real array of length 4 * NCA + 15 initialized by FFTCI. The 

initialization depends on NCA.   (Input) 

CWK — Complex array of length 1.   (Workspace) 

CPY — Real array of length 2 * MAX(NRA, NCA).   (Workspace) 

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and 

Scientific Subroutine Library is used, WFFT1, WFF2, CWK, and CPY are not referenced. 
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2. The routine FFT2D is most efficient when NRA and NCA are the product of small primes. 

3. The arrays COEF and A may be the same. 

4. If FFT2D/FFT2B is used repeatedly, with the same values for NRA and NCA, then use 

FFTCI to fill WFF1(N = NRA) and WFF2(N = NCA). Follow this with repeated calls to 

F2T2D/F2T2B. This is more efficient than repeated calls to FFT2D/FFT2B. 

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and 

Scientific Subroutine Library is used, parameters computed by FFTCI are not used. In this 

case, there is no need to call FFTCI. 

Example 

In this example, we compute the Fourier transform of the pure frequency input for a 5  4 array 

   2 1 2/ 2 1 3/i n N i m M
nma e e

  


 

for 1 ≤ n ≤ 5 and 1 ≤ m ≤ 4 using the IMSL routine FFT2D. The result 

â c  

has all zeros except in the (3, 4) position. 
 

      USE FFT2D_INT 

      USE CONST_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    I, IR, IS, J, NCA, NRA 

      REAL       FLOAT, TWOPI 

      COMPLEX    A(5,4), C, CEXP, CMPLX, COEF(5,4), H 

      CHARACTER  TITLE1*26, TITLE2*26 

      INTRINSIC  CEXP, CMPLX, FLOAT 

! 

      TITLE1 = 'The input matrix is below ' 

      TITLE2 = 'The output matrix is below' 

      NRA    = 5 

      NCA    = 4 

      IR     = 3 

      IS     = 4 

!                                 Fill A with initial data 

      TWOPI = CONST('PI') 

      TWOPI = 2.0*TWOPI 

      C     = CMPLX(0.0,1.0) 

      H     = CEXP(TWOPI*C) 

      DO 10  I=1, NRA 

         DO 10  J=1, NCA 

            A(I,J) = CEXP(TWOPI*C*((FLOAT((I-1)*(IR-1))/FLOAT(NRA)+ & 

                    FLOAT((J-1)*(IS-1))/FLOAT(NCA)))) 

   10 CONTINUE 

! 

      CALL WRCRN (TITLE1, A) 
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! 

      CALL FFT2D (A, COEF) 

! 

      CALL WRCRN (TITLE2, COEF) 

! 

      END 

Output 
 

                The input matrix is below 

                1                2                3                4 

1  ( 1.000, 0.000)  ( 0.000,-1.000)  (-1.000, 0.000)  ( 0.000, 1.000) 

2  (-0.809, 0.588)  ( 0.588, 0.809)  ( 0.809,-0.588)  (-0.588,-0.809) 

3  ( 0.309,-0.951)  (-0.951,-0.309)  (-0.309, 0.951)  ( 0.951, 0.309) 

4  ( 0.309, 0.951)  ( 0.951,-0.309)  (-0.309,-0.951)  (-0.951, 0.309) 

5  (-0.809,-0.588)  (-0.588, 0.809)  ( 0.809, 0.588)  ( 0.588,-0.809) 

 

                 The Output matrix is below 

                1                2                3                4 

1  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00) 

2  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00) 

3  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  ( 20.00,  0.00) 

4  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00) 

5  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00) 

FFT2B 

 

Computes the inverse Fourier transform of a complex periodic two-dimensional array. 

Required Arguments 

COEF — NRCOEF by NCCOEF complex array containing the Fourier coefficients to be 

transformed.   (Input) 

A — NRCOEF by NCCOEF complex array containing the Inverse Fourier coefficients of COEF.   

(Output) 

Optional Arguments 

NRCOEF — The number of rows of COEF.   (Input) 

Default: NRCOEF = size (COEF,1). 

NCCOEF — The number of columns of COEF.   (Input) 

Default: NCCOEF = size (COEF,2). 
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LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDCOEF = size (COEF,1). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

FORTRAN 90 Interface 

Generic: CALL FFT2B (COEF, A [,…]) 

Specific: The specific interface names are S_FFT2B and D_FFT2B. 

FORTRAN 77 Interface 

Single: CALL FFT2B (NRCOEF, NCCOEF, COEF, LDCOEF, A, LDA) 

Double: The double precision name is DFFT2B. 

Description 

The routine FFT2B computes the inverse discrete complex Fourier transform of a complex two-

dimensional array of size (NRCOEF = N) × (NCCOEF = M). It uses the Intel
®

 Math Kernel Library, 

Sun Performance Library or IBM Engineering and Scientific Subroutine Library for the 

computation, if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm , 

which is most efficient when N and M are both products of small prime factors. If N and M satisfy 

this condition, then the computational effort is proportional to N M log N M. This considerable 

savings has historically led people to refer to this algorithm as the ―fast Fourier transform‖ or FFT. 

Specifically, given an N  M array c = COEF, FFT2B returns in a 

     2 1 1 / 2 1 1 /

1 1

N M
i j n N i k m M

jk nm

n m

a c e e
    

 


 

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm 

S NM  

Finally, note that an unnormalized inverse is implemented in FFT2D. The routine FFT2B is based 

on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber 

at the National Center for Atmospheric Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2T2B/DF2T2B. The 

reference is: 
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CALL F2T2B (NRCOEF, NCCOEF, A, LDA, COEF, LDCOEF, WFF1, WFF2, CWK, 

CPY) 

The additional arguments are as follows: 

WFF1 — Real array of length 4 * NRCOEF + 15 initialized by FFTCI. The 

initialization depends on NRCOEF.   (Input) 

WFF2 — Real array of length 4 * NCCOEF + 15 initialized by FFTCI. The 

initialization depends on NCCOEF.   (Input) 

CWK — Complex array of length 1.   (Workspace) 

CPY — Real array of length 2 * MAX(NRCOEF, NCCOEF).   (Workspace) 

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and 

Scientific Subroutine Library is used, WFFT1, WFF2, CWK, and CPY are not referenced. 

2. The routine FFT2B is most efficient when NRCOEF and NCCOEF are the product of 

small primes. 

3. The arrays COEF and A may be the same. 

4. If FFT2D/FFT2B is used repeatedly, with the same values for NRCOEF and NCCOEF, 

then use FFTCI to fill WFF1(N = NRCOEF) and WFF2(N = NCCOEF). Follow this with 

repeated calls to F2T2D/F2T2B. This is more efficient than repeated calls to 

FFT2D/FFT2B. 

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and 

Scientific Subroutine Library is used, parameters computed by FFTCI are not used. In this 

case, there is no need to call FFTCI. 

Example 

In this example, we first compute the Fourier transform of the 5  4 array 

 5 1nmx n m  
 

for 1 ≤ n ≤ 5 and 1 ≤ m ≤ 4 using the IMSL routine FFT2D. The result 

x̂ c  

is then inverted by a call to FFT2B. Note that the result is an array a satisfying a = (5)(4)x = 20x. In 

general, FFT2B is an unnormalized inverse with expansion factor N M. 
 

      USE FFT2B_INT 

      USE FFT2D_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    M, N, NCA, NRA 

      COMPLEX    CMPLX, X(5,4), A(5,4), COEF(5,4) 
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      CHARACTER  TITLE1*26, TITLE2*26, TITLE3*26 

      INTRINSIC  CMPLX 

! 

      TITLE1 = 'The input matrix is below ' 

      TITLE2 = 'After FFT2D               ' 

      TITLE3 = 'After FFT2B               ' 

      NRA    = 5 

      NCA    = 4 

!                                 Fill X with initial data 

      DO 20  N=1, NRA 

         DO 10  M=1, NCA 

            X(N,M) = CMPLX(FLOAT(N+5*M-5),0.0) 

   10    CONTINUE 

   20 CONTINUE 

! 

      CALL WRCRN (TITLE1, X) 

! 

      CALL FFT2D (X, COEF) 

! 

      CALL WRCRN (TITLE2, COEF) 

! 

      CALL FFT2B (COEF, A) 

! 

      CALL WRCRN (TITLE3, A) 

! 

      END 

Output 
 

                The input matrix is below 

                1                2                3                4 

1  (  1.00,  0.00)  (  6.00,  0.00)  ( 11.00,  0.00)  ( 16.00,  0.00) 

2  (  2.00,  0.00)  (  7.00,  0.00)  ( 12.00,  0.00)  ( 17.00,  0.00) 

3  (  3.00,  0.00)  (  8.00,  0.00)  ( 13.00,  0.00)  ( 18.00,  0.00) 

4  (  4.00,  0.00)  (  9.00,  0.00)  ( 14.00,  0.00)  ( 19.00,  0.00) 

5  (  5.00,  0.00)  ( 10.00,  0.00)  ( 15.00,  0.00)  ( 20.00,  0.00) 

 

                             After FFT2D 

                1                2                3                4 

1  ( 210.0,   0.0)  ( -50.0,  50.0)  ( -50.0,   0.0)  ( -50.0, -50.0) 

2  ( -10.0,  13.8)  (   0.0,   0.0)  (   0.0,   0.0)  (   0.0,   0.0) 

3  ( -10.0,   3.2)  (   0.0,   0.0)  (   0.0,   0.0)  (   0.0,   0.0) 

4  ( -10.0,  -3.2)  (   0.0,   0.0)  (   0.0,   0.0)  (   0.0,   0.0) 

5  ( -10.0, -13.8)  (   0.0,   0.0)  (   0.0,   0.0)  (   0.0,   0.0) 

 

                             After FFT2B 

                1                2                3                4 

1  (  20.0,   0.0)  ( 120.0,   0.0)  ( 220.0,   0.0)  ( 320.0,   0.0) 

2  (  40.0,   0.0)  ( 140.0,   0.0)  ( 240.0,   0.0)  ( 340.0,   0.0) 

3  (  60.0,   0.0)  ( 160.0,   0.0)  ( 260.0,   0.0)  ( 360.0,   0.0) 

4  (  80.0,   0.0)  ( 180.0,   0.0)  ( 280.0,   0.0)  ( 380.0,   0.0) 

5  ( 100.0,   0.0)  ( 200.0,   0.0)  ( 300.0,   0.0)  ( 400.0,   0.0) 
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FFT3F 

 

Computes Fourier coefficients of a complex periodic three-dimensional array. 

Required Arguments 

A — Three-dimensional complex matrix containing the data to be transformed.   (Input) 

B — Three-dimensional complex matrix containing the Fourier coefficients of A.   (Output) 

The matrices A and B may be the same. 

Optional Arguments 

N1 — Limit on the first subscript of matrices A and B.   (Input) 

Default: N1 = size(A, 1) 

N2 — Limit on the second subscript of matrices A and B.   (Input) 

Default: N2 = size(A, 2) 

N3 — Limit on the third subscript of matrices A and B.   (Input) 

Default: N3 = size(A, 3) 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

MDA — Middle dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: MDA = size (A,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = size (B,1). 

MDB — Middle dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: MDB = size (B,2). 

FORTRAN 90 Interface 

Generic: CALL FFT3F (A, B [,…]) 

Specific: The specific interface names are S_FFT3F and D_FFT3F. 
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FORTRAN 77 Interface 

Single: CALL FFT3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB) 

Double: The double precision name is DFFT3F. 

Description 

The routine FFT3F computes the forward discrete complex Fourier transform of a complex three-

dimensional array of size (N1 = N)  (N2 = M)  (N3 = L). It uses the Intel
®

 Math Kernel Library, 

Sun Performance Library or IBM Engineering and Scientific Subroutine Library for the 

computation, if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm , 

which is most efficient when N, M, and L are each products of small prime factors. If N, M, and L 

satisfy this condition, then the computational effort is proportional to N M L log N M L. This 

considerable savings has historically led people to refer to this algorithm  as the ―fast Fourier 

transform‖ or FFT.  

Specifically, given an N  M  L array a, FFT3F returns in c = COEF 

        2 1 1 / 2 1 1 / 2 1 1 /

1 1 1

N M L
i j n N i k m M i k l L

jkl nml

n m l

c a e e e
          

  


 

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm 

NMLS  

Finally, note that an unnormalized inverse is implemented in FFT3B. The routine FFT3F is based 

on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber 

at the National Center for Atmospheric Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2T3F/DF2T3F. The 

reference is: 

CALL F2T3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB, WFF1, WFF2, WFF3, CPY) 

The additional arguments are as follows: 

WFF1 — Real array of length 4 * N1 + 15 initialized by FFTCI. The 

initialization depends on N1.   (Input) 

WFF2 — Real array of length 4 * N2 + 15 initialized by FFTCI. The 

initialization depends on N2.   (Input) 

WFF3 — Real array of length 4 * N3 + 15 initialized by FFTCI. The 

initialization depends on N3.   (Input) 

CPY — Real array of size 2 * MAX(N1, N2, N3).   (Workspace) 
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If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and 

Scientific Subroutine Library is used, WFFT1, WFF2, WFF3, and CPY are not referenced. 

2. The routine FFT3F is most efficient when N1, N2, and N3 are the product of small 

primes. 

3. If FFT3F/FFT3B is used repeatedly with the same values for N1, N2 and N3, then use 

FFTCI to fill WFF1(N = N1), WFF2(N = N2), and WFF3(N = N3). Follow this with 

repeated calls to F2T3F/F2T3B. This is more efficient than repeated calls to 

FFT3F/FFT3B. 

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and 

Scientific Subroutine Library is used, parameters computed by FFTCI are not used. In this 

case, there is no need to call FFTCI. 

Example 

In this example, we compute the Fourier transform of the pure frequency input for a 2  3  4 

array 

     2 1 1/ 2 2 1 2/3 2 1 2/ 4i n i m i l
nmla e e e

    


 

for 1 ≤ n ≤ 2, 1 ≤ m ≤ 3, and 1 ≤ l ≤ 4 using the IMSL routine FFT3F. The result 

â c  

has all zeros except in the (2, 3, 3) position. 
 

      USE FFT3F_INT 

      USE UMACH_INT 

      USE CONST_INT 

 

      IMPLICIT   NONE 

      INTEGER    LDA, LDB, MDA, MDB, NDA, NDB 

      PARAMETER  (LDA=2, LDB=2, MDA=3, MDB=3, NDA=4, NDB=4) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I, J, K, L, M, N, N1, N2, N3, NOUT 

      REAL       PI 

      COMPLEX    A(LDA,MDA,NDA), B(LDB,MDB,NDB), C, H 

!                                 SPECIFICATIONS FOR INTRINSICS 

      INTRINSIC  CEXP, CMPLX 

      COMPLEX    CEXP, CMPLX 

!                                 SPECIFICATIONS FOR SUBROUTINES 

!                                 SPECIFICATIONS FOR FUNCTIONS 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

      PI = CONST('PI') 

      C  = CMPLX(0.0,2.0*PI) 

!                                 Set array A 

      DO 30  N=1, 2 

         DO 20  M=1, 3 

            DO 10  L=1, 4 

               H        = C*(N-1)*1/2 + C*(M-1)*2/3 + C*(L-1)*2/4 

               A(N,M,L) = CEXP(H) 
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   10       CONTINUE 

   20    CONTINUE 

   30 CONTINUE 

! 

      CALL FFT3F (A, B) 

! 

      WRITE (NOUT,99996) 

      DO 50  I=1, 2 

         WRITE (NOUT,99998) I 

         DO 40  J=1, 3 

            WRITE (NOUT,99999) (A(I,J,K),K=1,4) 

   40    CONTINUE 

   50 CONTINUE 

! 

      WRITE (NOUT,99997) 

      DO 70  I=1, 2 

         WRITE (NOUT,99998) I 

         DO 60  J=1, 3 

            WRITE (NOUT,99999) (B(I,J,K),K=1,4) 

   60    CONTINUE 

   70 CONTINUE 

! 

99996 FORMAT (13X, 'The input for FFT3F is') 

99997 FORMAT (/, 13X, 'The results from FFT3F are') 

99998 FORMAT (/, ' Face no. ', I1) 

99999 FORMAT (1X, 4('(',F6.2,',',F6.2,')',3X)) 

      END 

Output 
 

            The input for FFT3F is 

 

Face no. 1 

(  1.00,  0.00)   ( -1.00,  0.00)   (  1.00,  0.00)   ( -1.00,  0.00) 

( -0.50, -0.87)   (  0.50,  0.87)   ( -0.50, -0.87)   (  0.50,  0.87) 

( -0.50,  0.87)   (  0.50, -0.87)   ( -0.50,  0.87)   (  0.50, -0.87) 

 

Face no. 2 

( -1.00,  0.00)   (  1.00,  0.00)   ( -1.00,  0.00)   (  1.00,  0.00) 

(  0.50,  0.87)   ( -0.50, -0.87)   (  0.50,  0.87)   ( -0.50, -0.87) 

(  0.50, -0.87)   ( -0.50,  0.87)   (  0.50, -0.87)   ( -0.50,  0.87) 

 

The results from FFT3F are 

 

Face no. 1 

(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 

(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 

(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 

 

Face no. 2 

(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 

(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 

(  0.00,  0.00)   (  0.00,  0.00)   ( 24.00,  0.00)   (  0.00,  0.00) 
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FFT3B 

 

Computes the inverse Fourier transform of a complex periodic three-dimensional array. 

Required Arguments 

A — Three-dimensional complex matrix containing the data to be transformed.   (Input) 

B — Three-dimensional complex matrix containing the inverse Fourier coefficients of A.   

(Output)  

The matrices A and B may be the same. 

Optional Arguments 

N1 — Limit on the first subscript of matrices A and B.   (Input) 

Default: N1 = size (A,1). 

N2 — Limit on the second subscript of matrices A and B.   (Input) 

Default: N2 = size (A,2). 

N3 — Limit on the third subscript of matrices A and B.   (Input) 

Default: N3 = size (A,3). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = size (A,1). 

MDA — Middle dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: MDA = size (A,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = size (B,1). 

MDB — Middle dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: MDB = size (B,2). 

FORTRAN 90 Interface 

Generic: CALL FFT3B (A, B [,…]) 

Specific: The specific interface names are S_FFT3B and D_FFT3B. 
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FORTRAN 77 Interface 

Single: CALL FFT3B (N1, N2, N3, A, LDA, MDA, B, LDB, MDB) 

Double: The double precision name is DFFT3B. 

Description 

The routine FFT3B computes the inverse discrete complex Fourier transform of a complex three-

dimensional array of size (N1 = N) × (N2 = M) × (N3 = L). It uses the Intel
®

 Math Kernel Library, 

Sun Performance Library or IBM Engineering and Scientific Subroutine Library for the 

computation, if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm, 

which is most efficient when N, M, and L are each products of small prime factors. If N, M, and L 

satisfy this condition, then the computational effort is proportional to N M L log N M L. This 

considerable savings has historically led people to refer to this algorithm as the ―fast Fourier 

transform‖ or FFT.  

Specifically, given an N  M  L array a, FFT3B returns in b 

        2 1 1 / 2 1 1 / 2 1 1 /

1 1 1

N M L
i j n N i k m M i k l L

jkl nml

n m l

b a e e e
       

  


 

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm 

NMLS  

Finally, note that an unnormalized inverse is implemented in FFT3F. The routine FFT3B is based 

on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber 

at the National Center for Atmospheric Research. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2T3B/DF2T3B. The 

reference is: 

CALL F2T3B (N1, N2, N3, A, LDA, MDA, B, LDB, MDB, WFF1, WFF2, WFF3, CPY) 

The additional arguments are as follows: 

WFF1 — Real array of length 4 * N1 + 15 initialized by FFTCI. The 

initialization depends on N1.   (Input) 

WFF2 — Real array of length 4 * N2 + 15 initialized by FFTCI. The 

initialization depends on N2.   (Input) 

WFF3 — Real array of length 4 * N3 + 15 initialized by FFTCI. The 

initialization depends on N3.   (Input) 

CPY — Real array of size 2 * MAX(N1, N2, N3).   (Workspace) 
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If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and 

Scientific Subroutine Library is used, WFFT1, WFF2, WFF3, and CPY are not referenced. 

2. The routine FFT3B is most efficient when N1, N2, and N3 are the product of small 

primes. 

3. If FFT3F/FFT3B is used repeatedly with the same values for N1, N2 and N3, then use 

FFTCI to fill WFF1(N = N1), WFF2(N = N2), and WFF3(N = N3). Follow this with 

repeated calls to F2T3F/F2T3B. This is more efficient than repeated calls to 

FFT3F/FFT3B. 

If the Intel
®

 Math Kernel Library, Sun Performance Library or IBM Engineering and 

Scientific Subroutine Library is used, parameters computed by FFTCI are not used. In this 

case, there is no need to call FFTCI. 

Example 

In this example, we compute the Fourier transform of the 2  3  4 array 

     2 1 2 3 1nmlx n m l    
 

for 1 ≤ n ≤ 2, 1 ≤ m ≤ 3, and 1 ≤ l ≤ 4 using the IMSL routine FFT3F. The result 

ˆa x  

is then inverted using FFT3B. Note that the result is an array b satisfying b = 2(3)(4)x = 24x. In 

general, FFT3B is an unnormalized inverse with expansion factor N M L. 
 

      USE FFT3B_INT 

      USE FFT3F_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    LDA, LDB, MDA, MDB, NDA, NDB 

      PARAMETER  (LDA=2, LDB=2, MDA=3, MDB=3, NDA=4, NDB=4) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I, J, K, L, M, N, N1, N2, N3, NOUT 

      COMPLEX    A(LDA,MDA,NDA), B(LDB,MDB,NDB), X(LDB,MDB,NDB) 

!                                 SPECIFICATIONS FOR INTRINSICS 

      INTRINSIC  CEXP, CMPLX 

      COMPLEX    CEXP, CMPLX 

!                                 SPECIFICATIONS FOR SUBROUTINES 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

      N1 = 2 

      N2 = 3 

      N3 = 4 

!                                 Set array X 

      DO 30  N=1, 2 

         DO 20  M=1, 3 

            DO 10  L=1, 4 

               X(N,M,L) = N + 2*(M-1) + 2*3*(L-1) 

   10       CONTINUE 

   20    CONTINUE 

   30 CONTINUE 
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! 

      CALL FFT3F (X, A) 

      CALL FFT3B (A, B) 

! 

      WRITE (NOUT,99996) 

      DO 50  I=1, 2 

         WRITE (NOUT,99998) I 

         DO 40  J=1, 3 

            WRITE (NOUT,99999) (X(I,J,K),K=1,4) 

   40    CONTINUE 

   50 CONTINUE 

! 

      WRITE (NOUT,99997) 

      DO 70  I=1, 2 

         WRITE (NOUT,99998) I 

         DO 60  J=1, 3 

            WRITE (NOUT,99999) (A(I,J,K),K=1,4) 

   60    CONTINUE 

   70 CONTINUE 

! 

      WRITE (NOUT, 99995) 

      DO 90  I=1, 2 

         WRITE (NOUT,99998) I 

         DO 80  J=1, 3 

            WRITE (NOUT,99999) (B(I,J,K),K=1,4) 

   80    CONTINUE 

   90 CONTINUE 

99995 FORMAT (13X, 'The unnormalized inverse is') 

99996 FORMAT (13X, 'The input for FFT3F is') 

99997 FORMAT (/, 13X, 'The results from FFT3F are') 

99998 FORMAT (/, ' Face no. ', I1) 

99999 FORMAT (1X, 4('(',F6.2,',',F6.2,')',3X)) 

      END 

Output 
 

            The input for FFT3F is 

 

Face no. 1 

(  1.00,  0.00)   (  7.00,  0.00)   ( 13.00,  0.00)   ( 19.00,  0.00) 

(  3.00,  0.00)   (  9.00,  0.00)   ( 15.00,  0.00)   ( 21.00,  0.00) 

(  5.00,  0.00)   ( 11.00,  0.00)   ( 17.00,  0.00)   ( 23.00,  0.00) 

 

Face no. 2 

(  2.00,  0.00)   (  8.00,  0.00)   ( 14.00,  0.00)   ( 20.00,  0.00) 

(  4.00,  0.00)   ( 10.00,  0.00)   ( 16.00,  0.00)   ( 22.00,  0.00) 

(  6.00,  0.00)   ( 12.00,  0.00)   ( 18.00,  0.00)   ( 24.00,  0.00) 

 

The results from FFT3F are 

 

Face no. 1 

(300.00,  0.00)   (-72.00, 72.00)   (-72.00,  0.00)   (-72.00,-72.00) 

(-24.00, 13.86)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 

(-24.00,-13.86)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 
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Face no. 2 

(-12.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 

(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 

(  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00)   (  0.00,  0.00) 

 

The unnormalized inverse is 

 

Face no. 1 

( 24.00,  0.00)   (168.00,  0.00)   (312.00,  0.00)   (456.00,  0.00) 

( 72.00,  0.00)   (216.00,  0.00)   (360.00,  0.00)   (504.00,  0.00) 

(120.00,  0.00)   (264.00,  0.00)   (408.00,  0.00)   (552.00,  0.00) 

 

Face no. 2 

( 48.00,  0.00)   (192.00,  0.00)   (336.00,  0.00)   (480.00,  0.00) 

( 96.00,  0.00)   (240.00,  0.00)   (384.00,  0.00)   (528.00,  0.00) 

(144.00,  0.00)   (288.00,  0.00)   (432.00,  0.00)   (576.00,  0.00) 

RCONV 

 

Computes the convolution of two real vectors. 

Required Arguments 

X — Real vector of length NX.   (Input) 

Y — Real vector of length NY.   (Input) 

Z — Real vector of length NZ ontaining the convolution of X and Y.   (Output) 

ZHAT — Real vector of length NZ containing the discrete Fourier transform of Z.   (Output) 

Optional Arguments 

IDO — Flag indicating the usage of RCONV.   (Input) 

     Default: IDO = 0.   

 IDO Usage 

0 If this is the only call to RCONV. 

If RCONV is called multiple times in sequence with the same NX, NY, and IPAD, IDO 

should be set to 

1 on the first call 

2 on the intermediate calls 
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 3 on the final call. 

NX — Length of the vector X.   (Input) 

Default: NX = size (X,1). 

NY — Length of the vector Y.   (Input) 

Default: NY = size (Y,1). 

IPAD — IPAD should be set to zero for periodic data or to one for nonperiodic data.   (Input) 

Default: IPAD = 0. 

NZ — Length of the vector Z.   (Input/Output)  

Upon input: When IPAD is zero, NZ must be at least MAX(NX, NY). When IPAD is one, 

NZ must be greater than or equal to the smallest integer greater than or equal to 

(NX + NY 1) of the form (2
α
) * (3

β
) * (5

γ
) where alpha, beta, and gamma are 

nonnegative integers. Upon output, the value for NZ that was used by RCONV. 

Default: NZ = size (Z,1). 

FORTRAN 90 Interface 

Generic: CALL RCONV (X, Y, Z, ZHAT [,…]) 

Specific: The specific interface names are S_RCONV and D_RCONV. 

FORTRAN 77 Interface 

Single: CALL RCONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT) 

Double: The double precision name is DRCONV. 

Description 

The routine RCONV computes the discrete convolution of two sequences x and y. More precisely, 

let nx be the length of x and ny denote the length of y. If a circular convolution is desired, then 

IPAD must be set to zero. We set 

nz := max{nx, ny} 

and we pad out the shorter vector with zeroes. Then, we compute 

1

1

zn

i i j j

j

z x y 




 

where the index on x is interpreted as a positive number between 1 and nz, modulo nz.  

The technique used to compute the zi‘s is based on the fact that the (complex discrete) Fourier 

transform maps convolution into multiplication. Thus, the Fourier transform of z is given by  
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     ˆ ˆẑ n x n y n
 

where  

    2 1 1 /

1

ˆ
z

z

n
i m n n

m

m

z n z e
  




 

The technique used here to compute the convolution is to take the discrete Fourier transform of x 

and y, multiply the results together component-wise, and then take the inverse transform of this 

product. It is very important to make sure that nz is a product of small primes if IPAD is set to zero. 

If nz is a product of small primes, then the computational effort will be proportional to nz log(nz). If 

IPAD is one, then a good value is chosen for nz so that the Fourier transforms are efficient and  

nz ≥ nx + ny  1. This will mean that both vectors will be padded with zeroes. 

We point out that no complex transforms of x or y are taken since both sequences are real, we can 

take real transforms and simulate the complex transform above. This can produce a savings of a 

factor of six in time as well as save space over using the complex transform. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of R2ONV/DR2ONV. The 

reference is: 

CALL R2ONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT, XWK, 

YWK, WK) 

The additional arguments are as follows: 

XWK — Real work array of length NZ. 

YWK — Real work array of length NZ. 

WK — Real work arrary of length 2 * NZ + 15. 

2. Informational error 

Type Code 

 4 1 The length of the vector Z must be large enough to hold the results. 

An acceptable length is returned in NZ. 

Example 

In this example, we compute both a periodic and a non-periodic convolution. The idea here is that 

one can compute a moving average of the type found in digital filtering using this routine. The 

averaging operator in this case is especially simple and is given by averaging five consecutive 

points in the sequence. The periodic case tries to recover a noisy sin function by averaging five 

nearby values. The nonperiodic case tries to recover the values of an exponential function 

contaminated by noise. The large error for the last value printed has to do with the fact that the 

convolution is averaging the zeroes in the ―pad‖ rather than function values. Notice that the signal 

size is 100, but we only report the errors at ten points. 
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      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    NFLTR, NY, A 

      PARAMETER  (NFLTR=5, NY=100) 

! 

      INTEGER    I, IPAD, K, MOD, NOUT, NZ 

      REAL       ABS, EXP, F1, F2, FLOAT, FLTR(NFLTR), & 

                FLTRER, ORIGER, SIN, TOTAL1, TOTAL2, TWOPI, X, & 

                Y(NY), Z(2*(NFLTR+NY-1)), ZHAT(2*(NFLTR+NY-1)) 

      INTRINSIC  ABS, EXP, FLOAT, MOD, SIN 

!                                DEFINE FUNCTIONS 

      F1(X) = SIN(X) 

      F2(X) = EXP(X) 

! 

      CALL RNSET (1234579) 

      CALL UMACH (2, NOUT) 

      TWOPI = CONST('PI') 

      TWOPI = 2.0*TWOPI 

!                                 SET UP THE FILTER 

      DO 10  I=1, 5 

         FLTR(I) = 0.2 

   10 CONTINUE 

!                                 SET UP Y-VECTOR FOR THE PERIODIC 

!                                 CASE. 

      DO 20  I=1, NY 

         X    = TWOPI*FLOAT(I-1)/FLOAT(NY-1) 

         Y(I) = RNUNF() 

         Y(I) = F1(X) + 0.5*Y(I) - 0.25 

   20 CONTINUE 

!                                 CALL THE CONVOLUTION ROUTINE FOR THE 

!                                 PERIODIC CASE. 

      NZ = 2*(NFLTR+NY-1) 

      CALL RCONV (FLTR, Y, Z, ZHAT, IPAD=0, NZ=NZ) 

!                                 PRINT RESULTS 

      WRITE (NOUT,99993) 

      WRITE (NOUT,99995) 

      TOTAL1 = 0.0 

      TOTAL2 = 0.0 

      DO 30  I=1, NY 

!                                 COMPUTE THE OFFSET FOR THE Z-VECTOR 

         IF (I .GE. NY-1) THEN 

            K = I - NY + 2 

         ELSE 

            K = I + 2 

         END IF 

! 

         X      = TWOPI*FLOAT(I-1)/FLOAT(NY-1) 

         ORIGER = ABS(Y(I)-F1(X)) 

         FLTRER = ABS(Z(K)-F1(X)) 

         IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F1(X), ORIGER, & 

            FLTRER 

         TOTAL1 = TOTAL1 + ORIGER 

         TOTAL2 = TOTAL2 + FLTRER 

   30 CONTINUE 



 

 

IMSL MATH LIBRARY Chapter 6: Transforms  1293 

     

     

 

      WRITE (NOUT,99998) TOTAL1/FLOAT(NY) 

      WRITE (NOUT,99999) TOTAL2/FLOAT(NY) 

!                                 SET UP Y-VECTOR FOR THE NONPERIODIC 

!                                 CASE. 

      DO 40  I=1, NY 

         A    = FLOAT(I-1)/FLOAT(NY-1) 

         Y(I) = RNUNF() 

         Y(I) = F2(A) + 0.5*Y(I) - 0.25 

   40 CONTINUE 

!                                 CALL THE CONVOLUTION ROUTINE FOR THE 

!                                 NONPERIODIC CASE. 

      NZ = 2*(NFLTR+NY-1) 

      CALL RCONV (FLTR, Y, Z, ZHAT, IPAD=1) 

!                                 PRINT RESULTS 

      WRITE (NOUT,99994) 

      WRITE (NOUT,99996) 

      TOTAL1 = 0.0 

      TOTAL2 = 0.0 

      DO 50  I=1, NY 

         X      = FLOAT(I-1)/FLOAT(NY-1) 

         ORIGER = ABS(Y(I)-F2(X)) 

         FLTRER = ABS(Z(I+2)-F2(X)) 

         IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F2(X), ORIGER, & 

            FLTRER 

         TOTAL1 = TOTAL1 + ORIGER 

         TOTAL2 = TOTAL2 + FLTRER 

   50 CONTINUE 

      WRITE (NOUT,99998) TOTAL1/FLOAT(NY) 

      WRITE (NOUT,99999) TOTAL2/FLOAT(NY) 

99993 FORMAT (' Periodic Case') 

99994 FORMAT (/,' Nonperiodic Case') 

99995 FORMAT (8X, 'x', 9X, 'sin(x)', 6X, 'Original Error', 5X, & 

            'Filtered Error') 

99996 FORMAT (8X, 'x', 9X, 'exp(x)', 6X, 'Original Error', 5X, & 

            'Filtered Error') 

99997 FORMAT (1X, F10.4, F13.4, 2F18.4) 

99998 FORMAT (' Average absolute error before filter:', F10.5) 

99999 FORMAT (' Average absolute error after filter:', F11.5) 

      END 

Output 
 

Periodic Case 

    x         sin(x)      Original Error     Filtered Error 

 0.0000       0.0000            0.0811            0.0587 

 0.6981       0.6428            0.0226            0.0781 

 1.3963       0.9848            0.1526            0.0529 

 2.0944       0.8660            0.0959            0.0125 

 2.7925       0.3420            0.1747            0.0292 

 3.4907      -0.3420            0.1035            0.0238 

 4.1888      -0.8660            0.0402            0.0595 

 4.8869      -0.9848            0.0673            0.0798 

 5.5851      -0.6428            0.1044            0.0074 

 6.2832       0.0000            0.0154            0.0018 

 Average absolute error before filter:   0.12481 

 Average absolute error after filter:    0.04778 
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Nonperiodic Case 

    x         exp(x)      Original Error     Filtered Error 

 0.0000       1.0000            0.1476            0.3915 

 0.1111       1.1175            0.0537            0.0326 

 0.2222       1.2488            0.1278            0.0932 

 0.3333       1.3956            0.1136            0.0987 

 0.4444       1.5596            0.1617            0.0964 

 0.5556       1.7429            0.0071            0.0662 

 0.6667       1.9477            0.1248            0.0713 

 0.7778       2.1766            0.1556            0.0158 

 0.8889       2.4324            0.1529            0.0696 

 1.0000       2.7183            0.2124            1.0562 

 Average absolute error before filter:   0.12538 

 Average absolute error after filter:    0.07764 

CCONV 

 

Computes the convolution of two complex vectors. 

Required Arguments 

X — Complex vector of length NX.   (Input) 

Y — Complex vector of length NY.   (Input) 

Z — Complex vector of length NZ containing the convolution of X and Y.   (Output) 

ZHAT — Complex vector of length NZ containing the discrete complex Fourier transform of 

Z.   (Output) 

Optional Arguments 

IDO — Flag indicating the usage of CCONV.   (Input) 

   Default: IDO = 0.    

IDO Usage 

0 If this is the only call to CCONV. 

If CCONV is called multiple times in sequence with the same NX, NY, and IPAD, IDO 

should be set to: 

1 on the first call 

2 on the intermediate calls 
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 3 on the final call. 

NX — Length of the vector X.   (Input) 

Default: NX = size (X,1). 

NY — Length of the vector Y.   (Input) 

Default: NY = size (Y,1). 

IPAD — IPAD should be set to zero for periodic data or to one for nonperiodic data.   (Input) 

Default: IPAD =0. 

NZ — Length of the vector Z.   (Input/Output)  

Upon input: When IPAD is zero, NZ must be at least MAX(NX, NY). When IPAD is one, 

NZ must be greater than or equal to the smallest integer greater than or equal to  

(NX + NY  1) of the form (2
α
) * (3

β
) * (5

γ
) where alpha, beta, and gamma are 

nonnegative integers. Upon output, the value for NZ that was used by CCONV. 

Default: NZ = size (Z,1). 

FORTRAN 90 Interface 

Generic: CALL CCONV (X, Y, Z, ZHAT [,…]) 

Specific: The specific interface names are S_CCONV and D_CCONV. 

FORTRAN 77 Interface 

Single: CALL CCONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT) 

Double: The double precision name is DCCONV. 

Description 

The subroutine CCONV computes the discrete convolution of two complex sequences x and y. More 

precisely, let nx be the length of x and ny denote the length of y. If a circular convolution is desired, 

then IPAD must be set to zero. We set 

nz := max{nx, ny} 

and we pad out the shorter vector with zeroes. Then, we compute 

1

1

zn

i i j j

j

z x y 




 

where the index on x is interpreted as a positive number between 1 and nz, modulo nz.  

The technique used to compute the zi‘s is based on the fact that the (complex discrete) Fourier 

transform maps convolution into multiplication. Thus, the Fourier transform of z is given by  

     ˆ ˆẑ n x n y n
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where  

    2 1 1 /

1

ˆ
z

z

n
i m n n

m

m

z n z e
  




 

The technique used here to compute the convolution is to take the discrete Fourier transform of x 

and y, multiply the results together component-wise, and then take the inverse transform of this 

product. It is very important to make sure that nz is a product of small primes if IPAD is set to zero. 

If nz is a product of small primes, then the computational effort will be proportional to nz log(nz). If 

IPAD is one, then a a good value is chosen for nz so that the Fourier transforms are efficient and  

nz ≥ nx + ny  1. This will mean that both vectors will be padded with zeroes. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of C2ONV/DC2ONV. The 

reference is: 

CALL C2ONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT, XWK, YWK, 

WK) 

The additional arguments are as follows: 

XWK — Complex work array of length NZ. 

YWK — Complex work array of length NZ. 

WK — Real work array of length 6 * NZ + 15. 

2. Informational error 

Type Code 

4 1 The length of the vector Z must be large enough to hold the results. 

An acceptable length is returned in NZ. 

Example 

In this example, we compute both a periodic and a non-periodic convolution. The idea here is that 

one can compute a moving average of the type found in digital filtering using this routine. The 

averaging operator in this case is especially simple and is given by averaging five consecutive 

points in the sequence. The periodic case tries to recover a noisy function f1 (x) = cos(x) + i sin(x) 

by averaging five nearby values. The nonperiodic case tries to recover the values of the function f2 

(x) = e
x 
f1 (x) contaminated by noise. The large error for the first and last value printed has to do 

with the fact that the convolution is averaging the zeroes in the ―pad‖ rather than function values. 

Notice that the signal size is 100, but we only report the errors at ten points. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 
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      INTEGER    NFLTR, NY 

      PARAMETER  (NFLTR=5, NY=100) 

! 

      INTEGER    I, IPAD, K, MOD, NOUT, NZ 

      REAL       CABS, COS, EXP, FLOAT, FLTRER, ORIGER,  & 

                SIN, TOTAL1, TOTAL2, TWOPI, X, T1, T2 

      COMPLEX    CMPLX, F1, F2, FLTR(NFLTR), Y(NY), Z(2*(NFLTR+NY-1)), & 

                ZHAT(2*(NFLTR+NY-1)) 

      INTRINSIC  CABS, CMPLX, COS, EXP, FLOAT, MOD, SIN 

!                                DEFINE FUNCTIONS 

      F1(X) = CMPLX(COS(X),SIN(X)) 

      F2(X) = EXP(X)*CMPLX(COS(X),SIN(X)) 

! 

      CALL RNSET (1234579) 

      CALL UMACH (2, NOUT) 

      TWOPI = CONST('PI') 

      TWOPI = 2.0*TWOPI 

!                                 SET UP THE FILTER 

      CALL CSET(NFLTR,(0.2,0.0),FLTR,1) 

!                                 SET UP Y-VECTOR FOR THE PERIODIC 

!                                 CASE. 

      DO 20  I=1, NY 

         X    = TWOPI*FLOAT(I-1)/FLOAT(NY-1) 

         T1   = RNUNF() 

         T2   = RNUNF() 

         Y(I) = F1(X) + CMPLX(0.5*T1-0.25,0.5*T2-0.25) 

   20 CONTINUE 

!                                 CALL THE CONVOLUTION ROUTINE FOR THE 

!                                 PERIODIC CASE. 

      NZ = 2*(NFLTR+NY-1) 

      CALL CCONV (FLTR, Y, Z, ZHAT) 

!                                 PRINT RESULTS 

      WRITE (NOUT,99993) 

      WRITE (NOUT,99995) 

      TOTAL1 = 0.0 

      TOTAL2 = 0.0 

      DO 30  I=1, NY 

!                                 COMPUTE THE OFFSET FOR THE Z-VECTOR 

         IF (I .GE. NY-1) THEN 

            K = I - NY + 2 

         ELSE 

            K = I + 2 

         END IF 

! 

         X      = TWOPI*FLOAT(I-1)/FLOAT(NY-1) 

         ORIGER = CABS(Y(I)-F1(X)) 

         FLTRER = CABS(Z(K)-F1(X)) 

         IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F1(X), ORIGER, & 

            FLTRER 

         TOTAL1 = TOTAL1 + ORIGER 

         TOTAL2 = TOTAL2 + FLTRER 

   30 CONTINUE 

      WRITE (NOUT,99998) TOTAL1/FLOAT(NY) 

      WRITE (NOUT,99999) TOTAL2/FLOAT(NY) 

!                                 SET UP Y-VECTOR FOR THE NONPERIODIC 

!                                 CASE. 

      DO 40  I=1, NY 
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         X    = FLOAT(I-1)/FLOAT(NY-1) 

         T1   = RNUNF() 

         T2   = RNUNF() 

         Y(I) = F2(X) + CMPLX(0.5*T1-0.25,0.5*T2-0.25) 

   40 CONTINUE 

!                                 CALL THE CONVOLUTION ROUTINE FOR THE 

!                                 NONPERIODIC CASE. 

      NZ = 2*(NFLTR+NY-1) 

      CALL CCONV (FLTR, Y, Z, ZHAT, IPAD=1) 

!                                 PRINT RESULTS 

      WRITE (NOUT,99994) 

      WRITE (NOUT,99996) 

      TOTAL1 = 0.0 

      TOTAL2 = 0.0 

      DO 50  I=1, NY 

         X      = FLOAT(I-1)/FLOAT(NY-1) 

         ORIGER = CABS(Y(I)-F2(X)) 

         FLTRER = CABS(Z(I+2)-F2(X)) 

         IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F2(X), ORIGER, & 

            FLTRER 

         TOTAL1 = TOTAL1 + ORIGER 

         TOTAL2 = TOTAL2 + FLTRER 

   50 CONTINUE 

      WRITE (NOUT,99998) TOTAL1/FLOAT(NY) 

      WRITE (NOUT,99999) TOTAL2/FLOAT(NY) 

99993 FORMAT (' Periodic Case') 

99994 FORMAT (/, ' Nonperiodic Case') 

99995 FORMAT (8X, 'x', 15X, 'f1(x)', 8X, 'Original Error', 5X, & 

            'Filtered Error') 

99996 FORMAT (8X, 'x', 15X, 'f2(x)', 8X, 'Original Error', 5X, & 

            'Filtered Error') 

99997 FORMAT (1X, F10.4, 5X, '(', F7.4, ',', F8.4, ' )', 5X, F8.4, & 

            10X, F8.4) 

99998 FORMAT (' Average absolute error before filter:', F11.5) 

99999 FORMAT (' Average absolute error after filter:', F12.5) 

      END 

Output 
 

Periodic Case 

 x               f1(x)        Original Error     Filtered Error 

 0.0000     ( 1.0000,  0.0000 )       0.1666            0.0773 

 0.6981     ( 0.7660,  0.6428 )       0.1685            0.1399 

 1.3963     ( 0.1736,  0.9848 )       0.1756            0.0368 

 2.0944     (-0.5000,  0.8660 )       0.2171            0.0142 

 2.7925     (-0.9397,  0.3420 )       0.1147            0.0200 

 3.4907     (-0.9397, -0.3420 )       0.0998            0.0331 

 4.1888     (-0.5000, -0.8660 )       0.1137            0.0586 

 4.8869     ( 0.1736, -0.9848 )       0.2217            0.0843 

 5.5851     ( 0.7660, -0.6428 )       0.1831            0.0744 

 6.2832     ( 1.0000,  0.0000 )       0.3234            0.0893 

 Average absolute error before filter:    0.19315 

 Average absolute error after filter:     0.08296 

 

Nonperiodic Case 
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 x               f2(x)        Original Error     Filtered Error 

 0.0000     ( 1.0000,  0.0000 )       0.0783            0.4336 

 0.1111     ( 1.1106,  0.1239 )       0.2434            0.0477 

 0.2222     ( 1.2181,  0.2752 )       0.1819            0.0584 

 0.3333     ( 1.3188,  0.4566 )       0.0703            0.1267 

 0.4444     ( 1.4081,  0.6706 )       0.1458            0.0868 

 0.5556     ( 1.4808,  0.9192 )       0.1946            0.0930 

 0.6667     ( 1.5307,  1.2044 )       0.1458            0.0734 

 0.7778     ( 1.5508,  1.5273 )       0.1815            0.0690 

 0.8889     ( 1.5331,  1.8885 )       0.0805            0.0193 

 1.0000     ( 1.4687,  2.2874 )       0.2396            1.1708 

 Average absolute error before filter:    0.18549 

 Average absolute error after filter:     0.09636 

RCORL 

 

Computes the correlation of two real vectors. 

Required Arguments 

X — Real vector of length N.   (Input) 

Y — Real vector of length N.   (Input) 

Z — Real vector of length NZ containing the correlation of X and Y.   (Output) 

ZHAT — Real vector of length NZ containing the discrete Fourier transform of Z.   (Output) 

Optional Arguments 

IDO — Flag indicating the usage of RCORL.   (Input)  

   Default: IDO = 0.   

 IDO Usage 

0 If this is the only call to RCORL. 

If RCORL is called multiple times in sequence with the same NX, NY, and IPAD, IDO 

should be set to: 

1 on the first call 

2 on the intermediate calls 

3 on the final call. 
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N — Length of the X and Y vectors.   (Input) 

Default: N = size (X,1). 

IPAD — IPAD should be set as follows.   (Input)  

Default: IPAD = 0. 

IPAD Value 

IPAD 0 for periodic data with X and Y different. 

IPAD 1 for nonperiodic data with X and Y different. 

IPAD 2 for periodic data with X and Y identical. 

IPAD 3 for nonperiodic data with X and Y identical. 

NZ — Length of the vector Z.   (Input/Output)  

Upon input: When IPAD is zero or two, NZ must be at least (2 * N  1). When IPAD is 

one or three, NZ must be greater than or equal to the smallest integer greater than or 

equal to (2 * N  1) of the form (2
α
) * (3

β
) * (5

γ
) where alpha, beta, and gamma are 

nonnegative integers. Upon output, the value for NZ that was used by RCORL. 

Default: NZ = size (Z,1). 

FORTRAN 90 Interface 

Generic: CALL RCORL (X, Y, Z, ZHAT [,…]) 

Specific: The specific interface names are S_RCORL and D_RCORL. 

FORTRAN 77 Interface 

Single: CALL RCORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT) 

Double: The double precision name is DRCORL. 

Description 

The subroutine RCORL computes the discrete correlation of two sequences x and y. More precisely, 

let n be the length of x and y. If a circular correlation is desired, then IPAD must be set to zero (for 

x and y distinct) and two (for x = y). We set (on output) 

if IPAD = 0, 2

2 3 5 2 1 if IPAD = 1, 3

z

z

n n

n n  



  
 

where α, β, γ are nonnegative integers yielding the smallest number of the type 2
α
3

 β
5

γ
 satisfying 

the inequality. Once nz is determined, we pad out the vectors with zeroes. Then, we compute 
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1

1

zn

i i j j

j

z x y 




 

where the index on x is interpreted as a positive number between one and nz, modulo nz. Note that 

this means that 

zn kz 
 

contains the correlation of x(  k  1) with y as k = 0, 1, …, nz /2. Thus, if x(k  1) = y(k) for all k, 

then we would expect 

znz
 

to be the largest component of z. 

The technique used to compute the zi‘s is based on the fact that the (complex discrete) Fourier 

transform maps correlation into multiplication. Thus, the Fourier transform of z is given by 

ˆ ˆˆ j j jz x y
 

where 

  2 1 1 /

1

ˆ
z

z

n
i m j n

j m

m

z z e
  




 

Thus, the technique used here to compute the correlation is to take the discrete Fourier transform 

of x and the conjugate of the discrete Fourier transform of y, multiply the results together 

component-wise, and then take the inverse transform of this product. It is very important to make 

sure that nz is a product of small primes if IPAD is set to zero or two. If nz is a product of small 

primes, then the computational effort will be proportional to nz log(nz). If IPAD is one or three, 

then a good value is chosen for nz so that the Fourier transforms are efficient and nz ≥ 2n  1. This 

will mean that both vectors will be padded with zeroes. 

We point out that no complex transforms of x or y are taken since both sequences are real, and we 

can take real transforms and simulate the complex transform above. This can produce a savings of 

a factor of six in time as well as save space over using the complex transform. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of R2ORL/DR2ORL. The 

reference is: 

CALL R2ORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT, XWK, YWK, WK) 

The additional arguments are as follows: 

XWK — Real work array of length NZ. 

YWK — Real work array of length NZ. 
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WK — Real work arrary of length 2 * NZ + 15. 

2. Informational error 

Type Code  

4 1 The length of the vector Z must be large enough to hold the results. 

An acceptable length is returned in NZ. 

Example 

In this example, we compute both a periodic and a non-periodic correlation between two distinct 

signals x and y. In the first case we have 100 equally spaced points on the interval [0, 2π] and  

f1 (x) = sin(x). We define x and y as follows 

1

1

1
(2 ) 1, ,

1

1
(2 ) 1, ,

1 2

i

i

i
x f i n

n

i
y f i n

n







 




  

  

Note that the maximum value of z (the correlation of x with y) occurs at i = 26, which corresponds 

to the offset. 

The nonperiodic case uses the function f2 (x) = sin(x
2
). The two input signals are on the interval  

[0, 4π]. 

2

2

1
(4 ) 1, ,

1

1
(4 ) 1, ,

1

i

i

i
x f i n

n

i
y f i n

n



 


 




  

  

The offset of x to y is again (roughly) 26 and this is where z has its maximum value. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=100) 

! 

      INTEGER    I, IPAD, K, NOUT, NZ 

      REAL       A, F1, F2, FLOAT, PI, SIN, X(N), XNORM, & 

                Y(N), YNORM, Z(4*N), ZHAT(4*N) 

      INTRINSIC  FLOAT, SIN 

!                                Define functions 

      F1(A) = SIN(A) 

      F2(A) = SIN(A*A) 

! 

      CALL UMACH (2, NOUT) 

      PI = CONST('pi') 

!                                 Set up the vectors for the 

!                                 periodic case. 

      DO 10  I=1, N 
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         X(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)) 

         Y(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI/2.0) 

   10 CONTINUE 

!                                 Call the correlation routine for the 

!                                 periodic case. 

      NZ = 2*N 

      CALL RCORL (X, Y, Z, ZHAT) 

!                                 Find the element of Z with the 

!                                 largest normalized value. 

      XNORM = SNRM2(N,X,1) 

      YNORM = SNRM2(N,Y,1) 

      DO 20  I=1, N 

         Z(I) = Z(I)/(XNORM*YNORM) 

   20 CONTINUE 

      K = ISMAX(N,Z,1) 

!                                 Print results for the periodic 

!                                 case. 

      WRITE (NOUT,99995) 

      WRITE (NOUT,99994) 

      WRITE (NOUT,99997) 

      WRITE (NOUT,99998) K 

      WRITE (NOUT,99999) K, Z(K) 

!                                 Set up the vectors for the 

!                                 nonperiodic case. 

      DO 30  I=1, N 

         X(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)) 

         Y(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI) 

   30 CONTINUE 

!                                 Call the correlation routine for the 

!                                 nonperiodic case. 

      NZ = 4*N 

      CALL RCORL (X, Y, Z, ZHAT, IPAD=1) 

!                                 Find the element of Z with the 

!                                 largest normalized value. 

      XNORM = SNRM2(N,X,1) 

      YNORM = SNRM2(N,Y,1) 

      DO 40  I=1, N 

         Z(I) = Z(I)/(XNORM*YNORM) 

   40 CONTINUE 

      K = ISMAX(N,Z,1) 

!                                 Print results for the nonperiodic 

!                                 case. 

      WRITE (NOUT,99996) 

      WRITE (NOUT,99994) 

      WRITE (NOUT,99997) 

      WRITE (NOUT,99998) K 

      WRITE (NOUT,99999) K, Z(K) 

99994 FORMAT (1X, 28('-')) 

99995 FORMAT (' Case #1: Periodic data') 

99996 FORMAT (/, ' Case #2: Nonperiodic data') 

99997 FORMAT (' The element of Z with the largest normalized ') 

99998 FORMAT (' value is Z(', I2, ').') 

99999 FORMAT (' The normalized value of Z(', I2, ') is', F6.3) 

      END 

Output 
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Example #1: Periodic case 

---------------------------- 

The element of Z with the largest normalized value is Z(26). 

The normalized value of Z(26) is 1.000 

 

Example #2: Nonperiodic case 

---------------------------- 

The element of Z with the largest normalized value is Z(26). 

The normalized value of Z(26) is 0.661 

CCORL 

 

Computes the correlation of two complex vectors. 

Required Arguments 

X — Complex vector of length N.   (Input) 

Y — Complex vector of length N.   (Input) 

Z — Complex vector of length NZ containing the correlation of X and Y.   (Output) 

ZHAT — Complex vector of length NZ containing the inverse discrete complex Fourier 

transform of Z.   (Output) 

Optional Arguments 

IDO — Flag indicating the usage of CCORL.   (Input) 

Default: IDO = 0. 

IDO Usage 

0 If this is the only call to CCORL. 

If CCORL is called multiple times in sequence with the same NX, NY, and IPAD, IDO 

should be set to: 

1 on the first call 

2 on the intermediate calls 

3 on the final call. 
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N — Length of the X and Y vectors.   (Input) 

Default: N = size (X,1). 

IPAD — IPAD should be set as follows.   (Input)  

IPAD = 0 for periodic data with X and Y different. IPAD = 1 for nonperiodic data with X 

and Y different. IPAD = 2 for periodic data with X and Y identical. IPAD = 3 for 

nonperiodic data with X and Y identical. 

Default: IPAD = 0. 

NZ — Length of the vector Z.   (Input/Output)  

Upon input: When IPAD is zero or two, NZ must be at least (2 * N  1). When IPAD is 

one or three, NZ must be greater than or equal to the smallest integer greater than or 

equal to (2 * N  1) of the form (2
α
) * (3

β
) * (5

γ
) where alpha, beta, and gamma are 

nonnegative integers. Upon output, the value for NZ that was used by CCORL. 

Default: NZ = size (Z,1). 

FORTRAN 90 Interface 

Generic: CALL CCORL (X, Y, Z, ZHAT [,…]) 

Specific: The specific interface names are S_CCORL and D_CCORL. 

FORTRAN 77 Interface 

Single: CALL CCORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT) 

Double: The double precision name is DCCORL. 

Description 

The subroutine CCORL computes the discrete correlation of two complex sequences x and y. More 

precisely, let n be the length of x and y. If a circular correlation is desired, then IPAD must be set 

to zero (for x and y distinct) and two (for x = y). We set (on output) 

if IPAD = 0, 2

2 3 5 2 1 if IPAD = 1, 3

z

z

n n

n n  



  
 

where α, β,  are nonnegative integers yielding the smallest number of the type 2
α
3

β
5

γ
 satisfying 

the inequality. Once nz is determined, we pad out the vectors with zeroes. Then, we compute 

1

1

zn

i i j j

j

z x y 




 

where the index on x is interpreted as a positive number between one and nz, modulo nz. Note that 

this means that 

zn kz 
 



     

     
 

1306  Chapter 6: Transforms IMSL MATH LIBRARY  

     

     

 

contains the correlation of x(  k  1) with y as k = 0, 1, …, nz /2. Thus, if x(k  1) = y(k) for all k, 

then we would expect 

znz
 

to be the largest component of ℜz. 

The technique used to compute the zi‘s is based on the fact that the (complex discrete) Fourier 

transform maps correlation into multiplication. Thus, the Fourier transform of z is given by 

ˆ ˆˆ j j jz x y
 

where 

  2 1 1 /

1

ˆ
z

z

n
i m j n

j m

m

z z e
  




 

Thus, the technique used here to compute the correlation is to take the discrete Fourier transform 

of x and the conjugate of the discrete Fourier transform of y, multiply the results together 

component-wise, and then take the inverse transform of this product. It is very important to make 

sure that nz is a product of small primes if IPAD is set to zero or two. If nz is a product of small 

primes, then the computational effort will be proportional to nz log(nz). If IPAD is one or three, 

then a good value is chosen for nz so that the Fourier transforms are efficient and nz ≥ 2n  1. This 

will mean that both vectors will be padded with zeroes. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of C2ORL/DC2ORL. The 

reference is: 

CALL C2ORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT, XWK, YWK, WK) 

The additional arguments are as follows: 

XWK — Complex work array of length NZ. 

YWK — Complex work array of length NZ. 

WK — Real work arrary of length 6 * NZ + 15. 

2. Informational error 

Type Code 

4 1 The length of the vector Z must be large enough to hold the results. 

An acceptable length is returned in NZ. 
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Example 

In this example, we compute both a periodic and a non-periodic correlation between two distinct 

signals x and y. In the first case, we have 100 equally spaced points on the interval [0, 2π] and  

f1 (x) = cos(x) + i sin(x). We define x and y as follows 

1

1

1
(2 ) 1, ,

1

1
(2 ) 1, ,

1 2

i

i

i
x f i n

n

i
y f i n

n







 




  

  

Note that the maximum value of z (the correlation of x with y) occurs at i = 26, which corresponds 

to the offset. 

The nonperiodic case uses the function f2 (x) = cos(x
2
) + i sin(x

2
). The two input signals are on the 

interval [0, 4π]. 

2

2

1
(4 ) 1, ,

1

1
(4 ) 1, ,

1

i

i

i
x f i n

n

i
y f i n

n



 


 




  

  

The offset of x to y is again (roughly) 26 and this is where z has its maximum value. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=100) 

! 

      INTEGER    I, IPAD, K, NOUT, NZ 

      REAL       A, COS, F1, F2, FLOAT, PI, SIN, & 

                XNORM, YNORM, ZREAL1(4*N) 

      COMPLEX    CMPLX, X(N), Y(N), Z(4*N), ZHAT(4*N) 

      INTRINSIC  CMPLX, COS, FLOAT, SIN 

!                                Define functions 

      F1(A) = CMPLX(COS(A),SIN(A)) 

      F2(A) = CMPLX(COS(A*A),SIN(A*A)) 

! 

      CALL RNSET (1234579) 

      CALL UMACH (2, NOUT) 

      PI = CONST('pi') 

!                                 Set up the vectors for the 

!                                 periodic case. 

      DO 10  I=1, N 

         X(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)) 

         Y(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI/2.0) 

   10 CONTINUE 

!                                 Call the correlation routine for the 

!                                 periodic case. 

      NZ = 2*N 

      CALL CCORL (X, Y, Z, ZHAT, IPAD=0, NZ=NZ) 

!                                 Find the element of Z with the 

!                                 largest normalized real part. 
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      XNORM = SCNRM2(N,X,1) 

      YNORM = SCNRM2(N,Y,1) 

      DO 20  I=1, N 

         ZREAL1(I) = REAL(Z(I))/(XNORM*YNORM) 

   20 CONTINUE 

      K = ISMAX(N,ZREAL1,1) 

!                                 Print results for the periodic 

!                                 case. 

      WRITE (NOUT,99995) 

      WRITE (NOUT,99994) 

      WRITE (NOUT,99997) 

      WRITE (NOUT,99998) K 

      WRITE (NOUT,99999) K, ZREAL1(K) 

!                                 Set up the vectors for the 

!                                 nonperioddic case. 

      DO 30  I=1, N 

         X(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)) 

         Y(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI) 

   30 CONTINUE 

!                                 Call the correlation routine for the 

!                                 nonperiodic case. 

      NZ = 4*N 

      CALL CCORL (X, Y, Z, ZHAT, IPAD=1, NZ=NZ) 

!                                 Find the element of z with the 

!                                 largest normalized real part. 

      XNORM = SCNRM2(N,X,1) 

      YNORM = SCNRM2(N,Y,1) 

      DO 40  I=1, N 

         ZREAL1(I) = REAL(Z(I))/(XNORM*YNORM) 

   40 CONTINUE 

      K = ISMAX(N,ZREAL1,1) 

!                                 Print results for the nonperiodic 

!                                 case. 

      WRITE (NOUT,99996) 

      WRITE (NOUT,99994) 

      WRITE (NOUT,99997) 

      WRITE (NOUT,99998) K 

      WRITE (NOUT,99999) K, ZREAL1(K) 

99994 FORMAT (1X, 28('-')) 

99995 FORMAT (' Case #1: periodic data') 

99996 FORMAT (/, ' Case #2: nonperiodic data') 

99997 FORMAT (' The element of Z with the largest normalized ') 

99998 FORMAT (' real part is Z(', I2, ').') 

99999 FORMAT (' The normalized value of real(Z(', I2, ')) is', F6.3) 

      END 

Output 
 

Example #1: periodic case 

---------------------------- 

The element of Z with the largest normalized real part is Z(26). 

The normalized value of real(Z(26)) is 1.000 

 

Example #2: nonperiodic case 

---------------------------- 
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The element of Z with the largest normalized real part is Z(26). 

The normalized value of real(Z(26)) is 0.638 

INLAP 
Computes the inverse Laplace transform of a complex function. 

Required Arguments 

F — User-supplied FUNCTION to which the inverse Laplace transform will be computed. The 

form is F(Z), where 

 Z – Complex argument.   (Input) 

F – The complex function value.   (Output) 

F must be declared EXTERNAL in the calling program. F should also be declared COMPLEX. 

T — Array of length N containing the points at which the inverse Laplace transform is 

desired.   (Input) 

T(I) must be greater than zero for all I. 

FINV — Array of length N whose I-th component contains the approximate value of the 

Laplace transform at the point T(I).   (Output) 

Optional Arguments 

N — Number of points at which the inverse Laplace transform is desired.   (Input) 

Default: N = size (T,1). 

ALPHA — An estimate for the maximum of the real parts of the singularities of F. If 

unknown, set ALPHA = 0.   (Input) 

Default: ALPHA = 0.0. 

KMAX — The number of function evaluations allowed for each T(I).   (Input) 

Default: KMAX = 500. 

RELERR — The relative accuracy desired.   (Input) 

Default: RELERR = 1.1920929e-5 for single precision and 2.22d-10 for double 

precision. 

FORTRAN 90 Interface 

Generic: CALL INLAP (F, T, FINV [,…]) 

Specific: The specific interface names are S_INLAP and D_INLAP. 

FORTRAN 77 Interface 

Single: CALL INLAP (F, N, T, ALPHA, RELERR, KMAX, FINV) 
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Double: The double precision name is DINLAP. 

Description 

The routine INLAP computes the inverse Laplace transform of a complex-valued function. Recall 

that if f is a function that vanishes on the negative real axis, then we can define the Laplace 

transform of f by 

    
0

: sxL f s e f x dx
  

 

It is assumed that for some value of s the integrand is absolutely integrable. 

The computation of the inverse Laplace transform is based on applying the epsilon algorithm to 

the complex Fourier series obtained as a discrete approximation to the inversion integral. The 

initial algorithm was proposed by K.S. Crump (1976) but was significantly improved by de Hoog 

et al. (1982). Given a complex-valued transform F(s) = L[f](s), the trapezoidal rule gives the 

approximation to the inverse transform 

     
1

1
/ ( )exp( )

2

t

k

ik ik t
g t e T F F

T T

  
 





  
    

  


 

This is the real part of the sum of a complex power series in z = exp(i πt/T), and the algorithm 

accelerates the convergence of the partial sums of this power series by using the epsilon algorithm 

to compute the corresponding diagonal Pade approximants. The algorithm attempts to choose the 

order of the Pade approximant to obtain the specified relative accuracy while not exceeding the 

maximum number of function evaluations allowed. The parameter α is an estimate for the 

maximum of the real parts of the singularities of F, and an incorrect choice of α may give false 

convergence. Even in cases where the correct value of α is unknown, the algorithm will attempt to 

estimate an acceptable value. Assuming satisfactory convergence, the discretization error  

E := g  f satisfies 

 2

1

2n T

n

E e f nT t






 
 

It follows that if |f(t)| ≤ Me
βt

, then we can estimate the expression above to obtain  

(for 0 ≤ t ≤ 2T) 

  2
/ 1

TtE Me e
  

 
 

Comments 

Informational errors  

Type Code 

4 1 The algorithm was not able to achieve the accuracy requested within 

KMAX  function evaluations for some T(I). 

4 2 Overflow is occurring for a particular value of T. 
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Example 

We invert the Laplace transform of the simple function (s  1)-2
 and print the computed answer, 

the true solution and the difference at five different points. The correct inverse transform is xe
x
. 

 

      USE INLAP_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    I, KMAX, N, NOUT 

      REAL       ALPHA, DIF(5), EXP, FINV(5), FLOAT, RELERR, T(5), & 

                TRUE(5) 

      COMPLEX    F 

      INTRINSIC  EXP, FLOAT 

      EXTERNAL   F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

! 

      DO 10  I=1, 5 

         T(I) = FLOAT(I) - 0.5 

   10 CONTINUE 

      N      = 5 

      ALPHA  = 1.0E0 

      RELERR = 5.0E-4 

      CALL INLAP (F, T, FINV, ALPHA=ALPHA, RELERR=RELERR) 

!                                 Evaluate the true solution and the 

!                                 difference 

      DO 20  I=1, 5 

         TRUE(I) = T(I)*EXP(T(I)) 

         DIF(I) = TRUE(I) - FINV(I) 

   20 CONTINUE 

! 

      WRITE (NOUT,99999) (T(I),FINV(I),TRUE(I),DIF(I),I=1,5) 

99999 FORMAT (7X, 'T', 8X, 'FINV', 9X, 'TRUE', 9X, 'DIFF', /, & 

            5(1X,E9.1,3X,1PE10.3,3X,1PE10.3,3X,1PE10.3,/)) 

      END 

! 

      COMPLEX FUNCTION F (S) 

      COMPLEX    S 

      F = 1./(S-1.)**2 

      RETURN 

      END 

Output 
 

    T        FINV         TRUE         DIFF 

0.5E+00    8.244E-01    8.244E-01   -4.768E-06 

1.5E+00    6.723E+00    6.723E+00   -3.481E-05 

2.5E+00    3.046E+01    3.046E+01   -1.678E-04 

3.5E+00    1.159E+02    1.159E+02   -6.027E-04 

4.5E+00    4.051E+02    4.051E+02   -2.106E-03 

SINLP 
Computes the inverse Laplace transform of a complex function. 
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Required Arguments 

F — User-supplied FUNCTION to which the inverse Laplace transform will be  

computed. The form is F(Z), where 

 Z — Complex argument.   (Input) 

F — The complex function value.   (Output) 

 F must be declared EXTERNAL in the calling program. F must also be declared 

COMPLEX. 

T — Vector of length N containing points at which the inverse Laplace transform is desired.   

(Input)  

T(I) must be greater than zero for all I. 

FINV — Vector of length N whose I-th component contains the approximate value of the 

inverse Laplace transform at the point T(I).   (Output) 

Optional Arguments 

N — The number of points at which the inverse Laplace transform is desired.   (Input) 

Default: N = size (T,1). 

SIGMA0 — An estimate for the maximum of the real parts of the singularities of F.   (Input)  

If unknown, set SIGMA0 = 0.0. 

Default: SIGMA0 = 0.e0. 

EPSTOL — The required absolute uniform pseudo accuracy for the coefficients and inverse 

Laplace transform values.   (Input) 

Default: EPSTOL = 1.1920929e-5 for single precision and 2.22d-10 for double 

precision. 

ERRVEC — Vector of length eight containing diagnostic information.   (Output)  

All components depend on the intermediately generated Laguerre coefficients. See 

Comments. 

FORTRAN 90 Interface 

Generic: CALL SINLP (F, T, FINV [,…]) 

Specific: The specific interface names are S_SINLP and D_SINLP. 

FORTRAN 77 Interface 

Single: CALL SINLP (F, N, T, SIGMA0, EPSTOL, ERRVEC, FINV) 

Double: The double precision name is DSINLP. 
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Description 

The routine SINLP computes the inverse Laplace transform of a complex-valued function. Recall 

that if f is a function that vanishes on the negative real axis, then we can define the Laplace 

transform of f by 

    
0

: sxL f s e f x dx
  

 

It is assumed that for some value of s the integrand is absolutely integrable. 

The computation of the inverse Laplace transform is based on a modification of Weeks‘ method 

(see W.T. Weeks (1966)) due to B.S. Garbow et. al. (1988). This method is suitable when f has 

continuous derivatives of all orders on [0, ∞). In this situation, this routine should be used in place 

of the IMSL routine INLAP. It is especially efficient when multiple function values are desired. In 

particular, given a complex-valued function F(s) = L[f](s), we can expand f in a Laguerre series 

whose coefficients are determined by F. This is fully described in B.S. Garbow et. al. (1988) and 

Lyness and Giunta (1986). 

The algorithm attempts to return approximations g(t) to f(t) satisfying 

   
t

g t f t

e





 

where ε := EPSTOL and σ := SIGMA > SIGMA0. The expression on the left is called the pseudo 

error. An estimate of the pseudo error is available in ERRVEC(1). 

The first step in the method is to transform F to ɸ where 

 
1 1 2

b b b
z F

z z
 

 
   

    

Then, if f is smooth, it is known that ɸ is analytic in the unit disc of the complex plane and hence 

has a Taylor series expansion 

 
0

s
s

s

z a z





 

which converges for all z whose absolute value is less than the radius of convergence Rc. This 

number is estimated in ERRVEC(6). In ERRVEC(5), we estimate the smallest number K which 

satisfies 

s s

K
a

R


 

for all R < Rc. 

The coefficients of the Taylor series for ɸ can be used to expand f in a Laguerre series 

   / 2

0

t bt
s s

s

f t e a e L bt
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Comments 

1. Workspace may be explicitly provided, if desired, by use of S2NLP/DS2NLP. The 

reference is: 

CALL S2NLP (F, N, T, SIGMA0, EPSTOL, ERRVEC, FINV, SIGMA, 

BVALUE, MTOP, WK, IFLOVC) 

The additional arguments are as follows: 

SIGMA — The first parameter of the Laguerre expansion. If SIGMA is not 

greater than SIGMA0, it is reset to SIGMA0 + 0.7.   (Input) 

BVALUE — The second parameter of the Laguerre expansion. If BVALUE is 

less than 2.0 * (SIGMA  SIGMA0), it is reset to 2.5 * (SIGMA  

SIGMA0).   (Input) 

MTOP — An upper limit on the number of coefficients to be computed in the 

Laguerre expansion. MTOP must be a multiple of four. Note that the 

maximum number of Laplace transform evaluations is MTOP/2 + 2. 

(Default: 1024.)    (Input) 

WK — Real work vector of length 9 * MTOP/4. 

IFLOVC — Integer vector of length N, the I-th component of which contains 

the overflow/underflow indicator for the computed value of FINV(I).   

(Output)  

See Comment 3. 

2. Informational errors 

Type Code 

1 1 Normal termination, but with estimated error bounds slightly larger 

than EPSTOL. Note, however, that the actual errors on the final 

results may be smaller than EPSTOL as bounds independent of T are 

pessimistic. 

3 2 Normal calculation, terminated early at the roundoff error level 

estimate because this estimate exceeds the required accuracy 

(usually due to overly optimistic expectation by the user about 

attainable accuracy). 

4 3 The decay rate of the coefficients is too small. It may improve 

results to use S2NLP and increase MTOP. 

4 4 The decay rate of the coefficients is too small. In addition, the 

roundoff error level is such that required accuracy cannot be 

reached. 
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4 5 No error bounds are returned as the behavior of the coefficients does 

not enable reasonable prediction. Results are probably wrong. Check 

the value of SIGMA0. In this case, each of ERRVEC(J), J = 1, …, 5, is 

set to  1.0. 

3. The following are descriptions of the vectors ERRVEC and IFLOVC. 

ERRVEC — Real vector of length eight. 

ERRVEC(1) = Overall estimate of the pseudo error, ERRVEC(2) + ERRVEC(3) + 

ERRVEC(4). Pseudo error = absolute error / exp(sigma * tvalue). 

ERRVEC(2) = Estimate of the pseudo discretization error. 

ERRVEC(3) = Estimate of the pseudo truncation error. 

ERRVEC(4) = Estimate of the pseudo condition error on the basis of minimal 

noise levels in the function values. 

ERRVEC(5) = K, the coefficient of the decay function for ACOEF, the 

coefficients of the Laguerre expansion. 

ERRVEC(6) = R, the base of the decay function for ACOEF. Here  

abs(ACOEF (J + 1)).LE.K/R**J for J.GE.MACT/2, where MACT is the 

number of Laguerre coefficients actually computed. 

ERRVEC(7) = ALPHA, the logarithm of the largest ACOEF. 

ERRVEC(8) = BETA, the logarithm of the smallest nonzero ACOEF. 

IFLOVC — Integer vector of length N containing the overflow/underflow indicators 

for FINV. For each I, the value of IFLOVC(I) signifies the following. 

  0 =  Normal termination. 

  1 =  The value of the inverse Laplace transform is found to be too large to 

be representable; FINV(I) is set to AMACH(6). 

1 =  The value of the inverse Laplace transform is found to be too small to 

be representable; FINV(I) is set to 0.0. 

 2  =  The value of the inverse Laplace transform is estimated to be too large, 

even before the series expansion, to be representable; FINV(I) is set to 

AMACH(6). 

2 =  The value of the inverse Laplace transform is estimated to be too small, 

even before the series expansion, to be representable; FINV(I) is set to 

0.0. 
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Example 

We invert the Laplace transform of the simple function (s  1)-2
 and print the computed answer,  

the true solution, and the difference at five different points. The correct inverse transform is xe
x
. 

 

      USE SINLP_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    I, NOUT 

      REAL       DIF(5), ERRVEC(8), EXP, FINV(5), FLOAT, RELERR, & 

                SIGMA0, T(5), TRUE(5), EPSTOL 

      COMPLEX    F 

      INTRINSIC  EXP, FLOAT 

      EXTERNAL   F 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

! 

      DO 10  I=1, 5 

         T(I) = FLOAT(I) - 0.5 

   10 CONTINUE 

      SIGMA0 = 1.0E0 

      RELERR = 5.0E-4 

      EPSTOL = 1.0E-4 

      CALL SINLP (F, T, FINV, SIGMA0=SIGMA0, EPSTOL=RELERR) 

!                                 Evaluate the true solution and the 

!                                 difference 

      DO 20  I=1, 5 

         TRUE(I) = T(I)*EXP(T(I)) 

         DIF(I) = TRUE(I) - FINV(I) 

   20 CONTINUE 

! 

      WRITE (NOUT,99999) (T(I),FINV(I),TRUE(I),DIF(I),I=1,5) 

99999 FORMAT (7X, 'T', 8X, 'FINV', 9X, 'TRUE', 9X, 'DIFF', /, & 

            5(1X,E9.1,3X,1PE10.3,3X,1PE10.3,3X,1PE10.3,/)) 

      END 

! 

      COMPLEX FUNCTION F (S) 

      COMPLEX    S 

! 

      F = 1./(S-1.)**2 

      RETURN 

      END 

Output 
 

    T        FINV         TRUE         DIFF 

0.5E+00    8.244E-01    8.244E-01   -2.086E-06 

1.5E+00    6.723E+00    6.723E+00   -8.583E-06 

2.5E+00    3.046E+01    3.046E+01    0.000E+00 

3.5E+00    1.159E+02    1.159E+02    2.289E-05 

4.5E+00    4.051E+02    4.051E+02   -2.136E-04 
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Chapter 7: Nonlinear Equations 

Routines 

7.1.  Zeros of a Polynomial 
Real coefficients using Laguerre method ............................ ZPLRC 1320 
Real coefficients using Jenkins-Traub method ................... ZPORC 1322 
Complex coefficients ........................................................... ZPOCC 1324 

7.2.  Zero(s) of a Function 
Zeros of a complex analytic function ................................... ZANLY 1325 
Zero of a real univariate function ............................................. ZUNI 1328 
Zero of a real function with sign changes ............................ ZBREN 1331 
Zeros of a real function ........................................................ ZREAL 1334 

7.3.  Root of a System of Equations 
Finite-difference Jacobian ................................................... NEQNF 1337 
Analytic Jacobian ................................................................. NEQNJ 1340 
Broyden’s update and Finite-difference Jacobian ...............NEQBF 1344 
Factored secant update with a user-supplied Jacobian ...... NEQBJ 1350 

Usage Notes 

Zeros of a Polynomial 

A polynomial function of degree n can be expressed as follows: 

p(z) = anz
n
 + an-1 z

n-1
 + … + a1z + a0 

where an ≠ 0. 

There are three routines for zeros of a polynomial. The routines ZPLRC and ZPORC find zeros of 

the polynomial with real coefficients while the routine ZPOCC finds zeros of the polynomial with 

complex coefficients. 

The Jenkins-Traub method is used for the routines ZPORC and ZPOCC; whereas ZPLRC uses the 

Laguerre method. Both methods perform well in comparison with other methods. The Jenkins-

Traub algorithm usually runs faster than the Laguerre method. Furthermore, the routine ZANLY in 

the next section can also be used for the complex polynomial. 
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Zero(s) of a Function 

The routines ZANLY and ZREAL use Müller‘s method to find the zeros of a complex analytic 

function and real zeros of a real function, respectively. The routine ZBREN finds a zero of a real 

function, using an algorithm that is a combination of interpolation and bisection. This algorithm 

requires the user to supply two points such that the function values at these two points have 

opposite sign. For functions where it is difficult to obtain two such points, ZUNI or ZREAL can be 

used. 

Root of System of Equations 

A system of equations can be stated as follows: 

fi(x) = 0, for i = 1, 2, …, n 

where x ∈ R
n
. 

The routines NEQNF and NEQNJ use a modified Powell hybrid method to find a zero of a system of 

nonlinear equations. The difference between these two routines is that the Jacobian is estimated by 

a finite-difference method in NEQNF, whereas the user has to provide the Jacobian for NEQNJ. It is 

advised that the Jacobian-checking routine, CHJAC (see Chapter 8, Optimization), be used to ensure 

the accuracy of the user-supplied Jacobian. 

The routines NEQBF and NEQBJ use a secant method with Broyden‘s update to find a zero of a 

system of nonlinear equations. The difference between these two routines is that the Jacobian is 

estimated by a finite-difference method in NEQBF; whereas the user has to provide the Jacobian for 

NEQBJ. For more details, see Dennis and Schnabel (1983, Chapter 8). 

ZPLRC 
Finds the zeros of a polynomial with real coefficients using Laguerre‘s method. 

Required Arguments 

COEFF — Vector of length NDEG + 1 containing the coefficients of the polynomial in 

increasing order by degree.   (Input)  

The polynomial is  

COEFF(NDEG + 1) * Z**NDEG + COEFF(NDEG) * Z**(NDEG  1) + … + COEFF(1). 

ROOT — Complex vector of length NDEG containing the zeros of the polynomial.   (Output) 

Optional Arguments 

NDEG — Degree of the polynomial. 1 ≤ NDEG ≤ 100    (Input) 

Default: NDEG = size (COEFF,1) – 1. 

FORTRAN 90 Interface 

Generic: CALL ZPLRC (COEFF, ROOT [,…]) 
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Specific: The specific interface names are S_ZPLRC and D_ZPLRC. 

FORTRAN 77 Interface 

Single: CALL ZPLRC (NDEG, COEFF, ROOT) 

Double: The double precision name is DZPLRC. 

Description 

Routine ZPLRC computes the n zeros of the polynomial 

p(z) = anz
n
 + an-1 z

n-1
 + … + a1z + a0 

where the coefficients ai for i = 0, 1, …, n are real and n is the degree of the polynomial.  

The routine ZPLRC is a modification of B.T. Smith‘s routine ZERPOL (Smith 1967) that uses 

Laguerre‘s method. Laguerre‘s method is cubically convergent for isolated zeros and linearly 

convergent for multiple zeros. The maximum length of the step between successive iterates is 

restricted so that each new iterate lies inside a region about the previous iterate known to contain a 

zero of the polynomial. An iterate is accepted as a zero when the polynomial value at that iterate is 

smaller than a computed bound for the rounding error in the polynomial value at that iterate. The 

original polynomial is deflated after each real zero or pair of complex zeros is found. Subsequent 

zeros are found using the deflated polynomial. 

Comments 

Informational errors 

Type Code 

3 1 The first several coefficients of the polynomial are equal to zero. 

Several of the last roots will be set to machine infinity to compensate 

for this problem. 

3 2 Fewer than NDEG zeros were found. The ROOT vector will contain the 

value for  machine infinity in the locations that do not contain zeros. 

Example 

This example finds the zeros of the third-degree polynomial 

p(z) = z
3
  3z

2
 + 4z 2 

where z is a complex variable. 
    

      USE ZPLRC_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NDEG 

      PARAMETER  (NDEG=3) 

! 

      REAL       COEFF(NDEG+1) 
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      COMPLEX    ZERO(NDEG) 

!                                 Set values of COEFF 

!                                 COEFF = (-2.0  4.0 -3.0  1.0) 

! 

      DATA COEFF/-2.0, 4.0, -3.0, 1.0/ 

! 

      CALL ZPLRC (COEFF, ZERO, NDEG) 

! 

      CALL WRCRN ('The zeros found are', ZERO, 1, NDEG, 1) 

! 

      END 

Output 
 

              The zeros found are 

             1                2                3 

( 1.000, 1.000)  ( 1.000,-1.000)  ( 1.000, 0.000) 

ZPORC 
Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub three-stage 

algorithm. 

Required Arguments 

COEFF — Vector of length NDEG + 1 containing the coefficients of the polynomial in 

increasing order by degree.   (Input)  

The polynomial is  

COEFF(NDEG + 1)*Z**NDEG + COEFF(NDEG) * Z**(NDEG 1) + … + COEFF(1). 

ROOT — Complex vector of length NDEG containing the zeros of the polynomial.   (Output) 

Optional Arguments 

NDEG — Degree of the polynomial. 1 ≤ NDEG ≤ 100    (Input) 

Default: NDEG = size (COEFF,1) – 1. 

FORTRAN 90 Interface 

Generic: CALL ZPORC (COEFF, ROOT [,…]) 

Specific: The specific interface names are S_ZPORC and D_ZPORC. 

FORTRAN 77 Interface 

Single: CALL ZPORC (NDEG, COEFF, ROOT) 

Double: The double precision name is DZPORC. 
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Description 

Routine ZPORC computes the n zeros of the polynomial 

p(z) = anz
n
 + an-1 z

n-1
 + … + a1z + a0 

where the coefficients ai for i = 0, 1, …, n are real and n is the degree of the polynomial.  

The routine ZPORC uses the Jenkins-Traub three-stage algorithm (Jenkins and Traub 1970; Jenkins 

1975). The zeros are computed one at a time for real zeros or two at a time for complex conjugate 

pairs. As the zeros are found, the real zero or quadratic factor is removed by polynomial deflation. 

Comments 

Informational errors 

Type Code 

3 1 The first several coefficients of the polynomial are equal to zero. 

Several of the last roots will be set to machine infinity to compensate 

for this problem. 

3 2 Fewer than NDEG zeros were found. The ROOT vector will contain the 

value for machine infinity in the locations that do not contain zeros. 

Example 

This example finds the zeros of the third-degree polynomial 

p(z) = z
3
  3z

2
 + 4z 2 

where z is a complex variable. 
 

      USE ZPORC_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NDEG 

      PARAMETER  (NDEG=3) 

! 

      REAL       COEFF(NDEG+1) 

      COMPLEX    ZERO(NDEG) 

!                                 Set values of COEFF 

!                                 COEFF = (-2.0  4.0 -3.0  1.0) 

! 

      DATA COEFF/-2.0, 4.0, -3.0, 1.0/ 

! 

      CALL ZPORC (COEFF, ZERO) 

! 

      CALL WRCRN ('The zeros found are', ZERO, 1, NDEG, 1) 

! 

      END 
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Output 
 

              The zeros found are 

             1                2                3 

( 1.000, 0.000)  ( 1.000, 1.000)  ( 1.000,-1.000) 

ZPOCC 
Finds the zeros of a polynomial with complex coefficients. 

Required Arguments 

COEFF — Complex vector of length NDEG + 1 containing the coefficients of the polynomial 

in increasing order by degree.   (Input)  

The polynomial is  

COEFF(NDEG + 1) * Z**NDEG + COEFF(NDEG) * Z**(NDEG  1) + … + COEFF(1). 

ROOT — Complex vector of length NDEG containing the zeros of the polynomial.   (Output) 

Optional Arguments 

NDEG —  Degree of the polynomial. 1 ≤ NDEG < 50    (Input) 

Default: NDEG = size (COEFF,1) – 1. 

FORTRAN 90 Interface 

Generic: CALL ZPOCC (COEFF, ROOT [,…]) 

Specific: The specific interface names are S_ZPOCC and D_ZPOCC. 

FORTRAN 77 Interface 

Single: CALL ZPOCC (NDEG, COEFF, ROOT) 

Double: The double precision name is DZPOCC. 

Description 

Routine ZPOCC computes the n zeros of the polynomial 

p(z) = anz
n
 + an-1z

n-1
 + … + a1z + a0 

where the coefficients ai for i = 0, 1, …, n are real and n is the degree of the polynomial.  

The routine ZPOCC uses the Jenkins-Traub three-stage complex algorithm (Jenkins and Traub 

1970, 1972). The zeros are computed one at a time in roughly increasing order of modulus. As 

each zero is found, the polynomial is deflated to one of lower degree. 
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Comments 

Informational errors 

Type Code 

3 1 The first several coefficients of the polynomial are equal to zero. 

Several of the last roots will be set to machine infinity to compensate 

for this problem. 

3 2 Fewer than NDEG zeros were found. The ROOT vector will contain the 

value for machine infinity in the locations that do not contain zeros. 

Example 

This example finds the zeros of the third-degree polynomial 

p(z) = z
3
  (3 + 6i)z

2
  (8  12i)z + 10 

where z is a complex variable. 
 

      USE ZPOCC_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NDEG 

      PARAMETER  (NDEG=3) 

! 

      COMPLEX    COEFF(NDEG+1), ZERO(NDEG) 

!                                 Set values of COEFF 

!                                 COEFF = ( 10.0 +  0.0i ) 

!                                         ( -8.0 + 12.0i ) 

!                                         ( -3.0 -  6.0i ) 

!                                         (  1.0 +  0.0i ) 

! 

      DATA COEFF/(10.0,0.0), (-8.0,12.0), (-3.0,-6.0), (1.0,0.0)/ 

! 

      CALL ZPOCC (COEFF, ZERO) 

! 

      CALL WRCRN ('The zeros found are', ZERO, 1, NDEG, 1) 

! 

      END 

Output 
 

              The zeros found are 

             1                2                3 

( 1.000, 1.000)  ( 1.000, 2.000)  ( 1.000, 3.000) 

ZANLY 
Finds the zeros of a univariate complex function using Müller‘s method. 
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Required Arguments 

F — User-supplied COMPLEX FUNCTION to compute the value of the function  

of which the zeros will be found. The form is F(Z), where 

Z — The complex value at which the function is evaluated.   (Input)  

Z should not be changed by F. 

F — The computed complex function value at the point Z.   (Output) 

 F must be declared EXTERNAL in the calling program. 

Z — A complex vector of length NKNOWN + NNEW.   (Output)  

Z(1), …, Z(NKNOWN) contain the known zeros. Z(NKNOWN + 1), …, Z(NKNOWN + NNEW) 

contain the new zeros found by ZANLY. If ZINIT is not needed, ZINIT and Z can share 

the same storage locations. 

Optional Arguments 

ERRABS — First stopping criterion.   (Input)  

Let FP(Z) = F(Z)/P where P = (Z  Z(1)) * (Z  Z(2)) *…* (Z  Z(K  1))  

and Z(1), …, Z(K  1) are previously found zeros.  

If (CABS(F(Z)).LE.ERRABS.AND.CABS(FP(Z)).LE.ERRABS),  

then Z is accepted as a zero. 

Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision. 

ERRREL — Second stopping criterion is the relative error.   (Input)  

A zero is accepted if the difference in two successive approximations to this zero is 

within ERRREL. ERRREL must be less than 0.01; otherwise, 0.01 will be used. 

Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision. 

NKNOWN — The number of previously known zeros, if any, that must be stored in 

ZINIT(1), …, ZINIT(NKNOWN) prior to entry to ZANLY.   (Input) 

NKNOWN must be set equal to zero if no zeros are known. 

Default: NKNOWN = 0. 

NNEW — The number of new zeros to be found by ZANLY.   (Input) 

Default: NNEW = 1.  

NGUESS — The number of initial guesses provided.   (Input)  

These guesses must be stored in ZINIT(NKNOWN + 1), …, ZINIT(NKNOWN + NGUESS). 

NGUESS must be set equal to zero if no guesses are provided. 

Default: NGUESS = 0. 

ITMAX — The maximum allowable number of iterations per zero.   (Input) 

Default: ITMAX = 100. 

ZINIT — A complex vector of length NKNOWN + NNEW.   (Input)  

ZINIT(1), …, ZINIT(NKNOWN) must contain the known zeros. ZINIT(NKNOWN + 1), …, 



 

 

IMSL MATH LIBRARY Chapter 7: Nonlinear Equations  1327 

     

     

 

ZINIT(NKNOWN + NNEW) may, on user option, contain initial guesses for the NNEW new 

zeros that are to be computed. If the user does not provide an initial guess, zero is used. 

INFO — An integer vector of length NKNOWN + NNEW.   (Output)  

INFO(J) contains the number of iterations used in finding the J-th zero when 

convergence was achieved. If convergence was not obtained in ITMAX iterations, 

INFO(J) will be greater than ITMAX. 

FORTRAN 90 Interface 

Generic: CALL ZANLY (F, Z [,…]) 

Specific: The specific interface names are S_ZANLY and D_ZANLY. 

FORTRAN 77 Interface 

Single: CALL ZANLY (F, ERRABS, ERRREL, NKNOWN, NNEW, NGUESS, ZINIT, ITMAX, Z, 
INFO) 

Double: The double precision name is DZANLY. 

Example 

This example finds the zeros of the equation f(z) = z
3
 + 5z

2
 + 9z + 45, where z is a complex 

variable. 

 

      USE ZANLY_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    INFO(3), NGUESS, NNEW 

      COMPLEX    F, Z(3), ZINIT(3) 

      EXTERNAL   F 

!                                 Set the guessed zero values in ZINIT 

! 

!                                 ZINIT = (1.0+1.0i 1.0+1.0i 1.0+1.0i) 

      DATA ZINIT/3*(1.0,1.0)/ 

!                                 Set values for all input parameters 

      NNEW   = 3 

      NGUESS = 3 

!                                 Find the zeros of F 

      CALL ZANLY (F, Z, NNEW=NNEW, NGUESS=NGUESS, & 

                 ZINIT=ZINIT, INFO=INFO) 

!                                 Print results 

      CALL WRCRN ('The zeros are', Z) 

      END 

!                                 External complex function 

      COMPLEX FUNCTION F (Z) 

      COMPLEX    Z 

! 

      F = Z**3 + 5.0*Z**2 + 9.0*Z + 45.0 
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      RETURN 

      END 

Output 
 

              The zeros are 

             1                2                3 

( 0.000, 3.000)  ( 0.000,-3.000)  (-5.000, 0.000) 

ZUNI 
Finds a zero of a real univariate function. 

Required Arguments 

F — User-supplied function of which a zero will be found. The form is F(X [,…]),  

where: 

Function Return Value 

F — The computed function value at the point X.   (Output) 

Required Arguments 

X — The point at which the function is evaluated.   (Input) 

X should not be changed by F. 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional information to/from the user-supplied function. For a detailed 

description of this argument see FCN_DATA below. 

F must be declared EXTERNAL in the calling program. 

A — See B.   (Input/Output) 

B — Two points at which the user-supplied function can be evaluated.   (Input/Output) 

On input, if F(A) and F(B) are of opposite sign, the zero will be found in the interval 

[A, B]and on output B will contain the value of X at which F(X)=0. If F(A)*F(B) >0, 

and A ≠ B then a search along the x number line is initiated for a point at which there is 

a sign change and |B – A| will be used in setting the step size for the initial search. If 

A = B on entry then the search is started as described in the description section below. 

On output, B is the abscissa at which |F(x)| had the smallest value. If F(B) ≠ 0 on 

output, A will contain the nearest abscissa to output B at which F(x) was evaluated and 

found to have the opposite sign from F(B). 
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Optional Arguments 

TOL— Error tolerance.   (Input)  

If TOL > 0.0, the zero is to be isolated to an interval of length less than TOL. 

 If TOL < 0.0, an x is desired for which |F(x)| is  |TOL|. 

 If TOL = 0.0, the iteration continues until the zero of F(x) is isolated as accurately as 

possible.  

Default: TOL = 0.0. 

MAXFN — The number of function evaluations.   (Input/Output) 

On input, MAXFN specifies an upper bound on the number of function evaluations 

required for convergence.  Set MAXFN to 0 if the number of function evaluations is to 

be unbounded. 

On output, MAXFN will contain the actual number of function evaluations used. 

Default: MAXFN = 0 so the number of function evaluations is unbounded. 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional 

information to/from the user-supplied function.  

The derived type, s_fcn_data, is defined as: 

type s_fcn_data 

   real(kind(1e0)), pointer, dimension(:) :: rdata 

   integer, pointer, dimension(:) :: idata 

end type 

in module mp_types. The double precision counterpart to s_fcn_data is named 

d_fcn_data. The user must include a use mp_types statement in the calling 

program to define this derived type. Note that if this optional argument is used then this 

argument must also be used in the user-supplied function. (Input/Output) 

FORTRAN 90 Interface 

Generic: CALL ZUNI (F, A, B [,…]) 

Specific: The specific interface names are S_ZUNI and D_ZUNI. 

Description 

ZUNI is based on the JPL Library routine SZERO. The algorithm used is attributed to Dr. Fred T. 

Krogh, JPL, 1972. Tests have shown ZUNI to require fewer function evaluations, on average, than 

a number of other algorithms for finding a zero of a continuous function. Also, unlike ZBREN 

which restricts the user to supplying points A and B such that f(A)  and f(B) are opposite in sign, 

ZUNI will accept any two points A and B and initiate a search on the number line for an x such that 

f(x) = 0 when there is no sign difference between f(A)  and f(B). In either case, B is updated with a 

new value on each successive iteration. The algorithm description follows. 

When f(A) × f(B) >0 at the initial point, iterates for x are generated according to the formula  

x = xmin + (xmin – xmax) × , where the subscript ―min‖ is associated with the ( f, x) pair that has the 
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smallest value for | f |, the subscript ―max‖ is associated with the ( f, x)  pair that has the largest 

value for | f |, and  is 8 if r = fmin /(fmax – fmin) ≥ 8, else  = max(/4, r), where  is a count of the 

number of iterations that have been taken without finding f‘s with opposite signs. If A and B have 

the same value initially, then the next x is a distance 0.008 + |xmin|/4 from xmin taken toward 0.  

(If A = B = 0, the next x is -.008.) 

Let x1 and x2 denote the first two x values that give f values with different signs. Let α <  be the 

two values of x that bracket the zero as tightly as is known. Thus α = x1 or α = x2 and  is the other 

when computing x3. The next point, x3, is generated by treating x as the linear function q(f) that 

interpolates the points (f (x1), x1) and (f (x2), x2), and then computing x3 = q(0), subject to the 

condition that α +   x3   – , where  = 0.875 × max(TOL, machine precision). (This condition 

on x3 with updated values for α and  is also applied to future iterates.) 

Let x4, x5, , xm denote the abscissae on the following iterations. Let a = xm, b = xm-1, and c = xm-2. 

Either α or  (defined as above) will coincide with a, and  will frequently coincide with either b 

or c. Let p(x) be the quadratic polynomial in x that passes through the values of f evaluated at a, b, 

and c. Let q(f) be the quadratic polynomial in f that passes through the points (f(a), a), (f(b), b), 

and f(c), c). 

Let  = α or , selected so that  ≠ a. If the sign of f has changed in the last 4 iterations and  

p′(a) × q′ (f(a)) and p′ ()) × q′ (f()) are both in the interval [1/4, 4], then x is set to q(0). (Note 

that if p is replaced by f and q is replaced by x, then both poducts have the value 1.) Otherwise x is 

set to a – (a- ) ( /(1+)), where  is selected based on past behavior and is such that 0 < . If the 

sign of f () does not change for an extended period,  gets large.  

Comments 

Informational error 

Type Code 

4 1 The error tolerance criteria was not satisfied. B contains the abscissa 

at which |F(x)| had the smallest value. 

Example 

This example finds a zero of the function 

f(x) = x
2
 + x  2 

in the interval [  10.0, 0.0]. 
 

      USE ZUNI_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NOUT, MAXFN 

      REAL       A, B, F 

      EXTERNAL   F 

!                                 Set values of A, B, MAXFN 

      A      = -10.0 

      B      = 0.0 

      MAXFN  = 0 
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! 

      CALL UMACH (2, NOUT) 

!                                 Find zero of F 

      CALL ZUNI (F, A, B, MAXFN=MAXFN) 

! 

      WRITE (NOUT,99999) B, MAXFN 

99999 FORMAT ('  The best approximation to the zero of F is equal to', & 

            F5.1, '.', /, '  The number of function evaluations', & 

            ' required was ', I2, '.', //) 

! 

      END 

! 

      REAL FUNCTION F (X) 

      REAL       X 

! 

      F = X*X + X - 2.0 

      RETURN 

      END 

Output 
 

The best approximation to the zero of F is equal to -2.0.  

The number of function evaluations required was 10. 

ZBREN 
Finds a zero of a real function that changes sign in a given interval. 

Required Arguments 

F — User-supplied FUNCTION to compute the value of the function of which a zero will be 

found. The form is F(X), where 

X — The point at which the function is evaluated.   (Input)  

X should not be changed by F. 

F — The computed function value at the point X.   (Output) 

F must be declared EXTERNAL in the calling program. 

A — See B.   (Input/Output) 

B — On input, the user must supply two points, A and B, such that F(A) and F(B) are opposite 

in sign.   (Input/Output)  

On output, both A and B are altered. B will contain the best approximation to the zero of 

F. 

Optional Arguments 

ERRABS — First stopping criterion.   (Input)  

A zero, B, is accepted if ABS(F(B)) is less than or equal to ERRABS. ERRABS may be set 
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to zero. 

Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision. 

ERRREL — Second stopping criterion is the relative error.   (Input)  

A zero is accepted if the change between two successive approximations to this zero is 

within ERRREL. 

Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision. 

MAXFN — On input, MAXFN specifies an upper bound on the number of function evaluations 

required for convergence.   (Input/Output)  

On output, MAXFN will contain the actual number of function evaluations used. 

Default: MAXFN = 100. 

FORTRAN 90 Interface 

Generic: CALL ZBREN (F, A, B [,…]) 

Specific: The specific interface names are S_ZBREN and D_ZBREN. 

FORTRAN 77 Interface 

Single: CALL ZBREN (F, ERRABS, ERRREL, A, B, MAXFN) 

Double: The double precision name is DZBREN. 

Description 

The algorithm used by ZBREN is a combination of linear interpolation, inverse quadratic 

interpolation, and bisection. Convergence is usually superlinear and is never much slower than the 

rate for the bisection method. See Brent (1971) for a more detailed account of this algorithm. 

Comments 

1. Informational error 

Type Code 

4 1 Failure to converge in MAXFN function evaluations. 

2. On exit from ZBREN without any error message, A and B satisfy the following:  

 F(A)F(B) ≤ 0.0 

 |F(B)| ≤ |F(A)|, and 

 either |F(B)| ≤ ERRABS or 

 |A  B| ≤ max(|B|, 0.1) * ERRREL. 

 The presence of 0.1 in the stopping criterion causes leading zeros to the right of the 

decimal point to be counted as significant digits. Scaling may be required in order to 

accurately determine a zero of small magnitude. 
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3. ZBREN is guaranteed to convergence within K function evaluations, where  

K = (ln((B  A)/D) + 1.0)
2
, and  

 
  

,
= min max ,0.1

x

 
 
 A B

D x *ERRREL

 

 This is an upper bound on the number of evaluations. Rarely does the actual number of 

evaluations used by ZBREN exceed  

K  

 D can be computed as follows: 
P = AMAX1(0.1, AMIN1(|A|, |B|)) 

IF((A  0.1) * (B  0.1) < 0.0) P = 0.1, 
D = P * ERRREL 

Example 

This example finds a zero of the function 

f(x) = x
2
 + x  2 

in the interval (  10.0, 0.0). 
 

      USE ZBREN_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      REAL       ERRABS, ERRREL 

! 

      INTEGER    NOUT, MAXFN 

      REAL       A, B, F 

      EXTERNAL   F 

!                                 Set values of A, B, ERRABS, 

!                                 ERRREL, MAXFN 

      A      = -10.0 

      B      = 0.0 

      ERRABS = 0.0 

      ERRREL = 0.001 

      MAXFN  = 100 

! 

      CALL UMACH (2, NOUT) 

!                                 Find zero of F 

      CALL ZBREN (F, A, B, ERRABS=ERRABS, ERRREL=ERRREL, MAXFN=MAXFN) 

! 

      WRITE (NOUT,99999) B, MAXFN 

99999 FORMAT ('  The best approximation to the zero of F is equal to', & 

            F5.1, '.', /, '  The number of function evaluations', & 

            ' required was ', I2, '.', //) 

! 

      END 

! 

      REAL FUNCTION F (X) 
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      REAL       X 

! 

      F = X**2 + X - 2.0 

      RETURN 

      END 

Output 
 

The best approximation to the zero of F is equal to -2.0.  

The number of function evaluations required was 12. 

ZREAL 
Finds the real zeros of a real function using Müller‘s method. 

Required Arguments 

F — User-supplied FUNCTION to compute the value of the function of which a zero will be 

found. The form is  

F(X), where 

X – The point at which the function is evaluated.   (Input)  

X should not be changed by F. 

F – The computed function value at the point X.   (Output) 

 F must be declared EXTERNAL in the calling program. 

X — A vector of length NROOT.   (Output)  

X contains the computed zeros. 

Optional Arguments 

ERRABS — First stopping criterion.   (Input)  

A zero X(I) is accepted if ABS(F(X(I)).LT. ERRABS. 

Default: ERRABS = 1.e-4 for single precision and 1.d-8 for double precision. 

ERRREL — Second stopping criterion is the relative error.   (Input)  

A zero X(I) is accepted if the relative change of two successive approximations to X(I) 

is less than ERRREL. 

Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision. 

EPS — See ETA.   (Input) 

Default: EPS = 1.e-4 for single precision and 1.d-8 for double precision. 

ETA — Spread criteria for multiple zeros.   (Input)  

If the zero X(I) has been computed and ABS(X(I)  X(J)).LT.EPS, where X(J) is a 

previously computed zero, then the computation is restarted with a guess equal to  
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X(I) + ETA. 

Default: ETA = .01. 

NROOT — The number of zeros to be found by ZREAL.   (Input) 

Default: NROOT = 1. 

ITMAX — The maximum allowable number of iterations per zero.   (Input) 

Default: ITMAX = 100. 

XGUESS — A vector of length NROOT.   (Input)  

XGUESS contains the initial guesses for the zeros. 

Default: XGUESS = 0.0. 

INFO — An integer vector of length NROOT.   (Output)  

INFO(J) contains the number of iterations used in finding the J-th zero when 

convergence was achieved. If convergence was not obtained in ITMAX iterations, 

INFO(J) will be greater than ITMAX. 

FORTRAN 90 Interface 

Generic: CALL ZREAL (F, X [,…]) 

Specific: The specific interface names are S_ZREAL and D_ZREAL. 

FORTRAN 77 Interface 

Single: CALL ZREAL (F, ERRABS, ERRREL, EPS, ETA, NROOT, ITMAX, XGUESS, X, 
INFO) 

Double: The double precision name is DZREAL. 

Description 

Routine ZREAL computes n real zeros of a real function f. Given a user-supplied function f(x) and 

an n-vector of initial guesses x1, x2, …, xn, the routine uses Müller‘s method to locate n real zeros 

of f, that is, n real values of x for which f(x) = 0. The routine has two convergence criteria: the first 

requires that 

 m
if x

 

be less than ERRABS; the second requires that the relative change of any two successive 

approximations to an xi be less than ERRREL. Here, 

m
ix

 

is the m-th approximation to xi. Let ERRABS be ɛ1, and ERRREL be ɛ2.The criteria may be stated 

mathematically as follows: 

Criterion 1: 
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  1
m
if x 

 

Criterion 2:  

1

2

m m
i i

m
i

x x

x


 


 

―Convergence‖ is the satisfaction of either criterion. 

Comments 

1. Informational error 

Type Code 

3 1 Failure to converge within ITMAX iterations for at least one of the 

NROOT roots. 

2. Routine ZREAL always returns the last approximation for zero J in X(J). If the 

convergence criterion is satisfied, then INFO(J) is less than or equal to ITMAX. If the 

convergence criterion is not satisfied, then INFO(J) is set to ITMAX + 1. 

3. The routine ZREAL assumes that there exist NROOT distinct real zeros for the function F 

and that they can be reached from the initial guesses supplied. The routine is designed 

so that convergence to any single zero cannot be obtained from two different initial 

guesses. 

4. Scaling the X vector in the function F may be required, if any of the zeros are known to 

be less than one. 

Example 

This example finds the real zeros of the second-degree polynomial 

f(x) = x
2
 + 2x  6 

with the initial guess (4.6, 193.3). 
 

      USE ZREAL_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NROOT 

      REAL       EPS, ERRABS, ERRREL 

      PARAMETER  (NROOT=2) 

! 

      INTEGER    INFO(NROOT) 

      REAL       F, X(NROOT), XGUESS(NROOT) 

      EXTERNAL   F 

!                                 Set values of initial guess 
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!                                 XGUESS = (  4.6 -193.3) 

! 

      DATA XGUESS/4.6, -193.3/ 

! 

      EPS    = 1.0E-5 

      ERRABS = 1.0E-5 

      ERRREL = 1.0E-5 

 

!                                 Find the zeros 

      CALL ZREAL (F, X, errabs=errabs, errrel=errrel, eps=eps, & 

                 nroot=nroot, xguess=xguess) 

! 

      CALL WRRRN ('The zeros are', X, 1, NROOT, 1) 

! 

      END 

! 

      REAL FUNCTION F (X) 

      REAL       X 

! 

      F = X*X + 2.0*X - 6.0 

      RETURN 

      END 

Output 
 

The zeros are 

    1       2 

1.646  -3.646 

NEQNF 
Solves a system of nonlinear equations using a modified Powell hybrid algorithm and a finite-

difference approximation to the Jacobian. 

Required Arguments 

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The 

usage is  

CALL FCN (X, F, N), where 

X – The point at which the functions are evaluated.   (Input)  

X should not be changed by FCN. 

F – The computed function values at the point X.   (Output) 

N — Length of X and F.   (Input)  

 FCN must be declared EXTERNAL in the calling program. 

X — A vector of length N.   (Output)  

X contains the best estimate of the root found by NEQNF. 
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Optional Arguments 

ERRREL — Stopping criterion.   (Input)  

The root is accepted if the relative error between two successive approximations to this 

root is less than ERRREL. 

Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision. 

N – The number of equations to be solved and the number of unknowns.   (Input) 

Default: N = size (X,1). 

ITMAX — The maximum allowable number of iterations.   (Input)  

The maximum number of calls to FCN is ITMAX * (N + 1). Suggested value  

ITMAX = 200. 

Default: ITMAX = 200. 

XGUESS — A vector of length N.   (Input)  

XGUESS contains the initial estimate of the root. 

Default: XGUESS = 0.0. 

FNORM — A scalar that has the value F(1)
2
 + … + F(N)

2
 at the point X.   (Output) 

FORTRAN 90 Interface 

Generic: CALL NEQNF (FCN, X [,…]) 

Specific: The specific interface names are S_NEQNF and D_NEQNF. 

FORTRAN 77 Interface 

Single: CALL NEQNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM) 

Double: The double precision name is DNEQNF. 

Description 

Routine NEQNF is based on the MINPACK subroutine HYBRD1, which uses a modification of 

M.J.D. Powell‘s hybrid algorithm. This algorithm is a variation of Newton‘s method, which uses a 

finite-difference approximation to the Jacobian and takes precautions to avoid large step sizes or 

increasing residuals. For further description, see More  et al. (1980). 

Since a finite-difference method is used to estimate the Jacobian, for single precision calculation, 

the Jacobian may be so incorrect that the algorithm terminates far from a root. In such cases, high 

precision arithmetic is recommended. Also, whenever the exact Jacobian can be easily provided, 

IMSL routine NEQNJ should be used instead. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of N2QNF/DN2QNF. The 

reference is: 
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CALL N2QNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM, FVEC, 

FJAC, R, QTF, WK) 

The additional arguments are as follows: 

FVEC — A vector of length N. FVEC contains the functions evaluated at the 

point X. 

FJAC — An N by N matrix. FJAC contains the orthogonal matrix Q 

produced by the QR factorization of the final approximate Jacobian. 

R — A vector of length N * (N + 1)/2. R contains the upper triangular matrix 

produced by the QR factorization of the final approximate Jacobian. R is 

stored row-wise. 

QTF — A vector of length N. QTF contains the vector TRANS(Q) * FVEC. 

WK — A work vector of length 5 * N. 

2. Informational errors 

Type Code 

4 1 The number of calls to FCN has exceeded ITMAX * (N + 1). A new 

initial guess may be tried. 

4 2 ERRREL is too small. No further improvement in the approximate 

solution is possible. 

4 3 The iteration has not made good progress. A new initial guess may 

be tried. 

Example 

The following 3  3 system of nonlinear equations 

   

 

   

1

2

21
1 1 2 3

2 2
2 1 3

2
3 3 2 2

27 0

/ 10 0

sin 2 7 0

x

x

f x x e x x

f x e x x

f x x x x





     

   

     
 

is solved with the initial guess (4.0, 4.0, 4.0). 
 

      USE NEQNF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    N 

      PARAMETER  (N=3) 

! 

      INTEGER    K, NOUT 



     

     
 

1340  Chapter 7: Nonlinear Equations IMSL MATH LIBRARY  

     

     

 

      REAL       FNORM, X(N), XGUESS(N) 

      EXTERNAL   FCN 

!                                 Set values of initial guess 

!                                 XGUESS = (  4.0  4.0  4.0 ) 

! 

      DATA XGUESS/4.0, 4.0, 4.0/ 

! 

! 

      CALL UMACH (2, NOUT) 

!                                 Find the solution 

      CALL NEQNF (FCN, X, xguess=xguess, fnorm=fnorm) 

!                                 Output 

      WRITE (NOUT,99999) (X(K),K=1,N), FNORM 

99999 FORMAT ('  The solution to the system is', /, '  X = (', 3F5.1, & 

            ')', /, '  with FNORM =', F5.4, //) 

! 

      END 

!                                 User-defined subroutine 

      SUBROUTINE FCN (X, F, N) 

      INTEGER    N 

      REAL       X(N), F(N) 

! 

      REAL       EXP, SIN 

      INTRINSIC  EXP, SIN 

! 

      F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0 

      F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0 

      F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0 

      RETURN 

      END 

Output 
 

The solution to the system is 

X = (  1.0  2.0  3.0)  

with FNORM =.0000 

NEQNJ 
Solves a system of nonlinear equations using a modified Powell hybrid algorithm with a user-

supplied Jacobian. 

Required Arguments 

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The 

usage is  

CALL FCN (X, F, N), where 

X – The point at which the functions are evaluated.   (Input)  

X should not be changed by FCN. 

F – The computed function values at the point X.   (Output) 
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N – Length of X, F.   (Input) 

 FCN must be declared EXTERNAL in the calling program. 

LSJAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is 

CALL LSJAC (N, X, FJAC), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  

X should not be changed by LSJAC. 

FJAC — The computed N by N Jacobian at the point X.   (Output) 

 LSJAC must be declared EXTERNAL in the calling program. 

X — A vector of length N.   (Output)  

X contains the best estimate of the root found by NEQNJ. 

Optional Arguments 

ERRREL — Stopping criterion.   (Input)  

The root is accepted if the relative error between two successive approximations to this 

root is less than ERRREL. 

Default: ERRREL = 1.e-4 for single precision and 1.d-8 for double precision. 

N — The number of equations to be solved and the number of unknowns.   (Input) 

Default: N = size (X,1). 

ITMAX — The maximum allowable number of iterations.   (Input)  

Suggested value = 200. 

Default: ITMAX = 200. 

XGUESS — A vector of length N.   (Input)  

XGUESS contains the initial estimate of the root. 

Default: XGUESS = 0.0. 

FNORM — A scalar that has the value F(1)
2
 + … + F(N)

2
 at the point X.   (Output) 

FORTRAN 90 Interface 

Generic: CALL NEQNJ (FCN, LSJAC, X [,…]) 

Specific: The specific interface names are S_NEQNJ and D_NEQNJ. 

FORTRAN 77 Interface 

Single: CALL NEQNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X, FNORM) 

Double: The double precision name is DNEQNJ. 
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Description 

Routine NEQNJ is based on the MINPACK subroutine HYBRDJ, which uses a modification of 

M.J.D. Powell‘s hybrid algorithm. This algorithm is a variation of Newton‘s method, which takes 

precautions to avoid large step sizes or increasing residuals. For further description, see More et al. 

(1980). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of N2QNJ/DN2QNJ. The 

reference is: 

CALL N2QNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X, 

FNORM, FVEC, FJAC, R, QTF, WK) 

The additional arguments are as follows: 

FVEC — A vector of length N. FVEC contains the functions evaluated at the 

point X. 

FJAC — An N by N matrix. FJAC contains the orthogonal matrix Q 

produced by the QR factorization of the final approximate Jacobian. 

R — A vector of length N * (N + 1)/2. R contains the upper triangular 

matrix produced by the QR factorization of the final approximate 

Jacobian. R is stored row-wise. 

QTF — A vector of length N. QTF contains the vector TRANS(Q) * FVEC. 

WK — A work vector of length 5 * N. 

2. Informational errors 

Type Code 

4 1 The number of calls to FCN has exceeded ITMAX. A new initial guess 

may be tried. 

4 2 ERRREL is too small. No further improvement in the approximate 

solution is possible. 

4 3 The iteration has not made good progress. A new initial guess may 

be tried. 

Example 

The following 3  3 system of nonlinear equations 
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is solved with the initial guess (4.0, 4.0, 4.0). 
 

      USE NEQNJ_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    N 

      PARAMETER  (N=3) 

! 

      INTEGER    K, NOUT 

      REAL       FNORM, X(N), XGUESS(N) 

      EXTERNAL   FCN, LSJAC 

!                                 Set values of initial guess 

!                                 XGUESS = (  4.0  4.0  4.0  ) 

! 

      DATA XGUESS/4.0, 4.0, 4.0/ 

! 

! 

      CALL UMACH (2, NOUT) 

!                                 Find the solution 

      CALL NEQNJ (FCN, LSJAC, X, XGUESS=XGUESS, FNORM=FNORM) 

!                                 Output 

      WRITE (NOUT,99999) (X(K),K=1,N), FNORM 

99999 FORMAT ('  The roots found are', /, '  X = (', 3F5.1, & 

            ')', /, '  with FNORM = ',F5.4, //) 

! 

      END 

!                                 User-supplied subroutine 

      SUBROUTINE FCN (X, F, N) 

      INTEGER    N 

      REAL       X(N), F(N) 

! 

      REAL       EXP, SIN 

      INTRINSIC  EXP, SIN 

! 

      F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0 

      F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0 

      F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0 

      RETURN 

      END 

!                                 User-supplied subroutine to 

!                                 compute Jacobian 

      SUBROUTINE LSJAC (N, X, FJAC) 

      INTEGER    N 

      REAL       X(N), FJAC(N,N) 

! 

      REAL       COS, EXP 

      INTRINSIC  COS, EXP 

! 
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      FJAC(1,1) = 1.0 + EXP(X(1)-1.0) 

      FJAC(1,2) = 2.0*(X(2)+X(3)) 

      FJAC(1,3) = 2.0*(X(2)+X(3)) 

      FJAC(2,1) = -EXP(X(2)-2.0)*(1.0/X(1)**2) 

      FJAC(2,2) = EXP(X(2)-2.0)*(1.0/X(1)) 

      FJAC(2,3) = 2.0*X(3) 

      FJAC(3,1) = 0.0 

      FJAC(3,2) = COS(X(2)-2.0) + 2.0*X(2) 

      FJAC(3,3) = 1.0 

      RETURN 

      END 

Output 
 

The roots found are 

X = (  1.0  2.0  3.0) 

with FNORM =.0000 

NEQBF 

 

Solves a system of nonlinear equations using factored secant update with a finite-difference 

approximation to the Jacobian. 

Required Arguments 

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The 

usage is  

CALL FCN (N, X, F), where 

N – Length of X and F.   (Input) 

X – The point at which the functions are evaluated.   (Input)  

X should not be changed by FCN. 

F – The computed function values at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 
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XGUESS — Vector of length N containing initial guess of the root.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the distance between two points. In the absence of 

other information, set all entries to 1.0. If internal scaling is desired for XSCALE, set 

IPARAM (6) to 1. 

Default: XSCALE = 1.0. 

FSCALE — Vector of length N containing the diagonal scaling matrix for the functions.   

(Input)  

FSCALE is used mainly in scaling the function residuals. In the absence of other 

information, set all entries to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  

Set IPARAM (1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 5.   (Input/Output)  

See Comment 4. 

FVEC — Vector of length N containing the values of the functions at the approximate 

solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL NEQBF (FCN, X [,…]) 

Specific: The specific interface names are S_NEQBF and D_NEQBF. 

FORTRAN 77 Interface 

Single: CALL NEQBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC) 

Double: The double precision name is DNEQBF. 

Description 

Routine NEQBF uses a secant algorithm to solve a system of nonlinear equations, i.e., 

F(x) = 0 

where F : R
n
  R

n
, and x  R

n
. 

From a current point, the algorithm uses a double dogleg method to solve the following 

subproblem approximately: 

   min
2n c cs

F x J x s



R  
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subject to || s ||2 ≤ c 

to get a direction sc, where F(xc) and J(xc) are the function values and the approximate Jacobian 

respectively evaluated at the current point xc. Then, the function values at the point xn = xc + sc are 

evaluated and used to decide whether the new point xn should be accepted. 

When the point xn is rejected, this routine reduces the trust region c and goes back to solve the 

subproblem again. This procedure is repeated until a better point is found. 

The algorithm terminates if the new point satisfies the stopping criterion. Otherwise, c is 

adjusted, and the approximate Jacobian is updated by Broyden‘s formula, 

  T
c c c

n c T
c c

y J s s
J J

s s


 

 

where Jn = J(xn), Jc = J(xc), and y = F (xn)  F (xc). The algorithm then continues using the new 

point as the current point, i.e. xc  xn. 

For more details, see Dennis and Schnabel (1983, Chapter 8). 

Since a finite-difference method is used to estimate the initial Jacobian, for single precision 

calculation, the Jacobian may be so incorrect that the algorithm terminates far from a root. In such 

cases, high precision arithmetic is recommended. Also, whenever the exact Jacobian can be easily 

provided, IMSL routine NEQBJ should be used instead. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of N2QBF/DN2QBF. The 

reference is: 

CALL N2QBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, 

RPARAM, X, FVEC, WK, LWK) 

The additional arguments are as follows: 

WK — A work vector of length LWK. On output WK contains the following 

information: 

 

The third N locations contain the last step taken. 

 

The fourth N locations contain the last Newton step. 

 

The final N
2
 locations contain an estimate of the Jacobian at the 

solution. 

LWK — Length of WK, which must be at least 2 * N
2
 + 11 * N.   (Input) 

2. Informational errors 

Type Code 
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3 1 The last global step failed to decrease the 2-norm of F(X) 

sufficiently; either the current point is close to a root of F(X) and no 

more accuracy is possible, or the secant approximation to the 

Jacobian is inaccurate, or the step tolerance is too large. 

3 3 The scaled distance between the last two steps is less than the step 

tolerance; the current point is probably an approximate root of F(X) 

(unless STEPTL is too large). 

3 4 Maximum number of iterations exceeded. 

3 5 Maximum number of function evaluations exceeded. 

3 7 Five consecutive steps of length STEPMX have been taken; either the 

2-norm of F(X) asymptotes from above to a finite value in some 

direction or the maximum allowable step size STEPMX is too small. 

3. The stopping criterion for NEQBF occurs when the scaled norm of the functions is less 

than the scaled function tolerance (RPARAM(1)). 

4. If the default parameters are desired for NEQBF, then set IPARAM(1) to zero and call 

routine NEQBF. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling NEQBF: 

CALL N4QBJ (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to N4QBJ will set IPARAM and RPARAM to their default values, so only 

nondefault values need to be set above. 

 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 

Default: not used in NEQBF. 
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IPARAM(6) = Internal variable scaling flag. 

If IPARAM(6) = 1, then the values of XSCALE are set internally. 

Default: 0. 

RPARAM — Real vector of length 5.  

RPARAM(1) = Scaled function tolerance. 

The scaled norm of the functions is computed as 

 max *i if fs
i  

 where fi is the i-th component of the function vector F, and fsi is the i-th 

component of FSCALE. 

Default: 

  

 where ɛ is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 

The scaled norm of the step between two points x and y is computed as 

 
max { }

max ,1/

i i

i i

x y

i x s



 

 where si is the i-th component of XSCALE. 

Default: ɛ 2/3
, where ɛ is the machine precision. 

RPARAM(3) = False convergence tolerance. 

Default: not used in NEQBF. 

RPARAM(4) = Maximum allowable step size. (STEPMX) 

 Default: 1000 * max(ɛ1, ɛ2), where  

 
2

1 1

n

i ii
s t


 

 

 ɛ2 = ||s|2, s = XSCALE, and t = XGUESS. 

RPARAM(5) = Size of initial trust region. 

Default: based on the initial scaled Cauchy step. 

If double precision is desired, then DN4QBJ is called and RPARAM is declared 

double precision. 
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5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The following 3  3 system of nonlinear equations: 
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is solved with the initial guess (4.0, 4.0, 4.0). 
 

      USE NEQBF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    N 

      PARAMETER  (N=3) 

! 

      INTEGER    K, NOUT 

      REAL       X(N), XGUESS(N) 

      EXTERNAL   FCN 

!                                 Set values of initial guess 

!                                 XGUESS = (  4.0  4.0  4.0 ) 

! 

      DATA XGUESS/3*4.0/ 

! 

!                                 Find the solution 

      CALL NEQBF (FCN, X, XGUESS=XGUESS) 

!                                 Output 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) (X(K),K=1,N) 

99999 FORMAT ('  The solution to the system is', /, '  X = (', 3F8.3, & 

            ')') 

! 

      END 

!                                 User-defined subroutine 

      SUBROUTINE FCN (N, X, F) 

      INTEGER    N 

      REAL       X(N), F(N) 

! 

      REAL       EXP, SIN 

      INTRINSIC  EXP, SIN 

! 

      F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0 

      F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0 

      F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0 

      RETURN 

      END 
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Output 
 

The solution to the system is 

X = (   1.000   2.000   3.000) 

NEQBJ 

 

Solves a system of nonlinear equations using factored secant update with a user-supplied Jacobian. 

Required Arguments 

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be solved. The 

usage is  

CALL FCN (N, X, F), where 

N — Length of X and F.   (Input) 

X — The point at which the functions are evaluated.   (Input) 

X should not be changed by FCN. 

F — The computed function values at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL 

JAC (N, X, FJAC, LDFJAC), where 

N — Length of X.   (Input) 

X — Vector of length N at which point the Jacobian is evaluated.   (Input) 

X should not be changed by JAC. 

FJAC – The computed N by N Jacobian at the point X.   (Output) 

LDFJAC — Leading dimension of FJAC.   (Input) 

JAC must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 
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XGUESS — Vector of length N containing initial guess of the root.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the distance between two points. In the absence of 

other information, set all entries to 1.0. If internal scaling is desired for XSCALE, set 

IPARAM(6) to 1. 

Default: XSCALE = 1.0. 

FSCALE — Vector of length N containing the diagonal scaling matrix for the functions.   

(Input)  

FSCALE is used mainly in scaling the function residuals. In the absence of other 

information, set all entries to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  

Set IPARAM (1) to zero for default values of IPARAM and RPARAM. 

See Comment 4. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 5.   (Input/Output)  

See Comment 4. 

FVEC — Vector of length N containing the values of the functions at the approximate 

solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL NEQBJ (FCN, JAC, X [,…]) 

Specific: The specific interface names are S_NEQBJ and D_NEQBJ. 

FORTRAN 77 Interface 

Single: CALL NEQBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, 
FVEC) 

Double: The double precision name is DNEQBJ. 

Description 

Routine NEQBJ uses a secant algorithm to solve a system of nonlinear equations, i. e., 

F (x) = 0 

where F : R
n
 R

n
, and x  R

n
. 

From a current point, the algorithm uses a double dogleg method to solve the following 

subproblem approximately: 

   
2

min
n c c

s

F x J x s



R  
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subject to ||s||2 ≤ c 

to get a direction sc, where F(xc) and J(xc) are the function values and the approximate Jacobian 

respectively evaluated at the current point xc. Then, the function values at the point xn = xc + sc are 

evaluated and used to decide whether the new point xn should be accepted. 

When the point xn is rejected, this routine reduces the trust region c and goes back to solve the 

subproblem again. This procedure is repeated until a better point is found. 

The algorithm terminates if the new point satisfies the stopping criterion. Otherwise, c is 

adjusted, and the approximate Jacobian is updated by Broyden‘s formula, 

  T
c c c

n c T
c c

y J s s
J J

s s


 

 

where Jn = J(xn), Jc = J(xc), and y = F (xn)  F (xc). The algorithm then continues using the new 

point as the current point, i.e. xc  xn. 

For more details, see Dennis and Schnabel (1983, Chapter 8). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of N2QBJ/DN2QBJ. The 

reference is: 

CALL N2QBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE, IPARAM, 

RPARAM, X, FVEC, WK, LWK) 

The additional arguments are as follows: 

WK — A work vector of length LWK. On output WK contains the following 

information: The third N locations contain the last step taken. The 

fourth N locations contain the last Newton step. The final N
2
 locations 

contain an estimate of the Jacobian at the solution. 

LWK — Length of WK, which must be at least 2 * N
2
 + 11 * N.   (Input) 

2. Informational errors 

Type Code 

3 1 The last global step failed to decrease the 2-norm of F(X) 

sufficiently; either the current point is close to a root of F(X) and no 

more accuracy is possible, or the secant approximation to the 

Jacobian is inaccurate, or the step tolerance is too large. 

3 3 The scaled distance between the last two steps is less than the step 

tolerance; the current point is probably an approximate root of F(X) 

(unless STEPTL is too large). 

3 4 Maximum number of iterations exceeded. 
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3 5 Maximum number of function evaluations exceeded. 

3 7 Five consecutive steps of length STEPMX have been taken; either the 

2-norm of F(X) asymptotes from above to a finite value in some 

direction or the maximum allowable stepsize STEPMX is too small. 

3. The stopping criterion for NEQBJ occurs when the scaled norm of the functions is less 

than the scaled function tolerance (RPARAM(1)). 

4. If the default parameters are desired for NEQBJ, then set IPARAM(1) to zero and call 

routine NEQBJ. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling NEQBJ: 

CALL N4QBJ (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to N4QBJ will set IPARAM and RPARAM to their default values, so only 

nondefault values need to be set above. 

 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 

Default: not used in NEQBJ. 

IPARAM(6) = Internal variable scaling flag. 

If IPARAM(6) = 1, then the values of XSCALE are set internally. 

Default: 0. 

RPARAM — Real vector of length 5. 

RPARAM(1) = Scaled function tolerance. 

The scaled norm of the functions is computed as 

 max *i if fs
i  
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 where fi is the i-th component of the function vector F, and fsi is the i-th 

component of FSCALE. 

Default: 

  

 where ɛ is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 

The scaled norm of the step between two points x and y is computed as 

 
max { }

max ,1/

i i

i i

x y

i x s



 

 where si is the i-th component of XSCALE. 

 Default: ɛ2/3
, where ɛ is the machine precision. 

RPARAM(3) = False convergence tolerance. 

Default: not used in NEQBJ. 

RPARAM(4) = Maximum allowable step size. (STEPMX) 

 Default: 1000 * max(ɛ1, ɛ2), where  

 
2

1 1

n

i ii
s t


 

 

 ɛ2 = ||s||2, s = XSCALE, and t = XGUESS. 

RPARAM(5) = Size of initial trust region. 

Default: based on the initial scaled Cauchy step. 

If double precision is desired, then DN4QBJ is called and RPARAM is declared double  

precision. 

5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The following 3  3 system of nonlinear equations 
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is solved with the initial guess (4.0, 4.0, 4.0). 
 

      USE NEQBJ_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    N 

      PARAMETER  (N=3) 

! 

      INTEGER    K, NOUT 

      REAL       X(N), XGUESS(N) 

      EXTERNAL   FCN, JAC 

!                                 Set values of initial guess 

!                                 XGUESS = (  4.0  4.0  4.0 ) 

! 

      DATA XGUESS/3*4.0/ 

!                                 Find the solution 

      CALL NEQBJ (FCN, JAC, X, XGUESS=XGUESS) 

!                                 Output 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) (X(K),K=1,N) 

99999 FORMAT ('  The solution to the system is', /, '  X = (', 3F8.3, & 

            ')') 

! 

      END 

!                                 User-defined subroutine 

      SUBROUTINE FCN (N, X, F) 

      INTEGER    N 

      REAL       X(N), F(N) 

! 

      REAL       EXP, SIN 

      INTRINSIC  EXP, SIN 

! 

      F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0 

      F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0 

      F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0 

      RETURN 

      END 

!                                 User-supplied subroutine to 

!                                 compute Jacobian 

      SUBROUTINE JAC (N, X, FJAC, LDFJAC) 

      INTEGER    N, LDFJAC 

      REAL       X(N), FJAC(LDFJAC,N) 

! 

      REAL       COS, EXP 

      INTRINSIC  COS, EXP 

! 

      FJAC(1,1) = 1.0 + EXP(X(1)-1.0) 

      FJAC(1,2) = 2.0*(X(2)+X(3)) 
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      FJAC(1,3) = 2.0*(X(2)+X(3)) 

      FJAC(2,1) = -EXP(X(2)-2.0)*(1.0/X(1)**2) 

      FJAC(2,2) = EXP(X(2)-2.0)*(1.0/X(1)) 

      FJAC(2,3) = 2.0*X(3) 

      FJAC(3,1) = 0.0 

      FJAC(3,2) = COS(X(2)-2.0) + 2.0*X(2) 

      FJAC(3,3) = 1.0 

      RETURN 

      END 

Output 
 

The solution to the system is 

X = (   1.000   2.000   3.000) 
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Chapter 8: Optimization 

Routines 

8.1. Unconstrained Minimization 

8.1.1 Univariate Function 
Using function values only .................................................... UVMIF 1362 
Using function and first derivative values ............................ UVMID 1365 
Nonsmooth function ............................................................ UVMGS 1369 

8.1.2 Multivariate Function 
Using finite-difference gradient .............................................UMINF 1372 
Using analytic gradient ........................................................ UMING 1377 
Using finite-difference Hessian ............................................ UMIDH 1384 
Using analytic Hessian ........................................................ UMIAH 1389 
Using conjugate gradient with finite-difference gradient ..... UMCGF 1395 
Using conjugate gradient with analytic gradient ................ UMCGG 1399 
Nonsmooth function ............................................................ UMPOL 1403 

8.1.3 Nonlinear Least Squares 
Using finite-difference Jacobian........................................... UNLSF 1407 
Using analytic Jacobian ........................................................UNLSJ 1413 

8.2. Minimization with Simple Bounds 
Using finite-difference gradient ........................................... BCONF 1420 
Using analytic gradient ....................................................... BCONG 1427 
Using finite-difference Hessian ........................................... BCODH 1434 
Using analytic Hessian ....................................................... BCOAH 1441 
Nonsmooth Function ............................................................ BCPOL 1448 
Nonlinear least squares using finite-difference Jacobian .... BCLSF 1452 
Nonlinear least squares using analytic Jacobian .................. BCLSJ 1459 
Nonlinear least squares problem subject to bounds............ BCNLS 1466 

8.3. Linearly Constrained Minimization 
Reads an MPS file containing a linear programming  
problem or a quadratic programming problem ............ READ_MPS 1475 
Deallocates the space allocated for the IMSL  

derived type s_MPS. ...................................................... MPS_FREE 1485 

Dense linear programming ........................................... DENSE_LP 1488 
Dense linear programming .................................................. DLPRS 1494 
Sparse linear programming ................................................. SLPRS 1497 
Solves a transportation problem ............................................ TRAN 1504 
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Quadratic programming ...................................................... QPROG 1506 
General objective function with finite-difference gradient ... LCONF 1510 
General objective function with analytic gradient ................ LCONG 1516 

8.4. Nonlinearly Constrained Minimization 
Using a sequential equality constrained QP method ........... NNLPF 1522 
Using a sequential equality constrained QP method .......... NNLPG 1528 

8.5. Service Routines 
Central-difference gradient ................................................. CDGRD 1536 
Forward-difference gradient ................................................ FDGRD 1538 
Forward-difference Hessian ................................................ FDHES 1541 
Forward-difference Hessian using analytic gradient ........... GDHES 1543 
Divided-finite difference Jacobian  ...................................... DDJAC 1546 
Forward-difference Jacobian ................................................ FDJAC 1555 
Check user-supplied gradient ............................................ CHGRD 1536 
Check user-supplied Hessian ............................................. CHHES 1561 
Check user-supplied Jacobian ............................................ CHJAC 1565 
Generate starting points ..................................................... GGUES 1569 

Usage Notes 

Unconstrained Minimization 

The unconstrained minimization problem can be stated as follows: 

 min
nx

f x
R  

where f : R
n
→ R is at least continuous. The routines for unconstrained minimization are grouped 

into three categories: univariate functions (UV***), multivariate functions (UM***), and nonlinear 

least squares (UNLS*). 

For the univariate function routines, it is assumed that the function is unimodal within the 

specified interval. Otherwise, only a local minimum can be expected. For further discussion on 

unimodality, see Brent (1973). 

A quasi-Newton method is used for the multivariate function routines UMINF and UMING, whereas 

UMIDH and UMIAH use a modified Newton algorithm. The routines UMCGF and UMCGG make use of 

a conjugate gradient approach, and UMPOL uses a polytope method. For more details on these 

algorithms, see the documentation for the corresponding routines. 

The nonlinear least squares routines use a modified Levenberg-Marquardt algorithm. If the 

nonlinear least squares problem is a nonlinear data-fitting problem, then software that is designed 

to deliver better statistical output may be useful; see IMSL (1991). 

These routines are designed to find only a local minimum point. However, a function may have 

many local minima. It is often possible to obtain a better local solution by trying different initial 

points and intervals. 
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High precision arithmetic is recommended for the routines that use only function values. Also it is 

advised that the derivative-checking routines CH*** be used to ensure the accuracy of the user-

supplied derivative evaluation subroutines. 

Minimization with Simple Bounds 

The minimization with simple bounds problem can be stated as follows: 

 min
nx

f x
R  

subject to , 1, 2, ,i i il x u for i n    

where f : R
n
→ R, and all the variables are not necessarily bounded. 

The routines BCO** use the same algorithms as the routines UMI**, and the routines BCLS* are 

the corresponding routines of UNLS*. The only difference is that an active set strategy is used to 

ensure that each variable stays within its bounds. The routine BCPOL uses a function comparison 

method similar to the one used by UMPOL. Convergence for these polytope methods is not 

guaranteed; therefore, these routines should be used as a last alternative. 

Linearly Constrained Minimization 

The linearly constrained minimization problem can be stated as follows: 

 min
nx

f x
R  

subject to Ax b  

where f : R
n
→ R, A is an m  n coefficient matrix, and b is a vector of length m. If f(x) is linear, 

then the problem is a linear programming problem; if f(x) is quadratic, the problem is a quadratic 

programming problem. 

The routine DLPRS uses an active set strategy to solve small- to medium-sized linear programming 

problems. No sparsity is assumed since the coefficients are stored in full matrix form. SLPRS uses 

the revised simplex method to solve large linear programming problems, which have sparse 

constraints matrices. TRAN solves a transportation problem, which is a very sparse linear 

programming application. 

QPROG is designed to solve convex quadratic programming problems using a dual quadratic 

programming algorithm. If the given Hessian is not positive definite, then QPROG modifies it to be 

positive definite. In this case, output should be interpreted with care. 

The routines LCONF and LCONG use an iterative method to solve the linearly constrained problem 

with a general objective function. For a detailed description of the algorithm, see Powell (1988, 

1989). 

Nonlinearly Constrained Minimization 

The nonlinearly constrained minimization problem can be stated as follows: 

 min
nx

f x
R  
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1

1 1

subject to 0, 1, 2, ,

0, 1, ,

i

i

g for i m

g for i m m

x

x

 

  
 

where f : R
n
→ R and gi : R→ R, for i = 1, 2, …, m 

The routines NNLPF and NNLPG use a sequential equality constrained quadratic programming 

method. A more complete discussion of this algorithm can be found in the documentation. 

Selection of Routines 

The following general guidelines are provided to aid in the selection of the appropriate routine. 

Unconstrained Minimization 

1. For the univariate case, use UVMID when the gradient is available, and use UVMIF when 

it is not. If discontinuities exist, then use UVMGS. 

2. For the multivariate case, use UMCG* when storage is a problem, and use UMPOL when 

the function is nonsmooth. Otherwise, use UMI** depending on the availability of the 

gradient and the Hessian. 

3. For least squares problems, use UNLSJ when the Jacobian is available, and use UNLSF 

when it is not. 

Minimization with Simple Bounds 

1. Use BCONF when only function values are available. When first derivatives are 

available, use either BCONG or BCODH. If first and second derivatives are available, then 

use BCOAH. 

2. For least squares, use BCLSF or BCLSJ depending on the availability of the Jacobian. 

3. Use BCPOL for nonsmooth functions that could not be solved satisfactorily by the other 

routines. 
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The following charts provide a quick reference to routines in this chapter: 

nonsmooth

UMCGF no derivat ive large-size

least  squaresno Jacobian

no derivat ive

nonsmooth

UNLSF

UVMSG

UVMIF

UMCGG

UNLSJ

UMPOL

UMINF

UMING

UMIDH

UVMID UMIAH

no first

derivat ive

no second

problem

derivative

UNCONSTRAINED

MINIMIZATION

univariate mult ivariate

smooth
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UVMIF 
Finds the minimum point of a smooth function of a single variable using only function 

evaluations. 

Required Arguments 

F — User-supplied function to compute the value of the function to be minimized. The form 

is 

F(X), where 
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X – The point at which the function is evaluated.   (Input)  

X should not be changed by F. 

F – The computed function value at the point X.   (Output) 

 F must be declared EXTERNAL in the calling program. 

XGUESS — An initial guess of the minimum point of F.   (Input) 

BOUND — A positive number that limits the amount by which X may be changed from its 

initial value.   (Input) 

X — The point at which a minimum value of F is found.   (Output) 

Optional Arguments 

STEP — An order of magnitude estimate of the required change in X.   (Input) 

Default: STEP = 1.0. 

XACC — The required absolute accuracy in the final value of X.   (Input)  

On a normal return there are points on either side of X within a distance XACC at which 

F is no less than F(X). 

Default: XACC = 1.e-4.  

MAXFN — Maximum number of function evaluations allowed.   (Input) 

Default: MAXFN = 1000. 

FORTRAN 90 Interface 

Generic: CALL UVMIF (F, XGUESS, BOUND, X [,…]) 

Specific: The specific interface names are S_UVMIF and D_UVMIF. 

FORTRAN 77 Interface 

Single: CALL UVMIF (F, XGUESS, STEP, BOUND, XACC, MAXFN, X) 

Double: The double precision name is DUVMIF. 

Description 

The routine UVMIF uses a safeguarded quadratic interpolation method to find a minimum point of 

a univariate function. Both the code and the underlying algorithm are based on the routine ZXLSF 

written by M.J.D. Powell at the University of Cambridge. 

The routine UVMIF finds the least value of a univariate function, f, that is specified by the function 

subroutine F. Other required data include an initial estimate of the solution, XGUESS , and a 

positive number BOUND. Let x0 = XGUESS and b = BOUND, then x is restricted to the interval  

[x0 −  b, x0 + b]. Usually, the algorithm begins the search by moving from x0 to x = x0 + s, where 
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 s = STEP is also provided by the user and may be positive or negative. The first two function 

evaluations indicate the direction to the minimum point, and the search strides out along this 

direction until a bracket on a minimum point is found or until x reaches one of the bounds x0 ± b. 

During this stage, the step length increases by a factor of between two and nine per function 

evaluation; the factor depends on the position of the minimum point that is predicted by quadratic 

interpolation of the three most recent function values. 

When an interval containing a solution has been found, we will have three points, x1, x2, and x3, 

with x1< x2 < x0 and f (x2) ≤ f (x1) and f (x2) ≤ f (x3). There are three main ingredients in the 

technique for choosing the new x from these three points. They are (i) the estimate of the 

minimum point that is given by quadratic interpolation of the three function values, (ii) a tolerance 

parameter ɛ, that depends on the closeness of f to a quadratic, and (iii) whether x2 is near the center 

of the range between x1 and x3 or is relatively close to an end of this range. In outline, the new 

value of x is as near as possible to the predicted minimum point, subject to being at least ɛ from x2, 

and subject to being in the longer interval between x1 and x2 or x2 and x3 when x2 is particularly 

close to x1 or x3. There is some elaboration, however, when the distance between these points is 

close to the required accuracy; when the distance is close to the machine precision; or when ɛ is 

relatively large. 

The algorithm is intended to provide fast convergence when f has a positive and continuous 

second derivative at the minimum and to avoid gross inefficiencies in pathological cases, such as  

f (x) = x + 1.001|x| 

The algorithm can make ɛ large automatically in the pathological cases. In this case, it is usual for 

a new value of x to be at the midpoint of the longer interval that is adjacent to the least calculated 

function value. The midpoint strategy is used frequently when changes to f are dominated by 

computer rounding errors, which will almost certainly happen if the user requests an accuracy that 

is less than the square root of the machine precision. In such cases, the routine claims to have 

achieved the required accuracy if it knows that there is a local minimum point within distance  of 

x, where  = XACC, even though the rounding errors in f may cause the existence of other local 

minimum points nearby. This difficulty is inevitable in minimization routines that use only 

function values, so high precision arithmetic is recommended. 

Comments 

Informational errors 

Type Code 

3 1 Computer rounding errors prevent further refinement of X. 

3 2 The final value of X is at a bound. The minimum is probably beyond 

the bound. 

4 3 The number of function evaluations has exceeded MAXFN. 

Example 

A minimum point of e
x
  5x is found. 
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      USE UVMIF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                  Declare variables 

      INTEGER    MAXFN, NOUT 

      REAL       BOUND, F, FX, STEP, X, XACC, XGUESS 

      EXTERNAL   F 

!                                  Initialize variables 

      XGUESS = 0.0 

      XACC   = 0.001 

      BOUND  = 100.0 

      STEP   = 0.1 

      MAXFN  = 50 

! 

!                                 Find minimum for F = EXP(X) - 5X 

      CALL UVMIF (F, XGUESS, BOUND, X, STEP=STEP, XACC=XACC, MAXFN=MAXFN) 

      FX = F(X) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, FX 

! 

99999 FORMAT (‘   The minimum is at ‘, 7X, F7.3, //, ‘   The function ‘ & 

            , ‘value is ‘, F7.3) 

! 

      END 

!                                 Real function: F = EXP(X) - 5.0*X 

      REAL FUNCTION F (X) 

      REAL       X 

! 

      REAL       EXP 

      INTRINSIC  EXP 

! 

      F = EXP(X) - 5.0E0*X 

! 

      RETURN 

      END 

Output 
 

The minimum is at          1.609 

 

The function value is  -3.047 

UVMID 
Finds the minimum point of a smooth function of a single variable using both function evaluations 

and first derivative evaluations. 

Required Arguments 

F — User-supplied function to define the function to be minimized. The form is 

F(X), where 

X — The point at which the function is to be evaluated.   (Input) 
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F — The computed value of the function at X.   (Output) 

 F must be declared EXTERNAL in the calling program. 

G — User-supplied function to compute the derivative of the function. The form is 

G(X), where 

X — The point at which the derivative is to be computed.   (Input) 

G — The computed value of the derivative at X.   (Output) 

 G must be declared EXTERNAL in the calling program. 

A — A is the lower endpoint of the interval in which the minimum point of F is to be located.   

(Input) 

B — B is the upper endpoint of the interval in which the minimum point of F is to be located.   

(Input) 

X — The point at which a minimum value of F is found.   (Output) 

Optional Arguments 

XGUESS — An initial guess of the minimum point of F.   (Input) 

Default: XGUESS = (a + b) / 2.0. 

ERRREL — The required relative accuracy in the final value of X.   (Input)  

This is the first stopping criterion. On a normal return, the solution X is in an interval 

that contains a local minimum and is less than or equal to MAX(1.0, ABS(X)) * ERRREL. 

When the given ERRREL is less than machine epsilon, SQRT(machine epsilon) is used 

as ERRREL. 

Default: ERRREL = 1.e-4. 

GTOL — The derivative tolerance used to decide if the current point is a local minimum.   

(Input)  

This is the second stopping criterion. X is returned as a solution when GX is less than or 

equal to GTOL. GTOL should be nonnegative, otherwise zero would be used. 

Default: GTOL = 1.e-4. 

MAXFN — Maximum number of function evaluations allowed.   (Input) 

Default: MAXFN = 1000. 

FX — The function value at point X.   (Output) 

GX — The derivative value at point X.   (Output) 

FORTRAN 90 Interface 

Generic: CALL UVMID (F, G, A, B, X [,…]) 
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Specific: The specific interface names are S_UVMID and D_UVMID. 

FORTRAN 77 Interface 

Single: CALL UVMID (F, G, XGUESS, ERRREL, GTOL, MAXFN, A, B, X, FX, GX) 

Double: The double precision name is DUVMID. 

Description 

The routine UVMID uses a descent method with either the secant method or cubic interpolation to 

find a minimum point of a univariate function. It starts with an initial guess and two endpoints. If 

any of the three points is a local minimum point and has least function value, the routine 

terminates with a solution. Otherwise, the point with least function value will be used as the 

starting point. 

From the starting point, say xc, the function value fc = f (xc), the derivative value gc = g(xc), and a 

new point xn defined by xn = xc  gc are computed. The function fn = f(xn), and the derivative  

gn = g(xn) are then evaluated. If either fn ≥ fc or gn has the opposite sign of gc, then there exists a 

minimum point between xc and xn; and an initial interval is obtained. Otherwise, since xc is kept as 

the point that has lowest function value, an interchange between xn and xc is performed. The secant 

method is then used to get a new point 

( )n c
s c c

n c

g g
x x g

x x


 


 

Let xn ← xs and repeat this process until an interval containing a minimum is found or one of the 

convergence criteria is satisfied. The convergence criteria are as follows:  

Criterion 1: 

c n cx x  
 

Criterion 2: 

c gg 
 

where ɛc = max{1.0, |xc|}ɛ, ɛ is a relative error tolerance and ɛg is a gradient tolerance.   

When convergence is not achieved, a cubic interpolation is performed to obtain a new point. 

Function and derivative are then evaluated at that point; and accordingly, a smaller interval that 

contains a minimum point is chosen. A safeguarded method is used to ensure that the interval 

reduces by at least a fraction of the previous interval. Another cubic interpolation is then 

performed, and this procedure is repeated until one of the stopping criteria is met. 

Comments 

Informational errors 

Type Code  

3 1 The final value of X is at the lower bound. The minimum is probably 

beyond the bound. 
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3 2 The final value of X is at the upper bound. The minimum is probably 

beyond the bound. 

4 3 The maximum number of function evaluations has been exceeded. 

Example 

A minimum point of e
x
  5x is found. 

 

      USE UVMID_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                  Declare variables 

      INTEGER    MAXFN, NOUT 

      REAL       A, B, ERRREL, F, FX, G, GTOL, GX, X, XGUESS, FTOL 

      EXTERNAL   F, G 

!                                  Initialize variables 

      XGUESS = 0.0 

!                                 Set ERRREL to zero in order 

!                                 to use SQRT(machine epsilon) 

!                                 as relative error 

      ERRREL = 0.0 

      GTOL   = 0.0 

      A      = -10.0 

      B      = 10.0 

      MAXFN  = 50 

! 

!                                 Find minimum for F = EXP(X) - 5X 

      CALL UVMID (F, G, A, B, X, XGUESS=XGUESS, ERRREL=ERRREL,  & 

                 GTOL=FTOL, MAXFN=MAXFN, FX=FX, GX=GX) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, FX, GX 

! 

99999 FORMAT ('   The minimum is at ', 7X, F7.3, //, '   The function ' & 

            , 'value is ', F7.3, //, '   The derivative is ', F7.3) 

! 

      END 

!                                 Real function: F = EXP(X) - 5.0*X 

      REAL FUNCTION F (X) 

      REAL       X 

! 

      REAL       EXP 

      INTRINSIC  EXP 

! 

      F = EXP(X) - 5.0E0*X 

! 

      RETURN 

      END 

! 

      REAL FUNCTION G (X) 

      REAL       X 

! 

      REAL       EXP 
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      INTRINSIC  EXP 

! 

      G = EXP(X) - 5.0E0 

      RETURN 

      END 

Output 
 

The minimum is at       1.609 

 

The function value is  -3.047 

 

The derivative is  -0.001 

UVMGS 
Finds the minimum point of a nonsmooth function of a single variable. 

Required Arguments 

F — User-supplied function to compute the value of the function to be minimized. The form 

is 

F(X), where 

X – The point at which the function is evaluated.   (Input) 

X should not be changed by F. 

F – The computed function value at the point X.   (Output) 

 F must be declared EXTERNAL in the calling program. 

A — On input, A is the lower endpoint of the interval in which the minimum of F is to be 

located. On output, A is the lower endpoint of the interval in which the minimum of F 

is located.   (Input/Output) 

B — On input, B is the upper endpoint of the interval in which the maximum of F is to be 

located. On output, B is the upper endpoint of the interval in which the minimum of F 

is located.   (Input/Output) 

XMIN — The approximate minimum point of the function F on the original interval (A, B).   

(Output) 

Optional Arguments 

TOL — The allowable length of the final subinterval containing the minimum point.   (Input) 

Default: TOL = 1.e-4. 

FORTRAN 90 Interface 

Generic: CALL UVMGS (F, A, B, XMIN [,…]) 
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Specific: The specific interface names are S_UVMGS and D_UVMGS. 

FORTRAN 77 Interface 

Single: CALL UVMGS (F, A, B, TOL, XMIN) 

Double: The double precision name is DUVMGS. 

Description 

The routine UVMGS uses the golden section search technique to compute to the desired accuracy 

the independent variable value that minimizes a unimodal function of one independent variable, 

where a known finite interval contains the minimum. 

Let τ = TOL. The number of iterations required to compute the minimizing value to accuracy τ is 

the greatest integer less than or equal to 

  
 

ln /
1

ln 1

b a

c

 



 

where a and b define the interval and  

 3 5 / 2c  
 

The first two test points are v1 and v2 that are defined as 

v1 = a + c(b  a), and v2 = b  c(b  a) 

If f(v1) < f(v2), then the minimizing value is in the interval (a, v2). In this case, b ← v2, v2 ← v1 , 

and v1 ← a + c(b  a). If f(v1) ≥ f(v2), the minimizing value is in (v1, b). In this case, a ← v1, 

 v1 ← v2, and v2← b  c(b  a). 

The algorithm continues in an analogous manner where only one new test point is computed at 

each step. This process continues until the desired accuracy τ is achieved. XMIN is set to the point 

producing the minimum value for the current iteration. 

Mathematically, the algorithm always produces the minimizing value to the desired accuracy; 

however, numerical problems may be encountered. If f is too flat in part of the region of interest, 

the function may appear to be constant to the computer in that region. Error code 2 indicates that 

this problem has occurred. The user may rectify the problem by relaxing the requirement on τ, 

modifying (scaling, etc.) the form of f or executing the program in a higher precision. 

Comments 

1. Informational errors 

Type Code 

3  TOL is too small to be satisfied. 

4 2 Due to rounding errors F does not appear to be unimodal. 
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2. On exit from UVMGS without any error messages, the following conditions hold:  

 (B-A) ≤ TOL. 

A ≤ XMIN and XMIN ≤ B 

F(XMIN) ≤ F(A) and F(XMIN) ≤ F(B) 

3. On exit from UVMGS with error code 2, the following conditions hold: 

A ≤ XMIN and XMIN ≤ B 

F(XMIN) ≥ F(A) and F(XMIN) ≥ F(B) (only one equality can hold). 

Further analysis of the function F is necessary in order to determine whether it is not 

unimodal in the mathematical sense or whether it appears to be not unimodal to the 

routine due to rounding errors in which case the A, B, and XMIN returned may be 

acceptable. 

Example 

A minimum point of 3x
2
  2x + 4 is found. 

 

      USE UVMGS_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Specification of variables 

      INTEGER    NOUT 

      REAL       A, B, FCN, FMIN, TOL, XMIN 

      EXTERNAL   FCN 

!                                 Initialize variables 

      A   = 0.0E0 

      B   = 5.0E0 

      TOL = 1.0E-3 

!                                 Minimize FCN 

      CALL UVMGS (FCN, A, B, XMIN, TOL=TOL) 

      FMIN = FCN(XMIN) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) XMIN, FMIN, A, B 

99999 FORMAT ('   The minimum is at ', F5.3, //, '   The ', & 

            'function value is ', F5.3, //, '   The final ', & 

            'interval is (', F6.4, ',', F6.4, ')', /) 

! 

      END 

! 

!                                 REAL FUNCTION: F = 3*X**2 - 2*X + 4 

      REAL FUNCTION FCN (X) 

      REAL       X 

! 

      FCN = 3.0E0*X*X - 2.0E0*X + 4.0E0 

! 

      RETURN 

      END 

Output 
 

The minimum is at 0.333 

 



     

     
 

1372  Chapter 8: Optimization IMSL MATH LIBRARY  

     

     

 

The function value is 3.667 

 

The final interval is (0.3331,0.3340) 

UMINF 
Minimizes a function of N variables using a quasi-Newton method and a finite-difference gradient. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing an initial guess of the computed solution.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the gradient and the distance between two points. In 

the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  

FSCALE is used mainly in scaling the gradient. In the absence of other information, set 

FSCALE to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.(Input/Output)  

See Comment 4. 
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FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL UMINF (FCN, X [,…]) 

Specific: The specific interface names are S_UMINF and D_UMINF. 

FORTRAN 77 Interface 

Single: CALL UMINF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, 
FVALUE) 

Double: The double precision name is DUMINF. 

Description 

The routine UMINF uses a quasi-Newton method to find the minimum of a function f(x) of n 

variables. Only function values are required. The problem is stated as follows: 

 min
nx

f x
R  

Given a starting point xc, the search direction is computed according to the formula 

d = B-1
 gc 

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at xc. 

A line search is then used to find a new point 

xn = xc + λd, λ > 0 

such that 

f(xn) ≤ f(xc) + αg
T
 d, α ∈ (0, 0.5) 

Finally, the optimality condition ||g(x)|| = ɛ is checked where ɛ is a gradient tolerance. 

When optimality is not achieved, B is updated according to the BFGS formula 

T T

T T

Bss B yy
B B

s Bs y s
  

 

where s = xn  xc and y = gn  gc. Another search direction is then computed to begin the next 

iteration. For more details, see Dennis and Schnabel (1983, Appendix A). 

Since a finite-difference method is used to estimate the gradient, for some single precision 

calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a 

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 

exact gradient can be easily provided, IMSL routine UMING should be used instead. 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of U2INF/DU2INF. The 

reference is: 

CALL U2INF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, 

FVALUE, WK) 

The additional argument is: 

WK — Work vector of length N(N + 8). WK contains the following information on 

output: The second N locations contain the last step taken. The third N locations 

contain the last Newton step. The fourth N locations contain an estimate of the 

gradient at the solution. The final N
2
 locations contain the Cholesky 

factorization of a BFGS approximation to the Hessian at the solution. 

2. Informational errors 

Type Code 

4 2 The iterates appear to be converging to a noncritical point. 

4 3 Maximum number of iterations exceeded. 

4 4 Maximum number of function evaluations exceeded. 

4 5 Maximum number of gradient evaluations exceeded. 

4 6 Five consecutive steps have been taken with the maximum step 

length. 

2 7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 

progress and is not near a solution, or STEPTL is too big. 

3 8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for UMINF occurs when the infinity norm of the scaled 

gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping 

criterion for UMINF occurs when the scaled distance between the last two steps is less 

than the step tolerance (RPARAM(2)). 

4. If the default parameters are desired for UMINF, then set IPARAM(1) to zero and call the 

routine UMINF. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling UMINF: 

CALL U4INF (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

 Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 

nondefault values need to be set above. 
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 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 

Default: 400. 

IPARAM(6) = Hessian initialization parameter. 

If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; 

otherwise, it is initialized to a diagonal matrix containing  

   2max , s if t f s
 

 on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE. 

Default: 0. 

IPARAM(7) = Maximum number of Hessian evaluations. 

Default: Not used in UMINF. 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 

The i-th component of the scaled gradient at 

x is calculated as 

 
  

*max ,1/

max ,

i i i

s

g x s

f x f
 

 where g = ∇ f (x), s = XSCALE, and fs = FSCALE. 

Default:  

3, 
 

 in double where ɛ is the machine precision. 
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RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is 

computed as 

 max ,1/

i i

i i

x y

x s



 

 where s = XSCALE. 

Default: ɛ2/3
 where ɛ is the machine precision. 

RPARAM(3) = Relative function tolerance. 

Default: Not used in UMINF. 

RPARAM(4) = Absolute function tolerance 

Default: Not used in UMINF. 

RPARAM(5) = False convergence tolerance. 

Default: Not used in UMINF. 

RPARAM(6) = Maximum allowable step size. 

Default: 1000 max(ɛ1, ɛ2) where 

 
2

1 2 21
XSCALE XGUESS, , ,  and 

n

i ii
s t s s t 


   

 

RPARAM(7) = Size of initial trust region radius. 

Default: Not used in UMINF. 

 If double precision is required, then DU4INF is called, and RPARAM is declared double 

precision. 

5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The function  

     
2 22

2 1 1100 1f x x x x   
 

is minimized. 
 

      USE UMINF_INT 

      USE U4INF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 
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      INTEGER    N 

      PARAMETER  (N=2) 

! 

      INTEGER    IPARAM(7), L, NOUT 

      REAL       F, RPARAM(7), X(N), XGUESS(N), & 

                XSCALE(N) 

      EXTERNAL   ROSBRK 

! 

      DATA XGUESS/-1.2E0, 1.0E0/ 

! 

!                                 Relax gradient tolerance stopping 

!                                 criterion 

      CALL U4INF (IPARAM, RPARAM) 

      RPARAM(1) = 10.0E0*RPARAM(1) 

!                                 Minimize Rosenbrock function using 

!                                 initial guesses of -1.2 and 1.0 

      CALL UMINF (ROSBRK, X, XGUESS=XGUESS, IPARAM=IPARAM, RPARAM=RPARAM, & 

            FVALUE=F) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 

! 

99999 FORMAT ('  The solution is ', 6X, 2F8.3, //, '  The function ', & 

            'value is ', F8.3, //, '  The number of iterations is ', & 

            10X, I3, /, '  The number of function evaluations is ', & 

            I3, /, '  The number of gradient evaluations is ', I3) 

! 

      END 

! 

      SUBROUTINE ROSBRK (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 

! 

      RETURN 

      END 

Output 
 

The solution is          1.000   1.000 

 

The function value is    0.000 

 

The number of iterations is            15 

The number of function evaluations is  40 

The number of gradient evaluations is  19 

UMING 
Minimizes a function of N variables using a quasi-Newton method and a user-supplied gradient. 
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Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input)  

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is  

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by GRAD . 

G – The gradient evaluated at the point X.   (Output) 

 GRAD must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the gradient and the distance between two points. In 

the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  

FSCALE is used mainly in scaling the gradient. In the absence of other information, set 

FSCALE to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM = 0. 
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RPARAM — Parameter vector of length 7.   (Input/Output)  

See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL UMING (FCN, GRAD, X [,…]) 

Specific: The specific interface names are S_UMING and D_UMING. 

FORTRAN 77 Interface 

Single: CALL UMING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, 
FVALUE) 

Double: The double precision name is DUMING. 

Description 

The routine UMING uses a quasi-Newton method to find the minimum of a function f(x) of n 

variables. Function values and first derivatives are required. The problem is stated as follows: 

 min
nx

f x
R  

Given a starting point xc, the search direction is computed according to the formula 

d = B-1
 gc 

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at xc. 

A line search is then used to find a new point 

xn = xc + λd, λ > 0 

such that 

f(xn) ≤ f(xc) + αg
T
 d, α ∈ (0, 0.5) 

Finally, the optimality condition ||g(x)|| = ɛ is checked where ɛ is a gradient tolerance. 

When optimality is not achieved, B is updated according to the BFGS formula 

T T

T T

Bss B yy
B B

s Bs y s
  

 

where s = xn  xc and y = gn  gc. Another search direction is then computed to begin the next 

iteration. For more details, see Dennis and Schnabel (1983, Appendix A). 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of U2ING/DU2ING. The 

reference is: 

CALL U2ING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM, 

RPARAM, X, FVALUE, WK) 

The additional argument is 

WK — Work vector of length N * (N + 8). WK contains the following 

information on output: The second N locations contain the last step 

taken. The third N locations contain the last Newton step. The fourth N 

locations contain an estimate of the gradient at the solution. The final 

N
2
 locations contain the Cholesky factorization of a BFGS 

approximation to the Hessian at the solution. 

2. Informational errors 

Type Code 

4 2 The iterates appear to be converging to a noncritical point. 

4 3 Maximum number of iterations exceeded. 

4 4 Maximum number of function evaluations exceeded. 

4 5 Maximum number of gradient evaluations exceeded. 

4 6 Five consecutive steps have been taken with the maximum step 

length. 

2 7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 

progress and is not near a solution, or STEPTL is too big. 

3 8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for UMING occurs when the infinity norm of the scaled 

gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping 

criterion for UMING occurs when the scaled distance between the last two steps is less 

than the step tolerance (RPARAM(2)). 

4. If the default parameters are desired for UMING, then set IPARAM(1) to zero and call 

routine UMING. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling UMING: 

 CALL U4INF (IPARAM, RPARAM) 

Set nondefault values for desired IPARAM, RPARAM elements. 
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Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 

nondefault values need to be set above. 

 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 

Default: 400. 

IPARAM(6) = Hessian initialization parameter 

If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; 

otherwise, it is initialized to a diagonal matrix containing  

   2max , s if t f s
 

 on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE. 

Default: 0. 

IPARAM(7) = Maximum number of Hessian evaluations. 

Default: Not used in UMING. 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 

The i-th component of the scaled gradient at 

x is calculated as 

 
  

*max ,1/

max ,

i i i

s

g x s

f x f
 

 where g = ∇f (x), s = XSCALE, and fs = FSCALE. 

Default:  

3, 
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 in double where ɛ is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is 

computed as 

 max ,1/

i i

i i

x y

x s



 

 where s = XSCALE. 

Default: ɛ2/3
 where ɛ is the machine precision. 

RPARAM(3) = Relative function tolerance. 

Default: Not used in UMING. 

RPARAM(4) = Absolute function tolerance. 

Default: Not used in UMING. 

RPARAM(5) = False convergence tolerance. 

Default: Not used in UMING. 

RPARAM(6) = Maximum allowable step size. 

Default: 1000 max(ɛ1, ɛ2) where 

 
2

1 1

n

i ii
s t


 

 

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 

Default: Not used in UMING. 

 If double precision is required, then DU4INF is called, and RPARAM is declared 

double precision. 

5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The function  

     
2 22

2 1 1100 1f x x x x   
 

is minimized. Default values for parameters are used. 
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      USE UMING_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=2) 

! 

      INTEGER    IPARAM(7), L, NOUT 

      REAL       F, X(N), XGUESS(N) 

      EXTERNAL   ROSBRK, ROSGRD 

! 

      DATA XGUESS/-1.2E0, 1.0E0/ 

! 

      IPARAM(1) = 0 

!                                 Minimize Rosenbrock function using 

!                                 initial guesses of -1.2 and 1.0 

      CALL UMING (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 

! 

99999 FORMAT ('  The solution is ', 6X, 2F8.3, //, '  The function ', & 

            'value is ', F8.3, //, '  The number of iterations is ', & 

            10X, I3, /, '  The number of function evaluations is ', & 

            I3, /, '  The number of gradient evaluations is ', I3) 

! 

      END 

! 

      SUBROUTINE ROSBRK (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 

! 

      RETURN 

      END 

! 

      SUBROUTINE ROSGRD (N, X, G) 

      INTEGER    N 

      REAL       X(N), G(N) 

! 

      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 

      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 

! 

      RETURN 

      END 

Output 
 

The solution is          1.000   1.000 

 

The function value is    0.000 

 

The number of iterations is            18 

The number of function evaluations is  31 

The number of gradient evaluations is  22 
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UMIDH 
Minimizes a function of N variables using a modified Newton method and a finite-difference 

Hessian. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is  

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – The point at which the gradient is evaluated.   (Input)  

X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

 GRAD must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing initial guess.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the gradient and the distance between two points. In 

the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  

FSCALE is used mainly in scaling the gradient. In the absence of other information, set 



 

 

IMSL MATH LIBRARY Chapter 8: Optimization  1385 

     

     

 

FSCALE to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  

See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL UMIDH (FCN, GRAD, X [,…]) 

Specific: The specific interface names are S_UMIDH and D_UMIDH. 

FORTRAN 77 Interface 

Single: CALL UMIDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, 
FVALUE) 

Double: The double precision name is DUMIDH. 

Description 

The routine UMIDH uses a modified Newton method to find the minimum of a function f (x) of n 

variables. First derivatives must be provided by the user. The algorithm computes an optimal 

locally constrained step (Gay 1981) with a trust region restriction on the step. It handles the case 

that the Hessian is indefinite and provides a way to deal with negative curvature. For more details, 

see Dennis and Schnabel (1983, Appendix A) and Gay (1983). 

Since a finite-difference method is used to estimate the Hessian for some single precision 

calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a 

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 

exact Hessian can be easily provided, IMSL routine UMIAH should be used instead. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of U2IDH/DU2IDH. The 

reference is: 

CALL U2IDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM, 

RPARAM, X, FVALUE, WK) 

The additional argument is: 

WK — Work vector of length N * (N + 9). WK contains the following 

information on output: The second N locations contain the last step 
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taken. The third N locations contain the last Newton step. The fourth N 

locations contain an estimate of the gradient at the solution. The final 

N
2
 locations contain the Hessian at the approximate solution. 

2. Informational errors 

Type Code 

3 1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 

4 2 The iterates appear to be converging to a noncritical point. 

4 3 Maximum number of iterations exceeded. 

4 4 Maximum number of function evaluations exceeded. 

4 5 Maximum number of gradient evaluations exceeded. 

4 6 Five consecutive steps have been taken with the maximum step 

length. 

2 7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 

progress and is not near a solution, or STEPTL is too big. 

4 7 Maximum number of Hessian evaluations exceeded. 

3 8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for UMIDH occurs when the norm of the gradient is less than 

the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIDH 

occurs when the scaled distance between the last two steps is less than the step 

tolerance (RPARAM(2)). 

4. If the default parameters are desired for UMIDH, then set IPARAM(1) to zero and call 

routine UMIDH. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling UMIDH: 

CALL U4INF (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so 

only nondefault values need to be set above. 

 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 

IPARAM(1) = Initialization flag. 
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IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 

Default: 400. 

IPARAM(6) = Hessian initialization parameter 

Default: Not used in UMIDH. 

IPARAM(7) = Maximum number of Hessian evaluations. 

Default:100 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as 

 
  

*max ,1/

max ,

i i i

s

g x s

f x f
 

 where g = ∇f (x), s = XSCALE, and fs = FSCALE. 

Default:  

3, 
 

 in double where ɛ is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is 

computed as 

 max ,1/

i i

i i

x y

x s



 

 where s = XSCALE. 

Default: ɛ2/3
 where ɛ is the machine precision. 

RPARAM(3) = Relative function tolerance. 

Default: max(10-10
, ɛ2/3

), max(10-20
, ɛ2/3

) in double where ɛ is the 

machine precision. 
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RPARAM(4) = Absolute function tolerance. 

Default: Not used in UMIDH. 

RPARAM(5) = False convergence tolerance. 

Default: 100ɛ where ɛ is the machine precision. 

RPARAM(6) = Maximum allowable step size. 

Default: 1000 max(ɛ1, ɛ2) where 

 
2

1 1

n

i ii
s t


 

 

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 

Default: Based on initial scaled Cauchy step. 

 If double precision is required, then DU4INF is called, and RPARAM is declared 

double precision. 

5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The function 

     
2 22

2 1 1100 1f x x x x   
 

is minimized. Default values for parameters are used. 
 

      USE UMIDH_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=2) 

! 

      INTEGER    IPARAM(7), L, NOUT 

      REAL       F, X(N), XGUESS(N) 

      EXTERNAL   ROSBRK, ROSGRD 

! 

      DATA XGUESS/-1.2E0, 1.0E0/ 

! 

      IPARAM(1) = 0 

!                                 Minimize Rosenbrock function using 

!                                 initial guesses of -1.2 and 1.0 

      CALL UMIDH (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F) 

!                                 Print results 

      CALL UMACH (2, NOUT) 
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      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7) 

! 

99999 FORMAT ('  The solution is ', 6X, 2F8.3, //, '  The function ', & 

            'value is ', F8.3, //, '  The number of iterations is ', & 

            10X, I3, /, '  The number of function evaluations is ', & 

            I3, /, '  The number of gradient evaluations is ', I3, /, & 

            '  The number of Hessian evaluations is  ', I3) 

! 

      END 

! 

      SUBROUTINE ROSBRK (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 

! 

      RETURN 

      END 

! 

      SUBROUTINE ROSGRD (N, X, G) 

      INTEGER    N 

      REAL       X(N), G(N) 

! 

      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 

      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 

! 

      RETURN 

      END 

Output 
 

The solution is          1.000   1.000 

 

The function value is    0.000 

 

The number of iterations is            21 

The number of function evaluations is  30 

The number of gradient evaluations is  22 

The number of Hessian evaluations is   21 

UMIAH 
Minimizes a function of N variables using a modified Newton method and a user-supplied 

Hessian. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by FCN. 
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F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is  

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the gradient is evaluated.   (Input)  

X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

 GRAD must be declared EXTERNAL in the calling program. 

HESS — User-supplied subroutine to compute the Hessian at the point X. The usage is  

CALL HESS (N, X, H, LDH), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the Hessian is evaluated.   (Input)  

X should not be changed by HESS. 

H – The Hessian evaluated at the point X.   (Output) 

LDH – Leading dimension of H exactly as specified in the dimension statement 

of the calling program.   (Input) 

 HESS must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing initial guess.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input) 

XSCALE is used mainly in scaling the gradient and the distance between two points. In 

the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  

FSCALE is used mainly in scaling the gradient. In the absence of other information, set 

FSCALE to 1.0. 

Default: FSCALE = 1.0. 
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IPARAM — Parameter vector of length 7.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  

See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL UMIAH (FCN, GRAD, HESS, X, [,…]) 

Specific: The specific interface names are S_UMIAH and D_UMIAH. 

FORTRAN 77 Interface 

Single: CALL UMIAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE, IPARAM, 

RPARAM, X, FVALUE) 

Double: The double precision name is DUMIAH. 

Description 

The routine UMIAH uses a modified Newton method to find the minimum of a function f(x) of n 

variables. First and second derivatives must be provided by the user. The algorithm computes an 

optimal locally constrained step (Gay 1981) with a trust region restriction on the step. This 

algorithm handles the case where the Hessian is indefinite and provides a way to deal with 

negative curvature. For more details, see Dennis and Schnabel (1983, Appendix A) and Gay 

(1983). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of U2IAH/DU2IAH. The 

reference is: 

CALL U2IAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE, 

IPARAM, RPARAM, X, FVALUE, WK) 

The additional argument is: 

WK — Work vector of length N * (N + 9). WK contains the following 

information on output: The second N locations contain the last step 

taken. The third N locations contain the last Newton step. The fourth N 

locations contain an estimate of the gradient at the solution. The final 

N
2
 locations contain the Hessian at the approximate solution. 

2. Informational errors 

Type Code 
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3 1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 

4 2 The iterates appear to be converging to a noncritical point. 

4 3 Maximum number of iterations exceeded. 

4 4 Maximum number of function evaluations exceeded. 

4 5 Maximum number of gradient evaluations exceeded. 

4 6 Five consecutive steps have been taken with the maximum step 

length. 

2 7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 

progress and is not near a solution, or STEPTL is too big. 

4 7 Maximum number of Hessian evaluations exceeded. 

3 8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for UMIAH occurs when the norm of the gradient is less than 

the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIAH 

occurs when the scaled distance between the last two steps is less than the step 

tolerance (RPARAM(2)). 

4. If the default parameters are desired for UMIAH, then set IPARAM(1) to zero and call the 

routine UMIAH. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling UMIAH: 

CALL U4INF (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 

nondefault values need to be set above. 

 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 
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IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 

Default: 400. 

IPARAM(6) = Hessian initialization parameter 

Default: Not used in UMIAH. 

IPARAM(7) = Maximum number of Hessian evaluations. 

Default: 100. 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as 

 
  

max ,1/

max ,

i i i

s

g x s

f x f



 

 where g = ∇f (x), s = XSCALE, and fs = FSCALE. 

Default: 

3, 
 

 in double where ɛ is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is 

computed as 

 max ,1/

i i

i i

x y

x s



 

 where s = XSCALE. 

Default: ɛ2/3
 where ɛ is the machine precision. 

RPARAM(3) = Relative function tolerance. 

Default: max(10-10
, ɛ2/3

), max(10-20
, ɛ2/3

) in double where ɛ is the 

machine precision. 

RPARAM(4) = Absolute function tolerance. 

Default: Not used in UMIAH. 

RPARAM(5) = False convergence tolerance. 

Default: 100ɛ where ɛ is the machine precision. 
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RPARAM(6) = Maximum allowable step size. 

Default: 1000 max(ɛ1, ɛ2) where 

 
2

1 1

n

i ii
s t


 

 

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 

Default: based on the initial scaled Cauchy step. 

If double precision is required, then DU4INF is called, and RPARAM is declared double 

precision. 

5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The function 

     
2 22

2 1 1100 1f x x x x   
 

is minimized. Default values for parameters are used. 
 

      USE UMIAH_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=2) 

! 

      INTEGER    IPARAM(7), L, NOUT 

      REAL       F, FSCALE, RPARAM(7), X(N), & 

                XGUESS(N), XSCALE(N) 

      EXTERNAL   ROSBRK, ROSGRD, ROSHES 

! 

      DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/ 

! 

      IPARAM(1) = 0 

!                                 Minimize Rosenbrock function using 

!                                 initial guesses of -1.2 and 1.0 

      CALL UMIAH (ROSBRK, ROSGRD, ROSHES, X, XGUESS=XGUESS, IPARAM=IPARAM, & 

         FVALUE=F) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7) 

! 

99999 FORMAT ('  The solution is ', 6X, 2F8.3, //, '  The function ', & 

            'value is ', F8.3, //, '  The number of iterations is ', & 

            10X, I3, /, '  The number of function evaluations is ', & 
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            I3, /, '  The number of gradient evaluations is ', I3, /, & 

            '  The number of Hessian evaluations is  ', I3) 

! 

      END 

! 

      SUBROUTINE ROSBRK (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 

! 

      RETURN 

      END 

! 

      SUBROUTINE ROSGRD (N, X, G) 

      INTEGER    N 

      REAL       X(N), G(N) 

! 

      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 

      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 

! 

      RETURN 

      END 

! 

      SUBROUTINE ROSHES (N, X, H, LDH) 

      INTEGER    N, LDH 

      REAL       X(N), H(LDH,N) 

! 

      H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0 

      H(2,1) = -4.0E2*X(1) 

      H(1,2) = H(2,1) 

      H(2,2) = 2.0E2 

! 

      RETURN 

      END 

Output 
 

The solution is          1.000   1.000 

 

The function value is    0.000 

 

The number of iterations is            21 

The number of function evaluations is  31 

The number of gradient evaluations is  22 

The number of Hessian evaluations is   21 

UMCGF 
Minimizes a function of N variables using a conjugate gradient algorithm and a finite-difference 

gradient. 
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Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

DFPRED — A rough estimate of the expected reduction in the function.   (Input)  

DFPRED is used to determine the size of the initial change to X. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input) 

Default: XSCALE = 1.0. 

GRADTL — Convergence criterion.   (Input)  

The calculation ends when the sum of squares of the components of G is less than 

GRADTL. 

Default: GRADTL = 1.e-4. 

MAXFN — Maximum number of function evaluations.   (Input)  

If MAXFN is set to zero, then no restriction on the number of function evaluations is set. 

Default: MAXFN = 0. 

G — Vector of length N containing the components of the gradient at the final parameter 

estimates.   (Output) 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL UMCGF (FCN, DFPRED, X [,…]) 
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Specific: The specific interface names are S_UMCGF and D_UMCGF. 

FORTRAN 77 Interface 

Single: CALL UMCGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED, X, G, 
FVALUE) 

Double: The double precision name is DUMCGF. 

Description 

The routine UMCGF uses a conjugate gradient method to find the minimum of a function f (x) of n 

variables. Only function values are required. 

The routine is based on the version of the conjugate gradient algorithm described in Powell 

(1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of 

convergence without the storage of any matrices. Therefore, it is particularly suitable for 

unconstrained minimization calculations where the number of variables is so large that matrices of 

dimension n cannot be stored in the main memory of the computer. For smaller problems, 

however, a routine such as routine UMINF, is usually more efficient because each iteration makes 

use of additional information from previous iterations. 

Since a finite-difference method is used to estimate the gradient for some single precision 

calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a 

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 

exact gradient can be easily provided, routine UMCGG should be used instead. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of U2CGF/DU2CGF. The 

reference is: 

CALL U2CGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED, 

X, G, FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT) 

The additional arguments are as follows: 

S — Vector of length N used for the search direction in each iteration. 

RSS — Vector of length N containing conjugacy information. 

RSG — Vector of length N containing conjugacy information. 

GINIT — Vector of length N containing the gradient values at the start of an 

iteration. 

XOPT — Vector of length N containing the parameter values that yield the 

least calculated value for FVALUE. 

GOPT — Vector of length N containing the gradient values that yield the least 

calculated value for FVALUE. 
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2. Informational errors 

Type Code 

4 1 The line search of an integration was abandoned. This error may be 

caused by an error in gradient. 

4 2 The calculation cannot continue because the search is uphill. 

4 3 The iteration was terminated because MAXFN was exceeded. 

3 4 The calculation was terminated because two consecutive iterations 

failed to reduce the function. 

3. Because of the close relation between the conjugate-gradient method and the method of 

steepest descent, it is very helpful to choose the scale of the variables in a way that 

balances the magnitudes of the components of a typical gradient vector. It can be 

particularly inefficient if a few components of the gradient are much larger than the 

rest. 

4. If the value of the parameter GRADTL in the argument list of the routine is set to zero, 

then the subroutine will continue its calculation until it stops reducing the objective 

function. In this case, the usual behavior is that changes in the objective function 

become dominated by computer rounding errors before precision is lost in the gradient 

vector. Therefore, because the point of view has been taken that the user requires the 

least possible value of the function, a value of the objective function that is small due 

to computer rounding errors can prevent further progress. Hence, the precision in the 

final values of the variables may be only about half the number of significant digits in 

the computer arithmetic, but the least value of FVALUE is usually found to be quite 

accurate. 

Example 

The function 

     
2 22

2 1 1100 1f x x x x   
 

is minimized and the solution is printed. 
 

      USE UMCGF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declaration of variables 

      INTEGER    N 

      PARAMETER  (N=2) 

! 

      INTEGER    I, MAXFN, NOUT 

      REAL       DFPRED, FVALUE, G(N), GRADTL, X(N), XGUESS(N) 

      EXTERNAL   ROSBRK 

! 

      DATA XGUESS/-1.2E0, 1.0E0/ 

! 
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      DFPRED = 0.2 

      GRADTL = 1.0E-6 

      MAXFN  = 100 

!                                 Minimize the Rosenbrock function 

      CALL UMCGF (ROSBRK, DFPRED, X, xguess=xguess, gradtl=gradtl, & 

                 g=g, fvalue=fvalue) 

!                                 Print the results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N) 

99999 FORMAT ('  The solution is ', 2F8.3, //, '  The function ', & 

            'evaluated at the solution is ', F8.3, //, '  The ', & 

            'gradient is ', 2F8.3, /) 

! 

      END 

! 

      SUBROUTINE ROSBRK (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 

      RETURN 

      END 

Output 
 

The solution is    0.999   0.998 

 

The function evaluated at the solution is    0.000 

 

The gradient is   -0.001   0.000 

UMCGG 
Minimizes a function of N variables using a conjugate gradient algorithm and a user-supplied 

gradient. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is  

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 
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X – The point at which the gradient is evaluated.   (Input)  

X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

 GRAD must be declared EXTERNAL in the calling program. 

DFPRED — A rough estimate of the expected reduction in the function.   (Input)  

DFPRED is used to determine the size of the initial change to X. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 

Default: XGUESS = 0.0. 

GRADTL — Convergence criterion.   (Input)  

The calculation ends when the sum of squares of the components of G is less than 

GRADTL. 

Default: GRADTL = 1.e-4. 

MAXFN — Maximum number of function evaluations.   (Input) 

Default: MAXFN = 100. 

G — Vector of length N containing the components of the gradient at the final parameter 

estimates.   (Output) 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL UMCGG (FCN, GRAD, DFPRED, X [,…]) 

Specific: The specific interface names are S_UMCGG and D_UMCGG. 

FORTRAN 77 Interface 

Single: CALL UMCGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X, G, FVALUE) 

Double: The double precision name is DUMCGG. 
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Description 

The routine UMCGG uses a conjugate gradient method to find the minimum of a function f (x) of n 

variables. Function values and first derivatives are required. 

The routine is based on the version of the conjugate gradient algorithm described in Powell 

(1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of 

convergence without the storage of any matrices. Therefore, it is particularly suitable for 

unconstrained minimization calculations where the number of variables is so large that matrices of 

dimension n cannot be stored in the main memory of the computer. For smaller problems, 

however, a subroutine such as IMSL routine UMING, is usually more efficient because each 

iteration makes use of additional information from previous iterations. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of U2CGG/DU2CGG. The 

reference is: 

CALL U2CGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, 

X, G, FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT) 

The additional arguments are as follows: 

S — Vector of length N used for the search direction in each iteration. 

RSS — Vector of length N containing conjugacy information. 

RSG — Vector of length N containing conjugacy information. 

GINIT — Vector of length N containing the gradient values at the start on an 

iteration. 

XOPT — Vector of length N containing the parameter values which yield the 

least calculated value for FVALUE. 

GOPT — Vector of length N containing the gradient values which yield the 

least calculated value for FVALUE. 

2. Informational errors 

Type Code 

4 1 The line search of an integration was abandoned. This error may be 

caused by an error in gradient. 

4 2 The calculation cannot continue because the search is uphill. 

4 3 The iteration was terminated because MAXFN was exceeded. 

3 4 The calculation was terminated because two consecutive iterations 

failed to reduce the function. 

3. The routine includes no thorough checks on the part of the user program that calculates 

the derivatives of the objective function. Therefore, because derivative calculation is a 
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frequent source of error, the user should verify independently the correctness of the 

derivatives that are given to the routine. 

4. Because of the close relation between the conjugate-gradient method and the method of 

steepest descent, it is very helpful to choose the scale of the variables in a way that 

balances the magnitudes of the components of a typical gradient vector. It can be 

particularly inefficient if a few components of the gradient are much larger than the 

rest. 

5. If the value of the parameter GRADTL in the argument list of the routine is set to zero, 

then the subroutine will continue its calculation until it stops reducing the objective 

function. In this case, the usual behavior is that changes in the objective function 

become dominated by computer rounding errors before precision is lost in the gradient 

vector. Therefore, because the point of view has been taken that the user requires the 

least possible value of the function, a value of the objective function that is small due 

to computer rounding errors can prevent further progress. Hence, the precision in the 

final values of the variables may be only about half the number of significant digits in 

the computer arithmetic, but the least value of FVALUE is usually found to be quite 

accurate. 

Example 

The function 

     
2 22

2 1 1100 1f x x x x   
 

is minimized and the solution is printed. 
 

      USE UMCGG_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declaration of variables 

      INTEGER    N 

      PARAMETER  (N=2) 

! 

      INTEGER    I, NOUT 

      REAL       DFPRED, FVALUE, G(N), GRADTL, X(N), & 

                XGUESS(N) 

      EXTERNAL   ROSBRK, ROSGRD 

! 

      DATA XGUESS/-1.2E0, 1.0E0/ 

! 

      DFPRED = 0.2 

      GRADTL = 1.0E-7 

!                                 Minimize the Rosenbrock function 

      CALL UMCGG (ROSBRK, ROSGRD, DFPRED, X, xguess=xguess, & 

                 gradtl=gradtl, g=g, fvalue=fvalue) 

!                                 Print the results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N) 
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99999 FORMAT ('  The solution is ', 2F8.3, //, '  The function ', & 

            'evaluated at the solution is ', F8.3, //, '  The ', & 

            'gradient is ', 2F8.3, /) 

! 

      END 

! 

      SUBROUTINE ROSBRK (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 

      RETURN 

      END 

! 

      SUBROUTINE ROSGRD (N, X, G) 

      INTEGER    N 

      REAL       X(N), G(N) 

! 

      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 

      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 

! 

      RETURN 

      END 

! 

      SUBROUTINE ROSBRK (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 

      RETURN 

      END 

! 

      SUBROUTINE ROSGRD (N, X, G) 

      INTEGER    N 

      REAL       X(N), G(N) 

! 

      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 

      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 

! 

      RETURN 

      END 

Output 
 

  The solution is    1.000   1.000 

 

  The function evaluated at the solution is    0.000 

 

  The gradient is    0.000  -0.000 

UMPOL 
Minimizes a function of N variables using a direct search polytope algorithm. 
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Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

X — Real vector of length N containing the best estimate of the minimum found.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Real vector of length N which contains an initial guess to the minimum.   (Input) 

Default: XGUESS = 0.0. 

S — On input, real scalar containing the length of each side of the initial simplex.   

(Input/Output)  

If no reasonable information about S is known, S could be set to a number less than or 

equal to zero and UMPOL will generate the starting simplex from the initial guess with a 

random number generator. On output, the average distance from the vertices to the 

centroid that is taken to be the solution; see Comment 4. 

Default: S = 0.0. 

FTOL — First convergence criterion.   (Input)  

The algorithm stops when a relative error in the function values is less than FTOL, i.e. 

when (F(worst)  F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and F(best) are 

the function values of the current worst and best points, respectively. Second 

convergence criterion. The algorithm stops when the standard deviation of the function 

values at the N + 1 current points is less than FTOL. If the subroutine terminates 

prematurely, try again with a smaller value for FTOL. 

Default: FTOL = 1.e-7. 

MAXFCN — On input, maximum allowed number of function evaluations.   (Input/ Output) 

On output, actual number of function evaluations needed. 

Default: MAXFCN = 200. 

FVALUE — Function value at the computed solution.   (Output) 
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FORTRAN 90 Interface 

Generic: CALL UMPOL (FCN, X [,…]) 

Specific: The specific interface names are S_UMPOL and D_UMPOL. 

FORTRAN 77 Interface 

Single: CALL UMPOL (FCN, N, XGUESS, S, FTOL, MAXFCN, X, FVALUE) 

Double: The double precision name is DUMPOL. 

Description 

The routine UMPOL uses the polytope algorithm to find a minimum point of a function f(x) of n 

variables. The polytope method is based on function comparison; no smoothness is assumed. It 

starts with n + 1 points x1, x2, …, xn + 1. At each iteration, a new point is generated to replace the 

worst point xj, which has the largest function value among these n + 1 points. The new point is 

constructed by the following formula: 

xk = c + α(c  xj) 

where 

1
i j ic x

n
 

 

and α (α > 0) is the reflection coefficient. 

When xk is a best point, that is f(xk) ≤ f(xi) for i = 1, …, n + 1, an expansion point is computed  

xe = c + β(xk  c) where β(β > 1) is called the expansion coefficient. If the new point is a worst 

point, then the polytope would be contracted to get a better new point. If the contraction step is 

unsuccessful, the polytope is shrunk by moving the vertices halfway toward current best point. 

This procedure is repeated until one of the following stopping criteria is satisfied: 

Criterion 1: 

fbest  fworst ≤ ɛf (1. + |fbest|) 

Criterion 2:  
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where fi = f (xi), fj = f (xj), and ɛf is a given tolerance. For a complete description, see Nelder and 

Mead (1965) or Gill et al. (1981). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of U2POL/DU2POL. The 

reference is: 
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CALL U2POL (FCN, N, XGUESS, S, FTOL, MAXFCN, X, FVALUE, 

WK) 

The additional argument is: 

WK — Real work vector of length N**2 + 5 * N + 1. 

2. Informational error 

Type Code 

4 1 Maximum number of function evaluations exceeded. 

3. Since UMPOL uses only function value information at each step to determine a new 

approximate minimum, it could be quite ineficient on smooth problems compared to 

other methods such as those implemented in routine UMINF that takes into account 

derivative information at each iteration. Hence, routine UMPOL should only be used as a 

last resort. Briefly, a set of N + 1 points in an N-dimensional space is called a simplex. 

The minimization process iterates by replacing the point with the largest function value 

by a new point with a smaller function value. The iteration continues until all the points 

cluster sufficiently close to a minimum. 

4. The value returned in S is useful for assessing the flatness of the function near the 

computed minimum. The larger its value for a given value of FTOL, the flatter the 

function tends to be in the neighborhood of the returned point. 

Example 

The function 

     
2 22

2 1 1100 1f x x x x   
 

is minimized and the solution is printed. 
 

      USE UMPOL_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Variable declarations 

      INTEGER    N 

      PARAMETER  (N=2) 

! 

      INTEGER    K, NOUT 

      REAL       FTOL, FVALUE, S, X(N), XGUESS(N) 

      EXTERNAL   FCN 

! 

!                                 Initializations 

!                                 XGUESS = ( -1.2, 1.0) 

! 

      DATA XGUESS/-1.2, 1.0/ 

! 

      FTOL   = 1.0E-10 
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      S      = 1.0 

! 

      CALL UMPOL (FCN, X, xguess=xguess, s=s, ftol=ftol,& 

                  fvalue=fvalue) 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) (X(K),K=1,N), FVALUE 

99999 FORMAT ('  The best estimate for the minimum value of the', /, & 

            '  function is X = (', 2(2X,F4.2), ')', /, '  with ', & 

            'function value FVALUE = ', E12.6) 

! 

      END 

!                                 External function to be minimized 

      SUBROUTINE FCN (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 100.0*(X(1)*X(1)-X(2))**2 + (1.0-X(1))**2 

      RETURN 

      END 

Output 
 

  The best estimate for the minimum value of the 

  function is X = (  1.00  1.00) 

  with function value FVALUE = 0.502496E-10 

UNLSF 

 

Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm and a 

finite-difference Jacobian. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function that defines the least-squares 

problem. The usage is  

CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – Vector of length M containing the function values at X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 
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X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 

N — Number of variables. N must be less than or equal to M.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the gradient and the distance between two points. By 

default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4. 

Default: XSCALE = 1.0. 

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.   

(Input)  

FSCALE is used mainly in scaling the gradient. In the absence of other information, set 

all entries to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  

See Comment 4. 

FVEC — Vector of length M containing the residuals at the approximate solution.   (Output) 

FJAC — M by N matrix containing a finite difference approximate Jacobian at the 

approximate solution.   (Output) 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFJAC = SIZE (FJAC,1). 

FORTRAN 90 Interface 

Generic: CALL UNLSF (FCN, M, X [,…]) 

Specific: The specific interface names are S_UNLSF and D_UNLSF. 
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FORTRAN 77 Interface 

Single: CALL UNLSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, 

FJAC, LDFJAC) 

Double: The double precision name is DUNLSF. 

Description 

The routine UNLSF is based on the MINPACK routine LMDIF by Moré et al. (1980). It uses a 

modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem is 

stated as follows: 

     
2

1

1 1
min

2 2n

m
T

i
x i

F x F x f x
 

 
R

 

where m ≥ n, F : R
n
→ R

m
, and fi(x) is the i-th component function of F(x). From a current point, 

the algorithm uses the trust region approach: 

    
2
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n

n
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subject to  ||xn  xc||2 ≤ c 

to get a new point xn, which is computed as 

        
1

T T

n c c c c c cx x J x J x I J x F x


  
 

where μc = 0 if c ≥ ||(J(xc)
T 

J(xc)) -
1
 J(xc)

T 
F(xc)||2 and μc > 0 otherwise. F(xc) and J(xc) are the 

function values and the Jacobian evaluated at the current point xc. This procedure is repeated until 

the stopping criteria are satisfied. For more details, see Levenberg (1944), Marquardt (1963), or 

Dennis and Schnabel (1983, Chapter 10). 

Since a finite-difference method is used to estimate the Jacobian for some single precision 

calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a 

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 

exact Jacobian can be easily provided, routine UNLSJ should be used instead. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of U2LSF/DU2LSF. The 

reference is: 

CALL U2LSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM, 

RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length 9 * N + 3 * M  1. WK contains the 

following information on output: The second N locations contain the 

last step taken. The third N locations contain the last Gauss-Newton 
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step. The fourth N locations contain an estimate of the gradient at the 

solution. 

IWK — Integer work vector of length N containing the permutations used in 

the QR factorization of the Jacobian at the solution. 

2. Informational errors 

Type Code 

3 1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 

3 2 The iterates appear to be converging to a noncritical point. 

4  3 Maximum number of iterations exceeded. 

4 4 Maximum number of function evaluations exceeded. 

3 6 Five consecutive steps have been taken with the maximum step 

length. 

2 7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 

progress and is not near a solution, or STEPTL is too big. 

3. The first stopping criterion for UNLSF occurs when the norm of the function is less than 

the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs 

when the norm of the scaled gradient is less than the given gradient tolerance 

(RPARAM(1)). The third stopping criterion for UNLSF occurs when the scaled distance 

between the last two steps is less than the step tolerance (RPARAM(2)). 

4. If the default parameters are desired for UNLSF, then set IPARAM(1) to zero and call the 

routine UNLSF. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling UNLSF: 

CALL U4LSF (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only 

nondefault values need to be set above. 

 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 
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IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 

Default: Not used in UNLSF. 

IPARAM(6) = Internal variable scaling flag. 

If IPARAM(6) = 1, then the values for XSCALE are set internally. 

Default: 1. 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as 

 

 
2

2

max ,1/i i ig x s

F x



 

 where 

      
2T

i s ii
g J x F x f 

 

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE. 

Default:  

3, 
 

 in double where ɛ is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is 

computed as 

 max ,1/

i i

i i

x y

x s



 

 where s = XSCALE. 

Default: ɛ2/3
 where ɛ is the machine precision. 

RPARAM(3) = Relative function tolerance. 

Default: max(10-10
, ɛ2/3

), max (10-20
, ɛ2/3

) in double where ɛ is the 

machine precision. 
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RPARAM(4) = Absolute function tolerance. 

Default: max (10-20
, ɛ2

), max(10-40
, ɛ2

) in double where ɛ is the 

machine precision. 

RPARAM(5) = False convergence tolerance. 

Default: 100ɛ where ɛ is the machine precision. 

RPARAM(6) = Maximum allowable step size. 

Default: 1000 max(ɛ1, ɛ2) where 

 
2

1 1

n

i ii
s t


 

 

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 

Default: based on the initial scaled Cauchy step. 

 If double precision is desired, then DU4LSF is called and RPARAM is declared double 

precision. 

5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The nonlinear least squares problem 

 
2

2
2

1

1
min

2
i

x i

f x
 


R

 

where 

       2
1 2 1 2 110  and  1f x x x f x x   

 

is solved. RPARAM(4) is changed to a non-default value. 
 

      USE UMACH_INT 

      USE U4LSF_INT 

      USE UNLSF_INT 

 

      IMPLICIT   NONE 

!                                 Declaration of variables 

      INTEGER    LDFJAC, M, N 

      PARAMETER  (LDFJAC=2, M=2, N=2) 

! 

      INTEGER    IPARAM(6), NOUT 

      REAL       FVEC(M), RPARAM(7),X(N), XGUESS(N) 
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      EXTERNAL   ROSBCK 

!                                 Compute the least squares for the 

!                                 Rosenbrock function. 

      DATA XGUESS/-1.2E0, 1.0E0/ 

! 

!                                 Relax the first stopping criterion by 

!                                 calling U4LSF and scaling the 

!                                 absolute function tolerance by 10. 

      CALL U4LSF (IPARAM, RPARAM) 

      RPARAM(4) = 10.0E0*RPARAM(4) 

! 

      CALL UNLSF (ROSBCK, M, X,xguess=xguess, iparam=iparam, rparam=rparam,& 

       fvec=fvec) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4) 

! 

99999 FORMAT ('  The solution is ', 2F9.4, //, '  The function ', & 

            'evaluated at the solution is ', /, 18X, 2F9.4, //, & 

            '  The number of iterations is ', 10X, I3, /, '  The ', & 

            'number of function evaluations is ', I3, /) 

      END 

! 

      SUBROUTINE ROSBCK (M, N, X, F) 

      INTEGER    M, N 

      REAL       X(N), F(M) 

! 

      F(1) = 10.0E0*(X(2)-X(1)*X(1)) 

      F(2) = 1.0E0 - X(1) 

      RETURN 

      END 

Output 
 

The solution is    1.0000   1.0000 

 

The function evaluated at the solution is 

0.0000   0.0000 

 

The number of iterations is            24 

The number of function evaluations is  33 

UNLSJ 

 

Solves a nonlinear least squares problem using a modified Levenberg-Marquardt algorithm and a 

user-supplied Jacobian. 
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Required Arguments 

FCN — User-supplied subroutine to evaluate the function which defines the least-squares 

problem. The usage is  

CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – Vector of length M containing the function values at X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

JAC — User-supplied subroutine to evaluate the Jacobian at a point X. The usage is  

CALL JAC (M, N, X, FJAC, LDFJAC), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – Vector of length N at which point the Jacobian is evaluated.   (Input)  

X should not be changed by JAC. 

FJAC – The computed M by N Jacobian at the point X.   (Output) 

LDFJAC – Leading dimension of FJAC.   (Input) 

 JAC must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 

N — Number of variables. N must be less than or equal to M.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the gradient and the distance between two points. By 

default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4. 

Default: XSCALE = 1.0. 
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FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.   

(Input)  

FSCALE is used mainly in scaling the gradient. In the absence of other information, set 

all entries to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  

See Comment 4. 

FVEC — Vector of length M containing the residuals at the approximate solution.   (Output) 

FJAC — M by N matrix containing a finite-difference approximate Jacobian at the 

approximate solution.   (Output) 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFJAC = SIZE (FJAC,1). 

FORTRAN 90 Interface 

Generic: CALL UNLSJ (FCN, JAC, M, X [,…]) 

Specific: The specific interface names are S_UNLSJ and D_UNLSJ. 

FORTRAN 77 Interface 

Single: CALL UNLSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM, 

RPARAM, X, FVEC, FJAC, LDFJAC) 

Double: The double precision name is DUNLSJ. 

Description 

The routine UNLSJ is based on the MINPACK routine LMDER by Moré et al. (1980). It uses a 

modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem is 

stated as follows: 

     
2

1

1 1
min

2 2n

m
T

i
x i

F x F x f x
 

 
R

 

where  m ≥ n, F : R
n
→ R

m
, and fi(x) is the i-th component function of F(x). From a current point, 

the algorithm uses the trust region approach: 

    
2

min
n

n

c c n c
x

F x J x x x


 
R
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subject to  ||xn  xc||2 ≤ c 

to get a new point xn, which is computed as 

        
1

T T

n c c c c c cx x J x J x I J x F x


  
 

where  

        
1

2

0 if
T T

c c c cc c J x J x J x F x 


 

 

and 0c   otherwise.  F xc  and  J xc  are the function values and the Jacobian evaluated at 

the current point xc . This procedure is repeated until the stopping criteria are satisfied. For more 

details, see Levenberg (1944), Marquardt(1963), or Dennis and Schnabel (1983, Chapter 10). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of U2LSJ/DU2LSJ. The 

reference is: 

CALL U2LSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, 

IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK) 

The additional arguments are as follows: 

WK — Work vector of length 9 * N + 3 * M  1. WK contains the following 

information on output: The second N locations contain the last step 

taken. The third N locations contain the last Gauss-Newton step. The 

fourth N locations contain an estimate of the gradient at the solution. 

IWK — Work vector of length N containing the permutations used in the QR 

factorization of the Jacobian at the solution. 

2. Informational errors 

Type Code 

3 1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 

3 2 The iterates appear to be converging to a noncritical point. 

4 3 Maximum number of iterations exceeded. 

4 4 Maximum number of function evaluations exceeded. 

4 5 Maximum number of Jacobian evaluations exceeded. 

3 6 Five consecutive steps have been taken with the maximum step 

length. 
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2 7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 

progress and is not near a solution, or STEPTL is too big. 

3. The first stopping criterion for UNLSJ occurs when the norm of the function is less than 

the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs 

when the norm of the scaled gradient is less than the given gradient tolerance 

(RPARAM(1)). The third stopping criterion for UNLSJ occurs when the scaled distance 

between the last two steps is less than the step tolerance (RPARAM(2)). 

4. If the default parameters are desired for UNLSJ, then set IPARAM(1) to zero and call the 

routine UNLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling UNLSJ: 

CALL U4LSF (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4LSF will set IPARAM and RPARAM to their default values, so only 

nondefault values need to be set above. 

 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 

Default: 100. 

IPARAM(6) = Internal variable scaling flag. 

If IPARAM(6) = 1, then the values for XSCALE are set internally. 

Default: 1. 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as 
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2

2

max ,1/i i ig x s

F x



 

 where 

      
2T

i s ii
g J x F x f 

 

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE. 

Default: 

3, 
 

 in double where ɛ is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is 

computed as 

 max ,1/

i i

i i

x y

x s



 

 where s = XSCALE. 

Default: ɛ2/3
 where ɛ is the machine precision. 

RPARAM(3) = Relative function tolerance. 

Default: max(10-10
, ɛ2/3

), max (10-20
, ɛ2/3

) in double where ɛ is the 

machine precision. 

RPARAM(4) = Absolute function tolerance. 

Default: max (10-20
, ɛ2

), max(10-40
, ɛ2

) in double where ɛ is the 

machine precision. 

RPARAM(5) = False convergence tolerance. 

Default: 100ɛ where ɛ is the machine precision. 

RPARAM(6) = Maximum allowable step size. 

Default: 1000 max(ɛ1, ɛ2) where 

 
2

1 1

n

i ii
s t


 

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS. 
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RPARAM(7) = Size of initial trust region radius. 

Default: based on the initial scaled Cauchy step. 

 If double precision is desired, then DU4LSF is called and RPARAM is declared double 

precision. 

5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The nonlinear least-squares problem 

 
2

2
2

1

1
min

2
i

x i

f x
 


R

 

where 

       2
1 2 1 2 110  and  1f x x x f x x   

 

is solved; default values for parameters are used. 
 

      USE UNLSJ_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declaration of variables 

      INTEGER    LDFJAC, M, N 

      PARAMETER  (LDFJAC=2, M=2, N=2) 

! 

      INTEGER    IPARAM(6), NOUT 

      REAL       FVEC(M), X(N), XGUESS(N) 

      EXTERNAL   ROSBCK, ROSJAC 

!                                 Compute the least squares for the 

!                                 Rosenbrock function. 

      DATA XGUESS/-1.2E0, 1.0E0/ 

      IPARAM(1) = 0 

! 

      CALL UNLSJ (ROSBCK, ROSJAC, M, X, XGUESS=XGUESS, & 

                 IPARAM=IPARAM, FVEC=FVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4), IPARAM(5) 

! 

99999 FORMAT ('  The solution is ', 2F9.4, //, '  The function ', & 

            'evaluated at the solution is ', /, 18X, 2F9.4, //, & 

            '  The number of iterations is ', 10X, I3, /, '  The ', & 

            'number of function evaluations is ', I3, /, '  The ', & 

            'number of Jacobian evaluations is ', I3, /) 

      END 

! 

      SUBROUTINE ROSBCK (M, N, X, F) 

      INTEGER    M, N 

      REAL       X(N), F(M) 
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! 

      F(1) = 10.0E0*(X(2)-X(1)*X(1)) 

      F(2) = 1.0E0 - X(1) 

      RETURN 

      END 

! 

      SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC) 

      INTEGER    M, N, LDFJAC 

      REAL       X(N), FJAC(LDFJAC,N) 

! 

      FJAC(1,1) = -20.0E0*X(1) 

      FJAC(2,1) = -1.0E0 

      FJAC(1,2) = 10.0E0 

      FJAC(2,2) = 0.0E0 

      RETURN 

      END 

Output 
 

The solution is    1.0000   1.0000 

 

The function evaluated at the solution is 

0.0000   0.0000 

 

The number of iterations is            23 

The number of function evaluations is  32 

The number of Jacobian evaluations is  24 

BCONF 
Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton 

method and a finite-difference gradient. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 
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1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have 

 the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing an initial guess of the computed solution.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the gradient and the distance between two points. In 

the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  

FSCALE is used mainly in scaling the gradient. In the absence of other information, set 

FSCALE to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  

See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL BCONF (FCN, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCONF and D_BCONF. 
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FORTRAN 77 Interface 

Single: CALL BCONF (FCN, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, IPARAM, 

RPARAM, X, FVALUE) 

Double: The double precision name is DBCONF. 

Description 

The routine BCONF uses a quasi-Newton method and an active set strategy to solve minimization 

problems subject to simple bounds on the variables. The problem is stated as follows:  

 min
nx

f x
R  

subject to l ≤ x ≤ u 

From a given starting point x
c
, an active set IA, which contains the indices of the variables at their 

bounds, is built. A variable is called a ―free variable‖ if it is not in the active set. The routine then 

computes the search direction for the free variables according to the formula 

d = B-1
 g

c
 

where B is a positive definite approximation of the Hessian and g
c
 is the gradient evaluated at x

c
; 

both are computed with respect to the free variables. The search direction for the variables in IA is 

set to zero. A line search is used to find a new point x
n
 , 

x
n
 = x

c
 + λd, λ ∈ (0, 1] 

such that  

f (x
n
) ≤ f (x

c
) + αg

T
 d, α ∈ (0, 0.5) 

Finally, the optimality conditions 

||g(xi)|| ≤ ɛ, li < xi< ui 

g(xi) < 0,  xi = ui 

g(xi) > 0, xi = li 

are checked, where ɛ is a gradient tolerance. When optimality is not achieved, B is updated 

according to the BFGS formula: 

T T

T T

Bss B yy
B B

s Bs y s
  

 

where s = x
n
  x

c
 and y = g

n
  g

c
. Another search direction is then computed to begin the next 

iteration. 

The active set is changed only when a free variable hits its bounds during an iteration or the 

optimality condition is met for the free variables but not for all variables in IA, the active set. In 

the latter case, a variable that violates the optimality condition will be dropped out of IA. For more 
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details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For more 

detailed information on active set strategy, see Gill and Murray (1976). 

Since a finite-difference method is used to estimate the gradient for some single precision 

calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a 

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 

exact gradient can be easily provided, routine BCONG should be used instead. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2ONF/DB2ONF. The 

reference is: 

CALL B2ONF (FCN, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 

FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length N * (2 * N + 8). WK contains the 

following information on output: The second N locations contain the 

last step taken. The third N locations contain the last Newton step. The 

fourth N locations contain an estimate of the gradient at the solution. 

The final N
2
 locations contain a BFGS approximation to the Hessian at 

the solution.  Only the lower triangular portion of the matrix is stored 

in WK. The values returned in the upper triangle should be ignored. 

IWK — Work vector of length N stored in column order.  

2. Informational errors 

Type Code 

3 1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 

4 2 The iterates appear to be converging to a noncritical point. 

4 3 Maximum number of iterations exceeded. 

4 4 Maximum number of function evaluations exceeded. 

4 5 Maximum number of gradient evaluations exceeded. 

4 6 Five consecutive steps have been taken with the maximum step 

length. 

2 7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 

progress and is not near a solution, or STEPTL is too big. 

3 8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for BCONF occurs when the norm of the gradient is less than 

the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONF 
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occurs when the scaled distance between the last two steps is less than the step 

tolerance (RPARAM(2)). 

4. If the default parameters are desired for BCONF, then set IPARAM(1) to zero and call the 

routine BCONF. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling BCONF: 

CALL U4INF (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 

nondefault values need to be set above. 

 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 

Default: 400. 

IPARAM(6) = Hessian initialization parameter. 

If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; 

otherwise,  

it is initialized to a diagonal matrix containing 

   2max , s if t f s
 

 on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE. 

Default: 0. 

IPARAM(7) = Maximum number of Hessian evaluations. 

Default: Not used in BCONF. 

RPARAM — Real vector of length 7. 
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RPARAM(1) = Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as 

 
  

max ,1/

max ,

i i i

s

g x s

f x f



 

 where g = ∇f(x), s = XSCALE, and fs = FSCALE. 

Default: 

3, 
 

 in double where ɛ is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is 

computed as 

 max ,1/

i i

i i

x y

x s



 

 where s = XSCALE. 

Default: ɛ2/3
 where ɛ is the machine precision. 

RPARAM(3) = Relative function tolerance. 

Default: Not used in BCONF. 

RPARAM(4) = Absolute function tolerance. 

Default: Not used in BCONF. 

RPARAM(5) = False convergence tolerance. 

Default: Not used in BCONF. 

RPARAM(6) = Maximum allowable step size. 

Default: 1000 max(ɛ1, ɛ2) where 

 
2

1 1

n

i ii
s t


 

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 

Default: based on the initial scaled Cauchy step. 

 If double precision is required, then DU4INF is called and RPARAM is declared double 

precision. 
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5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The problem  

     
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5

1 2

f x x x x

x

x

   

  

  
 

is solved with an initial guess (1.2, 1.0) and default values for parameters. 
 

      USE BCONF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=2) 

! 

      INTEGER    IPARAM(7), ITP, L, NOUT 

      REAL       F, FSCALE, RPARAM(7), X(N), XGUESS(N), & 

                XLB(N), XSCALE(N), XUB(N) 

      EXTERNAL   ROSBRK 

! 

      DATA XGUESS/-1.2E0, 1.0E0/ 

      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 

!                                 All the bounds are provided 

      ITP = 0 

!                                 Default parameters are used 

      IPARAM(1) = 0 

!                                 Minimize Rosenbrock function using 

!                                 initial guesses of -1.2 and 1.0 

      CALL BCONF (ROSBRK, ITP, XLB, XUB, X, XGUESS=XGUESS,  & 

                 iparam=iparam, FVALUE=F) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 

! 

99999 FORMAT ('  The solution is ', 6X, 2F8.3, //, '  The function ', & 

            'value is ', F8.3, //, '  The number of iterations is ', & 

            10X, I3, /, '  The number of function evaluations is ', & 

            I3, /, '  The number of gradient evaluations is ', I3) 

! 

      END 

! 

      SUBROUTINE ROSBRK (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 

! 
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      RETURN 

      END 

Output 
 

The solution is          0.500   0.250 

 

The function value is    0.250 

 

The number of iterations is            24 

The number of function evaluations is  34 

The number of gradient evaluations is  26 

BCONG 
Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton 

method and a user-supplied gradient. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is  

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the gradient is evaluated.   (Input) 

X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

 GRAD must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

1 User will supply all the bounds. 

2 All variables are nonnegative. 

3 All variables are nonpositive. 
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4 User supplies only the bounds on 1st variable, all other 

variables will have the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the gradient and the distance between two points. In 

the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  

FSCALE is used mainly in scaling the gradient. In the absence of other information, set 

FSCALE to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  

See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL BCONG (FCN, GRAD, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCONG and D_BCONG. 
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FORTRAN 77 Interface 

Single: CALL BCONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, 

IPARAM, RPARAM, X, FVALUE) 

Double: The double precision name is DBCONG. 

Description 

The routine BCONG uses a quasi-Newton method and an active set strategy to solve minimization 

problems subject to simple bounds on the variables. The problem is stated as follows: 

 min
nx

f x
R  

subject to  l ≤ x ≤ u 

From a given starting point x
c
, an active set IA, which contains the indices of the variables at their 

bounds, is built. A variable is called a ―free variable‖ if it is not in the active set. The routine then 

computes the search direction for the free variables according to the formula 

d = B-1
 g

c
 

where B is a positive definite approximation of the Hessian and g
c
 is the gradient evaluated at x

c
; 

both are computed with respect to the free variables. The search direction for the variables in IA is 

set to zero. A line search is used to find a new point x
n
 , 

x
n
 = x

c
 + λd, λ ∈ (0, 1] 

such that  

f (x
n
) ≤ f (x

c
) + αg

T
 d, α ∈ (0, 0.5) 

Finally, the optimality conditions 

||g(xi)|| ≤ ɛ, li < xi< ui 

g(xi) < 0, xi = ui 

g(xi) > 0, xi = li 

are checked, where ɛ is a gradient tolerance. When optimality is not achieved, B is updated 

according to the BFGS formula: 

T T

T T

Bss B yy
B B

s Bs y s
  

 

where s = x
n
  x

c
 and y = g

n
  g

c
. Another search direction is then computed to begin the next 

iteration. 

The active set is changed only when a free variable hits its bounds during an iteration or the 

optimality condition is met for the free variables but not for all variables in IA, the active set. In 

the latter case, a variable that violates the optimality condition will be dropped out of IA. For more 

details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For more 

detailed information on active set strategy, see Gill and Murray (1976). 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of B2ONG/DB2ONG. The 

reference is: 

CALL B2ONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, 

IPARAM, RPARAM, X, FVALUE, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length N * (2 * N + 8). WK contains the following 

information on output: The second N locations contain the last step 

taken. The third N locations contain the last Newton step. The fourth N 

locations contain an estimate of the gradient at the solution. The final 

N
2
 locations contain a BFGS approximation to the Hessian at the 

solution.  Only the lower triangular portion of the matrix is stored in 

WK.  The values returned in the upper triangle should be ignored. 

IWK — Work vector of length N stored in column order.  

2. Informational errors 

Type Code 

3 1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 

4 2 The iterates appear to be converging to a noncritical point. 

4  3 Maximum number of iterations exceeded. 

4 4 Maximum number of function evaluations exceeded. 

4 5 Maximum number of gradient evaluations exceeded. 

4 6 Five consecutive steps have been taken with the maximum step 

length. 

2 7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 

progress and is not near a solution, or  STEPTL is too big. 

3 8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for BCONG occurs when the norm of the gradient is less than 

the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONG 

occurs when the scaled distance between the last two steps is less than the step 

tolerance (RPARAM(2)). 

4. If the default parameters are desired for BCONG, then set IPARAM (1) to zero and call 

the routine BCONG. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling BCONG: 
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CALL U4INF (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 

nondefault values need to be set above. 

 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 

Default: 400. 

IPARAM(6) = Hessian initialization parameter. 

If IPARAM (6) = 0, the Hessian is initialized to the identity matrix; 

otherwise, it is initialized to a diagonal matrix containing 

   2max , s if t f s
 

 on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE. 

Default: 0. 

IPARAM(7) = Maximum number of Hessian evaluations. 

Default: Not used in BCONG. 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as 

 
  

max ,1/

max ,

i i i

s

g x s

f x f



 

 where g =∇f (x), s = XSCALE, and fs = FSCALE. 

Default: 
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3, 
 

 in double where ɛ is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is 

computed as 

 max ,1/

i i

i i

x y

x s



 

 where s = XSCALE. 

Default: ɛ2/3
 where ɛ is the machine precision. 

RPARAM(3) = Relative function tolerance. 

Default: Not used in BCONG. 

RPARAM(4) = Absolute function tolerance. 

Default: Not used in BCONG. 

RPARAM(5) = False convergence tolerance. 

Default: Not used in BCONG. 

RPARAM(6) = Maximum allowable step size. 

Default: 1000 max(ɛ1, ɛ2) where 

 
2

1 1

n

i ii
s t


 

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 

Default: based on the initial scaled Cauchy step. 

 If double precision is required, then DU4INF is called and RPARAM is declared double 

precision. 

5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The problem 
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2 22

2 1 1

1

2

min 100 1

subject to 2 0.5

1 2

f x x x x

x

x

   

  

  
 

is solved with an initial guess (1.2, 1.0), and default values for parameters. 
 

      USE BCONG_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=2) 

! 

      INTEGER    IPARAM(7), ITP, L, NOUT 

      REAL       F, X(N), XGUESS(N), XLB(N), XUB(N) 

      EXTERNAL   ROSBRK, ROSGRD 

! 

      DATA XGUESS/-1.2E0, 1.0E0/ 

      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 

!                                 All the bounds are provided 

      ITP = 0 

!                                 Default parameters are used 

      IPARAM(1) = 0 

!                                 Minimize Rosenbrock function using 

!                                 initial guesses of -1.2 and 1.0 

      CALL BCONG (ROSBRK, ROSGRD, ITP, XLB, XUB, X, XGUESS=XGUESS, & 

                 IPARAM=IPARAM, FVALUE=F) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 

! 

99999 FORMAT ('  The solution is ', 6X, 2F8.3, //, '  The function ', & 

            'value is ', F8.3, //, '  The number of iterations is ', & 

            10X, I3, /, '  The number of function evaluations is ', & 

            I3, /, '  The number of gradient evaluations is ', I3) 

! 

      END 

! 

      SUBROUTINE ROSBRK (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 

! 

      RETURN 

      END 

! 

      SUBROUTINE ROSGRD (N, X, G) 

      INTEGER    N 

      REAL       X(N), G(N) 

! 

      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 

      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 

! 
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      RETURN 

      END 

Output 
 

The solution is          0.500   0.250 

 

The function value is    0.250 

 

The number of iterations is            22 

The number of function evaluations is  32 

The number of gradient evaluations is  23 

BCODH 
Minimizes a function of N variables subject to bounds on the variables using a modified Newton 

method and a finite-difference Hessian. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is  

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the gradient is evaluated.   (Input) 

X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

 GRAD must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

 0   User will supply all the bounds.  

 1  All variables are nonnegative. 
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 2  All variables are nonpositive. 

 3  User supplies only the bounds on 1st variable, all other variables will have 

 the same bounds. 

XLB — Vector of length N containing the lower bounds on the variables.   (Input) 

XUB — Vector of length N containing the upper bounds on the variables.   (Input) 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the gradient and the distance between two points. In 

the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  

FSCALE is used mainly in scaling the gradient. In the absence of other information, set 

FSCALE to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  

See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL BCODH (FCN, GRAD, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCODH and D_BCODH. 

FORTRAN 77 Interface 

Single: CALL BCODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, 

IPARAM, RPARAM, X, FVALUE) 
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Double: The double precision name is DBCODH. 

Description 

The routine BCODH uses a modified Newton method and an active set strategy to solve 

minimization problems subject to simple bounds on the variables. The problem is stated as 

 min
nx

f x
R  

subject to l ≤ x ≤ u 

From a given starting point x
c
, an active set IA, which contains the indices of the variables at their 

bounds, is built. A variable is called a ―free variable‖ if it is not in the active set. The routine then 

computes the search direction for the free variables according to the formula 

d = H-1
 g

c
 

where H is the Hessian and g
c
 is the gradient evaluated at x

c
; both are computed with respect to the 

free variables. The search direction for the variables in IA is set to zero. A line search is used to 

find a new point x
n
 , 

x
n
 = x

c
 + λd, λ ∈ (0, 1] 

such that  

f (x
n
) ≤ f (x

c
) + αg

T
 d, α ∈ (0, 0.5) 

Finally, the optimality conditions 

||g(xi)|| ≤ ɛ, li < xi < ui 

g(xi) < 0, xi = ui 

g(xi) > 0, xi = li 

are checked where ɛ is a gradient tolerance. When optimality is not achieved, another search 

direction is computed to begin the next iteration. This process is repeated until the optimality 

criterion is met. 

The active set is changed only when a free variable hits its bounds during an iteration or the 

optimality condition is met for the free variables but not for all variables in IA, the active set. In 

the latter case, a variable that violates the optimality condition will be dropped out of IA. For more 

details on the modified Newton method and line search, see Dennis and Schnabel (1983). For 

more detailed information on active set strategy, see Gill and Murray (1976). 

Since a finite-difference method is used to estimate the Hessian for some single precision 

calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a 

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 

exact Hessian can be easily provided, routine BCOAH should be used instead. 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of B2ODH/DB2ODH. The 

reference is: 

CALL B2ODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, 

XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length N * (N + 8). WK contains the following 

information on output: The second N locations contain the last step 

taken. The third N locations contain the last Newton step. The fourth N 

locations contain an estimate of the gradient at the solution. The final 

N
2
 locations contain the Hessian at the approximate solution. 

IWK — Integer work vector of length N. 

2. Informational errors 

Type Code 

3 1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 

4 2 The iterates appear to be converging to a noncritical point. 

4 3 Maximum number of iterations exceeded. 

4 4 Maximum number of function evaluations exceeded. 

4 5 Maximum number of gradient evaluations exceeded. 

4 6 Five consecutive steps have been taken with the maximum step 

length. 

2 7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 

progress and is not near a solution, or STEPTL is too big. 

4 7 Maximum number of Hessian evaluations exceeded. 

3. The first stopping criterion for BCODH occurs when the norm of the gradient is less than 

the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCODH 

occurs when the scaled distance between the last two steps is less than the step 

tolerance (RPARAM(2)). 

4. If the default parameters are desired for BCODH, then set IPARAM(1) to zero and call the 

routine BCODH. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM; then the following steps should be taken before calling BCODH: 

CALL U4INF (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 
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Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 

nondefault values need to be set above. 

 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 

Default: 400. 

IPARAM(6) = Hessian initialization parameter. 

Default: Not used in BCODH. 

IPARAM(7) = Maximum number of Hessian evaluations. 

Default: 100. 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as 

 
  

max ,1/

max ,

i i i

s

g x s

f x f



 

 where g = ∇f (x), s = XSCALE, and fs = FSCALE. 

Default: 

3, 
 

 in double where ɛ is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is 

computed as 
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 max ,1/

i i

i i

x y

x s



 

 where s = XSCALE. 

Default: ɛ2/3
 where ɛ is the machine precision. 

RPARAM(3) = Relative function tolerance. 

Default: max(10-10
, ɛ2/3

), max (10-20
, ɛ2/3

) in double where ɛ is the 

machine precision. 

RPARAM(4) = Absolute function tolerance. 

Default: Not used in BCODH. 

RPARAM(5) = False convergence tolerance. 

Default: 100ɛ where ɛ is the machine precision. 

RPARAM(6) = Maximum allowable step size. 

Default: 1000 max(ɛ1, ɛ2) where 

 
2

1 1

n

i ii
s t


 

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 

Default: based on the initial scaled Cauchy step. 

 If double precision is required, then DU4INF is called and RPARAM is declared double 

precision. 

5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The problem 

     
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5

1 2

f x x x x

x

x

   

  

  
 

is solved with an initial guess (1.2, 1.0), and default values for parameters. 
 

      USE BCODH_INT 

      USE UMACH_INT 
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      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=2) 

! 

      INTEGER    IP, IPARAM(7), L, NOUT 

      REAL       F, X(N), XGUESS(N), XLB(N), XUB(N) 

      EXTERNAL   ROSBRK, ROSGRD 

! 

      DATA XGUESS/-1.2E0, 1.0E0/ 

      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 

! 

      IPARAM(1) = 0 

      IP        = 0 

!                                 Minimize Rosenbrock function using 

!                                 initial guesses of -1.2 and 1.0 

      CALL BCODH (ROSBRK, ROSGRD, IP, XLB, XUB, X, XGUESS=XGUESS, & 

                 IPARAM=IPARAM, FVALUE=F) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 

! 

99999 FORMAT ('  The solution is ', 6X, 2F8.3, //, '  The function ', & 

            'value is ', F8.3, //, '  The number of iterations is ', & 

            10X, I3, /, '  The number of function evaluations is ', & 

            I3, /, '  The number of gradient evaluations is ', I3) 

! 

      END 

! 

      SUBROUTINE ROSBRK (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 

! 

      RETURN 

      END 

      SUBROUTINE ROSGRD (N, X, G) 

      INTEGER    N 

      REAL       X(N), G(N) 

! 

      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 

      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 

! 

      RETURN 

      END 

Output 
 

The solution is          0.500   0.250 

 

The function value is    0.250 

 

The number of iterations is            17 

The number of function evaluations is  26 

The number of gradient evaluations is  18 
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BCOAH 
Minimizes a function of N variables subject to bounds on the variables using a modified Newton 

method and a user-supplied Hessian. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is  

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the gradient is evaluated.   (Input) 

X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

 GRAD must be declared EXTERNAL in the calling program. 

HESS — User-supplied subroutine to compute the Hessian at the point X. The usage is  

CALL HESS (N, X, H, LDH), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the Hessian is evaluated.   (Input)  

X should not be changed by HESS. 

H – The Hessian evaluated at the point X.   (Output) 

LDH – Leading dimension of H exactly as specified in the dimension statement 

of the calling program.   (Input) 

 HESS must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBYTE Action 

1 User will supply all the bounds. 

2 All variables are nonnegative. 
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3 User supplies only the bounds on 1st variable, all other 

variables will have the same bounds. 

XLB — Vector of length N containing the lower bounds on the variables.   (Input) 

XUB — Vector of length N containing the upper bounds on the variables.   (Input) 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the gradient and the distance between two points. In 

the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  

FSCALE is used mainly in scaling the gradient. In the absence of other information, set 

FSCALE to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  

See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL BCOAH (FCN, GRAD, HESS, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCOAH and D_BCOAH. 

FORTRAN 77 Interface 

Single: CALL BCOAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 

FSCALE, IPARAM, RPARAM, X, FVALUE) 
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Double: The double precision name is DBCOAH. 

Description 

The routine BCOAH uses a modified Newton method and an active set strategy to solve 

minimization problems subject to simple bounds on the variables. The problem is stated as 

follows: 

 min
nx

f x
R  

subject to l ≤ x ≤ u 

From a given starting point x
c
, an active set IA, which contains the indices of the variables at their 

bounds, is built. A variable is called a ―free variable‖ if it is not in the active set. The routine then 

computes the search direction for the free variables according to the formula 

d = H-1
 g

c
 

where H is the Hessian and g
c
 is the gradient evaluated at x

c
; both are computed with respect to the 

free variables. The search direction for the variables in IA is set to zero. A line search is used to 

find a new point x
n
 , 

x
n
 = x

c
 + λd, λ ∈ (0, 1] 

such that  

f(x
n
) ≤ f(x

c
) + αg

T
 d, α ∈ (0, 0.5) 

Finally, the optimality conditions 

||g(xi)|| ≤ ɛ, li < xi< ui 

g(xi) < 0, xi = ui 

g(xi) > 0, xi = li 

are checked where ɛ is a gradient tolerance. When optimality is not achieved, another search 

direction is computed to begin the next iteration. This process is repeated until the optimality 

criterion is met. 

The active set is changed only when a free variable hits its bounds during an iteration or the 

optimality condition is met for the free variables but not for all variables in IA, the active set. In 

the latter case, a variable that violates the optimality condition will be dropped out of IA. For more 

details on the modified Newton method and line search, see Dennis and Schnabel (1983). For 

more detailed information on active set strategy, see Gill and Murray (1976). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2OAH/DB2OAH. The 

reference is: 

CALL B2OAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB, XUB, 

XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK) 
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The additional arguments are as follows: 

WK — Work vector of length N * (N + 8). WK contains the following 

information on output: The second N locations contain the last step 

taken. The third N locations contain the last Newton step. The fourth N 

locations contain an estimate of the gradient at the solution. The final 

N
2
 locations contain the Hessian at the approximate solution. 

IWK — Work vector of length N. 

2. Informational errors 

Type Code 

3 1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 

4 2 The iterates appear to be converging to a noncritical point. 

4 3 Maximum number of iterations exceeded. 

4  4 Maximum number of function evaluations exceeded. 

4 5 Maximum number of gradient evaluations exceeded. 

4 6 Five consecutive steps have been taken with the maximum step 

length. 

2 7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 

progress and is not near a solution, or STEPTL is too big. 

4 7 Maximum number of Hessian evaluations exceeded. 

3 8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for BCOAH occurs when the norm of the gradient is less than 

the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCOAH 

occurs when the scaled distance between the last two steps is less than the step 

tolerance (RPARAM(2)). 

4. If the default parameters are desired for BCOAH, then set IPARAM(1) to zero and call the 

routine BCOAH. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling BCOAH: 

CALL U4INF (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 

nondefault values need to be set above. 
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 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 

Default: 400. 

IPARAM(6) = Hessian initialization parameter. 

Default: Not used in BCOAH. 

IPARAM(7) = Maximum number of Hessian evaluations. 

Default: 100. 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as 

 
  

max ,1/

max ,

i i i

s

g x s

f x f



 

 where g = ∇f(x), s = XSCALE, and fs = FSCALE. 

Default: 

3, 
 

 in double where ɛ is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is 

computed as 

 max ,1/

i i

i i

x y

x s
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 where s = XSCALE. 

Default: ɛ2/3
 where ɛ is the machine precision. 

RPARAM(3) = Relative function tolerance. 

Default: max(10-10
, ɛ2/3

), max (10-20
, ɛ2/3

) in double where ɛ is the 

machine precision. 

RPARAM(4) = Absolute function tolerance. 

Default: Not used in BCOAH. 

RPARAM(5) = False convergence tolerance. 

Default: 100ɛ where ɛ is the machine precision. 

RPARAM(6) = Maximum allowable step size. 

Default: 1000 max(ɛ1, ɛ2) where 

 
2

1 1

n

i ii
s t


 

 ɛ2 = || s ||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 

Default: based on the initial scaled Cauchy step. 

 If double precision is required, then DU4INF is called and RPARAM is declared 

double precision. 

5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The problem 

     
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5

1 2

f x x x x

x

x

   

  

  
 

is solved with an initial guess (1.2, 1.0), and default values for parameters. 
 

      USE BCOAH_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=2) 
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! 

      INTEGER    IP, IPARAM(7), L, NOUT 

      REAL       F, X(N), XGUESS(N), XLB(N), XUB(N) 

      EXTERNAL   ROSBRK, ROSGRD, ROSHES 

! 

      DATA XGUESS/-1.2E0, 1.0E0/ 

      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 

! 

      IPARAM(1) = 0 

      IP        = 0 

!                                 Minimize Rosenbrock function using 

!                                 initial guesses of -1.2 and 1.0 

      CALL BCOAH (ROSBRK, ROSGRD, ROSHES, IP, XLB, XUB, X, & 

                 XGUESS=XGUESS,IPARAM=IPARAM, FVALUE=F) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7) 

! 

99999 FORMAT ('  The solution is ', 6X, 2F8.3, //, '  The function ', & 

            'value is ', F8.3, //, '  The number of iterations is ', & 

            10X, I3, /, '  The number of function evaluations is ', & 

            I3, /, '  The number of gradient evaluations is ', I3, /, & 

            '  The number of Hessian evaluations is  ', I3) 

! 

      END 

! 

      SUBROUTINE ROSBRK (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 

! 

      RETURN 

      END 

! 

      SUBROUTINE ROSGRD (N, X, G) 

      INTEGER    N 

      REAL       X(N), G(N) 

! 

      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 

      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 

! 

      RETURN 

      END 

! 

      SUBROUTINE ROSHES (N, X, H, LDH) 

      INTEGER    N, LDH 

      REAL       X(N), H(LDH,N) 

! 

      H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0 

      H(2,1) = -4.0E2*X(1) 

      H(1,2) = H(2,1) 

      H(2,2) = 2.0E2 

! 

      RETURN 

      END 
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Output 
 

The solution is          0.500   0.250 

 

The function value is    0.250 

 

The number of iterations is            18 

The number of function evaluations is  29 

The number of gradient evaluations is  19 

The number of Hessian evaluations is   18 

BCPOL 
Minimizes a function of N variables subject to bounds on the variables using a direct search 

complex algorithm. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on the first, variable. All other variables will 

have the same bounds. 

XLB — Vector of length N containing the lower bounds on the variables.   (Input, if  

IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on the variables.   (Input, if  

IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Real vector of length N containing the best estimate of the minimum found.   (Output) 
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Optional Arguments 

N — The number of variables.   (Input) 

Default: N = SIZE (XGUESS,1). 

XGUESS — Real vector of length N that contains an initial guess to the minimum.   (Input) 

Default: XGUESS = 0.0. 

FTOL — First convergence criterion.   (Input)  

The algorithm stops when a relative error in the function values is less than FTOL, i.e. 

when (F(worst)  F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and F(best) are 

the function values of the current worst and best point, respectively. Second 

convergence criterion. The algorithm stops when the standard deviation of the function 

values at the 2 * N current points is less than FTOL. If the subroutine terminates 

prematurely, try again with a smaller value FTOL. 

Default: FTOL = 1.0e-4 for single and 1.0d-8 for double precision. 

MAXFCN — On input, maximum allowed number of function evaluations.   (Input/ Output) 

On output, actual number of function evaluations needed. 

Default: MAXFCN = 300. 

FVALUE — Function value at the computed solution.   (Output) 

FORTRAN 90 Interface 

Generic: CALL BCPOL (FCN, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCPOL and D_BCPOL. 

FORTRAN 77 Interface 

Single: CALL BCPOL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL, MAXFCN, X, FVALUE) 

Double: The double precision name is DBCPOL. 

Description 

The routine BCPOL uses the complex method to find a minimum point of a function of n variables. 

The method is based on function comparison; no smoothness is assumed. It starts with 2n points 

x1, x2, …, x2n. At each iteration, a new point is generated to replace the worst point xj, which has 

the largest function value among these 2n points. The new point is constructed by the following 

formula: 

xk = c + α(c  xj) 

where  

1

2 1
i j ic x

n





 

and α (α > 0) is the reflection coefficient. 
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When xk is a best point, that is, when f (xk) ≤ f (xi) for i = 1, …, 2n, an expansion point is computed 

xe = c + β(xk  c), where β(β > 1) is called the expansion coefficient. If the new point is a worst 

point, then the complex would be contracted to get a better new point. If the contraction step is 

unsuccessful, the complex is shrunk by moving the vertices halfway toward the current best point. 

Whenever the new point generated is beyond the bound, it will be set to the bound. This procedure 

is repeated until one of the following stopping criteria is satisfied: 

Criterion 1: 

fbest  fworst ≤ ɛf(1. + |fbest|) 

Criterion 2:  

2
2

1 2

1

( )
2

n
n

jj
i f

i

f
f

n






 



 

where fi = f(xi), fj = f(xj), and ɛf is a given tolerance. For a complete description, see Nelder and 

Mead (1965) or Gill et al. (1981). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2POL/DB2POL. The 

reference is: 

CALL B2POL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL, 

MAXFCN, X, FVALUE, WK) 

The additional argument is: 

WK — Real work vector of length 2 * N**2 + 5 * N 

2. Informational error 

Type Code 

3 1 The maximum number of function evaluations is exceeded. 

3. Since BCPOL uses only function-value information at each step to determine a new 

approximate minimum, it could be quite inefficient on smooth problems compared to 

other methods such as those implemented in routine BCONF, which takes into account 

derivative information at each iteration. Hence, routine BCPOL should only be used as a 

last resort. Briefly, a set of 2 * N points in an N-dimensional space is called a complex. 

The minimization process iterates by replacing the point with the largest function value 

by a new point with a smaller function value. The iteration continues until all the points 

cluster sufficiently close to a minimum. 

Example 

The problem 
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2 22

2 1 1

1

2

min 100 1

subject to 2 0.5

1 2

f x x x x

x

x

   

  

  
 

is solved with an initial guess (1.2, 1.0), and the solution is printed. 
 

      USE BCPOL_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Variable declarations 

      INTEGER    N 

      PARAMETER  (N=2) 

! 

      INTEGER    IBTYPE, K, NOUT 

      REAL       FTOL, FVALUE, X(N), XGUESS(N), XLB(N), XUB(N) 

      EXTERNAL   FCN 

! 

!                                 Initializations 

!                                 XGUESS = (-1.2,  1.0) 

!                                 XLB    = (-2.0, -1.0) 

!                                 XUB    = ( 0.5,  2.0) 

      DATA  XGUESS/-1.2, 1.0/, XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 

! 

      FTOL   = 1.0E-5 

      IBTYPE = 0 

! 

      CALL BCPOL (FCN, IBTYPE, XLB, XUB, X, xguess=xguess, ftol=ftol, & 

                 fvalue=fvalue) 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) (X(K),K=1,N), FVALUE 

99999 FORMAT ('  The best estimate for the minimum value of the', /, & 

            '  function is X = (', 2(2X,F4.2), ')', /, '  with ', & 

            'function value FVALUE = ', E12.6) 

! 

      END 

!                                 External function to be minimized 

      SUBROUTINE FCN (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = 100.0*(X(2)-X(1)*X(1))**2 + (1.0-X(1))**2 

      RETURN 

      END 

Output 
 

The best estimate for the minimum value of the 

function is X = (  0.50  0.25) 

with function value FVALUE = 0.250002E+00 
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BCLSF 

 

Solves a nonlinear least squares problem subject to bounds on the variables using a modified 

Levenberg-Marquardt algorithm and a finite-difference Jacobian. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  

X should not be changed by FCN. 

F – The computed function at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have 

 the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Vector of length N containing the approximate solution.   (Output) 
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Optional Arguments 

N — Number of variables.   (Input)  

N must be less than or equal to M. 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the gradient and the distance between two points. By 

default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4. 

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.   

(Input)  

FSCALE is used mainly in scaling the gradient. In the absence of other information, set 

all entries to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM= 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  

See Comment 4. 

FVEC — Vector of length M containing the residuals at the approximate solution.   (Output) 

FJAC — M by N matrix containing a finite difference approximate Jacobian at the 

approximate solution.   (Output) 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFJAC = SIZE (FJAC ,1). 

FORTRAN 90 Interface 

Generic: CALL BCLSF (FCN, M, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCLSF and D_BCLSF. 

FORTRAN 77 Interface 

Single: CALL BCLSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, 

IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC) 

Double: The double precision name is DBCLSF. 
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Description 

The routine BCLSF uses a modified Levenberg-Marquardt method and an active set strategy to 

solve nonlinear least squares problems subject to simple bounds on the variables. The problem is 

stated as follows: 

     
2

1

1 1
min

2 2n

m
T

i
x i

F x F x f x
 

 
R

 

subject to l ≤ x ≤ u 

where m ≥ n, F : R
n
→ R

m
, and fi(x) is the i-th component function of F(x). From a given starting 

point, an active set IA, which contains the indices of the variables at their bounds, is built. A 

variable is called a ―free variable‖ if it is not in the active set. The routine then computes the 

search direction for the free variables according to the formula 

d =  (J
T
 J + μI) -

1
 J

T
 F 

where μ is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian with respect to the 

free variables. The search direction for the variables in IA is set to zero. The trust region approach 

discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the optimality 

conditions are checked. The conditions are 

||g(xi)|| ≤ ɛ, li < xi< ui 

g(xi) < 0,  xi = ui 

g(xi) > 0, xi = li 

where ɛ is a gradient tolerance. This process is repeated until the optimality criterion is achieved. 

The active set is changed only when a free variable hits its bounds during an iteration or the 

optimality condition is met for the free variables but not for all variables in IA, the active set. In 

the latter case, a variable that violates the optimality condition will be dropped out of IA. For more 

detail on the Levenberg-Marquardt method, see Levenberg (1944), or Marquardt (1963). For more 

detailed information on active set strategy, see Gill and Murray (1976). 

Since a finite-difference method is used to estimate the Jacobian for some single precision 

calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a 

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 

exact Jacobian can be easily provided, routine BCLSJ should be used instead. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2LSF/DB2LSF. The 

reference is: 

CALL B2LSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 

FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, 

IWK) 

The additional arguments are as follows: 
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WK — Work vector of length 11 * N + 3 * M  1. WK contains the 

following information on output: The second N locations contain the 

last step taken. The third N locations contain the last Gauss-Newton 

step. The fourth N locations contain an estimate of the gradient at the 

solution. 

IWK — Work vector of length 2 * N containing the permutations used in the 

QR factorization of the Jacobian at the solution. 

2. Informational errors 

Type Code 

3 1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 

3 2 The iterates appear to be converging to a noncritical point. 

4 3 Maximum number of iterations exceeded. 

4 4 Maximum number of function evaluations exceeded. 

3  6 Five consecutive steps have been taken with the maximum step 

length. 

2 7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 

progress and is not near a solution, or STEPTL is too big. 

3. The first stopping criterion for BCLSF occurs when the norm of the function is less than 

the absolute function tolerance. The second stopping criterion occurs when the norm of 

the scaled gradient is less than the given gradient tolerance. The third stopping criterion 

for BCLSF occurs when the scaled distance between the last two steps is less than the 

step tolerance. 

4. If the default parameters are desired for BCLSF, then set IPARAM(1) to zero and call the 

routine BCLSF. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling BCLSF: 

CALL U4LSF (IPARAM, RPARAM) 

 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only 

nondefault values need to be set above. 

 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 
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IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 

Default: 100. 

IPARAM(6) = Internal variable scaling flag. 

If IPARAM(6) = 1, then the values for XSCALE are set internally. 

Default: 1. 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as 

 

 
2

2

max ,1/i i ig x s

F x



 

 where 

      
2T

i s ii
g J x F x f 

 

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE. 

Default: 

3, 
 

 in double where ɛ is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is 

computed as 

 max ,1/

i i

i i

x y

x s



 

 where s = XSCALE. 

Default: ɛ2/3
 where ɛ is the machine precision. 



 

 

IMSL MATH LIBRARY Chapter 8: Optimization  1457 

     

     

 

RPARAM(3) = Relative function tolerance. 

Default: max(10 ɛ2/3
· max(10-20

 , ɛ2/3
) in double where ɛ is the 

machine precision. 

RPARAM(4) = Absolute function tolerance. 

Default: max (10-20
 ɛ2

), max(10-40
, ɛ2

) in double where ɛ is the 

machine precision. 

RPARAM(5) = False convergence tolerance. 

Default: 100 ɛ where ɛ is the machine precision. 

RPARAM(6) = Maximum allowable step size. 

Default: 1000 max(ɛ1, ɛ2) where  

 
2

1 1

n

i ii
s t


 

 

 ɛ2 = ||s||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 

Default: based on the initial scaled Cauchy step. 

 If double precision is desired, then DU4LSF is called and RPARAM is declared double 

precision. 

5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ―Error Handling‖ in the Introduction. 

Example 

The nonlinear least squares problem 

 
2

2
2

1

1
min

2
i

x i

f x
 


R

 

subject to 2 ≤ x1 ≤ 0.5 

1 ≤ x2 ≤ 2 

where 

       2
1 2 1 2 110  and  1f x x x f x x   

 

is solved with an initial guess (1.2, 1.0) and default values for parameters. 
 

      USE BCLSF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declaration of variables 
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      INTEGER    M, N 

      PARAMETER  (M=2, N=2) 

! 

      INTEGER    IPARAM(7), ITP, NOUT 

      REAL       FSCALE(M), FVEC(M), X(N), XGUESS(N), XLB(N), XS(N), XUB(N) 

      EXTERNAL   ROSBCK 

!                                 Compute the least squares for the 

!                                 Rosenbrock function. 

      DATA XGUESS/-1.2E0, 1.0E0/ 

      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 

!                                 All the bounds are provided 

      ITP = 0 

!                                 Default parameters are used 

      IPARAM(1) = 0 

! 

      CALL BCLSF (ROSBCK, M, ITP, XLB, XUB, X, xguess=xguess, & 

                 iparam=iparam, fvec=fvec) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4) 

! 

99999 FORMAT ('  The solution is ', 2F9.4, //, '  The function ', & 

            'evaluated at the solution is ', /, 18X, 2F9.4, //, & 

            '  The number of iterations is ', 10X, I3, /, '  The ', & 

            'number of function evaluations is ', I3, /) 

      END 

! 

      SUBROUTINE ROSBCK (M, N, X, F) 

      INTEGER    M, N 

      REAL       X(N), F(M) 

! 

      F(1) = 1.0E1*(X(2)-X(1)*X(1)) 

      F(2) = 1.0E0 - X(1) 

      RETURN 

      END 

Output 
 

The solution is    0.5000   0.2500 

 

The function evaluated at the solution is 

0.0000   0.5000 

 

The number of iterations is            15 

The number of function evaluations is  20 
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BCLSJ 

 

Solves a nonlinear least squares problem subject to bounds on the variables using a modified 

Levenberg-Marquardt algorithm and a user-supplied Jacobian. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  

X should not be changed by FCN. 

F – The computed function at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

JAC — User-supplied subroutine to evaluate the Jacobian at a point X. The usage is  

CALL JAC (M, N, X, FJAC, LDFJAC), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  

X should not be changed by FCN. 

FJAC – The computed M by N Jacobian at the point X.   (Output) 

LDFJAC – Leading dimension of FJAC.   (Input) 

 JAC must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0 User will supply all the bounds. 

1 All variables are nonnegative. 

2 All variables are nonpositive. 
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3 User supplies only the bounds on 1st variable, all other 

variables will have the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 

N — Number of variables.   (Input)  

N must be less than or equal to M. 

Default: N = SIZE (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 

Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

XSCALE is used mainly in scaling the gradient and the distance between two points. By 

default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4. 

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.   

(Input)  

FSCALE is used mainly in scaling the gradient. In the absence of other information, set 

all entries to 1.0. 

Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  

Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 

Default: IPARAM= 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  

See Comment 4. 

FVEC — Vector of length M containing the residuals at the approximate solution.   (Output) 

FJAC — M by N matrix containing a finite difference approximate Jacobian at the 

approximate solution.   (Output) 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFJAC SIZE = (FJAC,1). 
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FORTRAN 90 Interface 

Generic: CALL BCLSJ (FCN, JAC, M, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCLSJ and D_BCLSJ. 

FORTRAN 77 Interface 

Single: CALL BCLSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, 

IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC) 

Double: The double precision name is DBCLSJ. 

Description 

The routine BCLSJ uses a modified Levenberg-Marquardt method and an active set strategy to 

solve nonlinear least squares problems subject to simple bounds on the variables. The problem is 

stated as follows: 

     
2

1

1 1
min

2 2n

m
T

i
x i

F x F x f x
 

 
R

 

subject to l ≤ x ≤ u 

where m ≥ n, F : R
n
→ R

m
, and fi(x) is the i-th component function of F(x). From a given starting 

point, an active set IA, which contains the indices of the variables at their bounds, is built. A 

variable is called a ―free variable‖ if it is not in the active set. The routine then computes the 

search direction for the free variables according to the formula 

d =  (J
T
 J + μI) -

1
 J

T
 F 

where is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian with respect to the 

free variables. The search direction for the variables in IA is set to zero. The trust region approach 

discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the optimality 

conditions are checked. The conditions are 

||g(xi)|| ≤ ɛ, lt < xt< ut 

g(xt) < 0,  xt = ut 

g(xt) > 0, xt = lt 

where ɛ is a gradient tolerance. This process is repeated until the optimality criterion is achieved. 

The active set is changed only when a free variable hits its bounds during an iteration or the 

optimality condition is met for the free variables but not for all variables in IA, the active set. In 

the latter case, a variable that violates the optimality condition will be dropped out of IA. For more 

detail on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt (1963). For more 

detailed information on active set strategy, see Gill and Murray (1976). 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of B2LSJ/DB2LSJ. The 

reference is: 

CALL B2LSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB, 

XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, 

LDFJAC, WK, IWK) 

The additional arguments are as follows: 

WK — Work vector of length 11 * N + 3 * M  1. WK contains the following 

information on output: The second N locations contain the last step 

taken. The third N locations contain the last Gauss-Newton step. The 

fourth N locations contain an estimate of the gradient at the solution. 

IWK — Work vector of length 2 * N containing the permutations used in the 

QR factorization of the Jacobian at the solution. 

2. Informational errors 

Type Code 

3 1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 

3 2 The iterates appear to be converging to a noncritical point. 

4 3 Maximum number of iterations exceeded. 

4 4 Maximum number of function evaluations exceeded. 

3 6 Five consecutive steps have been taken with the maximum step 

length. 

4 5 Maximum number of Jacobian evaluations exceeded. 

2 7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 

progress and is not near a solution, or STEPTL is too big. 

3. The first stopping criterion for BCLSJ occurs when the norm of the function is less than 

the absolute function tolerance. The second stopping criterion occurs when the norm of 

the scaled gradient is less than the given gradient tolerance. The third stopping criterion 

for BCLSJ occurs when the scaled distance between the last two steps is less than the 

step tolerance. 

4. If the default parameters are desired for BCLSJ, then set IPARAM(1) to zero and call the 

routine BCLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or 

RPARAM, then the following steps should be taken before calling BCLSJ: 

CALL U4LSF (IPARAM, RPARAM) 
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 Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only 

nondefault values need to be set above. 

 The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 

Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 

Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 

Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 

Default: 100. 

IPARAM(6) = Internal variable scaling flag. 

If IPARAM(6) = 1, then the values for XSCALE are set internally. 

Default: 1. 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as 

 

 
2

2

max ,1/i i ig x s

F x



 

 where 

      
2T

i s ii
g J x F x f 

 

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE. 

Default: 

3, 
 

 in double where ɛ is the machine precision. 
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RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step 

between two points x and y is computed as 

 max ,1/

i i

i i

x y

x s



 

 where s = XSCALE. 

Default: ɛ2/3
 where ɛ is the machine precision. 

RPARAM(3) = Relative function tolerance. 

Default: max(10-10
, ɛ2/3

), max(10-20
, ɛ2/3

) in double where ɛ is the 

machine precision. 

RPARAM(4) = Absolute function tolerance. 

Default: max (10-20
, ɛ2

), max(10-40
, ɛ2

) in double where ɛ is the 

machine precision. 

RPARAM(5) = False convergence tolerance. 

Default: 100ɛ where ɛ is the machine precision. 

RPARAM(6) = Maximum allowable step SIZE. 

Default: 1000 max(ɛ1, ɛ2) where 

 
2

1 1

n

i ii
s t


 

 

 ɛ2 = ||s||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 

Default: based on the initial scaled Cauchy step. 

 If double precision is desired, then DU4LSF is called and RPARAM is declared double 

precision. 

5. Users wishing to override the default print/stop attributes associated with error 

messages issued by this routine are referred to ERROR HANDLING in the Introduction. 

Example 

The nonlinear least squares problem 

 
2

2
2

1

1
min

2
i

x i

f x
 


R
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subject to 2 ≤ x1 ≤ 0.5 

1 ≤ x2 ≤ 2 

where 

       2
1 2 1 2 110  and  1f x x x f x x   

 

is solved with an initial guess ( 1.2, 1.0) and default values for parameters. 
 

      USE BCLSJ_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declaration of variables 

      INTEGER    LDFJAC, M, N 

      PARAMETER  (LDFJAC=2, M=2, N=2) 

! 

      INTEGER    IPARAM(7), ITP, NOUT 

      REAL       FVEC(M), RPARAM(7), X(N), XGUESS(N), XLB(N), XUB(N) 

      EXTERNAL   ROSBCK, ROSJAC 

!                                 Compute the least squares for the 

!                                 Rosenbrock function. 

      DATA XGUESS/-1.2E0, 1.0E0/ 

      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 

!                                 All the bounds are provided 

      ITP = 0 

!                                 Default parameters are used 

      IPARAM(1) = 0 

! 

      CALL BCLSJ (ROSBCK,ROSJAC,M,ITP,XLB,XUB,X,XGUESS=XGUESS, & 

                  IPARAM=IPARAM, FVEC=FVEC) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4) 

! 

99999 FORMAT ('  The solution is ', 2F9.4, //, '  The function ', & 

            'evaluated at the solution is ', /, 18X, 2F9.4, //, & 

            '  The number of iterations is ', 10X, I3, /, '  The ', & 

            'number of function evaluations is ', I3, /) 

      END 

! 

      SUBROUTINE ROSBCK (M, N, X, F) 

      INTEGER    M, N 

      REAL       X(N), F(M) 

! 

      F(1) = 1.0E1*(X(2)-X(1)*X(1)) 

      F(2) = 1.0E0 - X(1) 

      RETURN 

      END 

! 

      SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC) 

      INTEGER    M, N, LDFJAC 

      REAL       X(N), FJAC(LDFJAC,N) 

! 

      FJAC(1,1) = -20.0E0*X(1) 

      FJAC(2,1) = -1.0E0 
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      FJAC(1,2) = 10.0E0 

      FJAC(2,2) = 0.0E0 

      RETURN 

      END 

Output 
 

The solution is    0.5000   0.2500 

 

The function evaluated at the solution is 

0.0000   0.5000 

 

The number of iterations is            13 

The number of function evaluations is  21 

BCNLS 

 

Solves a nonlinear least-squares problem subject to bounds on the variables and general linear 

constraints. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 

M  Number of functions.   (Input) 

N  Number of variables.   (Input) 

X  Array of length N containing the point at which the function will be 

evaluated.   (Input) 

F  Array of length M containing the computed function at the point X.   (Output) 

 The routine FCN must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

C — MCON  N matrix containing the coefficients of the MCON general linear constraints.   

(Input) 

BL — Vector of length MCON containing the lower limit of the general constraints.   (Input). 

BU — Vector of length MCON containing the upper limit of the general constraints.   (Input). 
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IRTYPE — Vector of length MCON indicating the types of general constraints in the matrix C.   

(Input) 

Let R(I) = C(I, 1)*X(1) + … + C(I, N)*X(N). Then the value of IRTYPE(I) 

signifies the following: 

 IRTYPE(I)  I-th CONSTRAINT 

   0      BL(I).EQ.R(I).EQ.BU(I) 

   1     R(I).LE.BU(I) 

   2     R(I).GE.BL(I) 

   3     BL(I).LE.R(I).LE.BU(I) 

XLB — Vector of length N containing the lower bounds on variables; if there is no lower 

bound on a variable, then 1.0E30 should be set as the lower bound.   (Input) 

XUB — Vector of length N containing the upper bounds on variables; if there is no upper 

bound on a variable, then 1.0E30 should be set as the upper bound.   (Input) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 

N — Number of variables.   (Input) 

Default: N = SIZE (C,2). 

MCON — The number of general linear constraints for the system, not including simple 

bounds.   (Input) 

Default: MCON = SIZE (C,1). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 

program.   (Input) 

LDC must be at least MCON. 

Default: LDC = SIZE (C,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 

Default: XGUESS = 0.0. 

RNORM — The Euclidean length of components of the function f (x) after the approximate 

solution has been found.   (Output). 

ISTAT — Scalar indicating further information about the approximate solution X.   (Output) 

See the Comments section for a description of the tolerances and the vectors IPARAM 

and RPARAM. 

ISTAT Meaning 

1 The function f (x) has a length less than TOLF = RPARAM(1). 

This is the expected value for ISTAT when an actual zero 

value of f (x) is anticipated. 
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2 The function f (x) has reached a local minimum. This is the 

expected value for ISTAT when a nonzero value of f (x) is 

anticipated. 

3 A small change (absolute) was noted for the vector x. A full 

model problem step was taken. The condition for ISTAT = 

2 may also be satisfied, so that a minimum has been found. 

However, this test is made before the test for ISTAT = 2. 

4 A small change (relative) was noted for the vector x. A full 

model problem step was taken. The condition for ISTAT = 

2 may also be satisfied, so that a minimum has been found. 

However, this test is made before the test for ISTAT = 2. 

5 The number of terms in the quadratic model is being 

restricted by the amount of storage allowed for that 

purpose. It is suggested, but not required, that additional 

storage be given for the quadratic model parameters. This is 

accessed through the vector  

IPARAM, documented below. 

6 Return for evaluation of function and Jacobian if reverse  

communication is desired. See the Comments below. 

FORTRAN 90 Interface 

Generic: CALL BCNLS (FCN, M, C, BL, BU, IRTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCNLS and D_BCNLS. 

FORTRAN 77 Interface 

Single: CALL BCNLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE, XLB, XUB, XGUESS, X, 

RNORM, ISTAT) 

Double: The double precision name is DBCNLS. 

Description 

The routine BCNLS solves the nonlinear least squares problem 
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BCNLS is based on the routine DQED by R.J. Hanson and F.T. Krogh. The section of BCNLS that 

approximates, using finite differences, the Jacobian of f(x) is a modification of JACBF by D.E. 

Salane. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of B2NLS/DB2NLS. The 

reference is: 

CALL B2NLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE, XLB, 

XUB, XGUESS, X, RNORM,ISTAT, IPARAM, RPARAM, JAC, F, 

FJ, LDFJ, IWORK, LIWORK, WORK, LWORK) 

The additional arguments are as follows: 

IPARAM — Integer vector of length six used to change certain default attributes of 

BCNLS.   (Input). 

If the default parameters are desired for B2NLS, set IPARAM(1) to zero. 

Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, the 

following steps should be taken before calling B2NLS: 

CALL B7NLS (IPARAM, RPARAM) 

 Set nondefault values for IPARAM and RPARAM. 

If double precision is being used, DB7NLS should be called instead. Following is 

a list of parameters and the default values. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = ITMAX, the maximum number of iterations allowed. 

Default: 75 

IPARAM(3) = a flag that suppresses the use of the quadratic model in the inner 

loop. If set to one, then the quadratic model is never used. Otherwise 

use the quadratic model where appropriate. This option decreases the 

amount of workspace as well as the computing overhead required. A 

user may wish to determine if the application really requires the use of 

the quadratic model. 

Default: 0 

IPARAM(4) = NTERMS, one more than the maximum number of terms used in 

the quadratic model. 

Default: 5 

IPARAM(5) = RCSTAT, a flag that determines whether forward or reverse 

communication is used. If set to zero, forward communication through 

functions FCN and JAC is used. If set to one, reverse communication is 
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used, and the dummy routines B10LS/DB10LS and B11LS/DB11LS 

may be used in place of FCN and JAC, respectively. When BCNLS 

returns with ISTAT = 6, arrays F and FJ are filled with f(x) and the 

Jacobian of f(x), respectively. BCNLS is then called again. 

Default: 0 

IPARAM(6) = a flag that determines whether the analytic Jacobian, as supplied 

in JAC, is used, or if a finite difference approximation is computed. If 

set to zero, JAC is not accessed and finite differences are used.  If set to 

one, JAC is used to compute the Jacobian.  

Default: 0 

RPARAM — Real vector of length 7 used to change certain default attributes of 

BCNLS.   (Input) 

For the description of RPARAM, we make the following definitions: 

FC current value of the length of f (x) 

FB best value of length of f (x) 

FL value of length of f (x) at the previous step 

PV predicted value of length of f (x), after the step is taken, using the 

approximating model ɛ machine epsilon = amach(4). 

The conditions |FB  PV| ≤ TOLSNR*FB and |FC  PV| ≤ TOLP*FB and  

|FC  FL| ≤ TOLSNR*FB together with taking a full model step, must be satisfied 

before the condition ISTAT = 2 is returned. (Decreasing any of the values for 

TOLF, TOLD, TOLX, TOLSNR, or TOLP will likely increase the number of 

iterations required for convergence.) 

RPARAM(1) = TOLF, tolerance used for stopping when FC ≤ TOLF. 

Default : min(1.E 5, )  

RPARAM(2) = TOLX, tolerance for stopping when change to x values has length 

less than or equal to TOLX*length of x values. 

Default : min(1.E 5, )  

RPARAM(3) = TOLD, tolerance for stopping when change to x values has length 

less than or equal to TOLD. 

Default : min(1.E 5, )  

RPARAM(4) = TOLSNR, tolerance used in stopping condition ISTAT = 2. 

Default: 1.E5 

RPARAM(5) = TOLP, tolerance used in stopping condition ISTAT = 2. 

Default: 1.E5 

RPARAM(6) = TOLUSE, tolerance used to avoid values of x in the quadratic 

model's interpolation of previous points. Decreasing this value may 
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result in more terms being included in the quadratic model. 

Default:   

RPARAM(7) = COND, largest condition number to allow when solving for the 

quadratic model coefficients. Increasing this value may result in more 

terms being included in the quadratic model. 

Default: 30 

JAC — User-supplied subroutine to evaluate the Jacobian. The usage is  

CALL JAC(M, N, X, FJAC, LDFJAC), where 

M  Number of functions.   (Input) 

N  Number of variables.   (Input) 

X  Array of length N containing the point at which the Jacobian will be 

evaluated.   (Input) 

FJAC  The computed M  N Jacobian at the point X.   (Output) 

LDFJAC  Leading dimension of the array FJAC.   (Input) 

The routine JAC must be declared EXTERNAL in the calling program. 

F — Real vector of length N used to pass f(x) if reverse communication  

(IPARAM(4)) is enabled. This array must be allocated regardless of the setting of 

(IPARAM(4)).   (Input) 

FJ — Real array of size M  N. It is used to store the Jacobian matrix of f(x) if reverse 

communication (IPARAM(4)) is enabled. This array must be allocated regardless 

of the setting of (IPARAM(4)).   (Input)  

Specifically,  

 , i

j

f
FJ i j

x






 

LDFJ — Leading dimension of FJ exactly as specified in the dimension statement of 

the calling program.   (Input) 

IWORK — Integer work vector of length LIWORK. 

LIWORK — Length of work vector IWORK. LIWORK must be at least  

5MCON + 12N + 47 + MAX(M, N) 

WORK — Real work vector of length LWORK 

LWORK — Length of work vector WORK. LWORK must be at least  

41N + 6M + 11MCON + (M + MCON)(N + 1) + NA(NA + 7) + 8 MAX(M, N) 
+ 99. Where NA = MCON + 2N + 6. 

2. Informational errors 

Type Code 
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3 1 The function f (x) has reached a value that may be a local minimum. 

However, the bounds on the trust region defining the size of the step 

are being hit at each step. Thus, the situation is suspect. (Situations 

of this type can occur when the solution is at infinity at some of the 

components of the unknowns, x). 

3 2 The model problem solver has noted a value for the linear or 

quadratic model problem residual vector length that is greater than or 

equal to the current value of the function, i.e. the Euclidean length of 

f (x). This situation probably means that the evaluation of f (x) has 

more uncertainty or noise than is possible to account for in the 

tolerances used to not a local minimum. The value of x is suspect, 

but a minimum has probably been found. 

3 3 More than ITMAX iterations were taken to obtain the solution. The 

value obtained for x is suspect, although it is the best set of x values 

that occurred in the entire computation. The value of ITMAX can be 

increased though the IPARAM vector. 

Example 1 

This example finds the four variables x1, x2, x3, x4 that are in the model function 

  2 4
1 3

x t x t
h t x e x e 

 

There are values of h(t) at five values of t. 

h(0.05) = 2.206 

h(0.1) = 1.994 

h(0.4) = 1.35 

h(0.5) = 1.216 

h(1.0) = 0.7358 

There are also the constraints that x2, x4 ≤ 0, x1, x3 ≥ 0, and x2 and x4 must be separated by at least 

0.05. Nothing more about the values of the parameters is known so the initial guess is 0. 
 

      USE BCNLS_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    MCON, N 

      PARAMETER  (MCON=1, N=4) 

!                                  SPECIFICATIONS FOR PARAMETERS 

      INTEGER    LDC, M 

      PARAMETER  (M=5, LDC=MCON) 

!                                  SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    IRTYPE(MCON), NOUT 

      REAL       BL(MCON), C(MCON,N), RNORM, X(N), XLB(N), & 

                XUB(N) 

!                                  SPECIFICATIONS FOR SUBROUTINES 
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!                                  SPECIFICATIONS FOR FUNCTIONS 

      EXTERNAL   FCN 

! 

      CALL UMACH (2, NOUT) 

!                                  Define the separation between x(2) 

!                                  and x(4) 

      C(1,1) = 0.0 

      C(1,2) = 1.0 

      C(1,3) = 0.0 

      C(1,4) = -1.0 

      BL(1) = 0.05 

      IRTYPE(1) = 2 

!                                  Set lower bounds on variables 

      XLB(1) = 0.0 

      XLB(2) = 1.0E30 

      XLB(3) = 0.0 

      XLB(4) = 1.0E30 

!                                  Set upper bounds on variables 

      XUB(1) = -1.0E30 

      XUB(2) = 0.0 

      XUB(3) = -1.0E30 

      XUB(4) = 0.0 

! 

      CALL BCNLS (FCN, M, C, BL, BL, IRTYPE, XLB, XUB, X, RNORM=RNORM) 

      CALL WRRRN ('X', X, 1, N, 1) 

      WRITE (NOUT,99999) RNORM 

99999 FORMAT (/, 'rnorm = ', E10.5) 

      END 

! 

      SUBROUTINE FCN (M, N, X, F) 

!                                  SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    M, N 

      REAL       X(*), F(*) 

!                                  SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    I 

!                                  SPECIFICATIONS FOR SAVE VARIABLES 

      REAL       H(5), T(5) 

      SAVE       H, T 

!                                  SPECIFICATIONS FOR INTRINSICS 

      INTRINSIC  EXP 

      REAL       EXP 

! 

      DATA T/0.05, 0.1, 0.4, 0.5, 1.0/ 

      DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/ 

! 

      DO 10  I=1, M 

         F(I) = X(1)*EXP(X(2)*T(I)) + X(3)*EXP(X(4)*T(I)) - H(I) 

   10 CONTINUE 

      RETURN 

      END 

Output 
 

                   X 

       1       2       3       4 

   1.999  -1.000   0.500  -9.954  

rnorm = .42425E-03  
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Additional Examples 

Example 2 

This example solves the same problem as the last example, but reverse communication is used to 

evaluate f(x) and the Jacobian of f(x). The use of the quadratic model is turned off. 
 

      USE B2NLS_INT 

      USE UMACH_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    LDC, LDFJ, M, MCON, N 

      PARAMETER  (M=5, MCON=1, N=4, LDC=MCON, LDFJ=M) 

!                                  Specifications for local variables 

      INTEGER    I, IPARAM(6), IRTYPE(MCON), ISTAT, IWORK(1000), & 

                LIWORK, LWORK, NOUT 

      REAL       BL(MCON), C(MCON,N), F(M), FJ(M,N), RNORM, RPARAM(7), & 

                WORK(1000), X(N), XGUESS(N), XLB(N), XUB(N) 

      REAL       H(5), T(5) 

      SAVE       H, T 

      INTRINSIC  EXP 

      REAL       EXP 

!                                  Specifications for subroutines 

      EXTERNAL   B7NLS 

!                                  Specifications for functions 

      EXTERNAL   B10LS, B11LS 

! 

      DATA T/0.05, 0.1, 0.4, 0.5, 1.0/ 

      DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/ 

! 

      CALL UMACH (2, NOUT) 

!                                  Define the separation between x(2) 

!                                  and x(4) 

      C(1,1)    = 0.0 

      C(1,2)    = 1.0 

      C(1,3)    = 0.0 

      C(1,4)    = -1.0 

      BL(1)     = 0.05 

      IRTYPE(1) = 2 

!                                  Set lower bounds on variables 

      XLB(1) = 0.0 

      XLB(2) = 1.0E30 

      XLB(3) = 0.0 

      XLB(4) = 1.0E30 

!                                  Set upper bounds on variables 

      XUB(1) = -1.0E30 

      XUB(2) = 0.0 

      XUB(3) = -1.0E30 

      XUB(4) = 0.0 

!                                  Set initial guess to 0.0 

      XGUESS = 0.0E0 

!                                  Call B7NLS to set default parameters 

      CALL B7NLS (IPARAM, RPARAM) 

!                                  Suppress the use of the quadratic 



 

 

IMSL MATH LIBRARY Chapter 8: Optimization  1475 

     

     

 

!                                  model, evaluate functions and 

!                                  Jacobian by reverse communication 

      IPARAM(3) = 1 

      IPARAM(5) = 1 

      IPARAM(6) = 1 

      LWORK     = 1000 

      LIWORK    = 1000 

!                                  Specify dummy routines for FCN 

!                                  and JAC since we are using reverse 

!                                  communication 

   10 CONTINUE 

      CALL B2NLS (B10LS, M, N, MCON, C, LDC, BL, BL, IRTYPE, XLB, & 

                 XUB, XGUESS, X, RNORM, ISTAT, IPARAM, RPARAM, & 

                 B11LS, F, FJ, LDFJ, IWORK, LIWORK, WORK, LWORK) 

! 

!                                  Evaluate functions if the routine 

!                                  returns with ISTAT = 6 

      IF (ISTAT .EQ. 6) THEN 

         DO 20  I=1, M 

            FJ(I,1) = EXP(X(2)*T(I)) 

            FJ(I,2) = T(I)*X(1)*FJ(I,1) 

            FJ(I,3) = EXP(X(4)*T(I)) 

            FJ(I,4) = T(I)*X(3)*FJ(I,3) 

            F(I) = X(1)*FJ(I,1) + X(3)*FJ(I,3) - H(I) 

   20    CONTINUE 

         GO TO 10 

      END IF 

! 

      CALL WRRRN ('X', X, 1, N, 1) 

      WRITE (NOUT,99999) RNORM 

99999 FORMAT (/, 'rnorm = ', E10.5) 

      END 

      Output 
 

                   X 

       1       2       3       4 

   1.999  -1.000   0.500  -9.954  

rnorm = .42413E-03  

READ_MPS 
This subroutine reads an MPS file containing a linear programming problem or a quadratic 

programming problem. 

Required Arguments 

FILENAME — Character string containing the name of the MPS file to be read. (Input) 

MPS— A structure of  IMSL defined derived type s_MPS containing the data read from the 

MPS file. (Output) 

The IMSL defined derived type s_MPS consists of the following components: 
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Component Description 

character, allocatable :: filename Name of the MPS file. 

character (len=8) name Name of the problem. 

integer nrows Number of rows in the constraint matrix. 

integer ncolumns Number of columns in the constraint 

matrix. This is also the number of variables. 

integer nonzeros Number of non-zeros in the constraint 

matrix. 

integer nhessian Number of non-zeros in the Hessian matrix. 

If zero, then there is no Hessian matrix. 

integer ninteger Number of variables required to be integer. 

This includes binary variables. 

integer nbinary Number of variables required to be binary 

(0 or 1).  

real (kind(1e0)), allocatable :: objective(:) A real array of length ncolumns 

containing the objective vector. 

type (s_SparseMatrixElement), allocatable :: 
constraint(:) 

A derived type array of length nonzeros 

and of type s_SparseMatrixElement 

containing the sparse matrix representation 

of the constraint matrix. See below for 

details. 

type(s_SparseMatrixElement), allocatable :: 
hessian(:) 

A derived type array of length nhessian 

and of  type s_SparseMatrixElement 

containing the sparse matrix representation 

of the Hessian matrix. If nhessian is zero, 

then this field is not allocated. 

real (kind(1e0)), allocatable ::lower_range(:) A real array of length nrows containing 

the lower constraint bounds. If a constraint 

is unbounded below, the corresponding 

entry in lower_range is set to 

negative_infinity, defined below. 

real (kind(1e0)), allocatable ::upper_range(:) A real array of length nrows containing 

the upper constraint bounds. If a constraint 

is unbounded above, the corresponding 

entry in upper_range is set to 

positive_infinity, defined below. 

real (kind(1e0)), allocatable :: lower_bound(:) A real array of length ncolumns 

containing the lower variable bounds. If a 

variable is unbounded below, the 

corresponding entry in lower_bound is set 



 

 

IMSL MATH LIBRARY Chapter 8: Optimization  1477 

     

     

 

Component Description 

to negative_infinity, defined below.  

real (kind(1e0)), allocatable ::  upper_bound(:) A real array of length ncolumns 

containing the upper variable bounds. If a 

variable is unbounded above, the 

corresponding entry in upper_bound is set 

to positive_infinity, defined below. 

integer, allocatable :: variable_type(:) An integer array of length ncolumns 

containing the type of each variable. 

Variable types are: 

0 Continous  

1 Integer 

2 Binary (0 or 1) 

3 Semicontinuous  

character (len=8)  name_objective Name of the set in ROWS used for the 

objective row. 

character (len=8)   name_rhs Name of the RHS set used. 

character (len=8)   name_ranges Name of the RANGES set used or the empty 

string if no RANGES section in the file. 

character (len=8)  name_bounds Name of the BOUNDS set used or the empty 

string if no BOUNDS section in the file. 

character (len=8), allocatable ::  name_row(:) Array of length nrows containing the row 

names. The name of the i-th constraint row is 

name_row(i). 

character (len=8), allocatable :: name_column(:) Array of length ncolumns containing the 

column names. The name of the i-th column 

and variable is name_column(i). 

real (kind (1e0))  positive_infinity Value used for a constraint or bound upper 

limit when the constraint or bound is 

unbounded above. This can be set using an 

optional argument. Default is 1.0e+30. 

real (kind (1e0))  negative_infinity Value used for a constraint or bound lower 

limit when the constraint or bound is 

unbounded below. This can be set using an 

optional argument. Default is -1.0e+30. 

This derived type stores the constraint and Hessian matrices in a simple sparse matrix format of 

derived type s_SparseMatrixElement defined in the interface module mp_types. 

s_SparseMatrixElement consists of three components; a row index, a column index, and a 

value.  For each non-zero element in the constraint and Hessian matrices an element of derived 

type s_SparseMatrixElement is stored. The following code fragment expands the sparse 
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constraint matrix of the derived type s_SparseMatrixElement contained in mps, a derived type 

of type s_MPS, into a dense matrix: 
 

!  allocate a matrix 

integer nr = mps%nrows 

integer nc = mps%ncolumns 

real (kind(1e0)), allocatable :: matrix(:,:) 

allocate(matrix(nr,nc)) 

 

matrix = 0.0e0 

!  expand the sparse matrix  

do k = 1, mps%nonzeros 

      i = mps%constraint(k)%row 

      j = mps%constraint(k)%column 

      matrix(i,j) = mps%constraint(k)%value 

end do 

The IMSL derived type d_MPS is the double precision counterpart to s_MPS. The IMSL derived 

type d_SparseMatrixElement is the double precision counterpart to 

s_SparseMatrixElement. 

To release the space allocated for this derived type use the following statement: 

call mps_free(mps) 

Optional Arguments 

NUNIT— The unit number for reading an MPS file opened by the user. If NUNIT is not used, 

this subroutine opens the file indicated by FILENAME for reading and then closes it 

after reading. (Input) 

By default, 7 is used.  

OBJ — Character string of length 8 containing the name of the objective function set to be 

used. (Input) 

An MPS file can contain multiple objective function sets.  

By default, the first objective function set in the MPS file is used. This name is case 

sensitive. 

RHS — Character string of length 8 containing the name of the RHS set to be used. (Input) 

An MPS file can contain multiple RHS sets.  

By default, the first RHS set in the MPS file is used. This name is case sensitive. 

RANGES — Character string of length 8 containing the name of the RANGES set to be used. 

(Input) 

An MPS file can contain multiple RANGES sets.  

By default, the first RANGES set in the MPS file is used. This name is case sensitive. 

BOUNDS — Character string of length 8 containing the name of the BOUNDS set to be used. 

(Input) 

An MPS file can contain multiple BOUNDS sets.  

By default, the first BOUNDS set in the MPS file is used. This name is case sensitive. 
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POS_INF — Value used for a constraint or bound upper limit when the constraint or bound is 

unbounded above. (Input)  

Default: 1.0e+30. 

NEG_INF — Value used for a constraint or bound lower limit when the constraint or bound 

is unbounded below. (Input) 

Default: -1.0e+30. 

FORTRAN 90 Interface 

Generic: CALL READ_MPS (FILENAME, MPS [,…]) 

Specific: The specific interface names are S_READ_MPS and D_READ_MPS. 

Description 

An MPS file defines a linear or quadratic programming problem.  

A linear programming problem is assumed to have the form: 

min T

x
c x

 

l ub Ax b 
 

l ux x x 
 

A quadratic programming problem is assumed to have the form: 

1
min

2

T T

x
x Qx c x

 

l ub Ax b   

l ux x x   

The following table maps this notation into the components in the derived type returned by 

READ_MPS: 

C Objective 

A Constraint 

Q Hessian 

bl lower_range 

bu upper_range 

xl lower_bound 

xu upper_bound 

 

If the MPS file specifies an equality constraint or bound, the corresponding lower and upper 

values in the returned derived type will be exactly equal. 
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The problem formulation assumes that the constraints and bounds are two-sided. If a particular 

constraint or bound has no lower limit, then the corresponding component of the derived type is 

set to -1.0e+30. If the upper limit is missing, then the corresponding component of the derived 

type is set to +1.0e+30. 

MPS File Format 

There is some variability in the MPS format. This section describes the MPS format accepted by 

this reader. 

An MPS file consists of a number of sections. Each section begins with a name in column 1. With 

the exception of the NAME section, the rest of this line is ignored. Lines with a ‗*‘ or ‗$‘ in 

column 1 are considered comment lines and are ignored. 

The body of each section consists of lines divided into fields, as follows: 

 

Field Number Columns Contents 

1 2-3 Indicator 

2 5-12 Name 

3 15-22 Name 

4 25-36 Value 

5 40-47 Name 

6 50-61 Value 

The format limits MPS names to 8 characters and values to 12 characters. The names in fields 2, 3 

and 5 are case sensitive. Leading and trailing blanks are ignored, but internal spaces are 

significant. 

The sections in an MPS file are as follows. 

 NAME 

 ROWS 

 COLUMNS 

 RHS 

 RANGES (optional) 

 BOUNDS (optional) 

 QUADRATIC (optional) 

 ENDATA 

Sections must occur in the above order. 

MPS keywords, section names and indicator values, are case insensitive. Row, column and set 

names are case sensitive. 



 

 

IMSL MATH LIBRARY Chapter 8: Optimization  1481 

     

     

 

NAME Section 

The NAME section contains a single line. A problem name can occur anywhere on the line after 

NAME and before column 62. The problem name is truncated to 8 characters.  

ROWS Section 

The ROWS section defines the name and type for each row. Field 1 contains the row type and 

field 2 contains the row name. Row type values are not case sensitive. Row names are case 

sensitive. The following row types are allowed: 

 

Row Type Meaning 

E Equality Constraint. 

L Less than or equal constraint 

G Greater than or equal constraint. 

N Objective or a free row. 

COLUMNS Section 

The COLUMNS section defines the nonzero entries in the objective and the constraint matrix. The 

row names here must have been defined in the ROWS section. 

 

Field Contents 

2 Column name. 

3 Row name. 

4 Value for the entry whose row and column 

are given by fields 3 and 2. 

5 Row name. 

6 Value for the entry whose row and column 

are given by fields 5 and 2. 

 

NOTE: Fields 5 and 6 are optional. 

The COLUMNS section can also contain markers. These are indicated by the name ‗MARKER‘ 

(with the quotes) in field 3 and the marker type in field 4 or 5. 

Marker type ‗INTORG‘ (with the quotes) begins an integer group. The marker type ‗INTEND‘ (with 

the quotes) ends this group. The variables corresponding to the columns defined within this group 

are required to be integer. 

RHS Section 

The RHS section defines the right-hand side of the constraints. An MPS file can contain more than 

one RHS set, distinguished by the RHS set name. The row names here must be defined in the 

ROWS section. 
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Field Contents 

2 RHS set name. 

3 Row name. 

4 Value for the entry whose set and row are 

given by fields 2 and 3. 

5 Row name. 

6 Value for the entry whose set and row are 

given by fields 2 and 5. 

 

NOTE: Fields 5 and 6 are optional. 

RANGES Section 

The optional RANGES section defines two-sided constraints. An MPS file can contain more than 

one range set, distinguished by the range set name. The row names here must have been defined in 

the ROWS section. 

Field Contents 

2 Range set name. 

3 Row name. 

4 Value for the entry whose set and row are 

given by fields 2 and 3. 

5 Row name. 

6 Value for the entry whose set and row are 

given by fields 2 and 5. 

 

NOTE: Fields 5 and 6 are optional. 

Ranges change one-sided constraints, defined in the RHS section, into two-sided constraints. The 

two-sided constraint for row i depends on the range value, ir , defined in this section. The right-

hand side value, ib , is defined in the RHS section. The two-sided constraints for row i are given in 

the following table:  

 

Row Type Lower 
Constraint 

Upper Constraint 

G 
ib  

i ib r  

L 
i ib r  ib  

E min(0, )i ib r  max(0, )i ib r  
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BOUNDS Section 

The optional BOUNDS section defines bounds on the variables. By default, the bounds 

are 0 ix   . The bounds can also be used to indicate that a variable must be an integer.  

More than one bound can be set for a single variable. For example, to set 2 6ix  use a LO 

bound with value 2 to set 2 ix and a UP bound with value 6 to add the condition 6ix  . 

An MPS file can contain more than one bounds set, distinguished by the bound set name. 

 

Field Contents 

1 Bounds type.  

2 Bounds set name. 

3 Column name 

4 Value for the entry whose set and column are 

given by fields 2 and 3. 

5 Column name.  

6 Value for the entry whose set and column are 

given by fields 2 and 5. 

 

NOTE: Fields 5 and 6 are optional. 

The bound types are as follows. Here ib are the bound values defined in this section, the ix are the 

variables, and I is the set of integers. 

 

Bounded 
Type 

Definition Formula 

LO Lower bound 
j ib x  

UP Upper bound 
i ix b  

FX Fixed variable 
i ix b  

FR Free variable 
ix    

MI Lower bound is 

minus infinity 
ix   

PL Upper bound is 

positive infinity 
ix   

BV Binary variable 

(variable must be 0 

or 1). 

{0,1}ix   
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Bounded 
Type 

Definition Formula 

UI Upper bound and 

integer 
i ix b and 

ix I  

LI Lower bound and 

integer 
i ib x and 

ix I  

SC Semicontinuous 0 or i ib x  

The bound type names are not case sensitive. 

If the bound type is UP or UI and 0jb  then the lower bound is set to  . 

QUADRATIC Section 

The optional QUADRATIC section defines the Hessian for quadratic programming problems. The 

names HESSIAN, QUADS, QUADOBJ, QSECTION, and QMATRIX are also recognized as 

beginning the QUADRATIC section. 

 

Field Contents 

2 Column name.  

3 Column name. 

4 Value for the entry specified by fields 2 and 3. 

5 Column name. 

6 Value for the entry specified by fields 2 and 5. 

 

NOTE: Fields 5 and 6 are optional. 

ENDATA Section 

The ENDATA section ends the MPS file. 

Comments 

Informational errors 

Type Code  

3 5 No objective coefficients 

found. 

3 6 No RHS values found. 

3 8 No range values found. 
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Type Code  

3 9 No bounds found. 

4 3 Missing section title. 

4 4 Error reading input file. 

4 7 Invalid number. 

4 11 Unexpected section header. 

4 12 Unknown row type. 

4 13 Out-of-order marker. 

4 14 Unknown marker type. 

4 15 Unknown column name. 

4 16 Unknown bound type. 

4 17 Unknown row name. 

4 18 Unexpected section name. 

Example 1 
 

use read_mps_int 

implicit none 

  

TYPE(S_MPS) mps 

CALL read_mps ('test.mps', mps) 

End 

Additional Examples 

Example 2 

See Example 2 of DENSE_LP. 

MPS_FREE 
Deallocates the space allocated for the IMSL derived type s_MPS. This routine is usually used in 

conjunction with READ_MPS. 

Required Arguments 

MPS — A structure of  IMSL defined derived type s_MPS containing the data read from the 

MPS file. (Input/Output) 

The allocated components of  s_MPS will be deallocated on output. 

The IMSL defined derived type s_MPS consists of the following components: 

 

Component Description 

character, allocatable :: filename Name of the MPS file. 
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Component Description 

character (len=8) name Name of the problem. 

integer nrows Number of rows in the constraint matrix. 

integer ncolumns Number of columns in the constraint 

matrix. This is also the number of variables. 

integer nonzeros Number of non-zeros in the constraint 

matrix. 

integer nhessian Number of non-zeros in the Hessian matrix. 

If zero, then there is no Hessian matrix. 

integer ninteger Number of variables required to be integer. 

This includes binary variables. 

integer nbinary Number of variables required to be binary 

(0 or 1).  

real (kind(1e0)), allocatable :: objective(:) A real array of length ncolumns 

containing the objective vector. 

type (s_SparseMatrixElement), allocatable :: 
constraint(:) 

A derived type array of length nonzeros 

and of type s_SparseMatrixElement 

containing the sparse matrix representation 

of the constraint matrix. See below for 

details. 

type(s_SparseMatrixElement), allocatable :: 
hessian(:) 

A derived type array of length nhessian 

and of  type s_SparseMatrixElement 

containing the sparse matrix representation 

of the Hessian matrix. If nhessian is zero, 

then this field is not allocated. 

real (kind(1e0)), allocatable ::lower_range(:) A real array of length nrows containing 

the lower constraint bounds. If a constraint 

is unbounded below, the corresponding 

entry in lower_range is set to 

negative_infinity, defined below. 

real (kind(1e0)), allocatable ::upper_range(:) A real array of length nrows containing 

the upper constraint bounds. If a constraint 

is unbounded above, the corresponding 

entry in upper_range is set to 

positive_infinity, defined below. 

real (kind(1e0)), allocatable :: lower_bound(:) A real array of length ncolumns 

containing the lower variable bounds. If a 

variable is unbounded below, the 

corresponding entry in lower_bound is set 

to negative_infinity, defined below.  
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Component Description 

real (kind(1e0)), allocatable ::  upper_bound(:) A real array of length ncolumns 

containing the upper variable bounds. If a 

variable is unbounded above, the 

corresponding entry in upper_bound is set 

to positive_infinity, defined below. 

integer, allocatable :: variable_type(:) An integer array of length ncolumns 

containing the type of each variable. 

Variable types are: 

0 Continous  

1 Integer 

2 Binary (0 or 1) 

3 Semicontinuous  

character (len=8)  name_objective Name of the set in ROWS used for the 

objective row. 

character (len=8)   name_rhs Name of the RHS set used. 

character (len=8)   name_ranges Name of the RANGES set used or the empty 

string if no RANGES section in the file. 

character (len=8)  name_bounds Name of the BOUNDS set used or the empty 

string if no BOUNDS section in the file. 

character (len=8), allocatable ::  name_row(:) Array of length nrows containing the row 

names. The name of the i-th constraint row is 

name_row(i). 

character (len=8), allocatable :: name_column(:) Array of length ncolumns containing the 

column names. The name of the i-th column 

and variable is name_column(i). 

real (kind (1e0))  positive_infinity Value used for a constraint or bound upper 

limit when the constraint or bound is 

unbounded above. This can be set using an 

optional argument. Default is 1.0e+30. 

real (kind (1e0))  negative_infinity Value used for a constraint or bound lower 

limit when the constraint or bound is 

unbounded below. This can be set using an 

optional argument. Default is -1.0e+30. 

This derived type stores the constraint and Hessian matrices in a simple sparse matrix format of 

derived type s_SparseMatrixElement defined in the interface module mp_types. 

s_SparseMatrixElement consists of three components; a row index, a column index, and a 

value.  For each non-zero element in the constraint and Hessian matrices an element of derived 

type s_SparseMatrixElement is stored The following code fragment expands the sparse 

constraint matrix of the derived type s_SparseMatrixElement contained in mps, a derived type 

of type s_MPS, into a dense matrix: 
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!  allocate a matrix 

integer nr = mps%nrows 

integer nc = mps%ncolumns 

real (kind(1e0)), allocatable :: matrix(:,:) 

allocate(matrix(nr,nc)) 

 

matrix = 0.0e0 

!  expand the sparse matrix  

do k = 1, mps%nonzeros 

      i = mps%constraint(k)%row 

      j = mps%constraint(k)%column 

      matrix(i,j) = mps%constraint(k)%value 

end do 

The IMSL derived type d_MPS is the double precision counterpart to s_MPS. The IMSL derived 

type d_SparseMatrixElement is the double precision counterpart to 

s_SparseMatrixElement. 

FORTRAN 90 Interface 

Generic: CALL MPS_FREE (MPS) 

Specific: The specific interface names are S_MPS_FREE and D_MPS_FREE. 

Description 

This subroutine simply issues deallocate statements for each of the arrays allocated in the IMSL 

derived type s_MPS defined above. It is supplied as a convenience utility to the user of  

READ_MPS. 

Example 

In the following example, the space that had been allocated to accommodate the IMSL derived 

type S_MPS is deallocated with a call to MPS_FREE after a call to READ_MPS was made. 
 

use read_mps_int 

use mps_free_int 

implicit none 

  

TYPE(S_MPS) mps 

CALL read_mps ('test.mps', mps) 

 . 

 . 

 . 

call mps_free (mps) 

end 

DENSE_LP 
Solves a linear programming problem.   

NOTE: DENSE_LP is available in double precision only. 
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Required Arguments 

A — M by NVAR matrix containing the coefficients of the M constraints.   (Input) 

BL — Vector of length M containing the lower limit of the general constraints; if there is no 

lower limit on the I-th constraint, then BL(I) is not referenced.   (Input) 

BU — Vector of length M containing the upper limit of the general constraints; if there is no 

upper limit on the I-th constraint, then BU(I) is not referenced; if there are no range 

constraints, BL and BU can share the same storage locations.   (Input) 

C — Vector of length NVAR containing the coefficients of the objective function.   (Input) 

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.   

(Input)  

Let R(I) = A(I, 1) * XSOL(1) + … + A(I, NVAR) * XSOL(NVAR). Then, the value of 

IRTYPE(I) signifies the following:  

Irtype[I] I-th Constraint 

0 BL(I) = R(I) = BU(I) 

1 R(I) ≤ BU(I) 

2 R(I) ≥ BL(I) 

3 BL(I) ≤ R(I) ≤ BU(I) 

4 Ignore this constraint 

OBJ — Value of the objective function. (Output) 

XSOL — Vector of length NVAR containing the primal solution.(Output) 

DSOL — Vector of length M containing the dual solution. (Output) 

Optional Arguments 

M — Number of constraints.   (Input) 

Default: M = SIZE (A,1). 

NVAR — Number of variables.   (Input) 

Default: NVAR = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input)  

LDA must be at least M. 

Default: LDA = SIZE (A,1). 

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no 

lower bound on a variable, then 1.0D30 should be set as the lower bound.   (Input) 

Default: XLB = 0.0D0. 
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XUB — Vector of length NVAR containing the upper bound on the variables; if there is no 

upper bound on a variable, then 1.0D30 should be set as the upper bound.   (Input) 

Default: No upperbound enforced. 

ITREF — The type if iterative refinement used.     (Input)  

ITREF Refinement 

0 No refinement 

1 Iterative refinement 

2 Use extended refinement. Iterate until 

no more progress.  

 Default: ITREF = 0. 

ITERS — Number of iterations.   (Output) 

IERR — Status flag indicating which warning conditions were set upon completion.   

(Output)   

IERR Status 

≥0 Solution found. IERR = 0 indicates there are no 

warning conditions. If the solution was found 

with warning conditions IERR is incremented by 

the number given below.  

1 1 is added to the value returned if there are 

multiple solutions giving essentially the same 
minimum. 

2 2 is added to the value returned if there were 

some constraints discarded because they were too 
linearly dependent on other active constraints. 

4 4 is added to the value returned if the constraints 

were not satisfied.  L1 minimization was applied 

to all (including bounds on simple variables) but 

the equalities, to approximate violated non-

equalities as well as possible.  If a feasible 
solution is possible then refinement may help 

8 8 is added to the value returned if the algorithm 

appears to be cycling. Using refinement may 
help. 

FORTRAN 90 Interface 

Generic: CALL DENSE_LP (A, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL [,…]) 

Specific: The specific interface name is D_DENSE_LP.  This subroutine is available in 

double precision only. 



 

 

IMSL MATH LIBRARY Chapter 8: Optimization  1491 

     

     

 

Description 

The routine DENSE_LP solves the linear programming problem 

min
n

T

x

c x
R  

subject to l x u

l u

b A b

x x x

 

 
 

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl and 

xu are the lower and upper bounds on the constraints and the variables, respectively. 

DENSE_LP uses an active set strategy. 

Refer to the following paper for further information: Krogh, Fred, T. (2005), An Algorithm for 

Linear Programming, http://mathalacarte.com/fkrogh/pub/lp.pdf ,Tujunga, CA. 

Comments 

1. Informational errors 

Type Code 

1 1 Multiple solutions giving essentially the same solution exist. 

3 1 Some constraints were discarded because they were too linearly 

dependent on other active constraints. 

3 2 All constraints are not satisfied. 

3 3 The algorithm appears to be cycling. 

4 1 The problem appears vacuous. 

4 2 The problem is unbounded. 

4 3 An acceptable pivot could not be found. 

4 4 The constraint bounds are inconsistent. 

4 5 The variable bounds are inconsistent. 

Example 1 

The linear programming problem in the standard form 

  1 2

1 2 3

1 2 4

1 5

2 6

min 3

1.5subject to

0.5
 

1.0

1.0

0,  for 1, , 6i

f x x x

x x x

x x x

x x

x x

x i

  

  

  

 

 

 
 

http://mathalacarte.com/fkrogh/pub/lp.pdf
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is solved. 
 

      USE UMACH_INT 

      USE WRRRN_INT 

      USE DENSE_LP_INT 

      IMPLICIT NONE 

      INTEGER NOUT, M, NVAR 

      PARAMETER (M=4, NVAR=6) 

      DOUBLE PRECISION A(M, NVAR), B(M), C(NVAR), XSOL(NVAR), & 

             DSOL(M), BL(M), BU(M), OBJ 

      INTEGER IRTYPE(M) 

      DATA A/1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, -1, & 

             0, 0, 0, 0, 1, 0, 0, 0, 0, 1/ 

      DATA B/1.5, 0.5, 1.0, 1.0/ 

      DATA C/-1.0, -3.0, 0.0, 0.0, 0.0, 0.0/ 

      DATA BL/1.5, 0.5, 1.0, 1.0/ 

      DATA BU/M*-1.D30/ 

      DATA IRTYPE/M*0/ 

 

      CALL UMACH(2, NOUT)       

!                         Solve the LP problem 

      CALL DENSE_LP (A, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL) 

 

      WRITE(NOUT, 99999) OBJ 

      CALL WRRRN('Solution', XSOL, 1, NVAR, 1) 

99999 FORMAT (' Objective', F9.4) 

      END 

Output 
 

Objective  -3.5000 

   

                    Solution 

      1       2       3       4       5       6 

  0.500   1.000   0.000   1.000   0.500   0.000 

Additional Examples 

Example 2 

This example demonstrates how READ_MPS can be used together with DENSE_LP to solve a linear 

programming problem defined in an MPS file. The MPS file used in this example is an 

uncompressed version of the file ‗afiro‘, available from http://www.netlib.org/lp/data/. 
 

      USE UMACH_INT 

      USE WRRRN_INT 

      USE READ_MPS_INT 

      USE DENSE_LP_INT 

      IMPLICIT NONE 

      REAL(KIND(1D0)) OBJ 

      REAL(KIND(1D0)), ALLOCATABLE :: XSOL(:) 

      REAL(KIND(1D0)), ALLOCATABLE :: DSOL(:) 

      REAL(KIND(1D0)), ALLOCATABLE :: A(:,:) 

      INTEGER, ALLOCATABLE :: IRTYPE(:) 

http://www.netlib.org/lp/data/
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      TYPE(D_MPS) PROBLEM 

      CHARACTER NAME*256  

      INTEGER I,J, K, NOUT 

 

      CALL UMACH(2, NOUT)    

    

!     READ LP PROBLEM FROM THE MPS FILE. 

      NAME = 'afiro' 

      CALL READ_MPS (NAME, PROBLEM) 

      ALLOCATE (A(PROBLEM%NROWS, PROBLEM%NCOLUMNS)) 

      ALLOCATE (IRTYPE(PROBLEM%NROWS))   

      ALLOCATE (XSOL(PROBLEM%NCOLUMNS))     

      ALLOCATE (DSOL(PROBLEM%NROWS))   

      A = 0 

      IRTYPE = 3   

!     FILL DENSE A  

      DO K = 1, PROBLEM%NONZEROS 

         I = PROBLEM%CONSTRAINT(K)%ROW 

         J = PROBLEM%CONSTRAINT(K)%COLUMN 

         A(I,J) = PROBLEM%CONSTRAINT(K)%VALUE 

      ENDDO 

!     CALL THE LP SOLVER 

      CALL DENSE_LP (A, PROBLEM%LOWER_RANGE, PROBLEM%UPPER_RANGE, & 

                    PROBLEM%OBJECTIVE, IRTYPE, OBJ, XSOL, DSOL, & 

                    XLB=PROBLEM%LOWER_BOUND, XUB=PROBLEM%UPPER_BOUND) 

      WRITE(NOUT, 99999) OBJ 

      CALL WRRRN('Solution', XSOL, 1, PROBLEM%NROWS, 1) 

 

      DEALLOCATE(A) 

      DEALLOCATE(IRTYPE) 

      DEALLOCATE(XSOL) 

      DEALLOCATE(DSOL) 

99999 FORMAT('Objective:  ', E16.7) 

      END 

Output 
 

Objective:    -0.4647531E+03 

   

                                 Solution 

     1       2       3       4       5       6       7       8       9   10 

  80.0    25.5    54.5    84.8    57.9     0.0     0.0     0.0     0.0  0.0 

   

   11     12      13     14      15      16      17      18    19     20 

  0.0    0.0    18.2   39.7    61.3   500.0   475.9    24.1   0.0  215.0 

   

   21      22      23      24      25      26      27 

363.9     0.0     0.0     0.0     0.0     0.0     0.0 
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DLPRS 

 

Solves a linear programming problem via the revised simplex algorithm. 

Required Arguments 

A — M by NVAR matrix containing the coefficients of the M constraints.   (Input) 

BL — Vector of length M containing the lower limit of the general constraints; if there is no 

lower limit on the I-th constraint, then BL(I) is not referenced.   (Input) 

BU — Vector of length M containing the upper limit of the general constraints; if there is no 

upper limit on the I-th constraint, then BU(I) is not referenced; if there are no range 

constraints, BL and BU can share the same storage locations.   (Input) 

C — Vector of length NVAR containing the coefficients of the objective function.   (Input) 

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.   

(Input)  

Let R(I) = A(I, 1) * XSOL(1) + … + A(I, NVAR) * XSOL(NVAR). Then, the value of 

IRTYPE(I) signifies the following:  

IRTYPE(I)   I-th Constraint 

0          BL(I).EQ.R(I).EQ.BU(I) 

1          R(I).LE.BU(I) 

2          R(I).GE.BL(I) 

3          BL(I).LE.R(I).LE.BU(I) 

OBJ — Value of the objective function.   (Output) 

XSOL — Vector of length NVAR containing the primal solution.   (Output) 

DSOL — Vector of length M containing the dual solution.   (Output) 

Optional Arguments 

M — Number of constraints.   (Input) 

Default: M = SIZE (A,1). 
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NVAR — Number of variables.   (Input) 

Default: NVAR = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input)  

LDA must be at least M. 

Default: LDA = SIZE (A,1). 

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no 

lower bound on a variable, then 1.0E30 should be set as the lower bound.   (Input) 

Default: XLB = 0.0. 

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no 

upper bound on a variable, then 1.0E30 should be set as the upper bound.   (Input) 

Default: XUB = 3.4e38 for single precision and 1.79d + 308 for double precision. 

FORTRAN 90 Interface 

Generic: CALL DLPRS (A, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL [,…]) 

Specific: The specific interface names are S_DLPRS and D_DLPRS. 

FORTRAN 77 Interface 

Single: CALL DLPRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB, OBJ, XSOL, 
DSOL) 

Double: The double precision name is DDLPRS. 

Description 

The routine DLPRS uses a revised simplex method to solve linear programming problems, i.e., 

problems of the form 

min
n

T

x

c x
R  

subject to bl ≤ Ax ≤ bu 

xl ≤ x ≤ xu 

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl and 

xu are the lower and upper bounds on the constraints and the variables, respectively. 

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of D2PRS/DD2PRS. The 

reference is: 
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CALL D2PRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB, 

OBJ, XSOL, DSOL, AWK, LDAWK, WK, IWK) 

The additional arguments are as follows: 

AWK — Real work array of dimension 1 by 1. (AWK is not used in the new 

implementation of the revised simplex algorithm. It is retained merely 

for calling sequence consistency.) 

LDAWK — Leading dimension of AWK exactly as specified in the dimension 

statement of the calling program. LDAWK should be 1. (LDAWK is not 

used in the new implementation of the revised simplex algorithm. It is 

retained merely for calling sequence consistency.) 

WK — Real work vector of length M * (M + 28). 

IWK — Integer work vector of length 29 * M + 3 * NVAR. 

2. Informational errors 

Type Code 

3 1 The problem is unbounded. 

4 2 Maximum number of iterations exceeded. 

3 3 The problem is infeasible. 

4 4 Moved to a vertex that is poorly conditioned; using double precision 

may help. 

4 5 The bounds are inconsistent. 

Example 

A linear programming problem is solved. 
 

      USE DLPRS_INT 

      USE UMACH_INT 

      USE SSCAL_INT 

 

      IMPLICIT   NONE 

      INTEGER    LDA, M, NVAR 

      PARAMETER  (M=2, NVAR=2, LDA=M) 

!                                 M = number of constraints 

!                                 NVAR = number of variables 

! 

      INTEGER    I, IRTYPE(M), NOUT 

      REAL       A(LDA,NVAR), B(M), C(NVAR), DSOL(M), OBJ, XLB(NVAR), & 

                XSOL(NVAR), XUB(NVAR) 

! 

!                                 Set values for the following problem 

! 

!                                 Max 1.0*XSOL(1) + 3.0*XSOL(2) 
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! 

!                                 XSOL(1) + XSOL(2) .LE. 1.5 

!                                 XSOL(1) + XSOL(2) .GE. 0.5 

! 

!                                 0 .LE. XSOL(1) .LE. 1 

!                                 0 .LE. XSOL(2) .LE. 1 

! 

      DATA XLB/2*0.0/, XUB/2*1.0/ 

      DATA A/4*1.0/, B/1.5, .5/, C/1.0, 3.0/ 

      DATA IRTYPE/1, 2/ 

!                                 To maximize, C must be multiplied by 

!                                 -1. 

      CALL SSCAL (NVAR, -1.0E0, C, 1) 

!                                 Solve the LP problem.  Since there is 

!                                 no range constraint, only B is 

!                                 needed. 

      CALL DLPRS (A, B, B, C, IRTYPE, OBJ, XSOL, DSOL, & 

                 XUB=XUB) 

!                                 OBJ must be multiplied by -1 to get 

!                                 the true maximum. 

      OBJ = -OBJ 

!                                 DSOL must be multiplied by -1 for 

!                                 maximization. 

      CALL SSCAL (M, -1.0E0, DSOL, 1) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) OBJ, (XSOL(I),I=1,NVAR), (DSOL(I),I=1,M) 

! 

99999 FORMAT (//, '   Objective       = ', F9.4, //, '   Primal ',& 

             'Solution =', 2F9.4, //, '   Dual solution   =', 2F9.4) 

! 

      END 

Output 
 

Objective       =    3.5000 

 

Primal Solution =   0.5000   1.0000 

 

Dual solution   =   1.0000   0.0000 

SLPRS 
Solves a sparse linear programming problem via the revised simplex algorithm. 

Required Arguments 

A — Vector of length NZ containing the coefficients of the M constraints.   (Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding element in A.   

(Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 

in A. (Input) 
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BL — Vector of length M containing the lower limit of the general constraints; if there is no 

lower limit on the I-th constraint, then BL(I) is not referenced.   (Input) 

BU — Vector of length M containing the upper lower limit of the general constraints; if there 

is no upper limit on the I-th constraint, then BU(I) is not referenced.   (Input) 

C — Vector of length NVAR containing the coefficients of the objective function.   (Input) 

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.   

(Input) 

Let R(I) = A(I, 1)*XSOL(1) + … + A(I, NVAR)*XSOL(NVAR) 

IRTYPE(I)  I-th CONSTRAINT 

    0  BL(I) = R(I) = BU(I) 

    1  R(I) ≤ BU(I) 

    2  R(I) ≥ BL(I) 

    3  BL(I) ≤ R(I) ≤ BU(I) 

OBJ — Value of the objective function.   (Output) 

XSOL — Vector of length NVAR containing the primal solution.   (Output) 

DSOL — Vector of length M containing the dual solution.   (Output) 

Optional Arguments 

M — Number of constraints.   (Input) 

Default: M = SIZE (IRTYPE,1). 

NVAR — Number of variables.   (Input) 

Default: NVAR = SIZE (C,1). 

NZ — Number of nonzero coefficients in the matrix A.   (Input) 

Default: NZ = SIZE (A,1). 

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no 

lower bound on a variable, then 1.0E30 should be set as the lower bound.   (Input) 

Default: XLB = 0.0. 

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no 

upper bound on a variable, then 1.0E30 should be set as the upper bound.   (Input) 

Default: XLB = 3.4e38 for single precision and 1.79d + 308 for double precision. 

FORTRAN 90 Interface 

Generic: CALL SLPRS (A, IROW, JCOL, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL [,…]) 
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Specific: The specific interface names are S_SLPRS and D_SLPRS. 

FORTRAN 77 Interface 

Single: CALL SLPRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C, IRTYPE, XLB, XUB, OBJ, 

XSOL, DSOL) 

Double: The double precision name is DSLPRS. 

Description 

This subroutine solves problems of the form 

min c
T
x 

subject to 

,l u

l u

b Ax b

x x x

 

 
 

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl, and 

xu are the lower and upper bounds on the constraints and the variables, respectively. SLPRS is 

designed to take advantage of sparsity in A. The routine is based on DPLO by Hanson and Hiebert. 

Comments 

Workspace may be explicitly provided, if desired, by use of S2PRS/DS2PRS. The reference 

is: 

CALL S2PRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C, IRTYPE, 

XLB, XUB, OBJ, XSOL, DSOL, IPARAM, RPARAM, COLSCL, 

ROWSCL, WORK, LW, IWORK, LIW) 

The additional arguments are as follows: 

IPARAM — Integer parameter vector of length 12. If the default parameters are 

desired for SLPRS, then set IPARAM(1) to zero and call the routine SLPRS. 

Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then 

the following steps should be taken before calling SLPRS: 

CALL S5PRS (IPARAM, RPARAM) 

 Set nondefault values for IPARAM and RPARAM. 

Note that the call to S5PRS will set IPARAM and RPARAM to their default values so only 

nondefault values need to be set above.  

IPARAM(1) = 0 indicates that a minimization problem is solved. If set to 1, a 

maximization problem is solved. 

Default: 0 
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IPARAM(2) = switch indicating the maximum number of iterations to be taken 

before returning to the user. If set to zero, the maximum number of 

iterations taken is set to 3*(NVARS+M). If positive, that value is used as 

the iteration limit. 

Default: IPARAM(2) = 0 

IPARAM(3) = indicator for choosing how columns are selected to enter the 

basis. If set to zero, the routine uses the steepest edge pricing strategy 

which is the best local move. If set to one, the minimum reduced cost 

pricing strategy is used. The steepest edge pricing strategy generally 

uses fewer iterations than the minimum reduced cost pricing, but each 

iteration costs more in terms of the amount of calculation performed. 

However, this is very problem-dependent.  

Default: IPARAM(3) = 0 

IPARAM(4) = MXITBR, the number of iterations between recalculating the error 

in the primal solution is used to monitor the error in solving the linear 

system. This is an expensive calculation and every tenth iteration is 

generally enough. 

Default: IPARAM(4) = 10 

IPARAM(5) = NPP, the number of negative reduced costs (at most) to be found 

at each iteration of choosing a variable to enter the basis. If set to zero,  

NPP = NVARS will be used, implying that all of the reduced costs are 

computed at each such step. This ―Partial pricing‖ may increase the 

total number of iterations required. However, it decreases the number 

of calculation required at each iteration. The effect on overall 

efficiency is very problem-dependent. If set to some positive number, 

that value is used as NPP. 

Default: IPARAM(5) = 0 

IPARAM(6) = IREDFQ, the number of steps between basis matrix 

redecompositions. Redecompositions also occur whenever the linear 

systems for the primal and dual systems have lost half their working 

precision. 

Default: IPARAM(6) = 50 

IPARAM(7) = LAMAT, the length of the portion of WORK that is allocated to 

sparse matrix storage and decomposition. LAMAT must be greater than 

NZ + NVARS + 4. 

Default: LAMAT = NZ + NVARS + 5 

IPARAM(8) = LBM, then length of the portion of IWORK that is allocated to 

sparse matrix storage and decomposition. LBM must be positive. 

Default: LBM = 8*M 

IPARAM(9) = switch indicating that partial results should be saved after the 

maximum number of iterations, IPARAM(2), or at the optimum. If 
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IPARAM(9) is not zero, data essential to continuing the calculation is 

saved to a file, attached to unit number IPARAM(9). The data saved 

includes all the information about the sparse matrix A and information 

about the current basis. If IPARAM(9) is set to zero, partial results are 

not saved. It is the responsibility of the calling program to open the 

output file. 

IPARAM(10) = switch indicating that partial results have been computed and 

stored on unit number IPARAM(10), if greater than zero. If IPARAM(10) 

is zero, a new problem is started. 

Default: IPARAM(10) = 0 

IPARAM(11) = switch indicating that the user supplies scale factors for the 

columns of the matrix A. If IPARAM(11) = 0, SLPRS computes the scale 

factors as the reciprocals of the max norm of each column. If 

IPARAM(11) is set to one, element I of the vector COLSCL is used as the 

scale factor for column I of the matrix A. The scaling is implicit, so no 

input data is actually changed. 

Default: IPARAM(11) = 0 

IPARAM(12) = switch indicating that the user supplied scale factors for the 

rows of the matrix A. If IPARAM(12) is set to zero, no row scaling is 

one. If IPARAM(12) is set to 1, element I of the vector ROWSCL is used 

as the scale factor for row I of the matrix A. The scaling is implicit, so 

no input data is actually changed. 

Default: IPARAM(12) = 0 

RPARAM — Real parameter vector of length 7. 

RPARAM(1) = COSTSC, a scale factor for the vector of costs. Normally SLPRS 

computes this scale factor to be the reciprocal of the max norm if the 

vector costs after the column scaling has been applied. If RPARAM(1) is 

zero, SLPRS compute COSTSC. 

Default: RPARAM(1) = 0.0 

RPARAM(2) = ASMALL, the smallest magnitude of nonzero entries in the matrix 

A. If RPARAM(2) is nonzero, checking is done to ensure that all 

elements of A are at least as large as RPARAM(2). Otherwise, no 

checking is done. 

Default: RPARAM(2) = 0.0 

RPARAM(3) = ABIG, the largest magnitude of nonzero entries in the matrix A. 

If RPARAM(3) is nonzero, checking is done to ensure that all elements of 

A are no larger than RPARAM(3). Otherwise, no checking is done. 

Default: RPARAM(3) = 0.0 

RPARAM(4) = TOLLS, the relative tolerance used in checking if the residuals 

are feasible. RPARAM(4) is nonzero, that value is used as TOLLS, 
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otherwise the default value is used. 

Default: TOLLS = 1000.0*amach(4) 

RPARAM(5) = PHI, the scaling factor used to scale the reduced cost error 

estimates. In some environments, it may be necessary to reset PHI to 

the range [0.01, 0.1], particularly on machines with short word length 

and working precision when solving a large problem. If RPARAM(5) is 

nonzero, that value is used as PHI, otherwise the default value is used. 

Default: PHI = 1.0 

RPARAM(6) = TOLABS, an absolute error test on feasibility. Normally a relative 

test is used with TOLLS (see RPARAM(4)). If this test fails, an absolute 

test will be applied using the value TOLABS. 

Default: TOLABS = 0.0 

RPARAM(7) = pivot tolerance of the underlying sparse factorization routine. If 

RPARAM(7) is set to zero, the default pivot tolerance is used, otherwise, 

the RPARAM(7) is used. 

Default: RPARAM(7) = 0.1 

COLSCL — Array of length NVARS containing column scale factors for the matrix A.   

(Input). 

COLSCL is not used if IPARAM(11) is set to zero. 

ROWSCL — Array of length M containing row scale factors for the matrix A.   (Input)  

ROWSCL is not used if IPARAM(12) is set to zero. 

WORK — Work array of length LW. 

LW — Length of real work array. LW must be at least  

2 + 2NZ + 9NVAR + 27M + MAX(NZ + NVAR + 8, 4NVAR + 7). 

IWORK — Integer work array of length LIW. 

LIW — Length of integer work array. LIW must be at least  

1 + 3NVAR + 41M + MAX(NZ + NVAR + 8, 4NVAR + 7). 

Example 

Solve a linear programming problem, with 
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defined in sparse coordinate format. 
 

      USE SLPRS_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    M, NVAR 

      PARAMETER  (M=200, NVAR=200) 

!                                  Specifications for local variables 

      INTEGER    INDEX, IROW(3*M), J, JCOL(3*M), NOUT, NZ 

      REAL       A(3*M), DSOL(M), OBJ, XSOL(NVAR) 

      INTEGER    IRTYPE(M) 

      REAL       B(M), C(NVAR), XL(NVAR), XU(NVAR) 

!                                  Specifications for subroutines 

      DATA B/199*1.7, 1.0/ 

      DATA C/-1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0, & 

      -10.0, 190*-1.0/ 

      DATA XL/200*0.1/ 

      DATA XU/200*2.0/ 

      DATA IRTYPE/200*1/ 

! 

      CALL UMACH (2, NOUT) 

!                                  Define A 

      INDEX = 1 

      DO 10  J=2, M 

!                                  Superdiagonal element 

         IROW(INDEX) = J - 1 

         JCOL(INDEX) = J 

         A(INDEX)    = 0.5 

!                                  Diagonal element 

         IROW(INDEX+1) = J 

         JCOL(INDEX+1) = J 

         A(INDEX+1) = 1.0 

         INDEX      = INDEX + 2 

   10 CONTINUE 

      NZ = INDEX - 1 

! 

! 

      XL(4) = 0.2 

      CALL SLPRS (A, IROW, JCOL, B, B, C, IRTYPE, OBJ, XSOL, DSOL, & 

                  NZ=NZ, XLB=XL, XUB=XU) 

! 

      WRITE (NOUT,99999) OBJ 

! 

99999 FORMAT (/, 'The value of the objective function is ', E12.6) 

! 

      END 
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Output 
 

The value of the objective function is -.280971E+03  

TRAN 
Solves a transportation problem. 

Required Arguments 

WCAP — Array of size NW containing the source (warehouse) capacities.   (Input) 

SREQ — Array of size NS containing the sink (store) requirements.    (Input) 

COST — Array of size NW by NS containing the cost matrix.    (Input) 

COST (I, J) is the per unit cost to ship from source I to sink J. 

X — Array of size NW by NS containing the optimal routing.    (Output) 

 X (I, J) units should be shipped from source I to sink J. 

CMIN — Total cost of the optimal routing.    (Output) 

Optional Arguments 

NW —  Number of sources.    (Input) 

  Default: NW = SIZE (WCAP, 1). 

NS —  Number of sinks.   (Input)  

 Default: NS = SIZE (SREQ, 1). 

MAXITN —  Upper bound on the number of simplex steps.   (Input)  

 Default: MAXITN = 0, means no limit. 

DUAL — Array of size NW + NS containing the dual solution.    (Output) 

FORTRAN 90 Interface 

Generic: CALL TRAN (WCAP, SREQ, COST, X, CMIN [,…]) 

Specific: The specific interface names are S_TRAN and D_TRAN. 

Description 

Routine TRAN solves the transportation problem. 

Minimize 
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and  
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NW

ij j
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X S for j NS


 
 

and  

0ijX 
 

 

where C = COST, X = X, W = WCAP and S = SREQ. 

The revised simplex method is used to solve a very sparse linear programming problem with  

NW + NS constraints and NW * NS variables.  If NW = NS = k, the work per iteration is O(k
 2
), 

compared with O(k
 3
) when a dense simplex algorithm is used.  For more details, see Sewell 

(2005). 

DUAL(I) gives the decrease in total cost per unit increase in WCAP (I), for small increases, and  

–DUAL (NW+J) gives the increase in total cost per unit increase in SREQ (J).  

Comments 

Informational errors 

Type Code 

3 1 There is insufficient source capacity.  The total source capacity is 

less than the total sink needs, so TRAN will return a solution which 

minimizes the cost to distribute everything in the sources, but does 

not fill all the sink needs.  

4 2 The maximum number of iterations has been exceeded. 

Example 

In this example, there are two warehouses with capacities 40 and 20, and 3 stores, which need 25, 

10 and 22 units, respectively. 
 

      USE TRAN_INT 

      IMPLICIT NONE 

      INTEGER, PARAMETER :: NW=2, NS=3 

      INTEGER            :: I, J, NOUT 

      REAL               ::  X(NW,NS), COST(NW,NS), CMIN 

!                                  WAREHOUSE CAPACITIES 
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      REAL               ::  WCAP(NW) =(/40, 20/) 

!                                  STORE REQUIREMENTS 

      REAL               :: SREQ(NS) =(/25, 10, 22/) 

!                                  COSTS 

      DATA COST/550,350,300,300,400,100/ 

! 

      CALL UMACH(2, NOUT) 

!                                  SOLVE TRANSPORTATION PROBLEM 

! 

      CALL TRAN(WCAP, SREQ, COST, X, CMIN) 

!                                  PRINT RESULTS 

      WRITE(NOUT, 99995)  CMIN 

      DO I=1, NW 

         DO J=1, NS 

             WRITE (NOUT, 99996) X(I,J),I,J 

         END DO 

      END DO 

 99995 FORMAT (' Minimum cost is ',F10.2) 

 99996 FORMAT (' Ship ',F5.2,' units from warehouse ',I2, & 

            ' to store ',I2) 

      END 

Output 

 

Minimum cost is   19550.00 

Ship 25.00 units from warehouse  1 to store  1 

Ship 10.00 units from warehouse  1 to store  2 

Ship  2.00 units from warehouse  1 to store  3 

Ship  0.00 units from warehouse  2 to store  1 

Ship  0.00 units from warehouse  2 to store  2 

Ship 20.00 units from warehouse  2 to store  3 

QPROG 
Solves a quadratic programming problem subject to linear equality/inequality constraints. 

Required Arguments 

NEQ — The number of linear equality constraints.   (Input) 

A — NCON by NVAR matrix.   (Input) 

The matrix contains the equality contraints in the first NEQ rows followed by the 

inequality constraints. 

B — Vector of length NCON containing right-hand sides of the linear constraints.   (Input) 

G — Vector of length NVAR containing the coefficients of the linear term of the objective 

function.   (Input) 

H — NVAR by NVAR matrix containing the Hessian matrix of the objective function.   (Input) 

H should be symmetric positive definite; if H is not positive definite, the algorithm 



 

 

IMSL MATH LIBRARY Chapter 8: Optimization  1507 

     

     

 

attempts to solve the QP problem with H replaced by a H + DIAGNL * I such that  

H + DIAGNL * I is positive definite. See Comment 3. 

SOL — Vector of length NVAR containing solution.   (Output) 

Optional Arguments 

NVAR — The number of variables.   (Input) 

Default: NVAR = SIZE (A,2). 

NCON — The number of linear constraints.   (Input) 

Default: NCON = SIZE (A,1). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDH = SIZE (H,1). 

DIAGNL — Scalar equal to the multiple of the identity matrix added to H to give a positive 

definite matrix.   (Output) 

NACT — Final number of active constraints.   (Output) 

IACT — Vector of length NVAR containing the indices of the final active constraints in the 

first NACT positions.   (Output) 

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final 

active constraints in the first NACT positions.   (Output) 

MAXITN — This number is the maximum number of iterations allowed. (Input) 

If MAXITN is set to 0 the iteration count is unbounded. 

Default: MAXITN = 100000. 

SMALL — This constant is used in the determination of the positive definiteness of the 

Hessian H. (Input) 

SMALL is also used for the convergence criteria of a constraint violation. 

Default: SMALL = 10.0 * machine precision for single precision and 1000.0*machine 

precision for double precision. 

FORTRAN 90 Interface 

Generic: CALL QPROG (NEQ, A, B, G, H, SOL [,…]) 

Specific: The specific interface names are S_QPROG and D_QPROG. 
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FORTRAN 77 Interface 

Single: CALL QPROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH, DIAGNL, SOL, NACT, 

IACT, ALAMDA) 

Double: The double precision name is DQPROG. 

Description 

The routine QPROG is based on M.J.D. Powell‘s implementation of the Goldfarb and Idnani (1983) 

dual quadratic programming (QP) algorithm for convex QP problems subject to general linear 

equality/inequality constraints, i.e., problems of the form 

1
min

2n

T T

x

g x x Hx



R  

subject to A1x = b1 

A1x ≥ b2 

given the vectors b1, b2, and g and the matrices H, A1, and A2. H is required to be positive definite. 

In this case, a unique x solves the problem or the constraints are inconsistent. If H is not positive 

definite, a positive definite perturbation of H is used in place of H. For more details, see Powell 

(1983, 1985). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of Q2ROG/DQ2ROG. The 

reference is: 

CALL Q2ROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH, DIAGNL, 

SOL, NACT, IACT, ALAMDA, WK) 

The additional argument is: 

WK — Work vector of length (3 * NVAR**2 + 11 * NVAR)/2 + NCON. 

2. Informational errors 

Type Code 

3 1 Due to the effect of computer rounding error, a change in the 

variables fail to improve the objective function value; usually the 

solution is close to optimum. 

4 2 The system of equations is inconsistent. There is no solution. 

3. If a perturbation of H, H + DIAGNL * I, was used in the QP problem, then  

H + DIAGNL * I should also be used in the definition of the Lagrange multipliers. 
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Example 

The quadratic programming problem  

  2 2 2 2 2
1 2 3 4 5 2 3 4 5 1

1 2 3 4 5

3 4 5

min 2 2 2

subject to  5

2 2 3

f x x x x x x x x x x x

x x x x x

x x x

       

    

   
 

is solved. 
 

      USE QPROG_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDH, NCON, NEQ, NVAR 

      PARAMETER  (NCON=2, NEQ=2, NVAR=5, LDA=NCON, LDH=NVAR) 

! 

      INTEGER    K, NACT, NOUT 

      REAL       A(LDA,NVAR), ALAMDA(NVAR), B(NCON), G(NVAR), & 

                H(LDH,LDH), SOL(NVAR) 

! 

!                                 Set values of A, B, G and H. 

!                                 A = ( 1.0  1.0  1.0  1.0  1.0) 

!                                     ( 0.0  0.0  1.0 -2.0 -2.0) 

! 

!                                 B = ( 5.0 -3.0) 

! 

!                                 G = (-2.0  0.0  0.0  0.0  0.0) 

! 

!                                 H = ( 2.0  0.0  0.0  0.0  0.0) 

!                                     ( 0.0  2.0 -2.0  0.0  0.0) 

!                                     ( 0.0 -2.0  2.0  0.0  0.0) 

!                                     ( 0.0  0.0  0.0  2.0 -2.0) 

!                                     ( 0.0  0.0  0.0 -2.0  2.0) 

! 

      DATA A/1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, -2.0, 1.0, -2.0/ 

      DATA B/5.0, -3.0/ 

      DATA G/-2.0, 4*0.0/ 

      DATA H/2.0, 5*0.0, 2.0, -2.0, 3*0.0, -2.0, 2.0, 5*0.0, 2.0, & 

          -2.0, 3*0.0, -2.0, 2.0/ 

! 

      CALL QPROG (NEQ, A, B, G, H, SOL) 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) (SOL(K),K=1,NVAR) 

99999 FORMAT ('  The solution vector is', /, '  SOL = (', 5F6.1, & 

            '  )') 

! 

      END 

Output 
 

The solution vector is 

SOL = (   1.0   1.0   1.0   1.0   1.0  ) 
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LCONF 
Minimizes a general objective function subject to linear equality/inequality constraints. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Value of NVAR.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

NEQ — The number of linear equality constraints.   (Input) 

A — NCON by NVAR matrix.   (Input)  

The matrix contains the equality constraint gradients in the first NEQ rows, followed by 

the inequality constraint gradients. 

B — Vector of length NCON containing right-hand sides of the linear constraints.   (Input)  

Specifically, the constraints on the variables X(I), I = 1, …, NVAR are  

A(K, 1) * X(1) + … + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, …,  

NEQ.A(K, 1) * X(1) + … + A(K, NVAR) * X(NVAR).LE.B(K), K = NEQ + 1, …, 

NCON. Note that the data that define the equality constraints come before the data of the 

inequalities. 

XLB — Vector of length NVAR containing the lower bounds on the variables; choose a very 

large negative value if a component should be unbounded below or set  

XLB(I) = XUB(I) to freeze the I-th variable.   (Input)  

Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, …, NVAR. 

XUB — Vector of length NVAR containing the upper bounds on the variables; choose a very 

large positive value if a component should be unbounded above.   (Input)  

Specifically, these simple bounds are X(I).LE.XUB(I), I = 1, …, NVAR. 

SOL — Vector of length NVAR containing solution.   (Output) 

Optional Arguments 

NVAR — The number of variables.   (Input) 

Default: NVAR = SIZE (A,2). 

NCON — The number of linear constraints (excluding simple bounds).   (Input) 

Default: NCON = SIZE (A,1). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

XGUESS — Vector of length NVAR containing the initial guess of the minimum.   (Input) 

Default: XGUESS = 0.0. 

ACC — The nonnegative tolerance on the first order conditions at the calculated solution.   

(Input) 

Default: ACC = 1.e-4 for single precision and 1.d-8 for double precision. 

MAXFCN — On input, maximum number of function evaluations allowed.   (Input/ Output) 

On output, actual number of function evaluations needed. 

Default: MAXFCN = 400. 

OBJ — Value of the objective function.   (Output) 

NACT — Final number of active constraints.   (Output) 

IACT — Vector containing the indices of the final active constraints in the first NACT 

positions.   (Output)  

Its length must be at least NCON + 2 * NVAR. 

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final 

active constraints in the first NACT positions.   (Output) 

FORTRAN 90 Interface 

Generic: CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL [,…]) 

Specific: The specific interface names are S_LCONF and D_LCONF. 

FORTRAN 77 Interface 

Single: CALL LCONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS, ACC, 

MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA) 

Double: The double precision name is DLCONF. 

Description 

The routine LCONF is based on M.J.D. Powell‘s TOLMIN, which solves linearly constrained 

optimization problems, i.e., problems of the form 

 min
nx

f x
R  

subject to     A1x = b1 

A2x ≤ b2 
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 xl ≤ x ≤ xu 

given the vectors b1, b2, xl and xu and the matrices A1, and A2. 

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the 

equality constraints are consistent, the method will revise x
0
, the initial guess provided by the user, 

to satisfy 

A1x = b1 

Next, x
0
 is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving 

a sequence of quadratic programming subproblems to minimize the sum of the constraint or bound 

violations. 

Now, for each iteration with a feasible x
k
, let Jk be the set of indices of inequality constraints that 

have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be the set 

of indices of active constraints. The following quadratic programming problem 

    1
min

2

k T k T kf x d f x d B d  
 

subject to     ajd =  0  j ∈ Ik 

ajd ≤ 0  j ∈ Jk 

is solved to get (d
k
, λ

k
) where aj is a row vector representing either a constraint in A1or A2 or a 

bound constraint on x. In the latter case, the aj = ei for the bound constraint xi ≤ (xu)i and aj = ei 

for the constraint xi ≤ ( xl)i. Here, ei is a vector with a 1 as the i-th component, and zeroes 

elsewhere. λ
k
 are the Lagrange multipliers, and B

k
 is a positive definite approximation to the 

second derivative ∇2
f(x

k
). 

After the search direction d
k
 is obtained, a line search is performed to locate a better point. The 

new point x
k+1

= x
k
 + α

k
d

k
 has to satisfy the conditions 

       0.1
T

k k k k k k kf x d f x d f x    
 

and 

       0.7
T T

k k k k k kd f x d d f x   
 

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-

length α
k
, then its index is not in Jk. Therefore, small steps are likely to be avoided. 

Finally, the second derivative approximation, B
k
 , is updated by the BFGS formula, if the 

condition  

      0
T

k k k k kd f x d f x   
 

holds. Let x
k
 ← x

k+1
, and start another iteration. 
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The iteration repeats until the stopping criterion 

 
2

k k kf x A    
 

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell (1988, 1989). 

Since a finite-difference method is used to estimate the gradient for some single precision 

calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a 

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 

exact gradient can be easily provided, routine LCONG should be used instead. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2ONF/DL2ONF. The 

reference is: 

CALL L2ONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, 

XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA, 

IPRINT, INFO, WK) 

The additional arguments are as follows: 

IPRINT — Print option (see Comment 3).   (Input) 

INFO — Informational flag (see Comment 3).   (Output) 

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON. 

2. Informational Errors 

Type Code 

4 4 The equality constraints are inconsistent. 

4 5 The equality constraints and the bounds on the variables are found to 

be inconsistent. 

4 6 No vector X satisfies all of the constraints. In particular, the current 

active constraints prevent any change in X that reduces the sum of 

constraint violations. 

4 7 Maximum number of function evaluations exceeded. 

4 9 The variables are determined by the equality constraints. 

3. The following are descriptions of the arguments IPRINT and INFO: 

IPRINT — This argument must be set by the user to specify the frequency of printing 

during the execution of the routine LCONF. There is no printed output if IPRINT 

= 0. Otherwise, after ensuring feasibility, information is given every 

IABS(IPRINT) iterations and whenever a parameter called TOL is reduced. The 

printing provides the values of X(.), F(.) and G(.) = GRAD(F) if IPRINT is 

positive. If IPRINT is negative, this information is augmented by the current 

values of IACT(K) K = 1, …, NACT, PAR(K) K = 1, …, NACT and RESKT(I) I = 
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1, …, N. The reason for returning to the calling program is also displayed when 

IPRINT is nonzero. 

INFO — On exit from L2ONF, INFO will have one of the following integer values to 

indicate the reason for leaving the routine: 

INFO = 1 SOL is feasible, and the condition that depends on ACC is satisfied. 

INFO = 2 SOL is feasible, and rounding errors are preventing further 

progress. 

INFO = 3 SOL is feasible, but the objective function fails to decrease 

although a decrease is predicted by the current gradient vector. 

INFO = 4  In this case, the calculation cannot begin because LDA is less than 

NCON or because the lower bound on a variable is greater than the 

upper bound. 

INFO = 5 This value indicates that the equality constraints are inconsistent. 

These constraints include any components of X(.) that are frozen by 

setting XL(I) = XU(I). 

INFO = 6 In this case there is an error return because the equality constraints 

and the bounds on the variables are found to be inconsistent. 

INFO = 7 This value indicates that there is no vector of variables that 

satisfies all of the constraints. Specifically, when this return or an INFO 

= 6 return occurs, the current active constraints (whose indices are 

IACT(K), K = 1, …, NACT) prevent any change in X(.) that reduces the 

sum of constraint violations. Bounds are only included in this sum if 

INFO = 6. 

INFO = 8 Maximum number of function evaluations exceeded. 

INFO = 9 The variables are determined by the equality constraints. 

Example 

The problem from Schittkowski (1987) 

min f(x) =  x1x2x3 

subject to        x1  2 x2  2 x3 ≤ 0 

 x1 +2 x2 + 2 x3 ≤ 72 

0 ≤ x1 ≤ 20 

0 ≤ x2≤ 11 

0 ≤ x3 ≤ 42 
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is solved with an initial guess x1 = 10, x2 = 10 and x3 = 10. 
 

      USE LCONF_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declaration of variables 

      INTEGER    NCON, NEQ, NVAR 

      PARAMETER  (NCON=2, NEQ=0, NVAR=3) 

! 

      INTEGER    MAXFCN, NOUT 

      REAL       A(NCON,NVAR), ACC, B(NCON), OBJ, & 

                SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR) 

      EXTERNAL   FCN 

! 

!                                 Set values for the following problem. 

! 

!                                 Min  -X(1)*X(2)*X(3) 

! 

!                                 -X(1) - 2*X(2) - 2*X(3)  .LE.   0 

!                                  X(1) + 2*X(2) + 2*X(3)  .LE.  72 

! 

!                                 0  .LE.  X(1)  .LE.  20 

!                                 0  .LE.  X(2)  .LE.  11 

!                                 0  .LE.  X(3)  .LE.  42 

! 

      DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/ 

      DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/ 

      DATA ACC/0.0/, MAXFCN/400/ 

! 

      CALL UMACH (2, NOUT) 

! 

      CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS,  & 

                 MAXFCN=MAXFCN, ACC=ACC, OBJ=OBJ) 

! 

      WRITE (NOUT,99998) 'Solution:' 

      WRITE (NOUT,99999) SOL 

      WRITE (NOUT,99998) 'Function value at solution:' 

      WRITE (NOUT,99999) OBJ 

      WRITE (NOUT,99998) 'Number of function evaluations:', MAXFCN 

      STOP 

99998 FORMAT (//, ' ', A, I4) 

99999 FORMAT (1X, 5F16.6) 

      END 

! 

      SUBROUTINE FCN (N, X, F) 

      INTEGER    N 

      REAL       X(*), F 

! 

      F = -X(1)*X(2)*X(3) 

      RETURN 

      END 

Output 
 

Solution: 

 20.000000       11.000000       15.000000 
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Function value at solution: 

-3300.000000 

 

Number of function evaluations:   5 

LCONG 
Minimizes a general objective function subject to linear equality/inequality constraints. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Value of NVAR.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is  

CALL GRAD (N, X, G), where 

N – Value of NVAR.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 

X should not be changed by GRAD. 

G – Vector of length N containing the values of the gradient of the objective 

function evaluated at the point X.   (Output) 

 GRAD must be declared EXTERNAL in the calling program. 

NEQ — The number of linear equality constraints.   (Input) 

A — NCON by NVAR matrix.   (Input)  

The matrix contains the equality constraint gradients in the first NEQ rows, followed by 

the inequality constraint gradients. 

B — Vector of length NCON containing right-hand sides of the linear constraints.   (Input)  

Specifically, the constraints on the variables X(I), I = 1, …, NVAR are  

A(K, 1) * X(1) + … + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, …,  

NEQ.A(K, 1) * X(1) + … + A(K, NVAR) * X(NVAR).LE.B(K), K = NEQ + 1, …, NCON. 

Note that the data that define the equality constraints come before the data of the 

inequalities. 
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XLB — Vector of length NVAR containing the lower bounds on the variables; choose a very 

large negative value if a component should be unbounded below or set  

XLB(I) = XUB(I) to freeze the I-th variable.   (Input)  

Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, …, NVAR. 

XUB — Vector of length NVAR containing the upper bounds on the variables; choose a very 

large positive value if a component should be unbounded above.   (Input)  

Specifically, these simple bounds are X(I).LE. XUB(I), I = 1, …, NVAR. 

SOL — Vector of length NVAR containing solution.   (Output) 

Optional Arguments 

NVAR — The number of variables.   (Input) 

Default: NVAR = SIZE (A,2). 

NCON — The number of linear constraints (excluding simple bounds).   (Input) 

Default: NCON = SIZE (A,1). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

XGUESS — Vector of length NVAR containing the initial guess of the minimum.   (Input) 

Default: XGUESS = 0.0. 

ACC — The nonnegative tolerance on the first order conditions at the calculated solution.   

(Input) 

Default: ACC = 1.e-4 for single precision and 1.d-8 for double precision. 

MAXFCN — On input, maximum number of function evaluations allowed.(Input/ Output)  

On output, actual number of function evaluations needed. 

Default: MAXFCN = 400. 

OBJ — Value of the objective function.   (Output) 

NACT — Final number of active constraints.   (Output) 

IACT — Vector containing the indices of the final active constraints in the first NACT 

positions.   (Output)  

Its length must be at least NCON + 2 * NVAR. 

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final 

active constraints in the first NACT positions.   (Output) 

FORTRAN 90 Interface 

Generic: CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL [,…]) 
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Specific: The specific interface names are S_LCONG and D_LCONG. 

FORTRAN 77 Interface 

Single: CALL LCONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS, ACC, 

MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA) 

Double: The double precision name is DLCONG. 

Description 

The routine LCONG is based on M.J.D. Powell‘s TOLMIN, which solves linearly constrained 

optimization problems, i.e., problems of the form 

 min
nx

f x
R  

subject to A1x = b1 

A2x ≤ b2 

xl ≤ x ≤ xu 

given the vectors b1, b2, xl and xu and the matrices A1, and A2. 

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the 

equality constraints are consistent, the method will revise x
0
, the initial guess provided by the user, 

to satisfy 

A1x = b1 

Next, x
0
 is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving 

a sequence of quadratic programming subproblems to minimize the sum of the constraint or bound 

violations. 

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints that 

have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be the set 

of indices of active constraints. The following quadratic programming problem 

    1
min

2

k T k T kf x d f x d B d  
 

subject to ajd = 0 j ∈ Ik 

ajd ≤ 0 j ∈ Jk 

is solved to get (d
k
, λ

k
) where aj is a row vector representing either a constraint in A1or A2 or a 

bound constraint on x. In the latter case, the aj = ei for the bound constraint xi ≤ (xu)i and  

aj =  ei for the constraint  xi ≤ (  xl)i. Here, ei is a vector with a 1 as the i-th component, and 

zeroes elsewhere. λ
k
 are the Lagrange multipliers, and B

k
 is a positive definite approximation to 

the second derivative ∇2
f(x

k
). 
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After the search direction d
k
 is obtained, a line search is performed to locate a better point. The 

new point x
k+1

= x
k
 + α

k
d

k
 has to satisfy the conditions 

       0.1
T

k k k k k k kf x d f x d f x    
 

and 

       0.7
T T

k k k k k kd f x d d f x   
 

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-

length α
k
, then its index is not in Jk. Therefore, small steps are likely to be avoided. 

Finally, the second derivative approximation, B
k
, is updated by the BFGS formula, if the condition  

      0
T

k k k k kd f x d f x   
 

holds. Let x
k
 ← x

k+1
, and start another iteration. 

The iteration repeats until the stopping criterion 

 
2

k k kf x A    
 

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell (1988, 1989).  

Comments 

1. Workspace may be explicitly provided, if desired, by use of L2ONG/DL2ONG. The 

reference is: 

CALL L2ONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB, 

XUB, XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT, 

ALAMDA, IPRINT, INFO, WK) 

The additional arguments are as follows: 

IPRINT — Print option (see Comment 3).   (Input) 

INFO — Informational flag (see Comment 3).   (Output) 

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON. 

2. Informational errors 

Type Code 

4 4 The equality constraints are inconsistent. 

4  5 The equality constraints and the bounds on the variables are found to 

be inconsistent. 
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4 6 No vector X satisfies all of the constraints. In particular, the current 

active constraints prevent any change in X that reduces the sum of 

constraint violations. 

4 7 Maximum number of function evaluations exceeded. 

4 9 The variables are determined by the equality constraints. 

3. The following are descriptions of the arguments IPRINT and INFO: 

IPRINT — This argument must be set by the user to specify the frequency of printing 

during the execution of the routine LCONG. There is no printed output if  

IPRINT = 0. Otherwise, after ensuring feasibility, information is given every 

IABS(IPRINT) iterations and whenever a parameter called TOL is reduced. The 

printing provides the values of X(.), F(.) and G(.) = GRAD(F) if IPRINT is 

positive. If IPRINT is negative, this information is augmented by the current 

values of IACT(K) K = 1, …, NACT, PAR(K) K = 1, …, NACT and  

RESKT(I) I = 1, …, N. The reason for returning to the calling program is also 

displayed when IPRINT is nonzero. 

INFO — On exit from L2ONG, INFO will have one of the following integer values to 

indicate the reason for leaving the routine: 

INFO = 1 SOL is feasible and the condition that depends on ACC is satisfied. 

INFO = 2 SOL is feasible and rounding errors are preventing further progress. 

INFO = 3 SOL is feasible but the objective function fails to decrease although 

a decrease is predicted by the current gradient vector. 

INFO = 4 In this case, the calculation cannot begin because LDA is less than 

NCON or because the lower bound on a variable is greater than the 

upper bound. 

INFO = 5 This value indicates that the equality constraints are inconsistent. 

These constraints include any components of X(.) that are frozen by 

setting XL(I) = XU(I). 

INFO = 6 In this case, there is an error return because the equality constraints 

and the bounds on the variables are found to be inconsistent. 

INFO = 7 This value indicates that there is no vector of variables that 

satisfies all of the constraints. Specifically, when this return or an 

INFO = 6 return occurs, the current active constraints (whose indices are 

IACT(K), K = 1, …, NACT) prevent any change in X(.) that reduces the 

sum of constraint violations, where only bounds are included in this 

sum if INFO = 6. 
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INFO = 8 Maximum number of function evaluations exceeded. 

INFO = 9 The variables are determined by the equality constraints. 

Example 

The problem from Schittkowski (1987) 

min f(x) =  x1
  x2

  x3 

subject to  x1  2x2  2x3 ≤ 0 

x1 +2 x2 + 2 x3 ≤ 72 

0 ≤ x1 ≤ 20 

0 ≤ x2 ≤ 11 

0 ≤ x3 ≤ 42 

is solved with an initial guess x1 = 10, x2= 10 and x3 = 10. 
 

      USE LCONG_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declaration of variables 

      INTEGER    NCON, NEQ, NVAR 

      PARAMETER  (NCON=2, NEQ=0, NVAR=3) 

! 

      INTEGER    MAXFCN, NOUT 

      REAL       A(NCON,NVAR), ACC, B(NCON), OBJ, & 

                 SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR) 

      EXTERNAL   FCN, GRAD 

! 

!                                 Set values for the following problem. 

! 

!                                 Min  -X(1)*X(2)*X(3) 

! 

!                                 -X(1) - 2*X(2) - 2*X(3)  .LE.   0 

!                                  X(1) + 2*X(2) + 2*X(3)  .LE.  72 

! 

!                                 0  .LE.  X(1)  .LE.  20 

!                                 0  .LE.  X(2)  .LE.  11 

!                                 0  .LE.  X(3)  .LE.  42 

! 

      DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/ 

      DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/ 

      DATA ACC/0.0/, MAXFCN/400/ 

! 

      CALL UMACH (2, NOUT) 

! 

      CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS, & 

                  ACC=ACC, MAXFCN=MAXFCN, OBJ=OBJ) 

! 

      WRITE (NOUT,99998) 'Solution:' 

      WRITE (NOUT,99999) SOL 

      WRITE (NOUT,99998) 'Function value at solution:' 
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      WRITE (NOUT,99999) OBJ 

      WRITE (NOUT,99998) 'Number of function evaluations:', MAXFCN 

      STOP 

99998 FORMAT (//, ' ', A, I4) 

99999 FORMAT (1X, 5F16.6) 

      END 

! 

      SUBROUTINE FCN (N, X, F) 

      INTEGER    N 

      REAL       X(*), F 

! 

      F = -X(1)*X(2)*X(3) 

      RETURN 

      END 

! 

      SUBROUTINE GRAD (N, X, G) 

      INTEGER    N 

      REAL       X(*), G(*) 

! 

      G(1) = -X(2)*X(3) 

      G(2) = -X(1)*X(3) 

      G(3) = -X(1)*X(2) 

      RETURN 

      END 

Output 
 

Solution: 

20.000000       11.000000       15.000000 

 

Function value at solution: 

-3300.000000 

 

Number of function evaluations:   5 

NNLPF 
Solves a general nonlinear programming problem using a sequential equality constrained quadratic 

programming method. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the objective function and constraints at a given 

point. The internal usage is 

CALL FCN (X, IACT, RESULT, IERR), where 

X – The point at which the objective function or  constraint is evaluated.   

(Input) 

IACT – Integer indicating  whether evaluation of the objective function is 

requested or evaluation of a constraint is requested.  If IACT is zero, then 

an objective function evaluation is requested.  If IACT is nonzero then the 

value if IACT indicates the index of the constraint to evaluate. IACT = 1 to 
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ME for equality constraints and IACT = ME +1 to M for inequality 

constraints.   (Input) 

RESULT – If IACT is zero,  then RESULT is the computed function value at the 

point X.   If IACT is nonzero, then RESULT is the computed constraint 

value at the point X.     (Output) 

IERR – Logical variable. On input IERR is set to .FALSE.  If an error or other 

undesirable condition occurs during evaluation, then IERR should be set to 

.TRUE.  Setting IERR to .TRUE.  will result in the step size being reduced 

and the step being tried again.  (If IERR is set to .TRUE. for XGUESS, then 

an error is issued.) 

 The routine FCN must be use-associated in a user module that uses NNLPF_INT, or else 

declared  EXTERNAL in the calling program. If FCN is a separately compiled routine, not 

in a module, then it must be declared EXTERNAL. 

M — Total number of constraints.  (Input) 

ME — Number of equality constraints.  (Input) 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable; all other variables will have 

 the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)  

If there is no lower bound for a variable, then the corresponding XLB value should be 

set to Huge(X(1)). 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 

output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3). 

If there is no upper bound for a variable, then the corresponding XUB value should be 

set to Huge(X(1)). 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 

N — Number of variables.   (Input) 

Default: N = SIZE(X). 
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XGUESS — Vector of length N containing an initial guess of the solution.   (Input) 

Default: XGUESS = x, (with the smallest value of 
2

x ) that satisfies the bounds. 

XSCALE — Vector of length N setting the internal scaling of the variables.  The initial value 

given and the objective function and gradient evaluations however are always in the 

original unscaled variables.  The first internal variable is obtained by dividing values 

X(I) by XSCALE(I).  (Input) 

In the absence of other information, set all entries to 1.0. 

Default: XSCALE(:) = 1.0. 

IPRINT — Parameter indicating the desired output level.   (Input) 

IPRINT Action 

0  No output printed. 

1  One line of intermediate results is printed in each iteration. 

2  Lines of intermediate results summarizing the most important data  for each 

step are printed. 

3        Lines of detailed intermediate results showing all primal and dual variables, 

the relevant values from the working set, progress in the backtracking and 

etc are printed 

4        Lines of detailed intermediate results showing all primal and dual variables, 

the relevant values from the working set, progress in the backtracking, the 

gradients in the working set, the quasi-Newton updated and etc are printed. 

 Default: IPRINT = 0. 

MAXITN — Maximum number of iterations allowed.   (Input) 

Default: MAXITN = 200. 

EPSDIF — Relative precision in gradients. (Input)  

Default: EPSDIF = epsilon(1) 

TAU0 — A universal bound describing how much the unscaled penalty-term may deviate 

from zero. (Input)  

NNLPF assumes that within the region described by 

    
1 1

min 0,
e

e

M M

i i

i i M

g x g x
  

   TAU0

 

 all functions may be evaluated safely. The initial guess, however, may violate these 

requirements. In that case an initial feasibility improvement phase is run by NNLPF 

until such a point is found. A small TAU0 diminishes the efficiency of  NNLPF, because 
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the iterates then will follow the boundary of the feasible set closely. Conversely, a 

large TAU0 may degrade the reliability of the code.  

Default TAU0 = 1.E0 

DEL0 — In the initial phase of minimization a constraint is considered binding if 

 

  max 1,

i

i

g x

g x



DEL0

           
1, ,ei M M 

 

 Good values are between .01 and 1.0. If DEL0 is chosen too small then identification 

of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large, 

then the method will often escape to the full regularized SQP method, using individual 

slack variables for any active constraint, which is quite costly. For well-scaled 

problems DEL0=1.0 is reasonable.  (Input) 

Default: DEL0 = .5*TAU0 

EPSFCN – Relative precision of the function evaluation routine.   (Input) 

Default: EPSFCN = epsilon(1) 

IDTYPE – Type of numerical differentiation to be used.   (Input) 

Default: IDTYPE = 1 

IDTYPE Action 

1 Use a forward difference quotient with discretization 

stepsize 0.1(EPSFCN
1/2

) componentwise relative. 

2 Use the symmetric difference quotient with discretization 

stepsize 0.1(EPSFCN
1/3

) componentwise relative 

3 Use the sixth order approximation computing a 

Richardson extrapolation of three symmetric difference 

quotient values.  This uses a discretization stepsize 

0.01(EPSFCN
1/7 ) 

TAUBND – Amount by which bounds may be violated during  numerical differentiation.  

Bounds are violated by TAUBND (at most) only if a variable is on a bound  and finite 

differences are taken for gradient evaluations.  (Input) 

Default: TAUBND = 1.E0 

SMALLW — Scalar containing the error allowed in the multipliers.  For example, a negative 

multiplier of an inequality constraint is accepted (as zero) if its absolute value is less 

than SMALLW.   (Input)  

Default: SMALLW = exp(2*log(epsilon(x(1)/3))) 

DELMIN — Scalar which defines allowable constraint violations of the final accepted result.   

Constraints are satisfied if |gi(x)|  DELMIN , and gj(x)  (-DELMIN ) respectively. 

(Input)  
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Default: DELMIN = min(DEL0/10, max(EPSDIF, min(DEL0/10,  

max(1.E-6*DEL0, SMALLW)))) 

SCFMAX — Scalar containing the bound for the internal automatic scaling of the objective 

function.   (Intput)  

Default: SCFMAX = 1.0E4 

FVALUE — Scalar containing the value of the objective function at the computed solution.   

(Output) 

LGMULT— Vector of length M containing the Lagrange multiplier estimates of the 

constraints.   (Output)  

CONSTRES — Vector of length M containing the constraint residuals.   (Output) 

FORTRAN 90 Interface 

Generic: CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_NNLPF and D_NNLPF . 

Description 

The routine NNLPF provides an interface to a licensed version of subroutine DONLP2, a FORTRAN 

code developed by Peter Spellucci (1998). It uses a sequential equality constrained quadratic 

programming method with an active set technique, and an alternative usage of a fully regularized 

mixed constrained subproblem in case of nonregular constraints (i.e. linear dependent gradients in 

the ―working sets‖). It uses a slightly modified version of the Pantoja-Mayne update for the 

Hessian of the Lagrangian, variable dual scaling and an improved Armjijo-type stepsize algorithm. 

Bounds on the variables are treated in a gradient-projection like fashion. Details may be found in 

the following two papers:  

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained 

subproblems. Math. Prog. 82, (1998), 413-448. 

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of Oper. 

Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany). 

The problem is stated as follows: 

 min
nx

f x
R  

 

 

subject to 0, for 1, ,

0, for 1, ,

j e

j e

l u

g x j m

g x j m m

x x x

 

  

 
 

Although default values are provided for optional input arguments, it may be necessary to adjust 

these values for some problems. Through the use of optional arguments, NNLPF allows for several 
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parameters of the algorithm to be adjusted to account for specific characteristics of problems.   

The DONLP2 Users Guide provides detailed descriptions of these parameters as well as strategies 

for maximizing the perfomance of the algorithm.  The DONLP2 Users Guide is available in the 

―help‖ subdirectory of the main IMSL product installation directory. In addition, the following are 

a number of guidelines to consider when using NNLPF.  

 A good initial starting point is very problem specific and should be provided by the calling 

program whenever possible.  See optional argument  XGUESS. 

 Gradient approximation methods can have an effect on the success of NNLPF.  Selecting a 

higher order appoximation method may be necessary for some problems. See optional 

argument  IDTYPE. 

 If a two sided constraint ( )i i il g x u  is transformed into two constraints 2 ( ) 0ig x   and 

2 1( ) 0ig x  , then choose  1

2
( ) / {1, }i i iu l max g x  DEL0 , or at least try to provide 

an estimate for that value.  This will increase the efficiency of the algorithm.  See optional 

argument  DEL0. 

 The parameter IERR provided in the interface to the user supplied function FCN can be very 

useful in cases when evaluation is requested at a point that is not possible or reasonable.   For 

example, if evaluation at the requested point would result in a floating point exception, then 

setting IERR to .TRUE. and returning without performing the evaluation will avoid the 

exception.   NNLPF will then reduce the stepsize and try the step again.  Note, if IERR is set to 

.TRUE. for the initial guess, then an error is issued. 

Comments 

1. Informational errors 

Type Code 

4 1 Constraint evaluation returns an error with current point. 

4 2 Objective evaluation returns an error with current point. 

4 3 Working set is singular in dual extended QP. 

4 4 QP problem is seemingly infeasible. 

4 5 A stationary point located or termination criteria too strong. 

4 8 Maximum number of iterations exceeded. 

4 9 Stationary point not feasible. 

4 10 Very slow primal progress. 

4 11 The problem is singular.  

4 12 Matrix of gradients of binding constraints is singular or very ill-

conditioned.  

4 13 Small changes in the penalty function. 

Example 

The problem 
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2 2

1 2

1 1 2

2 2
2 1 2

min 2 1

subject to  2 1 0

/ 4 1 0

F x x x

g x x x

g x x x

   

   

    
 

is solved. 
 

      USE NNLPF_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    IBTYPE, M, ME 

      PARAMETER  (IBTYPE=0, M=2, ME=1) 

! 

      REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2) 

      EXTERNAL FCN 

!                                    

      XLB = -HUGE(X(1)) 

      XUB = HUGE(X(1)) 

! 

      CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X) 

! 

      CALL WRRRN ('The solution is', X) 

      END 

 

      SUBROUTINE FCN (X, IACT, RESULT, IERR) 

      INTEGER    IACT 

      REAL(KIND(1E0)) X(*), RESULT 

      LOGICAL IERR 

!    

      SELECT CASE (IACT) 

      CASE(0)  

         RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2 

      CASE(1) 

         RESULT = X(1) - 2.0E0*X(2) + 1.0E0 

      CASE(2) 

         RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0 

      END SELECT 

      RETURN 

      END         

Output 
 

The solution is 

 1   0.8229 

 2   0.9114 

NNLPG 
Solves a general nonlinear programming problem using a sequential equality constrained quadratic 

programming method with user supplied gradients. 
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Required Arguments 

FCN — User-supplied subroutine to evaluate the objective function and constraints at a given 

point. The internal usage is 

CALL FCN (X, IACT, RESULT, IERR), where 

X – The point at which the objective function or  constraint is evaluated.   

(Input) 

IACT – Integer indicating  whether evaluation of the objective function is 

requested or evaluation of a constraint is requested.  If IACT is zero, then 

an objective function evaluation is requested. If IACT is nonzero then the 

value if IACT indicates the index of the constraint to evaluate. IACT = 1 to 

ME for equality constraints and IACT = ME +1 to M for inequality 

constraints.   (Input) 

RESULT – If IACT is zero,  then RESULT is the computed objective function 

value at the point X.   If IACT is nonzero, then RESULT is the computed 

constraint value at the point X.   (Output) 

IERR – Logical variable.  On input IERR is set to .FALSE.  If an error or other 

undesirable condition occurs during evaluation, then IERR should be set to 

.TRUE.  Setting IERR to .TRUE.  will result in the step size being reduced 

and the step being tried again.  (If IERR is set to .TRUE. for XGUESS, then 

an error is issued.) 

 The routine FCN must be use-associated in a user module that uses NNLPG_INT, or else 

declared  EXTERNAL in the calling program. If FCN is a separately compiled routine, not 

in a module, then it must be declared EXTERNAL. 

GRAD — User-supplied subroutine to evaluate the gradients at a given point. The usage is 

CALL GRAD (X, IACT, RESULT), where 

X – The point at which the gradient of the objective function or gradient of a 

constraint is evaluated.   (Input) 

IACT – Integer indicating  whether evaluation of the function gradient is 

requested or evaluation of a constraint gradient is requested.  If IACT is 

zero, then an objective function gradient evaluation is requested.  If IACT 

is nonzero then the value if IACT indicates the index of the constraint 

gradient to evaluate.   (Input) 

IACT = 1 to ME for equality constraints and IACT = ME +1 to M for 

inequality constraints. 

RESULT – If IACT is zero,  then RESULT is the computed gradient of the 

objective function at the point X.   If IACT is nonzero, then RESULT is the 

computed gradient of the requested constraint value at the point X.   

(Output) 

 The routine GRAD must be use-associated in a user module that uses NNLPG_INT, or 

else declared  EXTERNAL in the calling program.  If GRAD is a separately compiled 

routine, not in a module, then is must be declared EXTERNAL 
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M — Total number of constraints. (Input) 

ME — Number of equality constraints. (Input) 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have 

 the same bounds. 

XLB — Vector of length N containing the lower bounds on the variables.   (Input, if  

IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is no 

lower bound on a variable, then the corresponding XLB value should be set to  

huge(x(1)). 

XUB — Vector of length N containing the upper bounds on the variables.   (Input, if  

IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is no 

upper bound on a variable, then the corresponding XUB value should be set to 

huge(x(1)). 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 

N — Number of variables.   (Input) 

Default: N = SIZE(X). 

IPRINT — Parameter indicating the desired output level.   (Input) 

IPRINT Action 

0 No output printed. 

1 One line of intermediate results is printed in each iteration. 

2 Lines of intermediate results summarizing the most 

important data  for each step are printed. 

3 Lines of detailed intermediate results showing all primal 

and dual variables, the relevant values from the working 

set, progress in the backtracking and etc are printed 
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4 Lines of detailed intermediate results showing all primal 

and dual variables, the relevant values from the working 

set, progress in the backtracking, the gradients in the 

working set, the quasi-Newton updated and etc are 

printed. 

 Default: IPRINT = 0. 

MAXITN — Maximum number of iterations allowed.   (Input) 

Default: MAXITN = 200. 

XGUESS — Vector of length N containing an initial guess of the solution.   (Input) 

Default: XGUESS = x, (with the smallest value of 
2

x ) that satisfies the bounds. 

TAU0 — A universal bound describing how much the unscaled penalty-term may deviate 

from zero. (Input)  

NNLPG assumes that within the region described by 

    
1 1

min 0,
e

e

M M

i i

i i M

g x g x
  

   TAU0

 

 all functions may be evaluated safely. The initial guess however, may violate these 

requirements. In that case an initial feasibility improvement phase is run by NNLPG 

until such a point is found. A small TAU0 diminishes the efficiency of  NNLPG, because 

the iterates then will follow the boundary of the feasible set closely. Conversely, a 

large TAU0 may degrade the reliability of the code. 

Default: TAU0 = 1.E0 

DEL0 — In the initial phase of minimization a constraint is considered binding if 

 

  max 1,

i

i

g x

g x



DEL0

          
1, ,ei M M 

 

 Good values are between .01 and 1.0. If DEL0 is chosen too small then identification 

of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large, 

then the method will often escape to the full regularized SQP method, using individual 

slack variables for any active constraint, which is quite costly. For well-scaled 

problems DEL0=1.0 is reasonable.  (Input) 

Default: DEL0 = .5*TAU0 

SMALLW — Scalar containing the error allowed in the multipliers.  For example, a negative 

multiplier of an inequality constraint is accepted (as zero) if its absolute value is less 

than SMALLW.   (Input)  

Default: SMALLW = exp(2*log(epsilon(x(1)/3))) 
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DELMIN — Scalar which defines allowable constraint violations of the final accepted result.   

Constraints are satisfied if |gi(x)|  DELMIN , and gj(x)  (-DELMIN ) respectively. 

(Input)  

Default: DELMIN = min(DEL0/10, max(1.E-6*DEL0, SMALLW)) 

SCFMAX — Scalar containing the bound for the internal automatic scaling of the objective 

function.   (Intput)  

Default: SCFMAX = 1.0E4 

FVALUE — Scalar containing the value of the objective function at the computed solution.   

(Output) 

LGMULT — Vector of length M containing the Lagrange multiplier estimates of the 

constraints.   (Output)  

CONSTRES — Vector of length M containing the constraint residuals.   (Output) 

FORTRAN 90 Interface 

Generic: CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_NNLPG and D_NNLPG. 

Description 

The routine NNLPG provides an interface to a licensed version of subroutine DONLP2, a FORTRAN 

code developed by Peter Spellucci (1998). It uses a sequential equality constrained quadratic 

programming method with an active set technique, and an alternative usage of a fully regularized 

mixed constrained subproblem in case of nonregular constraints (i.e. linear dependent gradients in 

the ―working sets‖). It uses a slightly modified version of the Pantoja-Mayne update for the 

Hessian of the Lagrangian, variable dual scaling and an improved Armjijo-type stepsize algorithm. 

Bounds on the variables are treated in a gradient-projection like fashion. Details may be found in 

the following two papers:  

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained 

subproblems. Math. Prog. 82, (1998), 413-448. 

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of Oper. 

Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany). 

The problem is stated as follows: 

 min
nx

f x
R  

 

 

subject to 0, for 1, ,

0, for 1, ,

j e

j e

l u

g x j m

g x j m m

x x x
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Although default values are provided for optional input arguments, it may be necessary to adjust 

these values for some problems. Through the use of optional arguments, NNLPG allows for several 

parameters of the algorithm to be adjusted to account for specific characteristics of problems.   

The DONLP2 Users Guide provides detailed descriptions of these parameters as well as strategies 

for maximizing the perfomance of the algorithm.  The DONLP2 Users Guide is available in the 

―help‖ subdirectory of the main IMSL product installation directory. In addition, the following are 

a number of guidelines to consider when using NNLPG. 

 A good initial starting point is very problem specific and should be provided by the calling 

program whenever possible.  See optional argument XGUESS. 

 If a two sided constraint ( )i i il g x u  is transformed into two constraints 2 ( ) 0ig x   and 

2 1( ) 0ig x  , then choose  1

2
0 ( ) / {1, }i i iu l max g x  DEL , or at least try to provide 

an estimate for that value.  This will increase the efficiency of the algorithm.  See optional 

argument  DEL0. 

 The parameter IERR provided in the interface to the user supplied function FCN can be very 

useful in cases when evaluation is requested at a point that is not possible or reasonable.   For 

example, if evaluation at the requested point would result in a floating point exception, then 

setting IERR to .TRUE. and returning without performing the evaluation will avoid the 

exception.   NNLPG will then reduce the stepsize and try the step again.  Note, if IERR is set to 

.TRUE. for the initial guess, then an error is issued. 

Comments 

1. Informational errors 

Type Code 

4 1 Constraint evaluation returns an error with current point. 

4 2 Objective evaluation returns an error with current point. 

4 3 Working set is singular in dual extended QP. 

4 4 QP problem is seemingly infeasible. 

4 5 A stationary point located or termination criteria too strong. 

4 8 Maximum number of iterations exceeded. 

4 9 Stationary point not feasible. 

4 10 Very slow primal progress. 

4 11 The problem is singular.  

4 12 Matrix of gradients of binding constraints is singular or very ill-

conditioned.  

4 13 Small changes in the penalty function. 

Example 1 

The problem 
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2 2

1 2

1 1 2

2 2
2 1 2

min 2 1

subject to  2 1 0

/ 4 1 0

F x x x

g x x x

g x x x

   

   

    
 

is solved. 
 

      USE NNLPG_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    IBTYPE, M, ME 

      PARAMETER  (IBTYPE=0, M=2, ME=1) 

! 

      REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2) 

      EXTERNAL FCN, GRAD 

!                                    

      XLB = -HUGE(X(1)) 

      XUB = HUGE(X(1)) 

! 

      CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X) 

! 

      CALL WRRRN ('The solution is', X) 

      END 

 

      SUBROUTINE FCN (X, IACT, RESULT, IERR) 

      INTEGER    IACT 

      REAL(KIND(1E0)) X(*), RESULT 

      LOGICAL IERR 

!    

      SELECT CASE (IACT) 

      CASE(0)  

         RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2 

      CASE(1) 

         RESULT = X(1) - 2.0E0*X(2) + 1.0E0 

      CASE(2) 

         RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0 

      END SELECT 

      RETURN 

      END     

 

      SUBROUTINE GRAD (X, IACT, RESULT) 

      INTEGER    IACT 

      REAL(KIND(1E0)) X(*),RESULT(*) 

! 

      SELECT CASE (IACT) 

      CASE(0)  

         RESULT (1) = 2.0E0*(X(1)-2.0E0) 

         RESULT (2) = 2.0E0*(X(2)-1.0E0) 

      CASE(1) 

         RESULT (1) = 1.0E0 

         RESULT (2) = -2.0E0 

      CASE(2) 

         RESULT (1) = -0.5E0*X(1) 



 

 

IMSL MATH LIBRARY Chapter 8: Optimization  1535 

     

     

 

         RESULT (2) = -2.0E0*X(2) 

      END SELECT 

      RETURN 

      END 

Output 
 

 The solution is 

 1   0.8229 

 2   0.9114 

Additional Examples 

Example 2 

The same problem from Example 1 is solved, but here we use central differences to compute the 

gradient of the first constraint.  This example demonstrates how NNLPG can be used in cases when 

analytic gradients are known for only a portion of the constraints and/or objective function.   The 

subroutine CDGRD is used to compute an approximation to the gradient of the first constraint. 
             

      USE NNLPG_INT 

      USE CDGRD_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    IBTYPE, M, ME 

      PARAMETER  (IBTYPE=0, M=2, ME=1) 

! 

      REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2) 

      EXTERNAL FCN, GRAD 

!                                    

      XLB = -HUGE(X(1)) 

      XUB = HUGE(X(1)) 

! 

      CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X) 

! 

      CALL WRRRN ('The solution is', X) 

      END 

 

      SUBROUTINE FCN (X, IACT, RESULT, IERR) 

      INTEGER    IACT 

      REAL(KIND(1E0)) X(2), RESULT 

      LOGICAL IERR 

      EXTERNAL CONSTR1 

!    

      SELECT CASE (IACT) 

      CASE(0)  

         RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2 

      CASE(1) 

         CALL CONSTR1(2, X, RESULT) 

      CASE(2) 

         RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0 

      END SELECT 

      RETURN 

      END 
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      SUBROUTINE GRAD (X, IACT, RESULT) 

      USE CDGRD_INT 

      INTEGER    IACT 

      REAL(KIND(1E0)) X(2),RESULT(2) 

      EXTERNAL CONSTR1 

! 

      SELECT CASE (IACT) 

      CASE(0)  

         RESULT (1) = 2.0E0*(X(1)-2.0E0) 

         RESULT (2) = 2.0E0*(X(2)-1.0E0) 

      CASE(1) 

         CALL CDGRD(CONSTR1, X, RESULT) 

      CASE(2) 

         RESULT (1) = -0.5E0*X(1) 

         RESULT (2) = -2.0E0*X(2) 

      END SELECT 

      RETURN 

      END 

 

      SUBROUTINE CONSTR1 (N, X, RESULT) 

      INTEGER N 

      REAL(KIND(1E0)) X(*), RESULT 

      RESULT = X(1) - 2.0E0*X(2) + 1.0E0 

      RETURN 

      END 

Output 
 

 The solution is 

 1   0.8229 

 2   0.9114 

CDGRD 
Approximates the gradient using central differences. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the gradient is to be estimated.   

(Input) 
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GC — Vector of length N containing the estimated gradient at XC.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

In the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

EPSFCN — Estimate for the relative noise in the function.   (Input)  

EPSFCN must be less than or equal to 0.1. In the absence of other information, set 

EPSFCN to 0.0. 

Default: EPSFCN = 0.0. 

FORTRAN 90 Interface 

Generic: CALL CDGRD (FCN, XC, GC [,…]) 

Specific: The specific interface names are S_CDGRD and D_CDGRD. 

FORTRAN 77 Interface 

Single: CALL CDGRD (FCN, N, XC, XSCALE, EPSFCN, GC) 

Double: The double precision name is DCDGRD. 

Description 

The routine CDGRD uses the following finite-difference formula to estimate the gradient of a 

function of n variables at x: 

   
     for 1, ,

2

i i i i

i

f x h e f x h e
i n

h

  


 

where  

   1/3
max ,1/ ,i i j isignh x s x

 

  is the machine epsilon, is  is the scaling factor of the i-th variable, and ie  is the i-th unit 

vector. For more details, see Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 

users should be aware of possible poor performance. When possible, high precision arithmetic is 

recommended. 



     

     
 

1538  Chapter 8: Optimization IMSL MATH LIBRARY  

     

     

 

Comments 

This is Description A5.6.4, Dennis and Schnabel, 1983, page 323. 

Example 

In this example, the gradient of f(x) = x1 – x1x2 – 2 is estimated by the finite-difference method at 

the point (1.0, 1.0). 
 

      USE CDGRD_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    I, N, NOUT 

      PARAMETER  (N=2) 

      REAL       EPSFCN, GC(N), XC(N) 

      EXTERNAL   FCN 

!                                  Initialization. 

      DATA XC/2*1.0E0/ 

!                                  Set function noise. 

      EPSFCN = 0.01 

! 

      CALL CDGRD (FCN, XC, GC, EPSFCN=EPSFCN) 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) (GC(I),I=1,N) 

99999 FORMAT (‘  The gradient is‘, 2F8.2, /) 

! 

      END 

! 

      SUBROUTINE FCN (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = X(1) - X(1)*X(2) - 2.0E0 

! 

      RETURN 

      END 

Output 
 

The gradient is    0.00   -1.00 

FDGRD 
Approximates the gradient using forward differences. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 
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N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the gradient is to be estimated.   

(Input) 

FC — Scalar containing the value of the function at XC.   (Input) 

GC — Vector of length N containing the estimated gradient at XC.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

In the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

EPSFCN — Estimate of the relative noise in the function.   (Input)  

EPSFCN must be less than or equal to 0.1. In the absence of other information, set 

EPSFCN to 0.0. 

Default: EPSFCN = 0.0. 

FORTRAN 90 Interface 

Generic: CALL FDGRD (FCN, XC, FC, GC [,…]) 

Specific: The specific interface names are S_FDGRD and D_FDGRD. 

FORTRAN 77 Interface 

Single: CALL FDGRD (FCN, N, XC, XSCALE, FC, EPSFCN GC) 

Double: The double precision name is DFDGRD. 

Description 

The routine FDGRD uses the following finite-difference formula to estimate the gradient of a 

function of n variables at x: 
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     for 1, ,

i i

i

f x h e f x
i n

h

 


 

where hi = ɛ1/2
  max{|xi|, 1/si} sign(xi), ɛ is the machine epsilon, ei is the i-th unit vector, and si is 

the scaling factor of the i-th variable. For more details, see Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 

users should be aware of possible poor performance. When possible, high precision arithmetic is 

recommended. When accuracy of the gradient is important, IMSL routine CDGRD should be used. 

Comments 

This is Description A5.6.3, Dennis and Schnabel, 1983, page 322. 

Example 

In this example, the gradient of f(x) = x1  x1 x2  2 is estimated by the finite-difference method at 

the point (1.0, 1.0). 
 

      USE FDGRD_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    I, N, NOUT 

      PARAMETER  (N=2) 

      REAL       EPSFCN, FC, GC(N), XC(N) 

      EXTERNAL   FCN 

!                                  Initialization. 

      DATA XC/2*1.0E0/ 

!                                  Set function noise. 

      EPSFCN = 0.01 

!                                  Get function value at current 

!                                  point. 

      CALL FCN (N, XC, FC) 

! 

      CALL FDGRD (FCN, XC, FC, GC, EPSFCN=EPSFCN) 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) (GC(I),I=1,N) 

99999 FORMAT (‘  The gradient is‘, 2F8.2, /) 

! 

      END 

! 

      SUBROUTINE FCN (N, X, F) 

      INTEGER    N 

      REAL       X(N), F 

! 

      F = X(1) - X(1)*X(2) - 2.0E0 

! 

      RETURN 

      END 
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Output 
 

The gradient is    0.00   -1.00 

FDHES 
Approximates the Hessian using forward differences and function values. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the Hessian is to be approximated.   

(Input) 

FC — Function value at XC.   (Input) 

H — N by N matrix containing the finite difference approximation to the Hessian in the lower 

triangle.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

In the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

EPSFCN — Estimate of the relative noise in the function.   (Input)  

EPSFCN must be less than or equal to 0.1. In the absence of other information, set 

EPSFCN to 0.0. 

Default: EPSFCN = 0.0. 

LDH — Row dimension of H exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDH = SIZE (H,1). 
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FORTRAN 90 Interface 

Generic: CALL FDHES (FCN, XC, FC, H [,…]) 

Specific: The specific interface names are S_FDHES and D_FDHES. 

FORTRAN 77 Interface 

Single: CALL FDHES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH) 

Double: The double precision name is DFDHES. 

Description 

The routine FDHES uses the following finite-difference formula to estimate the Hessian matrix of 

function f at x: 

       i i j j i i j j

i j

f x h e h e f x h e f x h e f x

h h

      

 

Where 

       1/3 1/3
max max,1/ , ,1/ ,i i i i i i i jsign signh x s x h x s x    

  is the machine epsilon or user-supplied estimate of the relative noise, is  and is  are the scaling 

factors of the i-th and j-th variables, and ie  and je  are the i-th and j-th unit vectors, respectively. 

For more details, see Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 

users should be aware of possible poor performance. When possible, high precision arithmetic is 

recommended. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2HES/DF2HES. The 

reference is: 

CALL F2HES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH, WK1, 

WK2) 

The additional arguments are as follows: 

WK1 — Real work vector of length N. 

WK2 — Real work vector of length N. 

2. This is Description A5.6.2 from Dennis and Schnabel, 1983; page 321. 
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Example 

The Hessian is estimated for the following function at (1, 1) 

  2
1 1 2 2f x x x x  

 
 

      USE FDHES_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declaration of variables 

      INTEGER    N, LDHES, NOUT 

      PARAMETER  (N=2, LDHES=2) 

      REAL       XC(N), FVALUE, HES(LDHES,N), EPSFCN 

      EXTERNAL   FCN 

!                                   Initialization 

      DATA XC/1.0E0,-1.0E0/ 

!                                   Set function noise 

      EPSFCN = 0.001 

!                                   Evaluate the function at 

!                                   current point 

      CALL FCN (N, XC, FVALUE) 

!                                 Get Hessian forward difference 

!                                 approximation 

      CALL FDHES (FCN, XC, FVALUE, HES, EPSFCN=EPSFCN) 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) ((HES(I,J),J=1,I),I=1,N) 

99999 FORMAT (‘  The lower triangle of the Hessian is‘, /,& 

               5X,F10.2,/,5X,2F10.2,/) 

! 

      END 

! 

      SUBROUTINE FCN (N, X, F) 

!                                  SPECIFICATIONS FOR ARGUMENTS 

      INTEGER N 

      REAL    X(N), F 

! 

      F = X(1)*(X(1) - X(2)) - 2.0E0 

! 

      RETURN 

      END 

Output 
 

 The lower triangle of the Hessian is 

  2.00 

 -1.00      0.00 

GDHES 
Approximates the Hessian using forward differences and a user-supplied gradient. 
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Required Arguments 

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is  

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – The point at which the gradient is evaluated.   (Input)  

X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

 GRAD must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the Hessian is to be estimated.   

(Input) 

GC — Vector of length N containing the gradient of the function at XC.   (Input) 

H — N by N matrix containing the finite-difference approximation to the Hessian in the lower 

triangular part and diagonal.   (Output) 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

In the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

EPSFCN — Estimate of the relative noise in the function.   (Input)  

EPSFCN must be less than or equal to 0.1. In the absence of other information, set 

EPSFCN to 0.0. 

Default: EPSFCN = 0.0. 

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDH = SIZE (H,1). 

FORTRAN 90 Interface 

Generic: CALL GDHES (GRAD, XC, GC, H [,…]) 

Specific: The specific interface names are S_GDHES and D_GDHES. 
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FORTRAN 77 Interface 

Single: CALL GDHES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH) 

Double: The double precision name is DGDHES. 

Description 

The routine GDHES uses the following finite-difference formula to estimate the Hessian matrix of 

function F at x: 

   j j

j

g x h e g x

h

 

 

where  

   1/3
max ,1/ ,i j j jsignh x s x  

  is the machine epsilon, js  is the scaling factor of the j-th variable, g is the analytic gradient of 

F at x, and je  is the j-th unit vector. For more details, see Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 

users should be aware of possible poor performance. When possible, high precision arithmetic is 

recommended. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of G2HES/DG2HES. The 

reference is: 

CALL G2HES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH, WK) 

The additional argument is 

WK — Work vector of length N. 

2. This is Description A5.6.1, Dennis and Schnabel, 1983; page 320. 

Example 

The Hessian is estimated by the finite-difference method at point (1.0, 1.0) from the following 

gradient functions: 

1 1 2

2 1 1

2 2

1

g x x

g x x

 

 
 

 

      USE GDHES_INT 

      USE UMACH_INT 
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      IMPLICIT   NONE 

!                                 Declaration of variables 

      INTEGER    N, LDHES, NOUT 

      PARAMETER  (N=2, LDHES=2) 

      REAL       XC(N), GC(N), HES(LDHES,N) 

      EXTERNAL   GRAD 

! 

      DATA XC/2*1.0E0/ 

!                                 Set function noise 

!                                 Evaluate the gradient at the 

!                                 current point 

      CALL GRAD (N, XC, GC) 

!                                 Get Hessian forward-difference 

!                                 approximation 

      CALL GDHES (GRAD, XC, GC, HES) 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) ((HES(I,J),J=1,N),I=1,N) 

99999 FORMAT (‘  THE HESSIAN IS‘, /, 2(5X,2F10.2,/),/) 

! 

      END 

! 

      SUBROUTINE GRAD (N, X, G) 

!                                  SPECIFICATIONS FOR ARGUMENTS 

      INTEGER N 

      REAL    X(N), G(N) 

! 

      G(1) = 2.0E0*X(1)*X(2) - 2.0E0 

      G(2) = X(1)*X(1) + 1.0E0 

! 

      RETURN 

      END 

Output 
 

 THE HESSIAN IS 

 2.00      2.00 

 2.00      0.00 

DDJAC 
Approximates the Jacobian of m functions in n unknowns using divided differences. 

Required Arguments 

FCN — User-supplied subroutine to evaluate functions. The usage is 

CALL FCN (INDX, Y, F[,…]) where 

Required Arguments 

INDX — Index of the variable whose derivative is to be computed.   (Input) 

DDJAC will set this argument to the index of the variable whose derivative 

is being computed. In those cases where there is a mix of finite 
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differencing taking place along with additional  analytic terms being 

computed, (see METHOD = 2), DDJAC will make two calls to FCN each time 

a new function evaluation is needed, once with INDX positive and a second 

time with INDX negative. 

Y — Array containing the point at which the function is to be computed.   

(Input) 

F — Array of length M, where M is the number of functions to be evaluated at 

point Y,  containing the function values of the equations at point Y. 

(Output) 

Normally, the user will return the values of the functions evaluated at point 

Y in F. However, when the function can be broken into two parts, a part 

which is known analytically and a part to be differenced, FCN will be called 

by DDJAC once with INDX positive for the portion to be differenced and 

again with INDX negative for the portion which is known analytically. In 

the case where METHOD=2 has been chosen, FCN must be writtten to 

handle the known analytic portion separate from the part to be differenced. 

(See Example 4 for an example where METHOD=2 is used.) 

Optional Arguments 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass 

additional integer or floating point information to or from the user-supplied 

subroutine. For a detailed description of this argument see FCN_DATA 

below.   (Input/Output) 

FCN must be declared EXTERNAL in the calling program. 

Y — Array of length N containing the point at which the Jacobian is to be evaluated.   (Input) 

F — Array of length M containing the function values of the equations at point Y.   (Output) 

FJAC — Two dimensional array of which the first M by N subarray contains the estimated 

Jacobian.   (Input/Output) 

On input the user may set entries of columns that are to be accumulated to initial values 

(See the optional argument METHOD). On final output, FJAC will contain the estimated 

Jacobian. 

Optional Arguments 

M — The number of equations.   (Input) 

Default: M = SIZE (F). 

N — The number of variables.   (Input) 

Default: N = SIZE (Y). 

YSCALE — Array of length N containing the diagonal scaling matrix for the variables.   

(Input) 

YSCALE can also be used to provide appropriate signs for the increments.  

Default: YSCALE = 1.0. 
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METHOD — Array of length N containing the methods used to compute the derivatives.  

(Input) 

METHOD(i) is the method to be used for the i-th variable. METHOD(i) can be one of the 

values in the following table: 

Value Description 

0 Indicates one-sided differences. 

1 Indicates central differences. 

2 Indicates the accumulation of the result from 

whatever type of differences have been specified 

previously into initial values of the Jacobian 

3 Indicates a variable is to be skipped 

Default: One-sided differences are used for all variables. 

FACTOR — Array of length N containing the percentage factor for differencing.   (Input)  

For each divided difference for variable j the increment used is del. The value of del is 

computed as follows: First define  = sign(YSCALE(j)). If the user has set the elements 

of array YSCALE to non-default values, then define ya = |YSCALE (j)|. Otherwise,  

ya = |Y(j)| and  = 1. Finally, compute del = ya FACTOR(j). By changing the sign of 

YSCALE(j), the difference del can have any desired orientation, such as staying within 

bounds on variable j. For central differences, a reduced factor is used for del that 

normally results in relative errors as small as machine precision to the 2 / 3  power. The 

elements of FACTOR must be such that machine precision to the 3 / 4   

power <= FACTOR(j) <= 0.1 

Default: All elements of FACTOR are set to sqrt(machine precision). 

ISTATUS — Array of length 10 which contains status information that might prove useful to 

the user wanting to gain better control over the differencing parameters.   (Output) 

This information can often be ignored. The following table describes the diagnostic 

information which is returned in each of the entries of ISTATUS: 

 

index Description 

1 The number of times a function evaluation was computed. 

2 The number of columns in which three attempts were made to 

increase a percentage factor for differencing (i.e. a component 

in the FACTOR array) but the computed del remained 

unacceptably small relative to Y[j] or YSCALE[j].  In such 

cases the percentage factor is set to the square root of machine 

precision. 

3 The number of columns in which the computed del was zero to 

machine precision because Y[j] or YSCALE[j] was zero. In 

such cases del is set to the square root of machine precision. 
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index Description 

4 The number of Jacobian columns which had to be recomputed 

because the largest difference formed in the column was close 

to zero relative to scale, where  

     max ,i i jscale f y f y del e    

and i denotes the row index of the largest difference  in the column 

currently being processed. index = 10 gives the last column where this 

occurred. 

5 The number of columns whose largest difference is close to zero relative 

to scale after the column has been recomputed. 

6 The number of times scale information was not available for use in the 

roundoff and truncation error tests. This occurs when 

     min , 0i i jf y f y del e    

Where i is the index of the largest difference for the column currently 

being processed. 

7 
The number of times the increment for differencing (del) was 

computed and had to be increased because 

(YSCALE[j] + del)  YSCALE[j]) was too small relative to  

Y[j] or YSCALE[j]. 

8 The number of times a component of the FACTOR array was 

reduced because changes in function values were large and 

excess truncation error was suspected. index = 9 gives the last 

column in which this occurred. 

9 The index of the last column where the corresponding 

component of the FACTOR array had to be reduced because 

excessive truncation error was suspected. 

10 The index of the last column where the difference was small 

and the column had to be recomputed with an adjusted 

increment (see index = 4). The largest derivative in this 

column may be inaccurate due to excessive roundoff error. 

 

FCN_DATA — A derived type, s_fcn_data, which may be used to pass additional 

information to/from the user-supplied subroutine.   (Input/Output) 

The derived type, s_fcn_data, is defined as: 

type s_fcn_data 

   real(kind(1e0)), pointer, dimension(:) :: rdata 

   integer, pointer, dimension(:) :: idata 

end type 

 in module mp_types. The double precision counterpart to s_fcn_data is named 

d_fcn_data. The user must include a use mp_types statement in the calling 

program to define this derived type. 



     

     
 

1550  Chapter 8: Optimization IMSL MATH LIBRARY  

     

     

 

FORTRAN 90 Interface 

Generic: CALL DDJAC (FCN,Y, F, FJAC [,…]) 

Specific: The specific interface names are S_DDJAC and D_DDJAC. 

Description 

Computes the Jacobian matrix for a function f (y) with m components in n independent variables. 

DDJAC uses divided finite differences to compute the Jacobian. This subroutine is designed for use 

in numerical methods for solving nonlinear problems where a Jacobian is evaluated repeatedly at 

neighboring arguments. For example this occurs in a Gauss-Newton method for solving non-linear 

least squares problems or a non-linear optimization method. 

DDJAC is suited for applications where the Jacobian is a dense matrix. All cases m < n, m = n,  

or m > n are allowed. Both one-sided and central divided differences can be used. 

The design allows for computation of derivatives in a variety of contexts. Note that a gradient 

should be considered as the special case with m = 1, n  1. A derivative of a single function of one 

variable is the case m = 1, n = 1. Any non-linear solving routine that optionally requests a Jacobian 

or gradient can use DDJAC. This should be considered if there are special properties or scaling 

issues associated with f (y). Use the argument METHOD to specify different differencing options for 

numerical differentiation. These can be combined with some analytic subexpressions or other 

known relationships. 

The divided differences are computed using values of the independent variables at the initial point 

yj = y, and differenced points ye = y + del × ej . Here the ej, j = 1, ...,n, are the unit coordinate 

vectors. 

The value for each difference del depends on the variable j, the differencing method, and the 

scaling for that variable. This difference is computed internally. See FACTOR for computational 

details. The evaluation of f (ye) is normally done by the user-provided argument FCN, using the 

values ye. The index j, values ye, and output F are arguments to FCN. 

The computational kernel of DDJAC performs the following steps: 

1.  Evaluates the equations at the point Y using FCN. 

2.  Computes the Jacobian. 

3.  Computes the difference at ye. 

There are four examples provided which illustrate various ways to use DDJAC. A discussion of the 

expected errors for the difference methods is found in A First Course in Numerical Analysis, 

Anthony Ralston, McGraw-Hill, NY, (1965). 

Example 1 

In this example, the Jacobian matrix of 

 

 

1 1 2

2 1 1 2

2

1

f x x x

f x x x x
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is estimated by the finite-difference method at the point (1.0, 1.0). 

 

      USE DDJAC_INT 

      USE WRRRN_INT 

      IMPLICIT  NONE 

       

      INTEGER, PARAMETER :: N=2, M=2 

      REAL      FJAC(M,N), Y(N), F(M) 

      EXTERNAL  FCN 

 

      DATA Y/2*1.0/ 

!                                 Get Jacobian one-sided difference 

!                                 approximation 

      CALL DDJAC (FCN, Y, F, FJAC) 

      CALL WRRRN ("The Jacobian is:", FJAC) 

      END 

 

 

      SUBROUTINE FCN (INDX, Y, F) 

      INTEGER INDX 

      REAL    Y(*), F(*) 

 

      F(1) = Y(1)*Y(2) - 2.0 

      F(2) = Y(1) - Y(1)*Y(2) + 1.0 

 

      RETURN 

      END 

Output 
 

The Jacobian is: 

         1       2 

 1   1.000   1.000 

 2   0.000  -1.000 

 

Example 2 

A simple use of DDJAC is shown. The gradient of the function     2
1 2 1 1 2, expf y y a by cy y  . 

is required for values 1 22.5 6, 3.4, 4.5, 2.1, 3.2a e b c y y     . 

The analytic gradient of this function is: 

    2
1 2 1 2[ exp , 2 ]grad f a by cy cy cy 

 

 

      USE DDJAC_INT 

      USE UMACH_INT 

      IMPLICIT  NONE 

       

      INTEGER, PARAMETER :: N=2, M=1 

      INTEGER   J, NOUT 

      REAL      FJAC(M,N), Y(N), F(M), SCALE(N) 

      EXTERNAL  FCN 
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      DATA Y/2.1, 3.2/ SCALE/1.0, 8000.0/ 

!                                 Get Gradient one-sided difference 

!                                 approximation 

      CALL DDJAC (FCN, Y, F, FJAC, YSCALE=SCALE) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) (FJAC(1,J),J=1,N) 

99999 FORMAT ('  The Numerical Gradient is (', 2e15.4,' )') 

      END 

 

 

      SUBROUTINE FCN (INDX, Y, F) 

      INTEGER INDX 

      REAL    A, B, C, Y(*), F(*) 

 

      A = 2500000. 

      B = 3.4 

      C = 4.5 

 

      F(1) =  A * EXP (B * Y(1)) + C * Y(1) * Y(2) * Y(2) 

 

      RETURN 

      END 

Output 

 

  The Numerical Gradient is (     0.1073E+11     0.9268E+02 ) 

Example 3 

This example uses the same data as in Example 2.  Here we assume that the second component of 

the gradient is analytically known. Therefore only the first gradient component needs numerical 

approximation. The input values of array METHOD specify that numerical differentiation with 

respect to y2 is skipped. 

 

      USE DDJAC_INT 

      USE UMACH_INT 

      IMPLICIT  NONE 

       

      INTEGER, PARAMETER :: N=2, M=1 

      INTEGER   J, NOUT, METHOD(2) 

      REAL      FJAC(M,N), Y(N), F(M), SCALE(N) 

      EXTERNAL  FCN 

 

      DATA Y/2.1, 3.2/ SCALE/1.0, 8000.0/ 

!                                  Initialize second component 

!                                  of Jacobian since it is 

!                                  known analytically and can be 

!                                  skipped 

      FJAC(1,2) = 2.0 * 4.5 * Y(1) * Y(2) 

!                                 Set METHOD to skip the second 

!                                 component 

      METHOD(1) = 0 
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      METHOD(2) = 3 

!                                 Get Gradient approximation 

 

      CALL DDJAC (FCN, Y, F, FJAC, YSCALE=SCALE, METHOD=METHOD) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) (FJAC(1,J),J=1,N) 

99999 FORMAT ('  The Numerical Gradient is (', 2e15.4,' )') 

      END 

 

 

      SUBROUTINE FCN (INDX, Y, F) 

      INTEGER INDX 

      REAL    A, B, C, Y(*), F(*) 

 

      A = 2500000. 

      B = 3.4 

      C = 4.5 

 

      F(1) =  A * EXP (B * Y(1)) + C * Y(1) * Y(2) * Y(2) 

 

      RETURN 

      END 

Output 

 

   The Numerical Gradient is (     0.1073E+11     0.6048E+02 ) 

Example 4 

This example uses the same data as in Example 2.  An alternate examination of the function  

    2
1 2 1 1 2, expf y y a by cy y 

 

shows that the first term on the right-hand side need be evaluated just when computing the first 

partial. The additive term 
2
2cy  occurs when computing the partial with respect to y1. Also the first 

term does not depend on the second variable. Thus the first term can be left out of the function 

evaluation when computing the partial with respect to y2, potentially avoiding cancellation errors. 

The input values of array METHOD allow DDJAC to use these facts and obtain greater accuracy 

using a minimum number of computations of the exponential function 
 

      USE DDJAC_INT 

      USE UMACH_INT 

      USE MP_TYPES 

      IMPLICIT  NONE 

       

      INTEGER, PARAMETER :: N=2, M=1 

      INTEGER   J, NOUT, METHOD(2) 

      REAL      FJAC(M,N), Y(N), F(M), SCALE(N) 

      REAL, TARGET :: RDATA(3) 

      TYPE(S_FCN_DATA) USER_DATA 

      EXTERNAL  FCN 

 

      DATA Y/2.1, 3.2/ SCALE/1.0, 8000.0/ 
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!                                  Set up to pass some extra 

!                                  information to the function 

      RDATA(1) = 2500000.0 

      RDATA(2) = 3.4 

      RDATA(3) = 4.5 

      USER_DATA%RDATA => RDATA 

!                                  Initialize first component 

!                                  of function since it is 

!                                  known  

      FJAC(1,1) = 4.5 * Y(2) * Y(2) 

!                                 Set METHOD to accumulate for 

!                                 part of the first partial,  

!                                 one-sided differences for 

!                                 the second 

      METHOD(1) = 2 

      METHOD(2) = 0 

!                                 Get Gradient approximation 

 

      CALL DDJAC (FCN, Y, F, FJAC, YSCALE=SCALE, METHOD=METHOD, & 

                  FCN_DATA=USER_DATA) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) (FJAC(1,J),J=1,N) 

99999 FORMAT ('  The Numerical Gradient is (', 2e15.4,' )') 

      END 

 

 

      SUBROUTINE FCN (INDX, Y, F, FCN_DATA) 

      USE MP_TYPES 

      IMPLICIT  NONE 

       

      INTEGER INDX 

      REAL    A, B, C, Y(*), F(*) 

      TYPE(S_FCN_DATA) FCN_DATA 

 

      A = FCN_DATA%RDATA(1) 

      B = FCN_DATA%RDATA(2) 

      C = FCN_DATA%RDATA(3) 

!                                 Handle both the differenced 

!                                 part and the part that is  

!                                 known analytically for each 

!                                 dependent variable 

      SELECT CASE(INDX) 

         CASE (1) 

            F(1)=A*EXP(B*Y(1)) 

 

         CASE(-1) 

            F(1)= C*Y(2)**2 

 

         CASE(2) 

            F(1)  = C*Y(1)*Y(2)**2 

 

         CASE(-2) 

            F(1)=0 

       END SELECT 
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      RETURN 

      END 

Output 

 

  The Numerical Gradient is (     0.1073E+11     0.6046E+02 ) 

FDJAC 
Approximates the Jacobian of M functions in N unknowns using forward differences. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  

X should not be changed by FCN. 

F – The computed function at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the gradient is to be estimated.   

(Input) 

FC — Vector of length M containing the function values at XC.   (Input) 

FJAC — M by N matrix containing the estimated Jacobian at XC.   (Output) 

Optional Arguments 

M — The number of functions.   (Input) 

Default: M = SIZE (FC,1). 

N — The number of variables.   (Input) 

Default: N = SIZE (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   

(Input)  

In the absence of other information, set all entries to 1.0. 

Default: XSCALE = 1.0. 

EPSFCN — Estimate for the relative noise in the function.   (Input)  

EPSFCN must be less than or equal to 0.1. In the absence of other information, set 
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EPSFCN to 0.0. 

Default: EPSFCN = 0.0. 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDFJAC = SIZE (FJAC,1). 

FORTRAN 90 Interface 

Generic: CALL FDJAC (FCN, XC, FC, FJAC [,…]) 

Specific: The specific interface names are S_FDJAC and D_FDJAC. 

FORTRAN 77 Interface 

Single: CALL FDJAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC, LDFJAC) 

Double: The double precision name is DFDJAC. 

Description 

The routine FDJAC uses the following finite-difference formula to estimate the Jacobian matrix of 

function f at x: 

   j j

j

f x h e f x

h

 

 

where ej is the j-th unit vector, hj = ɛ1/2 max{|xj|, 1/sj} sign(xj), ɛ is the machine epsilon, and sj is 

the scaling factor of the j-th variable. For more details, see Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 

users should be aware of possible poor performance. When possible, high precision arithmetic is 

recommended. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of F2JAC/DF2JAC. The 

reference is: 

CALL F2JAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC, 

LDFJAC, WK) 

The additional argument is: 

WK — Work vector of length M. 

2. This is Description A5.4.1, Dennis and Schnabel, 1983, page 314. 
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Example 

In this example, the Jacobian matrix of 

 

 

1 1 2

2 1 1 2

2

1

f x x x

f x x x x

 

  
 

is estimated by the finite-difference method at the point (1.0, 1.0). 
 

      USE FDJAC_INT 

      USE UMACH_INT 

 

      IMPLICIT  NONE 

!                                 Declaration of variables 

      INTEGER   N, M, LDFJAC, NOUT 

      PARAMETER (N=2, M=2, LDFJAC=2) 

      REAL      FJAC(LDFJAC,N), XC(N), FC(M), EPSFCN 

      EXTERNAL  FCN 

! 

      DATA XC/2*1.0E0/ 

!                                 Set function noise 

      EPSFCN = 0.01 

!                                 Evaluate the function at the 

!                                 current point 

      CALL FCN (M, N, XC, FC) 

!                                 Get Jacobian forward-difference 

!                                 approximation 

      CALL FDJAC (FCN, XC, FC, FJAC, EPSFCN=EPFSCN) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) ((FJAC(I,J),J=1,N),I=1,M) 

99999 FORMAT (‘  The Jacobian is‘, /, 2(5X,2F10.2,/),/) 

! 

      END 

! 

      SUBROUTINE FCN (M, N, X, F) 

!                                  SPECIFICATIONS FOR ARGUMENTS 

      INTEGER M, N 

      REAL    X(N), F(M) 

! 

      F(1) = X(1)*X(2) - 2.0E0 

      F(2) = X(1) - X(1)*X(2) + 1.0E0 

! 

      RETURN 

      END 

Output 
 

 The Jacobian is 

 1.00      1.00 

 0.00     -1.00 
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CHGRD 
Checks a user-supplied gradient of a function. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function of which the gradient will be 

checked. The usage is  

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input) 

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

GRAD — Vector of length N containing the estimated gradient at X.   (Input) 

X — Vector of length N containing the point at which the gradient is to be checked.   (Input) 

INFO — Integer vector of length N.   (Output)  

INFO(I) = 0 means the user-supplied gradient is a poor estimate of the numerical 

gradient at the point X(I). 

INFO(I) = 1 means the user-supplied gradient is a good estimate of the numerical 

gradient at the point X(I). 

INFO(I) = 2 means the user-supplied gradient disagrees with the numerical gradient at 

the point X(I), but it might be impossible to calculate the numerical gradient. 

INFO(I) = 3 means the user-supplied gradient and the numerical gradient are both zero 

at X(I), and, therefore, the gradient should be rechecked at a different point. 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

FORTRAN 90 Interface 

Generic: CALL CHGRD (FCN, GRAD, X, INFO [,…]) 

Specific: The specific interface names are S_CHGRD and D_CHGRD. 
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FORTRAN 77 Interface 

Single: CALL CHGRD (FCN, GRAD, N, X, INFO) 

Double: The double precision name is DCHGRD. 

Description 

The routine CHGRD uses the following finite-difference formula to estimate the gradient of a 

function of n variables at x: 

 
   

for =1, ,
i i

i
i

f x h e f x
g x i n

h

 


 

where hi = ɛ1/2
 max{|xi|, 1/si} sign(xi), ɛ is the machine epsilon, ei is the i-th unit vector, and si is 

the scaling factor of the i-th variable. 

The routine CHGRD checks the user-supplied gradient ∇f(x) by comparing it with the finite-

difference gradient g(x). If 

       i i i
g x f x f x   

 

where τ = ɛ1/4
, then (∇f(x))i, which is the i-th element of ∇f(x), is declared correct; otherwise, 

CHGRD computes the bounds of calculation error and approximation error. When both bounds are 

too small to account for the difference, (∇f(x))i is reported as incorrect. In the case of a large error 

bound, CHGRD uses a nearly optimal stepsize to recompute gi(x) and reports that (∇f(x))i is correct 

if 

       2i i i
g x f x f x   

 

Otherwise, (∇f(x))i is considered incorrect unless the error bound for the optimal step is greater 

than τ |(∇f(x))i|. In this case, the numeric gradient may be impossible to compute correctly. For 

more details, see Schnabel (1985). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of C2GRD/DC2GRD. The 

reference is: 

CALL C2GRD (FCN, GRAD, N, X, INFO, FX, XSCALE, EPSFCN, 

XNEW) 

The additional arguments are as follows: 

FX — The functional value at X. 

XSCALE — Real vector of length N containing the diagonal scaling matrix. 
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EPSFCN — The relative ―noise‖ of the function FCN. 

XNEW — Real work vector of length N. 

2. Informational errors 

Type Code 

4 1 The user-supplied gradient is a poor estimate of the numerical 

gradient. 

Example 

The user-supplied gradient of 

   3 42 /
2

t x x
if x x x e

 
 

 

at (625, 1, 3.125, 0.25) is checked where t = 2.125. 
 

      USE CHGRD_INT 

      USE WRIRN_INT 

 

      IMPLICIT   NONE 

!                              Declare variables 

      INTEGER    N 

      PARAMETER  (N=4) 

! 

      INTEGER    INFO(N) 

      REAL       GRAD(N), X(N) 

      EXTERNAL   DRIV, FCN 

! 

!                              Input values for point X 

!                              X = (625.0, 1.0, 3.125, .25) 

! 

      DATA X/625.0E0, 1.0E0, 3.125E0, 0.25E0/ 

! 

      CALL DRIV (N, X, GRAD) 

! 

      CALL CHGRD (FCN, GRAD, X, INFO) 

      CALL WRIRN (‘The information vector‘, INFO, 1, N, 1) 

! 

      END 

! 

      SUBROUTINE FCN (N, X, FX) 

      INTEGER    N 

      REAL       X(N), FX 

! 

      REAL       EXP 

      INTRINSIC  EXP 

! 

      FX = X(1) + X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4)) 

      RETURN 

      END 

! 
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      SUBROUTINE DRIV (N, X, GRAD) 

      INTEGER    N 

      REAL       X(N), GRAD(N) 

! 

      REAL       EXP 

      INTRINSIC  EXP 

! 

      GRAD(1) = 1.0E0 

      GRAD(2) = EXP(-1.0E0*(2.125E0-X(3))**2/X(4)) 

      GRAD(3) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))*2.0E0/X(4)* & 

               (2.125-X(3)) 

      GRAD(4) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))* & 

               (2.125E0-X(3))**2/(X(4)*X(4)) 

      RETURN 

      END 

Output 
 

 The information vector 

 1   2   3   4 

 1   1   1   1 

CHHES 
Checks a user-supplied Hessian of an analytic function. 

Required Arguments 

GRAD — User-supplied subroutine to compute the gradient at the point X. The usage is  

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – The point at which the gradient is evaluated. X should not be changed by 

GRAD.   (Input) 

G – The gradient evaluated at the point X.   (Output) 

 GRAD must be declared EXTERNAL in the calling program. 

HESS — User-supplied subroutine to compute the Hessian at the point X. The usage is  

CALL HESS (N, X, H, LDH), where 

N – Length of X.   (Input) 

X – The point at which the Hessian is evaluated.   (Input) 

X should not be changed by HESS. 

H – The Hessian evaluated at the point X.   (Output) 

LDH – Leading dimension of H exactly as specified in in the dimension 

statement of the calling program.   (Input) 

 HESS must be declared EXTERNAL in the calling program. 
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X — Vector of length N containing the point at which the Hessian is to be checked.   (Input) 

INFO — Integer matrix of dimension N by N.   (Output) 

INFO(I, J) = 0 means the Hessian is a poor estimate for function I at the point X(J). 

INFO(I, J) = 1 means the Hessian is a good estimate for function I at the point X(J). 

INFO(I, J) = 2 means the Hessian disagrees with the numerical Hessian for function I 

at the point X(J), but it might be impossible to calculate the numerical Hessian. 

INFO(I, J) = 3 means the Hessian for function I at the point X(J) and the numerical 

Hessian are both zero, and, therefore, the gradient should be rechecked at a 

different point. 

Optional Arguments 

N — Dimension of the problem.   (Input) 

Default: N = SIZE (X,1). 

LDINFO — Leading dimension of INFO exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDINFO = SIZE (INFO,1). 

FORTRAN 90 Interface 

Generic: CALL CHHES (GRAD, HESS, X, INFO [,…]) 

Specific: The specific interface names are S_CHHES and D_CHHES. 

FORTRAN 77 Interface 

Single: CALL CHHES (GRAD, HESS, N, X, INFO, LDINFO) 

Double: The double precision name is DCHHES. 

Description 

The routine CHHES uses the following finite-difference formula to estimate the Hessian of a 

function of n variables at x: 

       / for 1, ,ij i j j i jB x g x h e g x h j n   
 

where 

hj = ɛ1/2  max{|xj|, 1/sj} sign(xj), 

ɛ is the machine epsilon, 
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ej 

is the j-th unit vector, 

sj 

is the scaling factor of the j-th variable, and 

gi(x) 

is the gradient of the function with respect to the i-th variable. 

Next, CHHES checks the user-supplied Hessian H(x) by comparing it with the finite difference 

approximation B(x). If 

|Bij(x)  Hij(x)| < τ |Hij(x)| 

where 

τ = ɛ1/4
, 

then 

Hij(x) 

is declared correct; otherwise, CHHES computes the bounds of calculation error and approximation 

error. When both bounds are too small to account for the difference, 

Hij(x) 

is reported as incorrect. In the case of a large error bound, CHHES uses a nearly optimal stepsize to 

recomputed 

Bij(x) 

and reports that 

Bij(x) 

is correct if 

|Bij(x)  Hij(x)| < 2τ |Hij(x)| 

Otherwise, Hij(x) is considered incorrect unless the error bound for the optimal step is greater than 

τ |Hij(x)|. In this case, the numeric approximation may be impossible to compute correctly. For 

more details, see Schnabel (1985). 

Comments 

Workspace may be explicitly provided, if desired, by use of C2HES/DC2HES. The reference is 

CALL C2HES (GRAD, HESS, N, X, INFO, LDINFO, G, HX, HS, 

XSCALE, EPSFCN, INFT, NEWX) 

The additional arguments are as follows: 

G — Vector of length N containing the value of the gradient GRD at X. 

HX — Real matrix of dimension N by N containing the Hessian evaluated at X. 
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HS — Real work vector of length N. 

XSCALE — Vector of length N used to store the diagonal scaling matrix for 

the variables. 

EPSFCN — Estimate of the relative noise in the function. 

INFT — Vector of length N. For I = 1 through N, INFT contains information 

about the Jacobian. 

NEWX — Real work array of length N. 

Example 

The user-supplied Hessian of 

     
2 22

2 1 1100 1f x x x x   
 

at (1.2, 1.0) is checked, and the error is found. 
 

      USE CHHES_INT 

 

      IMPLICIT   NONE 

      INTEGER    LDINFO, N 

      PARAMETER  (N=2, LDINFO=N) 

! 

      INTEGER    INFO(LDINFO,N) 

      REAL       X(N) 

      EXTERNAL   GRD, HES 

! 

!                                Input values for X 

!                                  X = (-1.2, 1.0) 

! 

      DATA X/-1.2, 1.0/ 

! 

      CALL CHHES (GRD, HES, X, INFO) 

! 

      END 

! 

      SUBROUTINE GRD (N, X, UG) 

      INTEGER    N 

      REAL       X(N), UG(N) 

! 

      UG(1) = -400.0*X(1)*(X(2)-X(1)*X(1)) + 2.0*X(1) - 2.0 

      UG(2) = 200.0*X(2) - 200.0*X(1)*X(1) 

      RETURN 

      END 

! 

      SUBROUTINE HES (N, X, HX, LDHS) 

      INTEGER    N, LDHS 

      REAL       X(N), HX(LDHS,N) 

! 
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      HX(1,1) = -400.0*X(2) + 1200.0*X(1)*X(1) + 2.0 

      HX(1,2) = -400.0*X(1) 

      HX(2,1) = -400.0*X(1) 

!                                 A sign change is made to HX(2,2) 

! 

      HX(2,2) = -200.0 

      RETURN 

      END 

Output 
 

*** FATAL    ERROR 1 from CHHES.  The Hessian evaluation with respect to 

***          X(2) and X(2) is a poor estimate. 

CHJAC 
Checks a user-supplied Jacobian of a system of equations with M functions in N unknowns. 

Required Arguments 

FCN — User-supplied subroutine to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  

X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

 FCN must be declared EXTERNAL in the calling program. 

JAC — User-supplied subroutine to evaluate the Jacobian at a point X. The usage is  

CALL JAC (M, N, X, FJAC, LDFJAC), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  

X should not be changed by FCN. 

FJAC – The computed M by N Jacobian at the point X.   (Output) 

LDFJAC – Leading dimension of FJAC.   (Input) 

 JAC must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the point at which the Jacobian is to be checked.   (Input) 

INFO — Integer matrix of dimension M by N.   (Output)  
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INFO(I, J) = 0 means the user-supplied Jacobian is a poor estimate for function I at 

the point X(J). 

INFO(I, J) = 1 means the user-supplied Jacobian is a good estimate for function I at 

the point X(J). 

INFO(I, J) = 2 means the user-supplied Jacobian disagrees with the numerical Jacobian 

for function I at the point X(J), but it might be impossible to calculate the 

numerical Jacobian. 

INFO(I, J) = 3 means the user-supplied Jacobian for function I at the point X(J) and 

the numerical Jacobian are both zero. Therefore, the gradient should be 

rechecked at a different point. 

Optional Arguments 

M — The number of functions in the system of equations.   (Input) 

Default: M = SIZE (INFO,1). 

N — The number of unknowns in the system of equations.   (Input) 

Default: N = SIZE (X,1). 

LDINFO — Leading dimension of INFO exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDINFO = SIZE (INFO,1). 

FORTRAN 90 Interface 

Generic: CALL CHJAC (FCN, JAC, X, INFO [,…]) 

Specific: The specific interface names are S_CHJAC and D_CHJAC. 

FORTRAN 77 Interface 

Single: CALL CHJAC (FCN, JAC, M, N, X, INFO, LDINFO) 

Double: The double precision name is DCHJAC. 

Description 

The routine CHJAC uses the following finite-difference formula to estimate the gradient of the i-th 

function of n variables at x: 

gij(x) = (f1(x + hjej)  f1(x))/hj for j = 1, …, n 

where hj = ɛ1/4 max{|xj|, 1/sj} sign(xj), ɛ is the machine epsilon, ej is the j-th unit vector, and sj is 

the scaling factor of the j-th variable. 
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Next, CHJAC checks the user-supplied Jacobian J(x) by comparing it with the finite difference 

gradient gi(x). If 

|gij(x)  Jij(x)| < τ |Jij(x)| 

where τ = ɛ1/4
, then Jij(x) is declared correct; otherwise, CHJAC computes the bounds of calculation 

error and approximation error. When both bounds are too small to account for the difference, Jij(x) 

is reported as incorrect. In the case of a large error bound, CHJAC uses a nearly optimal stepsize to 

recompute gij(x) and reports that Jij(x) is correct if 

|gij(x)  Jij(x)| < 2τ |Jij(x)| 

Otherwise, Jij(x) is considered incorrect unless the error bound for the optimal step is greater than 

τ |Jij(x)|. In this case, the numeric gradient may be impossible to compute correctly. For more 

details, see Schnabel (1985). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of C2JAC/DC2JAC. The 

reference is: 

CALL C2JAC (FCN, JAC, N, X, INFO, LDINFO, FX, FJAC, GRAD, 

XSCALE, EPSFCN, INFT, NEWX) 

The additional arguments are as follows: 

FX — Vector of length M containing the value of each function in FCN at X. 

FJAC — Real matrix of dimension M by N containing the Jacobian of FCN 

evaluated at X. 

GRAD — Real work vector of length N used to store the gradient of each 

function in FCN. 

XSCALE — Vector of length N used to store the diagonal scaling matrix for 

the variables. 

EPSFCN — Estimate of the relative noise in the function. 

INFT — Vector of length N. For I = 1 through N, INFT contains information 

about the Jacobian. 

NEWX — Real work array of length N. 

2. Informational errors 

Type Code 

4 1 The user-supplied Jacobian is a poor estimate of the numerical 

Jacobian. 
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Example 

The user-supplied Jacobian of 

 
1 1

2
2 2 1

1

10

f x

f x x

 

 
 

at (1.2, 1.0) is checked. 
 

      USE CHJAC_INT 

      USE WRIRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    LDINFO, N 

      PARAMETER  (M=2,N=2,LDINFO=M) 

! 

      INTEGER    INFO(LDINFO,N) 

      REAL       X(N) 

      EXTERNAL   FCN, JAC 

! 

!                                 Input value for X 

!                                    X = (-1.2, 1.0) 

! 

      DATA X/-1.2, 1.0/ 

! 

      CALL CHJAC (FCN, JAC, X, INFO) 

      CALL WRIRN (‘The information matrix‘, INFO) 

! 

      END 

! 

      SUBROUTINE FCN (M, N, X, F) 

      INTEGER    M, N 

      REAL       X(N), F(M) 

! 

      F(1) = 1.0 - X(1) 

      F(2) = 10.0*(X(2)-X(1)*X(1)) 

      RETURN 

      END 

! 

      SUBROUTINE JAC (M, N, X, FJAC, LDFJAC) 

      INTEGER    M, N, LDFJAC 

      REAL       X(N), FJAC(LDFJAC,N) 

! 

      FJAC(1,1) = -1.0 

      FJAC(1,2) = 0.0 

      FJAC(2,1) = -20.0*X(1) 

      FJAC(2,2) = 10.0 

      RETURN 

      END 

Output 
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*** WARNING  ERROR 2 from C2JAC.  The numerical value of the Jacobian 

***          evaluation for function 1 at the point X(2) = 1.000000E+00 and 

***          the user-supplied value are both zero.  The Jacobian for this 

***          function should probably be re-checked at another value for 

***          this point. 

 

The information matrix 

    1   2 

1   1   3 

2   1   1 

GGUES 
Generates points in an N-dimensional space. 

Required Arguments 

A — Vector of length N.   (Input) 

See B. 

B — Real vector of length N.   (Input)  

A and B define the rectangular region in which the points will be generated, i.e.,  

A(I) < S(I) < B(I) for I = 1, 2, …, N. Note that if B(I) < A(I), then B(I) < S(I) < A(I). 

K — The number of points to be generated.   (Input) 

IDO — Initialization parameter.   (Input/Output)  

IDO must be set to zero for the first call. GGUES resets IDO to 1 and returns the first 

generated point in S. Subsequent calls should be made with IDO = 1. 

S — Vector of length N containing the generated point.   (Output)  

Each call results in the next generated point being stored in S. 

Optional Arguments 

N — Dimension of the space.   (Input) 

Default: N = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL GGUES (A, B, K, IDO, S [,…]) 

Specific: The specific interface names are S_GGUES and D_GGUES. 

FORTRAN 77 Interface 

Single: CALL GGUES (N, A, B, K, IDO, S) 

Double: The double precision name is DGGUES. 
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Description 

The routine GGUES generates starting points for algorithms that optimize functions of several 

variablesor, almost equivalentlyalgorithms that solve simultaneous nonlinear equations. 

The routine GGUES is based on systematic placement of points to optimize the dispersion of the 

set. For more details, see Aird and Rice (1977). 

Comments 

1. Workspace may be explicitly provided, if desired, by use of G2UES/DG2UES. The 

reference is: 

CALL G2UES (N, A, B, K, IDO, S, WK, IWK) 

The additional arguments are: 

WK — Work vector of length N. WK must be preserved between calls to 

G2UES. 

IWK — Work vector of length 10. IWK must be preserved between calls to 

G2UES. 

2. Informational error 

Type Code 

4 1 Attempt to generate more than K points. 

3. The routine GGUES may be used with any nonlinear optimization routine that requires 

starting points. The rectangle to be searched (defined by A, B, and N) must be 

determined; and the number of starting points, K, must be chosen. One possible use for 

GGUES would be to call GGUES to generate a point in the chosen rectangle. Then, call 

the nonlinear optimization routine using this point as an initial guess for the solution. 

Repeat this process K times. The number of iterations that the optimization routine is 

allowed to perform should be quite small (5 to 10) during this search process. The best 

(or best several) point(s) found during the search may be used as an initial guess to 

allow the optimization routine to determine the optimum more accurately. In this 

manner, an N dimensional rectangle may be effectively searched for a global optimum 

of a nonlinear function. The choice of K depends upon the nonlinearity of the function 

being optimized. A function with many local optima requires a larger value than a 

function with only a few local optima. 

Example 

We want to search the rectangle with vertices at coordinates (1, 1), (3, 1), (3, 2), and (1, 2) ten 

times for a global optimum of a nonlinear function. To do this, we need to generate starting points. 

The following example illustrates the use of GGUES in this process: 
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      USE GGUES_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                             Variable Declarations 

      INTEGER    N 

      PARAMETER  (N=2) 

! 

      INTEGER    IDO, J, K, NOUT 

      REAL       A(N), B(N), S(N) 

!                             Initializations 

! 

!                             A   = ( 1.0, 1.0) 

!                             B   = ( 3.0, 2.0) 

! 

      DATA A/1.0, 1.0/ 

      DATA B/3.0, 2.0/ 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99998) 

99998 FORMAT (‘  Point Number‘, 7X, ‘Generated Point‘) 

! 

      K = 10 

      IDO = 0 

      DO 10  J=1, K 

         CALL GGUES (A, B, K, IDO, S) 

! 

         WRITE (NOUT,99999) J, S(1), S(2) 

99999    FORMAT (1X, I7, 14X, ‘(‘, F4.1, ‘,‘, F6.3, ‘)‘) 

! 

   10 CONTINUE 

! 

      END 

Output 
 

Point Number       Generated Point 

 1              ( 1.5, 1.125) 

 2              ( 2.0, 1.500) 

 3              ( 2.5, 1.750) 

 4              ( 1.5, 1.375) 

 5              ( 2.0, 1.750) 

 6              ( 1.5, 1.625) 

 7              ( 2.5, 1.250) 

 8              ( 1.5, 1.875) 

 9              ( 2.0, 1.250) 

10              ( 2.5, 1.500) 
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Chapter 9: Basic Matrix/Vector 
Operations 

Routines 

9.1. Basic Linear Algebra Subprograms (BLAS) 1576 
Programming Notes for Level 1 BLAS  .......................................  1576 

Set a vector to a constant value, xi ← a ..................................SSET 1579 

Copy a vector, yi ← xi .......................................................... SCOPY 1579 

Scale a vector by a constant, xi ← axi .................................. SSCAL 1579 

Set a vector to a constant multiple of a vector, yi ← axi ....... SVCAL 1580 

Add a constant to a vector, xi ←xi + a .................................... SADD 1580 

Subtract a vector from a constant, xi ← a  xi ........................ SSUB 1580 

Add a multiple of one vector to another, yi ← axi + yi ........... SAXPY 1580 

Swap two vectors, yi↔ xi .................................................... SSWAP 1581 

Compute x
T
y or x

H
y ................................................................ SDOT 1581 

Compute extended precision x
T
y or x

H
y .............................. DSDOT 1581 

Compute extended precision a + x
T
y or a + x

H
y ................ SDSDOT 1582 

Compute ACC + b + x
T
y  

with extended precision accumulator ................................ SDDOTI 1582 

Compute zi ← xiyi ............................................................. SHPROD 1583 

Compute Σ xiyizi .......................................................................SXYZ 1583 

Compute Σ xi ..........................................................................SSUM 1583 

Compute Σ |xi| ..................................................................... SASUM 1583 

Compute ||x||2 ....................................................................... SNRM2 1583 

Compute ∏ xi .................................................................... SPRDCT 1584 

Find the index i such that xi = minj xj ...................................... ISMIN 1584 

Find the index i such that xi= maxj xj ..................................... ISMAX 1584 

Find the first  index i such that |xi| = minj |xj| ........................ISAMIN 1584 

Find the first index i such that |xi| = maxj |xj| ...................... ISAMAX 1585 

Construct a Givens rotation ................................................ SROTG 1585 
Apply a Givens rotation .......................................................... SROT 1586 
Construct a modified Givens rotation .............................. SROTMG 1586 
Programming Notes for Level 2 and Level 3 BLAS ....................  1588 
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Apply a modified Givens rotation ....................................... SROTM 1587 
Matrix-vector multiply, general ........................................... SGEMV 1592 
Matrix-vector multiply, banded ........................................... SGBMV 1592 
Matrix-vector multiply, Hermitian ........................................ CHEMV 1592 
Matrix-vector multiply, packed Hermitian   ......................... CHPMV 1593 
Matrix-vector multiply, Hermitian and banded .................... CHBMV 1593 
Matrix-vector multiply, symmetric and real .......................... SSYMV 1593 
Matrix-vector multiply, packed symmetric, real ................... SSPMV 1593 
Matrix-vector multiply, symmetric and banded .................... SSBMV 1593 
Matrix-vector multiply, triangular ......................................... STRMV 1593 
Matrix-vector multiply, triangular and banded ..................... STBMV 1594 
Matrix-vector solve, triangular ............................................. STRSV 1594 
Matrix-vector solve, triangular and banded .......................... STBSV 1595 
Matrix-vector multiply, packed triangular ............................. STPMV 1594 
Matrix-vector solve, packed triangular  ................................ STPSV 1595 
Rank-one matrix update, general and real ............................ SGER 1595 
Rank-one matrix update, general, complex, 
and transpose ..................................................................... CGERU 1595 
Rank-one matrix update, general, complex,  
and conjugate transpose .................................................... CGERC 1596 
Rank-one matrix update,  
Hermitian and conjugate transpose ...................................... CHER 1596 
Hermitian, packed and conjugate transpose ......................... CHPR  
Rank-two matrix update,  
Hermitian and conjugate transpose .................................... CHER2 1596 
Rank-two matrix update,  
Hermitian, packed and conjugate transpose ....................... CHPR2 1596 
Rank-one matrix update, symmetric and real ........................ SSYR 1597 
Rank-one matrix update, packed symmetric and real ............ SSPR 1597 
Rank-two matrix update, symmetric and real ....................... SSYR2 1597 
Rank-two matrix update, packed symmetric and real .......... SSPR2 1597 
Matrix-matrix multiply, general ........................................... SGEMM 1598 
Matrix-matrix multiply, symmetric ....................................... SSYMM 1598 
Matrix-matrix multiply, Hermitian ........................................ CHEMM 1598 
Rank-k update, symmetric ................................................... SSYRK 1598 
Rank-k update, Hermitian .................................................... CHERK 1599 
Rank-2k update, symmetric ............................................... SSYR2K 1599 
Rank-2k update, Hermitian ................................................ CHER2K 1599 
Matrix-matrix multiply, triangular ........................................ STRMM 1600 
Matrix-matrix solve, triangular ............................................. STRSM 1600 
Programming Notes Using BLAS for NVIDIA .............................  1601 
Gets the switchover value ........................................CUBLAS_GET 1607 
Sets the switchover value......................................... CUBLAS_SET 1609 
Maintains buffer sizes ................ CHECK_BUFFER_ALLOCATION 1611 
Prints error messages ............................... CUDA_ERROR_PRINT 1612 

9.2. Other Matrix/Vector Operations 

9.2.1 Matrix Copy 
Real general ....................................................................... CRGRG 1615 
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Complex general .................................................................CCGCG 1616 
Real band ............................................................................ CRBRB 1617 
Complex band ..................................................................... CCBCB 1619 

9.2.2 Matrix Conversion 
Real general to real band ................................................... CRGRB 1621 
Real band to real general ................................................... CRBRG 1622 
Complex general to complex band ..................................... CCGCB 1624 
Complex band to complex general ..................................... CCBCG 1626 
Real general to complex general ........................................CRGCG 1627 
Real rectangular to complex rectangular ............................ CRRCR 1629 
Real band to complex band ................................................ CRBCB 1631 
Real symmetric to real general ........................................... CSFRG 1632 
Complex Hermitian to complex general .............................. CHFCG 1634 
Real symmetric band to real band .......................................CSBRB 1635 
Complex Hermitian band to complex band ......................... CHBCB 1637 
Real rectangular matrix to its transpose ............................. TRNRR 1639 

9.2.3 Matrix Multiplication 

Compute X
T
 X ....................................................................... MXTXF 1641 

Compute X
T
Y  ....................................................................... MXTYF 1643 

Compute XY
T
 ........................................................................ MXYTF 1645 

Multiply two real rectangular matrices ................................MRRRR 1647 
Multiply two complex rectangular matrices .........................MCRCR 1649 
Compute matrix Hadamard product.................................... HRRRR 1651 

Compute the bilinear form x
T
Ay .............................................. BLINF 1653 

Compute the matrix polynomial p(A) ................................... POLRG 1655 

9.2.4 Matrix-Vector Multiplication 
Real rectangular matrix times a real vector ........................ MURRV 1657 
Real band matrix times a real vector .................................. MURBV 1659 
Complex rectangular matrix times a complex vector .......... MUCRV 1661 
Complex band matrix times a complex vector .................... MUCBV 1663 

9.2.5 Matrix Addition 
Real band matrix plus a real band matrix ............................ARBRB 1665 
Complex band matrix plus a complex band matrix ..............ACBCB 1667 

9.2.6 Matrix Norm 

∞-norm of a real rectangular matrix .....................................NRIRR 1670 
1-norm of a real rectangular matrix .....................................NR1RR 1671 
Frobenius norm of a real rectangular matrix ........................NR2RR 1673 
1-norm of a real band matrix ................................................ NR1RB 1674 
1-norm of a complex band matrix ........................................ NR1CB 1676 

9.2.7 Distance Between Two Points 
Euclidean distance ................................................................. DISL2 1677 
1-norm distance ..................................................................... DISL1 1679 

∞-norm distance ..................................................................... DISLI 1681 

9.2.8 Vector Convolutions 
Convolution of real vectors ................................................. VCONR 1683 
Convolution of complex vectors .......................................... VCONC 1685 
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9.3. Extended Precision Arithmetic 

Initialize a real accumulator, ACC ← a ................................... DQINI 1687 

Store a real accumulator, a ← ACC ...................................... DQSTO 1687 

Add to a real accumulator, ACC ← ACC + a ......................... DQADD 1687 

Add a product to a real accumulator, ACC ← ACC + ab ......... DQMUL 1687 

Initialize a complex accumulator, ACC ← a ............................. ZQINI 1687 

Store a complex accumulator, a ← ACC .............................. ZQSTO 1687 

Add to a complex accumulator, ACC ←ACC + a .................... ZQADD 1687 

Add a product to a complex accumulator,  

ACC ← ACC + ab ................................................................... ZQMUL 1687 

Basic Linear Algebra Subprograms 
The basic linear algebra subprograms, normally referred to as the BLAS, are routines for low-level 

operations such as dot products, matrix times vector, and matrix times matrix. Lawson et al. 

(1979) published the original set of 38 BLAS. The IMSL BLAS collection includes these 38 

subprograms plus additional ones that extend their functionality. Since Dongarra et al. (1988 and 

1990) published extensions to this set, it is customary to refer to the original 38 as Level 1 BLAS. 

The Level 1 operations are performed on one or two vectors of data. An extended set of 

subprograms perform operations involving a matrix and one or two vectors. These are called the 

Level 2 BLAS (see Specification of the Level 1 BLAS). An additional extended set of operations 

on matrices is called the Level 3 BLAS (see Specification of the Level 3 BLAS). 

Users of the BLAS will often benefit from using versions of the BLAS supplied by hardware 

vendors, if available. This can provide for more efficient execution of many application programs. 

The BLAS provided by IMSL are written in FORTRAN. Those supplied by vendors may be 

written in other languages, such as assembler. The documentation given below for the BLAS is 

compatible with a vendor‘s version of the BLAS that conforms to the published specifications. 

Users having an NVIDIA GPGPU or NVIDIA board can make use of a subset of the BLAS 

written for the NVIDIA board through the IMSL Libraries.   The board is used for problems that 

exceed a certain size, NSTART.   For smaller values a standard version is used.  This value can be 

changed for any routine to any alternate value by using subprograms together with use association 

of the module CUDABLAS_LIBRARY.  Documentation and further descriptions are provided in 

the section below Programming Notes for BLAS Using NVIDIA.  Table 9.2 has the names of 

NVIDIA routines that are implemented marked with GREEN. 

Programming Notes for Level 1 BLAS 

The Level 1 BLAS do not follow the usual IMSL naming conventions. Instead, the names consist 

of a prefix of one or more of the letters ―I‖, ―S‖, ―D‖, ―C‖, and ―Z‖; a root name; and sometimes a 

suffix. For subprograms involving a mixture of data types, the output type is indicated by the first 

prefix letter. The suffix denotes a variant algorithm. The prefix denotes the type of the operation 

according to the following table: 

I Integer  

S Real C Complex 

D Double Z Double Complex 
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SD Single and Double CZ Single and Double Complex 

DQ Double and Quadruple ZQ Double and Quadruple Complex 

Vector arguments have an increment parameter that specifies the storage space or stride between 

elements. The correspondence between the vectors x and y and the arguments SX and SY, and 

INCX and INCY is  

  

  

  

  

SX I-1 INCX 1 if INCX  0

SX I-N INCX 1 if INCX  0

SY I-1 INCY 1 if INCY  0

SY I-N INCY 1 if INCY  0

i

i

x

y

  

  

  

  


 



 
  

Function subprograms SXYZ and DXYZ refer to a third vector argument z. The storage increment 

INCZ for z is defined like INCX and INCY. In the Level 1 BLAS, only positive values of INCX are 

allowed for operations that have a single vector argument. The loops in all of the Level 1 BLAS 

process the vector arguments in order of increasing i. For INCX, INCY, INCZ < 0, this implies 

processing in reverse storage order. 

The function subprograms in the Level 1 BLAS are all illustrated by means of an assignment 

statement. For example, see SDOT. Any value of a function subprogram can be used in an 

expression or as a parameter passed to a subprogram as long as the data types agree. 

Descriptions of the Level 1 BLAS Subprograms 

The set of Level 1 BLAS are summarized in Table 9.1. This table also lists the page numbers 

where the subprograms are described in more detail. 

Specification of the Level 1 BLAS 

With the definitions, 

MX = max {1, 1 + (N  1)|INCX|} 

MY = max {1, 1 + (N  1)|INCY|} 

MZ = max {1, 1 + (N  1)|INCZ|} 

the subprogram descriptions assume the following FORTRAN declarations: 

IMPLICIT INTEGER          (I-N) 

IMPLICIT REAL             S 

IMPLICIT DOUBLE PRECISION D 

IMPLICIT COMPLEX          C 

IMPLICIT DOUBLE COMPLEX   Z 

 

INTEGER                   IX(MX) 

REAL                      SX(MX), SY(MY), SZ(MZ), 

                          SPARAM(5) 

DOUBLE PRECISION          DX(MX), DY(MY), DZ(MZ), 

                          DPARAM(5) 

DOUBLE PRECISION          DACC(2), DZACC(4) 

COMPLEX                   CX(MX), CY(MY) 

DOUBLE COMPLEX            ZX(MX), ZY(MY) 
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Since FORTRAN 77 does not include the type DOUBLE COMPLEX, subprograms with DOUBLE 

COMPLEX arguments are not available for all systems. Some systems use the declaration COMPLEX 

* 16 instead of DOUBLE COMPLEX. 

In the following descriptions, the original BLAS are marked with an * in the left column. 

 

Table 9.1: Level 1 Basic Linear Algebra Subprograms 

 
Operation 

 
Integer 

 
Real 

 
Double 

 
Complex 

Double 
Complex 

 
Pg. 

xi ← a ISET SSET DSET CSET ZSET 1579   

yi ← xi ICOPY SCOPY DCOPY CCOPY ZCOPY 1579 

xi ← axi 

a ∈ R 

 SSCAL DSCAL CSCAL 

CSSCAL 

ZSCAL 

ZDSCAL 

1579 

yi ← axi 

a ∈ R 

 SVCAL DVCAL CVCAL 

CSVCAL 

ZVCAL 

ZDVCAL 

1580 

xi ← xi + a IADD SADD DADD CADD ZADD 1580 

xi ← a  xi ISUB SSUB DSUB CSUB ZSUB 1580 

yi ← axi + yi  SAXPY DAXPY CAXPY ZAXPY 1580 

yi ↔ xi ISWAP SSWAP DSWAP CSWAP ZSWAP 1581 

x  y 

x   y 

 SDOT DDOT CDOTU 

CDOTC 

ZDOTU 

ZDOTC 

1581 

x  y † 

x   y † 

 DSDOT  CZDOTU 

CZDOTC 

ZQDOTU 

ZQDOTC 

1581 

a + x  y † 

a + x   y † 

 SDSDOT DQDDOT CZUDOT 

CZCDOT 

ZQUDOT 

ZQCDOT 

1582 

b + x  y † 

ACC + b + x  y † 

 SDDOTI 

SDDOTA 

DQDOTI 

DQDOTA 

CZDOTI 

CZDOTA 

ZQDOTI 

ZQDOTA 

1582 

zi ← xiyi  SHPROD DHPROD   1583 

 xiyizi  SXYZ DXYZ   1583 

 xi ISUM SSUM DSUM   1583 

 |xi|  SASUM DASUM SCASUM DZASUM 1583 

||x||2  SNRM2 DNRM2 SCNRM2 DZNRM2 1583 

 xi  SPRDCT DPRDCT   1584 

i :  xi = minj xj IIMIN ISMIN IDMIN   1584 

i :  xi = maxj xj IIMAX ISMAX IDMAX   1584 
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Operation 

 
Integer 

 
Real 

 
Double 

 
Complex 

Double 
Complex 

 
Pg. 

i :  |xi| = minj |xj|  ISAMIN IDAMIN ICAMIN IZAMIN 1584 

i :  |xi| = maxj |xj|  ISAMAX IDAMAX ICAMAX IZAMAX 1585 

Construct Givens 

rotation 

 SROTG DROTG CROTG ZROTG 1585 

Apply Givens 

rotation 

 SROT DROT CROT 

CSROT 

ZROT 

ZDROT 

1586 

Construct 

modified Givens 

transform 

 SROTMG DROTMG   1586 

Apply modified 

Givens transform 

 SROTM DROTM CSROTM ZDROTM 1587 

 

†Higher precision accumulation used 

Set a Vector to a Constant Value 

CALL ISET (N, IA, IX, INCX) 

CALL SSET (N, SA, SX, INCX) 

CALL DSET (N, DA, DX, INCX) 

CALL CSET (N, CA, CX, INCX) 

CALL ZSET (N, ZA, ZX, INCX) 

These subprograms set xi ← a for i = 1, 2, …, N. If N ≤ 0, then the subprograms return 

immediately. 

Copy a Vector 

 CALL ICOPY (N, IX, INCX, IY, INCY) 

*CALL SCOPY (N, SX, INCX, SY, INCY) 

*CALL DCOPY (N, DX, INCX, DY, INCY) 

*CALL CCOPY (N, CX, INCX, CY, INCY) 

 CALL ZCOPY (N, ZX, INCX, ZY, INCY) 

These subprograms set yi ← xi for i = 1, 2, …, N. If N ≤ 0, then the subprograms return 

immediately. 

Scale a Vector 

*CALL SSCAL (N, SA, SX, INCX) 

*CALL DSCAL (N, DA, DX, INCX) 

*CALL CSCAL (N, CA, CX, INCX) 

 CALL ZSCAL (N, ZA, ZX, INCX) 

*CALL CSSCAL (N, SA, CX, INCX) 

 CALL ZDSCAL (N, DA, ZX, INCX) 
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These subprograms set xi ← axi for i = 1, 2, …, N. If N ≤ 0, then the subprograms return 

immediately. CAUTION: For CSSCAL and ZDSCAL, the scalar quantity a is real and the vector x is 

complex. 

Multiply a Vector by a Constant 

CALL SVCAL (N, SA, SX, INCX, SY, INCY) 

CALL DVCAL (N, DA, DX, INCX, DY, INCY) 

CALL CVCAL (N, CA, CX, INCX, CY, INCY) 

CALL ZVCAL (N, ZA, ZX, INCX, ZY, INCY) 

CALL CSVCAL (N, SA, CX, INCX, CY, INCY) 

CALL ZDVCAL (N, DA, ZX, INCX, ZY, INCY) 

These subprograms set yi ← axi for i = 1, 2, …, N. If N ≤ 0, then the subprograms return 

immediately. CAUTION: For CSVCAL and ZDVCAL, the scalar quantity a is real and the vector x is 

complex. 

Add a Constant to a Vector 

CALL IADD (N, IA, IX, INCX) 

CALL SADD (N, SA, SX, INCX) 

CALL DADD (N, DA, DX, INCX) 

CALL CADD (N, CA, CX, INCX) 

CALL ZADD (N, ZA, ZX, INCX) 

These subprograms set xi ← xi + a for i = 1, 2, …, N. If N ≤ 0, then the subprograms return 

immediately. 

Subtract a Vector from a Constant 

CALL ISUB (N, IA, IX, INCX) 

CALL SSUB (N, SA, SX, INCX) 

CALL DSUB (N, DA, DX, INCX) 

CALL CSUB (N, CA, CX, INCX) 

CALL ZSUB (N, ZA, ZX, INCX) 

These subprograms set xi ← a  xi for i = 1, 2, …, N. If N ≤ 0, then the subprograms return 

immediately. 

Constant Times a Vector Plus a Vector 

*CALL SAXPY (N, SA, SX, INCX, SY, INCY) 

*CALL DAXPY (N, DA, DX, INCX, DY, INCY) 

*CALL CAXPY (N, CA, CX, INCX, CY, INCY) 

 CALL ZAXPY (N, ZA, ZX, INCX, ZY, INCY) 

These subprograms set yi ← axi + yi for i = 1, 2, …, N. If N ≤ 0, then the subprograms return 

immediately. 
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Swap Two Vectors 

 CALL ISWAP (N, IX, INCX, IY, INCY) 

*CALL SSWAP (N, SX, INCX, SY, INCY) 

*CALL DSWAP (N, DX, INCX, DY, INCY) 

*CALL CSWAP (N, CX, INCX, CY, INCY) 

 CALL ZSWAP (N, ZX, INCX, ZY, INCY) 

These subprograms perform the exchange yi ↔ xi for i = 1, 2, …, N. If N ≤ 0, then the 

subprograms return immediately. 

Dot Product 

*SW =  SDOT  (N, SX, INCX, SY, INCY) 

*DW =  DDOT  (N, DX, INCX, DY, INCY) 

*CW =  CDOTU (N, CX, INCX, CY, INCY) 

*CW =  CDOTC (N, CX, INCX, CY, INCY) 

 ZW =  ZDOTU (N, ZX, INCX, ZY, INCY) 

 ZW =  ZDOTC (N, ZX, INCX, ZY, INCY) 

The function subprograms SDOT, DDOT, CDOTU, and ZDOTU compute 

1

N

i ii
x y


 

The function subprograms CDOTC and ZDOTC compute  

1

N

i ii
x y


 

The suffix C indicates that the complex conjugates of xi are used. The suffix U indicates that the 

unconjugated values of xi are used. If N ≤ 0, then the subprograms return zero. 

Dot Product with Higher Precision Accumulation 

*DW =  DSDOT  (N, SX, INCX, SY, INCY) 

 CW =  CZDOTC (N, CX, INCX, CY, INCY) 

 CW =  CZDOTU (N, CX, INCX, CY, INCY) 

 ZW =  ZQDOTC (N, ZX, INCX, ZY, INCY) 

 ZW =  ZQDOTU (N, ZX, INCX, ZY, INCY) 

The function subprogram DSDOT computes  

1

N

i ii
x y


 

using double precision accumulation. The function subprograms CZDOTU and ZQDOTU compute  

1

N

i ii
x y


 

using double and quadruple complex accumulation, respectively. The function subprograms 

CZDOTC and ZQDOTC compute  

1

N

i ii
x y
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using double and quadruple complex accumulation, respectively. If N ≤ 0, then the subprograms 

return zero. 

Constant Plus Dot Product with Higher Precision Accumulation 

*SW = SDSDOT (N, SA, SX, INCX, SY, INCY) 

 DW = DQDDOT (N, DA, DX, INCX, DY, INCY) 

 CW = CZCDOT (N, CA, CX, INCX, CY, INCY) 

 CW = CZUDOT (N, CA, CX, INCX, CY, INCY) 

 ZW = ZQCDOT (N, ZA, ZX, INCX, ZY, INCY) 

 ZW = ZQUDOT (N, ZA, ZX, INCX, ZY, INCY) 

The function subprograms SDSDOT, DQDDOT, CZUDOT, and ZQUDOT compute  

1

N

i ii
a x y




 

using higher precision accumulation where SDSDOT uses double precision accumulation, DQDDOT 

uses quadruple precision accumulation, CZUDOT uses double complex accumulation, and ZQUDOT 

uses quadruple complex accumulation. The function subprograms CZCDOT and ZQCDOT compute  

1

N

i ii
a x y




 

using double complex and quadruple complex accumulation, respectively. If N ≤ 0, then the 

subprograms return zero. 

Dot Product Using the Accumulator 

 SW =  SDDOTI (N, SB,  DACC, SX, INCX, SY, INCY) 

 SW =  SDDOTA (N, SB,  DACC, SX, INCX, SY, INCY) 

 CW =  CZDOTI (N, CB,  DACC, CX, INCX, CY, INCY) 

 CW =  CZDOTA (N, CB,  DACC, CX, INCX, CY, INCY) 

*DW =  DQDOTI (N, DB,  DACC, DX, INCX, DY, INCY) 

*DW =  DQDOTA (N, DB,  DACC, DX, INCX, DY, INCY) 

 ZW =  ZQDOTI (N, ZB, DZACC, ZX, INCX, ZY, INCY) 

 ZW =  ZQDOTA (N, ZB, DZACC, ZX, INCX, ZY, INCY) 

The variable DACC, a double precision array of length two, is used as a quadruple precision 

accumulator. DZACC, a double precision array of length four, is its complex analog. The function 

subprograms, with a name ending in I, initialize DACC to zero. All of the function subprograms 

then compute  

1
DACC

N

i ii
b x y


 

 

and store the result in DACC. The result, converted to the precision of the function, is also returned 

as the function value. If N ≤ 0, then the function subprograms return zero. 
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Hadamard Product 

CALL SHPROD (N, SX, INCX, SY, INCY, SZ, INCZ) 

CALL DHPROD (N, DX, INCX, DY, INCY, DZ, INCZ) 

These subprograms set zi ← xiyi for i = 1, 2, …, N. If N ≤ 0, then the subprograms return 

immediately. 

Triple Inner Product 

SW = SXYZ (N, SX, INCX, SY, INCY, SZ, INCZ) 

DW = DXYZ (N, DX, INCX, DY, INCY, DZ, INCZ) 

These function subprograms compute  

1

N

i i ii
x y z


 

If N ≤ 0 then the subprograms return zero. 

Sum of the Elements of a Vector 

IW = ISUM (N, IX, INCX) 

SW = SSUM (N, SX, INCX) 

DW = DSUM (N, DX, INCX) 

These function subprograms compute 

1

N

ii
x


 

If N ≤ 0, then the subprograms return zero. 

Sum of the Absolute Values of the Elements of a Vector 

*SW = SASUM (N, SX, INCX) 

*DW = DASUM (N, DX, INCX) 

*SW = SCASUM (N, CX, INCX) 

 DW = DZASUM (N, ZX, INCX) 

The function subprograms SASUM and DASUM compute  

1

N

ii
x


 

The function subprograms SCASUM and DZASUM compute  

1

N

i ii
x x


    

 

If N ≤ 0, then the subprograms return zero. CAUTION: For SCASUM and DZASUM, the function 

subprogram returns a real value. 

Euclidean or 2 Norm of a Vector 

*SW = SNRM2  (N, SX, INCX) 

*DW = DNRM2  (N, DX, INCX) 
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*SW = SCNRM2 (N, CX, INCX) 

 DW = DZNRM2 (N, ZX, INCX) 

These function subprograms compute  

1 2
2

1

N

ii
x


 
  

 

If N ≤ 0, then the subprograms return zero. CAUTION: For SCNRM2 and DZNRM2, the function 

subprogram returns a real value. 

Product of the Elements of a Vector 

SW = SPRDCT (N, SX, INCX) 

DW = DPRDCT (N, DX, INCX) 

These function subprograms compute  

1

N

ii
x


 

If N ≤ 0, then the subprograms return zero. 

Index of Element Having Minimum Value 

IW = IIMIN (N, IX, INCX) 

IW = ISMIN (N, SX, INCX) 

IW = IDMIN (N, DX, INCX) 

These function subprograms compute the smallest index i such that xi = min1≤j≤N xj. If N ≤ 0, then 

the subprograms return zero. 

Index of Element Having Maximum Value 

IW = IIMAX (N, IX, INCX) 

IW = ISMAX (N, SX, INCX) 

IW = IDMAX (N, DX, INCX) 

These function subprograms compute the smallest index i such thatxi = max1≤j≤N xj. If N ≤ 0, then 

the subprograms return zero. 

Index of Element Having Minimum Absolute Value 

IW = ISAMIN (N, SX, INCX) 

IW = IDAMIN (N, DX, INCX) 

IW = ICAMIN (N, CX, INCX) 

IW = IZAMIN (N, ZX, INCX) 

The function subprograms ISAMIN and IDAMIN compute the smallest index i such that  

|xi| = min1≤j≤N |xj|. The function subprograms ICAMIN and IZAMIN compute the smallest index i 

such that  
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1
mini i j j

j N
x x x x

 

       
 

 

If N ≤ 0, then the subprograms return zero. 

Index of Element Having Maximum Absolute Value 

*IW = ISAMAX (N, SX, INCX) 

*IW = IDAMAX (N, DX, INCX) 

*IW = ICAMAX (N, CX, INCX) 

 IW = IZAMAX (N, ZX, INCX) 

The function subprograms ISAMAX and IDAMAX compute the smallest index i such that  

|xi| = max1≤j≤N |xj|. The function subprograms ICAMAX and IZAMAX compute the smallest index i 

such that  

1
maxi i j j

j N
x x x x

 

       
 

 

If N ≤ 0, then the subprograms return zero. 

Construct a Givens Plane Rotation 

*CALL SROTG (SA, SB, SC, SS) 

*CALL DROTG (SA, SB, SC, SS) 

Given the values a and b, these subprograms compute 

/ if 0

1 if 0

a r r
c

r


 

  

and 

/ if 0

1 if 0

b r r
s

r


 

  

where r = σ(a
2
 + b

2
) 

1/2
 and 

sign( ) if 

sign( )  otherwise

a a b

b


 
 
  

Then, the values c, s and r satisfy the matrix equation 

0

c s a r

s c b

     
     

       

The introduction of σ is not essential to the computation of the Givens rotation matrix; but its use 

permits later stable reconstruction of c and s from just one stored number, an idea due to Stewart 

(1976). For this purpose, the subprogram also computes 
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if  or 0

1/ if 0   

s s c c
z

c c s

  
 

   

In addition to returning c and s, the subprograms return r overwriting a, and z overwriting b. 

Reconstruction of c and s from z can be done as follows: 

If z = 1, then set c = 0 and s = 1 

If |z| < 1, then set  

21   and  c z s z    

If |z| > 1, then set  

21/   and  = 1-c z s c  

Apply a Plane Rotation 

*CALL SROT (N, SX, INCX, SY, INCY, SC, SS) 

*CALL DROT (N, DX, INCX, DY, INCY, DC, DS) 

 CALL CSROT (N, CX, INCX, CY, INCY, SC, SS) 

 CALL ZDROT (N, ZX, INCX, ZY, INCY, DC, DS) 

These subprograms compute  

 for 1, ,
i i

i i

x xc s
i N

y s c y

    
      

      

If N ≤ 0, then the subprograms return immediately. CAUTION: For CSROT and ZDROT, the scalar 

quantities c and s are real, and x and y are complex. 

Construct a Modified Givens Transformation 

*CALL SROTMG (SD1, SD2, SX1, SY1, SPARAM) 

*CALL DROTMG (DD1, DD2, DX1, DY1, DPARAM) 

The input quantities d1, d2, x1 and y1 define a 2-vector [w1, z1]
T
 by the following: 

1

2

0

0

i i

i i

dw x

z yd

    
    
       

The subprograms determine the modified Givens rotation matrix H that transforms y1, and thus, z1 

to zero. They also replace d1, d2 and x1 with  

1 2 1,   and  d d x
 

respectively. That is, 
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1 11 11 1

1 1
2 2

0 0

0 00 0

d dx xw x
H

y yd d

   
      

           
         
     

A representation of this matrix is stored in the array SPARAM or DPARAM. The form of the matrix H 

is flagged by PARAM(1). 

PARAM(1) = 1. In this case,  

2 2
1 1 2 1d x d y

 

and 

PARAM(2) 1

1 PARAM(5)
H

 
  

   

The elements PARAM(3) and PARAM(4) are not changed. 

PARAM(1) = 0. In this case, 

2 2
1 1 2 1d x d y

 

and 

1 PARAM(4)

PARAM(3) 1
H

 
  
   

The elements PARAM(2) and PARAM(5) are not changed. 

PARAM(1) = 1. In this case, rescaling was done and 

PARAM(2) PARAM(4)

PARAM(3) PARAM(5)
H

 
  
   

PARAM(1) = 2. In this case, H = I where I is the identity matrix. The elements PARAM(2), 

PARAM(3), PARAM(4) and PARAM(5) are not changed. 

The values of d1, d2 and x1are changed to represent the effect of the transformation. The quantity 

y1, which would be zeroed by the transformation, is left unchanged. 

The input value of d1 should be nonnegative, but d2 can be negative for the purpose of removing 

data from a least-squares problem. 

See Lawson et al. (1979) for further details. 

Apply a Modified Givens Transformation 

*CALL SROTM (N, SX, INCX, SY, INCY, SPARAM) 

*CALL DROTM (N, DX, INCX, DY, INCY, DPARAM) 

 CALL CSROTM (N, CX, INCX, CY, INCY, SPARAM) 

 CALL ZDROTM (N, ZX, INCX, ZY, INCY, DPARAM) 

If PARAM(1) = 1.0, then these subprograms compute 
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PARAM(2) 1
 for 1, ,

1 PARAM(5)

i i

i i

x x
i N

y y

    
     

      

If PARAM(1) = 0.0, then the subprograms compute 

1 PARAM(4)
 for 1, ,

PARAM(3) 1

i i

i i

x x
i N

y y

    
     

      

If PARAM(1) = 1.0, then the subprograms compute 

PARAM(2) PARAM(4)
 for 1, ,

PARAM(3) PARAM(5)

i i

i i

x x
i N

y y

    
     

      

If N ≤ 0 or if PARAM(1) = 2.0, then the subprograms return immediately. CAUTION: For 

CSROTM and ZDROTM, the scalar quantities PARAM(*) are real and x and y are complex. 

Programming Notes for Level 2 and Level 3 BLAS 

For definitions of the matrix data structures used in the discussion below, see Reference Material. 

The Level 2 and Level 3 BLAS, like the Level 1 BLAS, do not follow the IMSL naming 

conventions. Instead, the names consist of a prefix of one of the letters ―S‖, ―D‖ , ―C‖ , or ―Z‖. 

Next is a root name denoting the kind of matrix. This is followed by a suffix indicating the type of 

the operation.
1
 The prefix denotes the type of operation according to the following table: 

 

S Real C Complex 

D Double Z Double        Complex 

The root names for the kind of matrix: 

 

GE General GB General Band SP Symmetric Packed 

SY Symmetric SB Symmetric Band TP Triangular Packed 

HE Hermitian HB Hermitian Band HP Hermitian Packed 

TR Triangular TB Triangular Band  

The suffixes for the type of operation: 

 

MV Matrix-Vector Product SV Solve for Vector 

R Rank-One Update   

RU Rank-One Update,  

Unconjugated 

RC Rank-One Update,  

Conjugated 

R2 Rank-Two Update   

MM Matrix-Multiply SM Symmetric Matrix Multiply 

RK Rank-K Update R2K Rank 2K Update 
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1
IMSL does not support any extended precision versions of the Level 2 BLAS. 

The specifications of the operations are provided by subprogram arguments of CHARACTER*1 data 

type. Both lower and upper case of the letter have the same meaning: 

 

TRANS, TRANSA, TRANSB 'N' No Transpose 

 'T' Transpose 

 'C' Conjugage and Transpose 

UPLO 'L' Lower Triangular 

 'U' Upper Triangular 

DIAGNL 'N' Non-unit Triangular 

 'U' Unit Triangular 

SIDE 'L' Multiply ―A‖ Matrix on Left side or 

 'R' Right side of the ―B‖ matrix 

Note: See the ―Triangular Mode‖ section in the Reference Material for definitions of these terms. 

Descriptions of the Level 2 and Level 3 BLAS 

The subprograms for Level 2 and Level 3 BLAS that perform operations involving the expression 

βy or βC do not require that the contents of y or C be defined when β = 0. In that case, the 

expression βy or βC is defined to be zero. Note that for the _GEMV and _GBMV subprograms, the 

dimensions of the vectors x and y are implied by the specification of the operation. If  

TRANS = ‘N‘, the dimension of y is m; if TRANS = ‘T‘ or = ‘C‘, the dimension of y is n. The 

Level 2 and Level 3 BLAS are summarized in Table 9.2. This table also lists the page numbers 

where the subprograms are described in more detail. 

Specification of the Level 2 BLAS 

Type and dimension for variables occurring in the subprogram specifications are 

INTEGER           INCX, INCY, NCODA, NLCA, NUCA, LDA, M, N 

CHARACTER*1       DIAGNL, TRANS, UPLO 

 

REAL              SALPHA, SBETA, SX(*), SY(*), SA(LDA,*) 

DOUBLE PRECISION  DALPHA, DBETA, DX(*), DY(*), DA(LDA,*) 

COMPLEX           CALPHA, CBETA, CX(*), CY(*), CA(LDA,*) 

DOUBLE COMPLEX    ZALPHA, ZBETA, ZX(*), ZY(*), ZA(LDA,*) 

There is a lower bound on the leading dimension LDA. It must be ≥ the number of rows in the 

matrix that is contained in this array. Vector arguments have an increment parameter that specifies 

the storage space or stride between elements. The correspondence between the vector x, y and the 

arguments SX, SY and INCX, INCY is 
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SX I-1 INCX 1 if INCX  0

SX I-N INCX 1 if INCX  0

SY I-1 INCY 1 if INCY  0

SY I-N INCY 1 if INCY  0

i

i

x

y

   
 

  

   
 

    

In the Level 2 BLAS, only nonzero values of INCX, INCY are allowed for operations that have 

vector arguments. The Level 3 BLAS do not refer to INCX, INCY. 

Specification of the Level 3 BLAS 

Type and dimension for variables occurring in the subprogram specifications are 

INTEGER           K, LDA, LDB, LDC, M, N 

CHARACTER*1       DIAGNL, TRANS, TRANSA, TRANSB, SIDE, UPLO 

REAL              SALPHA, SBETA, SA(LDA,*), SB(LDB,*),  

                  SC(LDC,*) 

DOUBLE PRECISION  DALPHA, DBETA, DA(LDA,*), DB(LDB,*),  

                  DC(LDC,*) 

COMPLEX           CALPHA, CBETA, CA(LDA,*), CB(LDB,*),  

                  CC(LDC,*) 

DOUBLE COMPLEX    ZALPHA, ZBETA, ZA(LDA,*), ZB(LDB,*),  

                  ZC(LDC,*) 

Each of the integers K, M, N must be ≥ 0. It is an error if any of them are < 0. If any of them are  

= 0, the subprograms return immediately. There are lower bounds on the leading dimensions LDA, 

LDB, LDC. Each must be ≥ the number of rows in the matrix that is contained in this array.  The 

names marked with GREEN indicate that versions implemented using the NVIDIA CUBLAS 

library and NVIDIA hardware are available. It may be advantageous to use the NVIDA versions 

provided the vector and matrix sizes are large enough.  See the section Programming Notes for 

BLAS Using NVIDIA for further details. 

Table 9.2: Level 2 and Level 3 Basic Linear Algebra Subprograms – GREEN Denotes 

NVIDIA Version Available 

 
Operation 

 
Real 

 
Double 

 
Complex 

Double 
Complex 

 
Pg. 

Matrix-Vector Multiply, General SGEMV 

 

DGEMV  CGEMV  ZGEMV  1592 

Matrix-Vector Multiply, Banded SGBMV  DGBMV  CGBMV  ZGBMV  1592 

Matrix-Vector Multiply, Hermitian   CHEMV ZHEMV 1592 

Matrix-Vector Multiply, 

Hermitian and Banded 

  CHBMV ZHBMV 1593 

Matrix-Vector Multiply 

Symmetric and Real 

SSYMV DSYMV   1593 

Matrix-Vector Multiply, 

Symmetric and Banded 

SSBMV DSBMV   1593 



 

 

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations  1591 

     

     

 

 
Operation 

 
Real 

 
Double 

 
Complex 

Double 
Complex 

 
Pg. 

Matrix-Vector Multiply, Triangular STRMV DTRMV CTRMV ZTRMV 1593 

Matrix-Vector Multiply, 

Triangular and Banded 

STBMV DTBMV CTBMV ZTBMV 1594 

Matrix-Vector Multiply, 

Packed Triangular 

STPMV DTPMV CTPMV ZTPMV 1594 

Matrix-Vector Solve, Triangular STRSV DTRSV CTRSV ZTRSV 1594 

Matrix-Vector Solve, Packed 

Triangular 

STPSV DTPSV CTPSV ZTPSV 1595 

Matrix-Vector Solve, 

Triangular and Banded 

STBSV DTBSV CTBSV ZTBSV 1595 

Rank-One Matrix Update, 

General and Real 

SGER  

 

DGER    1595 

Rank-One Matrix Update, 

General, Complex and Transpose 

  CGERU ZGERU 1595 

Rank-One Matrix Update, 

General, Complex, and Conjugate 
Transpose 

  CGERC ZGERC 1596 

Rank-One Matrix Update, 

Hermitian and Conjugate Transpose 

  CHER ZHER 1596 

Rank-Two Matrix Update, 

Hermitian and Conjugate Transpose 

  CHER2 ZHER2 1596 

Rank-Two Matrix Update, 

Packed  and Conjugate Transpose 

  CHPR2 ZHPR2  

Rank-One Matrix Update, 

Symmetric and Real 

SSYR  DSYR    1597 

Rank-Two Matrix Update, 

Symmetric and Real 

SSYR2 DSYR2   1597 

Rank-Two Matrix Update, 

Packed Symmetric and Real 

SSPR2 DSPR2   1597 

Packed Symmetric or Hermitian 
Matrix-Vector Multiply 

SSPMV DSPMV CHPMV ZHPMV 1593 

Packed Symmetric or Hermitian 

Outer Product Update 

SSPR DSPR CHPR ZHPR 1597 

Matrix--Matrix Multiply, General SGEMM DGEMM CGEMM ZGEMM 1598 

Matrix-Matrix Multiply, Symmetric SSYMM DSYMM CSYMM  ZSYMM 1598 

Matrix-Matrix Multiply, Hermitian   CHEMM  ZHEMM  1598 

Rank - k Update, Symmetric SSYRK DSYRK CSYRK   ZSYRK  1598 

Rank - k Update, Hermitian   CHERK   ZHERK   1599 

Rank - 2k Update, Symmetric SSYR2K DSYR2K CSYR2K ZSYR2K 1599 

Rank - 2k Update, Hermitian   CHER2K ZHER2K 1599 

Matrix-Matrix Multiply, Triangular STRMM DTRMM CTRMM  ZTRMM  1600 
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Operation 

 
Real 

 
Double 

 
Complex 

Double 
Complex 

 
Pg. 

Matrix-Matrix solve, Triangular STRSM DTRSM CTRSM  ZTRSM  1600 

Matrix–Vector Multiply, General 

CALL SGEMV (TRANS, M, N, SALPHA, SA, LDA, SX, INCX, SBETA, SY, INCY) 

CALL DGEMV (TRANS, M, N, DALPHA, DA, LDA, DX, INCX, DBETA, DY, INCY) 

CALL CGEMV (TRANS, M, N, CALPHA, CA, LDA, CX, INCX, CBETA, CY, INCY) 

CALL ZGEMV (TRANS, M, N, ZALPHA, ZA, LDA, ZX, INCX, ZBETA, ZY, INCY) 

For all data types, A is an M  N matrix. These subprograms set y to one of the expressions:  

y ← αAx + βy, y ← αA
T
x + βy, or for complex data,  

Ty A y  
 

The character flag TRANS determines the operation. 

Matrix–Vector Multiply, Banded 

CALL SGBMV (TRANS, M, N, NLCA, NUCA SALPHA, SA, LDA, SX, INCX, SBETA, 

SY, INCY) 

CALL DGBMV (TRANS, M, N, NLCA, NUCA DALPHA, DA, LDA, DX, INCX, DBETA, 

DY, INCY) 

CALL CGBMV (TRANS, M, N, NLCA, NUCA CALPHA, CA, LDA, CX, INCX, BETA, 

CY, INCY) 

CALL ZGBMV (TRANS, M, N, NLCA, NUCA ZALPHA, ZA, LDA, ZX, INCX, ZBETA, 

ZY, INCY) 

For all data types, A is an M  N matrix with NLCA lower codiagonals and NUCA upper 

codiagonals. The matrix is stored in band storage mode. These subprograms set y to one of the 

expressions: y ← αAx + βy, y ← αA
T
x + βy, or for complex data,  

Ty A x y  
 

The character flag TRANS determines the operation. 

Matrix-Vector Multiply, Hermitian 

CALL CHEMV (UPLO, N, CALPHA, CA, LDA, CX, INCX, CBETA, CY, INCY) 

CALL ZHEMV (UPLO, N, ZALPHA, ZA, LDA, ZX, INCX, ZBETA, ZY, INCY) 

For complex types, A is an N  N matrix. These subprograms set y ← αAx + βy where A is an 

Hermitian matrix. The matrix A is either referenced using the upper or lower triangular part. The 

character flag UPLO determines the part used. 
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Matrix-Vector Multiply, Packed Hermitian 

CALL CHPMV (UPLO, N, CALPHA, CAP, CX, INCX, CBETA, CY, INCY) 

CALL ZHPMV (UPLO, N, ZALPHA, ZAP, ZX, INCX, ZBETA, ZY, INCY) 

For complex types, A is an N  N matrix. These subprograms set y ← αAx + βy where A is an 

Hermitian matrix. The matrix A is either referenced using the packed upper or lower triangular 

part. The character flag UPLO determines the part used. 

Matrix-Vector Multiply, Hermitian and Banded 

CALL CHBMV (UPLO, N, NCODA, CALPHA, CA, LDA, CX, INCX, CBETA, CY, INCY) 

CALL ZHBMV (UPLO, N, NCODA, ZALPHA, ZA, LDA, ZX, INCX, ZBETA, ZY, INCY) 

For all data types, A is an N  N matrix with NCODA codiagonals. The matrix is stored in band 

Hermitian storage mode. These subprograms set y ← αAx + βy. The matrix A is either referenced 

using its upper or lower triangular part. The character flag UPLO determines the part used. 

Matrix-Vector Multiply, Symmetric and Real 

CALL SSYMV (UPLO, N, SALPHA, SA, LDA, SX, INCX, SBETA, SY, INCY) 

CALL DSYMV (UPLO, N, DALPHA, DA, LDA, DX, INCX, DBETA, DY, INCY) 

For all data types, A is an N  N matrix. These subprograms set y ← αAx + βy where A is a 

symmetric matrix. The matrix A is either referenced using the upper or lower triangular part. The 

character flag UPLO determines the part used. 

Matrix-Vector Multiply, Packed Symmetric and Real  

CALL SSPMV (UPLO, N, SALPHA, SAP,  SX, INCX, SBETA, SY, INCY) 

CALL DSPMV (UPLO, N, DALPHA, DAP,  DX, INCX, DBETA, DY, INCY) 

For all data types, A is an N  N matrix. These subprograms set y ← αAx + βy where A is a 

packed symmetric matrix. The matrix A is either referenced using the packed upper or lower 

triangular part. The character flag UPLO determines the part used. 

Matrix-Vector Multiply, Symmetric and Banded 

CALL SSBMV (UPLO, N, NCODA, SALPHA, SA, LDA, SX, INCX, SBETA, SY, INCY) 

CALL DSBMV (UPLO, N, NCODA, DALPHA, DA, LDA, DX, INCX, DBETA, DY, INCY) 

For all data types, A is an N  N matrix with NCODA codiagonals. The matrix is stored in band 

symmetric storage mode. These subprograms set y ← αAx + βy. The matrix A is either referenced 

using its upper or lower triangular part. The character flag UPLO determines the part used. 

Matrix-Vector Multiply, Triangular 

CALL STRMV (UPLO, TRANS, DIAGNL, N, SA, LDA, SX, INCX) 

CALL DTRMV (UPLO, TRANS, DIAGNL, N, DA, LDA, DX, INCX) 

CALL CTRMV (UPLO, TRANS, DIAGNL, N, CA, LDA, CX, INCX) 

CALL ZTRMV (UPLO, TRANS, DIAGNL, N, ZA, LDA, ZX, INCX) 
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For all data types, A is an N  N triangular matrix. These subprograms set x to one of the 

expressions: x ← Ax, x ←A
T
x, or for complex data, 

Tx A x  

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit 

triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used 

and the operation performed. 

Matrix-Vector Multiply, Packed Triangular 

CALL STPMV (UPLO, TRANS, DIAGNL, N, SAP, SX, INCX) 

CALL DTPMV (UPLO, TRANS, DIAGNL, N, DAP, DX, INCX) 

CALL CTPMV (UPLO, TRANS, DIAGNL, N, CAP, CX, INCX) 

CALL ZTPMV (UPLO, TRANS, DIAGNL, N, ZAP, ZX, INCX) 

For all data types, A is an N  N packed triangular matrix. These subprograms set x to one of the 

expressions: x ← Ax, x ←A
T
x, or for complex data, 

Tx A x  

The matrix A is either referenced using the packed upper or lower triangular part and is unit or 

nonunit triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix 

used and the operation performed. 

Matrix-Vector Multiply, Triangular and Banded 

CALL STBMV (UPLO, TRANS, DIAGNL, N, NCODA, SA, LDA, SX, INCX) 

CALL DTBMV (UPLO, TRANS, DIAGNL, N, NCODA, DA, LDA, DX, INCX) 

CALL CTBMV (UPLO, TRANS, DIAGNL, N, NCODA, CA, LDA, CX, INCX) 

CALL ZTBMV (UPLO, TRANS, DIAGNL, N, NCODA, ZA, LDA, ZX, INCX) 

For all data types, A is an N  N matrix with NCODA codiagonals. The matrix is stored in band 

triangular storage mode. These subprograms set x to one of the expressions: x ← Ax, x ← A
T
x, or 

for complex data,  

Tx A x  

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit 

triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used 

and the operation performed. 

Matrix-Vector Solve, Triangular 

CALL STRSV (UPLO, TRANS, DIAGNL, N, SA, LDA, SX, INCX) 

CALL DTRSV (UPLO, TRANS, DIAGNL, N, DA, LDA, DX, INCX) 

CALL CTRSV (UPLO, TRANS, DIAGNL, N, CA, LDA, CX, INCX) 

CALL ZTRSV (UPLO, TRANS, DIAGNL, N, ZA, LDA, ZX, INCX) 

For all data types, A is an N  N triangular matrix. These subprograms solve x for one of the 

expressions: x ← A-1
x, x ← (A-1

)
T
x, or for complex data,  
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1 1

T Hx A x A x
 

 
 

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit 

triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used 

and the operation performed. 

Matrix-Vector Solve, Triangular and Banded 

CALL STBSV (UPLO, TRANS, DIAGNL, N, NCODA, SA, LDA, SX, INCX) 

CALL DTBSV (UPLO, TRANS, DIAGNL, N, NCODA, DA, LDA, DX, INCX) 

CALL CTBSV (UPLO, TRANS, DIAGNL, N, NCODA, CA, LDA, CX, INCX) 

CALL ZTBSV (UPLO, TRANS, DIAGNL, N, NCODA, ZA, LDA, ZX, INCX) 

For all data types, A is an N  N triangular matrix with NCODA codiagonals. The matrix is stored in 

band triangular storage mode. These subprograms solve x for one of the expressions: x ← A-1
x,  

x ← (A-T) -
1
x, or for complex data, 

   
1 1

T Hx A x A x
 

 
 

The matrix A is either referenced using its upper or lower triangular part and is unit or nonunit 

triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix used 

and the operation performed. 

Matrix-Vector Solve, Packed Triangular  

CALL STPSV (UPLO, TRANS, DIAGNL, N, SAP, SX, INCX) 

CALL DTPSV (UPLO, TRANS, DIAGNL, N, DAP, DX, INCX) 

CALL CTPSV (UPLO, TRANS, DIAGNL, N, CAP, CX, INCX) 

CALL ZTPSV (UPLO, TRANS, DIAGNL, N, ZAP, ZX, INCX) 

For all data types, A is an N  N packed triangular matrix. These subprograms solve x for one of 

the expressions: x ← A-1
x, x ← (A-1

)
T
x, or for complex data,  

   
1 1

T Hx A x A x
 

 
 

The matrix A is either referenced using its packed upper or lower triangular part and is unit or 

nonunit triangular. The character flags UPLO, TRANS, and DIAGNL determine the part of the matrix 

used and the operation performed. 

Rank-One Matrix Update, General and Real 

CALL SGER (M, N, SALPHA, SX, INCX, SY, INCY, SA, LDA) 

CALL DGER (M, N, DALPHA, DX, INCX, DY, INCY, DA, LDA) 

For all data types, A is an M  N matrix. These subprograms set A ← A + αxy
T
. 

Rank-One Matrix Update, General, Complex, and Transpose 

CALL CGERU (M, N, CALPHA, CX, INCX, CY, INCY, CA, LDA) 

CALL ZGERU (M, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA) 
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For all data types, A is an M  N matrix. These subprograms set A ← A + αxy
T
. 

Rank-One Matrix Update, General, Complex, and Conjugate Transpose 

CALL CGERC (M, N, CALPHA, CX, INCX, CY, INCY, CA, LDA) 

CALL ZGERC (M, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA) 

For all data types, A is an M  N matrix. These subprograms set  

TA A xy 
 

Rank-One Matrix Update, Hermitian and Conjugate Transpose 

CALL CHER (UPLO, N, SALPHA, CX, INCX, CA, LDA) 

CALL ZHER (UPLO, N, DALPHA, ZX, INCX, ZA, LDA) 

For all data types, A is an N  N matrix. These subprograms set  

TA A xx   

where A is Hermitian. The matrix A is either referenced by its upper or lower triangular part. The 

character flag UPLO determines the part used. CAUTION: Notice the scalar parameter α is real, 

and the data in the matrix and vector are complex. 

Rank-One Matrix Update, Packed Hermitian and Conjugate Transpose 

CALL CHPR (UPLO, N, SALPHA, CX, INCX, CAP) 

CALL ZHPR (UPLO, N, DALPHA, ZX, INCX, ZAP) 

For all data types, A is an N  N matrix. These subprograms set  

TA A xx   

where A is packed Hermitian. The matrix A is either referenced by its upper or lower triangular 

part. The character flag UPLO determines the part used. CAUTION: Notice the scalar parameter α 

is real, and the data in the matrix and vector are complex. 

Rank-Two Matrix Update, Hermitian and Conjugate Transpose 

CALL CHER2 (UPLO, N, CALPHA, CX, INCX, CY, INCY, CA, LDA) 

CALL ZHER2 (UPLO, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA) 

For all data types, A is an N  N matrix. These subprograms set 

T TA A xy yx   
 

where A is an Hermitian matrix. The matrix A is either referenced by its upper or lower triangular 

part. The character flag UPLO determines the part used. 

Rank-Two Matrix Update, Packed Hermitian and Conjugate Transpose 

CALL CHPR2 (UPLO, N, CALPHA, CX, INCX, CY, INCY, CAP) 

CALL ZHPR2 (UPLO, N, ZALPHA, ZX, INCX, ZY, INCY, ZAP) 
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For all data types, A is an N  N matrix. These subprograms set 

T TA A xy yx   
 

where A is a packed Hermitian matrix. The matrix A is either referenced by its upper or lower 

triangular part. The character flag UPLO determines the part used. 

Rank-One Matrix Update, Symmetric and Real 

CALL SSYR (UPLO, N, SALPHA, SX, INCX, SA, LDA) 

CALL DSYR (UPLO, N, DALPHA, DX, INCX, DA, LDA) 

For all data types, A is an N  N matrix. These subprograms set A ← A + αxx
T
 where A is a 

symmetric matrix. The matrix A is either referenced by its upper or lower triangular part. The 

character flag UPLO determines the part used. 

Rank-One Matrix Update, Packed Symmetric and Real 

CALL SSPR (UPLO, N, SALPHA, SX, INCX, SAP) 

CALL DSPR (UPLO, N, DALPHA, DX, INCX, DAP) 

For all data types, A is an N  N matrix. These subprograms set A ← A + αxx
T
 where A is a packed 

symmetric matrix. The matrix A is either referenced using the packed upper or lower triangular 

part. The character flag UPLO determines the part used. 

Rank-One Matrix Update, Packed Hermitian 

CALL CHPR (UPLO, N, SALPHA, CX, INCX, CAP) 

CALL ZHPR (UPLO, N, DALPHA, ZX, INCX, ZAP) 

For all data types, A is an N  N matrix. These subprograms set A ← A + αxx
T
 where A is a packed 

Hermitian matrix. The matrix A is either referenced using the packed upper or lower triangular 

part. The character flag UPLO determines the part used. 

Rank-Two Matrix Update, Symmetric and Real 

CALL SSYR2 (UPLO, N, SALPHA, SX, INCX, SY, INCY, SA, LDA) 

CALL DSYR2 (UPLO, N, DALPHA, DX, INCX, DY, INCY, DA, LDA) 

For all data types, A is an N  N matrix. These subprograms set A ← A + αxy
T
 + αyx

T
 where A is a 

symmetric matrix. The matrix A is referenced by its upper or lower triangular part. The character 

flag UPLO determines the part used. 

Rank-Two Matrix Update, Packed Symmetric and Real 

CALL SSPR2 (UPLO, N, SALPHA, SX, INCX, SY, INCY, SAP) 

CALL DSPR2 (UPLO, N, DALPHA, DX, INCX, DY, INCY, DAP) 

For all data types, A is an N  N matrix. These subprograms set A ← A + αxy
T
 + αyx

T
 where A is a 

packed symmetric matrix. The matrix A is referenced by its upper or lower triangular part. The 

character flag UPLO determines the part used. 
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Matrix-Matrix Multiply, General 

CALL SGEMM (TRANSA, TRANSB, M, N, K, SALPHA, SA, LDA, SB, LDB, SBETA, 

SC, LDC) 

CALL DGEMM (TRANSA, TRANSB, M, N, K, DALPHA, DA, LDA, DB, LDB, DBETA, DC, LDC) 

CALL CGEMM (TRANSA, TRANSB, M, N, K, CALPHA, CA, LDA, CB, LDB, CBETA, CC, LDC) 

CALL ZGEMM (TRANSA, TRANSB, M, N, K, ZALPHA, ZA, LDA, ZB, LDB, ZBETA, ZC, LDC) 

For all data types, these subprograms set CM×N to one of the expressions: 

, , , ,

or for complex data, , , ,

,

T T T T

T T T T

T T T T

C AB C C A B C C AB C C A B C

C AB C C A B C C A B C

C A B C C A B C

       

     

   

       

     

   
 

The character flags TRANSA and TRANSB determine the operation to be performed. Each matrix 

product has dimensions that follow from the fact that C has dimension M  N. 

Matrix-Matrix Multiply, Symmetric 

CALL SSYMM (SIDE, UPLO, M, N, SALPHA, SA, LDA, SB, LDB, SBETA, SC, LDC) 

CALL DSYMM (SIDE, UPLO, M, N, DALPHA, DA, LDA, DB, LDB, DBETA, DC, LDC) 

CALL CSYMM (SIDE, UPLO, M, N, CALPHA, CA, LDA, CB, LDB, CBETA, CC, LDC) 

CALL ZSYMM (SIDE, UPLO, M, N, ZALPHA, ZA, LDA, ZB, LDB, ZBETA, ZC, LDC) 

For all data types, these subprograms set CM×N to one of the expressions: C ← αAB + βC or  

C ← αBA + βC, where A is a symmetric matrix. The matrix A is referenced either by its upper or 

lower triangular part. The character flags SIDE and UPLO determine the part of the matrix used 

and the operation performed. 

Matrix-Matrix Multiply, Hermitian 

CALL CHEMM  (SIDE, UPLO, M, N, CALPHA, CA, LDA, CB, LDB, CBETA, CC, LDC) 

CALL ZHEMM (SIDE, UPLO, M, N, ZALPHA, ZA, LDA, ZB, LDB, ZBETA, ZC, LDC) 

For all data types, these subprograms set CM×N to one of the expressions: C ← αAB + βC or  

C ← αBA + βC, where A is an Hermitian matrix. The matrix A is referenced either by its upper or 

lower triangular part. The character flags SIDE and UPLO determine the part of the matrix used 

and the operation performed. 

Rank-k Update, Symmetric 

CALL SSYRK (UPLO, TRANS, N, K, SALPHA, SA, LDA, SBETA, SC, LDC) 

CALL DSYRK (UPLO, TRANS, N, K, DALPHA, DA, LDA, DBETA, DC, LDC) 

CALL CSYRK (UPLO, TRANS, N, K, CALPHA, CA, LDA, CBETA, CC, LDC) 

CALL ZSYRK (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZBETA, ZC, LDC) 

For all data types, these subprograms set CM ×N to one of the expressions: C ← αAA
T
 + C or  

C ← αA
T
A + C. The matrix C is referenced either by its upper or lower triangular part. The 
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character flags UPLO and TRANS determine the part of the matrix used and the operation 

performed. In subprogram CSYRK and ZSYRK, only values ‘N‘ or ‘T‘ are allowed for TRANS; ‘C‘ 

is not acceptable. 

Rank-k Update, Hermitian 

CALL CHERK  (UPLO, TRANS, N, K, SALPHA, CA, LDA, SBETA, CC, LDC) 

CALL ZHERK (UPLO, TRANS, N, K, DALPHA, ZA, LDA, DBETA, ZC, LDC) 

For all data types, these subprograms set CN × N to one of the expressions: 

 or T TC AA C C A A C      
 

The matrix C is referenced either by its upper or lower triangular part. The character flags UPLO 

and TRANS determine the part of the matrix used and the operation performed. CAUTION: Notice 

the scalar parameters α and  are real, and the data in the matrices are complex. Only values 

‘N‘or ‘C‘are allowed for TRANS; ‘T‘is not acceptable. 

Rank-2k Update, Symmetric 

CALL SSYR2K  (UPLO, TRANS, N, K, SALPHA, SA, LDA, SB, LDB, SBETA, SC, 

LDC) 

CALL DSYR2K (UPLO, TRANS, N, K, DALPHA, DA, LDA, DB, LDB, DBETA, DC, LDC) 

CALL CSYR2K (UPLO, TRANS, N, K, CALPHA, CA, LDA, CB, LDB, CBETA, CC, LDC) 

CALL ZSYR2K (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZB, LDB, ZBETA, ZC, LDC) 

For all data types, these subprograms set CN × N to one of the expressions: 

+ C or T T T TC AB A C A B B A C         
 

The matrix C is referenced either by its upper or lower triangular part. The character flags UPLO 

and TRANS determine the part of the matrix used and the operation performed. In subprogram 

CSYR2K and ZSYR2K, only values ‘N‘or ‘T‘ are allowed for TRANS; ‘C‘is not acceptable. 

Rank-2k Update, Hermitian 

CALL CHER2K (UPLO, TRANS, N, K, CALPHA, CA, LDA, CB, LDB, SBETA, CC, LDC) 

CALL ZHER2K (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZB, LDB, DBETA, ZC, LDC) 

For all data types, these subprograms set CN × N to one of the expressions: 

+ C or T T T TC AB BA C A B B A C         
 

The matrix C is referenced either by its upper or lower triangular part. The character flags UPLO 

and TRANS determine the part of the matrix used and the operation performed. CAUTION: Notice 

the scalar parameter  is real, and the data in the matrices are complex. In subprogram CHER2K 

and ZHER2K, only values ‘N‘ or ‘C‘are allowed for TRANS; ‘T‘is not acceptable. 
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Matrix-Matrix Multiply, Triangular 

CALL STRMM  (SIDE, UPLO, TRANSA, DIAGNL, M, N, SALPHA, SA, LDA, SB, LDB) 

CALL DTRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, DALPHA, DA, LDA, DB, LDB) 

CALL CTRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, CALPHA, CA, LDA, CB,LDB) 

CALL ZTRMM (SIDE, UPLO, TRANSA, DIAGNL, M, N, ZALPHA, ZA, LDA, ZB, LDB) 

For all data types, these subprograms set BM ×N to one of the_expressions: 

, , , ,T TB AB B A B B BA B BA      
 

or for complex data, 

 , or T TB A B B BA  
 

where A is a triangular matrix. The matrix A is either referenced using its upper or lower triangular 

part and is unit or nonunit triangular. The character flags SIDE, UPLO, TRANSA, and DIAGNL 

determine the part of the matrix used and the operation performed. 

Matrix-Matrix Solve, Triangular 

CALL STRSM  (SIDE, UPLO, TRANSA, DIAGNL, M, N, SALPHA, SA, LDA, SB, LDB) 

CALL DTRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, DALPHA, DA, LDA, DB, LDB) 

CALL CTRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, CALPHA, CA, LDA, CB, LDB) 

CALL ZTRSM (SIDE, UPLO, TRANSA, DIAGNL, M, N, ZALPHA, ZA, LDA, ZB, LDB) 

For all data types, these subprograms set BM ×N to one of the expressions: 

   
T

1 1 1 1, , , ,
T

B A B B BA B A B B B A         
 

or for complex data, 

   
1 1

, or T TB A B B B A 
 

 
 

where A is a triangular matrix. The matrix A is either referenced using its upper or lower triangular 

part and is unit or nonunit triangular. The character flags SIDE, UPLO, TRANSA, and DIAGNL 

determine the part of the matrix used and the operation performed. 
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Programming Notes for BLAS Using NVIDIA 
This reference material is intended for users who want to use the computational resources of their 

NVIDIA GPU board for BLAS. Users who do not have the NVIDIA GPU board can ignore this 

section. 

Rationale, General Algorithm and an Example 

NVIDIA Corp. implemented certain Level 1, 2 and 3 BLAS in their Library, CUDA CUBLAS 

Library, V3.1, July, 2010.  The NVIDIA external names and argument protocols are different 

from the equivalent Fortran names and argument addressing.  See Table 9.2 for names marked in 

the color GREEN.  IMSL has written these marked Fortran BLAS so that they call equivalent 

NVIDIA C language codes from the CUBLAS library.  No direct use or knowledge of C is 

required by a Fortran programmer in order to take advantage of these codes.  It is necessary that a 

user code or application package be compiled with a Fortran 2003 compiler that has implemented 

the C Interoperability Standard feature.  See The Fortran 2003 Handbook, Adams, et al., p. 561.  

IMSL‘s use of this feature is the key to providing a portable version of these Fortran-callable 

IMSL/NVIDIA BLAS.  The program or application is then compiled and linked using IMSL and 

NVIDIA libraries that contain these BLAS.  

Note: An NVIDIA Graphics Processing Unit (GPU) is required to take advantage of the BLAS. 

The strategy for using the attached NVIDIA GPU is given by the following algorithm: 

 If the maximum of vector or matrix dimensions are larger than a switchover array size,  

NSTART, and NVIDIA provides a CUBLAS code,  then 

 Copy the required vector and matrix data from the CPU to the GPU 

 Compute the result on the GPU 

 Copy the result from the GPU to the CPU 

 Else, use the IMSL equivalent version of the BLAS routine that does not use the GPU. 

Normally a code that calls a IMSL/NVIDIA BLAS code does not have to be aware of the copy 

steps or the switchover size, NSTART. These are hidden from the user code.  In the first algorithm 

step, a working block is allocated on the GPU for each array argument.  A table within the IMSL 

module, CUBLAS_LIBRARY, records the sizes and GPU addresses of these blocks.  If the sizes 

are too small for the current problem size and data type the blocks are reallocated to be of 

adequate size.  The same working block on the GPU may be used for many calls to the 

IMSL/NVIDIA BLAS.  The IMSL versions of the BLAS also allow a user to define individual 

values of NSTART for each routine.  This is important because using the GPU may be slower than 

using a CPU Fortran version until a switchover array size is reached.  Thereafter the GPU version 

is typically faster and increasingly much faster as the problem size increases. The default value of 

NSTART=32 is used for each vector/matrix argument of each routine but it may not be optimal. 

This default allows the routines to function correctly without initial attention to this value. 
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The user can change the default switchover value for all IMSL/NVIDIA BLAS vector/matrix 

arguments by setting NSTART to the desired value prior to calling the BLAS routine. Additionally, 

users can reset this value for each individual vector/matrix argument of the routines listed in Table 

9.2 and marked with the color GREEN by using the IMSL routine CUBLAS_SET(…).   Note that 

CUBLAS_SET cannot be used prior to an initial call to a BLAS code.  The switchover values can be 

obtained using the IMSL routine CUBLAS_GET(…). 

The floating point results obtained using the CPU vs. the GPU will likely differ in units of the low 

order bits in each component.  These differences come from non-equivalent strategies of floating 

point arithmetic and rounding modes that are implemented in the NVIDIA board.  This can be an 

important detail when comparing results for purposes of benchmarking or code regression.  

Generally either result should be acceptable for numerical work. 

As an added feature, the user can flag when the data values for a vector or matrix are present on 

the GPU and hence suppress the IMSL/NVIDIA BLAS code from first copying the data.  This is 

often important since the data movement from the CPU to the GPU may be a significant part of 

the computation time.  If there is no indication that the data is present, it is copied from the CPU to 

the GPU each time a routine is called.  The necessity of copying for each use of a BLAS code 

depends on the application.  Valid results are always copied back from the GPU to the CPU 

memory.  The indication that data for that positional array argument requires no initial copy step 

is that the switchover value for that array argument is negative.  The absolute value is used as the 

switchover value.  Caution:  Be sure and reset this to a positive value when the argument requires 

an initial copy step. 

In Tables 9.3-9.5, we list an enumeration that includes the routines in Table 9.2 marked with the 

color GREEN.  Note the prefix to each name joined with the string ‗CUDABLAS_‘.  There are 

enumerated names that currently do not use the NVIDIA hardware.  They are included in 

anticipation of future additions that will use the CUBLAS library.  

There are four utility routines provided in the IMSL module CUDABLAS_LIBRARY that can be used 

to help manage the use of NVIDIA BLAS. These utilities appear in Table 9.7 and are described in 

more detail in the routines section of these notes.  

For example, to set the value at 500 wherein the GPU is first used for the Level-2 routine ‗SGEMV‘ 

first positional array argument, ‗A(*,*)‘, i.e. Array_Arg = 1, execute the code: 

USE CUDABLAS_LIBRARY 

   INTEGER ISWITCH, Array_Arg 
   … 

   ISWITCH=500 

   Array_Arg = 1 

! Switch to using GPU when largest size of A(*,*)  > 500. 

CALL CUBLAS_SET(CUDABLAS_SGEMV, Array_Arg, ISWITCH) 
 

When the positional array argument, ‗A(*,*)‘ does not have to be copied for each subsequent 

use of ‗SGEMV’: 

USE CUDABLAS_LIBRARY 

INTEGER ISWITCH, Array_Arg 

Array_Arg = 1 
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ISWITCH=CUBLAS_GET(CUDABLAS_SGEMV, Array_Arg) 

! Avoid copying data from CPU to GPU for subsequent calls to ‘SGEMV’ 

CALL CUBLAS_SET(CUDABLAS_SGEMV, Array_Arg, -abs(ISWITCH)) 

! Make several calls to ‘SGEMV’ with A(*,* )maintained unchanged on the GPU. 

! Reset flag for copying A(*,*) when this matrix-vector product  sequence is completed. 

CALL CUBLAS_SET(CUDABLAS_SGEMV, Array_Arg, abs(ISWITCH)) 

Some NVIDIA hardware does not have working double precision versions of BLAS because there 

is no double precision arithmetic available.  However, the double precision code itself is part of 

the CUDA CUBLAS library.  It will appear to execute even though it will not give correct results 

when the device has no double precision arithmetic.  When the IMSL software detects that the 

correct results are not returned, a warning error message will be printed.  The user may instruct the 

application to henceforth use the Fortran code by setting the switchover value to zero.  For 

example, if it is known that the hardware does not support DOUBLE PRECISION, then a code that 

has calls to ‗DGEMM‘ will use an alternate version of this routine.  Therefore, ignoring the error 

message and continuing the code will result in using the alternate version to compute the result.  

That code would include: 

 

USE CUDABLAS_LIBRARY 

 ! Flag first array argument A(*,*) to avoid use of the GPU for DGEMM: 

CALL CUBLAS_SET(CUDABLAS_DGEMM,1,0)  

 

If it is necessary to know if the GPU or the CPU version of ‗SGEMM‘ was used following a call to 

that code, the inquiry code would include: 

USE CUDABLAS_LIBRARY 

! Get the current status for the last call to SGEMM  with the INTEGER function  

! CUBLAS_GET.  The value ISWITCH=0 if an alternate was used, and ISWITCH=1 if the 

! GPU was used. 

ISWITCH = CUBLAS_GET(CUDABLAS_SGEMM, 4) 

Enumeration of IMSL/NVIDIA BLAS 

Table 9.3. Enumeration of Level-1 BLAS 

    

CUDABLAS_SROTG CUDABLAS_DROTG CUDABLAS_CROTG CUDABLAS_ZROTG 

CUDABLAS_SROTMG CUDABLAS_DROTMG   

CUDABLAS_SROT CUDABLAS_DROT CUDABLAS_CROT CUDABLAS_ZROT 

CUDABLAS_SROTM CUDABLAS_DROTM CUDABLAS_CSROT CUDABLAS_ZSROT 

CUDABLAS_SSWAP CUDABLAS_DSWAP CUDABLAS_CSWAP CUDABLAS_ZSWAP 

CUDABLAS_SCOPY CUDABLAS_DCOPY CUDABLAS_CCOPY CUDABLAS_ZCOPY 

CUDABLAS_SAXPY CUDABLAS_DAXPY CUDABLAS_CAXPY CUDABLAS_ZAXPY 

CUDABLAS_SDOT CUDABLAS_DDOT CUDABLAS_CDOTC CUDABLAS_ZDOTC 
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CUDABLAS_SDSDOT CUDABLAS_DSDOT CUDABLAS_CDOTU CUDABLAS_ZDOTU 

CUDABLAS_SSCAL CUDABLAS_DSCAL CUDABLAS_CSCAL CUDABLAS_ZSCAL 

  CUDABLAS_CSSCAL CUDABLAS_ZSSCAL 

CUDABLAS_SNRM2 CUDABLAS_DNRM2 CUDABLAS_SCNRM2 CUDABLAS_DZNRM2 

CUDABLAS_SASUM CUDABLAS_DASUM CUDABLAS_SCASUM CUDABLAS_DZASUM 

CUDABLAS_ISAMIN CUDABLAS_IDAMIN CUDABLAS_ICAMIN CUDABLAS_IZAMIN 

CUDABLAS_ISAMAX CUDABLAS_IDAMAX CUDABLAS_ICAMAX CUDABLAS_IZAMAX 

 

Table 9.4. Enumeration of Level-2 BLAS 

CUDABLAS_SGEMV CUDABLAS_DGEMV CUDABLAS_CGEMV CUDABLAS_ZGEMV 

CUDABLAS_SGBMV CUDABLAS_DGBMV CUDABLAS_CGBMV CUDABLAS_ZGBMV 

CUDABLAS_SSYMV CUDABLAS_DSYMV CUDABLAS_CHEMV CUDABLAS_ZHEMV 

CUDABLAS_SSBMV CUDABLAS_DSBMV CUDABLAS_CHBMV CUDABLAS_ZHBMV 

CUDABLAS_SSPMV CUDABLAS_DSPMV CUDABLAS_CHPMV CUDABLAS_ZHPMV 

CUDABLAS_STRMV CUDABLAS_DTRMV CUDABLAS_CTRMV CUDABLAS_ZTRMV 

CUDABLAS_STBMV CUDABLAS_DTBMV CUDABLAS_CTBMV CUDABLAS_ZTBMV 

CUDABLAS_STPMV CUDABLAS_DTPMV CUDABLAS_CTPMV CUDABLAS_ZTPMV 

CUDABLAS_STRSV CUDABLAS_DTRSV CUDABLAS_CTRSV CUDABLAS_ZTRSV 

CUDABLAS_STBSV CUDABLAS_DTBSV CUDABLAS_CTBSV CUDABLAS_ZTBSV 

CUDABLAS_STPSV CUDABLAS_DTPSV CUDABLAS_CTPSV CUDABLAS_ZTPSV 

CUDABLAS_SGER CUDABLAS_DGER CUDABLAS_CGERU CUDABLAS_ZGERU 

  CUDABLAS_CGERC CUDABLAS_ZGERC 

CUDABLAS_SSYR CUDABLAS_DSYR CUDABLAS_CHER CUDABLAS_ZHER 

CUDABLAS_SSYR2 CUDABLAS_DSYR2 CUDABLAS_CHER2 CUDABLAS_ZHER2 

CUDABLAS_SSPR CUDABLAS_DSPR CUDABLAS_CHPR CUDABLAS_ZHPR 

CUDABLAS_SSPR2 CUDABLAS_DSPR2 CUDABLAS_CHPR2 CUDABLAS_ZHPR2 

 

Table 9.5. Enumeration of Level-3 BLAS 

CUDABLAS_SGEMM CUDABLAS_DGEMM CUDABLAS_CGEMM CUDABLAS_ZGEMM 

CUDABLAS_SSYMM CUDABLAS_DSYMM CUDABLAS_CSYMM CUDABLAS_ZSYMM 

CUDABLAS_SSYRK CUDABLAS_DSYRK CUDABLAS_CSYRK CUDABLAS_ZSYRK 

CUDABLAS_SSYR2K CUDABLAS_DSYR2K CUDABLAS_CSYR2K CUDABLAS_ZSYR2K 

CUDABLAS_STRMM CUDABLAS_DTRMM CUDABLAS_CTRMM CUDABLAS_ZTRMM 

CUDABLAS_STRSM CUDABLAS_DTRSM CUDABLAS_CTRSM CUDABLAS_ZTRSM 

  CUDABLAS_CHEMM CUDABLAS_ZHEMM 

  CUDABLAS_CHERK CUDABLAS_ZHERK 

  CUDABLAS_CHER2K CUDABLAS_ZHER2K 
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Table 9.6.  Public Symbols and Parameters in Module CUDABLAS_LIBRARY 

CUBLAS_STATUS_SUCCESS=0 CUBLAS_STATUS_NOT_INITIALIZED=1 

CUBLAS_STATUS_ALLOC_FAILED=3 CUBLAS_STATUS_INVALID_VALUE=7 

CUBLAS_STATUS_ARCH_MISMATCH=8 CUBLAS_STATUS_MAPPING_ERROR=11 

CUBLAS_STATUS_EXECUTION_FAILED=13 CUBLAS_STATUS_INTERNAL_ERROR=14 

FSIZE=4 DSIZE=8 

CSIZE=8 ZSIZE=16 

SKIND=kind(1.E0) DKIND=kind(1.D0) 

SZERO=0.E0 DZERO=0.D0 

SONE=1.E0 DONE=1.D0 

LEVEL=6 (IMSL Error or Warning Level) NSTART(=32) (Default Switchover Value) 

 

Table 9.7.  Subprograms Packaged in Module CUDABLAS_LIBRARY 

Fortran Name Implemented in Module 

CUBLAS_GET  

CUBLAS_SET 

CHECK_BUFFER_ALLOCATION 

CUDA_ERROR_PRINT 

 

Table 9.8 lists a number of NVIDIA Helper subprograms called within the CUDABLAS_LIBRARY 

Modules.  These are mostly for internal use only but are documented in the case that a 

knowledgeable NVIDIA Library user chooses to make use of them.  
 

Table 9.8.  NVIDIA Helper Subprograms Called in Module CUDABLAS_LIBRARY 

Fortran Usage Name in Module NVIDIA External C Name 

ISW = cublasInit() cublasInit() 

ISW = cublasShutdown() cublasShutdown() 

ISW = cublasError() cublasError() 

ISW = cublasAlloc(n, datasize, c_ptr) cublasAlloc(n, datasize, c_ptr) 

ISW = cublasFree(c_ptr) cublasFree(c_ptr) 

ISW = cublasSetVector(n, datasize, x, incx, 

y, incy) 

cublasSetVector 

(n, datasize, x, incx, y, incy) 

ISW = cublasGetVector(n, datasize, x, incx, 

y, incy) 

cublasGetVector 

(n, datasize, x, incx, y, incy) 

ISW = cublasSetMatrix(m, n, datasize, A, lda, 

devA, ldd) 

cublasSetMatrix(m, n, datasize, 

A, lda, devA, ldd) 

ISW = cublasGetMatrix(m, n, datasize, devA, 

lda, B, ldb) 

cublasGetMatrix(m, n, datasize, 

devA, lda, B, ldb) 
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In Table 9.8 the arguments c_ptr, x, y, A, devA, and B are C pointers to arrays either on the 

GPU or the CPU.  These are instantiated with calls to helper routine cublasAlloc() or by use 

of the Fortran 2003 intrinsic function c_loc(…) for array arguments residing on the CPU.  This 

intrinsic returns a C pointer to a Fortran object.  The helper function cublasError()is called 

from each of the double precision IMSL/NVIDIA BLAS codes to assess the availability of double 

precision floating point hardware on the GPU.  

The NVIDIA Environmental Subprograms listed in Table 9.9 provide details about the runtime 

working environment. 
 

Table 9.9.  NVIDIA Environmental Subprograms 

Fortran Usage Name in Module NVIDIA External Name 

ISW = cudaGetDeviceCount(ICOUNT) cudaGetDeviceCount() 

ISW = cudaSetDevice(IDEVICE),{0 indexed} cudaSetDevice() 

ISW = cudaGetDeviceProperties & 

(<TYPE> cudaDeviceProp, IDEVICE ) 

cudaGetDeviceProperties() 

One argument for cudaGetDeviceProperties is a Fortran derived type, cudaDeviceProp, 

with a C binding.  This contains technical information about the device, including its name.  This 

C character string, NAME(*), is terminated with C_NULL_CHAR. The derived type, 

cudaDeviceProp is described below: 
 

TYPE, BIND(C) :: cudaDeviceProp 

        CHARACTER(C_CHAR) NAME(256) 

        INTEGER(C_SIZE_T) totalGlobalMem 

        INTEGER(C_SIZE_T) sharedMemPerBlock 

        INTEGER(C_INT) regsPerBlock 

        INTEGER(C_INT) warpSize 

        INTEGER(C_SIZE_T) memPitch 

        INTEGER(C_INT) maxThreadsPerBlock 

        INTEGER(C_INT) maxThreadsDim(3) 

        INTEGER(C_INT) maxGridSize(3) 

        INTEGER(C_SIZE_T) totalConstMem 

        INTEGER(C_INT) major 

        INTEGER(C_INT) minor 

        INTEGER(C_INT) clockRate 

        INTEGER(C_SIZE_T) textureAlignment 

        INTEGER(C_INT) deviceOverlap 

        INTEGER(C_INT) multiProcessorCount 

        INTEGER(C_INT) kernelExecTimeoutEnabled 
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        INTEGER(C_INT) integrated 

        INTEGER(C_INT) canMapHostMemory 

        INTEGER(C_INT) computeMode 

        INTEGER(C_INT) concurrentKernels 

END TYPE 

 

Required NVIDIA Copyright Notice: 

© 2005–2010 by NVIDIA Corporation. All rights reserved. 

Portions of the NVIDIA SGEMM and DGEMM library routines were written by Vasily Volkov 

and are subject to the Modified Berkeley Software Distribution License as follows: 

Copyright (©) 2007-09, Regents of the University of California 

All rights reserved. 

Redistribution and use in source and binary forms, with or without modification, are permitted 

provided that the following conditions are met: Redistributions of source code must retain the 

above copyright notice, this list of conditions and the following disclaimer. ( See CUDA CUBLAS 

Library,Version 3.1, July, 2010, for these remaining conditions.) 

CUBLAS_GET 
Returns the switchover value for a positional array argument for a specified BLAS routine. 

Function Return Value 

CUBLAS_GET  — The array size switchover value used to switch between use of the 

NVIDIA device or standard Fortran BLAS routine.   (Output) 

When ARRAY_ARGUMENT is set to 4, the return value will be 0 or 1 indicating whether 

the Fortran BLAS routine was used on the last use of the specified routine. ( 0 = 

Fortran BLAS was used , 1= NVIDIA device was used).  

Required Arguments 

ENUM — An enumerator which specifies the BLAS routine for which the switchover value 

is described.   (Input) 

ENUM must be one of the values defined in Tables 9.3, 9.4, or 9.5. 

ARRAY_ARGUMENT — An integer indicating the array argument of the BLAS routine for 

which information is to be retrieved. The array argument is specified by its position in 

the calling sequence, i.e. 1 = array argument 1, 2 = array argument 2, etc.   (Input) 

For example, for the BLAS routine SGEMM, array A is ARRAY_ARGUMENT =1, array B is 

ARRAY_ARGUMENT = 2, and array C is ARRAY_ARGUMENT =3. Setting 

ARRAY_ARGUMENT to 4 will dictate that CUBLAS_GET returns a 0, 1 value indicating 

which was last used – the standard Fortran BLAS routine or the NVIDIA device, 

respectively. 
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FORTRAN 90 Interface 

Generic: CUBLAS_GET (ENUM, ARRAY_ARGUMENT) 

Description 

This routine can be used to either retrieve the array size switchover value, NSTART, for a specified 

array of a specified BLAS routine or retrieve a 0, 1 flag which indicates whether the NVIDIA 

device was used for the last specified BLAS routine called. 

Example 

In this example the switchover value for array A of the BLAS routine SGEMM is first retrieved by 

making a call to CUBLAS_GET. Then CUBLAS_SET is used to inform CUDABLAS_SGEMM not to 

copy array A from the CPU to the GPU after the initial copy. Then, CUBLAS_SET is used to reset 

the switchover value back to its original setting. Finally, CUBLAS_GET is used to query whether or 

not the NVIDIA device was used on the last call to SGEMM. 

 

      USE CUDABLAS_LIBRARY 

      USE UMACH_INT 

      INTEGER ARRAY_ARGUMENT, IDEVICE, ISWITCH, NOUT 

      INTEGER, PARAMETER :: N=500 

      REAL    ALPHA, BETA, A(N,N), B(N,N), C(N,N), D(N,N) 

 

      ALPHA = 1.0 

      BETA = 1.0 

      A = 2.0 

      B = 3.0 

      C = 4.0 

!                                  ARRAY A IS THE FIRST ARRAY IN  

!                                  THE SGEMM CALLING SEQUENCE 

      ARRAY_ARGUMENT = 1 

!                                  GET THE CURRENT SWITCHOVER VALUE 

!                                  FOR sGEMM 

 

      ISWITCH = CUBLAS_GET (CUDABLAS_SGEMM, ARRAY_ARGUMENT) 

!                                  PERFORM AN ARRAY MULITIPLICATION 

 

      CALL SGEMM ('N', 'N', N, N, N, ALPHA, A, N, B, N, BETA, D, N)  

 

!                                  AVOID COPYING A FROM THE CPU TO 

!                                  THE GPU HENCEFORTH 

 

      CALL CUBLAS_SET (CUDABLAS_SGEMM, ARRAY_ARGUMENT, -ABS(ISWITCH)) 

 

 

!                                  PERFORM A SECOND ARRAY MULTIPLICATION 

 

      CALL SGEMM ('N', 'N', N, N, N, ALPHA, A, N, C, N, BETA, C, N) 

  

!                                  RESET THE SWITCHOVER VALUE FOR  

!                                  SGEMM BACK TO ITS ORIGINAL VALUE 
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      CALL CUBLAS_SET (CUDABLAS_SGEMM, ARRAY_ARGUMENT, ISWITCH)  

  

!                                  DETERMINE WHETHER OR NOT THE GPU 

!                                  WAS USED FOR THE LAST SGEMM CALL 

      ARRAY_ARGUMENT = 4 

      IDEVICE = CUBLAS_GET (CUDABLAS_SGEMM, ARRAY_ARGUMENT) 

 

!                                  PRINT THE RESULT OF THE LAST QUERY 

      CALL UMACH (2, NOUT) 

      IF (IDEVICE .EQ. 0) THEN 

         WRITE(NOUT, *)'THE STANDARD FORTRAN BLAS SGEMM WAS USED.' 

      ELSE 

         WRITE(NOUT, *)'THE NVIDIA DEVICE SGEMM WAS USED.' 

      END IF 

      END 

Output 

 

The NVIDIA DEVICE SGEMM WAS USED. 

CUBLAS_SET 
Sets the switchover value for an array used by a specified BLAS routine. 

Required Arguments 

ENUM — An enumerator which specifies the BLAS routine for which the switchover value 

is to be set.   (Input) 

ENUM must be one of the values defined in Tables 9.3, 9.4, or 9.5. 

ARRAY_ARGUMENT — An integer indicating the array argument of the BLAS routine for 

which information is to be set. The array argument is specified by its position in the 

calling sequence, i.e. 1 = array argument 1, 2 = array argument 2, etc.   (Input) 

For example, for the BLAS routine SGEMM, array A is ARRAY_ARGUMENT =1, array B is 

ARRAY_ARGUMENT = 2, and array C is ARRAY_ARGUMENT = 3. 

NSTART — Defines the array size that is used as the swichover point for the array specified 

by ARRAY_ARGUMENT when the BLAS routine specified by ENUM is used.   (Input) 

For arrays  │NSTART│ the NVIDIA device will be used.  For arrays  │NSTART│ a 

standard Fortran BLAS routine will be used. Setting NSTART to a negative value 

indicates that no array copy need be performed for the array specified by 

ARRAY_ARGUMENT. Setting NSTART to 0 indicates that the NVIDIA hardware in not 

used for the specified BLAS routine.  

FORTRAN 90 Interface 

Generic: CALL CUBLAS_SET (ENUM, ARRAY_ARGUMENT, NSTART) 
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Description 

This routine allows the user to set the array size values that will be used by a specified BLAS 

routine as the switchover point for using a standard Fortran Blas routine versus the CUDABLAS 

routine with the NVIDIA device. The routine can also be used to inform the NVIDIA device to not 

perform an array copy after the initial copy has been performed. 

Example 

In this example the switchover for array A of the BLAS routine SGEMM is first retrieved by making 

a call to CUBLAS_GET. Then CUBLAS_SET is used to inform CUDABLAS_SGEMM not to copy array 

A from the CPU to the GPU after the initial copy. Then, CUBLAS_SET is used to reset the 

switchover value back to its original setting. Finally, CUBLAS_GET is used to query whether or not 

the NVIDIA device was used on the last call to SGEMM. 

 

      USE CUDABLAS_LIBRARY 

      USE UMACH_INT 

      INTEGER ARRAY_ARGUMENT, IDEVICE, ISWITCH, NOUT 

      INTEGER, PARAMETER :: N=500 

      REAL    ALPHA, BETA, A(N,N), B(N,N), C(N,N), D(N,N) 

 

      ALPHA = 1.0 

      BETA = 1.0 

      A = 2.0 

      B = 3.0 

      C = 4.0 

!                                  ARRAY A IS THE FIRST ARRAY IN  

!                                  THE SGEMM CALLING SEQUENCE 

      ARRAY_ARGUMENT = 1 

!                                  GET THE CURRENT SWITCHOVER VALUE 

!                                  FOR SGEMM 

 

      ISWITCH = CUBLAS_GET (CUDABLAS_SGEMM, ARRAY_ARGUMENT) 

!                                  PERFORM AN ARRAY MULITIPLICATION 

 

      CALL SGEMM ('N', 'N', N, N, N, ALPHA, A, N, B, N, BETA, D, N)  

 

!                                  AVOID COPYING A FROM THE CPU TO 

!                                  THE GPU HENCEFORTH 

 

      CALL CUBLAS_SET (CUDABLAS_SGEMM, ARRAY_ARGUMENT, -ABS(ISWITCH)) 

 

!                                  PERFORM A SECOND ARRAY MULTIPLICATION 

 

      CALL SGEMM ('N', 'N', N, N, N, ALPHA, A, N, C, N, BETA, C, N) 

  

!                                  RESET THE SWITCHOVER VALUE FOR  

!                                  SGEMM BACK TO ITS ORIGINAL VALUE 

 

      CALL CUBLAS_SET (CUDABLAS_SGEMM, ARRAY_ARGUMENT, ISWITCH)  

  

!                                  DETERMINE WHETHER OR NOT THE GPU 

!                                  WAS USED FOR THE LAST SGEMM CALL 

      ARRAY_ARGUMENT = 4 
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      IDEVICE = CUBLAS_GET (CUDABLAS_SGEMM, ARRAY_ARGUMENT) 

 

!                                  PRINT THE RESULT OF THE LAST QUERY 

      CALL UMACH (2, NOUT) 

      IF (IDEVICE .EQ. 0) THEN 

         WRITE(NOUT, *)'THE STANDARD FORTRAN BLAS SGEMM WAS USED.' 

      ELSE 

         WRITE(NOUT, *)'THE NVIDIA DEVICE SGEMM WAS USED.' 

      END IF 

      END 

Output 

 

The NVIDIA DEVICE SGEMM WAS USED. 

CHECK_BUFFER_ALLOCATION 
Maintains buffer sizes on the NVIDIA device and performs one-time initialization. 

Required Arguments 

ISZ — An array of length 5.   (Input/Output) 

The elements of ISZ contain the following: 

 

ISZ 
Element 

Description 

ISZ(1) Array size for the first array which appears in the argument list 

of the BLAS routine being called. If an error occurs while trying 

to allocate space for this array, an error flag is returned. 

ISZ(2) Array size for the second array which appears in the argument 

list of the BLAS routine being called. If an error occurs while 

trying to allocate space for this array, an error flag is returned. 

ISZ(3) Array size for the third array which appears in the argument list 

of the BLAS routine being called. If an error occurs while trying 

to allocate space for this array, an error flag is returned. 

ISZ(4) Not used. 

ISZ(5) The word size to be used when allocating the buffer. This 

element should be one of the public parameters in the 

CUDABLAS_LIBRARY module FSIZE = 4, DSIZE = 8, CSIZE = 

8, or ZSIZE = 16. 

 

If any of the first three elements of ISZ is set to zero on input then the GPU buffer for 

that argument is deallocated. 

FORTRAN 90 Interface 

Generic: CALL CHECK_BUFFER_ALLOCATION (ISZ) 
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Description 

Note: Normally, this routine is not called by the user.  

This routine is used internally to initialize the buffer sizes for the arrays on the NVIDIA device. 

Space is allocated for the arrays in initialization only. If an error occurs during the allocation of the 

first, second, or third positional array then an error flag is returned in ISZ(1), ISZ(2), or ISZ(3), 

respectively. If ISZ(1), ISZ(2), or ISZ(3) is set to zero on input then the space for the array 

designated by the respective element is deallocated. 

CUDA_ERROR_PRINT 
Prints error messages generated through the use of the CUDABLAS Library using the IMSL error 

handler.  

Required Arguments 

ISZ — An array of length 5.   (Input/Output) 

The elemnents of ISZ contain the following: 

 

ISZ 
Element 

Description 

ISZ(1) NOT used. 

ISZ(2) NOT used. 

ISZ(3) Used to pass the argument number of the BLAS routine being 

called which is in error. 

ISZ(4) The enumeration value which identifies the name of the routine 

for which an error has occurred.  ISZ(4) can be one of the 

enumerated values listed in Tables 9.3, 9.4, or 9.5. 

ISZ(5) NOT used. 

 

NARRAY_ARGS — The number of array arguments for which the error occurred.   (Input) 

ERROR_NUMBER — An integer which identifies the error which occurred.   (Input) 

ERROR_NUMBER can be one of the following: 

 

ERROR_NUMBER 
Value 

Error Description 

ISZ(1) ―GPU memory allocation error for  

array argument = %(i1) of  ‖. 

ISZ(2) ―CPU or GPU copy failure for  

array argument = %(i1) of  ‖. 
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ERROR_NUMBER 
Value 

Error Description 

ISZ(3) ―GPU or CPU copy failure for  

array argument = %(i1), the result:‖ 

ISZ(4) ―Error in routine argument =. %(i1) of 

Fortran version. ‖ 

ISZ(5) ―Double precision hardware on GPU not 

available for  ‖. 

 

FORTRAN 90 Interface 

Generic: CALL CUDA_ERROR_PRINT (ISZ, NARRAY_ARGS, ERROR_NUMBER) 

Description 

Note: Normally, this routine is not called by the user.  

This routine is used internally to process and print error messages generated through the use of the 

CUDABLAS Library. 
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Other Matrix/Vector Operations 
This section describes a set of routines for matrix/vector operations. The matrix copy and 

conversion routines are summarized by the following table: 

 

 To 

From Real 
General 

Complex 
General 

Real 
Band 

Complex 
Band 

Real General CRGRG CRGCG CRGRB  

Complex General  CCGCG  CCGCB 

Real Band CRBRG  CRBRB CRBCB 

Complex Band  CCBCG  CCBCB 

Symmetric Full CSFRG    

Hermitian Full  CHFCG   

Symmetric Band   CSBRB  

Hermitian Band    CHBCB 

The matrix multiplication routines are summarized as follows: 

 

AB A 

B Real 
Rect. 

Complex 
Rect. 

Real 
Band 

Complex 
Band 

Real Rectangular MRRRR    

Complex Rect.  MCRCR   

Vector MURRV MUCRV MURBV MUCBV 

The matrix norm routines are summarized as follows: 

 

||A|| Real 
Rectangular 

Real 
Band 

Complex 
Band 

∞-norm 
NRIRR   

1-norm NR1RR NR1RB NR1CB 

Frobenius NR2RR   
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CRGRG 
Copies a real general matrix. 

Required Arguments 

A — Matrix of order N.   (Input) 

B — Matrix of order N containing a copy of A.   (Output) 

Optional Arguments 

N — Order of the matrices.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CRGRG (A, B [,…]) 

Specific: The specific interface names are S_CRGRG and D_CRGRG. 

FORTRAN 77 Interface 

Single: CALL CRGRG (N, A, LDA, B, LDB) 

Double: The double precision name is DCRGRG. 

Description 

The routine CRGRG copies the real N  N general matrix A into the real N  N general matrix B. 

Example 

A real 3  3 general matrix is copied into another real 3  3 general matrix. 
 

      USE CRGRG_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N 

      PARAMETER  (LDA=3, LDB=3, N=3) 
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! 

      REAL       A(LDA,N), B(LDB,N) 

!                                 Set values for  A 

!                                 A = (   0.0   1.0   1.0  ) 

!                                     (  -1.0   0.0   1.0  ) 

!                                     (  -1.0  -1.0   0.0  ) 

! 

      DATA A/0.0, 2* - 1.0, 1.0, 0.0, -1.0, 2*1.0, 0.0/ 

!                                 Copy real matrix A to real matrix B 

      CALL CRGRG (A, B) 

!                                 Print results 

      CALL WRRRN ('B', B) 

      END 

Output 
 

            B 

        1       2       3 

1   0.000   1.000   1.000 

2  -1.000   0.000   1.000 

3  -1.000  -1.000   0.000 

CCGCG 
Copies a complex general matrix. 

Required Arguments 

A — Complex matrix of order N.   (Input) 

B — Complex matrix of order N containing a copy of A.   (Output) 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CCGCG (A, B [,…]) 

Specific: The specific interface names are S_CCGCG and D_CCGCG. 
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FORTRAN 77 Interface 

Single: CALL CCGCG (N, A, LDA, B, LDB) 

Double: The double precision name is DCCGCG. 

Description 

The routine CCGCG copies the complex N  N general matrix A into the complex N  N general 

matrix B. 

Example 

A complex 3  3 general matrix is copied into another complex 3  3 general matrix. 
 

      USE CCGCG_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N 

      PARAMETER  (LDA=3, LDB=3, N=3) 

! 

      COMPLEX    A(LDA,N), B(LDB,N) 

!                           Set values for  A 

!                           A = (  0.0+0.0i  1.0+1.0i  1.0+1.0i  ) 

!                               ( -1.0-1.0i  0.0+0.0i  1.0+1.0i  ) 

!                               ( -1.0-1.0i -1.0-1.0i  0.0+0.0i  ) 

! 

      DATA A/(0.0,0.0), 2*(-1.0,-1.0), (1.0,1.0), (0.0,0.0), & 

          (-1.0,-1.0), 2*(1.0,1.0), (0.0,0.0)/ 

!                                 Copy matrix A to matrix B 

      CALL CCGCG (A, B) 

!                                 Print results 

      CALL WRCRN ('B', B) 

      END 

Output 
 

                          B 

                1                2                3 

1  ( 0.000, 0.000)  ( 1.000, 1.000)  ( 1.000, 1.000) 

2  (-1.000,-1.000)  ( 0.000, 0.000)  ( 1.000, 1.000) 

3  (-1.000,-1.000)  (-1.000,-1.000)  ( 0.000, 0.000) 

CRBRB 
Copies a real band matrix stored in band storage mode. 

Required Arguments 

A — Real band matrix of order N.   (Input) 
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NLCA — Number of lower codiagonals in A.   (Input) 

NUCA — Number of upper codiagonals in A.   (Input) 

B — Real band matrix of order N containing a copy of A.   (Output) 

NLCB — Number of lower codiagonals in B.   (Input)  

NLCB must be at least as large as NLCA. 

NUCB — Number of upper codiagonals in B.   (Input)  

NUCB must be at least as large as NUCA. 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CRBRB (A, NLCA, NUCA, B, NLCB, NUCB [,…]) 

Specific: The specific interface names are S_CRBRB and D_CRBRB. 

FORTRAN 77 Interface 

Single: CALL CRBRB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB) 

Double: The double precision name is DCRBRB. 

Description 

The routine CRBRB copies the real band matrix A in band storage mode into the real band matrix B 

in band storage mode. 

Example 

A real band matrix of order 3, in band storage mode with one upper codiagonal, and one lower 

codiagonal is copied into another real band matrix also in band storage mode. 
 

      USE CRBRB_INT 
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      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N, NLCA, NLCB, NUCA, NUCB 

      PARAMETER  (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1) 

! 

      REAL       A(LDA,N), B(LDB,N) 

!                                 Set values for  A (in band mode) 

!                                 A = (  0.0  1.0   1.0  ) 

!                                     (  1.0  1.0   1.0  ) 

!                                     (  1.0  1.0   0.0  ) 

! 

      DATA A/0.0, 7*1.0, 0.0/ 

!                                 Copy A to B 

      CALL CRBRB (A, NLCA, NUCA, B, NLCB, NUCB) 

!                                 Print results 

      CALL WRRRN ('B', B) 

      END 

Output 
 

             B 

        1       2       3 

1   0.000   1.000   1.000 

2   1.000   1.000   1.000 

3   1.000   1.000   0.000 

CCBCB 
Copies a complex band matrix stored in complex band storage mode. 

Required Arguments 

A — Complex band matrix of order N.   (Input) 

NLCA — Number of lower codiagonals in A.   (Input) 

NUCA — Number of upper codiagonals in A.   (Input) 

B — Complex matrix of order N containing a copy of A.   (Output) 

NLCB — Number of lower codiagonals in B.   (Input)  

NLCB must be at least as large as NLCA. 

NUCB — Number of upper codiagonals in B.   (Input)  

NUCB must be at least as large as NUCA. 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CCBCB (A, NLCA, NUCA, B, NLCB, NUCB [,…]) 

Specific:  The specific interface names are S_CCBCB and D_CCBCB. 

FORTRAN 77 Interface 

Single: CALL CCBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB) 

Double: The double precision name is DCCBCB. 

Description 

The routine CCBCB copies the complex band matrix A in band storage mode into the complex band 

matrix B in band storage mode. 

Example 

A complex band matrix of order 3 in band storage mode with one upper codiagonal and one lower 

codiagonal is copied into another complex band matrix in band storage mode. 
 

      USE CCBCB_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N, NLCA, NLCB, NUCA, NUCB 

      PARAMETER  (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1) 

! 

      COMPLEX    A(LDA,N), B(LDB,N) 

!                        Set values for  A (in band mode) 

!                        A = (  0.0+0.0i  1.0+1.0i  1.0+1.0i  ) 

!                            (  1.0+1.0i  1.0+1.0i  1.0+1.0i  ) 

!                            (  1.0+1.0i  1.0+1.0i  0.0+0.0i  ) 

! 

      DATA A/(0.0,0.0), 7*(1.0,1.0), (0.0,0.0)/ 

!                                 Copy A to B 

      CALL CCBCB (A, NLCA, NUCA, B, NLCB, NUCB) 

!                                 Print results 

      CALL WRCRN (‘B‘, B) 

      END 
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Output 
 

                          B 

                1                2                3 

1  ( 0.000, 0.000)  ( 1.000, 1.000)  ( 1.000, 1.000) 

2  ( 1.000, 1.000)  ( 1.000, 1.000)  ( 1.000, 1.000) 

3  ( 1.000, 1.000)  ( 1.000, 1.000)  ( 0.000, 0.000) 

CRGRB 
Converts a real general matrix to a matrix in band storage mode. 

Required Arguments 

A — Real N by N matrix.   (Input) 

NLC — Number of lower codiagonals in B.   (Input) 

NUC — Number of upper codiagonals in B.   (Input) 

B — Real (NUC + 1 + NLC) by N array containing the band matrix in band storage mode.   

(Output) 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CRGRB (A, NLC, NUC, B [,…]) 

Specific: The specific interface names are S_CRGRB and D_CRGRB. 

FORTRAN 77 Interface 

Single: CALL CRGRB (N, A, LDA, NLC, NUC, B, LDB) 

Double: The double precision name is DCRGRB. 
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Description 

The routine CRGRB converts the real general N  N matrix A with mu = NUC upper codiagonals and 

ml = NLC lower codiagonals into the real band matrix B of order N. The first mu rows of B then 

contain the upper codiagonals of A, the next row contains the main diagonal of A, and the last ml 

rows of B contain the lower codiagonals of A. 

Example 

A real 4  4 matrix with one upper codiagonal and three lower codiagonals is copied to a real band 

matrix of order 4 in band storage mode. 
 

      USE CRGRB_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N, NLC, NUC 

      PARAMETER  (LDA=4, LDB=5, N=4, NLC=3, NUC=1) 

! 

      REAL       A(LDA,N), B(LDB,N) 

!                                 Set values for  A 

!                                 A = (  1.0     2.0    0.0    0.0) 

!                                     ( -2.0     1.0    3.0    0.0) 

!                                     (  0.0    -3.0    1.0    4.0) 

!                                     ( -7.0     0.0   -4.0    1.0) 

! 

      DATA A/1.0, -2.0, 0.0, -7.0, 2.0, 1.0, -3.0, 0.0, 0.0, 3.0, 1.0, & 

          -4.0, 0.0, 0.0, 4.0, 1.0/ 

!                                 Convert A to band matrix B 

      CALL CRGRB (A, NLC, NUC, B) 

!                                 Print results 

      CALL WRRRN ('B', B) 

      END 

Output 
 

                B 

        1       2       3       4 

1   0.000   2.000   3.000   4.000 

2   1.000   1.000   1.000   1.000 

3  -2.000  -3.000  -4.000   0.000 

4   0.000   0.000   0.000   0.000 

5  -7.000   0.000   0.000   0.000 

CRBRG 
Converts a real matrix in band storage mode to a real general matrix. 
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Required Arguments 

A — Real (NUC + 1 + NLC) by N array containing the band matrix in band storage mode.   

(Input) 

NLC — Number of lower codiagonals in A.   (Input) 

NUC — Number of upper codiagonals in A.   (Input) 

B — Real N by N array containing the matrix.   (Output) 

Optional Arguments  

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CRBRG (A, NLC, NUC, B [,…]) 

Specific: The specific interface names are S_CRBRG and D_CRBRG. 

FORTRAN 77 Interface 

Single: CALL CRBRG (N, A, LDA, NLC, NUC, B, LDB) 

Double: The double precision name is DCRBRG. 

Description 

The routine CRBRG converts the real band matrix A of order N in band storage mode into the real  

N  N general matrix B with mu = NUC upper codiagonals and ml = NLC lower codiagonals. The 

first mu rows of A are copied to the upper codiagonals of B, the next row of A is copied to the 

diagonal of B, and the last ml rows of A are copied to the lower codiagonals of B. 

Example 

A real band matrix of order 3 in band storage mode with one upper codiagonal and one lower 

codiagonal is copied to a 3  3 real general matrix. 
 

      USE CRBRG_INT 

      USE WRRRN_INT 
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      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N, NLC, NUC 

      PARAMETER  (LDA=3, LDB=3, N=3, NLC=1, NUC=1) 

! 

      REAL       A(LDA,N), B(LDB,N) 

!                                 Set values for  A (in band mode) 

!                                 A = (  0.0     1.0    1.0) 

!                                     (  4.0     3.0    2.0) 

!                                     (  2.0     2.0    0.0) 

! 

      DATA A/0.0, 4.0, 2.0, 1.0, 3.0, 2.0, 1.0, 2.0, 0.0/ 

!                                 Convert band matrix A to matrix B 

      CALL CRBRG (A, NLC, NUC, B) 

!                                 Print results 

      CALL WRRRN ('B', B) 

      END 

Output 
 

             B 

        1       2       3 

1   4.000   1.000   0.000 

2   2.000   3.000   1.000 

3   0.000   2.000   2.000 

CCGCB 
Converts a complex general matrix to a matrix in complex band storage mode. 

Required Arguments 

A — Complex N by N array containing the matrix.   (Input) 

NLC — Number of lower codiagonals in B.   (Input) 

NUC — Number of upper codiagonals in B.   (Input) 

B — Complex (NUC + 1 + NLC) by N array containing the band matrix in band storage mode.   

(Output) 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 
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LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CCGCB (A, NLC, NUC, B [,…]) 

Specific:  The specific interface names are S_CCGCB and D_CCGCB. 

FORTRAN 77 Interface 

Single: CALL CCGCB (N, A, LDA, NLC, NUC, B, LDB) 

Double: The double precision name is DCCGCB. 

Description 

The routine CCGCB converts the complex general matrix A of order N with mu = NUC upper 

codiagonals and ml = NLC lower codiagonals into the complex band matrix B of order N in band 

storage mode. The first mu rows of B then contain the upper codiagonals of A, the next row 

contains the main diagonal of A, and the last ml rows of B contain the lower codiagonals of A. 

Example 

A complex general matrix of order 4 with one upper codiagonal and three lower codiagonals is 

copied to a complex band matrix of order 4 in band storage mode. 
 

      USE CCGCB_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N, NLC, NUC 

      PARAMETER  (LDA=4, LDB=5, N=4, NLC=3, NUC=1) 

! 

      COMPLEX    A(LDA,N), B(LDB,N) 

!                     Set values for  A 

!                     A = (  1.0+0.0i   2.0+1.0i  0.0+0.0i  0.0+0.0i ) 

!                         ( -2.0+1.0i   1.0+0.0i  3.0+2.0i  0.0+0.0i ) 

!                         (  0.0+0.0i  -3.0+2.0i  1.0+0.0i  4.0+3.0i ) 

!                         ( -7.0+1.0i   0.0+0.0i -4.0+3.0i  1.0+0.0i ) 

! 

      DATA A/(1.0,0.0), (-2.0,1.0), (0.0,0.0), (-7.0,1.0), (2.0,1.0), & 

          (1.0,0.0), (-3.0,2.0), (0.0,0.0), (0.0,0.0), (3.0,2.0), & 

          (1.0,0.0), (-4.0,3.0), (0.0,0.0), (0.0,0.0), (4.0,3.0), & 

          (1.0,0.0)/ 

!                                 Convert A to band matrix B 

      CALL CCGCB (A, NLC, NUC, B) 

!                                 Print results 

      CALL WRCRN ('B', B) 

      END 
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Output 
 

                                 B 

                 1                2                3                4 

1  ( 0.000, 0.000)  ( 2.000, 1.000)  ( 3.000, 2.000)  ( 4.000, 3.000) 

2  ( 1.000, 0.000)  ( 1.000, 0.000)  ( 1.000, 0.000)  ( 1.000, 0.000) 

3  (-2.000, 1.000)  (-3.000, 2.000)  (-4.000, 3.000)  ( 0.000, 0.000) 

4  ( 0.000, 0.000)  ( 0.000, 0.000)  ( 0.000, 0.000)  ( 0.000, 0.000) 

5  (-7.000, 1.000)  ( 0.000, 0.000)  ( 0.000, 0.000)  ( 0.000, 0.000) 

CCBCG 
Converts a complex matrix in band storage mode to a complex matrix in full storage mode. 

Required Arguments 

A — Complex (NUC + 1 + NLC) by N matrix containing the band matrix in band mode.   

(Input) 

NLC — Number of lower codiagonals in A.   (Input) 

NUC — Number of upper codiagonals in A.   (Input) 

B — Complex N by N matrix containing the band matrix in full mode.   (Output) 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CCBCG (A, NLC, NUC, B [,…]) 

Specific: The specific interface names are S_CCBCG and D_CCBCG. 

FORTRAN 77 Interface 

Single: CALL CCBCG (N, A, LDA, NLC, NUC, B, LDB) 
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Double: The double precision name is DCCBCG. 

Description 

The routine CCBCG converts the complex band matrix A of order N with mu = NUC upper 

codiagonals and ml = NLC lower codiagonals into the N  N complex general matrix B. The first 

mu rows of A are copied to the upper codiagonals of B, the next row of A is copied to the diagonal 

of B, and the last ml rows of A are copied to the lower codiagonals of B. 

Example 

A complex band matrix of order 4 in band storage mode with one upper codiagonal and three 

lower codiagonals is copied into a 4  4 complex general matrix. 
 

      USE CCBCG_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N, NLC, NUC 

      PARAMETER  (LDA=5, LDB=4, N=4, NLC=3, NUC=1) 

! 

      COMPLEX    A(LDA,N), B(LDB,N) 

!                     Set values for  A (in band mode) 

!                     A = (  0.0+0.0i  2.0+1.0i  3.0+2.0i  4.0+3.0i  ) 

!                         (  1.0+0.0i  1.0+0.0i  1.0+0.0i  1.0+0.0i  ) 

!                         ( -2.0+1.0i -3.0+2.0i -4.0+3.0i  0.0+0.0i  ) 

!                         (  0.0+0.0i  0.0+0.0i  0.0+0.0i  0.0+0.0i  ) 

!                         ( -7.0+1.0i  0.0+0.0i  0.0+0.0i  0.0+0.0i  ) 

! 

      DATA A/(0.0,0.0), (1.0,0.0), (-2.0,1.0), (0.0,0.0), (-7.0,1.0), & 

          (2.0,1.0), (1.0,0.0), (-3.0,2.0), 2*(0.0,0.0), (3.0,2.0), & 

          (1.0,0.0), (-4.0,3.0), 2*(0.0,0.0), (4.0,3.0), (1.0,0.0), & 

          3*(0.0,0.0)/ 

!                                 Convert band matrix A to matrix B 

      CALL CCBCG (A, NLC, NUC, B) 

!                                 Print results 

      CALL WRCRN ('B', B) 

      END 

Output 
 

                                 B 

                 1                2                3                4 

1  ( 1.000, 0.000)  ( 2.000, 1.000)  ( 0.000, 0.000)  ( 0.000, 0.000) 

2  (-2.000, 1.000)  ( 1.000, 0.000)  ( 3.000, 2.000)  ( 0.000, 0.000) 

3  ( 0.000, 0.000)  (-3.000, 2.000)  ( 1.000, 0.000)  ( 4.000, 3.000) 

4  (-7.000, 1.000)  ( 0.000, 0.000)  (-4.000, 3.000)  ( 1.000, 0.000) 

CRGCG 
Copies a real general matrix to a complex general matrix. 
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Required Arguments 

A — Real matrix of order N.   (Input) 

B — Complex matrix of order N containing a copy of A.   (Output) 

Optional Arguments 

N — Order of the matrices A and B.   (Input)  

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CRGCG (A, B [,…]) 

Specific: The specific interface names are S_CRGCG and D_CRGCG. 

FORTRAN 77 Interface 

Single: CALL CRGCG (N, A, LDA, B, LDB) 

Double: The double precision name is DCRGCG. 

Description 

The routine CRGCG copies a real N  N matrix to a complex N  N matrix. 

Example 

A 3  3 real matrix is copied to a 3  3 complex matrix. 
 

      USE CRGCG_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N 

      PARAMETER  (LDA=3, LDB=3, N=3) 

! 

      REAL       A(LDA,N) 

      COMPLEX    B(LDB,N) 

!                                 Set values for  A 
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!                                 A = (  2.0     1.0    3.0 ) 

!                                     (  4.0     1.0    0.0 ) 

!                                     ( -1.0     2.0    0.0 ) 

! 

      DATA A/2.0, 4.0, -1.0, 1.0, 1.0, 2.0, 3.0, 0.0, 0.0/ 

!                                 Convert real A to complex B 

      CALL CRGCG (A, B) 

!                                 Print results 

      CALL WRCRN ('B', B) 

      END 

Output 
 

                           B 

                 1                2                3 

1  ( 2.000, 0.000)  ( 1.000, 0.000)  ( 3.000, 0.000) 

2  ( 4.000, 0.000)  ( 1.000, 0.000)  ( 0.000, 0.000) 

3  (-1.000, 0.000)  ( 2.000, 0.000)  ( 0.000, 0.000) 

CRRCR 
Copies a real rectangular matrix to a complex rectangular matrix. 

Required Arguments 

A — Real NRA by NCA rectangular matrix.   (Input) 

B — Complex NRB by NCB rectangular matrix containing a copy of A.   (Output) 

Optional Arguments 

NRA — Number of rows in A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns in A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NRB — Number of rows in B.   (Input)  

It must be the same as NRA. 

Default: NRB = SIZE (B,1). 

NCB — Number of columns in B.   (Input)  

It must be the same as NCA. 

Default: NCB = SIZE (B,2). 
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LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CRRCR (A, B [,…]) 

Specific: The specific interface names are S_CRRCR and D_CRRCR. 

FORTRAN 77 Interface 

Single: CALL CRRCR (NRA, NCA, A, LDA, NRB, NCB, B, LDB) 

Double: The double precision name is DCRRCR. 

Description 

The routine CRRCR copies a real rectangular matrix to a complex rectangular matrix. 

Example 

A 3  2 real matrix is copied to a 3  2 complex matrix. 
 

      USE CRRCR_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, NCA, NCB, NRA, NRB 

      PARAMETER  (LDA=3, LDB=3, NCA=2, NCB=2, NRA=3, NRB=3) 

! 

      REAL       A(LDA,NCA) 

      COMPLEX    B(LDB,NCB) 

!                                 Set values for  A 

!                                 A = (  1.0     4.0  ) 

!                                     (  2.0     5.0  ) 

!                                     (  3.0     6.0  ) 

! 

      DATA A/1.0, 2.0, 3.0, 4.0, 5.0, 6.0/ 

!                                 Convert real A to complex B 

      CALL CRRCR (A, B) 

!                                 Print results 

      CALL WRCRN ('B', B) 

      END 

Output 
 

                B 

                 1                2 

1  ( 1.000, 0.000)  ( 4.000, 0.000) 
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2  ( 2.000, 0.000)  ( 5.000, 0.000) 

3  ( 3.000, 0.000)  ( 6.000, 0.000) 

CRBCB 
Converts a real matrix in band storage mode to a complex matrix in band storage mode. 

Required Arguments 

A — Real band matrix of order N.   (Input) 

NLCA — Number of lower codiagonals in A.   (Input) 

NUCA — Number of upper codiagonals in A.   (Input) 

B — Complex matrix of order N containing a copy of A.   (Output) 

NLCB — Number of lower codiagonals in B.   (Input)  

NLCB must be at least as large as NLCA. 

NUCB — Number of upper codiagonals in B.   (Input)  

NUCB must be at least as large as NUCA. 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CRBCB (A, NLCA, NUCA, B, NLCB, NUCB [,…]) 

Specific: The specific interface names are S_CRBCB and D_CRBCB. 

FORTRAN 77 Interface 

Single: CALL CRBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB) 

Double: The double precision name is DCRBCB. 



     

     
 

1632  Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY  

     

     

 

Description 

The routine CRBCB converts a real band matrix in band storage mode with NUCA upper codiagonals 

and NLCA lower codiagonals into a complex band matrix in band storage mode with NUCB upper 

codiagonals and NLCB lower codiagonals. 

Example 

A real band matrix of order 3 in band storage mode with one upper codiagonal and one lower 

codiagonal is copied into another complex band matrix in band storage mode. 
 

      USE CRBCB_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N, NLCA, NLCB, NUCA, NUCB 

      PARAMETER  (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1) 

! 

      REAL       A(LDA,N) 

      COMPLEX    B(LDB,N) 

!                                 Set values for  A (in band mode) 

!                                 A = (  0.0     1.0    1.0) 

!                                     (  1.0     1.0    1.0) 

!                                     (  1.0     1.0    0.0) 

! 

      DATA A/0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0/ 

!                                 Convert real band matrix A 

!                                 to complex band matrix B 

      CALL CRBCB (A, NLCA, NUCA, B, NLCB, NUCB) 

!                                 Print results 

      CALL WRCRN ('B', B) 

      END 

Output 
 

                            B 

                 1                2                3 

1  ( 0.000, 0.000)  ( 1.000, 0.000)  ( 1.000, 0.000) 

2  ( 1.000, 0.000)  ( 1.000, 0.000)  ( 1.000, 0.000) 

3  ( 1.000, 0.000)  ( 1.000, 0.000)  ( 0.000, 0.000) 

CSFRG 
Extends a real symmetric matrix defined in its upper triangle to its lower triangle. 

Required Arguments 

A — N by N symmetric matrix of order N to be filled out.   (Input/Output) 
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Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL CSFRG (A [,…]) 

Specific: The specific interface names are S_CSFRG and D_CSFRG. 

FORTRAN 77 Interface 

Single: CALL CSFRG (N, A, LDA) 

Double: The double precision name is DCSFRG. 

Description 

The routine CSFRG converts an N  N matrix A in symmetric mode into a general matrix by filling 

in the lower triangular portion of A using the values defined in its upper triangular portion. 

Example 

The lower triangular portion of a real 3  3 symmetric matrix is filled with the values defined in its 

upper triangular portion. 
 

      USE CSFRG_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

! 

      REAL       A(LDA,N) 

!                                 Set values for  A 

!                                 A = (   0.0   3.0   4.0  ) 

!                                     (         1.0   5.0  ) 

!                                     (               2.0  ) 

! 

      DATA A/3*0.0, 3.0, 1.0, 0.0, 4.0, 5.0, 2.0/ 

!                                 Fill the lower portion of A 

      CALL CSFRG (A) 

!                                 Print results 

      CALL WRRRN ('A', A) 

      END 
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Output 
 

            A 

        1       2       3 

1   0.000   3.000   4.000 

2   3.000   1.000   5.000 

3   4.000   5.000   2.000 

CHFCG 
Extends a complex Hermitian matrix defined in its upper triangle to its lower triangle. 

Required Arguments 

A — Complex Hermitian matrix of order N.   (Input/Output)  

On input, the upper triangle of A defines a Hermitian matrix. On output, the lower 

triangle of A is defined so that A is Hermitian. 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL CHFCG (A [,…]) 

Specific: The specific interface names are S_CHFCG and D_CHFCG. 

FORTRAN 77 Interface 

Single: CALL CHFCG (N, A, LDA) 

Double: The double precision name is DCHFCG. 

Description 

The routine CHFCG converts an N  N complex matrix A in Hermitian mode into a complex 

general matrix by filling in the lower triangular portion of A using the values defined in its upper 

triangular portion. 

Comments 

Informational errors 
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Type Code 

3 1 The matrix is not Hermitian. It has a diagonal entry with a small 

imaginary part. 

4 2 The matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

Example 

A complex 3  3 Hermitian matrix defined in its upper triangle is extended to its lower triangle. 
 

      USE CHFCG_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, N 

      PARAMETER  (LDA=3, N=3) 

! 

      COMPLEX    A(LDA,N) 

!                                 Set values for  A 

!                           A = (  1.0+0.0i  1.0+1.0i  1.0+2.0i  ) 

!                               (            2.0+0.0i  2.0+2.0i  ) 

!                               (                      3.0+0.0i  ) 

! 

      DATA A/(1.0,0.0), 2*(0.0,0.0), (1.0,1.0), (2.0,0.0), (0.0,0.0), & 

          (1.0,2.0), (2.0,2.0), (3.0,0.0)/ 

!                                 Fill in lower Hermitian matrix 

      CALL CHFCG (A) 

!                                 Print results 

      CALL WRCRN ('A', A) 

      END 

Output 
 

                            A 

                 1                2                3 

1  ( 1.000, 0.000)  ( 1.000, 1.000)  ( 1.000, 2.000) 

2  ( 1.000,-1.000)  ( 2.000, 0.000)  ( 2.000, 2.000) 

3  ( 1.000,-2.000)  ( 2.000,-2.000)  ( 3.000, 0.000) 

CSBRB 
Copies a real symmetric band matrix stored in band symmetric storage mode to a real band matrix 

stored in band storage mode. 

Required Arguments 

A — Real band symmetric matrix of order N.   (Input) 

NUCA — Number of codiagonals in A.   (Input) 

B — Real band matrix of order N containing a copy of A.   (Output) 
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NLCB — Number of lower codiagonals in B.   (Input)  

NLCB must be at least as large as NUCA. 

NUCB — Number of upper codiagonals in B.   (Input)  

NUCB must be at least as large as NUCA. 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CSBRB (A, NUCA, B, NLCB, NUCB [,…]) 

Specific: The specific interface names are S_CSBRB and D_CSBRB. 

FORTRAN 77 Interface 

Single: CALL CSBRB (N, A, LDA, NUCA, B, LDB, NLCB, NUCB) 

Double: The double precision name is DCSBRB. 

Description 

The routine CSBRB copies a real matrix A stored in symmetric band mode to a matrix B stored in 

band mode. The lower codiagonals of B are set using the values from the upper codiagonals of A. 

Example 

A real matrix of order 4 in band symmetric storage mode with 2 upper codiagonals is copied to a 

real matrix in band storage mode with 2 upper codiagonals and 2 lower codiagonals. 
 

      USE CSBRB_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N, NLCB, NUCA, NUCB 

      PARAMETER  (N=4, NUCA=2, LDA=NUCA+1, NLCB=NUCA, NUCB=NUCA, & 

                LDB=NLCB+NUCB+1) 
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! 

      REAL       A(LDA,N), B(LDB,N) 

!                          Set values for  A, in band mode 

!                          A = (  0.0  0.0  2.0  1.0 ) 

!                              (  0.0  2.0  3.0  1.0 ) 

!                              (  1.0  2.0  3.0  4.0 ) 

! 

      DATA A/2*0.0, 1.0, 0.0, 2.0, 2.0, 2.0, 3.0, 3.0, 1.0, 1.0, 4.0/ 

!                                 Copy A to B 

      CALL CSBRB (A, NUCA, B, NLCB, NUCB) 

!                                 Print results 

      CALL WRRRN ('B', B) 

      END 

Output 
 

               B 

        1       2       3       4 

1   0.000   0.000   2.000   1.000 

2   0.000   2.000   3.000   1.000 

3   1.000   2.000   3.000   4.000 

4   2.000   3.000   1.000   0.000 

5   2.000   1.000   0.000   0.000 

CHBCB 
Copies a complex Hermitian band matrix stored in band Hermitian storage mode to a complex 

band matrix stored in band storage mode. 

Required Arguments 

A — Complex band Hermitian matrix of order N.   (Input) 

NUCA — Number of codiagonals in A.   (Input) 

B — Complex band matrix of order N containing a copy of A.   (Output) 

NLCB — Number of lower codiagonals in B.   (Input)  

NLCB must be at least as large as NUCA. 

NUCB — Number of upper codiagonals in B.   (Input)  

NUCB must be at least as large as NUCA. 

Optional Arguments 

N — Order of the matrices A and B.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 
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LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL CHBCB (A, NUCA, B, NLCB, NUCB [,…]) 

Specific: The specific interface names are S_CHBCB and D_CHBCB. 

FORTRAN 77 Interface 

Single: CALL CHBCB (N, A, LDA, NUCA, B, LDB, NLCB, NUCB) 

Double: The double precision name is DCHBCB. 

Description 

The routine CSBRB copies a complex matrix A stored in Hermitian band mode to a matrix B stored 

in complex band mode. The lower codiagonals of B are filled using the values in the upper 

codiagonals of A. 

Comments 

Informational errors 

Type Code 

3 1 An element on the diagonal has a complex part that is near zero, the 

complex part is set to zero. 

4 1 An element on the diagonal has a complex part that is not zero. 

Example 

A complex Hermitian matrix of order 3 in band Hermitian storage mode with one upper 

codiagonal is copied to a complex matrix in band storage mode. 
 

      USE CHBCB_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N, NLCB, NUCA, NUCB 

      PARAMETER  (N=3, NUCA=1, LDA=NUCA+1, NLCB=NUCA, NUCB=NUCA, & 

                LDB=NLCB+NUCB+1) 

! 

      COMPLEX    A(LDA,N), B(LDB,N) 

!                                 Set values for  A (in band mode) 

!                           A = (  0.0+0.0i -1.0+1.0i -2.0+2.0i  ) 

!                               (  1.0+0.0i  1.0+0.0i  1.0+0.0i  ) 

! 
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      DATA A/(0.0,0.0), (1.0,0.0), (-1.0,1.0), (1.0,0.0), (-2.0,2.0), & 

          (1.0,0.0)/ 

!                                 Copy a complex Hermitian band matrix 

!                                 to a complex band matrix 

      CALL CHBCB (A, NUCA, B, NLCB, NUCB) 

!                                 Print results 

      CALL WRCRN ('B', B) 

      END 

Output 
 

                            B 

                 1                2                3 

1  ( 0.000, 0.000)  (-1.000, 1.000)  (-2.000, 2.000) 

2  ( 1.000, 0.000)  ( 1.000, 0.000)  ( 1.000, 0.000) 

3  (-1.000,-1.000)  (-2.000,-2.000)  ( 0.000, 0.000) 

TRNRR 
Transposes a rectangular matrix. 

Required Arguments 

A — Real NRA by NCA matrix in full storage mode.   (Input) 

B — Real NRB by NCB matrix in full storage mode containing the transpose of A.   (Output) 

Optional Arguments 

NRA — Number of rows of A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns of A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NRB — Number of rows of B.   (Input)  

NRB must be equal to NCA. 

Default: NRB = SIZE (B,1). 

NCB — Number of columns of B.   (Input)  

NCB must be equal to NRA. 

Default: NCB = SIZE (B,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 
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FORTRAN 90 Interface 

Generic: CALL TRNRR (A, B [,…]) 

Specific: The specific interface names are S_TRNRR and D_TRNRR. 

FORTRAN 77 Interface 

Single: CALL TRNRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB) 

Double: The double precision name is DTRNRR. 

Description 

The routine TRNRR computes the transpose B = A
T
 of a real rectangular matrix A. 

Comments 

If LDA = LDB and NRA = NCA, then A and B can occupy the same storage locations; otherwise, 

A and B must be stored separately. 

Example 

Transpose the 5  3 real rectangular matrix A into the 3  5 real rectangular matrix B. 
 

      USE TRNRR_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NCA, NCB, NRA, NRB 

      PARAMETER  (NCA=3, NCB=5, NRA=5, NRB=3) 

! 

      REAL       A(NRA,NCA), B(NRB,NCB) 

!                                 Set values for A 

!                                 A = ( 11.0  12.0  13.0 ) 

!                                     ( 21.0  22.0  23.0 ) 

!                                     ( 31.0  32.0  33.0 ) 

!                                     ( 41.0  42.0  43.0 ) 

!                                     ( 51.0  52.0  53.0 ) 

! 

      DATA A/11.0, 21.0, 31.0, 41.0, 51.0, 12.0, 22.0, 32.0, 42.0,& 

          52.0, 13.0, 23.0, 33.0, 43.0, 53.0/ 

!                                 B = transpose(A) 

      CALL TRNRR (A, B) 

!                                 Print results 

      CALL WRRRN ('B = trans(A)', B) 

      END 
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Output 
 

              B = trans(A) 

        1       2       3       4       5 

1   11.00   21.00   31.00   41.00   51.00 

2   12.00   22.00   32.00   42.00   52.00 

3   13.00   23.00   33.00   43.00   53.00 

MXTXF 

 

Computes the transpose product of a matrix, A
T
A. 

Required Arguments 

A — Real NRA by NCA rectangular matrix.   (Input)  

The transpose product of A is to be computed. 

B — Real NB by NB symmetric matrix containing the transpose product A
T
A.   (Output) 

Optional Arguments 

NRA — Number of rows in A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns in A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NB — Order of the matrix B.   (Input)  

NB must be equal to NCA. 

Default: NB = SIZE (B,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL MXTXF (A, B [,…]) 

Specific: The specific interface names are S_MXTXF and D_MXTXF. 



     

     
 

1642  Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY  

     

     

 

FORTRAN 77 Interface 

Single: CALL MXTXF (NRA, NCA, A, LDA, NB, B, LDB) 

Double: The double precision name is DMXTXF. 

Description 

The routine MXTXF computes the real general matrix B = A
T
A given the real rectangular matrix A. 

Example 

Multiply the transpose of a 3  4 real matrix by itself. The output matrix will be a 4  4 real 

symmetric matrix. 
 

      USE MXTXF_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NB, NCA, NRA 

      PARAMETER  (NB=4, NCA=4, NRA=3) 

! 

      REAL       A(NRA,NCA), B(NB,NB) 

!                                 Set values for A 

!                                 A = ( 3.0  1.0  4.0  2.0 ) 

!                                     ( 0.0  2.0  1.0 -1.0 ) 

!                                     ( 6.0  1.0  3.0  2.0 ) 

! 

      DATA A/3.0, 0.0, 6.0, 1.0, 2.0, 1.0, 4.0, 1.0, 3.0, 2.0, -1.0, & 

          2.0/ 

!                                 Compute B = trans(A)*A 

      CALL MXTXF (A, B) 

!                                 Print results 

      CALL WRRRN ('B = trans(A)*A', B) 

      END 

Output 
 

         B = trans(A)*A 

        1       2       3       4 

1   45.00    9.00   30.00   18.00 

2    9.00    6.00    9.00    2.00 

3   30.00    9.00   26.00   13.00 

4   18.00    2.00   13.00    9.00 
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MXTYF 

 

Multiplies the transpose of matrix A by matrix B, A
T
B. 

Required Arguments 

A — Real NRA by NCA matrix.   (Input) 

B — Real NRB by NCB matrix.   (Input) 

C — Real NCA by NCB matrix containing the transpose product A
T
B.   (Output) 

Optional Arguments 

NRA — Number of rows in A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns in A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NRB — Number of rows in B.   (Input)  

NRB must be the same as NRA. 

Default: NRB = SIZE (B,1). 

NCB — Number of columns in B.   (Input) 

Default: NCB = SIZE (B,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

NRC — Number of rows of C.   (Input)  

NRC must be equal to NCA. 

Default: NRC = SIZE (C,1). 

NCC — Number of columns of C.   (Input)  

NCC must be equal to NCB. 

Default: NCC = SIZE (C,2). 
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LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDC = SIZE (C,1). 

FORTRAN 90 Interface 

Generic: CALL MXTYF (A, B, C [,…]) 

Specific: The specific interface names are S_MXTYF and D_MXTYF. 

FORTRAN 77 Interface 

Single: CALL MXTYF (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC) 

Double: The double precision name is DMXTYF. 

Description 

The routine MXTYF computes the real general matrix C = A
T
B given the real rectangular matrices A 

and B. 

Example 

Multiply the transpose of a 3  4 real matrix by a 3  3 real matrix. The output matrix will be a  

4  3 real matrix. 
 

      USE MXTYF_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NCA, NCB, NCC, NRA, NRB, NRC 

      PARAMETER  (NCA=4, NCB=3, NCC=3, NRA=3, NRB=3, NRC=4) 

! 

      REAL       A(NRA,NCA), B(NRB,NCB), C(NRC,NCC) 

!                                 Set values for A 

!                                 A = ( 1.0  0.0  2.0  0.0 ) 

!                                     ( 3.0  4.0 -1.0  0.0 ) 

!                                     ( 2.0  1.0  2.0  1.0 ) 

! 

!                                 Set values for B 

!                                 B = ( -1.0  2.0  0.0 ) 

!                                     (  3.0  0.0 -1.0 ) 

!                                     (  0.0  5.0  2.0 ) 

! 

      DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, & 

          1.0/ 

      DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0/ 

!                                 Compute C = trans(A)*B 

      CALL MXTYF (A, B, C) 

!                                 Print results 
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      CALL WRRRN ('C = trans(A)*B', C) 

      END 

Output 
 

      C = trans(A)*B 

        1       2       3 

1    8.00   12.00    1.00 

2   12.00    5.00   -2.00 

3   -5.00   14.00    5.00 

4    0.00    5.00    2.00 

MXYTF 

Multiplies a matrix A by the transpose of a matrix B, AB
T
. 

Required Arguments 

A — Real NRA by NCA rectangular matrix.   (Input) 

B — Real NRB by NCB rectangular matrix.   (Input) 

C — Real NRC by NCC rectangular matrix containing the transpose product AB
T
.   (Output) 

Optional Arguments 

NRA — Number of rows in A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns in A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NRB — Number of rows in B.   (Input) 

Default: NRB = SIZE (B,1). 

NCB — Number of columns in B.   (Input)  

NCB must be the same as NCA. 

Default: NCB = SIZE (B,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

NRC — Number of rows of C.   (Input)  

NRC must be equal to NRA. 

Default: NRC = SIZE (C,1). 
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NCC — Number of columns of C.   (Input)  

NCC must be equal to NRB. 

Default: NCC = SIZE (C,2). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDC = SIZE (C,1). 

FORTRAN 90 Interface 

Generic: CALL MXYTF (A, B, C [,…]) 

Specific: The specific interface names are S_MXYTF and D_MXYTF. 

FORTRAN 77 Interface 

Single: CALL MXYTF (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC) 

Double: The double precision name is DMXYTF. 

Description 

The routine MXYTF computes the real general matrix C = AB
T
 given the real rectangular matrices A 

and B. 

Example 

Multiply a 3  4 real matrix by the transpose of a 3  4 real matrix. The output matrix will be a  

3  3 real matrix. 
 

      USE MXYTF_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NCA, NCB, NCC, NRA, NRB, NRC 

      PARAMETER  (NCA=4, NCB=4, NCC=3, NRA=3, NRB=3, NRC=3) 

! 

      REAL       A(NRA,NCA), B(NRB,NCB), C(NRC,NCC) 

!                                 Set values for A 

!                                 A = ( 1.0  0.0  2.0  0.0 ) 

!                                     ( 3.0  4.0 -1.0  0.0 ) 

!                                     ( 2.0  1.0  2.0  1.0 ) 

! 

!                                 Set values for B 

!                                 B = ( -1.0  2.0  0.0  2.0 ) 

!                                     (  3.0  0.0 -1.0 -1.0 ) 

!                                     (  0.0  5.0  2.0  5.0 ) 

! 

      DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, & 

          1.0/ 
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      DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0, 2.0, -1.0, & 

          5.0/ 

!                                 Compute C = A*trans(B) 

      CALL MXYTF (A, B, C) 

!                                 Print results 

      CALL WRRRN ('C = A*trans(B)', C) 

      END 

Output 
 

      C = A*trans(B) 

        1       2       3 

1   -1.00    1.00    4.00 

2    5.00   10.00   18.00 

3    2.00    3.00   14.00 

MRRRR 

 

Multiplies two real rectangular matrices, AB. 

Required Arguments 

A — Real NRA by NCA matrix in full storage mode.   (Input) 

B — Real NRB by NCB matrix in full storage mode.   (Input) 

C — Real NRC by NCC matrix containing the product AB in full storage mode.   (Output) 

Optional Arguments 

NRA — Number of rows of A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns of A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NRB — Number of rows of B.   (Input) 

NRB must be equal to NCA. 

Default: NRB = SIZE (B,1). 

NCB — Number of columns of B.   (Input) 

Default: NCB = SIZE (B,2). 
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LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

NRC — Number of rows of C.   (Input)  

NRC must be equal to NRA. 

Default: NRC = SIZE (C,1). 

NCC — Number of columns of C.   (Input)  

NCC must be equal to NCB. 

Default: NCC = SIZE (C,2). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDC = SIZE (C,1). 

FORTRAN 90 Interface 

Generic: CALL MRRRR (A, B, C [,…]) 

Specific: The specific interface names are S_MRRRR and D_MRRRR. 

FORTRAN 77 Interface 

Single: CALL MRRRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC) 

Double: The double precision name is DMRRRR. 

Description 

Given the real rectangular matrices A and B, MRRRR computes the real rectangular matrix C = AB. 

Example 

Multiply a 3  4 real matrix by a 4  3 real matrix. The output matrix will be a 3  3 real matrix. 
 

      USE MRRRR_INT 

 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NCA, NCB, NCC, NRA, NRB, NRC 

      PARAMETER  (NCA=4, NCB=3, NCC=3, NRA=3, NRB=4, NRC=3) 

! 

      REAL       A(NRA,NCA), B(NRB,NCB), C(NRC,NCC) 

!                                 Set values for A 

!                                 A = ( 1.0  0.0  2.0  0.0 ) 

!                                     ( 3.0  4.0 -1.0  0.0 ) 

!                                     ( 2.0  1.0  2.0  1.0 ) 
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! 

!                                 Set values for B 

!                                 B = ( -1.0  0.0  2.0 ) 

!                                     (  3.0  5.0  2.0 ) 

!                                     (  0.0  0.0 -1.0 ) 

!                                     (  2.0 -1.0  5.0 ) 

! 

      DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, & 

          1.0/ 

      DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0, 2.0, -1.0, & 

          5.0/ 

!                                 Compute C = A*B 

      CALL MRRRR (A, B, C) 

!                                 Print results 

      CALL WRRRN ('C = A*B', C) 

      END 

Output 
 

          C = A*B 

        1       2       3 

1   -1.00    0.00    0.00 

2    9.00   20.00   15.00 

3    3.00    4.00    9.00 

MCRCR 
Multiplies two complex rectangular matrices, AB. 

Required Arguments 

A — Complex NRA by NCA rectangular matrix.   (Input) 

B — Complex NRB by NCB rectangular matrix.   (Input) 

C — Complex NRC by NCC rectangular matrix containing the product A * B.   (Output) 

Optional Arguments 

NRA — Number of rows of A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns of A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NRB — Number of rows of B.   (Input)  

NRB must be equal to NCA. 

Default: NRB = SIZE (B,1). 
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NCB — Number of columns of B.   (Input) 

Default: NCB = SIZE (B,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

NRC — Number of rows of C.   (Input)  

NRC must be equal to NRA. 

Default: NRC = SIZE (C,1). 

NCC — Number of columns of C.   (Input)  

NCC must be equal to NCB. 

Default: NCC = SIZE (C,2). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDC = SIZE (C,1). 

FORTRAN 90 Interface 

Generic: CALL MCRCR (A, B, C [,…]) 

Specific: The specific interface names are S_MCRCR and D_MCRCR. 

FORTRAN 77 Interface 

Single: CALL MCRCR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC) 

Double: The double precision name is DMCRCR. 

Description 

Given the complex rectangular matrices A and B, MCRCR computes the complex rectangular matrix  

C = AB. 

Example 

Multiply a 3  4 complex matrix by a 4  3 complex matrix. The output matrix will be a 3  3 

complex matrix. 
 

      USE MCRCR_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NCA, NCB, NCC, NRA, NRB, NRC 

      PARAMETER  (NCA=4, NCB=3, NCC=3, NRA=3, NRB=4, NRC=3) 

! 
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      COMPLEX    A(NRA,NCA), B(NRB,NCB), C(NRC,NCC) 

!                                 Set values for A 

!            A = ( 1.0 + 1.0i  -1.0+ 2.0i  0.0 + 1.0i  0.0 - 2.0i ) 

!                ( 3.0 + 7.0i  6.0 - 4.0i  2.0 - 1.0i  0.0 + 1.0i ) 

!                ( 1.0 + 0.0i  1.0 - 2.0i  -2.0+ 0.0i  0.0 + 0.0i ) 

! 

!                                 Set values for B 

!            B = ( 2.0 + 1.0i  3.0 + 2.0i  3.0 + 1.0i ) 

!                ( 2.0 - 1.0i  4.0 - 2.0i  5.0 - 3.0i ) 

!                ( 1.0 + 0.0i  0.0 - 1.0i  0.0 + 1.0i ) 

!                ( 2.0 + 1.0i  1.0 + 2.0i  0.0 - 1.0i ) 

! 

      DATA A/(1.0,1.0), (3.0,7.0), (1.0,0.0), (-1.0,2.0), (6.0,-4.0), & 

          (1.0,-2.0), (0.0,1.0), (2.0,-1.0), (-2.0,0.0), (0.0,-2.0), & 

          (0.0,1.0), (0.0,0.0)/ 

      DATA B/(2.0,1.0), (2.0,-1.0), (1.0,0.0), (2.0,1.0), (3.0,2.0), &  

          (4.0,-2.0), (0.0,-1.0), (1.0,2.0), (3.0,1.0), (5.0,-3.0), & 

          (0.0,1.0), (0.0,-1.0)/ 

!                                 Compute C = A*B 

      CALL MCRCR (A, B, C) 

!                                 Print results 

      CALL WRCRN ('C = A*B', C) 

      END 

Output 
 

                     C = A*B 

                 1                2                3 

1  (  3.00,  5.00)  (  6.00, 13.00)  (  0.00, 17.00) 

2  (  8.00,  4.00)  (  8.00, -2.00)  ( 22.00,-12.00) 

3  (  0.00, -4.00)  (  3.00, -6.00)  (  2.00,-14.00) 

HRRRR 
Computes the Hadamard product of two real rectangular matrices. 

Required Arguments 

A — Real NRA by NCA rectangular matrix.   (Input) 

B — Real NRB by NCB rectangular matrix.   (Input) 

C — Real NRC by NCC rectangular matrix containing the Hadamard product of A and B.   

(Output)  

If A is not needed, then C can share the same storage locations as A. Similarly, if B is 

not needed, then C can share the same storage locations as B. 

Optional Arguments 

NRA — Number of rows of A.   (Input) 

Default: NRA = SIZE (A,1). 
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NCA — Number of columns of A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NRB — Number of rows of B.   (Input) 

NRB must be equal to NRA. 

Default: NRB = SIZE (B,1). 

NCB — Number of columns of B.   (Input) 

NCB must be equal to NCA. 

Default: NCB = SIZE (B,2). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

NRC — Number of rows of C.   (Input)  

NRC must be equal to NRA. 

Default: NRC = SIZE (C,1). 

NCC — Number of columns of C.   (Input)  

NCC must be equal to NCA. 

Default: NCC = SIZE (C,2). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDC = SIZE (C,1). 

FORTRAN 90 Interface 

Generic: CALL HRRRR (A, B, C [,…]) 

Specific: The specific interface names are S_HRRRR and D_HRRRR. 

FORTRAN 77 Interface 

Single: CALL HRRRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC) 

Double: The double precision name is DHRRRR. 

Description 

The routine HRRRR computes the Hadamard product of two real matrices A and B and returns a 

real matrix C, where Cij = AijBij. 
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Example 

Compute the Hadamard product of two 4  4 real matrices. The output matrix will be a 4  4 real 

matrix. 
 

      USE HRRRR_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NCA, NCB, NCC, NRA, NRB, NRC 

      PARAMETER  (NCA=4, NCB=4, NCC=4, NRA=4, NRB=4, NRC=4) 

! 

      REAL       A(NRA,NCA), B(NRB,NCB), C(NRC,NCC) 

!                                 Set values for A 

!                                 A = ( -1.0  0.0 -3.0  8.0 ) 

!                                     (  2.0  1.0  7.0  2.0 ) 

!                                     (  3.0 -2.0  2.0 -6.0 ) 

!                                     (  4.0  1.0 -5.0 -8.0 ) 

! 

!                                 Set values for B 

!                                 B = (  2.0  3.0  0.0 -10.0 ) 

!                                     (  1.0 -1.0  4.0   2.0 ) 

!                                     ( -1.0 -2.0  7.0   1.0 ) 

!                                     (  2.0  1.0  9.0   0.0 ) 

! 

      DATA A/-1.0, 2.0, 3.0, 4.0, 0.0, 1.0, -2.0, 1.0, -3.0, 7.0, 2.0, & 

          -5.0, 8.0, 2.0, -6.0, -8.0/ 

      DATA B/2.0, 1.0, -1.0, 2.0, 3.0, -1.0, -2.0, 1.0, 0.0, 4.0, 7.0, & 

          9.0, -10.0, 2.0, 1.0, 0.0/ 

!                                 Compute Hadamard product of A and B 

      CALL HRRRR (A, B, C) 

!                                 Print results 

      CALL WRRRN ('C = A (*) B', C) 

      END 

Output 
 

            C = A (*) B 

        1       2       3       4 

1   -2.00    0.00    0.00  -80.00 

2    2.00   -1.00   28.00    4.00 

3   -3.00    4.00   14.00   -6.00 

4    8.00    1.00  -45.00    0.00 

BLINF 

This function computes the bilinear form x
T
Ay. 

Function Return Value 

BLINF — The value of x
T
Ay is returned in BLINF.   (Output) 
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Required Arguments 

A — Real NRA by NCA matrix.   (Input) 

X — Real vector of length NRA.   (Input) 

Y — Real vector of length NCA.   (Input) 

Optional Arguments 

NRA — Number of rows of A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns of A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: BLINF (A, X, Y [,…]) 

Specific: The specific interface names are S_BLINF and D_BLINF. 

FORTRAN 77 Interface 

Single: BLINF(NRA, NCA, A, LDA, X, Y) 

Double: The double precision name is DBLINF. 

Description 

Given the real rectangular matrix A and two vectors x and y, BLINF computes the bilinear form 

x
T
Ay. 

Comments 

The quadratic form can be computed by calling BLINF with the vector X in place of the vector 

Y. 

Example 

Compute the bilinear form x
T
Ay, where x is a vector of length 5, A is a 5  2 matrix and y is a 

vector of length 2. 
 

      USE BLINF_INT 



 

 

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations  1655 

     

     

 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NCA, NRA 

      PARAMETER  (NCA=2, NRA=5) 

! 

      INTEGER    NOUT 

      REAL       A(NRA,NCA), VALUE, X(NRA), Y(NCA) 

!                                 Set values for A 

!                                 A = ( -2.0  2.0 ) 

!                                     (  3.0 -6.0 ) 

!                                     ( -4.0  7.0 ) 

!                                     (  1.0 -8.0 ) 

!                                     (  0.0 10.0 ) 

!                                 Set values for X 

!                                 X = (  1.0 -2.0  3.0 -4.0 -5.0 ) 

!                                 Set values for Y 

!                                 Y = ( -6.0  3.0 ) 

! 

      DATA A/-2.0, 3.0, -4.0, 1.0, 0.0, 2.0, -6.0, 7.0, -8.0, 10.0/ 

      DATA X/1.0, -2.0, 3.0, -4.0, -5.0/ 

      DATA Y/-6.0, 3.0/ 

!                                 Compute bilinear form 

      VALUE = BLINF(A,X,Y) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) ' The bilinear form trans(x)*A*y = ', VALUE 

      END 

Output 
 

The bilinear form trans(x)*A*y =     195.000 

POLRG 

 

Evaluates a real general matrix polynomial. 

Required Arguments 

A — N by N matrix for which the polynomial is to be computed.   (Input) 

COEF — Vector of length NCOEF containing the coefficients of the polynomial in order of 

increasing power.   (Input) 

B — N by N matrix containing the value of the polynomial evaluated at A.   (Output) 
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Optional Arguments 

N — Order of the matrix A.   (Input) 

Default: N = SIZE (A,1). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NCOEF — Number of coefficients.   (Input) 

Default: NCOEF = SIZE (COEF,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

FORTRAN 90 Interface 

Generic: CALL POLRG (A, COEF, B [,…]) 

Specific: The specific interface names are S_POLRG and D_POLRG. 

FORTRAN 77 Interface 

Single: CALL POLRG (N, A, LDA, NCOEF, COEF, B, LDB) 

Double: The double precision name is DPOLRG. 

Description 

Let m = NCOEF and c = COEF. 

The routine POLRG computes the matrix polynomial 

1

1

m
k

k

k

B c A 




 

using Horner‘s scheme 

   1 2 1m m mB c A c I A c I A c I     
 

where I is the N  N identity matrix. 

Comments 

Workspace may be explicitly provided, if desired, by use of P2LRG/DP2LRG. The reference is 

CALL P2LRG (N, A, LDA, NCOEF, COEF, B, LDB, WORK) 
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The additional argument is 

WORK — Work vector of length N * N. 

Example 

This example evaluates the matrix polynomial 3I + A + 2A
2
, where A is a 3  3 matrix. 

 

      USE POLRG_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, N, NCOEF 

      PARAMETER  (N=3, NCOEF=3, LDA=N, LDB=N) 

! 

      REAL       A(LDA,N), B(LDB,N), COEF(NCOEF) 

!                                 Set values of A and COEF 

! 

!                                 A = (  1.0    3.0    2.0  ) 

!                                     ( -5.0    1.0    7.0  ) 

!                                     (  1.0    5.0   -4.0  ) 

! 

!                                 COEF = (3.0, 1.0, 2.0) 

! 

      DATA A/1.0, -5.0, 1.0, 3.0, 1.0, 5.0, 2.0, 7.0, -4.0/ 

      DATA COEF/3.0, 1.0, 2.0/ 

! 

!                                 Evaluate B = 3I + A + 2*A**2 

      CALL POLRG (A, COEF, B) 

!                                 Print B 

      CALL WRRRN ('B = 3I + A + 2*A**2', B) 

      END 

Output 
 

    B = 3I + A + 2*A**2 

        1       2       3 

1   -20.0    35.0    32.0 

2   -11.0    46.0   -55.0 

3   -55.0   -19.0   105.0 

MURRV 
Multiplies a real rectangular matrix by a vector. 

Required Arguments 

A — Real NRA by NCA rectangular matrix.   (Input) 

X — Real vector of length NX.   (Input) 
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Y — Real vector of length NY containing the product A * X if IPATH is equal to 1 and the 

product trans(A) * X if IPATH is equal to 2.   (Output) 

Optional Arguments 

NRA — Number of rows of A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns of A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NX — Length of the vector X.   (Input)  

NX must be equal to NCA if IPATH is equal to 1. NX must be equal to NRA if IPATH is 

equal to 2. 

Default: NX = SIZE (X,1). 

IPATH — Integer flag.   (Input)  

IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product  

Y = trans(A) * X is computed, where trans(A) is the transpose of A. 

Default: IPATH =1. 

NY — Length of the vector Y.   (Input)  

NY must be equal to NRA if IPATH is equal to 1. NY must be equal to NCA if IPATH is 

equal to 2. 

Default: NY = SIZE (Y,1). 

FORTRAN 90 Interface 

Generic: CALL MURRV (A, X, Y [,…]) 

Specific: The specific interface names are S_MURRV and D_MURRV. 

FORTRAN 77 Interface 

Single: CALL MURRV (NRA, NCA, A, LDA, NX, X, IPATH, NY, Y) 

Double: The double precision name is DMURRV. 

Description 

If IPATH = 1, MURRV computes y = Ax, where A is a real general matrix and x and y are real 

vectors. If IPATH = 2, MURRV computes y = A
T
x. 
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Example 

Multiply a 3  3 real matrix by a real vector of length 3. The output vector will be a real vector of 

length 3. 
 

      USE MURRV_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, NCA, NRA, NX, NY 

      PARAMETER  (NCA=3, NRA=3, NX=3, NY=3) 

! 

      INTEGER    IPATH 

      REAL       A(NRA,NCA), X(NX), Y(NY) 

!                                 Set values for A and X 

!                                 A = ( 1.0  0.0  2.0 ) 

!                                     ( 0.0  3.0  0.0 ) 

!                                     ( 4.0  1.0  2.0 ) 

! 

!                                 X = ( 1.0  2.0  1.0 ) 

! 

! 

      DATA A/1.0, 0.0, 4.0, 0.0, 3.0, 1.0, 2.0, 0.0, 2.0/ 

      DATA X/1.0, 2.0, 1.0/ 

!                                 Compute y = Ax 

      IPATH = 1 

      CALL MURRV (A, X, Y) 

!                                 Print results 

      CALL WRRRN ('y = Ax', Y, 1, NY, 1) 

      END 

Output 
 

        y = Ax 

    1       2       3 

3.000   6.000   8.000 

MURBV 
Multiplies a real band matrix in band storage mode by a real vector. 

Required Arguments 

A — Real NLCA + NUCA + 1 by N band matrix stored in band mode.   (Input) 

NLCA — Number of lower codiagonals in A.   (Input) 

NUCA — Number of upper codiagonals in A.   (Input) 

X — Real vector of length NX.   (Input) 
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Y — Real vector of length NY containing the product A * X if IPATH is equal to 1 and the 

product trans(A) * X if IPATH is equal to 2.   (Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NX — Length of the vector X.   (Input)  

NX must be equal to N. 

Default: NX = SIZE (X,1). 

IPATH — Integer flag.   (Input)  

IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product  

Y = trans(A) * X is computed, where trans(A) is the transpose of A. 

Default: IPATH = 1. 

NY — Length of vector Y.   (Input)  

NY must be equal to N. 

Default: NY = SIZE (Y,1). 

FORTRAN 90 Interface 

Generic: CALL MURBV (A, NLCA, NUCA, X, Y [,…]) 

Specific: The specific interface names are S_MURBV and D_MURBV. 

FORTRAN 77 Interface 

Single: CALL MURBV (N, A, LDA, NLCA, NUCA, NX, X, IPATH, NY, Y) 

Double: The double precision name is DMURBV. 

Description 

If IPATH = 1, MURBV computes y = Ax, where A is a real band matrix and x and y are real vectors. 

If IPATH = 2, MURBV computes y = A
T
x. 

Example 

Multiply a real band matrix of order 6, with two upper codiagonals and two lower codiagonals 

stored in band mode, by a real vector of length 6. The output vector will be a real vector of length 

6. 
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      USE MURBV_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, N, NLCA, NUCA, NX, NY 

      PARAMETER  (LDA=5, N=6, NLCA=2, NUCA=2, NX=6, NY=6) 

! 

      INTEGER    IPATH 

      REAL       A(LDA,N), X(NX), Y(NY) 

!                                 Set values for A (in band mode) 

!                                 A = ( 0.0  0.0  1.0  2.0  3.0  4.0 ) 

!                                     ( 0.0  1.0  2.0  3.0  4.0  5.0 ) 

!                                     ( 1.0  2.0  3.0  4.0  5.0  6.0 ) 

!                                     (-1.0 -2.0 -3.0 -4.0 -5.0  0.0 ) 

!                                     (-5.0 -6.0 -7.0 -8.0  0.0  0.0 ) 

! 

!                                 Set values for X 

!                                 X = (-1.0  2.0 -3.0  4.0 -5.0  6.0 ) 

! 

      DATA A/0.0, 0.0, 1.0, -1.0, -5.0, 0.0, 1.0, 2.0, -2.0, -6.0, & 

          1.0, 2.0, 3.0, -3.0, -7.0, 2.0, 3.0, 4.0, -4.0, -8.0, 3.0, & 

          4.0, 5.0, -5.0, 0.0, 4.0, 5.0, 6.0, 0.0, 0.0/ 

      DATA X/-1.0, 2.0, -3.0, 4.0, -5.0, 6.0/ 

!                                 Compute y = Ax 

      IPATH = 1 

      CALL MURBV (A, NLCA, NUCA, X, Y) 

!                                 Print results 

      CALL WRRRN ('y = Ax', Y, 1, NY, 1) 

      END 

Output 
 

                     y = Ax 

    1       2       3       4       5       6 

-2.00    7.00  -11.00   17.00   10.00   29.00 

MUCRV 
Multiplies a complex rectangular matrix by a complex vector. 

Required Arguments 

A — Complex NRA by NCA rectangular matrix.   (Input) 

X — Complex vector of length NX.   (Input) 

Y — Complex vector of length NY containing the product A * X if IPATH is equal to 1 and the 

product trans(A) * X if IPATH is equal to 2.   (Output) 
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Optional Arguments 

NRA — Number of rows of A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns of A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NX — Length of the vector X.   (Input)  

NX must be equal to NCA if IPATH is equal to 1. NX must be equal to NRA if IPATH is 

equal to 2. 

Default: NX = SIZE (X,1). 

IPATH — Integer flag.   (Input)  

IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product  

Y = trans(A) * X is computed, where trans(A) is the transpose of A. 

Default: IPATH =1. 

NY — Length of the vector Y.   (Input)  

NY must be equal to NRA if IPATH is equal to 1. NY must be equal to NCA if IPATH is 

equal to 2. 

Default: NY = SIZE (Y,1). 

FORTRAN 90 Interface 

Generic: CALL MUCRV (A, X, Y [,…]) 

Specific: The specific interface names are S_MUCRV and D_MUCRV. 

FORTRAN 77 Interface 

Single: CALL MUCRV (NRA, NCA, A, LDA, NX, X, IPATH, NY, Y) 

Double: The double precision name is DMUCRV. 

Description 

If IPATH = 1, MUCRV computes y = Ax, where A is a complex general matrix and x and y are 

complex vectors. If IPATH = 2, MUCRV computes y = A
T
x. 

Example 

Multiply a 3  3 complex matrix by a complex vector of length 3. The output vector will be a 

complex vector of length 3. 
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      USE MUCRV_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NCA, NRA, NX, NY 

      PARAMETER  (NCA=3, NRA=3, NX=3, NY=3) 

! 

      INTEGER    IPATH 

      COMPLEX    A(NRA,NCA), X(NX), Y(NY) 

! 

!                                 Set values for A and X 

!            A = ( 1.0 + 2.0i  3.0 + 4.0i  1.0 + 0.0i ) 

!                ( 2.0 + 1.0i  3.0 + 2.0i  0.0 - 1.0i ) 

!                ( 2.0 - 1.0i  1.0 + 0.0i  0.0 + 1.0i ) 

! 

!            X = ( 1.0 - 1.0i  2.0 - 2.0i  0.0 - 1.0i ) 

! 

      DATA A/(1.0,2.0), (2.0,1.0), (2.0,-1.0), (3.0,4.0), (3.0,2.0), & 

          (1.0,0.0), (1.0,0.0), (0.0,-1.0), (0.0,1.0)/ 

      DATA X/(1.0,-1.0), (2.0,-2.0), (0.0,-1.0)/ 

!                                 Compute y = Ax 

      IPATH = 1 

      CALL MUCRV (A, X, Y) 

!                                 Print results 

      CALL WRCRN ('y = Ax', Y, 1, NY, 1) 

      END 

Output 
 

                     y = Ax 

              1                2                3 

( 17.00,  2.00)  ( 12.00, -3.00)  (  4.00, -5.00) 

MUCBV 
Multiplies a complex band matrix in band storage mode by a complex vector. 

Required Arguments 

A — Complex NLCA + NUCA + 1 by N band matrix stored in band mode.   (Input) 

NLCA — Number of lower codiagonals in A.   (Input) 

NUCA — Number of upper codiagonals in A.   (Input) 

X — Complex vector of length NX.   (Input) 

Y — Complex vector of length NY containing the product A * X if IPATH is equal to 1 and the 

product trans(A) * X if IPATH is equal to 2.   (Output) 
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Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

NX — Length of the vector X.   (Input)  

NX must be equal to N. 

Default: NX = SIZE (X,1). 

IPATH — Integer flag.   (Input)  

IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the product  

Y = trans(A) * X is computed, where trans(A) is the transpose of A. 

Default: IPATH = 1. 

NY — Length of vector Y.   (Input)  

NY must be equal to N. 

Default: NY = SIZE (Y,1). 

FORTRAN 90 Interface 

Generic: CALL MUCBV (A, NLCA, NUCA, X, Y [,…]) 

Specific: The specific interface names are S_MUCBV and D_MUCBV. 

FORTRAN 77 Interface 

Single: CALL MUCBV (N, A, LDA, NLCA, NUCA, NX, X, IPATH, NY, Y) 

Double: The double precision name is DMUCBV. 

Description 

If IPATH = 1, MUCBV computes y = Ax, where A is a complex band matrix and x and y are complex 

vectors. If IPATH = 2, MUCBV computes y = A
T
x. 

Example 

Multiply the transpose of a complex band matrix of order 4, with one upper codiagonal and two 

lower codiagonals stored in band mode, by a complex vector of length 3. The output vector will be 

a complex vector of length 3. 
 

      USE MUCBV_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 
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!                                 Declare variables 

      INTEGER    LDA, N, NLCA, NUCA, NX, NY 

      PARAMETER  (LDA=4, N=4, NLCA=2, NUCA=1, NX=4, NY=4) 

! 

      INTEGER    IPATH 

      COMPLEX    A(LDA,N), X(NX), Y(NY) 

!                                   Set values for A (in band mode) 

!            A = (  0.0+ 0.0i   1.0+ 2.0i   3.0+ 4.0i   5.0+ 6.0i ) 

!                ( -1.0- 1.0i  -1.0- 1.0i  -1.0- 1.0i  -1.0- 1.0i ) 

!                ( -1.0+ 2.0i  -1.0+ 3.0i  -2.0+ 1.0i   0.0+ 0.0i ) 

!                (  2.0+ 0.0i   0.0+ 2.0i   0.0+ 0.0i   0.0+ 0.0i ) 

! 

!                                  Set values for X 

!            X = ( 3.0 + 4.0i  0.0 + 0.0i  1.0 + 2.0i  -2.0 - 1.0i ) 

! 

      DATA A/(0.0,0.0), (-1.0,-1.0), (-1.0,2.0), (2.0,0.0), (1.0,2.0), & 

          (-1.0,-1.0), (-1.0,3.0), (0.0,2.0), (3.0,4.0), (-1.0,-1.0), & 

          (-2.0,1.0), (0.0,0.0), (5.0,6.0), (-1.0,-1.0), (0.0,0.0), & 

          (0.0,0.0)/ 

      DATA X/(3.0,4.0), (0.0,0.0), (1.0,2.0), (-2.0,-1.0)/ 

!                                 Compute y = Ax 

      IPATH = 2 

      CALL MUCBV (A, NLCA, NUCA, X, Y, IPATH=IPATH) 

!                                 Print results 

      CALL WRCRN ('y = Ax', Y, 1, NY, 1) 

      END 

Output 
 

                             y = Ax 

              1                2                3                4 

(  3.00, -3.00)  (-10.00,  7.00)  (  6.00, -3.00)  ( -6.00, 19.00) 

ARBRB 
Adds two band matrices, both in band storage mode. 

Required Arguments 

A — N by N band matrix with NLCA lower codiagonals and NUCA upper codiagonals stored in 

band mode with dimension (NLCA + NUCA + 1) by N.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

B — N by N band matrix with NLCB lower codiagonals and NUCB upper codiagonals stored in 

band mode with dimension (NLCB + NUCB + 1) by N.   (Input) 

NLCB — Number of lower codiagonals of B.   (Input) 

NUCB — Number of upper codiagonals of B.   (Input) 
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C — N by N band matrix with NLCC lower codiagonals and NUCC upper codiagonals 

containing the sum A + B in band mode with dimension (NLCC + NUCC + 1) by N.   

(Output) 

NLCC — Number of lower codiagonals of C.   (Input)  

NLCC must be at least as large as max(NLCA, NLCB). 

NUCC — Number of upper codiagonals of C.   (Input)  

NUCC must be at least as large as max(NUCA, NUCB). 

Optional Arguments  

N — Order of the matrices A, B and C.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDC = SIZE (C,1). 

FORTRAN 90 Interface 

Generic: CALL ARBRB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC [,…]) 

Specific:  The specific interface names are S_ARBRB and D_ARBRB. 

FORTRAN 77 Interface 

Single: CALL ARBRB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C, LDC, NLCC, 
NUCC) 

Double: The double precision name is DARBRB. 

Description 

The routine ARBRB adds two real matrices stored in band mode, returning a real matrix stored in 

band mode. 
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Example 

Add two real matrices of order 4 stored in band mode. Matrix A has one upper codiagonal and one 

lower codiagonal. Matrix B has no upper codiagonals and two lower codiagonals. The output 

matrix C, has one upper codiagonal and two lower codiagonals. 
 

      USE ARBRB_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, LDC, N, NLCA, NLCB, NLCC, NUCA, NUCB, NUCC 

      PARAMETER  (LDA=3, LDB=3, LDC=4, N=4, NLCA=1, NLCB=2, NLCC=2, & 

                NUCA=1, NUCB=0, NUCC=1) 

! 

      REAL       A(LDA,N), B(LDB,N), C(LDC,N) 

!                                 Set values for  A (in band mode) 

!                                 A = (  0.0     2.0    3.0   -1.0) 

!                                     (  1.0     1.0    1.0    1.0) 

!                                     (  0.0     3.0    4.0    0.0) 

! 

!                                 Set values for  B (in band mode) 

!                                 B = (  3.0     3.0    3.0    3.0) 

!                                     (  1.0    -2.0    1.0    0.0) 

!                                     ( -1.0     2.0    0.0    0.0) 

! 

      DATA A/0.0, 1.0, 0.0, 2.0, 1.0, 3.0, 3.0, 1.0, 4.0, -1.0, 1.0, & 

          0.0/ 

      DATA B/3.0, 1.0, -1.0, 3.0, -2.0, 2.0, 3.0, 1.0, 0.0, 3.0, 0.0, & 

          0.0/ 

!                                 Add A and B to obtain C (in band 

!                                                          mode) 

      CALL ARBRB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC) 

!                                 Print results 

      CALL WRRRN ('C = A+B', C) 

      END 

Output 
 

             C = A+B 

        1       2       3       4 

1   0.000   2.000   3.000  -1.000 

2   4.000   4.000   4.000   4.000 

3   1.000   1.000   5.000   0.000 

4  -1.000   2.000   0.000   0.000 

ACBCB 
Adds two complex band matrices, both in band storage mode. 

Required Arguments 

A — N by N complex band matrix with NLCA lower codiagonals and NUCA upper codiagonals 

stored in band mode with dimension (NLCA + NUCA + 1) by N.   (Input) 
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NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

B — N by N complex band matrix with NLCB lower codiagonals and NUCB upper codiagonals 

stored in band mode with dimension (NLCB + NUCB + 1) by N.   (Input) 

NLCB — Number of lower codiagonals of B.   (Input) 

NUCB — Number of upper codiagonals of B.   (Input) 

C — N by N complex band matrix with NLCC lower codiagonals and NUCC upper codiagonals 

containing the sum A + B in band mode with dimension (NLCC + NUCC + 1) by N.   

(Output) 

NLCC — Number of lower codiagonals of C.   (Input)  

NLCC must be at least as large as max(NLCA, NLCB). 

NUCC — Number of upper codiagonals of C.   (Input)  

NUCC must be at least as large as max(NUCA, NUCB). 

Optional Arguments 

N — Order of the matrices A, B and C.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDB = SIZE (B,1). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDC = SIZE (C,1). 

FORTRAN 90 Interface 

Generic: CALL ACBCB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC [,…]) 

Specific:  The specific interface names are S_ACBCB and D_ACBCB. 
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FORTRAN 77 Interface 

Single: CALL ACBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C, LDC, NLCC, 
NUCC) 

Double: The double precision name is DACBCB. 

Description 

The routine ACBCB adds two complex matrices stored in band mode, returning a complex matrix 

stored in band mode. 

Example 

Add two complex matrices of order 4 stored in band mode. Matrix A has two upper codiagonals 

and no lower codiagonals. Matrix B has no upper codiagonals and two lower codiagonals. The 

output matrix C has two upper codiagonals and two lower codiagonals. 
 

      USE ACBCB_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, LDB, LDC, N, NLCA, NLCB, NLCC, NUCA, NUCB, NUCC 

      PARAMETER  (LDA=3, LDB=3, LDC=5, N=3, NLCA=0, NLCB=2, NLCC=2, & 

                NUCA=2, NUCB=0, NUCC=2) 

! 

      COMPLEX    A(LDA,N), B(LDB,N), C(LDC,N) 

!                                 Set values for A (in band mode) 

!                 A = ( 0.0 + 0.0i  0.0 + 0.0i  3.0 - 2.0i ) 

!                     ( 0.0 + 0.0i  -1.0+ 3.0i  6.0 + 0.0i ) 

!                     ( 1.0 + 4.0i  5.0 - 2.0i  3.0 + 1.0i ) 

! 

!                                 Set values for B (in band mode) 

!                 B = ( 3.0 + 1.0i  4.0 + 1.0i  7.0 - 1.0i ) 

!                     ( -1.0- 4.0i  9.0 + 3.0i  0.0 + 0.0i ) 

!                     ( 2.0 - 1.0i  0.0 + 0.0i  0.0 + 0.0i ) 

! 

      DATA A/(0.0,0.0), (0.0,0.0), (1.0,4.0), (0.0,0.0), (-1.0,3.0), & 

          (5.0,-2.0), (3.0,-2.0), (6.0,0.0), (3.0,1.0)/ 

      DATA B/(3.0,1.0), (-1.0,-4.0), (2.0,-1.0), (4.0,1.0), (9.0,3.0), & 

          (0.0,0.0), (7.0,-1.0), (0.0,0.0), (0.0,0.0)/ 

!                                 Compute C = A+B 

      CALL ACBCB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC) 

!                                 Print results 

      CALL WRCRN ('C = A+B', C) 

      END 

Output 
 

                        C = A+B 

                 1                2                3 

1  (  0.00,  0.00)  (  0.00,  0.00)  (  3.00, -2.00) 

2  (  0.00,  0.00)  ( -1.00,  3.00)  (  6.00,  0.00) 

3  (  4.00,  5.00)  (  9.00, -1.00)  ( 10.00,  0.00) 
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4  ( -1.00, -4.00)  (  9.00,  3.00)  (  0.00,  0.00) 

5  (  2.00, -1.00)  (  0.00,  0.00)  (  0.00,  0.00) 

NRIRR 
Computes the infinity norm of a real matrix. 

Required Arguments 

A — Real NRA by NCA matrix whose infinity norm is to be computed.   (Input) 

ANORM — Real scalar containing the infinity norm of A.   (Output) 

Optional Arguments  

NRA — Number of rows of A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns of A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL NRIRR (A, ANORM [,…]) 

Specific: The specific interface names are S_NRIRR and D_NRIRR. 

FORTRAN 77 Interface 

Single: CALL NRIRR (NRA, NCA, A, LDA, ANORM) 

Double: The double precision name is DNRIRR. 

Description 

The routine NRIRR computes the infinity norm of a real rectangular matrix A. If m = NRA and  

n = NCA, then the ∞-norm of A is 

1
1

max
n

ij
i m

j

A A
  



 
 

This is the maximum of the sums of the absolute values of the row elements. 
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Example 

Compute the infinity norm of a 3  4 real rectangular matrix. 
 

      USE NRIRR_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    NCA, NRA 

      PARAMETER  (NCA=4, NRA=3) 

! 

      INTEGER    NOUT 

      REAL       A(NRA,NCA), ANORM 

! 

!                                 Set values for A 

!                                 A = ( 1.0  0.0  2.0  0.0 ) 

!                                     ( 3.0  4.0 -1.0  0.0 ) 

!                                     ( 2.0  1.0  2.0  1.0 ) 

! 

      DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, & 

          1.0/ 

!                                 Compute the infinity norm of A 

      CALL NRIRR (A, ANORM) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) ' The infinity norm of A is ', ANORM 

      END 

Output 
 

The infinity norm of A is     8.00000 

NR1RR 
Computes the 1-norm of a real matrix. 

Required Arguments 

A — Real NRA by NCA matrix whose 1-norm is to be computed.   (Input) 

ANORM — Real scalar containing the 1-norm of A.   (Output) 

Optional Arguments 

NRA — Number of rows of A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns of A.   (Input) 

Default: NCA = SIZE (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL NR1RR (A, ANORM [,…]) 

Specific: The specific interface names are S_NR1RR and D_NR1RR. 

FORTRAN 77 Interface 

Single: CALL NR1RR (NRA, NCA, A, LDA, ANORM) 

Double: The double precision name is DNR1RR. 

Description 

The routine NR1RR computes the 1-norm of a real rectangular matrix A. If m = NRA and n = NCA, 

then the 1-norm of A is 

1 1
1

max
m

ij
j n

i

A A
 



 
 

This is the maximum of the sums of the absolute values of the column elements. 

Example 

Compute the 1-norm of a 3  4 real rectangular matrix. 
 

      USE NR1RR_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                             Declare variables 

      INTEGER    NCA, NRA 

      PARAMETER  (NCA=4, NRA=3) 

! 

      INTEGER    NOUT 

      REAL       A(NRA,NCA), ANORM 

! 

!                 Set values for A 

!                         A = ( 1.0  0.0  2.0  0.0 ) 

!                             ( 3.0  4.0 -1.0  0.0 ) 

!                             ( 2.0  1.0  2.0  1.0 ) 

! 

      DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, & 

          1.0/ 

!                                 Compute the L1 norm of A 

      CALL NR1RR (A, ANORM) 

!                                 Print results 
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      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) ' The 1-norm of A is ', ANORM 

      END 

Output 
 

The 1-norm of A is     6.00000 

NR2RR 
Computes the Frobenius norm of a real rectangular matrix. 

Required Arguments 

A — Real NRA by NCA rectangular matrix.   (Input) 

ANORM — Frobenius norm of A.   (Output) 

Optional Arguments 

NRA — Number of rows of A.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns of A.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL NR2RR (A, ANORM [,…]) 

Specific: The specific interface names are S_NR2RR and D_NR2RR. 

FORTRAN 77 Interface 

Single: CALL NR2RR (NRA, NCA, A, LDA, ANORM) 

Double: The double precision name is DNR2RR. 

Description 

The routine NR2RR computes the Frobenius norm of a real rectangular matrix A. If m = NRA and    

n = NCA, then the Frobenius norm of A is 
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1 2

2

2
1 1

m n

ij

i j

A A
 

 
  
  


 

Example 

Compute the Frobenius norm of a 3  4 real rectangular matrix. 
 

      USE NR2RR_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, NCA, NRA 

      PARAMETER  (LDA=3, NCA=4, NRA=3) 

! 

      INTEGER    NOUT 

      REAL       A(LDA,NCA), ANORM 

! 

!                                 Set values for A 

!                                 A = ( 1.0  0.0  2.0  0.0 ) 

!                                     ( 3.0  4.0 -1.0  0.0 ) 

!                                     ( 2.0  1.0  2.0  1.0 ) 

! 

      DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, & 

          1.0/ 

! 

!                                 Compute Frobenius norm of A 

      CALL NR2RR (A, ANORM) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) ' The Frobenius norm of A is ', ANORM 

      END 

Output 
 

The Frobenius norm of A is     6.40312 

NR1RB 
Computes the 1-norm of a real band matrix in band storage mode. 

Required Arguments 

A — Real (NUCA + NLCA + 1) by N array containing the N by N band matrix in band storage 

mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 



 

 

IMSL MATH LIBRARY Chapter 9: Basic Matrix/Vector Operations  1675 

     

     

 

ANORM — Real scalar containing the 1-norm of A.   (Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL NR1RB (A, NLCA, NUCA, ANORM [,…]) 

Specific: The specific interface names are S_NR1RB and D_NR1RB. 

FORTRAN 77 Interface 

Single: CALL NR1RB (N, A, LDA, NLCA, NUCA, ANORM) 

Double: The double precision name is DNR1RB. 

Description 

The routine NR1RB computes the 1-norm of a real band matrix A. The 1-norm of a matrix A is  

1 1
1

max
N

ij
j N

i

A A
 



 
 

This is the maximum of the sums of the absolute values of the column elements. 

Example 

Compute the 1-norm of a 4  4 real band matrix stored in band mode. 
 

      USE NR1RB_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, N, NLCA, NUCA 

      PARAMETER  (LDA=4, N=4, NLCA=2, NUCA=1) 

! 

      INTEGER    NOUT 

      REAL       A(LDA,N), ANORM 

! 

!                                 Set values for A (in band mode) 

!                                 A = (  0.0  2.0  2.0  3.0  ) 

!                                     ( -2.0 -3.0 -4.0 -1.0  ) 

!                                     (  2.0  1.0  0.0  0.0  ) 
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!                                     (  0.0  1.0  0.0  0.0  ) 

! 

      DATA A/0.0, -2.0, 2.0, 0.0, 2.0, -3.0, 1.0, 1.0, 2.0, -4.0, 0.0, & 

          0.0, 3.0, -1.0, 2*0.0/ 

!                                 Compute the L1 norm of A 

      CALL NR1RB (A, NLCA, NUCA, ANORM) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) ' The 1-norm of A is ', ANORM 

      END 

Output 
 

The 1-norm of A is     7.00000 

NR1CB 
Computes the 1-norm of a complex band matrix in band storage mode. 

Required Arguments 

A — Complex (NUCA + NLCA + 1) by N array containing the N by N band matrix in band 

storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

ANORM — Real scalar containing the 1-norm of A.   (Output) 

Optional Arguments 

N — Order of the matrix.   (Input) 

Default: N = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

FORTRAN 90 Interface 

Generic: CALL NR1CB (A, NLCA, NUCA, ANORM [,…]) 

Specific: The specific interface names are S_NR1CB and D_NR1CB. 

FORTRAN 77 Interface 

Single: CALL NR1CB (N, A, LDA, NLCA, NUCA, ANORM) 
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Double: The double precision name is DNR1CB. 

Description 

The routine NR1CB computes the 1-norm of a complex band matrix A. The 1-norm of a complex 

matrix A is  

1 1
1

max
N

ij ij
j N

i

A A A
 



    
 

 

Example 

Compute the 1-norm of a complex matrix of order 4 in band storage mode. 
 

      USE NR1CB_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    LDA, N, NLCA, NUCA 

      PARAMETER  (LDA=4, N=4, NLCA=2, NUCA=1) 

! 

      INTEGER    NOUT 

      REAL       ANORM 

      COMPLEX    A(LDA,N) 

! 

!                                 Set values for A (in band mode) 

!                     A = (  0.0+0.0i  2.0+3.0i -1.0+1.0i -2.0-1.0i ) 

!                         ( -2.0+3.0i  1.0+0.0i -4.0-1.0i  0.0-4.0i ) 

!                         (  2.0+2.0i  4.0+6.0i  3.0+2.0i  0.0+0.0i ) 

!                         (  0.0-1.0i  2.0+1.0i  0.0+0.0i  0.0+0.0i ) 

! 

      DATA A/(0.0,0.0), (-2.0,3.0), (2.0,2.0), (0.0,-1.0), (2.0,3.0), & 

          (1.0,0.0), (4.0,6.0), (2.0,1.0), (-1.0,1.0), (-4.0,-1.0), & 

          (3.0,2.0), (0.0,0.0), (-2.0,-1.0), (0.0,-4.0), (0.0,0.0), & 

          (0.0,0.0)/ 

!                                 Compute the L1 norm of A 

      CALL NR1CB (A, NLCA, NUCA, ANORM) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) ' The 1-norm of A is ', ANORM 

      END 

Output 
 

The 1-norm of A is     19.0000 

DISL2 
This function computes the Euclidean (2-norm) distance between two points. 
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Function Return Value 

DISL2 — Euclidean (2-norm) distance between the points X and Y.   (Output) 

Required Arguments 

X — Vector of length max(N * |INCX|, 1).   (Input) 

Y — Vector of length max(N * |INCY|, 1).   (Input) 

Optional Arguments 

N — Length of the vectors X and Y.   (Input) 

Default: N = SIZE (X,1). 

INCX — Displacement between elements of X.   (Input)  

The I-th element of X is X(1 + (I  1) * INCX) if INCX is greater than or equal to zero 

or X(1 + (I  N) * INCX) if INCX is less than zero. 

Default: INCX = 1. 

INCY — Displacement between elements of Y.   (Input)  

The I-th element of Y is Y(1 + (I  1) * INCY) if INCY is greater than or equal to zero 

or Y(1 + (I  N) * INCY) if INCY is less than zero. 

Default: INCY = 1. 

FORTRAN 90 Interface 

Generic: DISL2 (X, Y [,…]) 

Specific: The specific interface names are S_DISL2 and D_DISL2. 

FORTRAN 77 Interface 

Single: DISL2(N, X, INCX, Y, INCY) 

Double: The double precision function name is DDISL2. 

Description 

The function DISL2 computes the Euclidean (2-norm) distance between two points x and y. The 

Euclidean distance is defined to be 
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Example 

Compute the Euclidean (2-norm) distance between two vectors of length 4. 
 

      USE DISL2_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    INCX, INCY, N 

      PARAMETER  (N=4) 

! 

      INTEGER    NOUT 

      REAL       VAL, X(N), Y(N) 

! 

!                                 Set values for X and Y 

!                                 X = ( 1.0 -1.0  0.0  2.0 ) 

! 

!                                 Y = ( 4.0  2.0  1.0 -3.0 ) 

! 

      DATA X/1.0, -1.0, 0.0, 2.0/ 

      DATA Y/4.0, 2.0, 1.0, -3.0/ 

!                                 Compute L2 distance 

      VAL = DISL2(X,Y) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) ' The 2-norm distance is ', VAL 

      END 

Output 
 

The 2-norm distance is     6.63325  

DISL1 
This function computes the 1-norm distance between two points. 

Function Return Value 

DISL1 — 1-norm distance between the points X and Y.   (Output) 

Required Arguments 

X — Vector of length max(N * |INCX|, 1).   (Input) 

Y — Vector of length max(N * |INCY|, 1).   (Input) 

Optional Arguments 

N — Length of the vectors X and Y.   (Input) 

Default: N = SIZE (X,1). 



     

     
 

1680  Chapter 9: Basic Matrix/Vector Operations IMSL MATH LIBRARY  

     

     

 

INCX — Displacement between elements of X.   (Input)  

The I-th element of X is X(1 + (I  1) * INCX) if INCX is greater than or equal to zero 

or X(1 + (I  N) * INCX) if INCX is less than zero. 

Default: INCX = 1. 

INCY — Displacement between elements of Y.   (Input)  

The I-th element of Y is Y(1 + (I  1) * INCY) if INCY is greater than or equal to zero 

or Y(1 + (I  N) * INCY) if INCY is less than zero. 

Default: INCY = 1. 

FORTRAN 90 Interface 

Generic: DISL1 (X, Y [,…]) 

Specific: The specific interface names are S_DISL1 and D_DISL1. 

FORTRAN 77 Interface 

Single: DISL1(N, X, INCX, Y, INCY) 

Double: The double precision function name is DDISL1. 

Description 

The function DISL1 computes the 1-norm distance between two points x and y. The 1-norm 

distance is defined to be  
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Example 

Compute the 1-norm distance between two vectors of length 4. 
 

      USE DISL1_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    INCX, INCY, N 

      PARAMETER  (N=4) 

! 

      INTEGER    NOUT 

      REAL       VAL, X(N), Y(N) 

! 

!                                 Set values for X and Y 

!                                 X = ( 1.0 -1.0  0.0  2.0 ) 

! 

!                                 Y = ( 4.0  2.0  1.0 -3.0 ) 
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! 

      DATA X/1.0, -1.0, 0.0, 2.0/ 

      DATA Y/4.0, 2.0, 1.0, -3.0/ 

!                                 Compute L1 distance 

      VAL = DISL1(X,Y) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) ' The 1-norm distance is ', VAL 

      END 

Output 
 

The 1-norm distance is     12.0000 

DISLI 
This function computes the infinity norm distance between two points. 

Function Return Value 

DISLI — Infinity norm distance between the points X and Y.   (Output) 

Required Arguments 

X — Vector of length max(N * |INCX|, 1).   (Input) 

Y — Vector of length max(N * |INCY|, 1).   (Input) 

Optional Arguments 

N — Length of the vectors X and Y.   (Input) 

Default: N = SIZE (X,1). 

INCX — Displacement between elements of X.   (Input)  

The I-th element of X is X(1 + (I  1) *INCX) if INCX is greater than or equal to zero 

or X(1 + (I  N) * INCX) if INCX is less than zero. 

Default: INCX = 1. 

INCY — Displacement between elements of Y.   (Input)  

The I-th element of Y is Y(1 + (I  1) * INCY) if INCY is greater than or equal to zero 

or Y(1 + (I  N) * INCY) if INCY is less than zero. 

Default: INCY = 1. 

FORTRAN 90 Interface 

Generic: DISLI (X, Y [,…]) 

Specific: The specific interface names are S_DISLI and D_DISLI. 
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FORTRAN 77 Interface 

Single: DISLI(N, X, INCX, Y, INCY) 

Double: The double precision function function name is DDISLI. 

Description 

The function DISLI computes the ∞-norm distance between two points x and y. The ∞-norm 

distance is defined to be  

1
max i i
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Example 

Compute the ∞-norm distance between two vectors of length 4. 
 

      USE DISLI_INT 

      USE UMACH_INT 

 

      IMPLICIT    NONE 

!                                 Declare variables 

      INTEGER    INCX, INCY, N 

      PARAMETER  (N=4) 

! 

      INTEGER    NOUT 

      REAL       VAL, X(N), Y(N) 

! 

!                                 Set values for X and Y 

!                                 X = ( 1.0 -1.0  0.0  2.0 ) 

! 

!                                 Y = ( 4.0  2.0  1.0 -3.0 ) 

! 

      DATA X/1.0, -1.0, 0.0, 2.0/ 

      DATA Y/4.0, 2.0, 1.0, -3.0/ 

!                                 Compute L-infinity distance 

      VAL = DISLI(X,Y) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) ' The infinity-norm distance is ', VAL 

      END 

Output 
 

The infinity-norm distance is     5.00000 
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VCONR 

 

Computes the convolution of two real vectors. 

Required Arguments 

X — Vector of length NX.   (Input) 

Y — Vector of length NY.   (Input) 

Z — Vector of length NZ containing the convolution Z = X * Y.   (Output) 

Optional Arguments 

NX — Length of the vector X.   (Input) 

Default: NX = SIZE (X,1). 

NY — Length of the vector Y.   (Input) 

Default: NY = SIZE (Y,1). 

NZ — Length of the vector Z.   (Input) 

NZ must be at least NX + NY  1. 

Default: NZ = SIZE (Z,1). 

FORTRAN 90 Interface 

Generic: CALL VCONR (X, Y, Z [,…]) 

Specific: The specific interface names are S_VCONR and D_VCONR. 

FORTRAN 77 Interface 

Single: CALL VCONR (NX, X, NY, Y, NZ, Z) 

Double: The double precision name is DVCONR. 

Description 

The routine VCONR computes the convolution z of two real vectors x and y. Let nx = NX, ny = NY 

and nz = NZ. The vector z is defined to be 
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where nz = nx + ny  1. If the index j  k + 1 is outside the range 1, 2, …, nx, then xj -  k + 1 is taken 

to be zero. 

The fast Fourier transform is used to compute the convolution. Define the complex vector u of 

length nz = nx + ny  1 to be 

 1 2, , , , 0, , 0
xnu x x x

 

The complex vector v, also of length nz, is defined similarly using y. Then, by the Fourier 

convolution theorem, 

ˆ ˆ ˆ for  = 1, 2, , i i i zw u v i n
 

where the û  indicates the Fourier transform of u computed via IMSL routines FFTCF and FFTCB 

(see Chapter 6, Transforms) is used to compute the complex vector w from ŵ . The vector z is 

then found by taking the real part of the vector w. 

Comments 

Workspace may be explicitly provided, if desired, by use of V2ONR/DV2ONR. The reference is 

CALL V2ONR (NX, X, NY, Y, NZ, Z, XWK, YWK, ZWK, WK) 

The additional arguments are as follows: 

XWK — Complex work array of length NX + NY  1. 

YWK — Complex work array of length NX + NY  1. 

ZWK — Complex work array of length NX + NY  1. 

WK — Real work array of length 6 * (NX + NY  1) + 15. 

Example 

In this example, the convolution of a vector x of length 8 and a vector y of length 3 is computed. 

The resulting vector z is of length 8 + 3  1 = 10. (The vector y is sometimes called a filter.) 
 

      USE VCONR_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    NX, NY, NZ 

      PARAMETER  (NX=8, NY=3, NZ=NX+NY-1) 

! 

      REAL       X(NX), Y(NY), Z(NZ) 

!                                 Set values for X 

!                       X = (1.0  2.0  3.0  4.0  5.0  6.0  7.0  8.0) 

!                                 Set values for Y 

!                       Y = (0.0  0.0  1.0) 
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! 

      DATA X/1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0/ 

      DATA Y/0.0, 0.0, 1.0/ 

!                                 Compute vector convolution 

!                                 Z = X * Y 

      CALL VCONR (X,Y,Z) 

!                                 Print results 

      CALL WRRRN ('Z = X (*) Y', Z, 1, NZ, 1) 

      END 

Output 
 

                                  Z = X (*) Y 

    1      2      3       4       5       6       7       8       9      10 

0.000  0.000  1.000   2.000   3.000   4.000   5.000   6.000   7.000   8.000 

VCONC 

 

Computes the convolution of two complex vectors. 

Required Arguments 

X — Complex vector of length NX.   (Input) 

Y — Complex vector of length NY.   (Input) 

Z — Complex vector of length NZ containing the convolution Z = X * Y.   (Output) 

Optional Arguments 

NX — Length of the vector X.   (Input) 

Default: NX = SIZE (X,1). 

NY — Length of the vector Y.   (Input) 

Default: NY = SIZE (Y,1). 

NZ — Length of the vector Z.   (Input) 

NZ must be at least NX + NY  1. 

Default: NZ = SIZE (Z,1). 

FORTRAN 90 Interface 

Generic: CALL VCONC (X, Y, Z [,…]) 

Specific: The specific interface names are S_VCONC and D_VCONC. 
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FORTRAN 77 Interface 

Single: CALL VCONC (NX, X, NY, Y, NZ, Z) 

Double: The double precision name is DVCONC. 

Description 

The routine VCONC computes the convolution z of two complex vectors x and y. Let nx = NX, then 

ny = NY and nz = NZ. The vector z is defined to be 

1

1

for  = 1, 2, , 
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z x y j n 




 

where nz = nx + ny  1. If the index j  k + 1 is outside the range 1, 2, …, nx, then xj k+1 is taken to 

be zero. 

The fast Fourier transform is used to compute the convolution. Define the complex vector u of 

length nz = nx + ny  1 to be 

 1 2, , , , 0, , 0
znu x x x

 

The complex vector v, also of length nz, is defined similarly using y. Then, by the Fourier 

convolution theorem, 

ˆ ˆˆ for  = 1, 2, ,i i i zz u v i n
 

where the û indicates the Fourier transform of u computed using IMSL routine FFTCF (see 

Chapter 6, Transforms). The complex vector z is computed from ŵ  via IMSL routine FFTCB (see 

Chapter 6, Transforms). 

Comments 

Workspace may be explicitly provided, if desired, by use of V2ONC/DV2ONC. The reference is 

CALL V2ONC (NX, X, NY, Y, NZ, Z, XWK, YWK, WK) 

The additional arguments are as follows: 

XWK — Complex work array of length NX + NY  1. 

YWK — Complex work array of length NX + NY  1. 

WK — Real work arrary of length 6 * (NX + NY  1) + 15. 
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Example 

In this example, the convolution of a vector x of length 4 and a vector y of length 3 is computed. 

The resulting vector z is of length 4 + 3 y is sometimes called a filter.) 
 

      USE VCONC_INT 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    NX, NY, NZ 

      PARAMETER  (NX=4, NY=3, NZ=NX+NY-1) 

! 

      COMPLEX    X(NX), Y(NY), Z(NZ) 

!                                 Set values for X 

!                X = ( 1.0+2.0i 3.0+4.0i 5.0+6.0i 7.0+8.0i ) 

!                                 Set values for Y 

!                Y = (0.0+0i 0.0+0i 1.0+0i ) 

! 

      DATA X/(1.0,2.0), (3.0,4.0), (5.0,6.0), (7.0,8.0)/ 

      DATA Y/(0.0,0.0), (0.0,0.0), (1.0,1.0)/ 

!                                 Compute vector convolution 

!                                 Z = X * Y 

      CALL VCONC (X,Y,Z) 

!                                 Print results 

      CALL WRCRN ('Z = X (*) Y', Z, 1, NZ, 1) 

      END 

Output 
 

                           Z = X (*) Y 

              1                2                3                4 

(  0.00,  0.00)  (  0.00,  0.00)  ( -1.00,  3.00)  ( -1.00,  7.00) 

 

              5                6 

( -1.00, 11.00)  ( -1.00, 15.00) 

Extended Precision Arithmetic 
This section describes a set of routines for mixed precision arithmetic. The routines are designed 

to allow the computation and use of the full quadruple precision result from the multiplication of 

two double precision numbers. An array called the accumulator stores the result of this 

multiplication. The result of the multiplication is added to the current contents of the accumulator. 

It is also possible to add a double precision number to the accumulator or to store a double 

precision approximation in the accumulator. 

The mixed double precision arithmetic routines are described below. The accumulator array, 

QACC, is a double precision array of length 2. Double precision variables are denoted by DA and 

DB. Available operations are: 

Initialize a real accumulator, QACC ← DA. 

CALL DQINI (DA, QACC) 

Store a real accumulator, DA ← QACC. 
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CALL DQSTO (QACC, DA) 

Add to a real accumulator, QACC ← QACC + DA. 

CALL DQADD (DA, QACC) 

Add a product to a real accumulator, QACC ← QACC + DA*DB. 

CALL DQMUL (DA, DB, QACC) 

There are also mixed double complex arithmetic versions of the above routines. The accumulator, 

ZACC, is a double precision array of length 4. Double complex variables are denoted by ZA and ZB. 

Available operations are: 

Initialize a complex accumulator, ZACC ← ZA. 

CALL ZQINI (ZA, ZACC) 

Store a complex accumulator, ZA ← ZACC. 

CALL ZQSTO (ZACC, ZA) 

Add to a complex accumulator, ZACC ← ZACC + ZA. 

CALL ZQADD (ZA, ZACC) 

Add a product to a complex accumulator, ZACC ← ZACC + ZA * ZB. 

CALL ZQMUL (ZA, ZB, ZACC) 

Example 

In this example, the value of 1.0D0/3.0D0 is computed in quadruple precision using Newton‘s 

method. Four iterations of 

 2
1k k k kx x x ax   

 

with a = 3 are taken. The error ax  1 is then computed. The results are accurate to approximately 

twice the usual double precision accuracy, as given by the IMSL routine DMACH(4), in the 

Reference Material section of this manual. Since DMACH is machine dependent, the actual accuracy 

obtained is also machine dependent. 
 

      USE IMSL_LIBRARIES 

 

      IMPLICIT   NONE 

      INTEGER    I, NOUT 

      DOUBLE PRECISION A, DACC(2), DMACH, ERROR, SACC(2), X(2), X1, X2, EPSQ 

! 

      CALL UMACH (2, NOUT) 

      A = 3.0D0 

      CALL DQINI (1.0001D0/A, X) 

!                                 Compute X(K+1) = X(K) - A*X(K)*X(K) 

!                                 + X(K) 

      DO 10  I=1, 4 

         X1 = X(1) 

         X2 = X(2) 

!                                 Compute X + X 
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         CALL DQADD (X1, X) 

         CALL DQADD (X2, X) 

!                                 Compute X*X 

         CALL DQINI (0.0D0, DACC) 

         CALL DQMUL (X1, X1, DACC) 

         CALL DQMUL (X1, X2, DACC) 

         CALL DQMUL (X1, X2, DACC) 

         CALL DQMUL (X2, X2, DACC) 

!                                 Compute -A*(X*X) 

         CALL DQINI (0.0D0, SACC) 

         CALL DQMUL (-A, DACC(1), SACC) 

         CALL DQMUL (-A, DACC(2), SACC) 

!                                 Compute -A*(X*X) + (X + X) 

         CALL DQADD (SACC(1), X) 

         CALL DQADD (SACC(2), X) 

   10 CONTINUE 

!                                 Compute A*X - 1 

      CALL DQINI (0.0D0, SACC) 

      CALL DQMUL (A, X(1), SACC) 

      CALL DQMUL (A, X(2), SACC) 

      CALL DQADD (-1.0D0, SACC) 

      CALL DQSTO (SACC, ERROR) 

!                                 ERROR should be less than MACHEPS**2 

      EPSQ = AMACH(4) 

      EPSQ = EPSQ * EPSQ 

      WRITE (NOUT,99999) ERROR, ERROR/EPSQ  

! 

99999 FORMAT ('  A*X - 1 = ', D15.7, ' = ', F10.5, '*MACHEPS**2') 

      END 

Output 
 

A*X - 1 =   0.6162976D-32 =    0.12500*MACHEPS**2 
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Chapter 10: Linear Algebra 
Operators and Generic Functions 

Routines 

1.1. Operators 
Computes matrix-matrix or matrix-vector product ....................... .x. 1707 
Computes transpose matrix-matrix product ................................ .tx. 1711 
Computes  matrix- transpose matrix product .............................. .xt. 1714 
Computes conjugate transpose matrix-matrix product .............. .hx. 1717 
Computes matrix-conjugate transpose matrix product .............. .xh.  1720 
Computes the transpose of a matrix ............................................. .t. 1723 
Computes conjugate transpose of a matrix ................................. .h. 1726 
Computes the inverse matrix ....................................................... ..i.  1728 
Computes inverse matrix-matrix product .................................... .ix. 1730 

Computes matrix-inverse matrix product .................................... .xi. 1740 

10.2 Functions 
Computes the Cholesky factorization of a positive-definite,  
symmetric or self-adjoint matrix  ............................................ CHOL 1743 
Computes the condition number of a matrix ......................... COND 1746 
Computes the determinant of a rectangular matrix .................. DET 1750 
Constructs a square diagonal matrix ...................................... DIAG 1753 
Extracts  the diagonal terms of a matrix ..................... DIAGONALS 1754 
Computes the eigenvalue-eigenvector decomposition of an  
ordinary or generalized eigenvalue problem ............................. EIG 1755 
Creates the identity matrix........................................................... EYE 1759 

Computes the Discrete Fourier Transform of one  
complex sequence. ................................................................... FFT 1761  
Discrete Fourier Transform of  
several complex or real sequences ................................. FFT_BOX 1763 
Computes the inverse of the Discrete Fourier  
Transform of one complex sequence ...................................... IFFT 1765 
Computes the inverse Discrete Fourier Transform of  
several complex or real sequences ................................ IFFT_BOX 1767 
Tests for NaN ......................................................................... isNaN 1769 
Returns the value for NaN ........................................................ NaN 1770 
Computes the norm of an array ............................................ NORM 1771 
Orthogonalizes the columns of a matrix ................................ ORTH 1774 
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Generates random numbers ................................................. RAND 1777 
Computes the mathematical rank of a matrix........................ RANK 1779 
Computes the singular value decomposition of a matrix ......... SVD 1780 
Normalizes the columns of a matrix. ....................................... UNIT 1783 

Usage Notes 
This chapter describes numerical linear algebra, Fourier transforms, random number generation, 

and other utility software packaged as defined operations that are executed with a function 

notation similar to standard mathematics. The resulting interface alters the way libraries are 

presented to the user. Many computations of numerical linear algebra are documented here as 

operators and generic functions. A notation is developed reminiscent of matrix algebra. This 

allows the Fortran user to express mathematical formulas in terms of operators.  The operators can 

be used with both dense and sparse matrices. 

A comprehensive Fortran module, linear_operators, defines the operators and functions. Its use 

provides this simplification. Subroutine calls and the use of type-dependent procedure names are 

largely avoided. This makes a rapid development cycle possible, at least for the purposes of 

experiments and proof-of-concept. The goal is to provide the Fortran programmer with an 

interface, operators, and functions that are useful and succinct. The modules can be used with or 

added to existing Fortran programs, but the operators provide a more readable program whenever 

they apply. This approach may require more hidden working storage. The size of the executable 

program may be larger than alternatives using subroutines. There are applications wherein the 

operator and function interface does not have the functionality that is available using subroutine 

libraries. To retain greater flexibility, some users will continue to require the techniques of calling 

subroutines. 

A parallel computation for many of the defined operators and functions has been implemented.  

The type of problem solved is a simple one: several independent problems of the same data type 

and size.  Most of the detailed communication for parallel computation is hidden from the user. 

Those functions having this data type computed in parallel are marked in bold type. The section 

―Dense Matrix Parallelism Using MPI‖ gives an introduction on how users should write their 

codes to use machines on a network. 

A number of examples, in addition to those shown in this document,  are supplied in the product 

examples directory.  The name of the example code is shown in parentheses in the example 

heading, for those examples that are included with the product. 

Matrix Optional Data Changes 
To reset tolerances for determining singularity and to allow for other data changes, non-allocated 

―hidden‖ variables are defined within the modules.  These variables can be allocated first, then 

assigned values which result in the use of different tolerances or greater efficiency in the 

executable program.  The non-allocated variables, whose scope is limited to the module, are 

hidden from the casual user.  Default values or rules are applied if these arrays are not allocated.  

In more detail, the inverse matrix operator “.i.” applied to a square matrix first uses the LU 

factorization code LIN_SOL_GEN and row pivoting.  The default value for a small diagonal term 

is defined to be: 

sqrt(epsilon(A))*sum(abs(A))/(n*n+1)  
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If the system is singular, a generalized matrix inverse is computed with the QR factorization code 

LIN_SOL_LSQ using this same tolerance.  Both row and column pivoting are used.  If the system 

is singular, an error message will be printed and a Fortran 90 STOP is executed.  Users may want 

to change this rule.  This is illustrated by continuing and not printing the error message.  The 

following is a additional source to accomplish this, for all following invocations of the operator 

“.i.”: 

allocate(s_inv_options(1))  

s_inv_options (1) = skip_error_processing  

B = .i. A  

There are additional self-documenting integer parameters, packaged in the module 

linear_operators, that allow users other choices, such as changing the value of the tolerance, as 

noted above.  Included is the ability to have the option apply for just the next invocation of the 

operator.  Options are available that allow optional data to be passed to supporting Fortran 90 

subroutines.  This is illustrated in the following example: 

Operator_ex36.f90 
 

      use linear_operators  

  

      implicit none  

  

! This is the equivalent of Example 4 for LIN_GEIG_GEN (using operators).  

  

      integer, parameter :: n=32  

      real(kind(1d0)), parameter :: one=1d0, zero=0d0  

      real(kind(1d0)) a(n,n), b(n,n), bta(n), err  

      complex(kind(1d0)) alpha(n), v(n,n)  

  

! Generate random matrices for both A and B.  

      A = rand(A); B = rand(B)  

  

  

! Set the option, a larger tolerance than default for lin_sol_lsq.  

      allocate(d_eig_options(6))  

      d_eig_options(1) = options_for_lin_geig_gen  

      d_eig_options(2) = 4  

      d_eig_options(3) = d_lin_geig_gen_for_lin_sol_lsq  

      d_eig_options(4) = 2  

      d_eig_options(5) = d_options(d_lin_sol_lsq_set_small,&  

                         sqrt(epsilon(one))*norm(B,1))  

      d_eig_options(6) = d_lin_sol_lsq_no_sing_mess  

  

! Compute the generalized eigenvalues.  

      alpha = EIG(A, B=B, D=bta, W=V)  

  

! Check the residuals.  

      err = norm((A .x. V .x. diag(bta)) - (B .x. V .x. diag(alpha)),1)/&  

            (norm(A,1)*norm(bta,1)+norm(B,1)*norm(alpha,1))  

  

      if (err  <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 4 for LIN_GEIG_GEN (operators) is correct.'  

      end if  

! Clean up the allocated array.  This is good housekeeping.  
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      deallocate(d_eig_options)  

      end 

Note that in this example one first allocates the array by which the user will pass the new options 

for EIG to use. This array is named d_eig_options in accordance with the name of the 

unallocated option array specified in the documentation for EIG. A size of 6 is specified because a 

total of six options must be passed to EIG to accomplish the resetting of the singular value 

tolerance and to turn off the printing of the error message when the matrix is singular. The first 

entry of d_eig_options specifies which of the options for EIG will be set. The next entry 

designates the number of entries which follows that apply to ―options_for_lin_geig_gen‖.  

The third entry specifies the option value of LIN_GEIG_GEN to be set, 

d_lin_geig_gen_for_lin_sol_lsq. The fourth entry specifies the number of entries that 

follow which apply to LIN_SOL_LSQ. Finally, the fifth and sixth entries set the two LIN_SOL_LSQ 

options that we desire.  

Dense Matrix Computations 

 

For a detailed description of MPI Capability see ―Dense Matrix Parallelism Using MPI.‖    

This section is concerned with methods for computing with dense matrices. Consider a Fortran 90 

code fragment that solves a linear system of algebraic equations, Ay = b, then computes the 

residual r = b − Ay. A standard mathematical notation is often used to write the solution,  

1y A b
 

A user thinks: ―matrix and right-hand side yields solution.‖ The code shows the computation of 

this mathematical solution using a defined Fortran operator ―.ix.‖, and random data obtained 

with the function, rand. This operator is read ―inverse matrix times.‖ The residuals are computed 

with another defined Fortran operator ―.x.‖, read ―matrix times vector.‖ Once a user understands 

the equivalence of a mathematical formula with the corresponding Fortran operator, it is possible 

to write this program with little effort. The last line of the example before end is discussed below. 

USE linear_operators 

   integer,parameter :: n=3; real A(n,n), y(n), b(n), r(n) 

   A=rand(A); b=rand(b); y = A .ix. b  

   r = b - (A .x. y ) ! Parentheses are needed 

end 

The IMSL Fortran Numerical Library provides additional lower-level software that implements 

the operation ―.ix.‖, the function rand, matrix multiply  ―.x.‖, and others not used in this 

example. Standard matrix products and inverse operations of matrix algebra are shown in the 

following table: 
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Defined Array Operation Matrix Operation Alternative in Fortran 90 

A .x. B AB  matmul(A, B) 

.i. A 1A
 

lin_sol_gen  

lin_sol_lsq 

.t. A, .h. A 
,T HA A  

transpose(A)  

conjg(transpose(A)) 

A .ix. B 1A B
 

lin_sol_gen  

lin_sol_lsq 

B .xi. A 1BA
 

lin_sol_gen  

lin_sol_lsq 

A .tx. B, or (.t. A) .x. B  

A .hx. B, or (.h. A) .x. B 
,T HA B A B  

matmul(transpose (A), B)  

matmul(conjg(transpose(A)), B) 

B .xt. A, or B .x. (.t. A)  

B .xh. A, or B .x. (.h. A) 
,T HBA BA  

matmul(B, transpose(A))  

matmul(B, conjg(transpose(A))) 

The IMSL operators apply generically to all standard precisions and floating-point data types – 

real and complex – and to objects that are broader in scope than arrays with a fixed number of 

dimensions. For example, the matrix product ―.x.‖ applies to matrix times vector and matrix times 

matrix represented as Fortran 90 arrays. It also applies to ―independent matrix products.‖  For 

this, use the notion: a box of problems to refer to independent linear algebra computations, of the 

same kind and dimension, but different data. The racks of the box are the distinct problems. In 

terms of Fortran 90 arrays, a rank-3, assumed-shape array is the data structure used for a box. The 

first two dimensions are the data for a matrix; the third dimension is the rack number. Each 

problem is independent of other problems in consecutive racks of the box. We use parallelism of 

an underlying network of processors, and MPI, when computing these disjoint problems.  

In addition to the operators .ix., .xi., .i., and .x., additional operators .t., .h., .tx., 

.hx., .xt., and .xh. are provided for complex matrices. Since the transpose matrix is defined 

for complex matrices, this meaning is kept for the defined operations. In order to write one defined 

operation for both real and complex matrices, use the conjugate-transpose in all cases. This will 

result in only real operations when the data arrays are real. 

For sums and differences of vectors and matrices, the intrinsic array operations ―+‖ and ―−‖ are 

available. It is not necessary to have separate defined operations. A parsing rule in Fortran 90 

states that the result of a defined operation involving two quantities has a lower precedence than 

any intrinsic operation. This explains the parentheses around the next-to-last line containing the 

sub-expression ―A .x. y‖ found in the example. Users are advised to always include 

parentheses around array expressions that are mixed with defined operations, or whenever there is 

possible confusion without them. The next-to-last line of the example results in computing the 

residual associated with the solution, namely r = b − Ay. Ideally, this residual is zero when the 

system has a unique solution. It will be computed as a non-zero vector due to rounding errors and 

conditioning of the problem. 
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Dense Matrix Functions 

 

For a detailed description of MPI Capability see ―Dense Matrix Parallelism Using MPI.‖    

Several decompositions and functions required for numerical linear algebra follow. The 

convention of enclosing optional quantities in brackets, ―[ ]‖ is used. The functions that use MPI 

for parallel execution of the box data type are marked in bold.  

 

Defined Array Functions Matrix Operation 

S=SVD(A [,U=U, V=V]) TA USV  

E=EIG(A [[,B=B, D=D],  

V=V, W=W]) 

(AV = VE), AVD = BVE 

(AW = WE), AWD = BWE 

R=CHOL(A) TA R R  

Q=ORTH(A [,R=R])   , TA QR Q Q I 
 

U=UNIT(A)  1 1 1, / ,u a a     

F=DET(A) Det(A) = determinant 

K=RANK(A) rank(A) = rank 

P=NORM(A[,[type=]i]) 

 

1
1

12

1
=1

max ( )

 largest singular value

max ( )

m

j ij

i

n

i ijhuge
j

p A a

p A s

p A a





 

  

 




 

C=COND(A) 
 1 / rank As s

 

Z=EYE(N) 
NZ I

 

A=DIAG(X)  1,A diag x
 

X=DIAGONALS(A)  11,x a
 

Y=FFT (X,[WORK=W]); 

X=IFFT(Y,[WORK=W]) 

Discrete Fourier Transform, Inverse 
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Defined Array Functions Matrix Operation 

Y=FFT_BOX (X,[WORK=W]); 

X=IFFT_BOX(Y,[WORK=W]) 

Discrete Fourier Transform for Boxes, Inverse 

A=RAND(A) Random numbers, 0 < A < 1 

L=isNaN(A) Test for NaN, if (l) then… 

In certain functions, the optional arguments are inputs while other optional arguments are outputs. 

To illustrate the example of the box SVD function, a code is given that computes the singular 

value decomposition and the reconstruction of the random matrix box, A, using the computed 

factors, R = USV
T
. Mathematically R = A, but this will be true, only approximately, due to 

rounding errors. The value units_of_error = ||A − R||/(||A||ɛ), shows the merit of this 

approximation. 

Dense Matrix Parallelism Using MPI 

 

General Remarks 

The central theme we use for the computing functions of the box data type is that of delivering 

results to a distinguished node of the machine.  One of the design goals was to shield much of the 

complexity of distributed computing from the user.   

The nodes are numbered by their ―ranks.‖  Each node has rank value MP_RANK.  There are 

MP_NPROCS nodes, so MP_RANK = 0, 1,...,MP_NPROCS-1.  The root node has  

MP_RANK = 0.   Most of the elementary MPI material is found in Gropp, Lusk, and Skjellum 

(1994) and Snir, Otto, Huss-Lederman, Walker, and Dongarra (1996).  Although IMSL Fortran 

Numerical Library users are for the most part shielded from the complexity of MPI, it is desirable 

for some users to learn this important topic.  Users should  become familiar with any referenced 

MPI routines and the documentation of their usage.  MPI routines are not discussed here, because 

that is best found in the above references. 

The IMSL Fortran Numerical Library algorithm for allocating the racks of the box to the 

processors consists of creating a schedule for the processors, followed by communication and 

execution of this schedule.  The efficiency may be improved by using the nodes according to a 

specific priority order.  This order can reflect information such as a powerful machine on the 

network other than the user‘s work station, or even transient network behavior.  The IMSL Fortran 

Numerical Library allows users to define this order, but a default order is provided.  A setup 

function establishes an order based on timing matrix products of a size given by the user.  See 

Parallel Example 4 for an illustration of this usage. 

Getting Started with Modules MPI_setup_int and MPI_node_int 

The MPI_setup_int and MPI_node_int modules are part of the IMSL Fortran Numerical 

Library and not part of MPI itself.  Following a call to the function MP_SETUP(),  the module 

MPI_node_int will contain information about the number of processors, the rank of a processor, 

the communicator for IMSL Fortran Numerical Library, and the usage priority order of the node 
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machines.  Since MPI_node_int is used by MPI_setup_int, it is not necessary to explicitly 

use this module.  If neither MP_SETUP() nor MPI_Init() is called, then the box data type will 

compute entirely on one node.  No routine from MPI will be called.  

MODULE MPI_NODE_INT 

  INTEGER, ALLOCATABLE :: MPI_NODE_PRIORITY(:) 

  INTEGER, SAVE :: MP_LIBRARY_WORLD = huge(1) 

  LOGICAL, SAVE :: MPI_ROOT_WORKS = .TRUE. 

  INTEGER, SAVE :: MP_RANK = 0, MP_NPROCS = 1 

END MODULE 

When the function MP_SETUP() is called with no arguments, the following events occur: 

 If MPI has not been initialized, it is first initialized.  This step uses the routines 

MPI_Initialized() and possibly MPI_Init(). Users who choose not to call 

MP_SETUP() must make the required initialization call before using any IMSL Fortran 

Numerical Library code that relies on MPI for its execution. If the user‘s code calls an IMSL 

Fortran Numerical Library function utilizing the box data type and MPI has not been 

initialized, then the computations are performed on the root node.   The only MPI routine 

always called in this context is MPI_Initialized().  The name MP_SETUP is pushed onto 

the subprogram or call stack. 

  If MP_LIBRARY_WORLD equals its initial value (=huge(1)) then MPI_COMM_WORLD, the 

default MPI communicator, is duplicated  and becomes its handle.  This uses the routine 

MPI_Comm_dup(). Users can change the handle of MP_LIBRARY_WORLD as required by 

their application code.  Often this issue can be ignored. 

  The integers MP_RANK and MP_NPROCS are respectively the node‘s rank and the number of 

nodes in the communicator, MP_LIBRARY_WORLD.  Their values require the routines 

MPI_Comm_size() and MPI_Comm_rank(). The default values are important when MPI is 

not initialized and a box data type is computed.   In this case the root node is the only node 

and it will do all the work.  No calls to MPI communication routines are made when 

MP_NPROCS = 1 when computing the box data type functions.  A program can temporarily 

assign this value to force box data type computation entirely at the root node.  This is 

desirable for problems where using many nodes would be less efficient than using the root 

node exclusively. 

  The array MPI_NODE_PRIORITY(:) is unallocated unless the user allocates it. The IMSL 

Fortran Numerical Library codes use this array for assigning tasks to processors, if it is 

allocated.  If it is not allocated, the default priority of the nodes is  

(0,1,...,MP_NPROCS-1).  Use of the function call MP_SETUP(N) allocates the array, as 

explained below. Once the array is allocated its size is MP_NPROCS. The contents of the array 

is a permutation of the integers 0,...,MP_NPROCS-1. Nodes appearing at the start of the list 

are used first for parallel computing.  A node other than the root can avoid any computing, 

except receiving the schedule, by setting the value MPI_NODE_PRIORITY(I)< 0. This means 

that node |MPI_NODE_PRIORITY(I)| will be sent the task schedule but will not perform 

any significant work as part of  box data type function evaluations. 
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  The LOGICAL flag MPI_ROOT_WORKS designates whether or not the root node participates in 

the major computation of  the tasks.  The root node communicates with the other nodes to 

complete the tasks but can be designated to do no other work.  Since there may be only one 

processor, this flag has the default value .TRUE., assuring that one node exists to do work.  

When more than one processor is available users can consider assigning 

MPI_ROOT_WORKS=.FALSE.  This is desirable when the alternate nodes have equal or greater 

computational resources compared with the root node.  Parallel Example 4 illustrates this 

usage.  A single problem is given a box data type, with one rack.  The computing is done at 

the node, other than the root, with highest priority.  This example requires more than one 

processor since the root does no work.  

When the generic function MP_SETUP(N) is called, where N is a positive integer, a call to 

MP_SETUP() is first made, using no argument.  Use just one of these calls to MP_SETUP().  This 

initializes the MPI system and the other parameters described above.  The array 

MPI_NODE_PRIORITY(:) is allocated with size MP_NPROCS.  Then DOUBLE PRECISION matrix 

products C = AB, where A and B are N by N matrices, are computed at each node and the elapsed 

time is recorded.  These elapsed times are sorted and the contents of MPI_NODE_PRIORITY(:) 

are permuted  in accordance with the shortest times yielding the highest priority.  All the nodes in 

the communicator MP_LIBRARY_WORLD are timed.  The array MPI_NODE_PRIORITY(:) is then 

broadcast from the root to the remaining nodes of MP_LIBRARY_WORLD using the routine 

MPI_Bcast(). Timing matrix products to define the node priority is relevant because the effort to 

compute C is comparable to that of many linear algebra computations of similar size.  Users are 

free to define their own node priority and broadcast the array MPI_NODE_PRIORITY(:) to the 

alternate nodes in the communicator.  

To print any IMSL Fortran Numerical Library error messages that have occurred at any node, and 

to finalize MPI, use the function call MP_SETUP(‗Final‘). Case of the string ‗Final‘ is not 

important. Any error messages pending will be discarded after printing on the root node.  This is 

triggered by popping the name ‗MP_SETUP‘ from the subprogram stack or returning to Level 1 in 

the stack. Users can obtain error messages by popping the stack to Level 1 and still continuing 

with MPI calls.  This requires executing call e1pop (‗MP_SETUP‘). To continue on after 

summarizing errors execute call e1psh (‗MP_SETUP‘). More details about the error 

processor are found in Reference Material chapter of this manual. 

Messages are printed by nodes from largest rank to smallest, which is the root node.  Use of the 

routine MPI_Finalize() is made within MP_SETUP(‗Final‘),  which shuts down MPI.  After 

MPI_Finalize() is called, the value of MP_NPROCS = 0. This flags that MPI has been 

initialized and terminated.  It cannot be initialized again in the same program unit execution.  No 

MPI routine is defined when MP_NPROCS has this value. 

Using Processors 

There are certain pitfalls to avoid when using IMSL Fortran Numerical Library and box data types 

as implemented with MPI.  A fundamental requirement is to allow all processors to participate in 

parts of the program where their presence is needed for correctness.  It is incorrect to have a 

program unit that restricts nodes from executing a block of code required when computing with 

the box data type.   On the other hand it is appropriate to restrict computations with rank-2 arrays 

to the root node.  This is not required, but the results for the alternate nodes are normally 

discarded.  This will avoid gratuitous error messages that may appear at alternate nodes. 

Observe that only the root has a correct result for a box data type function.  Alternate nodes have 

the constant value one as the result. The reason for this is that during the computation of the 
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functions, sub-problems are allocated to the alternate nodes by the root, but for only the root to 

utilize the result.  If a user needs a value at the other nodes, then the root must send it to the nodes.  

See Parallel Example 3 for an illustration of this usage.  Convergence information is computed at 

the root node and broadcast to the others.  Without this step some nodes would not terminate the 

loop even when corrections at the root become small.  This would cause the program to be 

incorrect. 

Sparse Matrix Computations 

Introduction 

This section is concerned with methods for computing with sparse matrices.  Our primary goal is 

to give the appearance of simplicity and allow ease-of-use in dealing with these calculations.  The 

underlying principle in our design is to use Fortran 2003 standard support for derived types with 

initialized and allocatable components.  To perform data storage and conversions we use 

overloaded assignment to hide complexity. The operations currently supported are: 

 defining entries of the matrices, 

 adding sparse matrices, 

 forming products of sparse matrices and dense vectors or matrices, 

 solving linear systems of algebraic equations 

 condition number computation 

 conversion of sparse matrices or dense arrays to the converse 

 storage management operations 

The definition of the sparse matrices starts with a triplet consisting of the row and column indices 

and a value at that entry.  By setting a flag in the derived type SLU_Options, repeated values 

may be accumulated to yield a value that is the sum of all triplets for that matrix entry.   A diagram 

for constructing a single precision sparse 10000 10000 matrix, H, is illustrated with the 

pseudocode fragment: 

Use linear_operators 

Integer I, J; Real(Kind(1.e0)) value, x(10000) 

Type(s_sparse) A 

Type(s_hbc_sparse) H 

Define non-zero values of A with repeated overloaded assignments  

A = s_entry(I, J, value). 

Convert to computational Harwell-Boeing form with the overloaded assignment H = A. 

Compute with sparse matrix H, e. g.  x = H .ix. x.  

A basic feature is that there are four sparse matrix derived types, Types (s_hbc_sparse), 

(d_hbc_sparse), (c_hbc_sparse), and (z_hbc_sparse).  These respectively handle single, double, 

complex and double-complex data.  The defined operators work with a sparse matrix and a 
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corresponding dense array of the same precision and data type.  There is no mixing of data types 

such as a sparse double precision matrix multiplied by a single precision vector.  To accommodate 

that case an intermediate double precision quantity will be created that ascends the single precision 

vector to a double precision vector. The table below shows the operations that are valid with 

sparse matrix types.  

 

Mathematical Operation Operation 
Notation 

Input Terms Output Terms 

1y H x  
y = H  .ix. x 

n nH  sparse, x(1:k), k n  
y(1:n) 

1T Ty x H H x    
y = x  .xi. H 

n nH  sparse, x(1:k), k n  
y(1:n) 

1
n rY H X
  

Y= H  .ix. X 
n nH  sparse, X(1:k,1:r), k n  

Y(1:n,1:r) 

 1
T

T T
r nY X H H X 
 

 

Y = X  .xi. H 
n nH  sparse, X(1:r,1:n), k n  

Y(1:r,1:n) 

y Hx  y = H .x. x 
m nH  sparse, x(1:k), k n  

y(1:m) 

T Ty x H H x   
y = x .x. H 

m nH  sparse, x(1:k), k m  
y(1:n) 

n rY HX   Y = H .x. X 
m nH  sparse,X(1:k,1:r), k n  

Y(1:m,1:r) 

r mY X H  Y = X .x. H 
m nH  sparse, X(1:r,1:k), k m  

Y(1:r,1:n) 

TK H  
K = .t. H 

m nH  sparse n mK  sparse 

THK H H   
K = .h. H 

m nH  sparse, complex n mK  sparse 

Ty H x  
y = H .tx. x 

m nH  sparse, x(1:k), k m  
y(1:n) 

T
m rY H X   

Y = H .tx. X 
m nH  sparse, X(1:k,1:r), k m  

Y(1:n,1:r) 

Ty x H  
Y = x .tx. H 

m nH  sparse, x(1:k), k m  
y(1:n) 

T
r mY X H  

Y = X .tx. H 
m nH  sparse, X(1:k,1:r), k m  

Y(1:r,1:n) 

Ty Hx  
y = H .xt. x 

m nH  sparse, x(1:k), k n  
y(1:m) 

T
n rY HX   

Y = H .xt. X 
m nH  sparse, x(1:k,1:r), k n  

Y(1:m,1:r) 

Ty xH  
y = x .xt. H 

m nH  sparse, x(1:k), k n  
y(1:m) 
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Mathematical Operation Operation 
Notation 

Input Terms Output Terms 

T
r nY X H  

Y = X .xt. H 
m nH  sparse, x(1:r,1:k), k n  

Y(1:r,1:m) 

H Ty H x H x   
y = H .hx. x 

m nH  sparse4, x(1:k), k m  
y(1:n) 

H T
m r m rY H X H X    

Y = H .hx. X 
m nH  sparse, X(1:k,1:r), k m  

Y(1:n,1:r) 

H Ty x H x H   
Y = x .hx. H 

m nH  sparse, x(1:k), k m  
y(1:n) 

H T
r m r mY X H X H    

Y = X .hx. H 
m nH  sparse, X(1:k,1:r), k m  

Y(1:r,1:n) 

H Ty Hx Hx   
y = H .xh. x 

m nH  sparse, x(1:k), k n  
y(1:m) 

H T
n r n rY HX HX    

Y = H .xh. X 
m nH  sparse, x(1:k,1:r), k n  

Y(1:m,1:r) 

H Ty xH xH   
y = x .xh H 

m nH  sparse, x(1:k), k n  
y(1:m) 

H T
r n r nY X H X H    

Y = X .xh. H 
m nH  sparse, x(1:r,1:k), k n  

Y(1:r,1:m) 

Derived Type Definitions 

A derived type is used for the entries (triplets or coordinate format) of a sparse matrix, which 

consists of row and column coordinates and a corresponding value: 

type s_entry 

   integer irow 

   integer jcol 

   real(kind(1.e0)) value 

end type 

Additionally, type (d_entry), type (c_entry), and type (z_entry) are defined similarly. These 

support double precision, complex and complex-double precision accuracy and types. 

Thus for a sparse matrix A , the entry at the intersection of row irow and column jcol is the 

scalar value.  We define a sparse matrix representation in terms of a collection of triplets.  This is 

a convenient way for a user to define a sparse matrix.  This representation is used to define the 

matrix entries in a user‘s program using overloaded assignment.  There is no implied order on the 

collection of triplets that define this sparse matrix.  Our experience shows that for writing 

application code the technique of using triplets to define the matrix entries is convenient and 

provides a workable transition from mathematical definitions of the entries to computer code.   

Also note that there is generally no need for the programmer to allocate the components of a 

matrix of type s_sparse when using the overloaded assignment: s_sparse = s_entry.  The 

software handles this detail by reallocating and expanding those components of the s_sparse 

                                                           

4 The operators .hx. and .xh. apply to sparse complex matrices only.  For real matrices use  

the .tx. and .xt. operators. 
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matrix as required.  (For this task we use the Fortran 2003 intrinsic subroutine move_alloc(), 

when it is available.  This routine provides an efficient way to perform a reallocation.)  The 

amount reallocated is controlled by an expansion factor that is a component of the derived type 

SLU_options. 

     type s_sparse 

         integer :: mrows = 0 

         integer :: ncols = 0 

         integer :: numnz = 0 

         integer, allocatable, dimension(:) :: irow 

         integer, allocatable, dimension(:) :: jcol 

         real(kind(1.e0)), allocatable, dimension(:) :: value 

         type (SLU_options) options 

     end type 

When performing matrix computations we use the Harwell-Boeing column-oriented derived type.  

The row indices, for each column, are unique and increasing.  The values in the 

colptr(1:ncols) component mark the start of the row indices and corresponding matrix entries 

for that column.  The value colptr(ncols+1)-1 will equal the value numnz after the matrix is 

defined with non-zero entries.  The row indices for each column are in array irow(:).  They are 

unique and sorted into increasing order. 

     type s_hbc_sparse 

         integer :: mrows = 0 

         integer :: ncols = 0 

         integer :: numnz = 0 

         integer, allocatable, dimension(:) :: irow 

         integer, allocatable, dimension(:) :: colptr 

         real(kind(1.e0)), allocatable, dimension(:) :: value 

         type(SLU_options) options 

     end type 

Additionally we support types (d_hbc_sparse), type (c_hbc_sparse), and type 

(z_hbc_sparse).  These will have analogous support for the operations defined with type 

(s_hbc_sparse) and others that follow.  From now on we only mention type (s_hbc_sparse). 

All components of the type (s_sparse) object are self-explanatory except for the one named 

type(SLU_options).  This component contains various parameters for managing the data 

structure, and for computing matrix products and linear system solutions.  Normally these 

components do not need to be changed from their default values. 

The derived type SLU_Options carries extra required information.  That data needed for 

SuperLU5 is labeled with a comment.  The remaining data is needed by IMSL codes that call on 

SuperLU.  Of particular importance is the Sequence attribute statement.  This prevents the 

Fortran compiler from rearranging the order of the components.  Maintaining this order is required 

since the derived type SLU_Options is passed to a IMSL C code that uses the information as a C 

                                                           

5 SuperLU is used to support the defined operations .ix. and .xi., and the condition number 

function, cond(). SuperLU is well-tested.  Distributed and threaded versions are available but 

these are not used here in our software at present. SuperLU was developed by James W. Demmel, 

Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu. Note that the authors 

do not support the package in the context used in the IMSL Libraries. 

http://math.nist.gov/MatrixMarket/formats.html


     

     
 

1704  Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY  

     

     

 

structure.  The Sequence statement orders the Fortran-defined data so that it matches the C code 

structure. 

 
Type SLU_options 

         Sequence 

         Integer :: unique = 1 ! Each new entry is unique –IMSL 

         Integer :: Accumulate = 0 

                            ! Accumulate or assemble duplicated entries in 

                            ! a ?_sparse matrix.  This flag is checked 

                            ! when executing an overloaded assignment 

                            ! with a Harwell-Boeing = ?_sparse matrix. 

                            ! The default is not to accumulate (0) 

                            ! Assign the value 1 to accumulate.    

         Integer :: handle(2) = 0 

                            ! Each HBC matrix requiring an LU 

                            ! decomposition will have allocated 

                            ! arrays whose start is pointed to by 

                            ! this value.  In cases where the OS 

                            ! uses 64 bit addressing 8 bytes are used. 

         Integer :: Info = - 1 

                            ! Flag returned after LU factorization (SuperLU)  

         Integer :: Fact = 0 !DOFACT - SuperLU 

         Integer :: Equil = 1 !YES 

         Integer :: ColPerm = 3 !COLAMD 

         Integer :: Trans = 0 !NOTRANS 

         Integer :: IterRefine = 1 !REFINE 

         Integer :: PrintStat = 0  !NO 

         Integer :: SymmetricMode = 0 !NO 

         Integer :: PivotGrowth = 0 !NO 

         Integer :: ConditionNumber = 0 !NO 

         Integer :: RowPerm = 0 !NO 

         Integer :: ReplaceTinyPivot = 0 !NO 

         Integer :: SolveInitialized = 0 !NO 

         Integer :: RefineInitialized = 0 !NO 

         Real (Kind(1.d0)) :: DiagPivotThresh = 1.d0 ! SuperLU 

         Real (Kind(1.d0)) :: expansion_factor = 1.2 ! VNI – 

! The factor to use when expanding storage.  Any value > 1. 

! can be used such that the integer part of this factor times 

! any integer > 9 provides at least a value of 1 increase. 

   Integer :: Cond_Iteration_Max = 30 

! Maximum number of Lanczos and inverse iterations with sparse COND(). 

          Integer Alignment_Dummy 

     End Type 

Overloaded Assignments 

A natural way to define a sparse matrix is in terms of its triplets.  The basic tool used here to 

define all the non-zero entries is overloaded assignment.  Fortran 90, and further updates to the 

standard, supports a hidden subroutine call, packaged in a module, when an assignment is 

executed between differing derived types.  Thus if a Fortran program has a declaration 

type(s_sparse) A, then the overloaded assignment statement 

A = s_entry(I, J, value) 

has the effect of calling subroutines that result in joining the matrix entry value at the intersection 

of row I and column J.  The components of A are managed to hold any number of values.  The 
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number of rows, columns and non-zero values are updated as new triplets are assigned.  Also the 

arrays that hold the triplets are re-allocated and expanded, as required, to hold newly assigned 

triplets. 

The code snippet for this operation, and others that follow, will require use of the module 

linear_operators.  If new space is required in the assignment, a reallocation of the 

components of the matrix A will occur.  The user does not have to manage the details. 

Use linear_operators 

Type(s_sparse) A 

… 

 

{For all entries in A, A = s_entry(I, J, Value)} 

Sparse = Collection of Triplets 

The Harwell-Boeing sparse matrix data types are used for computations.  An assignment, H = A, 

implies deallocating any allocated components of H, allocating new storage, and sorting the 

collection of triplets provided as input in the sparse matrix A.  If the accumulation flag is set in 

H%options%accumulate, the duplicate row indices in a column are reduced to a single entry and 

the corresponding values are added to yield a final value.  The assignment H = 0 deallocates the 

allocated components and returns H to its initialized state, except for any changes to the 

component SLU_options.  A similar comment holds for the assignment, A = 0. 

Use linear_operators 

Type(s_sparse) A 

Type(s_hbc_sparse) H 

… 

{For all nonzero matrix entries, A = s_entry(I, J, Value)} 

 

H = A 

A = 0   ! Clear and deallocate components of A 

… 

H = 0   ! Clear and deallocate components of H 

Sparse = Dense 

The non-zero entries of the dense array are converted to a Harwell-Boeing sparse matrix.  As a 

first step any allocated components are cleared and then allocated as needed to hold the non-zero 

values of the dense array.  The specific dimensions of array D are arbitrary. 

Use linear_operators 

Type(s_hbc_sparse) H 

Integer, parameter :: M=1000, N=1000 

Real (kind(1.e0)) D(M,N)  

{Define entries of D} 

H = D 



     

     
 

1706  Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY  

     

     

 

Dense = Sparse 

For some applications it is convenient to expand a sparse matrix into a dense matrix.   The specific 

dimensions of array D are arbitrary.   

Use linear_operators 

Type(s_hbc_sparse) H 

Integer, parameter :: M=1000, N=1000 

Real (kind(1.e0)) D(M,N)  

{Define entries of H} 

D = H 

Scalar = s_hbc_entry(Sparse, I, J) 

This assignment gets the value at the intersection of row I and column J of the Harwell-Boeing 

sparse matrix.  There must be type agreement with the function and sparse matrix type.  Use a 

prefix of d_, c_, or z_ for double, complex, or double complex values. 

Use inear_operators 

Type(s_hbc_sparse) H 

Real (kind(1.e0)) value 

{Define entries of H, I and J} 

value = s_hbc_entry(H, I, J) 
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.x. 

 

Computes matrix-matrix or matrix-vector product. 

Operator Return Value 

Matrix containing the product of A and B.   (Output) 

Required Operands 

A — Left operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double, 

complex, double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input) 

Note that A and B cannot both be ?_hbc_sparse. 

B — Right operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double, 

complex, double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input) 

Note that A and B cannot both be ?_hbc_sparse. 

 

If A has rank one, B must have rank two. 

If B has rank one, A must have rank two. 

If A has rank three, B must have rank three. 

If B has rank three, A must have rank three. 

FORTRAN 90 Interface 

A .x. B 

Description 

Computes the product of  matrix or vector A and matrix or vector B. The results are in a precision 

and data type that ascends to the most accurate or complex operand. 

Rank three operation is defined as follows: 

do i = 1, min(size(A,3), size(B,3)) 

   X(:,:,i) =  A(:,:,i) .x. B(:,:,i) 

end do 

 

.x. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only. 
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Examples 

Dense Matrix Example  (operator_ex03.f90) 
 

  use linear_operators  

      implicit none  

  

! This is the equivalent of Example 3 for LIN_SOL_GEN using operators.  

      integer, parameter :: n=32  

      real(kind(1e0)) :: one=1e0, zero=0e0, A(n,n), b(n), x(n)  

      real(kind(1e0)) change_new, change_old  

      real(kind(1d0)) :: d_zero=0d0, c(n), d(n,n), y(n)  

  

! Generate a random matrix and right-hand side.  

      A = rand(A); b= rand(b)  

  

! Save double precision copies of the matrix and right-hand side.  

      D = A  

      c = b  

! Compute single precision inverse to compute the iterative refinement.  

      A = .i. A  

  

! Start solution at zero.  Update it to an accurate solution  

! with each iteration.  

      y = d_zero  

      change_old = huge(one)  

  

      iterative_refinement: do  

! Compute the residual with higher accuracy than the data.  

         b = c - (D .x. y)  

  

! Compute the update in single precision.  

         x = A .x. b  

         y = x + y  

         change_new = norm(x)  

  

! Exit when changes are no longer decreasing.  

         if (change_new >= change_old) exit iterative_refinement  

         change_old = change_new  

      end do iterative_refinement  

  

      write (*,*) 'Example 3 for LIN_SOL_GEN (operators) is correct.'  

      end 

Sparse Matrix Example 

Consider the one-dimensional Dirichlet problem 

     
2

12
, , ,a b N

d u
f x a x b u a u u u b u u

dx
      

 

Using a standard approach to solving this involves approximating the second derivative operator 

with central divided differences 
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2

1 1
2 2

2
, / 1 , 2, , 1, 2i i iu u ud u

h b a N i N N
dx h

  
      

 

This leads to the sparse linear algebraic system Mu w .  The definitions for these terms are 

implied in the following Fortran program. 
 

Subroutine document_ex1 

! Illustrate a 1D Poisson equation with Dirichlet boundary conditions. 

! This module defines the structures and overloaded assignment code. 

      Use linear_operators 

      Implicit None 

! 

      Integer :: I 

      Integer, Parameter :: N = 1000 

      Real (Kind(1.d0)) :: f, h, r, w (N), a = 0.d0, b = 1.d0, & 

      u_a = 0.d0, u_b = 1.d0, u (N) 

      Type (d_sparse) M 

      Type (d_hbc_sparse) K 

      External f 

! Define the difference used. 

      h = (b-a) / (N-1) 

      r = 1.d0 / h ** 2 

! Fill in the matrix entries. 

! Isolated equation for the left boundary condition. 

      M = d_entry (1, 1, r) 

      Do I = 2, N - 1 

         M = d_entry (I, I-1, r) 

         M = d_entry (I, I,-2*r) 

         M = d_entry (I, I+1, r) 

      End Do 

  

! Isolated equation for the right boundary condition.  

      M = d_entry (N, N, r) 

  

! Fill in the right-hand side (a dense vector). 

      Do I = 2, N - 1 

         w (I) = f (a+(I-1)*h) 

      End Do 

! Insert the known end conditions.  These should be satisfied 

! almost exactly, up to rounding errors. 

      w (1) = u_a * r 

      w (N) = u_b * r 

! Ready to solve … 

! Conversion to Harwell-Boeing format using overloaded assignment 

 

      K = M 

! Solve the system using an IMSL defined operator. 

  

      u = K .ix. w  

! The parentheses are needed because of precedence rules. 

! Compute residuals and overwrite w(:) with these values. 

   

      w = w - (K .x. u)  

End Subroutine 

! 

Function f (x) 
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      Real (Kind(1.d0)) :: f, x 

! Define a hat function, peaked at x=0.5. 

      If (x <= 0.5d0) Then 

         f = x 

      Else 

         f = 1.d0 - x 

      End If 

End Function 

Parallel Example  (parallel_ex03.f90) 

This example shows the box data type used while obtaining an accurate solution of several 

systems.  Important in this example is the fact that only the root will achieve convergence, which 

controls program flow out of the loop.  Therefore the nodes must share the root‘s view of 

convergence, and that is the reason for the broadcast of the update from root to the nodes.  Note 

that when writing an explicit call to an MPI routine there must be the line INCLUDE ‗mpif.h‘, 

placed just after the IMPLICIT NONE statement.  Any number of nodes can be used. 
 

      use linear_operators 

      use mpi_setup_int 

 

      implicit none 

      INCLUDE 'mpif.h' 

 

! This is the equivalent of Parallel Example 3 for .i. and iterative  

! refinement with box date types, operators and functions. 

      integer, parameter :: n=32, nr=4 

      integer IERROR 

      real(kind(1e0)) :: one=1e0, zero=0e0 

      real(kind(1e0)) :: A(n,n,nr), b(n,1,nr), x(n,1,nr) 

      real(kind(1e0)) change_old(nr), change_new(nr) 

      real(kind(1d0)) :: d_zero=0d0, c(n,1,nr), D(n,n,nr), y(n,1,nr) 

 

! Setup for MPI. 

      MP_NPROCS=MP_SETUP() 

      

! Generate a random matrix and right-hand side. 

      A = rand(A); b= rand(b) 

 

! Save double precision copies of the matrix and right-hand side. 

      D = A 

      c = b 

 

! Get single precision inverse to compute the iterative refinement. 

      A = .i. A 

 

! Start solution at zero.  Update it to a more accurate solution 

! with each iteration. 

      y = d_zero 

      change_old = huge(one) 

 

      ITERATIVE_REFINEMENT: DO 

 

! Compute the residual with higher accuracy than the data. 

         b = c - (D .x. y) 
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! Compute the update in single precision. 

         x = A .x. b 

         y = x + y 

         change_new = norm(x) 

 

! All processors must share the root's test of convergence. 

         CALL MPI_BCAST(change_new, nr, MPI_REAL, 0, & 

           MP_LIBRARY_WORLD, IERROR) 

 

! Exit when changes are no longer decreasing. 

         if (ALL(change_new >= change_old)) exit iterative_refinement 

         change_old = change_new 

      end DO ITERATIVE_REFINEMENT 

 

        IF(MP_RANK == 0) write (*,*) 'Parallel Example 3 is correct.' 

 

! See to any error messages and quit MPI. 

      MP_NPROCS=MP_SETUP('Final') 

      end  

.tx. 

 

 

Computes transpose matrix-matrix or transpose matrix-vector product. 

Operator Return Value 

Matrix containing the product of AT and B.   (Output) 

Required Operands 

A — Left operand matrix. This is an array of rank 2, or 3. It may be real, double, complex, 

double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input) 

Note that A and B cannot both be ?_hbc_sparse. 

B — Right operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double, 

complex, double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input) 

Note that A and B cannot both be ?_hbc_sparse. 

  

If A has rank three, B must have rank three. 

If B has rank three, A must have rank three. 
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FORTRAN 90 Interface 

A .tx. B 

Description 

Computes the product of the transpose of  matrix A and matrix or vector B. The results are in a 

precision and data type that ascends to the most accurate or complex operand. 

Rank three operation is defined as follows: 
do i = 1, min(size(A,3), size(B,3)) 

     X(:,:,i) =  A(:,:,i) .tx. B(:,:,i) 

   end do 

 

.tx. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only. 

Examples 

Dense Matrix Example (operator_ex05.f90) 
 

use linear_operators  

      implicit none  

  

! This is the equivalent of Example 1 for LIN_SOL_SELF using operators  

! and functions.  

      integer, parameter :: m=64, n=32  

      real(kind(1e0)) :: one=1.0e0, err  

      real(kind(1e0)) A(n,n), b(n,n), C(m,n), d(m,n), x(n,n)  

  

! Generate two rectangular random matrices.  

      C = rand(C); d=rand(d)  

  

! Form the normal equations for the rectangular system.  

      A = C .tx. C; b = C .tx. d  

  

! Compute the solution for Ax = b, A is symmetric.  

      x = A .ix. b  

  

! Check the results.  

      err = norm(b - (A .x. x))/(norm(A)+norm(b))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 1 for LIN_SOL_SELF (operators) is correct.'  

      end if  

  

      end   

Sparse Matrix Example 
 

 use wrrrn_int 

 use linear_operators 

 

 type (s_sparse) S 

 type (s_hbc_sparse) H 

 integer, parameter :: N=3 
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 real (kind(1.e0)) x(N,N), y(N,N), B(N,N) 

 real (kind(1.e0)) err 

 

 S = s_entry (1, 1, 2.0)  

 S = s_entry (1, 3, 1.0)  

 S = s_entry (2, 2, 4.0)  

 S = s_entry (3, 3, 6.0)  

 H = S   ! sparse  

 X = H   ! dense equivalent of H 

 B = rand(B) 

 Y = H .tx. B 

  call wrrrn ( 'H', X) 

  call wrrrn ( 'B', b) 

  call wrrrn ( 'H .tx. B ', y) 

 

! Check the results.  

     err =  norm(y - (X .tx. B))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Sparse example for .tx. operator is correct.'  

      end if  

 

 end 

    Output 
 

             H 

         1       2       3 

 1   2.000   0.000   1.000 

 2   0.000   4.000   0.000 

 3   0.000   0.000   6.000 

   

               B 

          1        2        3 

 1   0.8711   0.4467   0.4743 

 2   0.8315   0.7257   0.4518 

 3   0.6839   0.0561   0.6972 

   

         H .tx. B 

         1       2       3 

 1   1.742   0.893   0.949 

 2   3.326   2.903   1.807 

 3   4.975   0.784   4.657 

 Sparse example for .tx. operator is correct. 

Parallel Example  (parallel_ex05.f90) 
 

      use linear_operators 

      use mpi_setup_int 

 

      implicit none 

 

! This is the equivalent of Parallel Example 5 using box data types,  

! operators and functions. 

 

      integer, parameter :: m=64, n=32, nr=4 

      real(kind(1e0)) :: one=1e0, err(nr) 
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      real(kind(1e0)), dimension(n,n,nr) :: A, b, x 

      real(kind(1e0)), dimension(m,n,nr) :: C, d 

 

! Setup for MPI. 

      mp_nprocs = mp_setup() 

 

! Generate two rectangular random matrices, only 

! at the root node. 

      if (mp_rank == 0) then 

       C = rand(C); d=rand(d) 

      endif 

 

! Form the normal equations for the rectangular system. 

      A = C .tx. C; b = C .tx. d 

 

! Compute the solution for Ax = b. 

      x = A .ix. b 

 

! Check the results. 

      err = norm(b - (A .x. x))/(norm(A)+norm(b)) 

      if (ALL(err <= sqrt(epsilon(one))) .AND. MP_RANK == 0) & 

         write (*,*) 'Parallel Example 5 is correct.' 

       

! See to any error messages and quit MPI. 

      mp_nprocs = mp_setup('Final') 

 

      end  

.xt. 
 

 

 

Computes  matrix- transpose matrix product. 

Operator Return Value 

Matrix containing the product of A and BT.   (Output) 

Required Operands 

A — Left operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double, 

complex, double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input) 

Note that A and B cannot both be ?_hbc_sparse. 
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B — Right operand matrix. This is an array of rank  2, or 3. It may be real, double, complex, 

double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input) 

Note that A and B cannot both be ?_hbc_sparse. 

  

If A has rank three, B must have rank three. 

If B has rank three, A must have rank three. 

FORTRAN 90 Interface 

A .xt. B 

Description 

Computes the product of  matrix or vector A and the transpose of matrix B. The results are in a 

precision and data type that ascends to the most accurate or complex operand. 

Rank three operation is defined as follows: 
     do i = 1, min(size(A,3), size(B,3)) 

       X(:,:,i) =  A(:,:,i) .xt. B(:,:,i) 

     end do 

 

.xt. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only. 

Examples 

Dense Matrix Example    (operator_ex14.f90) 
   

      use linear_operators  

      implicit none  

  

!  

      integer, parameter :: n=32  

      real(kind(1d0)) :: one=1d0, zero=0d0  

      real(kind(1d0)) A(n,n), P(n,n), Q(n,n), &  

             S_D(n), U_D(n,n), V_D(n,n)  

  

! Generate a random matrix.  

      A = rand(A)  

  

! Compute the singular value decomposition.  

      S_D = SVD(A, U=U_D, V=V_D)  

  

! Compute the (left) orthogonal factor.  

      P = U_D .xt. V_D  

  

! Compute the (right) self-adjoint factor.  

      Q = V_D .x. diag(S_D) .xt. V_D  

  

! Check the results.  

      if (norm( EYE(n) - (P .xt. P)) &  

               <= sqrt(epsilon(one))) then  

         if (norm(A - (P .x. Q))/norm(A) &  

               <= sqrt(epsilon(one))) then  
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            write (*,*) 'Example 2 for LIN_SOL_SVD (operators) is correct.'  

         end if  

      end if  

      end   

Sparse Matrix Example 
 

 use wrrrn_int 

 use linear_operators 

 

 type (s_sparse) S 

 type (s_hbc_sparse) H 

 integer, parameter :: N=3 

 real (kind(1.e0)) x(N,N), y(N,N), a(N,N) 

 real (kind(1.e0)) err 

 S = s_entry (1, 1, 2.0)  

 S = s_entry (1, 3, 1.0)  

 S = s_entry (2, 2, 4.0)  

 S = s_entry (3, 3, 6.0)  

 H = S   ! sparse  

 X = H   ! dense equivalent of H 

 A = rand(A) 

 Y = A .xt. H 

  call wrrrn ( 'A', A) 

  call wrrrn ( 'H', X) 

  call wrrrn ( 'A .xt. H', y) 

 

! Check the results.  

     err =  norm(y - (A .xt. X))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Sparse example for .xt. operator is correct.'  

      end if  

 

 end 

   Output 
 

               A 

          1        2        3 

 1   0.5423   0.2380   0.9250 

 2   0.0844   0.1323   0.1937 

 3   0.4146   0.3135   0.7757 

   

             H 

         1       2       3 

 1   2.000   0.000   1.000 

 2   0.000   4.000   0.000 

 3   0.000   0.000   6.000 

   

         A .xt. H 

         1       2       3 

 1   2.010   0.952   5.550 

 2   0.363   0.529   1.162 

 3   1.605   1.254   4.654 

 Sparse example for .xt. operator is correct. 
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Parallel Example  (parallel_ex15.f90) 

A ―Polar Decomposition‖ of several matrices are computed.  The box data type and the SVD() 

function are used.  Orthogonality and small residuals are checked to verify that the results are 

correct. 
 

      use linear_operators 

      use mpi_setup_int 

      implicit none 

 

! This is the equivalent of Parallel Example 15 using operators and,  

! functions for a polar decomposition. 

      integer, parameter :: n=33, nr=3 

      real(kind(1d0)) :: one=1d0, zero=0d0 

      real(kind(1d0)),dimension(n,n,nr) :: A, P, Q, & 

             S_D(n,nr), U_D, V_D 

      real(kind(1d0)) TEMP1(nr), TEMP2(nr) 

 

! Setup for MPI: 

      mp_nprocs = mp_setup() 

 

! Generate a random matrix. 

      if(mp_rank == 0) A = rand(A) 

 

! Compute the singular value decomposition. 

      S_D = SVD(A, U=U_D, V=V_D) 

 

! Compute the (left) orthogonal factor. 

      P = U_D .xt. V_D 

 

! Compute the (right) self-adjoint factor. 

      Q = V_D .x. diag(S_D) .xt. V_D 

! Check the results for orthogonality and  

! small residuals. 

      TEMP1 = NORM(spread(EYE(n),3,nr) - (p .xt. p)) 

      TEMP2 = NORM(A -(P .X. Q)) / NORM(A) 

      if (ALL(TEMP1 <= sqrt(epsilon(one))) .and. & 

          ALL(TEMP2 <= sqrt(epsilon(one)))) then 

            if(mp_rank == 0)& 

            write (*,*) 'Parallel Example 15 is correct.' 

      end if 

  

! See to any error messages and exit MPI. 

      mp_nprocs = mp_setup('Final') 

 

      end  

.hx. 
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Computes conjugate transpose matrix-matrix product. 

Operator Return Value 

Matrix containing the product  of AH and B.   (Output) 

Required Operands 

A — Left operand matrix. This is an array of rank 2 or 3. It may be real, double, complex, 

double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input) 

Note that A and B cannot both be ?_hbc_sparse. 

B — Right operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double, 

complex, double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input) 

Note that A and B cannot both be ?_hbc_sparse. 

  

If A has rank three, B must have rank three. 

If B has rank three, A must have rank three. 

FORTRAN 90 Interface 

A .hx. B 

Description 

Computes the product of the conjugate transpose of matrix A and matrix or vector B. The results 

are in a precision and data type that ascends to the most accurate or complex operand. 

Rank three operation is defined as follows: 
 

      do i = 1, min(size(A,3), size(B,3)) 

        X(:,:,i) =  A(:,:,i) .hx. B(:,:,i) 

      end do 

 

.hx. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only. 

Examples 

Dense Matrix Example   (operator_ex32.f90) 
 

      use linear_operators   

      implicit none  

! This is the equivalent of Example 4 (using operators) for LIN_EIG_GEN.  

  

      integer, parameter :: n=17  

      real(kind(1d0)), parameter :: one=1d0  

      real(kind(1d0)), dimension(n,n) :: A, C  

      real(kind(1d0)) variation(n), eta  

      complex(kind(1d0)), dimension(n,n) :: U, V, e(n), d(n)  
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! Generate a random matrix.  

      A = rand(A)  

  

! Compute the eigenvalues, left- and right- eigenvectors.  

      D = EIG(A, W=V); E = EIG(.t.A, W=U)  

  

! Compute condition numbers and variations of eigenvalues.  

      variation = norm(A)/abs(diagonals( U .hx. V))  

  

! Now perturb the data in the matrix by the relative factors   

! eta=sqrt(epsilon) and solve for values again.  Check the   

! differences compared to the estimates.  They should not exceed   

! the bounds.  

      eta = sqrt(epsilon(one))  

      C = A + eta*(2*rand(A)-1)*A  

      D = EIG(C)  

  

! Looking at the differences of absolute values accounts for   

! switching signs on the imaginary parts.  

      if (count(abs(d)-abs(e) > eta*variation) == 0) then  

         write (*,*) 'Example 4 for LIN_EIG_GEN (operators) is correct.'  

      end if  

      end   

Sparse Matrix Example 
 

 use wrcrn_int 

 use linear_operators 

 

 type (c_sparse) S 

 type (c_hbc_sparse) H 

 integer, parameter :: N=3 

 complex (kind(1.e0)) x(N,N), y(N,N), A(N,N) 

 real (kind(1.e0)) err 

 S = c_entry (1, 1, (2.0, 1.0) )  

 S = c_entry (1, 3, (1.0, 3.0))  

 S = c_entry (2, 2, (4.0, -1.0))  

 S = c_entry (3, 3, (6.0, 2.0))  

 H = S   ! sparse  

 X = H   ! dense equivalent of H 

 A= rand(A) 

 Y = H .hx. A 

  call wrcrn ( 'H', X) 

  call wrcrn ( 'A', a) 

  call wrcrn ( 'H .hx. A ', y) 

 

! Check the results.  

     err =  norm(y - (X .hx. A))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Sparse example for .hx. operator is correct.'  

      end if  

 

 end 

Output 
 



     

     
 

1720  Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY  

     

     

 

                           H 

                  1                2                3 

 1  ( 2.000, 1.000)  ( 0.000, 0.000)  ( 1.000, 3.000) 

 2  ( 0.000, 0.000)  ( 4.000,-1.000)  ( 0.000, 0.000) 

 3  ( 0.000, 0.000)  ( 0.000, 0.000)  ( 6.000, 2.000) 

   

                              A 

                    1                  2                  3 

 1  ( 0.6278, 0.8475)  ( 0.8007, 0.4179)  ( 0.4512, 0.2601) 

 2  ( 0.1249, 0.4675)  ( 0.7957, 0.1609)  ( 0.4228, 0.0507) 

 3  ( 0.4608, 0.0891)  ( 0.3181, 0.9180)  ( 0.9961, 0.1939) 

   

                       H .hx. A 

                  1                2                3 

 1  ( 2.103, 1.067)  ( 2.019, 0.035)  ( 1.163, 0.069) 

 2  ( 0.032, 1.995)  ( 3.022, 1.439)  ( 1.640, 0.626) 

 3  ( 6.113,-1.423)  ( 5.799, 2.888)  ( 7.596,-1.922) 

 Sparse example for .hx. operator is correct. 

Parallel Example 
 

 use linear_operators 

 use mpi_setup_int 

 

 integer, parameter :: N=32, nr=4 

 complex (kind(1.e0)) A(N,N,nr), B(N,N,nr), Y(N,N,nr) 

! Setup for MPI  

  mp_nprocs = mp_setup() 

 

 if (mp_rank == 0) then 

   A = rand(A) 

   B = rand(B) 

 end if 

 

 Y = A .hx. B 

  

 mp_nprocs = mp_setup ('Final') 

 

 end 

.xh. 

 

 

Computes a matrix-conjugate transpose matrix product. 

Operator Return Value 

Matrix containing the product of A and BH.   (Output) 
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Required Operands 

A — Left operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double, 

complex, double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input) 

Note that A and B cannot both be ?_hbc_sparse. 

B — Right operand matrix. This is an array of rank  2, or 3. It may be real, double, complex, 

double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input) 

Note that A and B cannot both be ?_hbc_sparse. 

  

If A has rank three, B must have rank three. 

If B has rank three, A must have rank three. 

FORTRAN 90 Interface 

A .xh. B 

Description 

Computes the product of matrix or vector A and the conjugate transpose of matrix B. The results 

are in a precision and data type that ascends to the most accurate or complex operand. 

Rank three operation is defined as follows: 
 

     do i = 1, min(size(A,3), size(B,3)) 

       X(:,:,i) =  A(:,:,i) .xh. B(:,:,i) 

     end do 

 

.xh. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only. 

Examples 

Dense Matrix Example 
 

 use wrcrn_int 

 use linear_operators 

 integer, parameter :: N=3 

 complex (kind(1.e0)) A(N,N), B(N,N), Y(N,N) 

 

 A = rand(A) 

 B = rand(B) 

 Y = A .xh. B 

  call wrcrn ( 'A', a) 

  call wrcrn ( 'H', b) 

  call wrcrn ( 'A .xh. B ', y) 

 end 

  Output 
   

                              A 

                    1                  2                  3 
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 1  ( 0.8071, 0.0054)  ( 0.5617, 0.2508)  ( 0.0223, 0.5555) 

 2  ( 0.9380, 0.5181)  ( 0.8895, 0.9512)  ( 0.7951, 0.6010) 

 3  ( 0.8349, 0.7291)  ( 0.4162, 0.5255)  ( 0.7388, 0.0309) 

   

                              B 

                    1                  2                  3 

 1  ( 0.5342, 0.2246)  ( 0.9045, 0.0550)  ( 0.4576, 0.3173) 

 2  ( 0.5531, 0.3362)  ( 0.0757, 0.3970)  ( 0.6807, 0.8625) 

 3  ( 0.3553, 0.9157)  ( 0.0951, 0.7807)  ( 0.4853, 0.0617) 

   

                       A .xh. B 

                  1                2                3 

 1  ( 1.141, 0.265)  ( 1.085,-0.113)  ( 0.586,-0.884) 

 2  ( 2.029, 0.900)  ( 2.198,-0.587)  ( 2.058,-1.036) 

 3  ( 1.363, 0.434)  ( 1.477,-0.619)  ( 1.775,-0.811) 

Sparse Matrix Example 
 

 use wrcrn_int 

 use linear_operators 

 

 type (c_sparse) S 

 type (c_hbc_sparse) H 

 integer, parameter :: N=3 

 complex (kind(1.e0)) x(N,N), y(N,N), A(N,N) 

 real (kind(1.e0)) err 

 S = c_entry (1, 1, (2.0, 1.0) )  

 S = c_entry (1, 3, (1.0, 3.0))  

 S = c_entry (2, 2, (4.0, -1.0))  

 S = c_entry (3, 3, (6.0, 2.0))  

 H = S   ! sparse  

 X = H   ! dense equivalent of H 

 A= rand(A) 

 Y = A .xh. H 

  call wrcrn ( 'A', a) 

  call wrcrn ( 'H', X) 

  call wrcrn ( 'A .xh. H ', y) 

 

! Check the results.  

     err =  norm(y - (A .xh. X))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Sparse example for .xh. operator is correct.'  

      end if  

 

 end 

Output 
   

                              A 

                    1                  2                  3 

 1  ( 0.8526, 0.3532)  ( 0.1822, 0.3938)  ( 0.8008, 0.1308) 

 2  ( 0.5599, 0.8914)  ( 0.7541, 0.5163)  ( 0.8713, 0.9580) 

 3  ( 0.9947, 0.2735)  ( 0.6237, 0.2137)  ( 0.3802, 0.8903) 

   

                           H 
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                  1                2                3 

 1  ( 2.000, 1.000)  ( 0.000, 0.000)  ( 1.000, 3.000) 

 2  ( 0.000, 0.000)  ( 4.000,-1.000)  ( 0.000, 0.000) 

 3  ( 0.000, 0.000)  ( 0.000, 0.000)  ( 6.000, 2.000) 

   

                       A .xh. H 

                  1                2                3 

 1  ( 3.252,-2.418)  ( 0.335, 1.757)  ( 5.066,-0.817) 

 2  ( 5.757,-0.433)  ( 2.500, 2.819)  ( 7.144, 4.005) 

 3  ( 5.314,-0.698)  ( 2.281, 1.478)  ( 4.062, 4.581) 

 Sparse example for .xh. operator is correct. 

 Parallel Example 
 

 use linear_operators 

 use mpi_setup_int 

 

 integer, parameter :: N=32, nr=4 

 complex (kind(1.e0)) A(N,N,nr), B(N,N,nr), Y(N,N,nr) 

! Setup for MPI  

  mp_nprocs = mp_setup() 

 

 if (mp_rank == 0) then 

   A = rand(A) 

   B = rand(B) 

 end if 

 

 Y = A .xh. B 

  

 mp_nprocs = mp_setup ('Final') 

 

 end 

.t. 
Computes the transpose of a matrix. 

Operator Return Value 

Matrix containing the transpose of A.   (Output) 

Required Operand 

A — Matrix for which the transpose is to be computed. This is a real, double, complex, 

double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input).  

FORTRAN 90 Interface 

.t. A 
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Description 

Computes the transpose of  matrix A. The operation may be read transpose, and the results are the 

mathematical objects in a precision and data type that matches the operand.  Since this is a unary 

operation, it has higher Fortran 90 precedence than any other intrinsic unary array operation.  

.t. can be used with either dense or sparse matrices. 

Examples 

Dense Matrix Example  (operator_ex07.f90) 
 

use linear_operators  

  

      implicit none  

  

! This is the equivalent of Example 3 (using operators) for LIN_SOL_SELF.  

  

      integer tries  

      integer, parameter :: m=8, n=4, k=2  

      integer ipivots(n+1)  

      real(kind(1d0)) :: one=1.0d0, err  

      real(kind(1d0)) a(n,n), b(n,1), c(m,n), x(n,1), &  

             e(n), ATEMP(n,n)  

      type(d_options) :: iopti(4)  

  

! Generate a random rectangular matrix.  

      C = rand(C)  

  

! Generate a random right hand side for use in the inverse   

! iteration.  

      b = rand(b)  

  

! Compute the positive definite matrix.  

      A = C .tx. C; A = (A+.t.A)/2  

  

! Obtain just the eigenvalues.  

      E = EIG(A)  

  

! Use packaged option to reset the value of a small diagonal.  

      iopti(4) = 0  

      iopti(1) = d_options(d_lin_sol_self_set_small,&  

                 epsilon(one)*abs(E(1)))  

  

! Use packaged option to save the factorization.  

      iopti(2) = d_lin_sol_self_save_factors  

  

! Suppress error messages and stopping due to singularity   

! of the matrix, which is expected.  

      iopti(3) = d_lin_sol_self_no_sing_mess  

  

      ATEMP = A  

  

! Compute A-eigenvalue*I as the coefficient matrix.  

! Use eigenvalue number k.  
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      A = A - e(k)*EYE(n)       

  

      do tries=1,2  

         call lin_sol_self(A, b, x, &  

                     pivots=ipivots, iopt=iopti)  

! When code is re-entered, the already computed factorization   

! is used.  

         iopti(4) = d_lin_sol_self_solve_A  

  

! Reset right-hand side in the direction of the eigenvector.  

         B = UNIT(x)  

      end do  

  

! Normalize the eigenvector.  

      x = UNIT(x)  

  

! Check the results.  

      b=ATEMP .x. x  

      err =  dot_product(x(1:n,1), b(1:n,1)) - e(k)  

  

! If any result is not accurate, quit with no printing.  

      if (abs(err) <= sqrt(epsilon(one))*E(1)) then  

        write (*,*) 'Example 3 for LIN_SOL_SELF (operators) is correct.'  

      end if  

  

      end   

Sparse Matrix Example 
 

 use wrrrn_int 

 use linear_operators 

 

 type (s_sparse) S 

 type (s_hbc_sparse) H, HT 

 integer, parameter :: N=3 

 real (kind(1.e0)) X(3,3), XT(3,3) 

 real (kind(1.e0)) err 

 S = s_entry (1, 1, 2.0)  

 S = s_entry (1, 3, 1.0)  

 S = s_entry (2, 2, 4.0)  

 S = s_entry (3, 3, 6.0)  

 H = S   ! sparse  

 X = H   ! dense equivalent of H 

 HT = .t. H  

 XT = HT ! dense equivalent of HT 

  call wrrrn ( 'H', X) 

  call wrrrn ( 'H Transpose', XT) 

 

! Check the results.  

     err =  norm(XT - (.t. X))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Sparse example for .t. operator is correct.'  

      end if  

 

 end 
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Output 
 

             H 

         1       2       3 

 1   2.000   0.000   1.000 

 2   0.000   4.000   0.000 

 3   0.000   0.000   6.000 

   

        H Transpose 

         1       2       3 

 1   2.000   0.000   0.000 

 2   0.000   4.000   0.000 

 3   1.000   0.000   6.000 

 Sparse example for .t. operator is correct. 

.h. 
Computes the conjugate transpose of a matrix. 

Operator Return Value 

Matrix containing the conjugate transpose of A.   (Output) 

Required Operand 

A — Matrix for which the conjugate transpose is to be computed. This is an array of rank  2, 

or 3. It may be real, double, complex, double complex, or one of the computational 

sparse matrix derived types, ?_hbc_sparse. (Input) 

FORTRAN 90 Interface 

.h. A 

Description 

Computes the conjugate transpose of  matrix A. The operation may be read adjoint, and the results 

are the mathematical objects in a precision and data type that matches the operand.  Since this is a 

unary operation, it has higher Fortran 90 precedence than any other intrinsic unary array 

operation.  

.h. can be used with either dense or sparse matrices. 

Examples 

Dense Matrix Example  (operator_ex34.f90) 
 

      use linear_operators  

  

      implicit none  

  

! This is the equivalent of Example 2 (using operators) for LIN_GEIG_GEN.  
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      integer, parameter :: n=32  

      real(kind(1d0)), parameter :: one=1d0, zero=0d0  

      real(kind(1d0)) err, alpha(n)  

      complex(kind(1d0)), dimension(n,n) :: A, B, C, D, V  

  

  

! Generate random matrices for both A and B.  

      C = rand(C); D = rand(D)  

      A = C + .h.C; B = D .hx. D; B = (B + .h.B)/2  

  

      ALPHA = EIG(A, B=B, W=V)  

  

! Check that residuals are small.  Use a real array for  alpha   

! since the eigenvalues are known to be real.  

      err= norm((A .x. V) - (B .x. V .x. diag(alpha)),1)/&  

           (norm(A,1)+norm(B,1)*norm(alpha,1))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 2 for LIN_GEIG_GEN (operators) is correct.'  

      end if  

  

      end   

Sparse Matrix Example  
 

 use wrcrn_int 

 use linear_operators 

 

 type (c_sparse) S 

 type (c_hbc_sparse) H, HT 

 integer, parameter :: N=3 

 complex (kind(1.e0)) X(3,3), XT(3,3) 

 real (kind(1.e0)) err 

 S = c_entry (1, 1, (2.0, 1.0) )  

 S = c_entry (1, 3, (1.0, 3.0))  

 S = c_entry (2, 2, (4.0, -1.0))  

 S = c_entry (3, 3, (6.0, 2.0))  

 H = S   ! sparse  

 X = H   ! dense equivalent of H 

 HT = .h. H  

 XT = HT ! dense equivalent of HT 

  call wrcrn ( 'H', X) 

  call wrcrn ( 'H Conjugate Transpose', XT) 

 

! Check the results.  

     err =  norm(XT - (.h. X))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Sparse example for .h. operator is correct.'  

      end if  

 

 end 

Output 
 

                           H 

                  1                2                3 
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 1  ( 2.000, 1.000)  ( 0.000, 0.000)  ( 1.000, 3.000) 

 2  ( 0.000, 0.000)  ( 4.000,-1.000)  ( 0.000, 0.000) 

 3  ( 0.000, 0.000)  ( 0.000, 0.000)  ( 6.000, 2.000) 

   

                 H Conjugate Transpose 

                  1                2                3 

 1  ( 2.000,-1.000)  ( 0.000, 0.000)  ( 0.000, 0.000) 

 2  ( 0.000, 0.000)  ( 4.000, 1.000)  ( 0.000, 0.000) 

 3  ( 1.000,-3.000)  ( 0.000, 0.000)  ( 6.000,-2.000) 

 Sparse example for .h. operator is correct. 

.i. 

 

 

Computes the inverse matrix. 

Operator Return Value 

Matrix containing the inverse of A.   (Output) 

Required Operand 

A — Matrix for which the inverse is to be computed. This is an array of rank 2 or 3. It may be 

real, double, complex, double complex. (Input) 

Optional Variables, Reserved Names 

This operator uses the routines LIN_SOL_GEN or LIN_SOL_LSQ (See Chapter 1, ―Linear 

Systems‖ ). 

The option and derived type names are given in the following tables: 

Option Names for .i. Option Value 

Use_lin_sol_gen_only 1 

Use_lin_sol_lsq_only 2 

I_options_for_lin_sol_gen 3 

I_options_for_lin_sol_lsq  4 

Skip_error_processing 5 
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Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_inv_options(:) Use when setting options for 

calls hereafter. 

?_options 

?_inv_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See 

LIN_SOL_GEN and LIN_SOL_LSQ located in Chapter 1, ―Linear Systems‖ for the specific 

options for these routines. 

FORTRAN 90 Interface 

.i. A 

Description 

Computes the inverse matrix for square non-singular matrices using LIN_SOL_GEN, or the  

Moore-Penrose generalized inverse matrix for singular square matrices or rectangular matrices 

using LIN_SOL_LSQ. The operation may be read inverse or generalized inverse, and the results 

are in a precision and data type that matches the operand.  

This operator requires a single operand. Since this is a unary operation, it has higher Fortran 90 

precedence than any other intrinsic array operation.  

Examples 

Dense Matrix Example  (operator_ex02.f90) 
 

      use linear_operators  

      implicit none  

  

! This is the equivalent of Example 2 for LIN_SOL_GEN using operators  

! and functions.  

  

      integer, parameter :: n=32  

      real(kind(1e0)) :: one=1e0, err, det_A, det_i  

      real(kind(1e0)), dimension(n,n) :: A, inv  

  

! Generate a random matrix.  

      A = rand(A)  

! Compute the matrix inverse and its determinant.  

      inv = .i.A; det_A = det(A)  

! Compute the determinant for the inverse matrix.  

      det_i = det(inv)  

! Check the quality of both left and right inverses.  

      err = (norm(EYE(n)-(A .x. inv))+norm(EYE(n)-(inv.x.A)))/cond(A)  

      if (err <= sqrt(epsilon(one)) .and. abs(det_A*det_i - one) <= &  

                 sqrt(epsilon(one))) &  

      write (*,*) 'Example 2 for LIN_SOL_GEN (operators) is correct.'  

      end   
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Parallel Example  (parallel_ex02.f90) 
 

      use linear_operators 

      use mpi_setup_int 

       

      implicit none 

 

! This is the equivalent of Parallel Example 2 for .i. and det() with box  

! data types, operators and functions. 

 

      integer, parameter :: n=32, nr=4 

      integer J 

      real(kind(1e0)) :: one=1e0 

      real(kind(1e0)), dimension(nr) :: err, det_A, det_i 

      real(kind(1e0)), dimension(n,n,nr) :: A, inv, R, S 

 

! Setup for MPI. 

      MP_NPROCS=MP_SETUP() 

! Generate a random matrix. 

      A = rand(A) 

! Compute the matrix inverse and its determinant. 

      inv = .i.A; det_A = det(A) 

! Compute the determinant for the inverse matrix. 

      det_i = det(inv) 

! Check the quality of both left and right inverses. 

      DO J=1,nr; R(:,:,J)=EYE(N); END DO 

  

      S=R; R=R-(A .x. inv); S=S-(inv .x. A) 

      err = (norm(R)+norm(S))/cond(A) 

      if (ALL(err <= sqrt(epsilon(one)) .and. & 

        abs(det_A*det_i - one) <= sqrt(epsilon(one)))& 

       .and. MP_RANK == 0) & 

        write (*,*) 'Parallel Example 2 is correct.' 

 

! See to any error messages and quit MPI. 

      MP_NPROCS=MP_SETUP('Final') 

 

      end  

.ix.  

 

 

Computes the product of  the inverse of a matrix and a vector or matrix.  

Operator Return Value 

Matrix containing the product of A
-1

 and B.   (Output) 
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Required Operands 

A — Left operand matrix. This is an array of rank 2, or 3. It may be real, double, complex, 

double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input) 

B — Right operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double, 

complex, or double complex. (Input) 

Optional Variables, Reserved Names 

This operator uses the routines LIN_SOL_GEN or LIN_SOL_LSQ (See Chapter 1, ―Linear 

Systems‖). 

The option and derived type names are given in the following tables: 

Option Names for .ix. Option Value 

use_lin_sol_gen_only 1 

use_lin_sol_lsq_only 2 

ix_options_for_lin_sol_gen 3 

ix_options_for_lin_sol_lsq 4 

Skip_error_processing 5 

 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_invx_options(:) Use when setting options for 
calls hereafter. 

?_options 

?_invx_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See  

LIN_SOL_GEN and LIN_SOL_LSQ located in Chapter 1, ―Linear Systems‖ for the specific 

options for these routines. 

FORTRAN 90 Interface 

A .ix. B 

Description 

Computes the product of the inverse of matrix A and vector or matrix B, for square non-singular 

matrices or the corresponding Moore-Penrose generalized inverse matrix for singular square 

matrices or rectangular matrices. The operation may be read generalized inverse times. The results 

are in a precision and data type that matches the most accurate or complex operand. 

.ix. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only. 
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Examples 

Dense Matrix Example  (operator_ex01.f90) 
 

   use linear_operators  

      implicit none  

  

! This is the equivalent of Example 1 for LIN_SOL_GEN, with operators  

! and functions.  

  

      integer, parameter :: n=32  

      real(kind(1e0)) :: one=1.0e0, err  

      real(kind(1e0)), dimension(n,n) :: A, b, x  

  

! Generate random matrices for A and b:  

      A = rand(A); b=rand(b)  

  

! Compute the solution matrix of Ax = b.  

      x = A .ix. b  

  

! Check the results.  

      err = norm(b - (A .x. x))/(norm(A)*norm(x)+norm(b))  

      if (err <= sqrt(epsilon(one))) &  

         write (*,*) 'Example 1 for LIN_SOL_GEN (operators) is correct.'  

      end   

Sparse Matrix Example 1 
 

 use wrrrn_int 

 use linear_operators 

 

 type (s_sparse) S 

 type (s_hbc_sparse) H 

 integer, parameter :: N=3 

 real (kind(1.e0)) x(N,N), y(N,N), B(N,N) 

 real (kind(1.e0)) err 

 S = s_entry (1, 1, 2.0)  

 S = s_entry (1, 3, 1.0)  

 S = s_entry (2, 2, 4.0)  

 S = s_entry (3, 3, 6.0)  

 H = S   ! sparse  

 X = H   ! dense equivalent of H 

 B= rand(B) 

 Y = H .ix. B 

  call wrrrn ( 'H', X) 

  call wrrrn ( 'B', b) 

  call wrrrn ( 'H .ix. B ', y) 

 

! Check the results.  

     err =  norm(y - (X .ix. B))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Sparse example for .ix. operator is correct.'  

      end if  

 

 end 
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Output 
 

             H 

         1       2       3 

 1   2.000   0.000   1.000 

 2   0.000   4.000   0.000 

 3   0.000   0.000   6.000 

   

               B 

          1        2        3 

 1   0.8292   0.5697   0.1687 

 2   0.9670   0.7296   0.0603 

 3   0.1458   0.2726   0.8809 

   

           H .ix. B 

          1        2        3 

 1   0.4025   0.2621   0.0109 

 2   0.2417   0.1824   0.0151 

 3   0.0243   0.0454   0.1468 

Sparse Matrix Example 2: Plane Poisson Problem with Dirichlet Boundary 
Conditions 

We want to calculate a numerical solution, which approximates the true solution of the Poisson 

(boundary value) problem in the solution domain , a rectangle in
2

R   The equation is 

2 2

2 2

u u
u f

x y

 
   

 
in   

There are Dirichlet boundary conditions u g on 1   

There are further Neumann boundary conditions 
u

h
n





on 2   

The boundary arcs comprising 1 2     are mutually exclusive of each other.  The 

functions , ,f g h are defined on their respective domains. 

We will solve an instance of this problem by using finite differences to approximate the 

derivatives.  This will lead to a sparse system of linear algebraic equations.  Note that particular 

cases of this problem can be solved with methods that are likely to be more efficient or more 

appropriate than the one illustrated here.  We use this method to illustrate our matrix data handling 

routines and defined operators. 

The area of the rectangle is a b with the origin fixed at the lower left or SW corner.  The 

dimension along the x axis is a and along the y axis is b .  A rectangular n m uniform grid is 

defined on  where each sub-rectangle in the grid has sides 

/( 1)x a n   and /( 1)y a m   .  What is perhaps novel in our development is that the 

boundary values are written into the  
2

m n  linear system as trivial equations.  This leads to 

more unknowns than standard approaches to this problem but the complexity of describing the 
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equations into computer code is reduced.  The boundary conditions are naturally in place when the 

solution is obtained.  No reshaping is required. 

We number the approximate values of u at the grid points and collapse them into a single vector.  

Given a coordinate of the grid     , , 1, , , 1, ,i j i n j m  , we use the 

mapping  1J i j n   to define coordinate J of this vector.  This mapping enables us to 

define the matrix that is used to solve for the values of u at the grid points. 

For the Neumann boundary conditions we take 2  to be the East face of the rectangle.  Along 

that edge we have
u u

n x

 


 
, and we impose the smooth interface 0h  . 

Our use of finite differences is standard.  For the differential equation we approximate 

 
2 2

1, , 1, , 1 , , 1

2 2 2 2

2 2
,

i j i j i j i j i j i j
i j

u u u u u uu u
f x y

x y x y

         
    

        

at the inner grid points     , , 2, , 1 , 2, , 1i j i n j m    .  For the Neumann 

condition we approximate 

, 1,
0, 1, ,

n j n ju uu
j m

x x

 
  

    

The remaining equations come from the Dirichlet conditions given on 1  . 

To illustrate three examples of solutions to this problem we consider 

 

1. A Laplace Equation with the boundary conditions  

 0u  , on the South Edge 

 0.7u  , on the East Edge 

 1u  , on the North Edge 

 0.3u  , on the West Edge 

The function 0f  for all  ,x y .  Graphical results are shown below with the title 

―Problem Case 1‖ 

2. A Poisson equation with the boundary conditions 0u  on all of the edges and 

     , sin sinf x y x y   .  This problem has the 

solution      2, , / 2u x y f x y   , and this identity provides a way of verifying 

that the accuracy is within the truncation error implied by the difference equations.  

Graphical results are shown with the title ―Problem Case 2‖  The residual function 

verifies the expected accuracy. 
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3. The Laplace Equation with the boundary conditions of Problem Case 1 except that the 

boundary condition on the East Edge is replaced by the Neumann condition 0
u

x





.  

Graphical results are shown as ―Problem Case 3.‖ 

 

Subroutine document_ex2 

! Illustrate a 2D Poisson equation with Dirichlet and 

! Neumann boundary conditions. 

! These modules defines the structures and overloaded assignment code. 

      Use linear_operators 

      Implicit None 

      Integer :: I, J, JJ, MY_CASE, IFILE 

      Integer, Parameter :: N = 300, M = 300 

      Real (Kind(1.d0)) :: a = 1.d0, b = 1.d0 

      Real (Kind(1.d0)) :: delx, dely, r, s, pi, scale 

      Real (Kind(1.d0)) ::  u(N*M), w(N*M), P(N, M) 

      Real (Kind(1.e0)) :: TS, TE 

      CHARACTER(LEN=12) :: PR_LABEL(3)=& 

                           (/'Laplace','Poisson','Neumann'/) 

! Mapping function (in-line) for grid coordinate to 

! matrix-vector indexing.  

      JJ (I, J) = I + (J-1) * N 

  

! Define sparse matrices to hold problem data. 

      Type (d_sparse) C 

      Type (d_hbc_sparse) D 

! Define differences and related parameters. 

      delx = a / (N-1) 

      dely = b / (M-1) 

      r = 1.d0 / delx ** 2 

      s = 1.d0 / dely ** 2 

      Do MY_CASE = 1, 3 

! For MY_CASE = 

! 1. Solve boundary value problem with f=0 and Dirichlet 

!    boundary conditions. 

! 2. Solve Poisson equation with f such that a solution is known. 

!    Use zero boundary condtions. 

! 3. Solve boundary value problem with Dirichlet condtions as in 1. 

!    except on the East edge.  There the partial WRT x is zero. 

! Set timer for building the matrix. 

         Call cpu_time (TS) 

         Do I = 2, N - 1 

            Do J = 2, M - 1 

! Write entries for second partials WRT x and y. 

               C = d_entry (JJ(I, J), JJ(I-1, J), r) 

               C = d_entry (JJ(I, J), JJ(I+1, J), r) 

               C = d_entry (JJ(I, J), JJ(I, J),-2*(r+s)) 

               C = d_entry (JJ(I, J), JJ(I, J-1), s) 

               C = d_entry (JJ(I, J), JJ(I, J+1), s) 

! 

! Define components of the right-hand side. 

               w (JJ(I, J)) = f((I-1)*delx, (J-1)*dely, MY_CASE) 

            End Do 

         End Do 

! Write entries for Dirichlet boundary conditions. 
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! First do the South edge, then the West, then the North. 

         Select Case (MY_CASE) 

         Case (1:2) 

            Do I = 1, N 

               C = d_entry (JJ(I, 1), JJ(I, 1), r+s) 

               w (JJ(I, 1)) = g ((I-1)*delx, 0.d0, MY_CASE) * (r+s) 

            End Do 

            Do J = 2, M - 1 

               C = d_entry (JJ(1, J), JJ(1, J), r+s) 

               w (JJ(1, J)) = g (0.d0, (J-1)*dely, MY_CASE) * (r+s) 

            End Do 

            Do I = 1, N 

               C = d_entry (JJ(I, M), JJ(I, M), r+s) 

               w (JJ(I, M)) = g ((I-1)*delx, b, MY_CASE) * (r+s) 

            End Do 

            Do J = 2, M - 1 

               C = d_entry (JJ(N, J), JJ(N, J), (r+s)) 

               w (JJ(N, J)) = g (a, (J-1)*dely, MY_CASE) * (r+s) 

            End Do 

         Case (3) 

! Write entries for the boundary values but avoid the East edge.          

            Do I = 1, N - 1 

               C = d_entry (JJ(I, 1), JJ(I, 1), r+s) 

               w (JJ(I, 1)) = g ((I-1)*delx, 0.d0, MY_CASE) * (r+s) 

            End Do 

            Do J = 2, M - 1 

               C = d_entry (JJ(1, J), JJ(1, J), r+s) 

               w (JJ(1, J)) = g (0.d0, (J-1)*dely, MY_CASE) * (r+s) 

            End Do 

            Do I = 1, N - 1 

               C = d_entry (JJ(I, M), JJ(I, M), r+s) 

               w (JJ(I, M)) = g ((I-1)*delx, b, MY_CASE) * (r+s) 

            End Do 

! Write entries for the Neumann condition on the East edge. 

            Do J = 1, M 

               C = d_entry (JJ(N, J), JJ(N, J), 1.d0/delx) 

               C = d_entry (JJ(N, J), JJ(N-2, J),-1.d0/delx) 

               w (JJ(N, J)) = 0.d0 

            End Do 

         End Select 

! 

! Convert to Harwell-Boeing format for solving. 

         D = C 

! 

         Call cpu_time (TE) 

         Write (*,'(A,F6.2," S. - ",A)') "Time to build  matrix = ", & 

                                         TE - TS, PR_LABEL(MY_CASE) 

! Clear sparse triplets. 

         C = 0 

! 

! Turn off iterative refinement for maximal performance. 

! This is generally not recommended unless 

! the problem is known not to require it. 

         If (MY_CASE == 2) D%options%iterRefine = 0 

! This is the solve step.          

         Call cpu_time (TS) 
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         u  = D .ix. w 

         Call cpu_time (TE) 

         Write (*,'(A,I6," is",F6.2," S")') & 

           "Time to solve system of size = ", N * M, TE - TS 

! This is a second solve step using the factorization 

! from the first step. 

         Call cpu_time (TS) 

         u  = D .ix. w 

         Call cpu_time (TE) 

! 

         If(MY_CASE == 1) then 

         Write (*,'(A,I6," is",F6.2," S")') & 

           "Time for a 2nd system of size (iterative refinement) =", & 

            N * M, TE - TS 

         Else 

         Write (*,'(A,I6," is",F6.2," S")') & 

           "Time for a 2nd system of size (without refinement) =", & 

            N * M, TE - TS          

         End if 

! Convert solution vector to a 2D array of values. 

         P = reshape (u , (/ N, M /)) 

         If (MY_CASE == 2) Then 

            pi = dconst ('pi') 

! 

            scale = - 0.5 / pi ** 2 

            Do I = 1, N 

               Do J = 1, M 

! This uses the known form of the solution to compute residuals. 

                  P (I, J) = P (I, J) - scale * f ((I-1)*delx, & 

                 (J-1)*dely, MY_CASE) 

               End Do 

            End Do 

! 

            write (*,*) minval (P), " = min solution error "                   

            write (*,*) maxval (P), " = max solution error "         

         End If 

         Write (*,'(A,1pE12.4/)') "Condition number of matrix", cond (D)  

! Clear all matrix data for next problem case. 

         D = 0 

! 

      End Do ! MY_CASE 

Contains 

      Function f (x, y, MY_CASE) 

      implicit none 

! Define the right-hand side function associated with the 

! "del" operator. 

         Real (Kind(1.d0)) x, y, f, pi 

         Integer MY_CASE 

         if(MY_CASE == 2) THEN 

            pi = dconst ('pi') 

            f = - Sin (pi*x) * Sin (pi*y) 

         Else 

            f = 0.d0 

         End If 

      End Function 

! 

      Function g (x, y, MY_CASE) 
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      implicit none 

! Define the edge values, except along East edge, x = a. 

         Real (Kind(1.d0)) x, y, g 

         Integer MY_CASE 

! Fill in a constant value along each edge. 

         If (MY_CASE == 1 .Or. MY_CASE == 3) Then 

            If (y == 0.d0) Then 

               g = 0.d0 

               Return 

            End If 

            If (y == b) Then 

               g = 1.d0 

               Return 

            End If 

            If (x == 0.d0) Then 

               g = 0.3d0 

               Return 

            End If 

            If (x == a) Then 

               g = 0.7d0 

            End If 

         Else 

            g = 0.d0 

! 

         End If 

! 

      End Function 

End Subroutine 

 

 

Problem Case 1 
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Problem Case 2 

 

Problem Case 3 

Parallel Example  (parallel_ex01.f90) 
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      use linear_operators 

      use mpi_setup_int 

       

      implicit none 

 

! This is the equivalent of Parallel Example 1 for .ix., with box data types 

! and functions. 

 

      integer, parameter :: n=32, nr=4 

      real(kind(1e0)) :: one=1e0 

      real(kind(1e0)), dimension(n,n,nr) :: A, b, x, err(nr) 

 

! Setup for MPI. 

      MP_NPROCS=MP_SETUP() 

      

! Generate random matrices for A and b: 

      A = rand(A); b=rand(b) 

 

! Compute the box solution matrix of Ax = b. 

      x = A .ix. b 

 

! Check the results. 

      err = norm(b - (A .x. x))/(norm(A)*norm(x)+norm(b)) 

      if (ALL(err <= sqrt(epsilon(one))) .and. MP_RANK == 0) & 

        write (*,*) 'Parallel Example 1 is correct.' 

 

! See to any error messages and quit MPI. 

      MP_NPROCS=MP_SETUP('Final') 

  

      end  

.xi. 

 

 

Computes the product of  a matrix or vector  and the inverse of a matrix.  

Operator Return Value 

Matrix containing the product of A and B
-1

.   (Output) 

Required Operands 

A — Right operand matrix or vector. This is an array of rank 1, 2, or 3. It may be real, double, 

complex, or double complex. (Input) 
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B — Left operand matrix. This is an array of rank 2, or 3. It may be real, double, complex, 

double complex, or one of the computational sparse matrix derived types, 

?_hbc_sparse. (Input) 

Optional Variables, Reserved Names 

This operator uses the routines LIN_SOL_GEN or LIN_SOL_LSQ (See Chapter 1, ―Linear 

Systems‖). 

The option and derived type names are given in the following tables: 

 

Option Names for .xi. Option Value 

use_lin_sol_gen_only 1 

use_lin_sol_lsq_only 2 

xi_options_for_lin_sol_gen 3 

xi_options_for_lin_sol_lsq 4 

Skip_error_processing 5 

 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_xinv_options(:) Use when setting options for 

calls hereafter. 

?_options 

?_xinv_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See 

LIN_SOL_GEN and LIN_SOL_LSQ located in Chapter 1, ―Linear Systems‖ for the specific 

options for these routines. 

FORTRAN 90 Interface 

A .xi. B 

Description 

Computes the product of  matrix A and the inverse of matrix B, for square non-singular matrices 

or the corresponding Moore-Penrose generalized inverse matrix for singular square matrices or 

rectangular matrices. The operation may be read  times generalized inverse. The results are in a 

precision and data type that matches the most accurate or complex operand. 

.xi. can be used with either dense or sparse matrices. It is MPI capable for dense matrices only. 

Examples 

Dense Matrix Example 
 

      use linear_operators 

      implicit none 
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      integer, parameter :: n=32 

      real(kind(1e0)) :: one=1.0e0, err 

      real(kind(1e0)), dimension(n,n) :: A, b, x 

 

! Generate random matrices for A and b: 

      A = rand(A); b=rand(b) 

 

! Compute the solution matrix of xA = b. 

      x = b .xi. A 

 

! Check the results. 

      err = norm(b - (x .x. A))/(norm(A)*norm(x)+norm(b)) 

      if (err <= sqrt(epsilon(one))) & 

         write (*,*) 'Example  for .xi. operator is correct.' 

      end 

Sparse Matrix Example 
 

 use wrrrn_int 

 use linear_operators 

 

 type (s_sparse) S 

 type (s_hbc_sparse) H 

 integer, parameter :: N=3 

 real (kind(1.e0)) x(N,N), y(N,N), a(N,N) 

 real (kind(1.e0)) err 

 S = s_entry (1, 1, 2.0)  

 S = s_entry (1, 3, 1.0)  

 S = s_entry (2, 2, 4.0)  

 S = s_entry (3, 3, 6.0)  

 H = S   ! sparse  

 X = H   ! dense equivalent of H 

 A = rand(A) 

 Y = A .xi. H 

  call wrrrn ( 'A', A) 

  call wrrrn ( 'H', X) 

  call wrrrn ( 'A .xi. H', y) 

 

! Check the results.  

     err =  norm(y - (A .xi. X))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Sparse example for .xi. operator is correct.'  

      end if  

 

 end 

Output 
 

               A 

          1        2        3 

 1   0.5926   0.5015   0.5368 

 2   0.4001   0.9529   0.6988 

 3   0.0412   0.0633   0.3821 
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             H 

         1       2       3 

 1   2.000   0.000   1.000 

 2   0.000   4.000   0.000 

 3   0.000   0.000   6.000 

   

           A .xi. H 

          1        2        3 

 1   0.2963   0.1254   0.0401 

 2   0.2001   0.2382   0.0831 

 3   0.0206   0.0158   0.0602 

 Sparse example for .xi. operator is correct. 

Parallel Example 
 

      use linear_operators 

      use mpi_setup_int 

       

      implicit none 

 

! This is the equivalent of Parallel Example 1 for .xi., with box data types 

! and functions. 

 

      integer, parameter :: n=32, nr=4 

      real(kind(1e0)) :: one=1e0 

      real(kind(1e0)), dimension(n,n,nr) :: A, b, x, err(nr) 

 

! Setup for MPI. 

      MP_NPROCS=MP_SETUP() 

      

! Generate random matrices for A and b: 

      A = rand(A); b=rand(b) 

 

! Compute the box solution matrix of xA = b. 

      x = b .xi. A 

 

! Check the results. 

      err = norm(b - (x .x. A))/(norm(A)*norm(x)+norm(b)) 

      if (ALL(err <= sqrt(epsilon(one))) .and. MP_RANK == 0) & 

        write (*,*) 'Parallel Example 1 is correct.' 

 

! See to any error messages and quit MPI. 

      MP_NPROCS=MP_SETUP('Final') 

  

      end  

CHOL 

 

Computes the Cholesky factorization of a positive-definite, symmetric or self-adjoint matrix.  
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Function Return Value 

Matrix containing the Cholesky factorization of A.  The factor is upper triangular, R
T
R = A.  

(Output) 

Required Argument 

A — Matrix to be factored. This argument must be a rank-2 or rank-3 array that contains a 

positive-definite, symmetric or self-adjoint matrix.  It may be real, double, complex, 

double complex. (Input) 

For rank-3 arrays each rank-2 array, (for fixed third subscript), is a positive-definite, 

symmetric or self-adjoint matrix. In this case, the output is a rank-3 array of Cholesky 

factors for the individual problems.  

Optional Arguments, Packaged Options 

This function uses LIN_SOL_SELF (See Chapter 1, ―Linear Systems‖), using the appropriate 

options to obtain the Cholesky factorization. 

The option and derived type names are given in the following tables: 

Option Names for CHOL Option Value 

Use_lin_sol_gen_only 4 

Use_lin_sol_lsq_only 5 

 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_chol_options(:) Use when setting options for 

calls hereafter. 

?_options 

?_chol_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See 

LIN_SOL_SELF located in Chapter 1, ―Linear Systems‖  for the specific options for this 

routine. 

FORTRAN 90 Interface 

CHOL(A) 

Description 

Computes the Cholesky factorization of a positive-definite, symmetric or self-adjoint matrix, A. 

The factor is upper triangular, R
T
R = A. 
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Examples 

Dense Matrix Example  (operator_ex06.f90) 
 

      use linear_operators  

  

      implicit none  

  

! This is the equivalent of Example 2 for LIN_SOL_SELF using operators  

! and functions.  

  

      integer, parameter :: m=64, n=32  

      real(kind(1e0)) :: one=1e0, zero=0e0, err  

      real(kind(1e0)) A(n,n), b(n), C(m,n), d(m), cov(n,n), x(n)  

             

! Generate a random rectangular matrix and right-hand side.  

      C = rand(C); d=rand(d)  

  

! Form the normal equations for the rectangular system.  

      A = C .tx. C; b = C .tx. d  

      COV = .i. CHOL(A); COV = COV .xt. COV  

  

! Compute the least-squares solution.  

       x = C .ix. d  

  

! Compare with solution obtained using the inverse matrix.  

      err = norm(x - (COV .x. b))/norm(cov)  

  

! Scale the inverse to obtain the sample covariance matrix.  

      COV = sum((d - (C .x. x))**2)/(m-n) * COV  

! Check the results.  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 2 for LIN_SOL_SELF (operators) is correct.'  

      end if  

  

      end   

Parallel Example  (parallel_ex06.f90) 
 

      use linear_operators 

      use mpi_setup_int 

 

      implicit none 

 

! This is the equivalent of Parallel Example 6 for box data types, operators 

! and functions. 

 

      integer, parameter :: m=64, n=32, nr=4 

      real(kind(1e0)) :: one=1e0, zero=0e0, err(nr) 

      real(kind(1e0)), dimension(m,n,nr) :: C, d(m,1,nr)  

      real(kind(1e0)), dimension(n,n,nr) :: A, cov 

      real(kind(1e0)), dimension(n,1,nr) :: b, x 

 

! Setup for MPI: 

      mp_nprocs=mp_setup() 
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! Generate a random rectangular matrix and right-hand side. 

      if(mp_rank == 0) then 

         C = rand(C); d=rand(d) 

      endif 

 

! Form the normal equations for the rectangular system. 

      A = C .tx. C; b = C .tx. d 

      COV = .i. CHOL(A); COV = COV .xt. COV 

 

! Compute the least-squares solution. 

       x = C .ix. d 

 

! Compare with solution obtained using the inverse matrix. 

      err = norm(x - (COV .x. b))/norm(cov) 

 

! Check the results. 

      if (ALL(err <= sqrt(epsilon(one))) .and. mp_rank == 0) & 

         write (*,*) 'Parallel Example 6 is correct.' 

       

! See to any eror messages and quit MPI 

      mp_nprocs=mp_setup('Final') 

 

      end 

COND 

 

Computes the condition number of a matrix. 

Function Return Value 

Computes condition number of matrix A.  This is a scalar for the case where A is rank-2 or a 

sparse matrix.  It is a rank-1 array when A is a dense rank-3 array. (Output) 

Required Argument 

A — Matrix for which the condition number is to be computed.  The matrix may be real, 

double, complex, double-complex,  or one of the computational sparse matrix derived 

types, ?_hbc_sparse.  For an array of type real, double, complex, or double-complex 

the array may be of rank-2 or rank-3. 

 For a dense rank-3 array, each rank-2 array section, (for fixed third subscript), is a 

separate problem. In this case, the output is a rank-1 array of condition numbers for 

each problem. (Input) 

Optional Arguments, Packaged Options 

NORM_CHOICE — Integer indicating the type of norm to be used in computing the 

condition number. 
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NORM_CHOICE CONDITION 
Number 

Square Matrix Rectangular Matrix 

Dense Sparse Dense Sparse 

1 L1 Yes Yes No No 

2 (Default)  L2 Yes Yes Yes No 

huge(1) L∞ 
Yes Yes No No 

This function uses LIN_SOL_SVD (see Chapter 1, ―Linear Systems‖). 

The option and derived type names are given in the following tables: 

Option Names for COND Option Value 

?_cond_set_small 1 

?_cond_for_lin_sol_svd 2 

 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_cond_options(:) Use when setting options for 

calls hereafter. 

?_options 

?_cond_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See 

LIN_SOL_SVD located in Chapter 1, ―Linear Systems‖ for the specific options for this routine. 

FORTRAN 90 Interface 

COND (A [,…]) 

Description 

The mathematical definitions of the condition numbers which this routine estimates are:  

 

 

 

1

1

1

1 1 1 1

2 2 2 2

condition number

condition number

condition number

  

  

  

l A A A

l A A A

l A A A












   

 

 

 
 

COND can be used with either dense or sparse matrices as follows: 

 

 Square Matrix Rectangular Matrix 

 Dense Sparse Dense Sparse 

L1 Yes Yes No No 

L2 Yes Yes Yes No 
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L∞ Yes Yes No No 

The generic function  COND can be used with either dense or sparse square matrices.  This function 

uses LIN_SOL_SVD for dense square and rectangular matrices in computing  2 1 / nA s s  . 

The function uses LIN_SOL_GEN for dense square matrices in computing  1 A and  A .  

For sparse square matrices, the values returned for  1 A and  A are provided by the 

SuperLU linear equation solver.  The condition number  2 1 / nA s s  is computed by an 

algorithm that first approximates 1s by computing the singular values of the k k  bidiagonal 

matrix obtained using the Lanczos method found in Golub and Van Loan, Ed. 3, p. 495.  Here k is 

set using the value A%Options%Cond_Iteration_Max, which has the default value of 30.    The 

value
2

ns is obtained using the power method, Golub and Van Loan, p. 330, iterating with the 

inverse matrix  
1

1T TA A A A


  .  For complex matrices
TA is replaced by

H TA A .  The 

dominant eigenvalue of this inverse matrix is
2

ns .  The number of iterations is limited by the 

parameter value k or relative accuracy equal to the cube root of machine epsilon.  Some timing 

tests indicate that computing  2 A for sparse matrices by this algorithm typically requires about 

twice the time as for a single linear solve using the defined operator A .ix. b. 

For computation of  2 A with rectangular sparse matrices one can use a dense matrix 

representation for the matrix.  This is not recommended except for small problem sizes.   For 

overdetermined systems of  sparse least-squares equations Ax b a related square system is given 

by 

00

m m

T
n n

A Ix x b
C

r rA





      
       
         

One can form C , which has more than twice the number of non-zeros as A .  But C  is still sparse.  

One can use the condition number of C as an estimate of the accuracy for the solution vector x and 

the residual vector r .  Note that this version of the condition number is not the same as 

the 2l condition number of A but is relevant to determining the accuracy of the least-squares 

system. 

Examples 

Dense Matrix Example (operator_ex02.f90) 
 

 use wrrrn_int 

 use linear_operators 

 

 integer, parameter :: N=3 

 real (kind(1.e0)) A(N,N) 

http://www.cs.berkeley.edu/~demmel/SuperLU.html
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 real (kind(1.e0))  C1, C2, CINF 

 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/ 

 CINF = COND (A, norm_choice=huge(1)) 

 C1   = COND (A, norm_choice=1) 

 C2   = COND (A) 

 call wrrrn ( 'A', A) 

 write (*,*)  'L1 condition number= ', C1 

 write (*,*)  'L2 condition number= ', C2 

 write (*,*)  'L infinity condition number= ', CINF 

 

 end 

Output 
 

             A 

         1       2       3 

 1   2.000   0.000   0.000 

 2   2.000  -1.000   0.000 

 3  -4.000   2.000   5.000 

 

 L1 condition number=  12.0 

 L2 condition number=  10.405088 

 L infinity condition number=  22.0     

Sparse Matrix Example 
 

 use wrrrn_int 

 use linear_operators 

 

 type (s_sparse) S 

 type (s_hbc_sparse) H 

 integer, parameter :: N=3 

 real (kind(1.e0)) X(N,N) 

 real (kind(1.e0))  C1, C2, CINF 

 S = s_entry (1, 1, 2.0)  

 S = s_entry (2, 1, 2.0)  

 S = s_entry (3, 1, -4.0)  

 S = s_entry (3, 2, 2.0)  

 S = s_entry (2, 2, -1.0)  

 S = s_entry (3, 3, 5.0)  

 H = S   ! sparse  

 X = H   ! dense equivalent of H 

 

 CINF = COND (H, norm_choice=huge(1)) 

 C1   = COND (H, norm_choice=1) 

 C2   = COND (H) 

 call wrrrn ( 'H', X) 

 write (*,*)  'L1 condition number= ', C1 

 write (*,*)  'L2 condition number= ', C2 

 write (*,*)  'L infinity condition number= ', CINF 

 

 end 

Output 
 

             H 



     

     
 

1750  Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY  

     

     

 

         1       2       3 

 1   2.000   0.000   0.000 

 2   2.000  -1.000   0.000 

 3  -4.000   2.000   5.000 

 

 L1 condition number=  12.0 

 L2 condition number=  10.405088 

 L infinity condition number=  22.0 

Parallel Example  (parallel_ex02.f90) 
 

      use linear_operators 

      use mpi_setup_int 

       

      implicit none 

 

! This is the equivalent of Parallel Example 2 for .i. and det() with box  

! data types, operators and functions. 

 

      integer, parameter :: n=32, nr=4 

      integer J 

      real(kind(1e0)) :: one=1e0 

      real(kind(1e0)), dimension(nr) :: err, det_A, det_i 

      real(kind(1e0)), dimension(n,n,nr) :: A, inv, R, S 

 

! Setup for MPI. 

      MP_NPROCS=MP_SETUP() 

! Generate a random matrix. 

      A = rand(A) 

! Compute the matrix inverse and its determinant. 

      inv = .i.A; det_A = det(A) 

! Compute the determinant for the inverse matrix. 

      det_i = det(inv) 

! Check the quality of both left and right inverses. 

      DO J=1,nr; R(:,:,J)=EYE(N); END DO 

  

      S=R; R=R-(A .x. inv); S=S-(inv .x. A) 

      err = (norm(R)+norm(S))/cond(A) 

      if (ALL(err <= sqrt(epsilon(one)) .and. & 

        abs(det_A*det_i - one) <= sqrt(epsilon(one)))& 

       .and. MP_RANK == 0) & 

        write (*,*) 'Parallel Example 2 is correct.' 

 

! See to any error messages and quit MPI. 

      MP_NPROCS=MP_SETUP('Final') 

 

      end 

DET 
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Computes the determinant of a rectangular matrix. 

Function Return Value 

Determinant of matrix A.  This is a scalar for the case where A is rank 2. It is a rank-1 array of 

determinant values for the case where A is rank 3. (Output) 

Required Argument 

A — Matrix for which the determinant is to be computed.  This argument must be a rank-2 or 

rank-3 array that contains a rectangular matrix.  It may be real, double, complex, 

double complex. (Input) 

 

For rank-3 arrays, each rank-2 array (for fixed third subscript), is a separate matrix. In 

this case, the output is a rank-1 array of determinant values for each problem.  

Optional Arguments, Packaged Options 

This function uses LIN_SOL_LSQ (see Chapter 1, ―Linear Systems‖) to compute the QR 

decomposition of A, and the logarithmic value of det(A), which is exponentiated for the 

result. 

The option and derived type names are given in the following tables: 

Option Names for DET Option Value 

?_det_for_lin_sol_lsq 1 

 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_det_options(:) Use when setting options for 
calls hereafter. 

?_options 

?_det_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See 

LIN_SOL_LSQ located in Chapter 1, ―Linear Systems‖ for the specific options for this routine. 

FORTRAN 90 Interface 

DET (A) 

Description 

Computes the determinant of a rectangular matrix, A. The evaluation is based on the QR decompo-

sition, 

0

0 0

k kR
QAP
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and k = rank(A). Thus det(A) = s  det(R) where s = det(Q)  det(P) = ±1. 

Even well-conditioned matrices can have determinants with values that have very large or very 

tiny magnitudes. The values may overflow or underflow. For this class of problems, the use of the 

logarithmic representation of the determinant found in LIN_SOL_GEN or LIN_SOL_LSQ is 

required. 

Examples 

Dense Matrix Example (operator_ex02.f90) 
 

      use linear_operators  

      implicit none  

  

! This is Example 2 for LIN_SOL_GEN using operators and functions.  

  

      integer, parameter :: n=32  

      real(kind(1e0)) :: one=1e0, err, det_A, det_i  

      real(kind(1e0)), dimension(n,n) :: A, inv  

  

! Generate a random matrix.  

      A = rand(A)  

! Compute the matrix inverse and its determinant.  

      inv = .i.A; det_A = det(A)  

! Compute the determinant for the inverse matrix.  

      det_i = det(inv)  

! Check the quality of both left and right inverses.  

      err = (norm(EYE(n)-(A .x. inv))+norm(EYE(n)-(inv.x.A)))/cond(A)  

      if (err <= sqrt(epsilon(one)) .and. abs(det_A*det_i - one) <= &  

                 sqrt(epsilon(one))) &  

      write (*,*) 'Example 2 for LIN_SOL_GEN (operators) is correct.'  

      end   

Parallel Example  (parallel_ex02.f90) 
 

      use linear_operators 

      use mpi_setup_int 

       

      implicit none 

 

! This is the equivalent of Parallel Example 2 for .i. and det() with box  

! data types, operators and functions. 

 

      integer, parameter :: n=32, nr=4 

      integer J 

      real(kind(1e0)) :: one=1e0 

      real(kind(1e0)), dimension(nr) :: err, det_A, det_i 

      real(kind(1e0)), dimension(n,n,nr) :: A, inv, R, S 

 

! Setup for MPI. 

      MP_NPROCS=MP_SETUP() 

! Generate a random matrix. 

      A = rand(A) 

! Compute the matrix inverse and its determinant. 
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      inv = .i.A; det_A = det(A) 

! Compute the determinant for the inverse matrix. 

      det_i = det(inv) 

! Check the quality of both left and right inverses. 

      DO J=1,nr; R(:,:,J)=EYE(N); END DO 

  

      S=R; R=R-(A .x. inv); S=S-(inv .x. A) 

      err = (norm(R)+norm(S))/cond(A) 

      if (ALL(err <= sqrt(epsilon(one)) .and. & 

        abs(det_A*det_i - one) <= sqrt(epsilon(one)))& 

       .and. MP_RANK == 0) & 

        write (*,*) 'Parallel Example 2 is correct.' 

 

! See to any error messages and quit MPI. 

      MP_NPROCS=MP_SETUP('Final') 

 

      end 

DIAG 
Constructs a square diagonal matrix. 

Function Return Value 

Square diagonal matrix of rank-2 if A is rank-1 or rank-3 array if A is rank-2.   (Output) 

Required Argument 

A — This is a rank-1 or rank-2 array of type real, double, complex, or double complex, 

containing the diagonal elements. The output is a rank-2 or rank-3 array, 

respectively. (Input) 

FORTRAN 90 Interface 

DIAG (A) 

Description 

Constructs a square diagonal matrix from a rank-1 array or several diagonal matrices from a rank-

2 array. The dimension of the matrix is the value of the size of the rank-1 array. 

The use of DIAG may be obviated by observing that the defined operations C = diag(x) .x. A 

or D = B .x. diag(x) are respectively the array operations C = spread(x, 

DIM=1,NCOPIES=size(A,1))*A, and D = B*spread(x,DIM=2,NCOPIES=size(B,2)). 

These array products are not as easy to read as the defined operations using DIAG and matrix 

multiply, but their use results in a more efficient code.  

Examples 

Dense Matrix Example (operator_ex13.f90) 
 

      use linear_operators  
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      implicit none  

  

! This is the equivalent of Example 1 for LIN_SOL_SVD using operators  

! and functions.  

      integer, parameter :: m=128, n=32  

      real(kind(1d0)) :: one=1d0, err  

      real(kind(1d0)) A(m,n), b(m), x(n), U(m,m), V(n,n), S(n), g(m)  

  

! Generate a random matrix and right-hand side.  

      A = rand(A); b = rand(b)  

  

! Compute the least-squares solution matrix of Ax=b.  

      S = SVD(A, U = U, V = V)  

      g = U .tx. b; x = V .x. diag(one/S) .x. g(1:n)  

  

! Check the results.  

      err = norm(A .tx. (b - (A .x. x)))/(norm(A)+norm(x))  

      if (err <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 1 for LIN_SOL_SVD (operators) is correct.'  

      end if  

  

      end   

DIAGONALS 
Extracts the diagonal terms of a matrix. 

Function Return Value 

Array containing the diagonal terms of matrix A.  It is rank-1 or rank-2 depending on the rank 

of A. When A  is a rank-3 array, the result is a rank-2 array consisting of each separate set of 

diagonals. (Output) 

Required Argument 

A — Matrix from which to extract the diagonal. This is a rank-2 or rank-3 array of type real, 

double, complex, or double complex. The output is a rank-1 or rank-2 array, 

respectively. (Input) 

FORTRAN 90 Interface 

DIAGONALS (A) 

Description 

Extracts a rank-1 array whose values are the diagonal terms of the rank-2 array A. The size of the 

array is the smaller of the two dimensions of the rank-2 array.  
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Examples 

Dense Matrix Example  (operator_ex32.f90) 
 

      use linear_operators   

      implicit none  

! This is the equivalent of Example 4 (using operators) for LIN_EIG_GEN.  

  

      integer, parameter :: n=17  

      real(kind(1d0)), parameter :: one=1d0  

      real(kind(1d0)), dimension(n,n) :: A, C  

      real(kind(1d0)) variation(n), eta  

      complex(kind(1d0)), dimension(n,n) :: U, V, e(n), d(n)  

  

! Generate a random matrix.  

      A = rand(A)  

  

! Compute the eigenvalues, left- and right- eigenvectors.  

      D = EIG(A, W=V); E = EIG(.t.A, W=U)  

  

! Compute condition numbers and variations of eigenvalues.  

      variation = norm(A)/abs(diagonals( U .hx. V))  

  

! Now perturb the data in the matrix by the relative factors   

! eta=sqrt(epsilon) and solve for values again.  Check the   

! differences compared to the estimates.  They should not exceed   

! the bounds.  

      eta = sqrt(epsilon(one))  

      C = A + eta*(2*rand(A)-1)*A  

      D = EIG(C)  

  

! Looking at the differences of absolute values accounts for   

! switching signs on the imaginary parts.  

      if (count(abs(d)-abs(e) > eta*variation) == 0) then  

         write (*,*) 'Example 4 for LIN_EIG_GEN (operators) is correct.'  

      end if  

      end   

EIG 

 

Computes the eigenvalue-eigenvector decomposition of an ordinary or generalized eigenvalue 

problem. 

Function Return Value 

Rank-1 or rank-2 complex array of eigenvalues.   (Output) 
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Required Argument 

A — Matrix for which the eigenexpansion is to be computed. This is a square rank-2 array or 

a rank-3 array with square first rank-2 sections of type single, double, complex, or 

double complex.  (Input) 

Optional Arguments, Packaged Options 

B — Matrix B for the generalized problem, Ax = eBx.  B must be the same type as A. (Input) 

D — Array containing the real diagonal matrix factors of the generalized eigenvalues. 

(Output) 

V — Array of real eigenvectors for both the ordinary and generalized problem. Used only for 

the generalized problem when matrix B is singular.  (Output) 

W — Array of complex eigenvectors for both the ordinary and generalized problem. Do not 

use optional argument V when W is present. (Output) 

 

This function uses LIN_EIG_SELF, LIN_EIG_GEN, and LIN_GEIG_GEN to compute the 

decompositions. See Chapter 2, ―Eigensystem Analysis‖. 

The option and derived type names are given in the following tables: 

Option Names for EIG Option Value 

Options_for_lin_eig_self 1 

Options_for_lin_eig_gen 2 

Options_for_lin_geig_gen 3 

Skip_error_processing 5 

 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_eig_options(:) Use when setting options for 

calls hereafter. 

?_options 

?_eig_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See 

LIN_EIG_SELF, LIN_EIG_GEN, and LIN_GEIG_GEN located in Chapter 2, ―Eigensystems 

Analysis‖  for the specific options for these routines.  

FORTRAN 90 Interface 

EIG (A [,…] ) 
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Description 

Computes the eigenvalue-eigenvector decomposition of an ordinary or generalized eigenvalue 

problem. 

For the ordinary eigenvalue problem, Ax = ex, the optional input ―B=‖ is not used. With the 

generalized problem, Ax = eBx, the matrix B is passed as the array in the right-side of ―B=‖. The 

optional output  ―D=‖ is an array required only for the generalized problem and then only when 

the matrix B is singular. 

The array of real eigenvectors is an optional output for both the ordinary and the generalized 

problem. It is used as ―V=‖ where the right-side array will contain the eigenvectors. If any 

eigenvectors are complex, the optional output ―W=‖ must be present. In that case ―V=‖ should not 

be used. 

Examples 

Dense Matrix Example 1 (operator_ex26.f90) 
 

      use linear_operators  

  

      implicit none  

  

! This is the equivalent of Example 2 (using operators) for LIN_EIG_SELF.  

  

      integer, parameter :: n=8  

      real(kind(1e0)), parameter :: one=1e0  

      real(kind(1e0)), dimension(n,n) :: A, d(n), v_s  

  

! Generate a random self-adjoint matrix.  

      A = rand(A); A = A + .t.A  

  

! Compute the eigenvalues and eigenvectors.  

      D = EIG(A,V=v_s)  

  

! Check the results for small residuals.  

      if (norm((A .x. v_s) - (v_s .x. diag(D)))/abs(d(1)) <= &  

             sqrt(epsilon(one))) then  

         write (*,*) 'Example 2 for LIN_EIG_SELF (operators) is correct.'  

      end if  

  

      end  

Dense Matrix Example 2 (operator_ex33.f90) 
 

      use linear_operators  

  

      implicit none  

  

! This is the equivalent of Example 1 (using operators) for LIN_GEIG_GEN.  

  

      integer, parameter :: n=32  

      real(kind(1d0)), parameter :: one=1d0  

      real(kind(1d0)) A(n,n), B(n,n), bta(n), beta_t(n), err  

      complex(kind(1d0)) alpha(n), alpha_t(n), V(n,n)  
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! Generate random matrices for both A and B.  

      A = rand(A); B = rand(B)  

  

! Compute the generalized eigenvalues.  

      alpha = EIG(A, B=B, D=bta)  

  

! Compute the full decomposition once again, A*V = B*V*values,  

! and check for any error messages.  

      alpha_t = EIG(A, B=B, D=beta_t, W = V)  

  

! Use values from the first decomposition, vectors from the   

! second decomposition, and check for small residuals.  

      err = norm((A .x. V .x. diag(bta)) - (B .x. V .x. diag(alpha)),1)/&  

            (norm(A,1)*norm(bta,1) + norm(B,1)*norm(alpha,1))  

      if (err  <= sqrt(epsilon(one))) then  

         write (*,*) 'Example 1 for LIN_GEIG_GEN (operators) is correct.'  

      end if  

  

      end   

Parallel Example (parallel_ex04.f90) 

Here an alternate node is used to compute the majority of a single application, and the user does 

not need to make any explicit calls to MPI routines.  The time-consuming parts are the evaluation 

of  the eigenvalue-eigenvector expansion, the solving step, and the residuals.  To do this, the rank-

2 arrays are changed to a box data type with a unit third dimension.  This uses parallel computing.  

The node priority order is established by the initial function call, MP_SETUP(n). The root is 

restricted from working on the box data type by assigning MPI_ROOT_WORKS=.false. This 

example anticipates that the most efficient node, other than the root, will perform the heavy 

computing.  Two nodes are required to execute. 
 

      use linear_operators 

      use mpi_setup_int 

 

      implicit none 

 

! This is the equivalent of Parallel Example 4 for matrix exponential. 

! The box dimension has a single rack.        

      integer, parameter :: n=32, k=128, nr=1 

      integer i 

      real(kind(1e0)), parameter :: one=1e0, t_max=one, delta_t=t_max/(k-1) 

      real(kind(1e0)) err(nr), sizes(nr), A(n,n,nr) 

      real(kind(1e0)) t(k), y(n,k,nr), y_prime(n,k,nr) 

      complex(kind(1e0)), dimension(n,nr) :: x(n,n,nr), z_0, & 

        Z_1(n,nr,nr), y_0, d 

 

! Setup for MPI.  Establish a node priority order. 

! Restrict the root from significant computing. 

! Illustrates using the 'best' performing node that 

! is not the root for a single task. 

      MP_NPROCS=MP_SETUP(n) 

 

      MPI_ROOT_WORKS=.false. 
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! Generate a random coefficient matrix. 

      A = rand(A) 

 

! Compute the eigenvalue-eigenvector decomposition 

! of the system coefficient matrix on an alternate node. 

      D = EIG(A, W=X) 

 

! Generate a random initial value for the ODE system. 

      y_0 = rand(y_0) 

 

! Solve complex data system that transforms the initial  

! values, X z_0=y_0.   

 

      z_1= X .ix. y_0 ; z_0(:,nr) = z_1(:,nr,nr) 

 

! The grid of points where a solution is computed: 

      t = (/(i*delta_t,i=0,k-1)/) 

 

 

! Compute y and y' at the values t(1:k). 

! With the eigenvalue-eigenvector decomposition AX = XD, this 

! is an evaluation of EXP(A t)y_0 = y(t). 

      y = X .x.exp(spread(d(:,nr),2,k)*spread(t,1,n))*spread(z_0(:,nr),2,k) 

 

! This is y', derived by differentiating y(t). 

      y_prime  = X .x. & 

spread(d(:,nr),2,k)*exp(spread(d(:,nr),2,k)*spread(t,1,n))* & 

                spread(z_0(:,nr),2,k) 

 

! Check results. Is  y' - Ay = 0? 

      err = norm(y_prime-(A .x. y)) 

      sizes=norm(y_prime)+norm(A)*norm(y) 

      if (ALL(err <= sqrt(epsilon(one))*sizes) .and. MP_RANK == 0) & 

        write (*,*) 'Parallel Example 4 is correct.' 

      

! See to any error messages and quit MPI. 

      MP_NPROCS=MP_SETUP('Final') 

       

      end  

EYE 
Creates the identity matrix. 

Function Return Value 

Identity matrix of size N x N and type real .   (Output) 

Required Argument 

N — Size of output identity matrix.  (Input) 
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FORTRAN 90 Interface 

EYE (N) 

Description 

Creates a rank-2 square array whose diagonals are all the value one. The off-diagonals all have 

value zero. 

Examples 

Dense Matrix Example (operator_ex07.f90) 
 

      use linear_operators  

  

      implicit none  

  

! This is the equivalent of Example 3 (using operators) for LIN_SOL_SELF.  

  

      integer tries  

      integer, parameter :: m=8, n=4, k=2  

      integer ipivots(n+1)  

      real(kind(1d0)) :: one=1.0d0, err  

      real(kind(1d0)) a(n,n), b(n,1), c(m,n), x(n,1), &  

             e(n), ATEMP(n,n)  

      type(d_options) :: iopti(4)  

  

! Generate a random rectangular matrix.  

      C = rand(C)  

  

! Generate a random right hand side for use in the inverse   

! iteration.  

      b = rand(b)  

  

! Compute the positive definite matrix.  

      A = C .tx. C; A = (A+.t.A)/2  

  

! Obtain just the eigenvalues.  

      E = EIG(A)  

  

! Use packaged option to reset the value of a small diagonal.  

      iopti(4) = 0  

      iopti(1) = d_options(d_lin_sol_self_set_small,&  

                 epsilon(one)*abs(E(1)))  

  

! Use packaged option to save the factorization.  

      iopti(2) = d_lin_sol_self_save_factors  

  

! Suppress error messages and stopping due to singularity   

! of the matrix, which is expected.  

      iopti(3) = d_lin_sol_self_no_sing_mess  

  

      ATEMP = A  
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! Compute A-eigenvalue*I as the coefficient matrix.  

! Use eigenvalue number k.  

      A = A - e(k)*EYE(n)       

  

      do tries=1,2  

         call lin_sol_self(A, b, x, &  

                     pivots=ipivots, iopt=iopti)  

! When code is re-entered, the already computed factorization   

! is used.  

         iopti(4) = d_lin_sol_self_solve_A  

  

! Reset right-hand side in the direction of the eigenvector.  

         B = UNIT(x)  

      end do  

  

! Normalize the eigenvector.  

      x = UNIT(x)  

  

! Check the results.  

      b=ATEMP .x. x  

      err =  dot_product(x(1:n,1), b(1:n,1)) - e(k)  

  

! If any result is not accurate, quit with no printing.  

      if (abs(err) <= sqrt(epsilon(one))*E(1)) then  

        write (*,*) 'Example 3 for LIN_SOL_SELF (operators) is correct.'  

      end if  

  

      end   

FFT 
Computes the Discrete Fourier Transform of one complex sequence. 

Function Return Value 

Complex array containing the Discrete Fourier Transform of X .  The result is the complex 

array of the same shape and rank as X. (Output) 

Required Argument 

X — Array containing the sequence for which the transform is to be computed. X is an 

assumed shape complex array of rank 1, 2 or 3. If X is real or double, it is converted to 

complex internally prior to the computation. (Input) 

Optional Arguments, Packaged Options 

WORK — A COMPLEX array of the same precision as the data.  For rank-1 transforms the 

size of WORK is n+15.  To define this array for each problem, set WORK(1) = 0. Each 

additional rank adds the dimension of the transform plus 15.  Using the optional 

argument WORK increases the efficiency of the transform.   

The option and derived type names are given in the following tables: 
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Option Names for FFT Option Value 

Options_for_fast_dft            1 

 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_fft_options(:) Use when setting options for 
calls hereafter. 

?_options 

?_fft_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See 

FAST_DFT located in Chapter 6, ―Transforms‖  for the specific options for this routine.  

FORTRAN 90 Interface 

FFT (X [,…] ) 

Description 

Computes the Discrete Fourier Transform of a complex sequence.  This function uses FAST_DFT, 

FAST_2DFT, and FAST_3DFT from Chapter 6. 

Examples (operator_ex37.f90) 
 

      use rand_gen_int 

      use fft_int 

      use ifft_int 

      use linear_operators 

 

      implicit none 

 

! This is Example 4 for FAST_DFT (using operators). 

 

      integer j 

      integer, parameter :: n=40 

      real(kind(1e0)) :: err, one=1e0 

      real(kind(1e0)), dimension(n) :: a, b, c, yy(n,n) 

      complex(kind(1e0)), dimension(n) ::  f, fa, fb 

  

! Generate two random periodic sequences 'a' and 'b'. 

      a=rand(a); b=rand(b) 

  

! Compute the convolution 'c' of 'a' and 'b'.  

      yy(1:,1)=b 

      do j=2,n 

        yy(2:,j)=yy(1:n-1,j-1) 

        yy(1,j)=yy(n,j-1) 

      end do 

 

      c=yy .x. a 
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! Compute f=inverse(transform(a)*transform(b)). 

      fa = fft(a) 

      fb = fft(b) 

      f=ifft(fa*fb) 

  

! Check the Convolution Theorem: 

! inverse(transform(a)*transform(b)) = convolution(a,b). 

      err = norm(c-f)/norm(c) 

      if (err <= sqrt(epsilon(one))) then 

         write (*,*) 'Example 4 for FAST_DFT (operators) is correct.' 

      end if 

 

      end 

FFT_BOX 

 

Computes the Discrete Fourier Transform of several complex or real sequences. 

Function Return Value 

Complex array containing the Discrete Fourier Transform of the sequences in X .  If X is an 

assumed shape complex array of rank 2, 3 or 4, the result is a complex array of the same 

shape and rank consisting of the DFT for each of the last rank‘s indices.  (Output) 

Required Argument 

X — Box containing the sequences for which the transform is to be computed.  X is an 

assumed shape complex array of rank 2, 3 or 4.  If X is real or double, it is converted to 

complex internally prior to the computation. (Input) 

Optional Arguments, Packaged Options 

WORK — A COMPLEX array of the same precision as the data.  For rank-1 transforms the 

size of WORK is n+15.  To define this array for each problem, set WORK(1) = 0. Each 

additional rank adds the dimension of the transform plus 15.  Using the optional 

argument WORK increases the efficiency of the transform 

The option and derived type names are given in the following tables: 

Option Names for FFT Option Value 

Options_for_fast_dft            1 
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Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_fft_box_options(:) Use when setting options for 

calls hereafter. 

?_options 

?_fft_box_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See 

FAST_DFT located in Chapter 6, ―Transforms‖  for the specific options for this routine. 

FORTRAN 90 Interface 

FFT_BOX (X [,…]) 

Description 

Computes the Discrete Fourier Transform of a box of complex sequences.  This function uses 

FAST_DFT, FAST_2DFT, and FAST_3DFT from Chapter 6. 

Examples 

Parallel Example 
 

      use rand_gen_int 

      use fft_box_int 

      use ifft_box_int 

      use linear_operators 

      use mpi_setup_int 

 

      implicit none 

 

! This is FFT_BOX example. 

 

      integer i,j 

      integer, parameter :: n=40, nr=4 

      real(kind(1e0)) :: err(nr), one=1e0 

      real(kind(1e0)) :: a(n,1,nr), b(n,nr), c(n,1,nr), yy(n,n,nr) 

      complex(kind(1e0)), dimension(n,nr) :: f, fa, fb, cc, aa 

 

      real(kind(1e0)),parameter::zero_par=0.e0 

      real(kind(1e0))::dummy_par(0) 

      integer iseed_par 

      type(s_options)::iopti_par(2) 

 

 

! setup for MPI 

      MP_NPROCS = MP_SETUP() 

 

! Set Random Number generator seed 

 

      iseed_par = 53976279 

      iopti_par(1)=s_options(s_rand_gen_generator_seed,zero_par) 
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      iopti_par(2)=s_options(iseed_par,zero_par) 

 

      call rand_gen(dummy_par,iopt=iopti_par) 

  

! Generate two random periodic sequences 'a' and 'b'. 

      a=rand(a); b=rand(b) 

  

! Compute the convolution 'c' of 'a' and 'b'.  

     do i=1,nr 

      aa(1:,i) = a(1:,1,i) 

      yy(1:,1,i)=b(1:,i) 

      do j=2,n 

        yy(2:,j,i)=yy(1:n-1,j-1,i) 

        yy(1,j,i)=yy(n,j-1,i) 

      end do 

     end do 

 

      c=yy .x. a 

 

! Compute f=inverse(transform(a)*transform(b)). 

      fa = fft_box(aa) 

      fb = fft_box(b) 

      f=ifft_box(fa*fb) 

  

! Check the Convolution Theorem: 

! inverse(transform(a)*transform(b)) = convolution(a,b). 

      do i=1,nr 

       cc(1:,i) = c(1:,1,i) 

      end do 

      err = norm(cc-f)/norm(cc) 

      if (ALL(err <= sqrt(epsilon(one))) .AND. MP_RANK == 0) then 

         write (*,*) 'FFT_BOX is correct.' 

      end if 

 

       MP_NPROCS = MP_SETUP('Final') 

      end 

IFFT 
Computes the inverse of the Discrete Fourier Transform of one complex sequence. 

Function Return Value 

Complex array containing the inverse of the Discrete Fourier Transform of X. The result is the 

complex array of the same shape and rank as X. (Output) 

Required Argument 

X — Array containing the sequence for which the inverse transform is to be computed.  X is 

an assumed shape complex array of rank 1, 2 or 3. If X is real or double, it is converted 

to complex internally prior to the computation. (Input) 



     

     
 

1766  Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY  

     

     

 

Optional Arguments, Packaged Options 

WORK — a COMPLEX array of the same precision as the data.  For rank-1 transforms the size 

of WORK is n+15.  To define this array for each problem, set WORK(1) = 0. Each 

additional rank adds the dimension of the transform plus 15.  Using the optional 

argument WORK increases the efficiency of the transform.   

The option and derived type names are given in the following tables: 

Option Name for IFFT Option Value 

options_for_fast_dft 1 

 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_ifft_options(:) Use when setting options for 

calls hereafter. 

?_options 

?_ifft_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See 

FAST_DFT located in Chapter 6, ―Transforms‖  for the specific options for this routine. 

FORTRAN 90 Interface 

IFFT (X [,…]) 

Description 

Computes the inverse of  the Discrete Fourier Transform of a complex sequence.  This function 

uses FAST_DFT, FAST_2DFT, and FAST_3DFT from Chapter 6. 

Example (operator_ex37.f90) 
 

      use rand_gen_int 

      use fft_int 

      use ifft_int 

      use linear_operators 

 

      implicit none 

 

! This is the equivalent of Example 4 for FAST_DFT (using operators). 

 

      integer j 

      integer, parameter :: n=40 

      real(kind(1e0)) :: err, one=1e0 

      real(kind(1e0)), dimension(n) :: a, b, c, yy(n,n) 

      complex(kind(1e0)), dimension(n) ::  f, fa, fb 

  

! Generate two random periodic sequences 'a' and 'b'. 

      a=rand(a); b=rand(b) 
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! Compute the convolution 'c' of 'a' and 'b'.  

      yy(1:,1)=b 

      do j=2,n 

        yy(2:,j)=yy(1:n-1,j-1) 

        yy(1,j)=yy(n,j-1) 

      end do 

 

      c=yy .x. a 

 

! Compute f=inverse(transform(a)*transform(b)). 

      fa = fft(a) 

      fb = fft(b) 

      f=ifft(fa*fb) 

  

! Check the Convolution Theorem: 

! inverse(transform(a)*transform(b)) = convolution(a,b). 

      err = norm(c-f)/norm(c) 

      if (err <= sqrt(epsilon(one))) then 

         write (*,*) 'Example 4 for FAST_DFT (operators) is correct.' 

      end if 

 

      end 

IFFT_BOX 

 

Computes the inverse Discrete Fourier Transform of several complex or real sequences. 

Function Return Value 

Complex array containing the inverse of the Discrete Fourier Transform of the sequences in X.  

If X is an assumed shape complex array of rank 2, 3 or 4, the result is a complex array of the 

same shape and rank consisting of the inverse DFT for each of the last rank‘s indices.  

(Output) 

Required Argument 

X — Box containing the sequences for which the inverse transform is to be computed.  X is 

an assumed shape complex array of rank 2, 3 or 4.  If X is real or double, it is converted 

to complex internally prior to the computation. (Input) 

Optional Arguments, Packaged Options 

WORK — A COMPLEX array of the same precision as the data.  For rank-1 transforms the 

size of  WORK is n+15.  To define this array for each problem, set WORK(1) = 0. Each 

additional rank adds the dimension of the transform plus 15. Using the optional 

argument WORK increases the efficiency of the transform.  
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The option and derived type names are given in the following tables: 

Option Names for IFFT Option Value 

Options_for_fast_dft 1 

 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_ifft_box_options(:) Use when setting options for 

calls hereafter. 

?_options 

?_ifft_box_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See 

FAST_DFT located in Chapter 6, ―Transforms‖  for the specific options for this routine. 

FORTRAN 90 Interface 

IFFT_BOX (X [,…]) 

Description 

Computes the inverse of the Discrete Fourier Transform of a box of complex sequences.  This 

function uses FAST_DFT, FAST_2DFT, and FAST_3DFT from Chapter 6. 

Parallel Example 
 

      use rand_gen_int 

      use fft_box_int 

      use ifft_box_int 

      use linear_operators 

      use mpi_setup_int 

 

      implicit none 

 

! This is FFT_BOX example. 

 

      integer i,j 

      integer, parameter :: n=40, nr=4 

      real(kind(1e0)) :: err(nr), one=1e0 

      real(kind(1e0)) :: a(n,1,nr), b(n,nr), c(n,1,nr), yy(n,n,nr) 

      complex(kind(1e0)), dimension(n,nr) :: f, fa, fb, cc, aa 

 

      real(kind(1e0)),parameter::zero_par=0.e0 

      real(kind(1e0))::dummy_par(0) 

      integer iseed_par 

      type(s_options)::iopti_par(2) 

 

 

! setup for MPI 

      MP_NPROCS = MP_SETUP() 



 

 

IMSL MATH LIBRARY Chapter 10: Linear Algebra Operators and Generic Functions  1769 

     

     

 

 

! Set Random Number generator seed 

 

      iseed_par = 53976279 

      iopti_par(1)=s_options(s_rand_gen_generator_seed,zero_par) 

      iopti_par(2)=s_options(iseed_par,zero_par) 

 

      call rand_gen(dummy_par,iopt=iopti_par) 

  

! Generate two random periodic sequences 'a' and 'b'. 

      a=rand(a); b=rand(b) 

  

! Compute the convolution 'c' of 'a' and 'b'.  

     do i=1,nr 

      aa(1:,i) = a(1:,1,i) 

      yy(1:,1,i)=b(1:,i) 

      do j=2,n 

        yy(2:,j,i)=yy(1:n-1,j-1,i) 

        yy(1,j,i)=yy(n,j-1,i) 

      end do 

     end do 

 

      c=yy .x. a 

 

! Compute f=inverse(transform(a)*transform(b)). 

      fa = fft_box(aa) 

      fb = fft_box(b) 

      f=ifft_box(fa*fb) 

  

! Check the Convolution Theorem: 

! inverse(transform(a)*transform(b)) = convolution(a,b). 

      do i=1,nr 

       cc(1:,i) = c(1:,1,i) 

      end do 

      err = norm(cc-f)/norm(cc) 

      if (ALL(err <= sqrt(epsilon(one))) .AND. MP_RANK == 0) then 

         write (*,*) 'FFT_BOX is correct.' 

      end if 

 

       MP_NPROCS = MP_SETUP('Final') 

      end 

isNaN 
Tests for NaN. 

Function Return Value 

Logical indicating whether or not A contains NaN. The output value tests .true. only if 

there is at least one NaN in the scalar or array.   (Output) 

Required Argument 

A — The argument can be a scalar or array of rank-1, rank-2 or rank-3. The values can be any 

of the four intrinsic floating-point types. (Input) 



     

     
 

1770  Chapter 10: Linear Algebra Operators and Generic Functions IMSL MATH LIBRARY  

     

     

 

FORTRAN 90 Interface 

isNaN( A) 

Description 

This is a generic logical function used to test scalars or arrays for occurrence of an IEEE 754 

Standard format of floating point (ANSI/IEEE 1985) NaN, or not-a-number. Either quiet or 

signaling NaNs are detected without an exception occurring in the test itself. The individual array 

entries are each examined, with bit manipulation, until the first NaN is located. For non-IEEE 

formats, the bit pattern tested for single precision is transfer(not(0),1). For double 

precision numbers x, the bit pattern tested is equivalent to assigning the integer array  

i(1:2) = not(0), then testing this array with the bit pattern of the integer array 

transfer(x,i). This function is likely to be required whenever there is the possibility that a 

subroutine blocked the output with NaNs in the presence of an error condition. 

Example 
 

      use isnan_int 

      implicit none 

 

! This is the equivalent of Example 1 for NaN. 

      integer, parameter :: n=3 

      real(kind(1e0)) A(n,n); real(kind(1d0)) B(n,n) 

      real(kind(1e0)), external :: s_NaN 

      real(kind(1d0)), external :: d_NaN 

 

! Assign NaNs to both A and B: 

      A = s_Nan(1e0); B = d_Nan(1d0) 

 

! Check that NaNs are noted in both A and B: 

      if (isNan(A) .and. isNan(B)) then 

         write (*,*) 'Example 1 for NaN is correct.' 

      end if 

 

      end 

NaN 
Returns the value for NaN. 

Function Return Value 

Returns, as a scalar, a value corresponding to the IEEE 754 Standard format of floating point 

(ANSI/IEEE 1985) for NaN. For other floating point formats a special pattern is returned that 

tests .true. using the function isNaN. (Output) 

Required Argument 

X — Scalar value of the same type and precision as the desired result, NaN. This input value 

is used only to match the type of output. (Input) 
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FORTRAN 90 Interface 

NaN (A) 

Description 

NaN returns, as a scalar, a value corresponding to the IEEE 754 Standard format of floating point 

(ANSI/IEEE 1985) for NaN.  

The bit pattern used for single precision is transfer (not(0),1).  For double precision, the bit 

pattern for single precision is replicated by assigning the temporary integer array  

i(1:2) = not(0), and then using the double-precision bit pattern transfer(i,x) for the 

output value. 

Example  

Arrays are assigned all NaN values, using single and double-precision formats. These are tested 

using the logical function routine, isNaN. 
 

      use isnan_int  

  

      implicit none  

  

! This is the equivalent of Example 1 for NaN.  

      integer, parameter :: n=3  

      real(kind(1e0)) A(n,n); real(kind(1d0)) B(n,n)  

      real(kind(1e0)), external :: s_NaN  

      real(kind(1d0)), external :: d_NaN  

  

! Assign NaNs to both A and B:  

      A = s_Nan(1e0); B = d_Nan(1d0)  

  

! Check that NaNs are noted in both A and B:  

      if (isNan(A) .and. isNan(B)) then  

 

 

         write (*,*) 'Example 1 for NaN is correct.'  

      end if  

  

      end 

NORM 

 

Computes the norm of an array.  

Function Return Value 

Norm of A.  This is a scalar for the case where A is rank 1 or rank 2. For rank-3 arrays, the 

norms of each rank-2 array, in dimension 3, are computed.   (Output) 
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Required Argument 

A — An array of rank-1, rank-2, or rank-3, containing the values for which the norm is to be 

computed. It may be real, double, complex, or double complex. (Input)  

Optional Arguments, Packaged Options 

TYPE —Integer indicating the type of norm to be computed.  

1 = 1l  

2 =  2l     (default) 

huge(1) = l  

 Use of the option number ?_reset_default_norm will switch the default from the 

2l  to the 1 or l l  norms. (Input) 

The option and derived type names are given in the following tables: 

Option Names for NORM Option Value 

?_norm_for_lin_sol_svd 1 

?_reset_default_norm 2 

 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_norm_options(:) Use when setting options for 
calls hereafter. 

?_options 

?_norm_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See 

LIN_SOL_SVD located in Chapter 1, ―Linear Systems‖  for the specific options for this 

routine. 

FORTRAN 90 Interface 

NORM (A [,…]) 

Description 

Computes the 2l , 1 or l l  norm. The 1 and l l  norms are likely to be less expensive to 

compute than the l2 norm.  
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If the 2l  norm is required, this function uses LIN_SOL_SVD (see Chapter 1, ―Linear Systems‖), to 

compute the largest singular value of A. For the other norms, Fortran 90 intrinsics are used.  

Examples 
 

Compute three norms of an array  

 

use norm_int 

 real (kind(1e0)) A(5), n_1, n_2, n_inf 

 A = rand (A) 

! I1 

 n_1 = norm(A, TYPE=1) 

 write (*,*) n_1 

! I2 

 n_2 = norm(A) 

 write (*,*) n_2 

! I infinity 

 n_inf = norm(A, TYPE=huge(1)) 

 write (*,*) n_inf 

 end 

Parallel Example (parallel_ex14.f90) 

A ―Polar Decomposition‖ of several matrices are computed.  The box data type and the SVD() 

function are used.  Orthogonality and small residuals are checked to verify that the results are 

correct. 
 

      use linear_operators 

      use mpi_setup_int 

      implicit none 

 

! This is Parallel Example 15 using operators and  

! functions for a polar decomposition. 

      integer, parameter :: n=33, nr=3 

      real(kind(1d0)) :: one=1d0, zero=0d0 

      real(kind(1d0)),dimension(n,n,nr) :: A, P, Q, & 

             S_D(n,nr), U_D, V_D 

      real(kind(1d0)) TEMP1(nr), TEMP2(nr) 

 

! Setup for MPI: 

      mp_nprocs = mp_setup() 

 

! Generate a random matrix. 

      if(mp_rank == 0) A = rand(A) 
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! Compute the singular value decomposition. 

      S_D = SVD(A, U=U_D, V=V_D) 

 

! Compute the (left) orthogonal factor. 

      P = U_D .xt. V_D 

 

! Compute the (right) self-adjoint factor. 

      Q = V_D .x. diag(S_D) .xt. V_D 

! Check the results for orthogonality and  

! small residuals. 

      TEMP1 = NORM(spread(EYE(n),3,nr) - (p .xt. p)) 

      TEMP2 = NORM(A -(P .X. Q)) / NORM(A) 

      if (ALL(TEMP1 <= sqrt(epsilon(one))) .and. & 

          ALL(TEMP2 <= sqrt(epsilon(one)))) then 

            if(mp_rank == 0)& 

            write (*,*) 'Parallel Example 15 is correct.' 

      end if 

  

! See to any error messages and exit MPI. 

      mp_nprocs = mp_setup('Final') 

 

      end  

ORTH 

 

Orthogonalizes the columns of a matrix.  

Function Return Value 

Orthogonal matrix Q from the decomposition A=QR. If A is rank-3, Q is rank-3.  (Output) 

Required Argument 

A — Matrix A to be decomposed. Must be an array of rank-2 or rank-3 (box data) of type real, 

double, complex, or double complex. (Input) 

Optional Arguments, Packaged Options 

R — Upper-triangular or upper trapezoidal matrix R, from the QR decomposition. If this 

optional argument is present, the decomposition is complete. If A is rank-3, R is rank-3.  

(Output) 

The option and derived type names are given in the following tables: 

Option Name for ORTH Option Value 

Skip_error_processing 5 
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Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_orth_options(:) Use when setting options for 

calls hereafter. 

?_options 

?_orth_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  

FORTRAN 90 Interface 

ORTH (A [,…]) 

Description 

Orthogonalizes the columns of a matrix. The decomposition A = QR is computed using a forward 

and backward sweep of the Modified Gram-Schmidt algorithm. 

Examples  

(Operator_ex19.f90) 
 

use linear_operators  

      use lin_sol_tri_int  

      use rand_int   

      use Numerical_Libraries  

  

      implicit none  

  

! This is the equivalent of Example 3 (using operators) for LIN_SOL_TRI.  

  

      integer i, nopt  

      integer, parameter :: n=128, k=n/4, ncoda=1, lda=2  

      real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0  

      real(kind(1e0)) A(lda,n), EVAL(k)  

      type(s_options) :: iopt(2)  

      real(kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &  

           b_t(2*n,k), y_t(2*n,k), eval_t(k), res(n,k)  

      logical small  

  

! This flag is used to get the k largest eigenvalues.  

      small = .false.  

  

! Generate the main diagonal and the co-diagonal of the   

! tridiagonal matrix.    

      b=rand(b); d=rand(d)  

      A(1,1:)=b; A(2,1:)=d  

  

! Use Numerical Libraries routine for the calculation of k   

! largest eigenvalues.  

      CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)  

      EVAL_T = EVAL  
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! Use IMSL Fortran Numerical Librarytridiagonal solver for inverse iteration   

! calculation of eigenvectors.  

      factorization_choice:  do nopt=0,1   

        

! Create k tridiagonal problems, one for each inverse   

! iteration system.  

         b_t(1:n,1:k) = spread(b,DIM=2,NCOPIES=k)  

         c_t(1:n,1:k) = EOSHIFT(b_t(1:n,1:k),SHIFT=1,DIM=1)  

         d_t(1:n,1:k) = spread(d,DIM=2,NCOPIES=k) - &  

                        spread(EVAL_T,DIM=1,NCOPIES=n)  

  

! Start the right-hand side at random values, scaled downward   

! to account for the expected 'blowup' in the solution.  

         y_t=rand(y_t)   

  

! Do two iterations for the eigenvectors.     

         do i=1, 2  

            y_t(1:n,1:k) = y_t(1:n,1:k)*epsilon(s_one)  

            call lin_sol_tri(c_t, d_t, b_t, y_t, &  

                        iopt=iopt)  

            iopt(nopt+1) = s_lin_sol_tri_solve_only  

         end do  

           

! Orthogonalize the eigenvectors.  (This is the most   

! intensive part of the computing.)  

         y_t(1:n,1:k) = ORTH(y_t(1:n,1:k))  

              

  

! See if the performance ratio is smaller than the value one.  

! If it is not the code will re-solve the systems using Gaussian  

! Elimination.  This is an exceptional event.  It is a necessary  

! complication for achieving reliable results.    

  

         res(1:n,1:k) = spread(d,DIM=2,NCOPIES=k)*y_t(1:n,1:k) + &  

          spread(b,DIM=2,NCOPIES=k)* &  

          EOSHIFT(y_t(1:n,1:k),SHIFT=-1,DIM=1) + &  

          EOSHIFT(spread(b,DIM=2,NCOPIES=k)*y_t(1:n,1:k),SHIFT=1) &  

            -   y_t(1:n,1:k)*spread(EVAL_T(1:k),DIM=1,NCOPIES=n)  

  

! If the factorization method is Cyclic Reduction and perf_ratio is   

! larger than one, re-solve using Gaussian Elimination.  If the   

! method is already Gaussian Elimination, the loop exits  

! and perf_ratio is checked at the end.     

         perf_ratio = norm(res(1:n,1:k),1) / &  

                      norm(EVAL_T(1:k),1) / &  

                         epsilon(s_one) / (5*n)  

         if (perf_ratio <= s_one) exit factorization_choice  

         iopt(nopt+1) = s_lin_sol_tri_use_Gauss_elim  

     

      end do factorization_choice  

  

      if (perf_ratio <= s_one) then  

         write (*,*) 'Example 3 for LIN_SOL_TRI (operators) is correct.'  

      end if  

  

      end   
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Parallel Example 
 

 use linear_operators 

 use mpi_setup_int 

 

 integer, parameter :: N=32, nr=4 

 real (kind(1.e0)) A(N,N,nr), Q(N,N,nr) 

! Setup for MPI  

  mp_nprocs = mp_setup() 

 

 if (mp_rank == 0) then 

   A = rand(A) 

 end if 

 

 Q = orth(A) 

  

 mp_nprocs = mp_setup ('Final') 

 

 end 

RAND 
Generates a scalar, rank-1, rank-2 or rank-3 array of random numbers.  

Function Return Value 

Scalar, rank-1, rank-2 or rank-3 array of random numbers.  The output function value matches 

the input argument A in type, kind and rank. For complex arguments, the output values will 

be real and imaginary parts with random values of the same type, kind, and rank.  (Output) 

Required Argument 

A — The argument must be a scalar, rank-1, rank-2, or rank-3 array of type single, double, 

complex, or double complex.  Used only to determine the type and rank of the output. (Input) 

Optional Arguments, Packaged Options 

Note: If any of the arrays s_rand_options(:), s_rand_options_once(:), 

d_rand_options(:), or d_rand_options_once(:) are allocated, they are passed as 

arguments to rand_gen using the keyword ―iopt=‖. 

The option and derived type names are given in the following table: 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_rand_options(:) Use when setting options for 

calls hereafter. 

?_options 

?_rand_options_once(:) Use when setting options for 

next call only. 

?_options 
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FORTRAN 90 Interface 

RAND(A) 

Description 

Generates a scalar, rank-1, rank-2 or rank-3 array of random numbers. Each component number is 

positive and strictly less than one in value. 

This function uses rand_gen to obtain the number of values required by the argument. The 

values are then copied using the RESHAPE intrinsic 

Example   
 

        use show_int 

        use rand_int 

 

        implicit none 

 

! This is the equivalent of Example 1 for SHOW. 

 

        integer, parameter :: n=7, m=3 

        real(kind(1e0)) s_x(-1:n), s_m(m,n) 

        real(kind(1d0)) d_x(n), d_m(m,n) 

        complex(kind(1e0)) c_x(n), c_m(m,n) 

        complex(kind(1d0)) z_x(n),z_m(m,n) 

        integer i_x(n), i_m(m,n) 

        type (s_options) options(3) 

 

! The data types printed are real(kind(1e0)), real(kind(1d0)),  

! complex(kind(1e0)), complex(kind(1d0)), and INTEGER. Fill with random 

! numbers and then print the contents, in each case with a label.  

        s_x=rand(s_x); s_m=rand(s_m) 

        d_x=rand(d_x); d_m=rand(d_m) 

        c_x=rand(c_x); c_m=rand(c_m) 

        z_x=rand(z_x); z_m=rand(z_m) 

        i_x=100*rand(s_x(1:n)); i_m=100*rand(s_m) 

 

        call show (s_x, 'Rank-1, REAL') 

        call show (s_m, 'Rank-2, REAL') 

        call show (d_x, 'Rank-1, DOUBLE') 

        call show (d_m, 'Rank-2, DOUBLE') 

        call show (c_x, 'Rank-1, COMPLEX') 

        call show (c_m, 'Rank-2, COMPLEX') 

        call show (z_x, 'Rank-1, DOUBLE COMPLEX') 

        call show (z_m, 'Rank-2, DOUBLE COMPLEX') 

        call show (i_x, 'Rank-1, INTEGER') 

        call show (i_m, 'Rank-2, INTEGER') 

 

! Show 7 digits per number and -1 according to the 

! natural or declared size of the array. 

        options(1)=show_significant_digits_is_7 

        options(2)=show_starting_index_is 

        options(3)= -1 ! The starting -1 value. 

        call show (s_x, & 
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'Rank-1, REAL with 7 digits, natural indexing', IOPT=options) 

        end 

RANK 

 

Computes the mathematical rank of a matrix. 

Function Return Value 

Integer rank of  A.  The output function value is an integer with a value equal to the number 

of singular values that are greater than a tolerance.  (Output) 

Required Argument 

A — Matrix for which the rank is to be computed. The argument must be rank-2 or rank-3 

(box) array of type single, double, complex, or double complex. (Input) 

Optional Arguments, Packaged Options 

This function uses LIN_SOL_SVD to compute the singular values of the argument. The 

singular values are then compared with the value of the tolerance to compute the rank. 

The option and derived type names are given in the following tables: 

Option Names for RANK Option Value 

?_rank_set_small 1 

?_rank_for_lin_sol_svd 2 

 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_rank_options(:) Use when setting options for 

calls hereafter. 

?_options 

?_rank_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.  See 

LIN_SOL_SVD located in Chapter 1, ―Linear Systems‖  for the specific options for this 

routine. 

FORTRAN 90 Interface 

RANK (A) 
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Description 

Computes the mathematical rank of a rank-2 or rank-3 array. The output function value is an 

integer with a value equal to the number of singular values that are greater than a tolerance.  The 

default value for this tolerance is 
1/ 2

1s , where   is machine precision and 1s is the largest 

singular value of the matrix.  

Examples 
 

 use linear_operators 

 real (kind(1e0)) A(5,5) 

 A = rand (A) 

 write (*,*) rank(A) 

 A=1.0 

 write (*,*) rank(A) 

 end   

Output 
     5 

     1 

Parallel Example 
 

 use linear_operators 

 use mpi_setup_int 

 

 integer, parameter :: N=3, nr=4 

 integer  r(nr) 

 real (kind(1.e0)) s_mat(N,N), s_box(N,N,nr) 

! Setup for MPI  

  mp_nprocs = mp_setup() 

 

  if (mp_rank == 0) then 

      s_mat = reshape((/1.,0.,0.,epsilon(1.0e0)/),(/n,n/)) 

      s_box = spread(s_mat,dim=3,ncopies=nr) 

  end if 

 

      r = rank(s_box) 

 

 mp_nprocs = mp_setup ('Final') 

 

 end 

SVD 

 

Computes the singular value decomposition of a matrix, 
TA USV . 
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Function Return Value 

m x n diagonal matrix of singular values, S, from the 
TA USV  decomposition.   (Output) 

Required Argument 

A — Array of size m x n  to be decomposed.  Must be rank-2 or rank-3 array of type single, 

double, complex, or double complex. (Input) 

 Optional Arguments, Packaged Options 

U — Array of size m x m containing the singular vectors U.  (Output) 

V — Array of size n x n containing the singular vectors V.  (Output) 

The option and derived type names are given in the following tables: 

Option Names for SVD Option Value 

Options_for_lin_svd 1 

Options_for_lin_sol_svd 2 

skip_error_processing 5 

 

Name of Unallocated Option Array  
to Use for Setting Options 

Use Derived Type 

?_svd_options(:) Use when setting options for 

calls hereafter. 

?_options 

?_svd_options_once(:) Use when setting options for 

next call only. 

?_options 

For a description on how to use these options, see ―Matrix Optional Data Changes‖.   See 

LIN_SVD and  LIN_SOL_SVD located in Chapter 1, ―Linear Systems‖  for the specific 

options for these routines. 

FORTRAN 90 Interface 

SVD (A [,…]) 

Description 

Computes the singular value decomposition of a rank-2 or rank-3 array, 
TA USV . 

This function uses one of the routines LIN_SVD and LIN_SOL_SVD. If a complete decomposition is 

required, LIN_SVD is used. If singular values only, or singular values and one of the right and left 

singular vectors are required, then LIN_SOL_SVD is called. 
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Examples  

operator_ex14.f90 
 

      use linear_operators  

      implicit none  

  

! This is the equivalent of Example 2 for LIN_SOL_SVD using operators  

! and functions.  

      integer, parameter :: n=32  

      real(kind(1d0)) :: one=1d0, zero=0d0  

      real(kind(1d0)) A(n,n), P(n,n), Q(n,n), &  

             S_D(n), U_D(n,n), V_D(n,n)  

  

! Generate a random matrix.  

      A = rand(A)  

  

! Compute the singular value decomposition.  

      S_D = SVD(A, U=U_D, V=V_D)  

  

! Compute the (left) orthogonal factor.  

      P = U_D .xt. V_D  

  

! Compute the (right) self-adjoint factor.  

      Q = V_D .x. diag(S_D) .xt. V_D  

  

! Check the results.  

      if (norm( EYE(n) - (P .xt. P)) &  

               <= sqrt(epsilon(one))) then  

         if (norm(A - (P .x. Q))/norm(A) &  

               <= sqrt(epsilon(one))) then  

            write (*,*) 'Example 2 for LIN_SOL_SVD (operators) is correct.'  

         end if  

      end if  

      end   

Parallel Example (parallel_ex14.f90) 

Systems of  least-squares problems are solved, but now using the SVD() function.  A box data 

type is used.  This is an example which uses optional arguments and a generic function overloaded 

for parallel execution of a box data type.  Any number of nodes can be used. 
 

      use linear_operators 

      use mpi_setup_int 

      implicit none 

 

! This is the equivalent of Parallel Example 14 

! for SVD, .tx. , .x. and NORM. 

      integer, parameter :: m=128, n=32, nr=4 

      real(kind(1d0)) :: one=1d0, err(nr) 

      real(kind(1d0)) A(m,n,nr), b(m,1,nr), x(n,1,nr), U(m,m,nr), & 

        V(n,n,nr), S(n,nr), g(m,1,nr) 

 

! Setup for MPI: 

      mp_nprocs=mp_setup() 
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      if(mp_rank == 0) then 

! Generate a random matrix and right-hand side. 

         A = rand(A); b = rand(b) 

      endif 

 

! Compute the least-squares solution matrix of Ax=b. 

      S = SVD(A, U = U, V = V) 

      g = U .tx. b 

      x = V .x. (diag(one/S) .x. g(1:n,:,:)) 

 

! Check the results. 

      err = norm(A .tx. (b - (A .x. x)))/(norm(A)+norm(x)) 

      if (ALL(err <= sqrt(epsilon(one)))) then 

         if(mp_rank == 0) & 

         write (*,*) 'Parallel Example 14 is correct.' 

      end if 

 

! See to any error messages and quit MPI 

      mp_nprocs = mp_setup('Final') 

 

      end  

UNIT 
Normalizes the columns of a matrix so each has  Euclidean length of value one. 

Function Return Value 

Matrix containing the normalized values of  A .  The output function value is an array of the 

same type and kind as A, where each column of each rank-2 principal section has Euclidean 

length of value one (Output) 

Required Argument 

A — Matrix to be normalized. The argument must be a rank-2 or rank-3 array of type single, 

double, complex, or double complex. (Input) 

FORTRAN 90 Interface 

UNIT (A) 

Description 

Normalizes the columns of a rank-2 or rank-3 array so each has  Euclidean length of value one.  

This function uses a rank-2 Euclidean length subroutine to compute the lengths of the nonzero 

columns, which are then normalized to have lengths of value one. The subroutine carefully avoids 

overflow or damaging underflow by rescaling the sums of squares as required.  

Example  (operator_ex28.f90) 
 

use linear_operators  
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      implicit none  

  

! This is the equivalent of Example 4 (using operators) for LIN_EIG_SELF.  

  

      integer, parameter :: n=64  

      real(kind(1e0)), parameter :: one=1d0  

      real(kind(1e0)), dimension(n,n) :: A, B, C, D(n), lambda(n), &  

               S(n), vb_d, X, res  

  

! Generate random self-adjoint matrices.  

      A = rand(A); A = A + .t.A  

      B = rand(B); B = B + .t.B  

  

! Add a scalar matrix so B is positive definite.  

      B = B + norm(B)*EYE(n)  

  

! Get the eigenvalues and eigenvectors for B.  

      S = EIG(B,V=vb_d)  

  

! For full rank problems, convert to an ordinary self-adjoint   

! problem.  (All of these examples are full rank.)  

      if (S(n) > epsilon(one)) then  

         D = one/sqrt(S)  

         C = diag(D) .x. (vb_d .tx. A .x. vb_d) .x. diag(D)  

         C = (C + .t.C)/2  

  

! Get the eigenvalues and eigenvectors for C.  

         lambda = EIG(C,v=X)  

  

! Compute and normalize the generalized eigenvectors.  

         X = UNIT(vb_d .x. diag(D) .x. X)  

         res = (A .x. X) - (B .x. X .x. diag(lambda))  

  

! Check the results.  

         if(norm(res)/(norm(A)+norm(B)) <= &  

            sqrt(epsilon(one))) then  

            write (*,*) 'Example 4 for LIN_EIG_SELF (operators) is correct.'  

         end if  

  

      end if  

  

      end 
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Chapter 11: Utilities 

Routines 

11.1. ScaLAPACK Utilities 
Sets up a processor grid ............................... ScaLAPACK_SETUP 1792 
Calculates array dimensions for local arraysScaLAPACK_GETDIM 1794 
Reads matrix data from a file  ......................... ScaLAPACK_READ 1795 
Writes the matrix data to a file ....................... ScaLAPACK_WRITE 1797 
Reads matrix data from an array ....................... ScaLAPACK_MAP 1805 
Writes the matrix data to a global array ....... ScaLAPACK_UNMAP 1807 
Exits ScaLAPACK usage .................................. ScaLAPACK_EXIT 1809 

11.2. Print 
Prints error messages  ............................................ ERROR_POST 1810 
Prints rank-1 or rank-2 arrays of numbers ............................ SHOW 1813 
Real rectangular matrix  
with integer row and column labels.................................... WRRRN 1817 
Real rectangular matrix with given format and labels ......... WRRRL 1819 
Integer rectangular matrix  
with integer row and column labels...................................... WRIRN 1822 
Integer rectangular matrix with given format and labels ...... WRIRL 1825 
Complex rectangular matrix  
with row and column labels ................................................ WRCRN 1827 
Complex rectangular matrix 
with given format and labels ............................................... WRCRL 1830 
Sets or retrieves options for printing a matrix .....................WROPT 1833 
Sets or retrieves page width and length ............................. PGOPT 1840 

11.3. Permute 
Elements of a vector ........................................................... PERMU 1842 
Rows/columns of a matrix ................................................... PERMA 1844 

11.4. Sort 
Sorts a rank-1 array of real numbers x so the y results  

are algebraically nondecreasing, y1 ≤ y2 ≤ … yn ...... SORT_REAL 1846 

Real vector by algebraic value ............................................ SVRGN 1849 
Real vector by algebraic value 
and permutations returned .................................................. SVRGP 1850 
Integer vector by algebraic value .......................................... SVIGN 1852 
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Integer vector by algebraic value 
and permutations returned ................................................... SVIGP 1853 
Real vector by absolute value ............................................. SVRBN 1855 
Real vector by absolute value  
and permutations returned .................................................. SVRBP 1856 
Integer vector by absolute value ........................................... SVIBN 1857 
Integer vector by absolute value 
and permutations returned .................................................... SVIBP 1859 

11.5. Search 
Sorted real vector for a number ............................................ SRCH 1860 
Sorted integer vector for a number ...................................... ISRCH 1862 
Sorted character vector for a string ..................................... SSRCH 1864 

11.6. Character String Manipulation 
Gets the character corresponding to a  
given ASCII value ................................................................ ACHAR 1867 
Get the integer ASCII value for a given character ............. IACHAR 1868 
Gets upper case integer ASCII value for a character ........... ICASE 1869 
Case-insensitive version comparing two strings .................... IICSR 1870 
Case-insensitive version of intrinsic function INDEX ............. IIDEX 1872 
Converts a character string with digits to an integer ............. CVTSI 1873 

11.7. Time, Date, and Version 
CPU time ............................................................................. CPSEC 1874 
Time of day ........................................................................... TIMDY 1875 
Today’s date ......................................................................... TDATE 1876 
Number of days from January 1, 1900, to the given date ... NDAYS 1877 
Date for the number of days from January 1, 1900 ............. NDYIN 1878 
Day of week for given date ................................................... IDYWK 1880 
Version, system, and serial numbers .................................. VERML 1881 

11.8. Random Number Generation 
Generates a rank-1 array of random numbers ............ RAND_GEN 1882 
Retrieves the current value of the seed .............................. RNGET 1891 
Initializes a random seed..................................................... RNSET 1892 
Selects the uniform (0,1) generator ..................................... RNOPT 1893 
Initializes the 32-bit Merseene Twister generator  
using an array ...................................................................... RNIN32 1894  
Retrieves the current table used in the 32-bit  
Mersenne Twister generator ............................................. RNGE32 1895 
Sets the current table used in the 32-bit  
Mersenne Twister generator ............................................. RNSE32 1897 
Initializes the 32-bit Merseene Twister generator  
using an array ...................................................................... RNIN64 1897  
Retrieves the current table used in the 64-bit  
Mersenne Twister generator ............................................. RNGE64 1898 
Sets the current table used in the 64-bit  
Mersenne Twister generator ............................................. RNSE64 1900 
Generates pseudorandom numbers (function form) ........... RNUNF 1900 
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Generates pseudorandom numbers ......................................RNUN 1902 

11.9 Low Discrepancy Sequences  
Shuffled Faure sequence initialization ........................ FAURE_INIT 1904 
Frees the structure containing information  
about the Faure sequence ....................................... FAURE_FREE 1905 
Computes a shuffled Faure sequence ..................... FAURE_NEXT 1905 

11.10. Options Manager  

Gets and puts type INTEGER options ................................... IUMAG 1908 

Gets and puts type REAL options .......................................... UMAG 1911 

Gets and puts type DOUBLE PRECISION options ..................DUMAG 1914 

11.11. Line Printer Graphics 
Prints plot of up to 10 sets of points .................................... PLOTP 1914 

11.12. Miscellaneous 
Decomposes an integer into its prime factors ......................PRIME 1917 
Returns mathematical and physical constants ................... CONST 1919 
Converts a quantity to different units .................................... CUNIT 1921 

Computes 
2 2a b  without underflow or overflow ..........HYPOT 1925 

Initializes or finalizes MPI. ........................................... MP_SETUP 1926 

Usage Notes for ScaLAPACK Utilities  

 

For a detailed description of MPI Requirements see ―Dense Matrix Parallelism Using MPI‖ in 

Chapter 10 of this manual. 

This section describes the use of ScaLAPACK, a suite of dense linear algebra solvers, applicable 

when a single problem size is large. We have integrated usage of IMSL Fortran Library with 

ScaLAPACK.  However, the ScaLAPACK library, including libraries for BLACS and PBLAS, are 

not part of this Library.  To use ScaLAPACK software, the required libraries must be installed on 

the user‘s computer system.  We adhered to the specification of Blackford, et al. (1997), but use 

only MPI for communication.  The ScaLAPACK library includes certain LAPACK routines, 

Anderson, et al. (1995), redesigned for distributed memory parallel computers. It is written in a 

Single Program, Multiple Data (SPMD) style using explicit message passing for communication.  

Matrices are laid out in a two-dimensional block-cyclic decomposition.  Using High Performance 

Fortran (HPF) directives, Koelbel, et al. (1994), and a static p q  processor array, and following 

declaration of the array, A(*,*), this is illustrated by: 

INTEGER, PARAMETER :: N=500, P= 2, Q=3, MB=32, NB=32  

!HPF$ PROCESSORS PROC(P,Q) 

!HPF$ DISTRIBUTE A(cyclic(MB), cyclic(NB)) ONTO PROC 

Our integration work provides modules that describe the interface to the ScaLAPACK library.  We 

recommend that users include these modules when using ScaLAPACK or ancillary packages, 
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including BLACS and PBLAS.  For the job of distributing data within a user‘s application to the 

block-cyclic decomposition required by ScaLAPACK solvers, we provide a utility that reads data 

from an external file and arranges the data within the distributed machines for a computational 

step.  Another utility writes the results into an external file.  We also provide similar utilities that 

map/unmap global arrays to/from local arrays. These utilities are used in our ScaLAPACK 

examples for brevity. 

The data types supported for these utilities are integer; single precision, real; double precision, 

real; single precision, complex; and double precision, complex. 

A ScaLAPACK library normally includes routines for: 

 the solution of full-rank linear systems of equations, 

 general and symmetric, positive-definite, banded linear systems of equations,  

 general and symmetric, positive-definite, tri-diagonal, linear systems of equations,  

 condition number estimation and iterative refinement for LU and Cholesky factorization,  

 matrix inversion,  

 full-rank linear least-squares problems,  

 orthogonal and generalized orthogonal factorizations,  

 orthogonal transformation routines,  

 reductions to upper Hessenberg, bidiagonal and tridiagonal form,  

 reduction of a symmetric-definite, generalized eigenproblem to standard form,  

 the self-adjoint or Hermitian eigenproblem,  

 the generalized self-adjoint or Hermitian eigenproblem, and 

 the non-symmetric eigenproblem  

ScaLAPACK routines are available in four data types: single precision, real; double precision; 

real, single precision, complex, and double precision, complex. At present, the non-symmetric 

eigenproblem is only available in single and double precision.  More background information and 

user documentation is available on the World Wide Web at location 

www.netlib.org/scalapack/slug/scalapack_slug.html. 

For users with rank deficiency or simple constraints in their linear systems or least-squares 

problem, we have routines for: 

 full or deficient rank least-squares problems with non-negativity constraints 

 full or deficient rank least-squares problems with simple upper and lower bound constraints 

These are available in two data types: single precision, real, and double precision, real, and they 

are not part of ScaLAPACK. The matrices are distributed in a general block-column layout. 

We also provide generic interfaces to a number of  ScaLAPACK routines through the standard 

IMSL Library routines. These are listed in Table D in the Introduction of this manual. 

The global arrays which are to be distributed across the processor grid for use by the ScaLAPACK 

routines require that an array descriptor be defined for each of them. We use the ScaLAPACK 

http://www.netlib.org/scalapack/slug/scalapack_slug.html
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TOOLS routine DESCINIT to set up array descriptors in our examples. A typical call to 

DESCINIT: 

CALL DESCINIT(DESCA, M, N, MB, NB, IRSRC, ICSRC, ICTXT, LLD, INFO) 

Where the arguments in the above call are defined as follows for the matrix being described: 

DESCA — An input integer vector of length 9 which is to contain the array descriptor 

information. 

M — An input integer which indicates the row size of the global array which is being 

described. 

N — An input integer which indicates the column size of the global array which is being 

described. 

MB — An input integer which indicates the blocking factor used to distribute the rows of the 

matrix being described. 

NB — An input integer which indicates the blocking factor used to distribute the columns of 

the matrix being described. 

IRSRC — An input integer which indicates the processor grid row over which the first row of 

the array being described is distributed. 

ICSRC — An input integer which indicates the processor grid column over which the first 

column of the array being described is distributed. 

ICTXT — An input integer which indicates the BLACS context handle. 

LLD — An input integer indicating the leading dimension of the local array which is to be 

used for storing the local blocks of the array being described 

INFO — An output integer indicating whether or not the call was successful. INFO = 0 

indicates a successful exit. INFO = -i indicates the i-th argument had an illegal value. 

This call is equivalent to the following assignment statements: 

DESCA(1) = 1               ! This is the descriptor 

                           ! type. In this case,  1. 

DESCA(2) = ICTXT 

DESCA(3) = M 

DESCA(4) = N 

DESCA(5) = MB 

DESCA(6) = NB 

DESCA(7) = IRSRC 

DESCA(8) = ICSRC 

DESCA(9) = LLD 

The IMSL Library routines which interface with ScaLAPACK routines use IRSRC = 0 and 

ICSRC = 0 for the internal calls to DESCINIT. 
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ScaLAPACK Supporting Modules 

We recommend that users needing routines from ScaLAPACK, PBLAS or BLACS, Version 1.4, use 

modules that describe the interface to individual codes.  This practice, including use of the 

declaration directive, IMPLICIT NONE, is a reliable way of writing ScaLAPACK application code, 

since the routines may have lengthy lists of arguments.  Using the modules is helpful to avoid the 

mistakes such as missing arguments or mismatches involving Type, Kind or Rank (TKR).  The 

modules are part of the Fortran Library product. There is a comprehensive module, 

ScaLAPACK_Support, that includes use of all the modules in the table below.  This module 

decreases the number of lines of code for checking the interface, but at the cost of increasing 

source compilation time compared with using individual modules. 

 

Module Name Contents of the Module 

ScaLAPACK_Support All of the following modules 

ScaLAPACK_Int All interfaces to ScaLAPACK routines 

PBLAS_Int All interfaces to parallel BLAS, or PBLAS 

BLACS_Int All interfaces to basic linear algebra communication routines, or BLACS 

TOOLS_Int Interfaces to ancillary routines used by ScaLAPACK, but not in other 

packages 

LAPACK_Int All interfaces to LAPACK routines required by ScaLAPACK 

ScaLAPACK_IO_Int All interfaces to ScaLAPACK_READ, ScaLAPACK_WRITE utility 

routines.  See this Chapter. 

MPI_Node_Int The module holding data describing the MPI communicator, 

MP_LIBRARY_WORLD.  See Dense Matrix Parallelism Using MPI. 

GRIDINFO_Int The module holding data describing the processor grid and information 

required to map the target array to the processors. See the Description 

section of ScaLAPACK_SETUP below. 

ScaLAPACK_MAP_Int The interface to the ScaLAPACK_MAP utility routines. 

ScaLAPACK_UNMAP_Int The interface to the ScaLAPACK_UNMAP utility routines. 

ScaLAPACK_SETUP 

 

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in 

the Introduction of this manual.    

This routine sets up a processor grid and calculates default values for various entities to be used in 

mapping a global array to the processor grid. All processors in the BLACS context call the routine. 
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Required Arguments 

M — The row dimension of the global array for which the local array dimensions are to be 

calculated. (Input) 

N — The column dimension of the global array for which the local array dimensions are to be 

calculated. (Input) 

NSQUARE —Input logical which indicates whether the block used for mapping the global 

array to the processor grid must be square. If the block must be square, set NSQUARE to 

.TRUE., otherwise, set it to .FALSE. (Input) 

GRID1D — Input logical which indicates whether the processor grid is to be one dimensional 

or two dimensional. Set GRID1D to .TRUE. if the grid is to be one dimensional. 

Otherwise, set GRID1D to .FALSE. (Input) 

FORTRAN 90 Interface 

Generic: CALL ScaLAPACK_SETUP (M, N, NSQUARE, GRID1D) 

Description 

Subroutine ScaLAPACK_SETUP creates a processor grid based on the number of processors being 

used and the GRID1D logical supplied by the user. The argument, NSQUARE, is supplied because 

some ScaLAPACK routines require that the row and column blocking factors be equal. GRID1D 

is supplied for those routines which require that the processor grid be one dimensional. 

ScaLAPACK_SETUP also establishes values for MP_M, MP_N, MP_NPROW, MP_NPCOL, MP_MB, 

MP_NB, MP_PIGRID, MP_ICTXT, MP_NSQUARE, and MP_GRID1D in the IMSL Fortran Library 

module GRIDINFO_INT.  The above entities are defined as follows: 

MP_M — The row dimension of the primary array which is to be distributed among the processors. 

MP_N  — The column dimension of the primary array which is to be distributed among the 

processors. 

MP_NPROW — The number of rows in the processor grid. 

MP_NPCOL — The number of columns in the processor grid. 

MP_MB — The row blocking factor to be used in distributing the array. 

MP_NB — The column blocking factor to be used in distributing the array. 

MP_PIGRID — The pointer to the processor grid, MP_IGRID. 

MP_ICTXT — The BLACS context ID associated with the processor grid. 

MP_NSQUARE — Logical indicating whether or not the block used for mapping  

the global array to the processor grid must be square. 

MP_GRID1D — Logical indicating whether or not the processor grid must be one dimensional. 

GRIDINFO_INT is used by MPI_SETUP_INT so users do not need to explicitly use 

GRIDINFO_INT since they will be using MPI_SETUP_INT when they use MPI. 
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Example 

See ScaLAPACK_WRITE. 

ScaLAPACK_GETDIM 

 

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in 

the Introduction of this manual.   

This routine calculates the row and column dimensions of a local distributed array based on the 

size of the array to be distributed and the row and column blocking factors to be used. All 

processors in the BLACS context call the routine. 

Required Arguments 

M — The row dimension of the global array for which the local array dimensions are to be 

calculated. (Input) 

N — The column dimension of the global array for which the local array dimensions are to be 

calculated. (Input) 

MB — The row blocking factor to be used in distributing the array. (Input) 

NB — The column blocking factor to be used in distributing the array. (Input) 

MXLDA — The row dimension of the local array. (Output) 

MXCOL — The column dimension of the local array. (Output) 

FORTRAN 90 Interface 

Generic:         CALL ScaLAPACK_GETDIM (M, N, MB, NB, MXLDA, MXCOL) 

Description 

Subroutine ScaLAPACK_GETDIM calculates the row and column dimensions of a local array by 

using the ScaLAPACK utility NUMROC.  

Note that ScaLAPACK_SETUP must be called prior to calling this routine because 

ScaLAPACK_GETDIM will use some of the global entities defined by ScaLAPACK_SETUP. 
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Example 

See ScaLAPACK_WRITE. 

ScaLAPACK_READ 

  

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in 

the Introduction of this manual.   

This routine reads matrix data from a file and transmits it into the two-dimensional block-cyclic 

form required by ScaLAPACK routines.  This routine contains a call to a barrier routine so that if 

one process is writing the file and an alternate process is to read it, the results will be 

synchronized.  

All processors in the BLACS context call the routine. 

Required Arguments 

File_Name — A character variable naming the file containing the matrix data.  (Input) 

This file is opened with STATUS=―OLD.‖  If the name is misspelled or the file does not 

exist, or any access violation occurs, a type = terminal error message will occur.  

After the contents are read, the file is closed. This file is read with a loop logically 

equivalent to groups of reads: 

READ() ((BUFFER(I,J), I=1,M), J=1, NB) 

or (optionally): 

READ() ((BUFFER(I,J), J=1,N), I=1, MB) 

DESC_A(*) — The nine integer parameters associated with the ScaLAPACK matrix 

descriptor.  Values for NB,MB,LDA are contained in this array. (Input) 

A(LDA,*) — This is an assumed-size array, with leading dimension LDA, that will contain 

this processor‘s piece of the block-cyclic matrix.  The data type for A(*,*) is any of five 

Fortran intrinsic types: integer; single precision, real; double precision, real; single 

precision, complex; and double precision, complex. (Output)  

Optional Arguments 

Format —  A character variable containing a format to be used for reading the file containing 

matrix data.  If this argument is not present, an unformatted or list-directed read is 

used. (Input) 

iopt — Derived type array with the same precision as the array A(*,*), used for passing 

optional data to ScaLAPACK_READ. (Input) 

The options are as follows: 

Packaged Options for ScaLAPACK_READ 
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Option Prefix = ? Option Name Option Value 

S_, d_ ScaLAPACK_READ_UNIT 1 

S_, d_ ScaLAPACK_READ_FROM_PROCESS 2 

S_, d_ ScaLAPACK_READ_BY_ROWS 3 

 

iopt(IO) = ScaLAPACK_READ_UNIT 

Sets the unit number to the value in iopt(IO + 1)%idummy.  The default unit 

number is the value 11. 

iopt(IO) = ScaLAPACK_READ_FROM_PROCESS 

Sets the process number that reads the named file to the value in  

iopt(IO + 1)%idummy.  The default process number is the value 0. 

iopt(IO) = ScaLAPACK_READ_BY_ROWS 

Read the matrix by rows from the named file.  By default the matrix is read by 

columns. 

FORTRAN 90 Interface 

Generic: CALL ScaLAPACK_READ (File_Name, DESC_A, A [,…]) 

Specific: The specific interface names are S_ScaLAPACK_READ and              

 D_ScaLAPACK_READ.  

Description 

Subroutine ScaLAPACK_READ reads columns or rows of a problem matrix so that it is usable by a 

ScaLAPACK routine.  It uses the two-dimensional block-cyclic array descriptor for the matrix to 

place the data in the desired assumed-size arrays on the processors.  The blocks of data are read, 

then transmitted and received.  The block sizes, contained in the array descriptor, determines the 

data set size for each blocking send and receive pair.  The number of these synchronization points 

is proportional to /( )M N MB NB    .  A temporary local buffer is allocated for staging the 

matrix data.  It is of size M by NB, when reading by columns, or N by MB, when reading by rows. 

Example 

See ScaLAPACK_WRITE. 
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ScaLAPACK_WRITE 

 

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in 

the Introduction of this manual.   

This routine writes the matrix data to a file.  The data is transmitted from the two-dimensional 

block-cyclic form used by ScaLAPACK.  This routine contains a call to a barrier routine so that if 

one process is writing the file and an alternate process is to read it, the results will be 

synchronized. All processors in the BLACS context call the routine. 

Required Arguments 

File_Name —  A character variable naming the file to receive the matrix data. (Input)  

This file is opened with ―STATUS=‖UNKNOWN.‖  If any access violation happens, a 

type = terminal error message will occur.  If the file already exists it will be 

overwritten.  After the contents are written, the file is closed. This file is written with a 

loop logically equivalent to groups of writes: 

WRITE() ((BUFFER(I,J), I=1,M), J=1, NB) 

or (optionally): 

WRITE() ((BUFFER(I,J), J=1,N), I=1, MB) 

DESC_A(*) — The nine integer parameters associated with the ScaLAPACK matrix 

descriptor. Values for NB, MB, LDA are contained in this array. (Input) 

A(LDA,*) — This is an assumed-size array, with leading dimension LDA, containing this 

processor‘s piece of the block-cyclic matrix.  The data type for A(*,*) is any of five 

Fortran intrinsic types: integer; single precision, real; double precision, real; single 

precision, complex; or double precision, complex. (Input) 

Optional Arguments 

Format —A character variable containing a format to be used for writing the file that receives 

matrix data.  If this argument is not present, an unformatted or list-directed write is 

used. (Input) 

iopt — Derived type array with the same precision as the array A(*,*), used for passing 

optional data to ScaLAPACK_WRITE. Use single precision when A(*,*) is type 

INTEGER.  (Input) 

The options are as follows: 

Packaged Options for ScaLAPACK_WRITE 

Option Prefix = ? Option Name Option Value 

S_, d_ ScaLAPACK_WRITE_UNIT 1 

S_, d_ ScaLAPACK_WRITE_FROM_PROCESS 2 
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Packaged Options for ScaLAPACK_WRITE 

Option Prefix = ? Option Name Option Value 

S_, d_ ScaLAPACK_WRITE_BY_ROWS 3 

 

iopt(IO) =ScaLAPACK_WRITE_UNIT 

Sets the unit number to the integer component of  

iopt(IO + 1)%idummy.  The default unit number is the value 11. 

iopt(IO) = ScaLAPACK_WRITE_FROM_PROCESS 

Sets the process number that writes the named file to the integer component of 

iopt(IO + 1)%idummy.  The default process number is the value 0. 

iopt(IO) = ScaLAPACK_WRITE_BY_ROWS 

Write the matrix by rows to the named file.  By default the matrix is written by 

columns. 

FORTRAN 90 Interface 

Generic:        CALL ScaLAPACK_WRITE (File_Name, DESC_A, A [,…]) 

Specific:       The specific interface names are S_ScaLAPACK_WRITE and 

 D_ScaLAPACK_WRITE. 

Description 

Subroutine ScaLAPACK_WRITE writes columns or rows of a problem matrix output by a 

ScaLAPACK routine.  It uses the two-dimensional block-cyclic array descriptor for the matrix to 

extract the data from the assumed-size arrays on the processors.  The blocks of data are 

transmitted and received, then written.  The block sizes, contained in the array descriptor, 

determines the data set size for each blocking send and receive pair. The number of these 

synchronization points is proportional to /( )M N MB NB    .  A temporary local buffer is 

allocated for staging the matrix data.  It is of size M by NB, when writing by columns, or N by MB, 

when writing by rows. 

Example 1:  Distributed Transpose of a Matrix, In Place 

The program SCPK_EX1 illustrates an in-situ transposition of a matrix.  An m n matrix, A , is 

written to a file, by rows.  The n m matrix, 
TB A , overwrites storage for A .  Two 

temporary files are created and deleted.  This algorithm for transposing a matrix is not efficient.  It 

is used to illustrate the read and write routines and optional arguments for writing of data by 

matrix rows. 
 

  program scpk_ex1 

! This is Example 1 for ScaLAPACK_READ and ScaLAPACK_WRITE. 

! It shows in-situ or in-place transposition of a 

! block-cyclic matrix. 

USE ScaLAPACK_SUPPORT 
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USE ERROR_OPTION_PACKET 

USE MPI_SETUP_INT 

 

IMPLICIT NONE 

INCLUDE "mpif.h" 

 

INTEGER, PARAMETER :: M=6, N=6, NIN=10 

INTEGER  DESC_A(9), IERROR, INFO, I, J, K, L, MXLDA, MXCOL 

LOGICAL :: GRID1D = .TRUE., NSQUARE = .TRUE. 

real(kind(1d0)), allocatable :: A(:,:), A0(:,:) 

real(kind(1d0)) ERROR 

TYPE(d_OPTIONS) IOPT(1) 

 

    MP_NPROCS=MP_SETUP() 

 

!  Set up a 1D processor grid and define its context ID, MP_ICTXT 

   CALL SCALAPACK_SETUP(M, N, NSQUARE, GRID1D) 

!  Get the array descriptor entities MXLDA, and MXCOL 

   CALL SCALAPACK_GETDIM(M, N, MP_MB, MP_NB, MXLDA, MXCOL) 

!  Set up the array descriptor 

   CALL DESCINIT(DESC_A, M, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, & 

   MXLDA, INFO) 

!   Allocate space for local arrays 

    ALLOCATE(A0(MXLDA,MXCOL)) 

 

! A root process is used to create the matrix data for the test. 

IF(MP_RANK == 0) THEN 

  ALLOCATE(A(M,N)) 

! Fill array with a pattern that is easy to recognize. 

  K=0 

  DO  

   K=K+1; IF(10**K > N) EXIT 

  END DO 

  DO J=1,N 

    DO I=1,M 

! The values will appear, as decimals I.J, where I is 

! the row and J is the column. 

      A(I,J)=REAL(I)+REAL(J)*10d0**(-K) 

    END DO 

  END DO 

 

  OPEN(UNIT=NIN, FILE='test.dat', STATUS='UNKNOWN') 

! Write the data by columns. 

  DO J=1,N,MP_NB 

    WRITE(NIN,*) ((A(I,L),I=1,M),L=J,min(N,J+MP_NB-1)) 

  END DO 

  CLOSE(NIN) 

  DEALLOCATE(A) 

  ALLOCATE(A(N,M)) 

END IF 

 

! Read the matrix into the local arrays. 

CALL ScaLAPACK_READ('test.dat', DESC_A, A0) 

 

! To transpose, write the matrix by rows as the first step. 

! This requires an option since the default is to write  

! by columns. 
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IOPT(1)=ScaLAPACK_WRITE_BY_ROWS 

CALL ScaLAPACK_WRITE("TEST.DAT", DESC_A, A0, IOPT=IOPT) 

 

!  Resize the local storage  

   DEALLOCATE(A0) 

  CALL SCALAPACK_GETDIM(N, M, MP_NB, MP_MB, MXLDA, MXCOL) 

!  Set up the array descriptor 

!  Reshape the descriptor for the transpose of the matrix. 

!  The number of rows and columns are swapped. 

  CALL DESCINIT(DESC_A, N, M, MP_NB, MP_MB, 0, 0, MP_ICTXT, & 

  MXLDA, INFO) 

 

   ALLOCATE(A0(MXLDA,MXCOL)) 

 

!  Read the transpose matrix 

 

CALL ScaLAPACK_READ("TEST.DAT", DESC_A, A0) 

 

IF(MP_RANK == 0) THEN 

 

! Open the used files and delete when closed. 

  OPEN(UNIT=NIN, FILE='test.dat', STATUS='OLD') 

  CLOSE(NIN,STATUS='DELETE') 

  OPEN(UNIT=NIN, FILE='TEST.DAT', STATUS='OLD') 

  DO J=1,M,MP_MB 

    READ(NIN,*) ((A(I,L), I=1,N),L=J,min(M,J+MP_MB-1)) 

  END DO 

  CLOSE(NIN,STATUS='DELETE') 

  DO I=1,N 

    DO J=1,M 

! The values will appear, as decimals I.J, where I is the row 

!  and J is the column. 

      A(I,J)=REAL(J)+REAL(I)*10d0**(-K) - A(I,J)  

    END DO 

  END DO 

  ERROR=SUM(ABS(A)) 

 END IF 

 

! See to any error messages. 

  call e1pop("Mp_setup") 

 

! Check results on just one process. 

IF(ERROR <= SQRT(EPSILON(ERROR)) .and. & 

  MP_RANK == 0) THEN 

  write(*,*) " Example 1 for BLACS is correct." 

END IF 

 

! Deallocate storage arrays and exit from BLACS. 

IF(ALLOCATED(A)) DEALLOCATE(A) 

IF(ALLOCATED(A0)) DEALLOCATE(A0) 

 

! Exit from using this process grid. 

  CALL SCALAPACK_EXIT( MP_ICTXT ) 

! Shut down MPI 

  MP_NPROCS = MP_SETUP(‗FINAL‘) 

END 
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Output 
 

Example 1 for BLACS is correct. 

Additional Examples 

Example 2:  Distributed Matrix Product with PBLAS 

The program SCPK_EX2 illustrates computation of the matrix product m n m k k nC A B   .  The 

matrices on the right-hand side are random.  Three temporary files are created and deleted.  

BLACS and PBLAS are used.  The problem size is such that the results are checked on one process. 
 

  program scpk_ex2 

! This is Example 2 for ScaLAPACK_READ and ScaLAPACK_WRITE. 

! The product of two matrices is computed with PBLAS 

! and checked for correctness. 

 

USE ScaLAPACK_SUPPORT 

USE MPI_SETUP_INT 

 

IMPLICIT NONE 

INCLUDE "mpif.h" 

 

INTEGER, PARAMETER :: K=32, M=33, N=34, NIN=10 

INTEGER INFO, IA, JA, IB, JB, IC, JC, MXLDA, MXCOL, MXLDB, & 

  MXCOLB, MXLDC, MXCOLC, IERROR, I, J, L,& 

  DESC_A(9), DESC_B(9), DESC_C(9) 

LOGICAL :: GRID1D = .TRUE., NSQUARE = .TRUE. 

 

 real(kind(1d0)) :: ALPHA, BETA, ERROR=1d0, SIZE_C 

 real(kind(1d0)), allocatable, dimension(:,:) :: A,B,C,X(:),& 

 A0, B0, C0 

 

 MP_NPROCS=MP_SETUP() 

 

! Set up a 1D processor grid and define its context ID, MP_ICTXT 

  CALL SCALAPACK_SETUP(M, N, NSQUARE, GRID1D) 

! Get the array descriptor entities 

  CALL SCALAPACK_GETDIM(M, K, MP_MB, MP_NB, MXLDA, MXCOL) 

  CALL SCALAPACK_GETDIM(K, N, MP_NB, MP_MB, MXLDB, MXCOLB) 

  CALL SCALAPACK_GETDIM(M, N, MP_MB, MP_NB, MXLDC, MXCOLC) 

! Set up the array descriptors 

  CALL DESCINIT(DESC_A, M, K, MP_MB, MP_NB, 0, 0, MP_ICTXT, & 

  MXLDA, INFO) 

  CALL DESCINIT(DESC_B, K, N, MP_NB, MP_NB, 0, 0, MP_ICTXT, & 

  MXLDB, INFO) 

  CALL DESCINIT(DESC_C, M, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, & 

  MXLDC, INFO) 

 

ALLOCATE(A0(MXLDA,MXCOL), B0(MXLDB,MXCOLB),C0(MXLDC,MXCOLC)) 

 

! A root process is used to create the matrix data for the test. 

IF(MP_RANK == 0) THEN 

  ALLOCATE(A(M,K), B(K,N), C(M,N), X(M)) 

  CALL RANDOM_NUMBER(A); CALL RANDOM_NUMBER(B) 
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  OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN') 

! Write the data by columns. 

  DO J=1,K,MP_NB 

    WRITE(NIN,*) ((A(I,L),I=1,M),L=J,min(K,J+MP_NB-1)) 

  END DO 

  CLOSE(NIN) 

 

  OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='UNKNOWN') 

! Write the data by columns. 

  DO J=1,N,MP_NB 

    WRITE(NIN,*) ((B(I,L),I=1,K),L=J,min(N,J+MP_NB-1)) 

  END DO 

  CLOSE(NIN) 

END IF 

  

! Read the factors into the local arrays. 

CALL ScaLAPACK_READ('Atest.dat', DESC_A, A0) 

CALL ScaLAPACK_READ('Btest.dat', DESC_B, B0) 

 

! Compute the distributed product C = A x B. 

ALPHA=1d0; BETA=0d0 

IA=1; JA=1; IB=1; JB=1; IC=1; JC=1 

C0=0 

CALL pdGEMM & 

  ("No", "No", M, N, K, ALPHA, A0, IA, JA,& 

  DESC_A, B0, IB, JB, DESC_B, BETA,& 

  C0, IC, JC, DESC_C ) 

 

! Put the product back on the root node. 

Call ScaLAPACK_WRITE('Ctest.dat', DESC_C, C0) 

 

IF(MP_RANK == 0) THEN 

 

! Read the residuals and check them for size. 

  OPEN(UNIT=NIN, FILE='Ctest.dat', STATUS='OLD') 

 

! Read the data by columns. 

  DO J=1,N,MP_NB 

    READ(NIN,*) ((C(I,L),I=1,M),L=J,min(N,J+MP_NB-1)) 

  END DO 

 

  CLOSE(NIN,STATUS='DELETE')  

  SIZE_C=SUM(ABS(C)); C=C-matmul(A,B) 

  ERROR=SUM(ABS(C))/SIZE_C 

 

! Open other temporary files and delete them. 

  OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='OLD') 

  CLOSE(NIN,STATUS='DELETE') 

  OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='OLD') 

  CLOSE(NIN,STATUS='DELETE') 

     

END IF 

 

! See to any error messages. 

call e1pop("Mp_Setup") 
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! Deallocate storage arrays and exit from BLACS. 

IF(ALLOCATED(A)) DEALLOCATE(A) 

IF(ALLOCATED(B)) DEALLOCATE(B) 

IF(ALLOCATED(C)) DEALLOCATE(C) 

IF(ALLOCATED(X)) DEALLOCATE(X) 

IF(ALLOCATED(A0)) DEALLOCATE(A0) 

IF(ALLOCATED(B0)) DEALLOCATE(B0) 

IF(ALLOCATED(C0)) DEALLOCATE(C0) 

 

! Check the results. 

IF(ERROR <= SQRT(EPSILON(ALPHA)) .and. & 

  MP_RANK == 0) THEN 

  write(*,*) " Example 2 for BLACS and PBLAS is correct." 

END IF 

 

   ! Exit from using this process grid. 

     CALL SCALAPACK_EXIT( MP_ICTXT ) 

  ! Shut down MPI 

  MP_NPROCS = MP_SETUP(‗FINAL‘) 

END 

Output 
 

Example 2 for BLACS and PBLAS is correct. 

Example 3:  Distributed Linear Solver with ScaLAPACK 

The program SCPK_EX3 illustrates solving a system of linear-algebraic equations, Ax b by 

calling a ScaLAPACK routine directly.  The right-hand side is produced by defining A  and y  to 

have random values.  Then the matrix-vector product b Ay  is computed.  The problem size is 

such that the residuals, 0x y   are checked on one process.  Three temporary files are created 

and deleted. BLACS are used to define the process grid and provide further information identifying 

each process.  Then a ScaLAPACK routine is called directly to compute the approximate solution, 
x . 

 

  program scpk_ex3 

! This is Example 3 for ScaLAPACK_READ and ScaLAPACK_WRITE. 

! A linear system is solved with ScaLAPACK and checked. 

USE ScaLAPACK_SUPPORT 

USE ERROR_OPTION_PACKET 

USE MPI_SETUP_INT 

 

IMPLICIT NONE 

 

INCLUDE "mpif.h" 

INTEGER, PARAMETER :: N=9, NIN=10 

INTEGER  INFO, IA, JA, IB, JB, MXLDA,MXCOL,& 

  IERROR, I, J, L, DESC_A(9),& 

  DESC_B(9), BUFF(3), RBUF(3) 

 

LOGICAL :: COMMUTE = .TRUE., NSQUARE = .TRUE., GRID1D = .TRUE. 

INTEGER, ALLOCATABLE :: IPIV0(:)   

real(kind(1d0)) :: ERROR=0d0, SIZE_Y 

real(kind(1d0)), allocatable, dimension(:,:) :: A, B(:), & 
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  X(:), Y(:), A0, B0 

 

  MP_NPROCS=MP_SETUP() 

 

! Set up a 1D processor grid and define its context ID, MP_ICTXT 

  CALL SCALAPACK_SETUP(N, N, NSQUARE, GRID1D) 

! Get the array descriptor entities 

  CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

! Set up the array descriptors 

  CALL DESCINIT(DESC_A, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, & 

  MXLDA, INFO) 

  CALL DESCINIT(DESC_B, N, 1, MP_MB, MP_NB, 0, 0, MP_ICTXT, & 

  MXLDA, INFO) 

 

! Allocate local space for each array. 

  ALLOCATE(A0(MXLDA,MXCOL), B0(MXLDA,1), IPIV0(MXLDA+MP_MB)) 

 

! A root process is used to create the matrix data for the test. 

IF(MP_RANK == 0) THEN 

  ALLOCATE(A(N,N), B(N), X(N), Y(N)) 

  CALL RANDOM_NUMBER(A); CALL RANDOM_NUMBER(Y) 

 

! Compute the correct result. 

  B=MATMUL(A,Y); SIZE_Y=SUM(ABS(Y)) 

  OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN') 

 

! Write the data by columns. 

  DO J=1,N,MP_NB 

    WRITE(NIN,*) ((A(I,L),I=1,N),L=J,min(N,J+MP_NB-1)) 

  END DO 

  CLOSE(NIN) 

 

  OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='UNKNOWN') 

! Write the data by columns. 

  WRITE(NIN,*) (B(I),I=1,N) 

  CLOSE(NIN) 

END IF 

 

! Read the factors into the local arrays. 

CALL ScaLAPACK_READ('Atest.dat', DESC_A, A0) 

CALL ScaLAPACK_READ('Btest.dat', DESC_B, B0) 

 

! Compute the distributed product solution to A x = b. 

IA=1; JA=1; IB=1; JB=1 

 

CALL pdGESV  (N, 1, A0, IA, JA, DESC_A, IPIV0, & 

B0, IB, JB, DESC_B, INFO) 

   

! Put the result on the root node. 

Call ScaLAPACK_WRITE('Xtest.dat', DESC_B, B0) 

 

IF(MP_RANK == 0) THEN 

 

! Read the residuals and check them for size. 

  OPEN(UNIT=NIN, FILE='Xtest.dat', STATUS='OLD') 
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! Read the approximate solution data. 

      READ(NIN,*) X 

      B=X-Y 

   

  CLOSE(NIN,STATUS='DELETE')  

  ERROR=SUM(ABS(B))/SIZE_Y  

 

! Delete temporary files. 

  OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='OLD') 

  CLOSE(NIN,STATUS='DELETE') 

  OPEN(UNIT=NIN, FILE='Btest.dat', STATUS='OLD') 

  CLOSE(NIN,STATUS='DELETE') 

     

END IF 

 

 

! See to any error messages. 

call e1pop("Mp_Setup") 

 

! Deallocate storage arrays  

IF(ALLOCATED(A)) DEALLOCATE(A) 

IF(ALLOCATED(B)) DEALLOCATE(B) 

IF(ALLOCATED(X)) DEALLOCATE(X) 

IF(ALLOCATED(Y)) DEALLOCATE(Y) 

IF(ALLOCATED(A0)) DEALLOCATE(A0) 

IF(ALLOCATED(B0)) DEALLOCATE(B0) 

IF(ALLOCATED(IPIV0)) DEALLOCATE(IPIV0) 

 

IF(ERROR <= SQRT(EPSILON(ERROR)) .and. MP_RANK == 0) THEN 

  write(*,*) & 

  " Example 3 for BLACS and ScaLAPACK solver is correct." 

END IF 

 

 ! Exit from using this process grid. 

  CALL SCALAPACK_EXIT( MP_ICTXT ) 

! Shut down MPI 

  MP_NPROCS = MP_SETUP(‗FINAL‘) 

END 

Output 
 

Example 3 for BLACS and ScaLAPACK is correct. 

ScaLAPACK_MAP 

 

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in 

the Introduction of this manual.   

This routine maps array data from a global array to local arrays in the two-dimensional block-

cyclic form required by ScaLAPACK routines. 
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All processors in the BLACS context call the routine. 

Required Arguments 

A — Global rank-1 or rank-2 array which is to be mapped to the processor grid. The data type 

for A is any of five Fortran intrinsic types: integer; single precision, real; double 

precision, real; single precision, complex; double precision, complex. Normally, the 

user defines A to be valid only on the MP_RANK = 0 processor. (Input) 

DESC_A — An integer vector containing the nine parameters associated with the 

ScaLAPACK matrix descriptor for array A.  See ―Usage Notes for ScaLAPACK 

Utilities‖ for a description of the nine parameters. (Input) 

A0 — This is a local rank-1 or rank-2 array that will contain this processor‘s piece of the 

block-cyclic array.  The data type for A0 is any of five Fortran intrinsic types: integer; 

single precision, real; double precision, real; single precision, complex; and double 

precision, complex. (Output)  

Optional Arguments 

LDA — Leading dimension of A as specified in the calling program.  If this argument is not 

present, SIZE(A,1) is used. (Input) 

COLMAP — Input logical which indicates whether the global array should be mapped in 

column major form or row major form. COLMAP set to .TRUE. will result in the array 

being mapped in column- major form while setting COLMAP to .FALSE. will result in 

the array being mapped in row major form. The default value of COLMAP is .TRUE. 

(Input) 

FORTRAN 90 Interface 

Generic: CALL ScaLAPACK_MAP (A, DESC_A, A0 [,…]) 

Description 

Subroutine ScaLAPACK_MAP maps columns or rows of a global array on  

MP_RANK = 0 to local distributed arrays so that the problem array is usable by a ScaLAPACK 

routine.  It uses the two-dimensional block-cyclic array descriptor for the matrix to place the data 

in the desired assumed-size arrays on the processors.   The block sizes, contained in the array 

descriptor, determine the data set size for each blocking send and receive pair. The number of 

these synchronization points is proportional to /( )M N MB NB    .  A temporary local buffer 

is allocated for staging the array data.  It is of size M by NB, when mapping by columns, or N by MB, 

when mapping by rows. 

Example 

See ScaLAPACK_UNMAP. 
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ScaLAPACK_UNMAP  

 

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in 

the Introduction of this manual.   

This routine unmaps array data from local distributed arrays to a global array. The data in the local 

arrays must have been stored in the two-dimensional block-cyclic form required by ScaLAPACK 

routines.  All processors in the BLACS context call the routine. 

Required Arguments 

A0 — This is a local rank-1 or rank-2 array that contains this processor‘s piece of the block-

cyclic array.  The data type for A0 is any of five Fortran intrinsic types: integer; single 

precision, real; double precision, real; single precision, complex; or double 

precision, complex. (Input) 

DESC_A — An integer vector containing the nine parameters associated with the 

ScaLAPACK matrix descriptor for array A.  See ―Usage Notes for ScaLAPACK 

Utilities‖ for a description of the nine parameters. (Input) 

A —  Global rank-1 or rank-2 array which is to receive the array which had been  mapped to 

the processor grid. The data type for A is any of five Fortran intrinsic types: integer; 

single precision, real; double precision, real; single precision, complex; or double 

precision, complex.  A is only valid on MP_RANK = 0 after ScaLAPACK_UNMAP has 

been called. (Output) 

Optional Arguments 

LDA —  Leading dimension of A as specified in the calling program.  If this argument is not 

present, SIZE(A,1) is used. (Input) 

COLMAP — Input logical which indicates whether the global array should be mapped in 

column major form or row major form. COLMAP set to .TRUE. will result in the array 

being mapped in column major form while setting COLMAP to .FALSE. will result in 

the array being mapped in row major form. The default value of COLMAP is .TRUE. 

(Input) 

FORTRAN 90 Interface 

Generic: CALL ScaLAPACK_UNMAP (A0, DESC_A, A [,…]) 

Description 

Subroutine ScaLAPACK_UNMAP unmaps columns or rows of local distributed arrays to a global 

array on MP_RANK = 0.  It uses the two-dimensional block-cyclic array descriptor for the matrix 
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to retrieve the data from the assumed-size arrays on the processors.   The block sizes, contained in 

the array descriptor, determine the data set size for each blocking send and receive pair. The 

number of these synchronization points is proportional to /( )M N MB NB    .  A temporary 

local buffer is allocated for staging the array data.  It is of size M by NB, when mapping by 

columns, or N by MB, when mapping by rows. 

Example:  Distributed Linear Solver with IMSL ScaLAPACK Interface  

The program SCPKMP_EX1 illustrates solving a system of linear-algebraic equations, Ax b by 

calling routine LSLRG, an IMSL routine which interfaces with a ScaLAPACK routine.  The right-

hand side is produced by defining A  and y  to have random values.  Then the matrix-vector 

product b Ay  is computed.  The problem size is such that the residuals, 0x y   are 

checked on MP_RANK = 0.  IMSL routine ScaLAPACK_SETUP is called to define the process grid 

and provide further information identifying each process.  IMSL routine ScaLAPACK_MAP is 

called to map the global arrays to local distributed arrays. Then LSLRG is called to compute the 

approximate solution, x . 
 

  program scpkmp_ex1 

! This is Example 1 for ScaLAPACK_MAP and ScaLAPACK_UNMAP. 

! A linear system is solved with an IMSL routine which  

! interfaces with ScaLAPACK and is checked. 

USE ScaLAPACK_SUPPORT 

USE ERROR_OPTION_PACKET 

USE MPI_SETUP_INT 

USE LSLRG_INT 

 

IMPLICIT NONE 

 

INCLUDE "mpif.h" 

INTEGER, PARAMETER :: N=9 

INTEGER MXLDA, MXCOL, INFO, DESC_A(9), DESC_X(9) 

 

LOGICAL :: GRID1D = .TRUE., NSQUARE = .TRUE. 

real(kind(1d0)) :: ERROR=0d0, SIZE_Y 

real(kind(1d0)), allocatable, dimension(:,:) :: A, B(:), & 

  X(:), Y(:), A0, B0(:), X0(:) 

 

  MP_NPROCS=MP_SETUP() 

 

! Set up a 1D processor grid and define its context ID, MP_ICTXT 

  CALL SCALAPACK_SETUP(N, N, NSQUARE, GRID1D) 

! Get the array descriptor entities MXLDA, and MXCOL 

  CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL) 

! Set up the array descriptors 

  CALL DESCINIT(DESC_A, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, & 

  MXLDA, INFO) 

  CALL DESCINIT(DESC_X, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, & 

  MXLDA, INFO) 

! Allocate space for local arrays 

  ALLOCATE(A0(MXLDA,MXCOL), B0(MXLDA), X0(MXLDA)) 

 

! A root process is used to create the matrix data for the test. 
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IF(MP_RANK == 0) THEN 

  ALLOCATE(A(N,N), B(N), X(N), Y(N)) 

  CALL RANDOM_NUMBER(A); CALL RANDOM_NUMBER(Y) 

 

! Compute the correct result. 

  B=MATMUL(A,Y); SIZE_Y=SUM(ABS(Y)) 

END IF 

 

! Map the input arrays to the processor grid 

  CALL SCALAPACK_MAP(A, DESC_A, A0) 

  CALL SCALAPACK_MAP(B, DESC_X, B0) 

 

! Compute the distributed product solution to A x = b. 

  CALL LSLRG(A0, B0, X0) 

   

! Put the result on the root node. 

  Call ScaLAPACK_UNMAP(X0, DESC_X, X) 

 

IF(MP_RANK == 0) THEN 

! Check the residuals for size. 

  B=X-Y  

  ERROR=SUM(ABS(B))/SIZE_Y  

END IF 

! See to any error messages. 

  call e1pop("Mp_Setup") 

IF(ERROR <= SQRT(EPSILON(ERROR)) .and. MP_RANK == 0) THEN 

  write(*,*) & 

  " Example 1 for ScaLAPACK_MAP and ScaLAPACK_UNMAP is correct." 

END IF 

 

! Deallocate storage arrays. 

  IF (MP_RANK == 0) DEALLOCATE(A, B, X, Y) 

  DEALLOCATE(A0, B0, X0) 

 

! Exit from using this process grid. 

  CALL SCALAPACK_EXIT( MP_ICTXT ) 

! Shut down MPI 

  MP_NPROCS = MP_SETUP(‗FINAL‘) 

  END 

Output 
 

Example 1 for ScaLAPACK_MAP and ScaLAPACK_UNMAP is correct. 

ScaLAPACK_EXIT 

 

For a detailed description of MPI Requirements see ―Using ScaLAPACK Enhanced Routines‖ in 

the Introduction of this manual.   
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This routine exits ScaLAPACK mode for the IMSL Library routines. All processors in the BLACS 

context call the routine. 

Required Arguments 

ICTXT — The BLACS context ID to which the processor grid is associated. (Input) 

FORTRAN 90 Interface 

Generic:         CALL ScaLAPACK_EXIT (ICTXT) 

Description 

Subroutine ScaLAPACK_EXIT exits ScaLAPACK mode for the IMSL Library routines. The 

following actions occur when this routine is called: 

 BLACS_GRIDEXIT is called with the input BLACS context ID. 

 The pointer to the grid ID, MP_PIGRID is nullified. 

 If the grid, MP_IGRID, has been allocated, it is deallocated. 

 MP_ICTXT is reset to its default value, HUGE(1). 

ERROR_POST 
Prints error messages that are generated by IMSL routines using EPACK. 

Required Argument 

EPACK — (Input [/Output]) 

Derived type array of size p containing the array of message numbers and associated 

data for the messages. The definition of this derived type is packaged within the 

modules used as interfaces for each suite of routines. The declaration is: 

type ?_error 

   integer idummy; real(kind(?_)) rdummy 

end type  

 The choice of  ―?_‖ is either ―s_‖ or ―d_‖ depending on the accuracy of the data. 

This array gets additional messages and data from each routine that uses the ―epack=‖ 

optional argument, provided p is large enough to hold data for a new message. The 

value p = 8 is sufficient to hold the longest single terminal, fatal, or warning message 

that an IMSL Fortran Library routine generates. 

 The location at entry epack (1)%idummy contains the number of data items for all 

messages. When the error_post routine exits, this value is set to zero. Locations in 

array positions (2:) %idummy contain groups of integers consisting of a message 

number, the error severity level, then the required integer data for the message. 

Floating-point data, if required in the message, is passed in locations(:)%rdummy 
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matched with the starting point for integer data. The extent of the data for each 

message is determined by the requirements of the larger of each group of integer or 

floating-point values. 

Optional Arguments 

new_unit = nunit   (Input) 
Unit number, of type integer, associated for reading the direct-access file of error 

messages for the IMSL Fortran 90 routines. 

Default: nunit = 4 

new_path = path   (Input) 

Pathname in the local file space, of type character*64, needed for reading the direct-

access file of error messages. Default string for path is defined during the installation 

procedure for certain  IMSL Fortran Library routines.   

FORTRAN 90 Interface 

Generic: CALL ERROR_POST (EPACK [,…]) 

Specific:  The specific interface names are S_ERROR_POST and D_ERROR_POST. 

Description 

A default direct-access error message file (.daf file) is supplied with this product. This file is read 

by error_post using the contents of the derived type argument epack, containing the message 

number, error severity level, and associated data. The message is converted into character strings 

accepted by the error processor and then printed. The number of pending messages that print 

depends on the settings of the parameters PRINT and STOP in the Reference Material in the IMSL 

MATH/LIBRARY User's Manual. These values are initialized to defaults such that any Level 5 or 

Level 4 message causes a STOP within the error processor after a print of the text. To change these 

defaults so that more than one error message prints, use the routine ERSET documented and 

illustrated with examples in the Reference Material in the IMSL MATH/LIBRARY User's 

Manual.  The method of using a message file to store the messages is required to support ―shared-

memory parallelism.‖  

Managing the Message File 

For most applications of this product, there will be no need to manage this file.  However, there 

are a few situations which may require changing or adding messages: 

 New system-wide messages have been developed for applications using this Library.  

 All or some of the existing messages need to be translated to another language 

 A subset of users need to add a specific message file for their applications using this Library. 

Following is information on changing the contents of the message file, and information on how to 

create and access a message file for a private application. 
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Changing Messages 

In order to change messages, two files are required: 

 An editable message glossary, messages.gls, supplied with this product.  

 A source program, prepmess.f, used to generate an executable which builds messages.daf 

from messages.gls.   

To change messages, first make a backup copy of messages.gls. Use a text editor to edit  

messages.gls. The format of this file is a series of pairs of statements: 

 message_number=<nnnn>  

 message='message string'  

(Note that neither of these lines should begin with a tab.) 

The variable <nnnn> is an integer message number (see below for ranges and reserved message 

numbers). 

The 'message string' is any valid message string not to exceed 255 characters. If a message 

line is too long for a screen, the standard Fortran 90 concatenation operator // with the line 

continuation character & may be used to wrap the text. 

Most strings have substitution parameters embedded within them.  These may be in the following 

forms: 

 %(i<n>) for an integer substitution, where n is the nth integer output in this message. 

 %(r<n>) for single precision real number substitution, where n is the nth real number output 

in this message. 

 %(d<n>) for double precision real number substitution, where n is the nth double precision 

number output in this message. 

New messages added to the system-wide error message file should be placed at the end of the file. 

Message numbers 5000 through 10000 have been reserved for user-added messages.  Currently, 

messages 1 through 1400 are used by IMSL.  Gaps in message number ranges are permitted; 

however, the message numbers must be in ascending order within the file.  The message numbers 

used for each IMSL Fortran Library subroutine are documented in this manual and in online help. 

If existing messages are being edited or translated, make sure not to alter the message_number 

lines. (This prevents conflicts with any new messages.gls file supplied with future versions of this 

Library.) 

Building a New Direct-access Message File 

The prepmess executable must be available to complete the message changing process. For 

information on building the prepmess executable from prepmess.f , consult the installation 

guide for this product.  

Once new messages have been placed in the messages.gls file, make a backup copy of the 

messages.daf file.  Then remove messages.daf from the current directory.  Now enter the 

following command: 

prepmess > prepmess_output 
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A new messages.daf file is created.  Edit the prepmess_output file and look near the end of 

the file for the new error messages.  The prepmess program processes each message through the 

error message system as a validity check.  There should be no FATAL error announcement within 

the prepmess_output file. 

Private Message Files 

Users can create a private message file within their own messages.  This file would generally be 

used by an application that calls this Library.  Follow the steps outlined above to create a private 

messages.gls file.  The user should then be given a copy of the prepmess executable.  In the 

application code, call the error_post subprogram with the new_unit/new_path optional 

arguments.  The new path should point to the directory in which the private messages.daf file 

resides. 

SHOW 
Prints rank-1 or rank-2 arrays of numbers in a readable format. 

Required Arguments 

X — Rank-1 or rank-2 array containing the numbers to be printed.   (Input) 

Optional Arguments 

text = CHARACTER   (Input) 

CHARACTER(LEN=*) string used for labeling the array. 

image = buffer  (Output) 

CHARACTER(LEN=*) string used for an internal write buffer.  With this argument 

present the output is converted to characters and packed.  The lines are separated by an 

end-of-line sequence.  The length of buffer is estimated by the line width in effect, 

time the number of lines for the array. 

iopt = iopt(:)   (Input) 

Derived type array with the same precision as the input array; used for passing optional 

data to the routine. Use the REAL(KIND(1E0)) precision for output of INTEGER 

arrays.  The options are as follows: 

Packaged Options for SHOW 

Prefix is blank Option Name Option Value 

 show_significant_digits_is_4 1 

 show_significant_digits_is_7 2 

 show_significant_digits_is_16 3 

 show_line_width_is_44 4 

 show_line_width_is_72 5 

 show_line_width_is_128 6 

 show_end_of_line_sequence_is 7 
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Packaged Options for SHOW 

 show_starting_index_is 8 

 show_starting_row_index_is 9 

 show_starting_col_index_is 10 

iopt(IO) = show_significant_digits_is_4  

iopt(IO) = show_significant_digits_is_7  

iopt(IO) = show_significant_digits_is_16  

 These options allow more precision to be displayed.  The default is 4D for each value. 

The other possible choices display 7D or 16D. 

iopt(IO) = show_line_width_is_44  

iopt(IO) = show_line_width_is_72  

iopt(IO) = show_line_width_is_128  

 These options allow varying the output line width.  The default is 72 characters per 

line.  This allows output on many work stations or terminals to be read without 

wrapping of lines. 

iopt(IO) = show_end-of_line_sequence_is  

 The sequence of characters ending a line when it is placed into the internal character 

buffer corresponding to the optional argument  ‗IMAGE = buffer‗. The value of 

iopt(IO+1)%idummy is the number of characters.  These are followed, starting at 

iopt(IO+2)%idummy, by the ASCII codes of the characters themselves.  The default 

is the single character, ASCII value 10 or New Line. 

iopt(IO) = show_starting_index_is  

 This are used to reset the starting index for a rank-1 array to a value different from the 

default value, which is 1. 

iopt(IO) = show_starting_row_index_is  

iopt(IO) = show_starting_col_index_is  

 These are used to reset the starting row and column indices to values different from 

their defaults, each 1. 

FORTRAN 90 Interface 

Generic: CALL SHOW (X [,…]) 

Specific:  The specific interface names are S_SHOW and D_SHOW. 
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Description 

The show routine is a generic subroutine interface to separate low-level subroutines for each data 

type and array shape.  Output is directed to the unit number IUNIT.  That number is obtained with 

the subroutine UMACH, IMSL MATH/LIBRARY User's Manual.  Thus the user must open this unit 

in the calling program if it desired to be different from the standard output unit.  If the optional 

argument ‗IMAGE = buffer‗ is present, the output is not sent to a file but to a character string 

within buffer. These characters are available to output or be used in the application. 

Fatal and Terminal Error Messages 

See the messages.gls file for error messages for SHOW. These error messages are numbered 

601−606; 611−617; 621−627; 631−636; 641−646. 

Example 1: Printing an Array 

Array of random numbers for all the intrinsic data types are printed.  For REAL(KIND(1E0)) 

rank-1 arrays, the number of displayed digits is reset from the default value of  4 to the value 7 and 

the subscripts for the array are reset so they match their declared extent when printed.  The output 

is not shown. 
  

 use show_int  

 use rand_int  

  

 implicit none  

   

! This is Example 1 for SHOW.  

  

 integer, parameter :: n=7, m=3  

 real(kind(1e0)) s_x(-1:n), s_m(m,n)  

 real(kind(1d0)) d_x(n), d_m(m,n)  

 complex(kind(1e0)) c_x(n), c_m(m,n)  

 complex(kind(1d0)) z_x(n),z_m(m,n)  

 integer i_x(n), i_m(m,n)  

        type (s_options) options(3)  

  

! The data types printed are real(kind(1e0)), real(kind(1d0)), 

! complex(kind(1e0)),  complex(kind(1d0)), and INTEGER.  

! Fill with randsom numbers and then print the contents,  

! in each case with a label.   

 s_x=rand(s_x); s_m=rand(s_m)  

 d_x=rand(d_x); d_m=rand(d_m)  

 c_x=rand(c_x); c_m=rand(c_m)  

 z_x=rand(z_x); z_m=rand(z_m)  

 i_x=100*rand(s_x(1:n)); i_m=100*rand(s_m)  

  

 call show (s_x, 'Rank-1, REAL')  

 call show (s_m, 'Rank-2, REAL')  

 call show (d_x, 'Rank-1, DOUBLE')  

 call show (d_m, 'Rank-2, DOUBLE')  

 call show (c_x, 'Rank-1, COMPLEX')  

 call show (c_m, 'Rank-2, COMPLEX')  

 call show (z_x, 'Rank-1, DOUBLE COMPLEX')  

 call show (z_m, 'Rank-2, DOUBLE COMPLEX')  

 call show (i_x, 'Rank-1, INTEGER')  
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 call show (i_m, 'Rank-2, INTEGER')  

  

! Show 7 digits per number and  according to the  

! natural or declared size of the array.  

        options(1)=show_significant_digits_is_7  

        options(2)=show_starting_index_is  

        options(3)= -1 ! The starting  value.  

        call show (s_x, &  

'Rank-1, REAL with 7 digits, natural indexing', IOPT=options)  

        end  

Output 
 

Example 1 for SHOW is correct. 

Additional Examples 

Example 2: Writing an Array to a Character Variable 

This example prepares a rank-1 array for further processing, in this case delayed writing to the 

standard output unit.  The indices and the amount of precision are reset from their defaults, as in 

Example 1.  An end-of-line sequence of the characters CR-NL (ASCII 10,13) is used in place of 

the standard ASCII 10. This is not required for writing this array, but is included for an illustration 

of the option. 
 

 use show_int  

 use rand_int  

  

 implicit none  

   

! This is Example 2 for SHOW.  

 integer, parameter :: n=7  

 real(kind(1e0)) s_x(-1:n)  

        type (s_options) options(7)  

        CHARACTER (LEN=(72+2)*4) BUFFER  

! The data types printed are real(kind(1e0)) random numbers.  

 s_x=rand(s_x)  

  

  

! Show 7 digits per number and  according to the  

! natural or declared size of the array.  

! Prepare the output lines in array BUFFER.  

! End each line with ASCII sequence CR-NL.  

        options(1)=show_significant_digits_is_7  

  

        options(2)=show_starting_index_is  

        options(3)= -1 ! The starting  value.  

  

        options(4)=show_end_of_line_sequence_is  

        options(5)=  2 ! Use 2 EOL characters.  

        options(6)= 10 ! The ASCII code for CR.  

        options(7)= 13 ! The ASCII code for NL.  

  

        BUFFER= ' '    ! Blank out the buffer.  
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! Prepare the output in BUFFER.  

 call show (s_x, &  

 'Rank-1, REAL with 7 digits, natural indexing '//&  

 'internal BUFFER, CR-NL EOLs.',&  

 IMAGE=BUFFER,  IOPT=options)  

  

! Display BUFFER as a CHARACTER array. Discard blanks  

! on the ends.  

        WRITE(*,'(1x,A)') TRIM(BUFFER)  

          

        end  

Output 
 

Example 2 for SHOW is correct. 

WRRRN 
Prints a real rectangular matrix with integer row and column labels. 

Required Arguments 

TITLE — Character string specifying the title.   (Input)  

TITLE set equal to a blank character(s) suppresses printing of the title. Use ―% /‖ 

within the title to create a new line. Long titles are automatically wrapped. 

A — NRA by NCA matrix to be printed.   (Input) 

Optional Arguments 

NRA — Number of rows.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

ITRING — Triangle option.   (Input)  

Default: ITRING = 0. 

ITRING Action 

0  Full matrix is printed. 

1  Upper triangle of A is printed, including the diagonal. 

2  Upper triangle of A excluding the diagonal of A is printed. 
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−1  Lower triangle of A is printed, including the diagonal. 

−2  Lower triangle of A excluding the diagonal of A is printed. 

FORTRAN 90 Interface 

Generic: CALL WRRRN (TITLE, A [,…]) 

Specific:  The specific interface names are S_WRRRN and D_WRRRN for two dimensional 

arrays, and S_WRRRN1D and D_WRRRN1D for one dimensional arrays. 

FORTRAN 77 Interface 

Single: CALL WRRRN (TITLE, NRA, NCA, A, LDA, ITRING) 

Double: The double precision name is DWRRRN. 

Description 

Routine WRRRN prints a real rectangular matrix with the rows and columns labeled 1, 2, 3, and so 

on. WRRRN can restrict printing to the elements of the upper or lower triangles of matrices via the 

ITRING option. Generally, ITRING ≠ 0 is used with symmetric matrices. 

In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector, 

set NRA to the length of the array and set NCA = 1. For a row vector, set NRA = 1 and set NCA to the 

length of the array. In both cases, set LDA = NRA and set ITRING = 0. 

Comments 

1. A single D, E, or F format is chosen automatically in order to print 4 significant digits 

for the largest element of A in absolute value. Routine WROPT  can be used to change 

the default format. 

2. Horizontal centering, a method for printing large matrices, paging, printing a title on 

each page, and many other options can be selected by invoking WROPT. 

3. A page width of 78 characters is used. Page width and page length can be reset by 

invoking PGOPT . 

4. Output is written to the unit specified by UMACH (see the Reference Material). 

Example 

The following example prints all of a 3 × 4 matrix A where aij= i + j/10. 
    USE WRRRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    ITRING, LDA, NCA, NRA 
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      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3) 

! 

      INTEGER    I, J 

      REAL       A(LDA,NCA) 

! 

      DO 20  I=1, NRA 

         DO 10  J=1, NCA 

            A(I,J) = I + J*0.1 

   10    CONTINUE 

   20 CONTINUE 

!                                 Write A matrix. 

      CALL WRRRN ('A', A, NRA=NRA) 

      END 

Output 
 

                  A 

        1       2       3       4 

1   1.100   1.200   1.300   1.400 

2   2.100   2.200   2.300   2.400 

3   3.100   3.200   3.300   3.400 

WRRRL 
Print a real rectangular matrix with a given format and labels. 

Required Arguments 

TITLE — Character string specifying the title.   (Input)  

TITLE set equal to a blank character(s) suppresses printing of the title. 

A — NRA by NCA matrix to be printed.   (Input) 

RLABEL — CHARACTER * (*) vector of labels for rows of A.   (Input)  

If rows are to be numbered consecutively 1, 2, …, NRA, use RLABEL(1) = ‘NUMBER‘. If 

no row labels are desired, use RLABEL(1) = ‘NONE‘. Otherwise, RLABEL is a vector of 

length NRA containing the labels. 

CLABEL — CHARACTER * (*) vector of labels for columns of A.   (Input)  

If columns are to be numbered consecutively 1, 2, …, NCA, use 

CLABEL(1) = ‘NUMBER‘. If no column labels are desired, use CLABEL(1) = ‘NONE‘. 

Otherwise, CLABEL(1) is the heading for the row labels, and either CLABEL(2) must be 

‘NUMBER‘or ‘NONE‘, or CLABEL must be a vector of length NCA + 1 with  

CLABEL(1 + j) containing the column heading for the j-th column. 

Optional Arguments 

NRA — Number of rows.   (Input) 

Default: NRA = SIZE (A,1). 
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NCA — Number of columns.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

ITRING — Triangle option.   (Input) 

Default: ITRING = 0. 

ITRING Action 

0  Full matrix is printed. 

1  Upper triangle of A is printed, including the diagonal. 

2  Upper triangle of A excluding the diagonal of A is printed. 

−1  Lower triangle of A is printed, including the diagonal. 

−2  Lower triangle of A excluding the diagonal of A is printed. 

FMT — Character string containing formats.   (Input)  

If FMT is set to a blank character(s), the format used is specified by WROPT. Otherwise, 

FMT must contain exactly one set of parentheses and one or more edit descriptors. For 

example, FMT = ‘(F10.3)‘ specifies this F format for the entire matrix.  

FMT = ‘(2E10.3, 3F10.3)‘ specifies an E format for columns 1 and 2 and an F 

format for columns 3, 4 and 5. If the end of FMT is encountered and if some columns of 

the matrix remain, format control continues with the first format in FMT. Even though 

the matrix A is real, an I format can be used to print the integer part of matrix elements 

of A. The most useful formats are special formats, called the V and W formats, that can 

be used to specify pretty formats automatically. Set FMT = ‘(V10.4)‘ if you want a 

single D, E, or F format selected automatically with field width 10 and with 4 

significant digits. Set FMT = ‘(W10.4)‘ if you want a single D, E, F, or I format 

selected automatically with field width 10 and with 4 significant digits. While the V 

format prints trailing zeroes and a trailing decimal point, the W format does not. See 

Comment 4 for general descriptions of the V and W formats. FMT may contain only D, E, 

F, G, I, V, or W edit descriptors, e.g., the X descriptor is not allowed.  

Default: FMT = ‗ ‗. 

FORTRAN 90 Interface 

Generic: CALL WRRRL (TITLE, A, RLABEL, CLABEL [,…]) 

Specific:  The specific interface names are S_WRRRL and D_WRRRL for two dimensional 

arrays, and S_WRRRL1D and D_WRRRL1D for one dimensional arrays.  
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FORTRAN 77 Interface 

Single: CALL WRRRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL, CLABEL) 

Double: The double precision name is DWRRRL. 

Description 

Routine WRRRL prints a real rectangular matrix (stored in A) with row and column labels (specified 

by RLABEL and CLABEL, respectively) according to a given format (stored in FMT). WRRRL can 

restrict printing to the elements of upper or lower triangles of matrices via the ITRING option. 

Generally, ITRING ≠ 0 is used with symmetric matrices. 

In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector, 

set NRA to the length of the array and set NCA = 1. For a row vector, set NRA = 1 and set NCA to the 

length of the array. In both cases, set LDA = NRA, and set ITRING = 0. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of W2RRL/DW2RRL. The 

reference is: 

CALL W2RRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL, 

CLABEL, CHWK) 

The additional argument is: 

CHWK — CHARACTER * 10 work vector of length NCA. This workspace is 

referenced only if all three conditions indicated at the beginning of this 

comment are met. Otherwise, CHWK is not referenced and can be a 

CHARACTER * 10 vector of length one. 

2. The output appears in the following form: 

TITLE 

CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4) 

RLABEL(1) Xxxxx Xxxxx Xxxxx 

RLABEL(2) Xxxxx Xxxxx Xxxxx 

3. Use ―% /‖ within titles or labels to create a new line. Long titles or labels are 

automatically wrapped. 

4. For printing numbers whose magnitudes are unknown, the G format in FORTRAN is 

useful; however, the decimal points will generally not be aligned when printing a 

column of numbers. The V and W formats are special formats used by this routine to 

select a D, E, F, or I format so that the decimal points will be aligned. The V and W 

formats are specified as Vn.d and Wn.d. Here, n is the field width and d is the number 

of significant digits generally printed. Valid values for n are 3, 4,…, 40. Valid values 

for d are 1, 2, …, n − 2. If FMT specifies one format and that format is a V or W format, 

all elements of the matrix A are examined to determine one FORTRAN format for 
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printing. If FMT specifies more than one format, FORTRAN formats are generated 

separately from each V or W format. 

5. A page width of 78 characters is used. Page width and page length can be reset by 

invoking PGOPT . 

6. Horizontal centering, method for printing large matrices, paging, method for printing 

NaN (not a number), printing a title on each page, and many other options can be 

selected by invoking WROPT . 

7. Output is written to the unit specified by UMACH (see Reference Material). 

Example 

The following example prints all of a 3 × 4 matrix A where aij = (i + j/10)10
j-3

. 
 

      USE WRRRL_INT 

 

      IMPLICIT   NONE 

      INTEGER    ITRING, LDA, NCA, NRA 

      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3) 

! 

      INTEGER    I, J 

      REAL       A(LDA,NCA) 

      CHARACTER  CLABEL(5)*5, FMT*8, RLABEL(3)*5 

! 

      DATA FMT/'(W10.6)'/ 

      DATA CLABEL/'   ', 'Col 1', 'Col 2', 'Col 3', 'Col 4'/ 

      DATA RLABEL/'Row 1', 'Row 2', 'Row 3'/ 

! 

      DO 20  I=1, NRA 

         DO 10  J=1, NCA 

            A(I,J) = (I+J*0.1)*10.0**(J-3) 

   10    CONTINUE 

   20 CONTINUE 

!                                 Write A matrix. 

      CALL WRRRL ('A', A, RLABEL, CLABEL, NRA=NRA, FMT=FMT) 

      END 

Output 
 

                             A 

            Col 1       Col 2       Col 3       Col 4 

Row 1       0.011       0.120       1.300      14.000 

Row 2       0.021       0.220       2.300      24.000 

Row 3       0.031       0.320       3.300      34.000 

WRIRN 
Prints an integer rectangular matrix with integer row and column labels. 
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Required Arguments 

TITLE — Character string specifying the title.   (Input)  

TITLE set equal to a blank character(s) suppresses printing of the title. Use ―% /‖ 

within the title to create a new line. Long titles are automatically wrapped. 

MAT — NRMAT by NCMAT matrix to be printed.   (Input) 

Optional Arguments 

NRMAT — Number of rows.   (Input) 

Default: NRMAT = SIZE (MAT,1). 

NCMAT — Number of columns.   (Input) 

Default: NCMAT = SIZE (MAT,2). 

LDMAT — Leading dimension of MAT exactly as specified in the dimension statement in the 

calling program.   (Input) 

Default: LDMAT = SIZE (MAT,1). 

ITRING — Triangle option.   (Input) 

Default: ITRING = 0.  

ITRING Action 

0  Full matrix is printed. 

1  Upper triangle of MAT is printed, including the diagonal. 

2  Upper triangle of MAT excluding the diagonal of MAT is printed. 

−1  Lower triangle of MAT is printed, including the diagonal. 

−2  Lower triangle of MAT excluding the diagonal of MAT is printed. 

FORTRAN 90 Interface 

Generic: CALL WRIRN (TITLE, MAT [,…]) 

Specific:  The specific interface name is S_WRIRN. 

FORTRAN 77 Interface 

Single: CALL WRIRN (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING) 
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Description 

Routine WRIRN prints an integer rectangular matrix with the rows and columns labeled 1, 2, 3, and 

so on. WRIRN can restrict printing to elements of the upper and lower triangles of matrices via the 

ITRING option. Generally, ITRING ≠ 0 is used with symmetric matrices. 

In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector, 

set NRMAT to the length of the array and set NCMAT = 1. For a row vector, set NRMAT = 1 and set 

NCMAT to the length of the array. In both cases, set LDMAT = NRMAT and set ITRING = 0. 

Comments 

1. All the entries in MAT are printed using a single I format. The field width is determined 

by the largest absolute entry. 

2. Horizontal centering, a method for printing large matrices, paging, printing a title on 

each page, and many other options can be selected by invoking WROPT. 

3. A page width of 78 characters is used. Page width and page length can be reset by 

invoking PGOPT . 

4. Output is written to the unit specified by UMACH (see Reference Material). 

Example 

The following example prints all of a 3 × 4 matrix A = MAT where aij = 10i + j. 
 

      USE WRIRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    ITRING, LDMAT, NCMAT, NRMAT 

      PARAMETER  (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3) 

! 

      INTEGER    I, J, MAT(LDMAT,NCMAT) 

! 

      DO 20  I=1, NRMAT 

         DO 10  J=1, NCMAT 

            MAT(I,J) = I*10 + J 

   10    CONTINUE 

   20 CONTINUE 

!                                 Write MAT matrix. 

      CALL WRIRN ('MAT', MAT, NRMAT=NRMAT) 

      END 

Output 
 

         MAT 

     1    2    3    4 

1   11   12   13   14 

2   21   22   23   24 

3   31   32   33   34 
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WRIRL 
Print an integer rectangular matrix with a given format and labels. 

Required Arguments 

TITLE — Character string specifying the title.   (Input)  

TITLE set equal to a blank character(s) suppresses printing of the title. 

MAT — NRMAT by NCMAT matrix to be printed.   (Input) 

RLABEL — CHARACTER * (*) vector of labels for rows of MAT.   (Input)  

If rows are to be numbered consecutively 1, 2, …, NRMAT, use  

RLABEL(1) = ‘NUMBER‘. If no row labels are desired, use RLABEL(1) = ‘NONE‘. 

Otherwise, RLABEL is a vector of length NRMAT containing the labels. 

CLABEL — CHARACTER * (*) vector of labels for columns of MAT.   (Input)  

If columns are to be numbered consecutively 1, 2, …, NCMAT, use 

CLABEL(1) = ‘NUMBER‘. If no column labels are desired, use CLABEL(1) = ‘NONE‘. 

Otherwise, CLABEL(1) is the heading for the row labels, and either CLABEL(2) must be 

‘NUMBER‘ or ‘NONE‘, or CLABEL must be a vector of length 

NCMAT + 1 with CLABEL(1 + j) containing the column heading for the j-th column. 

Optional Arguments 

NRMAT — Number of rows.   (Input) 

Default: NRMAT = SIZE (MAT,1). 

NCMAT — Number of columns.   (Input) 

Default: NCMAT = SIZE (MAT,2). 

LDMAT — Leading dimension of MAT exactly as specified in the dimension statement in the 

calling program.   (Input) 

Default: LDMAT = SIZE (MAT,1). 

ITRING — Triangle option.   (Input) 

Default: ITRING = 0. 

ITRING Action 

0  Full matrix is printed. 

1  Upper triangle of MAT is printed, including the diagonal. 

2  Upper triangle of MAT excluding the diagonal of MAT is printed. 

−1  Lower triangle of MAT is printed, including the diagonal. 
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−2  Lower triangle of MAT excluding the diagonal of MAT is printed. 

FMT — Character string containing formats.   (Input)  

 If FMT is set to a blank character(s), the format used is a single I format with field 

width determined by the largest absolute entry. Otherwise, FMT must contain exactly 

one set of parentheses and one or more I edit descriptors. For example,  

FMT = ‘(I10)‘ specifies this I format for the entire matrix. FMT = ‘(2I10, 3I5)‘ 

specifies an I10 format for columns 1 and 2 and an I5 format for columns 3, 4 and 5. 

If the end of FMT is encountered and if some columns of the matrix remain, format 

control continues with the first format in FMT. FMT may only contain the I edit 

descriptor, e.g., the X edit descriptor is not allowed.  

Default: FMT = ‗ ‗. 

FORTRAN 90 Interface 

Generic: CALL WRIRL (TITLE, MAT, RLABEL, CLABEL [,…]) 

Specific:  The specific interface name is S_WRIRL. 

FORTRAN 77 Interface 

Single: CALL WRIRL (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING, FMT, RLABEL, 
CLABEL) 

Description 

Routine WRIRL prints an integer rectangular matrix (stored in MAT) with row and column labels 

(specified by RLABEL and CLABEL, respectively), according to a given format (stored in FMT). 

WRIRL can restrict printing to the elements of upper or lower triangles of matrices via the ITRING 

option. Generally, ITRING ≠ 0 is used with symmetric matrices. In addition, one-dimensional 

arrays can be printed as column or row vectors. For a column vector, set NRMAT to the length of 

the array and set NCMAT = 1. For a row vector, set NRMAT = 1 and set NCMAT to the length of the 

array. In both cases, set LDMAT = NRMAT, and set ITRING = 0. 

Comments 

1. The output appears in the following form: 

TITLE 

CLABEL(1) CLABEL(2) CALBEL(3) CLABEL 4) 

RLABEL(1) Xxxxx xxxxx xxxxx 

RLABEL(2) Xxxxx xxxxx xxxxx 

2. Use ―% /‖ within titles or labels to create a new line. Long titles or labels are 

automatically wrapped. 

3. A page width of 78 characters is used. Page width and page length can be reset by 

invoking PGOPT. 
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4. Horizontal centering, a method for printing large matrices, paging, printing a title on 

each page, and many other options can be selected by invoking WROPT. 

5. Output is written to the unit specified by UMACH (see the Reference Material). 

Example 

The following example prints all of a 3 × 4 matrix A = MAT where aij= 10i + j. 
 

      USE WRIRL_INT 

 

      IMPLICIT   NONE 

      INTEGER    ITRING, LDMAT, NCMAT, NRMAT 

 

      PARAMETER  (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3) 

! 

      INTEGER    I, J, MAT(LDMAT,NCMAT) 

      CHARACTER  CLABEL(5)*5, FMT*8, RLABEL(3)*5 

! 

      DATA FMT/'(I2)'/ 

      DATA CLABEL/'     ', 'Col 1', 'Col 2', 'Col 3', 'Col 4'/ 

      DATA RLABEL/'Row 1', 'Row 2', 'Row 3'/ 

! 

      DO 20  I=1, NRMAT 

         DO 10  J=1, NCMAT 

            MAT(I,J) = I*10 + J 

   10    CONTINUE 

   20 CONTINUE 

!                                 Write MAT matrix. 

      CALL WRIRL ('MAT', MAT, RLABEL, CLABEL, NRMAT=NRMAT) 

      END 

Output 
 

                   MAT 

        Col 1  Col 2  Col 3  Col 4 

Row 1     11     12     13     14 

Row 2     21     22     23     24 

Row 3     31     32     33     34 

WRCRN 
Prints a complex rectangular matrix with integer row and column labels. 

Required Arguments 

TITLE — Character string specifying the title.   (Input)  

TITLE set equal to a blank character(s) suppresses printing of the title. Use ―% /‖ 

within the title to create a new line. Long titles are automatically wrapped. 

A — Complex NRA by NCA matrix to be printed.   (Input) 
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Optional Arguments 

NRA — Number of rows.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

ITRING — Triangle option.   (Input) 

Default: ITRING = 0. 

ITRING Action 

 0  Full matrix is printed. 

 1  Upper triangle of A is printed, including the diagonal. 

 2  Upper triangle of A excluding the diagonal of A is printed. 

−1  Lower triangle of A is printed, including the diagonal. 

−2  Lower triangle of A excluding the diagonal of A is printed. 

FORTRAN 90 Interface 

Generic: CALL WRCRN (TITLE, A [,…]) 

Specific:  The specific interface names are S_WRCRN and D_WRCRN for two dimensional 

arrays, and S_WRCRN1D and D_WRCRN1D for one dimensional arrays. 

FORTRAN 77 Interface 

Single: CALL WRCRN (TITLE, NRA, NCA, A, LDA, ITRING) 

Double: The double precision name is DWRCRN. 

Description 

Routine WRCRN prints a complex rectangular matrix with the rows and columns labeled 1, 2, 3, and 

so on. WRCRN can restrict printing to the elements of the upper or lower triangles of matrices via 

the ITRING option. Generally, ITRING ≠ 0 is used with Hermitian matrices. 
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In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector, 

set NRA to the length of the array, and set NCA = 1. For a row vector, set NRA = 1, and set NCA to 

the length of the array. In both cases, set LDA = NRA, and set ITRING = 0. 

Comments 

1. A single D, E, or F format is chosen automatically in order to print 4 significant digits 

for the largest real or imaginary part in absolute value of all the complex numbers in A. 

Routine WROPT  can be used to change the default format. 

2. Horizontal centering, a method for printing large matrices, paging, method for printing 

NaN (not a number), and printing a title on each page can be selected by invoking 

WROPT. 

3. A page width of 78 characters is used. Page width and page length can be reset by 

invoking subroutine PGOPT . 

4. Output is written to the unit specified by UMACH (see Reference Material). 

Example 

This example prints all of a 3 × 4 complex matrix A with elements 

,  where  = 1mna m ni i  
 

 

      USE WRCRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    ITRING, LDA, NCA, NRA 

      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3) 

! 

      INTEGER    I, J 

      COMPLEX    A(LDA,NCA), CMPLX 

      INTRINSIC  CMPLX 

! 

      DO 20  I=1, NRA 

         DO 10  J=1, NCA 

            A(I,J) = CMPLX(I,J) 

   10    CONTINUE 

   20 CONTINUE 

!                                 Write A matrix. 

      CALL WRCRN ('A', A, NRA=NRA) 

      END 

Output 
 

                                  A 

                 1                2                3                4 

1  ( 1.000, 1.000)  ( 1.000, 2.000)  ( 1.000, 3.000)  ( 1.000, 4.000) 

2  ( 2.000, 1.000)  ( 2.000, 2.000)  ( 2.000, 3.000)  ( 2.000, 4.000) 

3  ( 3.000, 1.000)  ( 3.000, 2.000)  ( 3.000, 3.000)  ( 3.000, 4.000) 
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WRCRL 
Prints a complex rectangular matrix with a given format and labels. 

Required Arguments 

TITLE — Character string specifying the title.   (Input)  

TITLE set equal to a blank character(s) suppresses printing of the title. 

A — Complex NRA by NCA matrix to be printed.   (Input) 

RLABEL — CHARACTER * (*) vector of labels for rows of A.   (Input)  

If rows are to be numbered consecutively 1, 2, …, NRA, use RLABEL(1) = ‘NUMBER‘. If 

no row labels are desired, use RLABEL(1) = ‘NONE‘. Otherwise, RLABEL is a vector of 

length NRA containing the labels. 

CLABEL — CHARACTER * (*) vector of labels for columns of A.   (Input)  

If columns are to be numbered consecutively 1, 2, …, NCA, use  

CLABEL(1) = ‘NUMBER‘. If no column labels are desired, use CLABEL(1) = ‘NONE‘. 

Otherwise, CLABEL(1) is the heading for the row labels, and either CLABEL(2) must be 

‘NUMBER‘ or ‘NONE‘, or CLABEL must be a vector of length NCA + 1 with  

CLABEL(1 + j) containing the column heading for the j-th column. 

Optional Arguments 

NRA — Number of rows.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

ITRING — Triangle option.   (Input) 

Default: ITRING = 0. 

ITRING  Action 

0    Full matrix is printed. 

1    Upper triangle of A is printed, including the diagonal. 

2    Upper triangle of A excluding the diagonal of A is printed. 

−1    Lower triangle of A is printed, including the diagonal. 
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−2    Lower triangle of A excluding the diagonal of A is printed. 

FMT — Character string containing formats.   (Input)  

 If FMT is set to a blank character(s), the format used is specified by WROPT. Otherwise, 

FMT must contain exactly one set of parentheses and one or more edit descriptors. 

Because a complex number consists of two parts (a real and an imaginary part), two 

edit descriptors are used for printing a single complex number. FMT = ‘(E10.3, 

F10.3)‘ specifies an E format for the real part and an F format for the imaginary part. 

FMT = ‘(F10.3)‘ uses an F format for both the real and imaginary parts. If the end of 

FMT is encountered and if all columns of the matrix have not been printed, format 

control continues with the first format in FMT. Even though the matrix A is complex, an 

I format can be used to print the integer parts of the real and imaginary components of 

each complex number. The most useful formats are special formats, called the  

―V and W formats,‖ that can be used to specify pretty formats automatically. Set  

FMT = ‘(V10.4)‘ if you want a single D, E, or F format selected automatially with 

field width 10 and with 4 significant digits. Set FMT = ‘(W10.4)‘ if you want a single 

D, E, F, or I format selected automatically with field width 10 and with 4 significant 

digits. While the V format prints trailing zeroes and a trailing decimal point, the W 

format does not. See Comment 4 for general descriptions of the V and W formats. FMT 

may contain only D, E, F, G, I, V, or W edit descriptors, e.g., the X descriptor is not 

allowed.  

Default: FMT = ‗ ‗. 

FORTRAN 90 Interface 

Generic: CALL WRCRL (TITLE, A, RLABEL, CLABEL[,…]) 

Specific:  The specific interface names are S_WRCRL and D_WRCRL for two dimensional 

arrays, and S_WRCRL1D and D_WRCRL1D for one dimensional arrays. 

FORTRAN 77 Interface 

Single: CALL WRCRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL, CLABEL) 

Double: The double precision name is DWRCRL. 

Description 

Routine WRCRL prints a complex rectangular matrix (stored in A) with row and column labels 

(specified by RLABEL and CLABEL, respectively) according to a given format (stored in FMT). 

Routine WRCRL can restrict printing to the elements of upper or lower triangles of matrices via the 

ITRING option. Generally, the ITRING ≠ 0 is used with Hermitian matrices. 

In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector, 

set NRA to the length of the array, and set NCA = 1. For a row vector, set NRA = 1, and set NCA to 

the length of the array. In both cases, set LDA = NRA, and set ITRING = 0. 
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Comments 

1. Workspace may be explicitly provided, if desired, by use of W2CRL/DW2CRL. The 

reference is: 

CALL W2CRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL, 

CLABEL, CHWK) 

The additional argument is: 

CHWK — CHARACTER * 10 work vector of length 2 * NCA. This workspace is 

referenced only if all three conditions indicated at the beginning of this 

comment are met. Otherwise, CHWK is not referenced and can be a 

CHARACTER * 10 vector of length one. 

2. The output appears in the following form: 

                                       TITLE 

CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4) 

RLABEL(1) (xxxxx,xxxxx) (xxxxx,xxxxx) (xxxxx,xxxxx) 

RLABEL(2) (xxxxx,xxxxx) (xxxxx,xxxxx) (xxxxx,xxxxx) 

3. Use ―% /‖ within titles or labels to create a new line. Long titles or labels are 

automatically wrapped. 

4. For printing numbers whose magnitudes are unknown, the G format in FORTRAN is 

useful; however, the decimal points will generally not be aligned when printing a 

column of numbers. The V and W formats are special formats used by this routine to 

select a D, E, F, or I format so that the decimal points will be aligned. The V and W 

formats are specified as Vn.d and Wn.d. Here, n is the field width, and d is the number 

of significant digits generally printed. Valid values for n are 3, 4, …, 40. Valid values 

for d are 1, 2, …, n − 2. If FMT specifies one format and that format is a V or W format, 

all elements of the matrix A are examined to determine one FORTRAN format for 

printing. If FMT specifies more than one format, FORTRAN formats are generated 

separately from each V or W format. 

5. A page width of 78 characters is used. Page width and page length can be reset by 

invoking PGOPT. 

6. Horizontal centering, a method for printing large matrices, paging, method for printing 

NaN (not a number), printing a title on each page, and may other options can be 

selected by invoking WROPT. 

7. Output is written to the unit specified by UMACH (see the Reference Material). 

Example 

The following example prints all of a 3 × 4 matrix A with elements 



 

 

IMSL MATH LIBRARY Chapter 11: Utilities  1833 

     

     

 

 .123456 ,  where  = 1mna m ni i   
 

 

      USE WRCRL_INT 

 

      IMPLICIT   NONE 

 

      INTEGER    ITRING, LDA, NCA, NRA 

      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3) 

! 

      INTEGER    I, J 

      COMPLEX    A(LDA,NCA), CMPLX 

      CHARACTER  CLABEL(5)*5, FMT*8, RLABEL(3)*5 

      INTRINSIC  CMPLX 

! 

      DATA FMT/'(W12.6)'/ 

      DATA CLABEL/'    ', 'Col 1', 'Col 2', 'Col 3', 'Col 4'/ 

      DATA RLABEL/'Row 1', 'Row 2', 'Row 3'/ 

! 

      DO 20  I=1, NRA 

         DO 10  J=1, NCA 

            A(I,J) = CMPLX(I,J) + 0.123456 

   10    CONTINUE 

   20 CONTINUE 

!                                 Write A matrix. 

      CALL WRCRL ('A', A, RLABEL, CLABEL, NRA=NRA, FMT=FMT) 

      END 

Output 
 

                               A 

                             Col 1                        Col 2 

Row 1  (     1.12346,     1.00000)  (     1.12346,     2.00000) 

Row 2  (     2.12346,     1.00000)  (     2.12346,     2.00000) 

Row 3  (     3.12346,     1.00000)  (     3.12346,     2.00000) 

 

                             Col 3                        Col 4 

Row 1  (     1.12346,     3.00000)  (     1.12346,     4.00000) 

Row 2  (     2.12346,     3.00000)  (     2.12346,     4.00000) 

Row 3  (     3.12346,     3.00000)  (     3.12346,     4.00000) 

WROPT 
Sets or retrieves an option for printing a matrix. 

Required Arguments 

IOPT — Indicator of option type.   (Input) 
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IOPT Description of Option Type 

1, 1 Horizontal centering or left justification of 

matrix to be printed 

−2, 2 Method for printing large matrices 

−3, 3 Paging 

−4, 4 Method for printing NaN (not a number), and 

negative and positive machine infinity. 

−5, 5 Title option 

−6, 6 Default format for real and complex numbers 

−7, 7 Spacing between columns 

−8, 8 Maximum horizontal space reserved for row 

labels 

−9, 9 Indentation of continuation lines for row labels 

−10, 10 Hot zone option for determining line breaks for 

row labels 

−11, 11 Maximum horizontal space reserved for column 

labels 

−12, 12 Hot zone option for determining line breaks for 

column labels 

−13, 13 Hot zone option for determining line breaks for 

titles 

−14, 14 Option for the label that appears in the upper 

left hand corner that can be used as a heading 

for the row numbers or a label for the column 

headings for WR**N routines 

−15, 15 Option for skipping a line between invocations 

of WR**N routines, provided a new page is not 

to be issued 

−16, 16 Option for vertical alignment of the matrix 

values relative to the associated row labels that 

occupy more than one line 



 

 

IMSL MATH LIBRARY Chapter 11: Utilities  1835 

     

     

 

IOPT Description of Option Type 

0 Reset all the current settings saved in internal 

variables back to their last setting made with an 

invocation of WROPT with ISCOPE = 1. (This 

option is used internally by routines printing a 

matrix and is not useful otherwise.) 

 

 If IOPT is negative, ISETNG and ISCOPE are input and are saved in internal variables. 

If IOPT is positive, ISETNG is output and receives the currently active setting for the 

option  (if ISCOPE = 0) or the last global setting for the option (if ISCOPE = 1).  

If IOPT = 0, ISETNG and ISCOPE are not referenced. 

ISETNG — Setting for option selected by IOPT.   (Input, if IOPT is negative; output, if IOPT 

is positive; not referenced if IOPT = 0)  

 

IOPT ISETNG Meaning 

−1, 1 0 Matrix is left justified 

 1 Matrix is centered horizontally on page 

−2, 2 0 A complete row is printed before the next row is 

printed. Wrapping is used if necessary. 

 m Here, m is a positive integer. Let n  be the 

maximum number of columns beginning with 

column 1 that fit across the page (as determined by 

the widths of the printing formats). First, columns 

1 through n1 are printed for rows 1 through m. Let 

n2 be the maximum number of columns beginning 

with column n  + 1 that fit across the page. 

Second, columns n1 + 1 through n1 + n2 are printed 

for rows 1 through m. This continues until the last 

columns are printed for rows 1 through m. Printing 

continues in this fashion for the next m rows, etc. 

−3, 3 −2 Printing begins on the next line, and no paging 

occurs. 

 −1 Paging is on. Every invocation of a WR*** routine 

begins on a new page, and paging occurs within 

each invocation as is needed 

 0 Paging is on. The first invocation of a WR*** 

routine begins on a new page, and subsequent 

paging occurs as is needed. With this option, every 

invocation of a WR*** routine ends with a call to 

WROPT to reset this option to k, a positive integer 

giving the number of lines printed on the current 

page. 
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IOPT ISETNG Meaning 

−1, 1 0 Matrix is left justified 

 k Here, k is a positive integer. Paging is on, and k 

lines have been printed on the current page. If k is 

less than the page length IPAGE (see PGOPT), then 

IPAGE − k lines are printed before a new page 

instruction is issued. If k is greater than or equal to 

IPAGE, then the first invocation of a WR*** 

routine begins on a new page. In any case, 

subsequent paging occurs as is needed. With this 

option, every invocation of a WR*** routine ends 

with a call to WROPT to reset the value of k. 

−4, 4 0 NaN is printed as a series of decimal points, 

negative machine infinity is printed as a series of 

minus signs, and positive machine infinity is 

printed as a series of plus signs. 

 1 NaN is printed as a series of blank characters, 

negative machine infinity is printed as a series of 

minus signs, and positive machine infinity is 

printed as a series of plus signs. 

 2 NaN is printed as ―NaN,‖ negative machine 

infinity is printed as ―-Inf‖ and positive machine 

infinity is printed as ―Inf.‖ 

 3 NaN is printed as a series of blank characters, 

negative machine infinity is printed as ―-Inf,‖ and 

positive machine infinity is printed as ―Inf.‖ 

−5, 5 0 Title appears only on first page. 

 1 Title appears on the first page and all continuation 

pages. 

−6, 6 0 Format is (W10.4). See Comment 2. 

 1 Format is (W12.6). See Comment 2. 

 2 Format is (1PE12.5 ). 

 3 Format is Vn.4 where the field width n is 

determined. See Comment 2. 

 4 Format is Vn.6 where the field width n is determined. See 

Comment 2. 

 5 Format is 1PEn.d where n = d + 7, and d + 1 is the 

maximum number of significant digits. 

−7, 7 K  Number of characters left blank between columns. 

K  must be between 0 and 5, inclusively. 

−8, 8 K2 Maximum width (in characters) reserved for row 

labels. K2 = 0 means use the default. 
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IOPT ISETNG Meaning 

−1, 1 0 Matrix is left justified 

−9, 9 K3 Number of characters used to indent continuation 

lines for row labels. K3 must be between 0 and 10, 

inclusively. 

−10, 10 K4 Width (in characters) of the hot zone where line 

breaks in row labels can occur. K4 = 0 means use 

the default. K 4 must not exceed 50. 

−11, 11 K5 Maximum width (in characters) reserved for 

column labels. K5 = 0 means use the default. 

−12, 12 K6 Width (in characters) of the hot zone where line 

breaks in column labels can occur. K 6 = 0 means 

use the default. K 6 must not exceed 50. 

−13, 13 K7 Width (in characters) of the hot zone where line 

breaks in titles can occur. K 7 must be between 1 

and 50, inclusively. 

−14 0 There is no label in the upper left hand corner. 

 1 The label in the upper left hand corner is 

―Component‖ if a row vector or column vector is 

printed; the label is ―Row/Column‖ if both the 

number of rows and columns are greater than one; 

otherwise, there is no label. 

−15 0 A blank line is printed on each invocation of a 

WR**N routine before the matrix title provided a 

new page is not to be issued. 

 1 A blank line is not printed on each invocation of a 

WR**N routine before the matrix title. 

−16, 16 0 The matrix values are aligned vertically with the 

last line of the associated row label for the case 

IOPT = 2 and ISET is positive. 

 1 The matrix values are aligned vertically with the 

first line of the associated row label. 

ISCOPE — Indicator of the scope of the option.   (Input if IOPT is nonzero; not referenced if 

IOPT = 0) 

ISCOPE Action 

0  Setting is temporarily active for the next invocation of a WR*** matrix 

 printing routine. 

1  Setting is active until it is changed by another invocation of WROPT. 
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FORTRAN 90 Interface 

Generic: CALL WROPT (IOPT, ISETNG, ISCOPE) 

Specific:  The specific interface name is WROPT. 

FORTRAN 77 Interface 

Single: CALL WROPT (IOPT, ISETNG, ISCOPE) 

Description 

Routine WROPT allows the user to set or retrieve an option for printing a matrix. The options 

controlled by WROPT include the following: horizontal centering, a method for printing large 

matrices, paging, method for printing NaN (not a number) and positive and negative machine 

infinities, printing titles, default formats for numbers, spacing between columns, maximum widths 

reserved for row and column labels, indentation of row labels that continue beyond one line, 

widths of hot zones for breaking of labels and titles, the default heading for row labels, whether to 

print a blank line between invocations of routines, and vertical alignment of matrix entries with 

respect to row labels continued beyond one line. (NaN and positive and negative machine 

infinities can be retrieved by AMACH and DMACH that are documented in the section ―Machine-

Dependent Constants‖ in the Reference Material.) Options can be set globally (ISCOPE = 1) or 

temporarily for the next call to a printing routine (ISCOPE = 0). 

Comments 

1. This program can be invoked repeatedly before using a WR*** routine to print a matrix. 

The matrix printing routines retrieve these settings to determine the printing options. It 

is not necessary to call WROPT if a default value of a printing option is desired. The 

defaults are as follows. 

IOPT Default 
Value for 
ISET 

Meaning 

1 0 Left justified 

2 1000000 Number lines before wrapping 

3 −2 No paging 

4 2 NaN is printed as ―NaN,‖ negative machine 

infinity is printed as ―-Inf‖ and positive 

machine infinity is printed as ―Inf.‖ 

5 0 Title only on first page. 

6 3 Default format is Vn.4. 

7 2 2 spaces between columns. 

8 0 Maximum row label width MAXRLW = 2 * 

IPAGEW/3 if matrix has one column; 

MAXRLW = IPAGEW/4 otherwise. 



 

 

IMSL MATH LIBRARY Chapter 11: Utilities  1839 

     

     

 

IOPT Default 
Value for 
ISET 

Meaning 

9 3 3 character indentation of row labels 

continued beyond one line. 

10 0 Width of row label hot zone is MAXRLW/3 

characters. 

11 0 Maximum column label width 

MAXCLW = min{max (NW + NW/2, 15), 40} 

for integer and real matrices, where NW is 

the field width for the format corresponding 

to the particular column. 

MAXCLW = min{max(NW + NW/2, 15), 83} for 

complex matrices, where NW is the sum of 

the two field widths for the formats 

corresponding to the particular column plus 

3. 

12 0 Width of column label hot zone is 

MAXCLW/3 characters. 

13 10 Width of hot zone for titles is 10 characters. 

14 0 There is no label in the upper left hand 

corner. 

15 0 Blank line is printed. 

16 0 The matrix values are aligned vertically 

with the last line of the associated row label. 

 For IOPT = 8, the default depends on the current value for the page width, IPAGEW (see 

PGOPT). 

2. The V and W formats are special formats that can be used to select a D, E, F, or I format 

so that the decimal points will be aligned. The V and W formats are specified as Vn.d 

and Wn.d. Here, n is the field width and d is the number of significant digits generally 

printed. Valid values for n are 3, 4, …, 40. Valid values for d are 1, 2, …, n − 2. While 

the V format prints trailing zeroes and a trailing decimal point, the W format does not. 

Example 

The following example illustrates the effect of WROPT when printing a 3 × 4 real matrix A with 

WRRRN where aij = i + j/10. The first call to WROPT sets horizontal printing so that the matrix is first 

printed horizontally centered on the page. In the next invocation of WRRRN, the left-justification 

option has been set via routine WROPT so the matrix is left justified when printed. Finally, because 

the scope of left justification was only for the next call to a printing routine, the last call to WRRRN 

results in horizontally centered printing. 
 

      USE WROPT_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 
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      INTEGER    ITRING, LDA, NCA, NRA 

      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3) 

! 

      INTEGER    I, IOPT, ISCOPE, ISETNG, J 

      REAL       A(LDA,NCA) 

! 

      DO 20  I=1, NRA 

         DO 10  J=1, NCA 

            A(I,J) = I + J*0.1 

   10    CONTINUE 

   20 CONTINUE 

!                                 Activate centering option. 

!                                 Scope is global. 

      IOPT   = -1 

      ISETNG = 1 

      ISCOPE = 1 

! 

      CALL WROPT (IOPT, ISETNG, ISCOPE) 

!                                 Write A matrix. 

      CALL WRRRN ('A', A, NRA=NRA) 

!                                 Activate left justification. 

!                                 Scope is local. 

      IOPT   = -1 

      ISETNG   = 0 

      ISCOPE = 0 

      CALL WROPT (IOPT, ISETNG, ISCOPE) 

      CALL WRRRN ('A', A, NRA=NRA) 

      CALL WRRRN ('A', A, NRA=NRA) 

      END 

Output 
 

                                       A 

                               1       2       3       4 

                       1   1.100   1.200   1.300   1.400 

                       2   2.100   2.200   2.300   2.400 

                       3   3.100   3.200   3.300   3.400 

 

                A 

        1       2       3       4 

1   1.100   1.200   1.300   1.400 

2   2.100   2.200   2.300   2.400 

3   3.100   3.200   3.300   3.400 

 

                                       A 

                               1       2       3       4 

                       1   1.100   1.200   1.300   1.400 

                       2   2.100   2.200   2.300   2.400 

                       3   3.100   3.200   3.300   3.400 

PGOPT 
Sets or retrieves page width and length for printing. 
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Required Arguments 

IOPT — Page attribute option.   (Input)  

IOPT  Description of Attribute 

−1, 1  Page width. 

−2, 2  Page length.  

Negative values of IOPT indicate the setting IPAGE is input. Positive values  

of IOPT indicate the setting IPAGE is output. 

IPAGE — Value of page attribute.   (Input, if IOPT is negative; output, if IOPT is positive.)  

IOPT Description of Attribute Settings for IPAGE 

−1, 1 Page width (in characters) 10, 11, … 

−2, 2 Page length (in lines)    10, 11, … 

FORTRAN 90 Interface 

Generic: CALL PGOPT (IOPT, IPAGE) 

Specific:  The specific interface name is PGOPT. 

FORTRAN 77 Interface 

Single: CALL PGOPT (IOPT, IPAGE) 

Description 

Routine PGOPT is used to set or retrieve the page width or the page length for routines that perform 

printing. 

Example 

The following example illustrates the use of PGOPT to set the page width at 20 characters. Routine 

WRRRN is then used to print a 3 × 4 matrix A where aij= i + j/10. 
 

      USE PGOPT_INT 

      USE WRRRN_INT 

 

      IMPLICIT   NONE 

      INTEGER    ITRING, LDA, NCA, NRA 

      PARAMETER  (ITRING=0, LDA=3, NCA=4, NRA=3) 

! 

      INTEGER    I, IOPT, IPAGE, J 

      REAL       A(LDA,NCA) 
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! 

      DO 20  I=1, NRA 

         DO 10  J=1, NCA 

            A(I,J) = I + J*0.1 

   10    CONTINUE 

   20 CONTINUE 

!                                 Set page width. 

      IOPT  = -1 

      IPAGE = 20 

      CALL PGOPT (IOPT, IPAGE) 

!                                 Print the matrix A. 

      CALL WRRRN ('A', A) 

      END 

Output 
 

         A 

        1       2 

1   1.100   1.200 

2   2.100   2.200 

3   3.100   3.200 

 

        3       4 

1   1.300   1.400 

2   2.300   2.400 

3   3.300   3.400   

PERMU 
Rearranges the elements of an array as specified by a permutation. 

Required Arguments 

X — Real vector of length N containing the array to be permuted.   (Input) 

IPERMU — Integer vector of length N containing a permutation 

IPERMU(1), …, IPERMU(N) of the integers 1, …, N.   (Input) 

XPERMU — Real vector of length N containing the array X permuted.   (Output)  

If X is not needed, X and XPERMU can share the same storage locations. 

Optional Arguments 

N — Length of the arrays X and XPERMU.   (Input) 

Default: N = SIZE (IPERMU,1). 

IPATH — Integer flag.   (Input)  

Default: IPATH = 1. 

IPATH = 1 means IPERMU represents a forward permutation, i.e., X(IPERMU(I)) is 
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moved to XPERMU(I). IPATH = 2 means IPERMU represents a backward permutation, 

i.e., X(I) is moved to XPERMU(IPERMU(I)). 

FORTRAN 90 Interface 

Generic: CALL PERMU (X, IPERMU, XPERMU [,…]) 

Specific:  The specific interface names are S_PERMU and D_PERMU. 

FORTRAN 77 Interface 

Single: CALL PERMU (N, X, IPERMU, IPATH, XPERMU) 

Double: The double precision name is DPERMU. 

Description 

Routine PERMU rearranges the elements of an array according to a permutation vector. It has the 

option to do both forward and backward permutations. 

Example 

This example rearranges the array X using IPERMU; forward permutation is performed. 
 

      USE PERMU_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    IPATH, N 

      PARAMETER  (IPATH=1, N=4) 

! 

      INTEGER    IPERMU(N), J, NOUT 

      REAL       X(N), XPERMU(N) 

!                                 Set values for  X, IPERMU 

! 

!                           X = ( 5.0  6.0  1.0  4.0 ) 

!                           IPERMU = ( 3 1 4 2 ) 

! 

      DATA X/5.0, 6.0, 1.0, 4.0/, IPERMU/3, 1, 4, 2/ 

!                                 Permute X into XPERMU 

      CALL PERMU (X, IPERMU, XPERMU) 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Print results 

      WRITE (NOUT,99999) (XPERMU(J),J=1,N) 

! 

99999 FORMAT ('  The output vector is:', /, 10(1X,F10.2)) 

      END 
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Output 
 

The Output vector is: 

1.00       5.00       4.00       6.00 

PERMA 
Permutes the rows or columns of a matrix. 

Required Arguments 

A — NRA by NCA matrix to be permuted.   (Input) 

IPERMU — Vector of length K containing a permutation IPERMU(1), …, IPERMU(K) of the 

integers 1, …, K where K = NRA if the rows of A are to be permuted and K = NCA if the 

columns of A are to be permuted.   (Input) 

APER — NRA by NCA matrix containing the permuted matrix.   (Output)  

If A is not needed, A and APER can share the same storage locations. 

Optional Arguments 

NRA — Number of rows.   (Input) 

Default: NRA = SIZE (A,1). 

NCA — Number of columns.   (Input) 

Default: NCA = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 

IPATH — Option parameter.   (Input)  

IPATH = 1 means the rows of A will be permuted. IPATH = 2 means the columns of A 

will be permuted. 

Default: IPATH = 1. 

LDAPER — Leading dimension of APER exactly as specified in the dimension statement of 

the calling program.   (Input) 

Default: LDAPER = SIZE (APER,1). 

FORTRAN 90 Interface 

Generic: CALL PERMA (A, IPERMU, APER [,…]) 

Specific:  The specific interface names are S_PERMA and D_PERMA. 
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FORTRAN 77 Interface 

Single: CALL PERMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER) 

Double: The double precision name is DPERMA. 

Description 

Routine PERMA interchanges the rows or columns of a matrix using a permutation vector such as 

the one obtained from routines SVRBP or SVRGP. 

The routine PERMA permutes a column (row) at a time by calling PERMU. This process is continued 

until all the columns (rows) are permuted. On completion, let B = APER and pi = IPERMU(I), then 

iij p jB A
 

for all i, j. 

Comments 

1. Workspace may be explicitly provided, if desired, by use of P2RMA/DP2RMA. The 

reference is: 

CALL P2RMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER, 

WORK) 

The additional argument is: 

WORK — Real work vector of length NCA. 

Example 

This example permutes the columns of a matrix A. 
 

      USE PERMA_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    IPATH, LDA, LDAPER, NCA, NRA 

      PARAMETER  (IPATH=2, LDA=3, LDAPER=3, NCA=5, NRA=3) 

! 

      INTEGER    I, IPERMU(5), J, NOUT 

      REAL       A(LDA,NCA), APER(LDAPER,NCA) 

!                                 Set values for  A, IPERMU 

!                                 A = ( 3.0  5.0  1.0  2.0  4.0 ) 

!                                     ( 3.0  5.0  1.0  2.0  4.0 ) 

!                                     ( 3.0  5.0  1.0  2.0  4.0 ) 

! 

!                                 IPERMU = ( 3 4 1 5 2 ) 

! 

      DATA A/3*3.0, 3*5.0, 3*1.0, 3*2.0, 3*4.0/, IPERMU/3, 4, 1, 5, 2/ 

!                                 Perform column permutation on A, 

!                                 giving APER 
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      CALL PERMA (A, IPERMU, APER, IPATH=IPATH) 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Print results 

      WRITE (NOUT,99999) ((APER(I,J),J=1,NCA),I=1,NRA) 

! 

99999 FORMAT ('  The output matrix is:', /, 3(5F8.1,/)) 

      END 

Output 
 

The Output matrix is: 

1.0     2.0     3.0     4.0     5.0 

1.0     2.0     3.0     4.0     5.0 

1.0     2.0     3.0     4.0     5.0 

SORT_REAL 
Sorts a rank-1 array of real numbers x so the y results are algebraically nondecreasing,  

y1 ≤ y2 ≤ … yn. 

Required Arguments 

X — Rank-1 array containing the numbers to be sorted.   (Output) 

Y — Rank-1 array containing the sorted numbers.   (Output) 

Optional Arguments 

NSIZE = n   (Input) 

Uses the sub-array of size n for the numbers.  

Default value: n = SIZE(x) 

IPERM = iperm   (Input/Output) 

Applies interchanges of elements that occur to the entries of iperm(:). If the values 

iperm(i)=i,i=1,n are assigned prior to call, then the output array is moved to its 

proper order by the subscripted array assignment y = x(iperm(1:n)). 

ICYCLE = icycle   (Output) 

Permutations applied to the input data are converted to cyclic interchanges. Thus, the 

output array y is given by the following elementary interchanges, where :=: denotes a 

swap: 

j = icycle(i) 

y(j) :=: y(i), i = 1,n  

IOPT = iopt(:)   (Input) 

Derived type array with the same precision as the input matrix; used for passing 

optional data to the routine. The options are as follows: 
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Packaged Options for SORT_REAL 

Option Prefix = ? Option Name Option Value 

s_, d_ Sort_real_scan_for_NaN 1 

iopt(IO) = ?_options(?_sort_real_scan_for_NaN, ?_dummy) 

Examines each input array entry to find the first value such that 

isNaN(x(i)) == .true.  

See the isNaN() function, Chapter 10. 

Default: Does not scan for NaNs. 

FORTRAN 90 Interface 

Generic: CALL SORT_REAL (X, Y [,…]) 

Specific:  The specific interface names are S_SORT_REAL and D_SORT_REAL. 

Description 

For a detailed description, see the ―Description‖ section of routine SVRGN, which appears later in 

this chapter.  

Fatal and Terminal Error Messages 

See the messages.gls file for error messages for SORT_REAL. These error messages are numbered 

561−567; 581−587. 

Example 1: Sorting an Array 

An array of random numbers is obtained. The values are sorted so they are nondecreasing. 
 

      use sort_real_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 1 for SORT_REAL.  

  

      integer, parameter :: n=100  

      real(kind(1e0)), dimension(n) :: x, y  

  

! Generate random data to sort.  

      call rand_gen(x)  

  

! Sort the data so it is non-decreasing.  

      call sort_real(x, y)  

  

! Check that the sorted array is not decreasing.  

      if (count(y(1:n-1) > y(2:n)) == 0) then  

         write (*,*) 'Example 1 for SORT_REAL is correct.'  

      end if  

  

      end  
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Output 
 

Example 1 for SORT_REAL is correct. 

Additional Examples 

Example 2: Sort and Final Move with a Permutation 

A set of n random numbers is sorted so the results are nonincreasing. The columns of an n × n 

random matrix are moved to the order given by the permutation defined by the interchange of the 

entries. Since the routine sorts the results to be algebraically nondecreasing, the array of negative 

values is used as input. Thus, the negative value of the sorted output order is nonincreasing. The 

optional argument ―iperm=‖ records the final order and is used to move the matrix columns to 

that order. This example illustrates the principle of sorting record keys, followed by direct 

movement of the records to sorted order. 
  

      use sort_real_int  

      use rand_gen_int  

  

      implicit none  

  

! This is Example 2 for SORT_REAL.  

  

      integer i  

      integer, parameter :: n=100  

      integer ip(n)  

      real(kind(1e0)) a(n,n), x(n), y(n), temp(n*n)  

  

! Generate a random array and matrix of values.  

      call rand_gen(x)  

      call rand_gen(temp)  

      a = reshape(temp,(/n,n/))  

  

! Initialize permutation to the identity.  

      do i=1, n  

         ip(i) = i  

      end do  

  

! Sort using negative values so the final order is   

! non-increasing.  

      call sort_real(-x, y, iperm=ip)  

  

! Final movement of keys and matrix columns.  

      y = x(ip(1:n))  

      a = a(:,ip(1:n))  

  

! Check the results.  

      if (count(y(1:n-1) < y(2:n)) == 0) then  

         write (*,*) 'Example 2 for SORT_REAL is correct.'  

      end if  

  

      end  
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Output 
 

Example 2 for SORT_REAL is correct. 

SVRGN 
Sorts a real array by algebraically increasing value. 

Required Arguments 

RA — Vector of length N containing the array to be sorted.   (Input) 

RB — Vector of length N containing the sorted array.   (Output)  

If RA is not needed, RA and RB can share the same storage locations. 

Optional Arguments 

N — Number of elements in the array to be sorted.   (Input) 

Default: N = SIZE (RA,1). 

FORTRAN 90 Interface 

Generic: CALL SVRGN (RA, RB [,…]) 

Specific:  The specific interface names are S_SVRGN and D_SVRGN. 

FORTRAN 77 Interface 

Single: CALL SVRGN (N, RA, RB) 

Double: The double precision name is DSVRGN. 

Description 

Routine SVRGN sorts the elements of an array, A, into ascending order by algebraic value. The 

array A is divided into two parts by picking a central element T of the array. The first and last 

elements of A are compared with T and exchanged until the three values appear in the array in 

ascending order. The elements of the array are rearranged until all elements greater than or equal 

to the central element appear in the second part of the array and all those less than or equal to the 

central element appear in the first part. The upper and lower subscripts of one of the segments are 

saved, and the process continues iteratively on the other segment. When one segment is finally 

sorted, the process begins again by retrieving the subscripts of another unsorted portion of the 

array. On completion, Aj ≤ Ai for j < i. For more details, see Singleton (1969), Griffin and Redish 

(1970), and Petro (1970). 

Example 

This example sorts the 10-element array RA algebraically. 
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      USE SVRGN_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    N, NOUT, J 

      PARAMETER  (N=10) 

      REAL       RA(N), RB(N) 

!                                 Set values for  RA 

!     RA = ( -1.0  2.0  -3.0  4.0  -5.0  6.0  -7.0  8.0  -9.0  10.0 ) 

! 

      DATA RA/-1.0, 2.0, -3.0, 4.0, -5.0, 6.0, -7.0, 8.0, -9.0, 10.0/ 

!                                 Sort RA by algebraic value into RB 

      CALL SVRGN (RA, RB) 

!                                 Print results 

      CALL UMACH (2,NOUT) 

      WRITE (NOUT, 99999) (RB(J),J=1,N) 

! 

99999 FORMAT ('  The output vector is:', /, 10(1X,F5.1)) 

      END 

Output 
 

The Output vector is: 

-9.0  -7.0  -5.0  -3.0  -1.0   2.0   4.0   6.0   8.0  10.0 

SVRGP 
Sorts a real array by algebraically increasing value and return the permutation that rearranges the 

array. 

Required Arguments 

RA — Vector of length N containing the array to be sorted.   (Input) 

RB — Vector of length N containing the sorted array.   (Output)  

If RA is not needed, RA and RB can share the same storage locations. 

IPERM — Vector of length N.   (Input/Output)  

On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM 

contains a record of permutations made on the vector RA. 

Optional Arguments 

N — Number of elements in the array to be sorted.   (Input) 

Default: N = SIZE (IPERM,1). 

FORTRAN 90 Interface 

Generic: CALL SVRGP (RA, RB, IPERM [,…]) 
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Specific:  The specific interface names are S_SVRGP and D_SVRGP. 

FORTRAN 77 Interface 

Single: CALL SVRGP (N, RA, RB, IPERM) 

Double: The double precision name is DSVRGP. 

Description 

Routine SVRGP sorts the elements of an array, A, into ascending order by algebraic value, keeping 

a record in P of the permutations to the array A. That is, the elements of P are moved in the same 

manner as are the elements in A as A is being sorted. The routine SVRGP uses the algorithm 

discussed in SVRGN. On completion, Aj ≤ Ai for j < i. 

Comments 

For wider applicability, integers (1, 2, …, N) that are to be associated with RA(I) for I = 1, 2, 

…, N may be entered into IPERM(I) in any order. Note that these integers must be unique. 

Example 

This example sorts the 10-element array RA algebraically. 
 

      USE SVRGP_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    N, NOUT, J 

      PARAMETER  (N=10) 

      REAL       RA(N), RB(N) 

      INTEGER    IPERM(N) 

!                                 Set values for  RA and IPERM 

!     RA    = ( 10.0  -9.0  8.0  -7.0  6.0  5.0  4.0  -3.0  -2.0  -1.0 ) 

! 

!     IPERM = ( 1  2  3  4  5  6  7  8  9  10) 

! 

      DATA RA/10.0, -9.0, 8.0, -7.0, 6.0, 5.0, 4.0, -3.0, -2.0, -1.0/ 

      DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/ 

!                                 Sort RA by algebraic value into RB 

      CALL SVRGP (RA, RB, IPERM) 

!                                 Print results 

      CALL UMACH (2,NOUT) 

      WRITE (NOUT, 99998) (RB(J),J=1,N) 

      WRITE (NOUT, 99999) (IPERM(J),J=1,N) 

! 

99998 FORMAT ('  The output vector is:', /, 10(1X,F5.1)) 

99999 FORMAT ('  The permutation vector is:', /, 10(1X,I5)) 

      END 
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Output 
 

The output vector is: 

-9.0  -7.0  -3.0  -2.0  -1.0   4.0   5.0   6.0   8.0  10.0 

 

The permutation vector is: 

2     4     8     9    10     7     6     5     3     1 

SVIGN 
Sorts an integer array by algebraically increasing value. 

Required Arguments 

IA — Integer vector of length N containing the array to be sorted.   (Input) 

IB — Integer vector of length N containing the sorted array.   (Output)  

If IA is not needed, IA and IB can share the same storage locations. 

Optional Arguments 

N — Number of elements in the array to be sorted.   (Input) 

Default: N = SIZE (IA,1). 

FORTRAN 90 Interface 

Generic: CALL SVIGN (IA, IB [,…]) 

Specific:  The specific interface name is S_SVIGN . 

FORTRAN 77 Interface 

Single: CALL SVIGN (N, IA, IB) 

Description 

Routine SVIGN sorts the elements of an integer array, A, into ascending order by algebraic value. 

The routine SVIGN uses the algorithm discussed in SVRGN. On completion, Aj ≤ Ai for j < i. 

Example 

This example sorts the 10-element array IA algebraically. 
 

      USE SVIGN_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    N, NOUT, J 
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      PARAMETER  (N=10) 

      INTEGER    IA(N), IB(N) 

!                                 Set values for  IA 

!     IA = ( -1  2  -3  4  -5  6  -7  8  -9  10 ) 

! 

      DATA IA/-1, 2, -3, 4, -5, 6, -7, 8, -9, 10/ 

!                                 Sort IA by algebraic value into IB 

      CALL SVIGN (IA, IB) 

!                                 Print results 

      CALL UMACH (2,NOUT) 

      WRITE (NOUT, 99999) (IB(J),J=1,N) 

! 

99999 FORMAT ('  The output vector is:', /, 10(1X,I5)) 

      END 

Output 
 

The Output vector is: 

-9    -7    -5    -3    -1     2     4     6     8    10 

SVIGP 
Sorts an integer array by algebraically increasing value and return the permutation that rearranges 

the array. 

Required Arguments 

IA — Integer vector of length N containing the array to be sorted.   (Input) 

IB — Integer vector of length N containing the sorted array.   (Output)  

If IA is not needed, IA and IB can share the same storage locations. 

IPERM — Vector of length N.   (Input/Output)  

On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM 

contains a record of permutations made on the vector IA. 

Optional Arguments 

N — Number of elements in the array to be sorted.   (Input) 

Default: N = SIZE (IPERM,1). 

FORTRAN 90 Interface 

Generic: CALL SVIGP (IA, IB, IPERM [,…]) 

Specific:  The specific interface name is S_SVIGP. 

FORTRAN 77 Interface 

Single: CALL SVIGP (N, IA, IB, IPERM) 
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Description 

Routine SVIGP sorts the elements of an integer array, A, into ascending order by algebraic value, 

keeping a record in P of the permutations to the array A. That is, the elements of P are moved in 

the same manner as are the elements in A as A is being sorted. The routine SVIGP uses the 

algorithm discussed in SVRGN. On completion, Aj ≤ Ai for j < i. 

Comments 

For wider applicability, integers (1, 2, …, N) that are to be associated with IA(I) for I = 1, 2, 

…, N may be entered into IPERM(I) in any order. Note that these integers must be unique. 

Example 

This example sorts the 10-element array IA algebraically. 
 

      USE SVIGP_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER N, J, NOUT 

      PARAMETER  (N=10) 

      INTEGER    IA(N), IB(N), IPERM(N) 

!                                 Set values for  IA and IPERM 

!     IA    = ( 10  -9  8  -7  6  5  4  -3  -2  -1 ) 

! 

!     IPERM = ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) 

! 

      DATA IA/10, -9, 8, -7, 6, 5, 4, -3, -2, -1/ 

      DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/ 

!                                 Sort IA by algebraic value into IB 

      CALL SVIGP (IA, IB, IPERM) 

!                                 Print results 

      CALL UMACH (2,NOUT) 

      WRITE (NOUT, 99998) (IB(J),J=1,N) 

      WRITE (NOUT, 99999) (IPERM(J),J=1,N) 

! 

99998 FORMAT (' The output vector is:', /, 10(1X,I5)) 

99999 FORMAT (' The permutation vector is:', /, 10(1X,I5)) 

      END 

Output 
 

The Output vector is: 

-9    -7    -3    -2    -1     4     5     6     8    10 

 

The permutation vector is: 

2     4     8     9    10     7     6     5     3     1 
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SVRBN 
Sorts a real array by nondecreasing absolute value. 

Required Arguments 

RA — Vector of length N containing the array to be sorted.   (Input) 

RB — Vector of length N containing the sorted array.   (Output)  

If RA is not needed, RA and RB can share the same storage locations. 

Optional Arguments 

N — Number of elements in the array to be sorted.   (Input) 

Default: N = SIZE (RA,1). 

FORTRAN 90 Interface 

Generic: CALL SVRBN (RA, RB [,…]) 

Specific:  The specific interface names are S_SVRBN and D_SVRBN. 

FORTRAN 77 Interface 

Single: CALL SVRBN (N, RA, RB) 

Double: The double precision name is DSVRBN. 

Description 

Routine SVRBN sorts the elements of an array, A, into ascending order by absolute value. The 

routine SVRBN uses the algorithm discussed in SVRGN. On completion, |Aj| ≤ |Ai| for j < i. 

Example 

This example sorts the 10-element array RA by absolute value. 
 

      USE SVRBN_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER N, J, NOUT 

      PARAMETER  (N=10) 

      REAL       RA(N), RB(N) 

!                                 Set values for  RA 

!       RA = ( -1.0  3.0  -4.0  2.0  -1.0  0.0  -7.0  6.0  10.0  -7.0 ) 

! 

      DATA RA/-1.0, 3.0, -4.0, 2.0, -1.0, 0.0, -7.0, 6.0, 10.0, -7.0/ 

!                                 Sort RA by absolute value into RB 

      CALL SVRBN (RA, RB) 
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!                                 Print results 

      CALL UMACH (2,NOUT) 

      WRITE (NOUT, 99999) (RB(J),J=1,N) 

! 

99999 FORMAT ('  The output vector is :', /, 10(1X,F5.1)) 

      END 

Output 
 

The Output vector is : 

0.0  -1.0  -1.0   2.0   3.0  -4.0   6.0  -7.0  -7.0  10.0 

SVRBP 
Sorts a real array by nondecreasing absolute value and return the permutation that rearranges the 

array. 

Required Arguments 

RA — Vector of length N containing the array to be sorted.   (Input) 

RB — Vector of length N containing the sorted array.   (Output)  

If RA is not needed, RA and RB can share the same storage locations. 

IPERM — Vector of length N.   (Input/Output)  

On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM 

contains a record of permutations made on the vector IA. 

Optional Arguments 

N — Number of elements in the array to be sorted.   (Input) 

Default: N = SIZE (IPERM,1). 

FORTRAN 90 Interface 

Generic: CALL SVRBP (RA, RB, IPERM [,…]) 

Specific:  The specific interface names are S_SVRBP and D_SVRBP. 

FORTRAN 77 Interface 

Single: CALL SVRBP (N, RA, RB, IPERM) 

Double: The double precision name is DSVRBP. 
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Description 

Routine SVRBP sorts the elements of an array, A, into ascending order by absolute value, keeping a 

record in P of the permutations to the array A. That is, the elements of P are moved in the same 

manner as are the elements in A as A is being sorted. The routine SVRBP uses the algorithm 

discussed in SVRGN. On completion, Aj ≤ Ai for j < i. 

Comments 

For wider applicability, integers (1, 2, …, N) that are to be associated with RA(I) for I = 1, 2, 

…, N may be entered into IPERM(I) in any order. Note that these integers must be unique. 

Example 

This example sorts the 10-element array RA by absolute value. 
 

      USE SVRBP_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER N, J, NOUT, I 

      PARAMETER  (N=10) 

      REAL       RA(N), RB(N) 

      INTEGER    IPERM(N) 

!                                 Set values for  RA and IPERM 

!    RA     = ( 10.0  9.0  8.0  7.0  6.0  5.0  -4.0  3.0  -2.0  1.0 ) 

! 

!    IPERM = ( 1  2  3  4  5  6  7  8  9  10 ) 

! 

      DATA RA/10.0, 9.0, 8.0, 7.0, 6.0, 5.0, -4.0, 3.0, -2.0, 1.0/ 

      DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/ 

!                                 Sort RA by absolute value into RB 

      CALL SVRBP (RA, RB, IPERM) 

!                                 Print results 

      CALL UMACH (2,NOUT) 

      WRITE (NOUT, 99998) (RB(J),J=1,N) 

      WRITE (NOUT, 99999) (IPERM(I),I=1,N) 

! 

99998 FORMAT ('  The output vector is:', /, 10(1X,F5.1)) 

99999 FORMAT ('  The permutation vector is:', /, 10(1X,I5)) 

      END 

Output 
 

The output vector is: 

1.0  -2.0   3.0  -4.0   5.0   6.0   7.0   8.0   9.0  10.0 

The permutation vector is: 

10     9     8     7     6     5     4     3     2     1 

SVIBN 
Sorts an integer array by nondecreasing absolute value. 
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Required Arguments 

IA — Integer vector of length N containing the array to be sorted.   (Input) 

IB — Integer vector of length N containing the sorted array.   (Output)  

If IA is not needed, IA and IB can share the same storage locations. 

Optional Arguments 

N — Number of elements in the array to be sorted.   (Input) 

Default: N = SIZE (IA,1). 

FORTRAN 90 Interface 

Generic: CALL SVIBN (IA, IB [,…]) 

Specific:  The specific interface name is S_SVIBN. 

FORTRAN 77 Interface 

Single: CALL SVIBN (N, IA, IB) 

Description 

Routine SVIBN sorts the elements of an integer array, A, into ascending order by absolute value. 

This routine SVIBN uses the algorithm discussed in SVRGN. On completion, Aj ≤ Ai for j < i. 

Example 

This example sorts the 10-element array IA by absolute value. 
 

      USE SVIBN_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER I, J, NOUT, N 

      PARAMETER  (N=10) 

      INTEGER    IA(N), IB(N) 

!                                 Set values for  IA 

!     IA = ( -1  3  -4  2  -1  0  -7  6  10  -7) 

! 

      DATA IA/-1, 3, -4, 2, -1, 0, -7, 6, 10, -7/ 

!                                 Sort IA by absolute value into IB 

      CALL SVIBN (IA, IB) 

!                                 Print results 

      CALL UMACH (2,NOUT) 

      WRITE (NOUT, 99999) (IB(J),J=1,N) 

! 

99999 FORMAT ('  The output vector is:', /, 10(1X,I5)) 

      END 
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Output 
 

The Output vector is: 

0    -1    -1     2     3    -4     6    -7    -7    10 

SVIBP 
Sorts an integer array by nondecreasing absolute value and return the permutation that rearranges 

the array. 

Required Arguments 

IA — Integer vector of length N containing the array to be sorted.   (Input) 

IB — Integer vector of length N containing the sorted array.   (Output)  

If IA is not needed, IA and IB can share the same storage locations. 

IPERM — Vector of length N.   (Input/Output)  

On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM 

contains a record of permutations made on the vector IA. 

Optional Arguments 

N — Number of elements in the array to be sorted.   (Input) 

Default: N = SIZE (IA,1). 

FORTRAN 90 Interface 

Generic: CALL SVIBP (IA, IB, IPERM [,…]) 

Specific:  The specific interface name is S_SVIBP. 

FORTRAN 77 Interface 

Single: CALL SVIBP (N, IA, IB, IPERM) 

Description 

Routine SVIBP sorts the elements of an integer array, A, into ascending order by absolute value, 

keeping a record in P of the permutations to the array A. That is, the elements of P are moved in 

the same manner as are the elements in A as A is being sorted. The routine SVIBP uses the 

algorithm discussed in SVRGN. On completion, Aj ≤ Ai for j < i. 

Comments 

For wider applicability, integers (1, 2, …, N) that are to be associated with IA(I) for I = 1, 2, 

…, N may be entered into IPERM(I) in any order. Note that these integers must be unique. 
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Example 

This example sorts the 10-element array IA by absolute value. 
 

      USE SVIBP_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

!                                 Declare variables 

      INTEGER    N, U, NOUT, J 

      PARAMETER  (N=10) 

      INTEGER    IA(N), IB(N), IPERM(N) 

!                                 Set values for  IA 

!     IA    = ( 10  9  8  7  6  5  -4  3  -2  1 ) 

! 

!     IPERM = ( 1  2  3  4  5  6  7  8  9  10 ) 

! 

      DATA IA/10, 9, 8, 7, 6, 5, -4, 3, -2, 1/ 

      DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/ 

!                                 Sort IA by absolute value into IB 

      CALL SVIBP (IA, IB, IPERM) 

!                                 Print results 

      CALL UMACH (2,NOUT) 

      WRITE (NOUT, 99998) (IB(J),J=1,N) 

      WRITE (NOUT, 99999) (IPERM(J),J=1,N) 

! 

99998 FORMAT ('  The output vector is:', /, 10(1X,I5)) 

99999 FORMAT ('  The permutation vector is:', /, 10(1X,I5)) 

      END 

Output 
 

The Output vector is: 

1    -2     3    -4     5     6     7     8     9    10 

 

The permutation vector is: 

10     9     8     7     6     5     4     3     2     1 

SRCH 
Searches a sorted vector for a given scalar and return its index. 

Required Arguments 

VALUE — Scalar to be searched for in Y.   (Input) 

X — Vector of length N * INCX.   (Input) 

Y is obtained from X for I = 1, 2, …, N by Y(I) = X(1 + (I − 1) * INCX). Y(1), Y(2), …, 

Y(N) must be in ascending order. 
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INDEX — Index of Y pointing to VALUE.   (Output)  

If INDEX is positive, VALUE is found in Y. If INDEX is negative, VALUE is not found in 

Y.  

INDEX      Location of VALUE 

1 thru N      VALUE = Y(INDEX) 

−1          VALUE < Y(1) or N = 0 

−N thru −2    Y(−INDEX − 1) < VALUE < Y(INDEX) 

−(N + 1)     VALUE > Y(N) 

Optional Arguments 

N — Length of vector Y.   (Input) 

Default: N = (SIZE (X,1)) / INCX. 

INCX — Displacement between elements of X.   (Input)  

INCX must be greater than zero. 

Default: INCX = 1. 

FORTRAN 90 Interface 

Generic: CALL SRCH (VALUE, X, INDEX [,…]) 

Specific:  The specific interface names are S_SRCH and D_SRCH. 

FORTRAN 77 Interface 

Single: CALL SRCH (N, VALUE, X, INCX, INDEX) 

Double: The double precision name is DSRCH. 

Description 

Routine SRCH searches a real vector x (stored in X), whose n elements are sorted in ascending 

order for a real number c (stored in VALUE). If c is found in x, its index i (stored in INDEX) is 

returned so that xi = c. Otherwise, a negative number i is returned for the index. Specifically, 

 

if 1 ≤ i ≤ n then xi = c 

if i = −1 then c < x1 or n = 0 

if − n ≤ I ≤ − 2 then x−i−1 < c < x− i 

if i = −(n + 1) then c > xn 
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The argument INCX is useful if a row of a matrix, for example, row number I of a matrix X, must 

be searched. The elements of row I are assumed to be in ascending order. In this case, set INCX 

equal to the leading dimension of X exactly as specified in the dimension statement in the calling 

program. With X declared 

REAL X(LDX,N) 

the invocation 

CALL SRCH (N, VALUE, X(I,1), LDX, INDEX) 

returns an index that will reference a column number of X. 

Routine SRCH performs a binary search. The routine is an implementation of algorithm B 

discussed by Knuth (1973, pages 407−411). 

Example 

This example searches a real vector sorted in ascending order for the value 653.0. The problem is 

discussed by Knuth (1973, pages 407−409). 
 

      USE SRCH_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=16) 

! 

      INTEGER    INDEX, NOUT 

      REAL       VALUE, X(N) 

! 

      DATA X/61.0, 87.0, 154.0, 170.0, 275.0, 426.0, 503.0, 509.0, & 

          512.0, 612.0, 653.0, 677.0, 703.0, 765.0, 897.0, 908.0/ 

! 

      VALUE = 653.0 

      CALL SRCH (VALUE, X, INDEX) 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) 'INDEX = ', INDEX 

      END 

Output 
 

INDEX =   11 

ISRCH 
Searches a sorted integer vector for a given integer and return its index. 

Required Arguments 

IVALUE — Scalar to be searched for in IY.   (Input) 



 

 

IMSL MATH LIBRARY Chapter 11: Utilities  1863 

     

     

 

IX — Vector of length N * INCX.   (Input)  

IY is obtained from IX for I = 1, 2, …, N by  

IY(I) = IX(1 + (I − 1) * INCX). IY(1), IY(2), …, IY(N) must be in ascending order. 

INDEX — Index of IY pointing to IVALUE.   (Output)  

If INDEX is positive, IVALUE is found in IY. If INDEX is negative, IVALUE is not found 

in IY. 

INDEX      Location of VALUE 

1 thru N      IVALUE = IY(INDEX ) 

−1          IVALUE < IY(1) or N = 0 

−N thru −2    IY(−INDEX − 1) < IVALUE < IY(−INDEX) 

− (N + 1)     IVALUE > Y(N) 

Optional Arguments 

N — Length of vector IY.   (Input) 

Default: N = SIZE (IX,1) / INCX. 

INCX — Displacement between elements of IX.   (Input)  

INCX must be greater than zero. 

Default: INCX = 1. 

FORTRAN 90 Interface 

Generic: CALL ISRCH (IVALUE, IX, INDEX [,…]) 

Specific:  The specific interface name is S_ISRCH. 

FORTRAN 77 Interface 

Single: CALL ISRCH (N, IVALUE, IX, INCX, INDEX) 

Description 

Routine ISRCH searches an integer vector x (stored in IX), whose n elements are sorted in 

ascending order for an integer c (stored in IVALUE). If c is found in x, its index i (stored in INDEX) 

is returned so that xi = c. Otherwise, a negative number i is returned for the index. Specifically, 

if 1 ≤ i ≤ n Then xi = c 

if i = −1 Then c < x1 or n = 0 

if −n ≤ i ≤ −2 Then x−i−1< c < x−i 

if i = −(n + 1) Then c > xn 
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The argument INCX is useful if a row of a matrix, for example, row number I of a matrix IX, must 

be searched. The elements of row I are assumed to be in ascending order. Here, set INCX equal to 

the leading dimension of IX exactly as specified in the dimension statement in the calling 

program. With IX declared 

INTEGER IX(LDIX,N) 

the invocation 

CALL ISRCH (N, IVALUE, IX(I,1), LDIX, INDEX) 

returns an index that will reference a column number of IX. 

The routine ISRCH performs a binary search. The routine is an implementation of algorithm B 

discussed by Knuth (1973, pages 407−411). 

Example 

This example searches an integer vector sorted in ascending order for the value 653. The problem 

is discussed by Knuth (1973, pages 407−409). 
 

      USE ISRCH_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=16) 

! 

      INTEGER    INDEX, NOUT 

      INTEGER    IVALUE, IX(N) 

! 

      DATA IX/61, 87, 154, 170, 275, 426, 503, 509, 512, 612, 653, 677, & 

             703, 765, 897, 908/ 

! 

      IVALUE = 653 

      CALL ISRCH (IVALUE, IX, INDEX) 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) 'INDEX = ', INDEX 

      END 

Output 
 

INDEX =   11 

SSRCH 
Searches a character vector, sorted in ascending ASCII order, for a given string and return its 

index. 
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Required Arguments 

N — Length of vector CHY.   (Input) 

Default: N = SIZE (CHX,1) / INCX. 

STRING — Character string to be searched for in CHY.   (Input) 

CHX — Vector of length N * INCX containing character strings.   (Input)  

CHY is obtained from CHX for I = 1, 2, …, N by CHY(I) = CHX(1 + (I − 1) * INCX). 

CHY(1), CHY(2), …, CHY(N) must be in ascending ASCII order. 

INCX — Displacement between elements of CHX.   (Input)  

INCX must be greater than zero. 

Default: INCX = 1. 

INDEX — Index of CHY pointing to STRING.   (Output)  

If INDEX is positive, STRING is found in CHY. If INDEX is negative, STRING is not 

found in CHY. 

INDEX      Location of STRING 

1 thru N      STRING = CHY(INDEX) 

−1          STRING < CHY(1) or N = 0 

−N thru −2    CHY(−INDEX − 1) < STRING < CHY(−INDEX) 

−(N + 1)     STRING > CHY(N) 

FORTRAN 90 Interface 

Generic: CALL SSRCH (N, STRING, CHX, INCX, INDEX) 

Specific:  The specific interface name is SSRCH. 

FORTRAN 77 Interface 

Single: CALL SSRCH (N, STRING, CHX, INCX, INDEX) 

Description 

Routine SSRCH searches a vector of character strings x (stored in CHX), whose n elements are 

sorted in ascending ASCII order, for a character string c (stored in STRING). If c is found in x, its 

index i (stored in INDEX) is returned so that xi = c. Otherwise, a negative number i is returned for 

the index. Specifically, 

if 1 ≤ i ≤ n Then xi = c 

if i = −1 Then c < x1 or n = 0 
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if −n ≤ i ≤ −2 Then x−i−1< c < x−i 

if i = −(n + 1) Then c > xn 

Here, ―<― and ―>‖ are in reference to the ASCII collating sequence. For comparisons made 

between character strings c and xi with different lengths, the shorter string is considered as if it 

were extended on the right with blanks to the length of the longer string. (SSRCH uses FORTRAN 

intrinsic functions LLT and LGT.) 

The argument INCX is useful if a row of a matrix, for example, row number I of a matrix CHX, 

must be searched. The elements of row I are assumed to be in ascending ASCII order. In this case, 

set INCX equal to the leading dimension of CHX exactly as specified in the dimension statement in 

the calling program. With CHX declared 

CHARACTER * 7 CHX(LDCHX,N) 

the invocation 

CALL SSRCH (N, STRING, CHX(I,1), LDCHX, INDEX) 

returns an index that will reference a column number of CHX. 

The routine SSRCH performs a binary search. The routine is an implementation of algorithm B 

discussed by Knuth (1973, pages 407−411). 

Example 

This example searches a CHARACTER * 2 vector containing 9 character strings, sorted in ascending 

ASCII order, for the value ‘CC‘. 
 

      USE SSRCH_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N, INCX 

      PARAMETER  (N=9) 

 

! 

      INTEGER    INDEX, NOUT 

      CHARACTER  CHX(N)*2, STRING*2 

! 

      DATA CHX/'AA', 'BB', 'CC', 'DD', 'EE', 'FF', 'GG', 'HH', & 

          'II'/ 

! 

      INCX   = 1 

      STRING = 'CC' 

      CALL SSRCH (N, STRING, CHX, INCX, INDEX) 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) 'INDEX = ', INDEX 

      END 

Output 
 

INDEX =   3 
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ACHAR 
This function returns a character given its ASCII value. 

Function Return Value 

ACHAR — CHARACTER * 1 string containing the character in the I-th position of the ASCII 

collating sequence.   (Output) 

Required Arguments 

I — Integer ASCII value of the character desired.   (Input)  

I must be greater than or equal to zero and less than or equal to 127. 

FORTRAN 90 Interface 

Generic: ACHAR (I) 

Specific:  The specific interface name is ACHAR. 

FORTRAN 77 Interface 

Single: ACHAR (I) 

Description 

Routine ACHAR returns the character of the input ASCII value. The input value should be between 

0 and 127. If the input value is out of range, the value returned in ACHAR is machine dependent. 

Example 

This example returns the character of the ASCII value 65. 
 

      USE ACHAR_INT 

      USE UMACH_INT 

 

!     IMPLICIT   NONE 

      INTEGER    I, NOUT 

! 

      CALL UMACH (2, NOUT) 

!                                 Get character for ASCII value 

!                                 of 65 ('A') 

      I = 65 

      WRITE (NOUT,99999) I, ACHAR(I) 

! 

99999 FORMAT (' For the ASCII value of ', I2, ', the character is : ', & 

            A1) 

      END 
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Output 
 

For the ASCII value of 65, the character is : A 

IACHAR 
This function returns the integer ASCII value of a character argument. 

Function Return Value 

IACHAR — Integer ASCII value for CH.   (Output)  

The character CH is in the IACHAR-th position of the ASCII collating sequence. 

Required Arguments 

CH — Character argument for which the integer ASCII value is desired.   (Input) 

FORTRAN 90 Interface 

Generic: IACHAR (CH) 

Specific:  The specific interface name is IACHAR. 

FORTRAN 77 Interface 

Description 

Routine IACHAR returns the ASCII value of the input character. 

Single: IACHAR (CH) 

Example 

This example gives the ASCII value of character A. 
 

      USE IACHAR_INT 

 

      IMPLICIT   NONE 

      INTEGER    NOUT 

      CHARACTER  CH 

! 

      CALL UMACH (2, NOUT) 

!                                 Get ASCII value for the character 

!                                 'A'. 

      CH = 'A' 

      WRITE (NOUT,99999) CH, IACHAR(CH) 

! 

99999 FORMAT (' For the character  ', A1, '  the ASCII value is : ', & 

            I3) 

      END 
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Output 
 

For the character  A  the ASCII value is :  65 

ICASE 
This function returns the ASCII value of a character converted to uppercase. 

Function Return Value 

ICASE — Integer ASCII value for CH without regard to the case of CH.   (Output)  

Routine ICASE returns the same value as IACHAR for all but lowercase letters. For 

these, it returns the IACHAR value for the corresponding uppercase letter. 

Required Arguments 

CH — Character to be converted.   (Input) 

FORTRAN 90 Interface 

Generic: ICASE (CH) 

Specific:  The specific interface name is ICASE. 

FORTRAN 77 Interface 

Single: ICASE (CH) 

Description 

Routine ICASE converts a character to its integer ASCII value. The conversion is case insensitive; 

that is, it returns the ASCII value of the corresponding uppercase letter for a lowercase letter. 

Example 

This example shows the case insensitive conversion. 
 

      USE ICASE_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    NOUT 

      CHARACTER  CHR 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Get ASCII value for the character 

!                                 'a'. 

      CHR = 'a' 

      WRITE (NOUT,99999) CHR, ICASE(CHR) 

! 

99999 FORMAT (' For the character  ', A1, '  the ICASE value is : ', & 
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            I3) 

      END 

Output 
 

For the character  a  the ICASE value is :  65 

IICSR 
This function compares two character strings using the ASCII collating sequence but without 

regard to case. 

Function Return Value 

IICSR — Comparison indicator.   (Output)  

Let USTR1 and USTR2 be the uppercase versions of STR1 and STR2, respectively. The 

following table indicates the relationship between USTR1 and USTR2 as determined by 

the ASCII collating sequence.  

IICSR Meaning 

−1   USTR1 precedes USTR2 

0   USTR1 equals USTR2 

1  USTR1 follows USTR2 

Required Arguments 

STR1 — First character string.   (Input) 

STR2 — Second character string.   (Input) 

FORTRAN 90 Interface 

Generic: IICSR (STR1, STR2) 

Specific:  The specific interface name is IICSR. 

FORTRAN 77 Interface 

Single: IICSR (STR1, STR2) 
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Description 

Routine IICSR compares two character strings. It returns −1 if the first string is less than the 

second string, 0 if they are equal, and 1 if the first string is greater than the second string. The 

comparison is case insensitive. 

Comments 

If the two strings, STR1 and STR2, are of unequal length, the shorter string is considered as if 

it were extended with blanks to the length of the longer string. 

Example 

This example shows different cases on comparing two strings. 
 

      USE IICSR_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    NOUT 

      CHARACTER  STR1*6, STR2*6 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Compare String1 and String2 

!                                 String1 is 'bigger' than String2 

      STR1 = 'ABc 1' 

      STR2 = ' ' 

      WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2) 

! 

!                                 String1 is 'equal' to String2 

      STR1 = 'AbC' 

      STR2 = 'ABc' 

      WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2) 

! 

!                                 String1 is 'smaller' than String2 

      STR1 = 'ABc' 

      STR2 = 'aBC 1' 

      WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2) 

! 

99999 FORMAT (' For String1 = ', A6, 'and String2 = ', A6, & 

            ' IICSR = ', I2, /) 

      END 

Output 
 

For String1 = ABc 1 and String2 =        IICSR =  1 

 

For String1 = AbC   and String2 = ABc    IICSR =  0 

 

For String1 = ABc   and String2 = aBC 1  IICSR = -1 
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IIDEX 
This funcion determines the position in a string at which a given character sequence begins 

without regard to case. 

Function Return Value 

IIDEX — Position in CHRSTR where KEY begins.   (Output)  

If KEY occurs more than once in CHRSTR, the starting position of the first occurrence is 

returned. If KEY does not occur in CHRSTR, then IIDEX returns a zero. 

Required Arguments 

CHRSTR — Character string to be searched.   (Input) 

KEY — Character string that contains the key sequence.   (Input) 

FORTRAN 90 Interface 

Generic: IIDEX (CHRSTR, KEY) 

Specific:  The specific interface name is IIDEX. 

FORTRAN 77 Interface 

Single: IIDEX (CHRSTR, KEY) 

Description 

Routine IIDEX searches for a key string in a given string and returns the index of the starting 

element at which the key character string begins. It returns 0 if there is no match. The comparison 

is case insensitive. For a case-sensitive version, use the FORTRAN 77 intrinsic function INDEX. 

Comments 

If the length of KEY is greater than the length CHRSTR, IIDEX returns a zero. 

Example 

This example locates a key string. 
 

      USE IIDEX_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    NOUT 

      CHARACTER  KEY*5, STRING*10 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 
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!                                 Locate KEY in STRING 

      STRING = 'a1b2c3d4e5' 

      KEY    = 'C3d4E' 

      WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY) 

! 

      KEY = 'F' 

      WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY) 

! 

99999 FORMAT (' For STRING = ', A10, ' and KEY = ', A5, ' IIDEX = ', I2, & 

            /) 

      END 

Output 
 

For STRING = a1b2c3d4e5 and KEY = C3d4E IIDEX =  5 

 

For STRING = a1b2c3d4e5 and KEY = F     IIDEX =  0 

CVTSI 
Converts a character string containing an integer number into the corresponding integer form. 

Required Arguments 

STRING — Character string containing an integer number.   (Input) 

NUMBER — The integer equivalent of STRING.   (Output) 

FORTRAN 90 Interface 

Generic: CALL CVTSI (STRING, NUMBER) 

Specific:  The specific interface name is CVTSI. 

FORTRAN 77 Interface 

Single: CALL CVTSI (STRING, NUMBER) 

Description 

Routine CVTSI converts a character string containing an integer to an INTEGER variable. Leading 

and trailing blanks in the string are ignored. If the string contains something other than an integer, 

a terminal error is issued. If the string contains an integer larger than can be represented by an 

INTEGER variable as determined from routine IMACH (see the Reference Material), a terminal 

error is issued. 

Example 

The string ―12345‖ is converted to an INTEGER variable. 
 

      USE CVTSI_INT 
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      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    NOUT, NUMBER 

      CHARACTER  STRING*10 

! 

      DATA STRING/'12345'/ 

! 

      CALL CVTSI (STRING, NUMBER) 

! 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) 'NUMBER = ', NUMBER 

      END 

Output 
 

NUMBER =   12345 

CPSEC 
This fuction returns CPU time used in seconds. 

Function Return Value 

CPSEC — CPU time used (in seconds) since first call to CPSEC.   (Output) 

Required Arguments 

None 

FORTRAN 90 Interface 

Generic: CPSEC () 

Specific:  The specific interface name is CPSEC. 

FORTRAN 77 Interface 

Single: CPSEC (1) 

Comments 

1. The first call to CPSEC returns 0.0. 

2. The accuracy of this routine depends on the hardware and the operating system. On 

some systems, identical runs can produce timings differing by more than 10 percent. 
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TIMDY 
Gets time of day. 

Required Arguments 

IHOUR — Hour of the day.   (Output)  

IHOUR is between 0 and 23 inclusive. 

MINUTE — Minute within the hour.   (Output)  

MINUTE is between 0 and 59 inclusive. 

ISEC — Second within the minute.   (Output)  

ISEC is between 0 and 59 inclusive. 

FORTRAN 90 Interface 

Generic: CALL TIMDY (IHOUR, MINUTE, ISEC) 

Specific:  The specific interface name is TIMDY. 

FORTRAN 77 Interface 

Single: CALL TIMDY (IHOUR, MINUTE, ISEC) 

Description 

Routine TIMDY is used to retrieve the time of day. 

Example 

The following example uses TIMDY to return the current time. Obviously, the output is dependent 

upon the time at which the program is run. 
 

      USE TIMDY_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    IHOUR, IMIN, ISEC, NOUT 

! 

      CALL TIMDY (IHOUR, IMIN, ISEC) 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) 'Hour:Minute:Second = ', IHOUR, ':', IMIN, & 

                   ':', ISEC 

      IF (IHOUR .EQ. 0) THEN 

         WRITE (NOUT,*) 'The time is ', IMIN, ' minute(s), ', ISEC, & 

                      ' second(s) past midnight.' 

      ELSE IF (IHOUR .LT. 12) THEN 

         WRITE (NOUT,*) 'The time is ', IMIN, ' minute(s), ', ISEC, & 

                      ' second(s) past ', IHOUR, ' am.' 

      ELSE IF (IHOUR .EQ. 12) THEN 

         WRITE (NOUT,*) 'The time is ', IMIN, ' minute(s), ', ISEC, & 
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                      ' second(s) past noon.' 

      ELSE 

         WRITE (NOUT,*) 'The time is ', IMIN, ' minute(s), ', ISEC, & 

                      ' second(s) past ', IHOUR-12, ' pm.' 

      END IF 

      END 

Output 
 

Hour:Minute:Second =  14 : 34 : 30 

The time is  34  minute(s),  30  second(s) past  2  pm. 

TDATE 
Gets today‘s date. 

Required Arguments 

IDAY — Day of the month.   (Output)  

IDAY is between 1 and 31 inclusive. 

MONTH — Month of the year.   (Output)  

MONTH is between 1 and 12 inclusive. 

IYEAR — Year.   (Output)  

For example, IYEAR = 1985. 

FORTRAN 90 Interface 

Generic: CALL TDATE (IDAY, MONTH, IYEAR) 

Specific:  The specific interface name is TDATE. 

FORTRAN 77 Interface 

Single: CALL TDATE (IDAY, MONTH, IYEAR) 

Description 

Routine TDATE is used to retrieve today‘s date. Obviously, the output is dependent upon the date 

the program is run. 

Example 

The following example uses TDATE to return today‘s date. 
 

      USE TDATE_INT 

      USE UMACH_INT 

 



 

 

IMSL MATH LIBRARY Chapter 11: Utilities  1877 

     

     

 

      IMPLICIT   NONE 

      INTEGER    IDAY, IYEAR, MONTH, NOUT 

! 

      CALL TDATE (IDAY, MONTH, IYEAR) 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) 'Day-Month-Year = ', IDAY, '-', MONTH, & 

                   '-', IYEAR 

      END 

Output 
 

Day-Month-Year =  7 - 7 - 2006 

NDAYS 
This function computes the number of days from January 1, 1900, to the given date. 

Function Return Value 

NDAYS — Function value.   (Output)  

If NDAYS is negative, it indicates the number of days prior to January 1, 1900. 

Required Arguments 

IDAY — Day of the input date.   (Input) 

MONTH — Month of the input date.   (Input) 

IYEAR — Year of the input date.   (Input)  

1950 would correspond to the year 1950 A.D. and 50 would correspond to year 50 

A.D. 

FORTRAN 90 Interface 

Generic: NDAYS (IDAY, MONTH, IYEAR) 

Specific:  The specific interface name is NDAYS. 

FORTRAN 77 Interface 

Single: NDAYS (IDAY, MONTH, IYEAR) 

Description 

Function NDAYS returns the number of days from January 1, 1900, to the given date. The function 

NDAYS returns negative values for days prior to January 1, 1900. A negative IYEAR can be used 

to specify B.C. Input dates in year 0 and for October 5, 1582, through October 14, 1582, inclusive, 

do not exist; consequently, in these cases, NDAYS issues a terminal error. 
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Comments 

1. Informational error 

Type Code 

1 1 The Julian calendar, the first modern calendar, went into use in 45 

B.C. No calendar prior to 45 B.C. was as universally used nor as 

accurate as the Julian. Therefore, it is assumed that the Julian 

calendar was in use prior to 45 B.C. 

2. The number of days from one date to a second date can be computed by two references 

to NDAYS and then calculating the difference. 

3. The beginning of the Gregorian calendar was the first day after October 4, 1582, which 

became October 15, 1582. Prior to that, the Julian calendar was in use. NDAYS makes 

the proper adjustment for the change in calendars. 

Example 

The following example uses NDAYS to compute the number of days from January 15, 1986, to 

February 28, 1986: 
 

      USE NDAYS_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    IDAY, IYEAR, MONTH, NDAY0, NDAY1, NOUT 

! 

      IDAY  = 15 

      MONTH = 1 

      IYEAR = 1986 

      NDAY0 = NDAYS(IDAY,MONTH,IYEAR) 

      IDAY  = 28 

      MONTH = 2 

      IYEAR = 1986 

      NDAY1 = NDAYS(IDAY,MONTH,IYEAR) 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) 'Number of days = ', NDAY1 - NDAY0 

      END 

Output 
 

Number of days =   44 

NDYIN 
Gives the date corresponding to the number of days since January 1, 1900. 

Required Arguments 

NDAYS — Number of days since January 1, 1900.   (Input) 
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IDAY — Day of the input date.   (Output) 

MONTH — Month of the input date.   (Output) 

IYEAR — Year of the input date.   (Output)  

1950 would correspond to the year 195 A.D. and −50 would correspond to year 50 

B.C. 

FORTRAN 90 Interface 

Generic: CALL NDYIN (NDAYS, IDAY, MONTH, IYEAR) 

Specific:  The specific interface name is NDYIN. 

FORTRAN 77 Interface 

Single: CALL NDYIN (NDAYS, IDAY, MONTH, IYEAR) 

Description 

Routine NDYIN computes the date corresponding to the number of days since January 1, 1900. For 

an input value of NDAYS that is negative, the date computed is prior to January 1, 1900. The 

routine NDYIN is the inverse of NDAYS. 

Comments 

The beginning of the Gregorian calendar was the first day after October 4, 1582, which 

became October 15, 1582. Prior to that, the Julian calendar was in use. Routine NDYIN makes 

the proper adjustment for the change in calendars. 

Example 

The following example uses NDYIN to compute the date for the 100th day of 1986. This is 

accomplished by first using  NDAYS to get the ―day number‖ for December 31, 1985. 
 

      USE NDYIN_INT 

      USE NDAYS_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    IDAY, IYEAR, MONTH, NDAYO, NOUT, NDAY0 

! 

      NDAY0 = NDAYS(31,12,1985) 

      CALL NDYIN (NDAY0+100, IDAY, MONTH, IYEAR) 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) 'Day 100 of 1986 is (day-month-year) ', IDAY, & 

                   '-', MONTH, '-', IYEAR 

      END 

Output 
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Day 100 of 1986 is (day-month-year)   10-  4-  1986 

IDYWK 
This function computes the day of the week for a given date. 

Function Return Value 

IDYWK — Function value.   (Output)  

The value of IDYWK ranges from 1 to 7, where 1 corresponds to Sunday and 7 

corresponds to Saturday. 

Required Arguments 

IDAY — Day of the input date.   (Input) 

MONTH — Month of the input date.   (Input) 

IYEAR — Year of the input date.   (Input)  

1950 would correspond to the year 1950 A.D. and 50 would correspond to year 50 

A.D. 

FORTRAN 90 Interface 

Generic: IDYWK (IDAY, MONTH, IYEAR) 

Specific:  The specific interface name is IDYWK. 

FORTRAN 77 Interface 

Single: IDYWK (IDAY, MONTH, IYEAR) 

Description 

Function IDYWK returns an integer code that specifies the day of week for a given date. Sunday 

corresponds to 1, Monday corresponds to 2, and so forth. 

A negative IYEAR can be used to specify B.C. Input dates in year 0 and for October 5, 1582, 

through October 14, 1582, inclusive, do not exist; consequently, in these cases, IDYWK issues a 

terminal error. 

Comments 

1. Informational error 

Type Code 

1 1 The Julian calendar, the first modern calendar, went into use in 45 

B.C. No calendar prior to 45 B.C. was as universally used nor as 
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accurate as the Julian. Therefore, it is assumed that the Julian 

calendar was in use prior to 45 B.C. 

2. The beginning of the Gregorian calendar was the first day after October 4, 1582, which 

became October 15, 1582. Prior to that, the Julian calendar was in use. Function IDYWK 

makes the proper adjustment for the change in calendars. 

Example 

The following example uses IDYWK to return the day of the week for February 24, 1963. 
 

      USE IDYWK_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    IDAY, IYEAR, MONTH, NOUT 

! 

      IDAY  = 24 

      MONTH = 2 

      IYEAR = 1963 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,*) 'IDYWK (index for day of week) = ', & 

                    IDYWK(IDAY,MONTH,IYEAR) 

      END 

Output 
 

IDYWK (index for day of week) =   1 

VERML 
This function obtains IMSL MATH/LIBRARY-related version, system and serial numbers. 

Function Return Value 

VERML — CHARACTER string containing information.   (Output) 

Required Arguments 

ISELCT — Option for the information to retrieve.   (Input)  

ISELCT VERML 

1  IMSL MATH/LIBRARY version number 

2  Operating system (and version number) for which the library was produced. 

3  Fortran compiler (and version number) for which the library was produced. 

4  IMSL MATH/LIBRARY serial number 
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FORTRAN 90 Interface 

Generic: VERML(ISELCT) 

Specific:  The specific interface name is VERML. 

FORTRAN 77 Interface 

Single: VERML(ISELCT) 

Example 

In this example, we print all of the information returned by VERML on a particular machine. The 

output is omitted because the results are system dependent. 
 

      USE UMACH_INT 

      USE VERML_INT 

 

      IMPLICIT   NONE 

      INTEGER    ISELCT, NOUT 

      CHARACTER  STRING(4)*50, TEMP*32 

! 

      STRING(1) = '('' IMSL MATH/LIBRARY Version Number:  '', A)' 

      STRING(2) = '('' Operating System ID Number:  '', A)' 

      STRING(3) = '('' Fortran Compiler Version Number:  '', A)' 

      STRING(4) = '('' IMSL MATH/LIBRARY Serial Number:  '', A)' 

!                                 Print the versions and numbers. 

      CALL UMACH (2, NOUT) 

      DO 10  ISELCT=1, 4 

         TEMP = VERML(ISELCT) 

         WRITE (NOUT,STRING(ISELCT)) TEMP 

   10 CONTINUE 

      END 

Output 
 

 IMSL MATH/LIBRARY Version Number: IMSL Fortran Numerical Library, Version 6.0.0 

 Operating System ID Number:  Solaris Version 10                

 Fortran Compiler Version Number:  Sun Fortran 95 8.1 2005/01/07 (Workshop 10.0)   

 IMSL MATH/LIBRARY Serial Number:  999999 

RAND_GEN 
Generates a rank-1 array of random numbers. The output array entries are positive and less than 1 

in value. 

Required Argument 

X — Rank-1 array containing the random numbers.   (Output) 
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Optional Arguments 

IRND = IRND   (Output) 

Rank-1 integer array. These integers are the internal results of the Generalized 

Feedback Shift Register (GFSR) algorithm. The values are scaled to yield the floating-

point array X. The output array entries are between 1 and 2
3 1

− 1 in value. 

ISTATE_IN = ISTATE_IN   (Input) 

Rank-1 integer array of size 3p + 2, where p = 521, that defines the ensuing state of the 

GFSR generator. It is used to reset the internal tables to a previously defined state. It is 

the result of a previous use of the ―ISTATE_OUT=‖ optional argument. 

ISTATE_OUT = ISTATE_OUT   (Output) 

Rank-1 integer array of size 3p + 2 that describes the current state of the GFSR 

generator. It is normally used to later reset the internal tables to the state defined 

following a return from the GFSR generator. It is the result of a use of the generator 

without a user initialization, or it is the result of a previous use of the optional 

argument ―ISTATE_IN=‖ followed by updates to the internal tables from newly 

generated values. Example 2 illustrates use of ISTATE_IN and ISTATE_OUT for 

setting and then resetting RAND_GEN so that the sequence of integers, irnd, is 

repeatable. 

IOPT = IOPT(:)   (Input[/Output]) 

Derived type array with the same precision as the array x; used for passing optional 

data to rand_gen. The options are as follows: 

Packaged Options for RAND_GEN 

Option Prefix = ? Option Name Option Value 

s_, d_ Rand_gen_generator_seed 1 

s_, d_ Rand_gen_LCM_modulus 2 

s_, d_ Rand_gen_use_Fushimi_start 3 

IOPT(IO) = ?_options(?_rand_gen_generator_seed, ?_dummy) 

Sets the initial values for the GFSR. The present value of the seed, obtained by default 

from the real-time clock as described below, swaps places with  

iopt(IO + 1)%idummy. If the seed is set before any current usage of RAND_GEN, the 

exchanged value will be zero.  

IOPT(IO) = ?_options(?_rand_gen_LCM_modulus, ?_dummy)  

IOPT(IO+1) = ?_options(modulus, ?_dummy) 

Sets the initial values for the GFSR. The present value of the LCM, with default value 

k = 16807, swaps places with iopt(IO+1)%idummy. 

IOPT(IO) = ?_options(?_rand_gen_use_Fushimi_start, ?_dummy) 

Starts the GFSR sequence as suggested by Fushimi (1990). The default starting 

sequence is with the LCM recurrence described below. 
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FORTRAN 90 Interface 

Generic: CALL RAND_GEN (X [,…]) 

Specific:  The specific interface names are S_RAND_GEN and D_RAND_GEN. 

Description 

This GFSR algorithm is based on the recurrence 

3 3t t p t px x x  
 

where a ⊕  b is the exclusive OR operation on two integers a and b. This operation is performed 

until SIZE(x) numbers have been generated. The subscripts in the recurrence formula are 

computed modulo 3p. These numbers are converted to floating point by effectively multiplying 

the positive integer quantity  

1tx 
 

by a scale factor slightly smaller than 1./(huge(1)). The values p = 521 and q = 32 yield a sequence 

with a period approximately 

156.82 10p   

The default initial values for the sequence of integers {xt} are created by a congruential generator 

starting with an odd integer seed  

 _ (1)| 2 1 | 1bit sizem v count    
 

obtained by the Fortran 90 real-time clock routine: 

CALL SYSTEM_CLOCK(COUNT=count,CLOCK_RATE=CLRATE)  

An error condition is noted if the value of CLRATE=0. This indicates that the processor does not 

have a functioning real-time clock. In this exceptional case a starting seed must be provided by the 

user with the optional argument ―iopt=‖ and option number ?_rand_generator_seed. The 

value v is the current clock for this day, in milliseconds.  This value is obtained using the date 

routine: 

CALL DATE_AND_TIME(VALUES=values)  

and converting values(5:8) to milliseconds. 

The LCM generator initializes the sequence {xt} using the following recurrence: 

  , mod 1 / 2m m k huge 
 

The default value of k = 16807. Using the optional argument ―iopt=‖ and the packaged option 

number ?_rand_gen_LCM_modulus, k can be given an alternate value. The option number 

?_rand_gen_generator_seed can be used to set the initial value of m instead of using the 

asynchronous value given by the system clock. This is illustrated in Example 2. If the default 

choice of m results in an unsatisfactory starting sequence or it is necessary to duplicate the 
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sequence, then it is recommended that users set the initial seed value to one of their own choosing. 

Resetting the seed complicates the usage of the routine. 

This software is based on Fushimi (1990), who gives a more elaborate starting sequence for the 

{xt} .  The starting sequence suggested by Fushimi can be used with the option number 

?_rand_gen_use_Fushimi_start. Fushimi‘s starting process is more expensive than the 

default method, and it is equivalent to starting in another place of the sequence with period 2
p
. 

Fatal and Terminal Error Messages 

See the messages.gls file for error messages for RAND_GEN. These error messages are numbered 

521−528; 541−548. 

Example 1: Running Mean and Variance 

An array of random numbers is obtained. The sample mean and variance are computed. These  

values are compared with the same quantities computed using a stable method for the running 

means and variances, sequentially moving through the data. Details about the running mean and 

variance are found in Henrici (1982, pp. 21−23). 
 

      use rand_gen_int  

  

      implicit none  

  

! This is Example 1 for RAND_GEN.  

  

      integer i  

      integer, parameter :: n=1000  

      real(kind(1e0)), parameter :: one=1e0, zero=0e0  

      real(kind(1e0)) x(n), mean_1(0:n), mean_2(0:n), s_1(0:n), s_2(0:n)  

  

! Obtain random numbers.  

      call rand_gen(x)  

  

! Calculate each partial mean.  

      do i=1,n  

        mean_1(i) = sum(x(1:i))/i  

      end do  

  

! Calculate each partial variance.  

      do i=1,n  

        s_1(i)=sum((x(1:i)-mean_1(i))**2)/i  

      end do  

  

      mean_2(0)=zero  

      mean_2(1)=x(1)  

      s_2(0:1)=zero  

  

! Alternately calculate each running mean and variance,  

! handling the random numbers once.  

      do i=2,n  

       mean_2(i)=((i-1)*mean_2(i-1)+x(i))/i  

       s_2(i)   = (i-1)*s_2(i-1)/i+(mean_2(i)-x(i))**2/(i-1)  

      end do  

       

! Check that the two sets of means and variances agree.  
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      if (maxval(abs(mean_1(1:)-mean_2(1:))/mean_1(1:)) <= &  

              sqrt(epsilon(one))) then  

         if (maxval(abs(s_1(2:)-s_2(2:))/s_1(2:)) <= &  

              sqrt(epsilon(one))) then  

            write (*,*) 'Example 1 for RAND_GEN is correct.'  

         end if  

      end if  

  

      end  

Output 
 

Example 1 for RAND_GEN is correct. 

Additional Examples 

Example 2: Seeding, Using, and Restoring the Generator 
 

      use rand_gen_int  

  

      implicit none  

  

! This is Example 2 for RAND_GEN.  

  

      integer i  

      integer, parameter :: n=34, p=521  

      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0  

      integer irndi(n), i_out(3*p+2), hidden_message(n)  

      real(kind(1e0)) x(n), y(n)  

      type(s_options) :: iopti(2)=s_options(0,zero)  

      character*34 message, returned_message  

  

! This is the message to be hidden.  

      message = 'SAVE YOURSELF.  WE ARE DISCOVERED!'  

  

! Start the generator with a known seed.  

      iopti(1) = s_options(s_rand_gen_generator_seed,zero)  

      iopti(2) = s_options(123,zero)  

      call rand_gen(x, iopt=iopti)  

  

! Save the state of the generator.  

      call rand_gen(x, istate_out=i_out)  

  

! Get random integers.  

      call rand_gen(y, irnd=irndi)       

  

! Hide text using collating sequence subtracted from integers.  

      do i=1, n  

         hidden_message(i) = irndi(i) - ichar(message(i:i))  

      end do  

  

! Reset generator to previous state and generate the previous  

! random integers.  

      call rand_gen(x, irnd=irndi, istate_in=i_out)  
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! Subtract hidden text from integers and convert to character.  

      do i=1, n  

         returned_message(i:i) = char(irndi(i) - hidden_message(i))  

      end do  

  

! Check the results.  

      if (returned_message == message) then  

 

 

 

         write (*,*) 'Example 2 for RAND_GEN is correct.'  

      end if  

  

      end  

Output 
 

Example 2 for RAND_GEN is correct. 

Example 3: Generating Strategy with a Histogram 

We generate random integers but with the frequency as in a histogram with nbins slots.  The 

generator is initially used a large number of times to demonstrate that it is making choices with the 

same shape as the histogram.  This is not required to generate samples.  The program next 

generates a summary set of integers according to the histogram.  These are not repeatable and are 

representative of the histogram in the sense of looking at 20 integers during generation of a large 

number of samples. 
      use rand_gen_int  

      use show_int  

    

      implicit none  

  

! This is Example 3 for RAND_GEN.  

  

      integer i, i_bin, i_map, i_left, i_right  

      integer, parameter :: n_work=1000  

      integer, parameter :: n_bins=10  

      integer, parameter :: scale=1000  

      integer, parameter :: total_counts=100  

      integer, parameter :: n_samples=total_counts*scale  

      integer, dimension(n_bins) :: histogram=  &   

        (/4,  6,  8, 14, 20, 17, 12,  9,  7,  3 /)   

      integer, dimension(n_work) :: working=0  

      integer, dimension(n_bins) :: distribution=0  

      integer break_points(0:n_bins)  

      real(kind(1e0)) rn(n_samples)  

      real(kind(1e0)), parameter :: tolerance=0.005  

  

  

      integer, parameter :: n_samples_20=20  

      integer rand_num_20(n_samples_20)  

      real(kind(1e0)) rn_20(n_samples_20)  

  

! Compute the normalized cumulative distribution.  

      break_points(0)=0  
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      do i=1,n_bins  

        break_points(i)=break_points(i-1)+histogram(i)  

      end do  

  

      break_points=break_points*n_work/total_counts  

  

! Obtain uniform random numbers.   

        call rand_gen(rn)    

   

  

! Set up the secondary mapping array.  

      do i_bin=1,n_bins  

        i_left=break_points(i_bin-1)+1  

        i_right=break_points(i_bin)   

        do i=i_left, i_right  

          working(i)=i_bin  

        end do  

      end do  

  

! Map the random numbers into the 'distribution' array.   

! This is made approximately proportional to the histogram.  

      do i=1,n_samples  

        i_map=nint(rn(i)*(n_work-1)+1)  

        distribution(working(i_map))=  &  

          distribution(working(i_map))+1  

      end do  

  

! Check the agreement between the distribution of the   

! generated random numbers and the original histogram.  

       write (*, '(A)', advance='no') 'Original: '  

       write (*, '(10I6)') histogram*scale  

       write (*, '(A)', advance='no') 'Generated:'  

       write (*, '(10I6)') distribution  

  

      if (maxval(abs(histogram(1:)*scale-distribution(1:))) &  

            <= tolerance*n_samples) then  

        write(*, '(A/)') 'Example 3 for RAND_GEN is correct.'  

      end if  

  

! Generate 20 integers in 1, 10 according to the distribution  

! induced by the histogram.  

        call rand_gen(rn_20)   

   

! Map from the uniform distribution to the induced distribution.   

      do i=1,n_samples_20  

        i_map=nint(rn_20(i)*(n_work-1)+1)  

        rand_num_20(i)=working(i_map)  

      end do  

          

        call show(rand_num_20,&  

'Twenty integers generated according to the histogram:')  

      end 

Output 
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Example 3 for RAND_GEN is correct. 

Example 4: Generating with a Cosine Distribution 

We generate random numbers based on the continuous distribution function 

    1 cos / 2 ,p x x x      
 

Using the cumulative  

      1/ 2 sin / 2
x

q x p t dt x x





   
 

we generate the samples by obtaining uniform samples u, 0 < u < 1 and solve the equation  

  0,q x u x     
 

These are evaluated in vector form, that is all entries at one time, using Newton‘s method: 

    , /x x dx dx q x u p x   
 

An iteration counter forces the loop to terminate, but this is not often required although it is an 

important detail. 
 

      use rand_gen_int   

      use show_int  

      use Numerical_Libraries  

  

        IMPLICIT NONE  

  

! This is Example 4 for RAND_GEN.  

  

      integer i, i_map, k  

      integer, parameter :: n_bins=36  

      integer, parameter :: offset=18  

      integer, parameter :: n_samples=10000  

      integer, parameter :: n_samples_30=30  

      integer, parameter :: COUNT=15  

  

      real(kind(1e0)) probabilities(n_bins)  

      real(kind(1e0)), dimension(n_bins) :: counts=0.0  

      real(kind(1e0)), dimension(n_samples) :: rn, x, f, fprime, dx  

      real(kind(1e0)), dimension(n_samples_30) :: rn_30, &  

               x_30, f_30, fprime_30, dx_30  

      real(kind(1e0)), parameter :: one=1e0, zero=0e0, half=0.5e0  

      real(kind(1e0)), parameter :: tolerance=0.01  

      real(kind(1e0)) two_pi, omega  

         

! Initialize values of 'two_pi' and 'omega'.  

       two_pi=2.0*const((/'pi'/))  

       omega=two_pi/n_bins  

  

! Compute the probabilities for each bin according to  

! the probability density (cos(x)+1)/(2*pi), -pi<x<pi.  

      do i=1,n_bins  

        probabilities(i)=(sin(omega*(i-offset))  &  
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            -sin(omega*(i-offset-1))+omega)/two_pi  

      end do  

  

! Obtain uniform random numbers in (0,1).   

      call rand_gen(rn)    

   

! Use Newton's method to solve the nonlinear equation:  

! accumulated_distribution_function - random_number = 0.  

      x=zero; k=0  

      solve_equation: do  

        f=(sin(x)+x)/two_pi+half-rn  

        fprime=(one+cos(x))/two_pi  

        dx=f/fprime  

        x=x-dx; k=k+1  

        if (maxval(abs(dx)) <= sqrt(epsilon(one)) &  

              .or. k > COUNT) exit solve_equation  

      end do solve_equation  

  

! Map the random numbers 'x' array into the 'counts' array.   

        do i=1,n_samples  

          i_map=int(x(i)/omega+offset)+1  

          counts(i_map)=counts(i_map)+one  

        end do  

  

! Normalize the counts array.  

      counts=counts/n_samples  

  

! Check that the generated random numbers are indeed   

! based on the original distribution.  

      if (maxval(abs(counts(1:)-probabilities(1:))) &  

            <= tolerance) then  

        write (*,'(a/)') 'Example 4 for RAND_GEN is correct.'  

      end if  

  

! Generate 30 random numbers in (-pi,pi) according to   

! the probability density (cos(x)+1)/(2*pi), -pi<x<pi.  

        call rand_gen(rn_30)    

   

      x_30=0.0; k=0  

      solve_equation_30: do  

        f_30=(sin(x_30)+x_30)/two_pi+half-rn_30  

        fprime_30=(one+cos(x_30))/two_pi  

        dx_30=f_30/fprime_30  

        x_30=x_30-dx_30  

        if (maxval(abs(dx_30)) <= sqrt(epsilon(one))&  

             .or. k > COUNT) exit solve_equation_30  

      end do solve_equation_30  

  

        write(*,'(A)') 'Thirty random numbers generated ', &  

                   'according to the probability density ',&  

                   'pdf(x)=(cos(x)+1)/(2*pi), -pi<x<pi:'  

  

        call show(x_30)  

        end  
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 Output 
 

Example 4 for RAND_GEN is correct. 

RNGET 
Retrieves the current value of the seed used in the IMSL random number generators. 

Required Arguments 

ISEED — The seed of the random number generator.   (Output)  

ISEED is in the range (1, 2147483646). 

FORTRAN 90 Interface 

Generic: CALL RNGET (ISEED) 

Specific:  The specific interface name is RNGET. 

FORTRAN 77 Interface 

Single: CALL RNGET (ISEED) 

Description 

Routine RNGET retrieves the current value of the ―seed‖ used in the IMSL random number 

generators. A reason for doing this would be to restart a simulation, using RNSET to reset the seed. 

Example 

The following FORTRAN statements illustrate the use of RNGET: 
 

      INTEGER ISEED 

!                        Call RNSET to initialize the seed. 

      CALL RNSET(123457) 

!                        Do some simulations. 

         ... 

         ... 

      CALL RNGET(ISEED) 

!                        Save ISEED.  If the simulation is to be continued 

!                        in a different program, ISEED should be output, 

!                        possibly to a file. 

         ... 

         ... 

!                        When the simulations begun above are to be 

!                        restarted, restore ISEED to the value obtained 

!                        above and use as input to RNSET. 

      CALL RNSET(ISEED) 

!                        Now continue the simulations. 

         ... 

         ... 
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RNSET 
Initializes a random seed for use in the IMSL random number generators. 

Required Arguments 

ISEED — The seed of the random number generator.   (Input)  

ISEED must be in the range (0, 2147483646). If ISEED is zero, a value is computed 

using the system clock; and, hence, the results of programs using the IMSL random 

number generators will be different at different times. 

FORTRAN 90 Interface 

Generic: CALL RNSET (ISEED) 

Specific:  The specific interface name is RNSET . 

FORTRAN 77 Interface 

Single: CALL RNSET (ISEED) 

Description 

Routine RNSET is used to initialize the seed used in the IMSL random number generators. If the 

seed is not initialized prior to invocation of any of the routines for random number generation by 

calling RNSET, the seed is initialized via the system clock. The seed can be reinitialized to a  

clock-dependent value by calling RNSET with ISEED set to 0. 

The effect of RNSET is to set some values in a FORTRAN COMMON block that is used by the 

random number generators. 

A common use of RNSET is in conjunction with RNGET to restart a simulation. 

Example 

The following FORTRAN statements illustrate the use of RNSET: 
 

        INTEGER ISEED 

!                          Call RNSET to initialize the seed via the 

!                          system clock. 

        CALL RNSET(0) 

!                          Do some simulations. 

            ... 

            ... 

!                          Obtain the current value of the seed. 

        CALL RNGET(ISEED) 

!                          If the simulation is to be continued in a 

!                          different program, ISEED should be output, 

!                          possibly to a file. 

             ... 

             ... 
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!                          When the simulations begun above are to be 

!                          restarted, restore ISEED to the value 

!                          obtained above, and use as input to RNSET. 

        CALL RNSET(ISEED) 

!                          Now continue the simulations. 

             ... 

             ... 

RNOPT 
Selects the uniform (0, 1) multiplicative congruential pseudorandom number generator. 

Required Arguments 

IOPT — Indicator of the generator.   (Input)  

The random number generator is either a multiplicative congruential generator with 

modulus 2
31

 − 1 or a GFSR generator. IOPT is used to choose the multiplier and 

whether or not shuffling is done, or is used to choose the GFSR method, or is used to 

choose the Mersenne Twister generator. 

IOPT Generator 

1 The multiplier 16807 is used. 

2 The multiplier 16807 is used with shuffling. 

3 The multiplier 397204094 is used. 

4 The multiplier 397204094 is used with shuffling. 

5 The multiplier 950706376 is used. 

6 The multiplier 950706376 is used with shuffling. 

7 GFSR, with the recursion Xt = Xt−1563 ⊕  Xt−96 is used. 

8 A 32-bit Mersenne Twister generator is used. The real and double random 

numbers are generated from 32-bit integers. 

9 A 64-bit Mersenne Twister generator is used. The real and double random 

numbers are generated from 64-bit integers. This ensures that all bits of both 

float and double are random. 

FORTRAN 90 Interface 

Generic: CALL RNOPT (IOPT) 

Specific:  The specific interface name is RNOPT. 
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FORTRAN 77 Interface 

Single: CALL RNOPT (IOPT) 

Description 

The uniform pseudorandom number generators use a multiplicative congruential method, with or 

without shuffling or a GFSR method, or the Mersenne Twister method. Routine RNOPT determines 

which method is used; and in the case of a multiplicative congruential method, it determines the 

value of the multiplier and whether or not to use shuffling. The description of RNUN may provide 

some guidance in the choice of the form of the generator. If no selection is made explicitly, the 

generators use the multiplier 16807 without shuffling. This form of the generator has been in use 

for some time (see Lewis, Goodman, and Miller, 1969). This is the generator formerly known as 

GGUBS in the IMSL Library. It is the ―minimal standard generator‖ discussed by Park and Miller 

(1988). 

Both of the Mersenne Twister generators have a period of 2
19937

 -1 and a 624-dimensional equi-

distribution property. See Matsumoto et al. 1998 for details.  

The IMSL Mersenne Twister generators are derived from code copyright (C) 1997 - 2002, Makoto 

Matsumoto and Takuji Nishimura, All rights reserved. It is subject to the following notice: 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 

―AS IS‖ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 

A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT 

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

The IMSL 32-bit Mersenne Twister generator is based on the Matsumoto and Nishimura code 

‗mt19937ar‘ and the 64-bit code is based on ‗mt19937-64‘. 

Example 

The FORTRAN statement 

CALL RNOPT(1) 

would select the simple multiplicative congruential generator with multiplier 16807. Since this is 

the same as the default, this statement would have no effect unless RNOPT had previously been 

called in the same program to select a different generator. 

RNIN32 
Initializes the 32-bit Mersenne Twister generator using an array. 
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Required Arguments 

KEY— Integer array of length LEN used to initialize the 32-bit Mersenne Twister generator. 

(Input) 

Optional Arguments 

LEN — Length of the array key. (Input) 

FORTRAN 90 Interface 

Generic: CALL RNIN32 (KEY [,…]) 

Specific:  The specific interface name is S_RNIN32. 

FORTRAN 77 Interface 

Single: CALL RNIN32 (KEY, LEN) 

Description 

By default, the Mersenne Twister random number generator is initialized using the current seed 

value (see RNGET). The seed is limited to one integer for initialization. This function allows an 

arbitrary length array to be used for initialization. This subroutine completely replaces the use of the 

seed for initialization of the 32-bit Mersenne Twister generator. 

Example 

See routine RNGE32. 

RNGE32 
Retrieves the current table used in the 32-bit Mersenne Twister generator.  

Required Arguments 

MTABLE — Integer array of length 625 containing the table used in the 32-bit Mersenne 

Twister generator. (Output) 

FORTRAN 90 Interface 

Generic: CALL RNGE32 (MTABLE) 

Specific:  The specific interface name is RNGE32 

FORTRAN 77 Interface 

Single: CALL RNGE32 (MTABLE) 
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Description 

The values in the table contain the state of the 32-bit Mersenne Twister random number generator. 

The table can be used by RNSE32 to set the generator back to this state. 

Example 

In this example, four simulation streams are generated. The first series is generated with the seed 

used for initialization. The second series is generated using an array for initialization. The third 

series is obtained by resetting the generator back to the state it had at the beginning of the second 

stream. Therefore, the second and third streams are identical. The fourth stream is obtained by 

resetting the generator back to its original, uninitialized state, and having it reinitialize using the 

seed. The first and fourth streams are therefore the same. 

 

      USE RNIN32_INT 

      USE RNGE32_INT 

      USE RNSET_INT 

      USE UMACH_INT 

      USE RNUN_INT 

      IMPLICIT   NONE 

      INTEGER    I, ISEED, NOUT 

      INTEGER INIT(4) 

      DATA INIT/291,564,837,1110/ 

      DATA ISEED/123457/ 

      INTEGER NR 

      REAL R(5) 

      INTEGER MTABLE(625) 

      CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5 

      RLABEL(1)='NONE' 

      CLABEL(1)='NONE' 

      DATA FMT/'(W10.4)'/ 

      NR=5 

      CALL UMACH (2, NOUT) 

      ISEED = 123457 

      CALL RNOPT(8) 

      CALL RNSET(ISEED) 

      CALL RNUN(R) 

      CALL WRRRL('FIRST STREAM OUTPUT',1,5,R,1,0, & 

                  FMT, RLABEL, CLABEL) 

!     REINITIALIZE MERSENNE TWISTER SERIES WITH AN ARRAY 

      CALL RNIN32(INIT) 

!     SAVE THE STATE OF THE SERIES 

      CALL RNGE32(MTABLE) 

      CALL RNUN(R) 

      CALL WRRRL('SECOND STREAM OUTPUT',1,5,R,1,0, & 

                   FMT, RLABEL, CLABEL) 

!     RESTORE THE STATE OF THE TABLE 

      CALL RNSE32(MTABLE) 

      CALL RNUN(R) 

      CALL WRRRL('THIRD STREAM OUTPUT',1,5,R,1,0, & 

                   FMT, RLABEL, CLABEL) 

!     RESET THE SERIES - IT WILL REINITIALIZE FROM THE SEED 

      MTABLE(1)=1000 

      CALL RNSE32(MTABLE) 
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      CALL RNUN(R) 

      CALL WRRRL('FOURTH STREAM OUTPUT',1,5,R,1,0, & 

                   FMT, RLABEL, CLABEL) 

      END 

Output 
 

                     First stream output 

     0.4347      0.3522      0.0139      0.2091      0.4956 

                    Second stream output 

     0.2486      0.2226      0.1111      0.9563      0.9846 

                     Third stream output 

     0.2486      0.2226      0.1111      0.9563      0.9846 

                    Fourth stream output 

     0.4347      0.3522      0.0139      0.2091      0.4956 

RNSE32 
Sets the current table used in the 32-bit Mersenne Twister generator. 

Required Arguments 

MTABLE  — Integer array of length 625 containing the table used in the 32-bit Mersenne 

Twister generator. (Input) 

FORTRAN 90 Interface 

Generic: CALL RNSE32 (MTABLE) 

Specific:  The specific interface name is RNSE32 

FORTRAN 77 Interface 

Single: CALL RNSE32 (MTABLE) 

Description 

The values in MTABLE are the state of the 32-bit Mersenne Twister random number generator 

obtained by a call to RNGE32.  The values in the table can be used to restore the state of the 

generator. 

Alternatively, if MTABLE [1] > 625 then the generator is set to its original, uninitialized, state. 

Example 

See routine RNGE32. 

RNIN64 
Initializes the 64-bit Mersenne Twister generator using an array. 



     

     
 

1898  Chapter 11: Utilities IMSL MATH LIBRARY  

     

     

 

Required Arguments 

KEY— Integer(kind=8) array of length LEN used to initialize the  64-bit Mersenne Twister 

generator. (Input) 

Optional Arguments 

LEN — Length of the array key. (Input) 

FORTRAN 90 Interface 

Generic: CALL RNIN64 (KEY [,…]) 

Specific:  The specific interface name is S_RNIN64. 

FORTRAN 77 Interface 

Single: CALL RNIN64 (KEY, LEN) 

Description 

By default, the Mersenne Twister random number generator is initialized using the current seed 

value (see RNGET). The seed is limited to one integer for initialization. This function allows an 

arbitrary length array to be used for initialization. This subroutine completely replaces the use of the 

seed for initialization of the 64-bit Mersenne Twister generator. 

RNGE64 
Retrieves the current table used in the 64-bit Mersenne Twister generator. 

Required Arguments 

MTABLE — Integer(kind=8) array of length 313 containing the table used in the 64-bit 

Mersenne Twister  generator. (Output) 

FORTRAN 90 Interface 

Generic: CALL RNGE64 (MTABLE) 

Specific:  The specific interface name is RNGE64 

FORTRAN 77 Interface 

Single: CALL RNGE64 (MTABLE) 
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Description 

The values in the table contain the state of the 64-bit Mersenne Twister random number generator. 

The table can be used by RNSE64 to set the generator back to this state. 

Example 

In this example, four simulation streams are generated. The first series is generated with the seed 

used for initialization. The second series is generated using an array for initialization. The third 

series is obtained by resetting the generator back to the state it had at the beginning of the second 

stream. Therefore, the second and third streams are identical. The fourth stream is obtained by 

resetting the generator back to its original, uninitialized state, and having it reinitialize using the 

seed. The first and fourth streams are therefore the same. 
 

      USE RNIN64_INT 

      USE RNGE64_INT 

      USE RNSET_INT 

      USE UMACH_INT 

      USE RNUN_INT 

      IMPLICIT   NONE 

      INTEGER    I, ISEED, NOUT 

      INTEGER(KIND=8) INIT(4) 

      DATA INIT/291,564,837,1110/ 

      DATA ISEED/123457/ 

      INTEGER NR 

      REAL R(5) 

      INTEGER(KIND=8) MTABLE(313) 

      CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5 

      RLABEL(1)='NONE' 

      CLABEL(1)='NONE' 

      DATA FMT/'(W10.4)'/ 

      NR=5 

      CALL UMACH (2, NOUT) 

      ISEED = 123457 

      CALL RNOPT(9) 

      CALL RNSET(ISEED) 

      CALL RNUN(R) 

      CALL WRRRL('FIRST STREAM OUTPUT',1,5,R,1,0, & 

                  FMT, RLABEL, CLABEL) 

!     REINITIALIZE MERSENNE TWISTER SERIES WITH AN ARRAY 

      CALL RNIN64(INIT) 

!     SAVE THE STATE OF THE SERIES 

      CALL RNGE64(MTABLE) 

      CALL RNUN(R) 

      CALL WRRRL('SECOND STREAM OUTPUT',1,5,R,1,0, & 

                   FMT, RLABEL, CLABEL) 

!     RESTORE THE STATE OF THE TABLE 

      CALL RNSE64(MTABLE) 

      CALL RNUN(R) 

      CALL WRRRL('THIRD STREAM OUTPUT',1,5,R,1,0, & 

                   FMT, RLABEL, CLABEL) 

!     RESET THE SERIES - IT WILL REINITIALIZE FROM THE SEED 

      MTABLE(1)=1000 

      CALL RNSE64(MTABLE) 

      CALL RNUN(R) 

      CALL WRRRL('FOURTH STREAM OUTPUT',1,5,R,1,0, & 
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                   FMT, RLABEL, CLABEL) 

      END 

Output 
 

                     First stream output 

     0.5799      0.9401      0.7102      0.1640      0.5457 

                    Second stream output 

     0.4894      0.7397      0.5725      0.0863      0.7588 

                     Third stream output 

     0.4894      0.7397      0.5725      0.0863      0.7588 

                    Fourth stream output 

     0.5799      0.9401      0.7102      0.1640      0.5457 

RNSE64 
Sets the current table used in the 64-bit Mersenne Twister generator. 

Required Arguments 

MTABLE  — Integer (kind=8)  array of length 313 containing the table used in the 64-bit 

Mersenne Twister generator. (Input) 

FORTRAN 90 Interface 

Generic: CALL RNSE64 (MTABLE) 

Specific:  The specific interface name is RNSE64 

FORTRAN 77 Interface 

Single: CALL RNSE64 (MTABLE) 

Description 

The values in MTABLE are the state of the 64-bit Mersenne Twister random number generator 

obtained by a call to RNGE64. The values in the table can be used to restore the state of the 

generator. Alternatively, if MTABLE [1] > 313 then the generator is set to its original, 

uninitialized, state. 

Example 

See function RNGE64. 

RNUNF 
This function generates a pseudorandom number from a uniform (0, 1) distribution. 
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Function Return Value 

RNUNF — Function value, a random uniform (0, 1) deviate.   (Output) 

See Comment 1. 

Required Arguments 

None 

FORTRAN 90 Interface 

Generic: RNUNF () 

Specific:  The specific interface names are S_RNUNF and D_RNUNF. 

FORTRAN 77 Interface 

Single: RNUNF () 

Double: The double precision name is DRNUNF.  

Description 

Routine RNUNF is the function form of RNUN. The routine RNUNF generates pseudorandom 

numbers from a uniform (0, 1) distribution. The algorithm used is determined by RNOPT. The 

values returned by RNUNF are positive and less than 1.0. 

If several uniform deviates are needed, it may be more efficient to obtain them all at once by a call 

to RNUN rather than by several references to RNUNF. 

Comments 

1. If the generic version of this function is used, the immediate result must be stored in a 

variable before use in an expression. For example: 

X = RNUNF(6) 

Y = SQRT(X) 

 must be used rather than 

Y = SQRT(RNUNF(6)) 

 If this is too much of a restriction on the programmer, then the specific name can be 

used without this restriction. 

2. Routine RNSET  can be used to initialize the seed of the random number generator. The 

routine RNOPT can be used to select the form of the generator. 

3. This function has a side effect: it changes the value of the seed, which is passed 

through a common block. 
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Example 

In this example, RNUNF is used to generate five pseudorandom uniform numbers. Since RNOPT is 

not called, the generator used is a simple multiplicative congruential one with a multiplier of 

16807. 
 

      USE RNUNF_INT 

      USE RNSET_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    I, ISEED, NOUT 

      REAL       R(5) 

! 

      CALL UMACH (2, NOUT) 

      ISEED = 123457 

      CALL RNSET (ISEED) 

      DO 10  I=1, 5 

         R(I) = RNUNF() 

   10 CONTINUE 

      WRITE (NOUT,99999) R 

99999 FORMAT ('      Uniform random deviates: ', 5F8.4) 

      END 

Output 
 

Uniform random deviates:   0.9662  0.2607  0.7663  0.5693  0.8448 

RNUN 
Generates pseudorandom numbers from a uniform (0, 1) distribution. 

Required Arguments 

R — Vector of length NR containing the random uniform (0, 1) deviates.   (Output) 

Optional Arguments 

NR — Number of random numbers to generate.   (Input) 

Default: NR = SIZE (R,1). 

FORTRAN 90 Interface 

Generic: CALL RNUN (R [,…]) 

Specific:  The specific interface names are S_RNUN and D_RNUN. 

FORTRAN 77 Interface 

Single: CALL RNUN (NR, R) 
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Double: The double precision name is DRNUN. 

Description 

Routine RNUN generates pseudorandom numbers from a uniform (0,1) distribution using either a 

multiplicative congruential method or a generalized feedback shift register (GFSR) method, or the 

Mersenne Twister generator. The form of the multiplicative congruential generator is 

 31
1 mod 2 1i ix cx  

 

Each xi is then scaled into the unit interval (0,1). The possible values for c in the IMSL generators 

are 16807, 397204094, and 950706376. The selection is made by the routine RNOPT. The choice 

of 16807 will result in the fastest execution time. If no selection is made explicitly, the routines 

use the multiplier 16807. 

The user can also select a shuffled version of the multiplicative congruential generators. In this 

scheme, a table is filled with the first 128 uniform (0,1) numbers resulting from the simple 

multiplicative congruential generator. Then, for each xi from the simple generator, the low-order 

bits of xi are used to select a random integer, j, from 1 to 128. The j-th entry in the table is then 

delivered as the random number; and xi, after being scaled into the unit interval, is inserted into the 

j-th position in the table. 

The GFSR method is based on the recursion Xt = Xt−1563 ⊕  Xt−96. This generator, which is 

different from earlier GFSR generators, was proposed by Fushimi (1990), who discusses the 

theory behind the generator and reports on several empirical tests of it.  

Mersenne Twister(MT) is a pseudorandom number generating algorithm developed by Makoto 

Matsumoto and Takuji Nishimura in 1996-1997. MT has far longer period and far higher order of 

equidistribution than any other implemented generators. The values returned in R by RNUN are 

positive and less than 1.0. Values in R may be smaller than the smallest relative spacing, however. 

Hence, it may be the case that some value R(i) is such that 1.0 − R(i) = 1.0. 

Deviates from the distribution with uniform density over the interval (A, B) can be obtained by 

scaling the output from RNUN. The following statements (in single precision) would yield random 

deviates from a uniform (A, B) distribution: 

       CALL RNUN (NR, R) 

       CALL SSCAL (NR, B-A, R, 1) 

       CALL SADD (NR, A, R, 1) 

Comments 

The routine RNSET can be used to initialize the seed of the random number generator. The 

routine RNOPT can be used to select the form of the generator. 

Example 

In this example, RNUN is used to generate five pseudorandom uniform numbers. Since RNOPT is 

not called, the generator used is a simple multiplicative congruential one with a multiplier of 

16807. 
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      USE RNUN_INT 

      USE RNSET_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    ISEED, NOUT, NR 

      REAL       R(5) 

! 

      CALL UMACH (2, NOUT) 

      NR    = 5 

      ISEED = 123457 

      CALL RNSET (ISEED) 

      CALL RNUN (R) 

      WRITE (NOUT,99999) R 

99999 FORMAT ('      Uniform random deviates: ', 5F8.4) 

      END 

Output 
 

      Uniform random deviates:   0.9662  0.2607  0.7663  0.5693  0.8448 

FAURE_INIT 
Shuffled Faure sequence initialization. 

Required Arguments 

NDIM —   The dimension of the hyper-rectangle.   (Input) 

STATE —   An IMSL_FAURE pointer for the derived type created by the call to FAURE_INIT. 

The output contains information about the sequence. Use ?_IMSL_FAURE as the type, 

where ?_ is S_ or D_ depending on precision.   (Output) 

Optional Arguments 

NBASE —  The base of the Faure sequence.   (Input) 

Default: The smallest prime number greater than or equal to NDIM. 

NSKIP — The number of points to be skipped at the beginning of the Faure sequence.   

(Input) 

Default: 
/ 2 1m  

 
base , where log logBm    / base  and B is the largest machine 

representable integer.  

FORTRAN 90 Interface 

Generic: CALL FAURE_INIT (NDIM, STATE [,…]) 
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Specific:  The specific interface names are S_FAURE_INIT and D_FAURE_INIT. 

FAURE_FREE 
Frees the structure containing information about the Faure sequence. 

Required Arguments 

STATE  —  An IMSL_FAURE pointer containing the structure created by the call to 

FAURE_INIT.   (Input/Output) 

FORTRAN 90 Interface 

Generic: CALL FAURE_FREE (STATE) 

Specific: The specific interface names are S_FAURE_FREE and D_FAURE_FREE. 

FAURE_NEXT 
Computes a shuffled Faure sequence. 

Required Arguments 

STATE —  An IMSL_FAURE pointer containing the structure created by the call to 

FAURE_INIT.  The structure contains information about the sequence.  The structure 

should be freed using FAURE_FREE after it is no longer needed.   (Input/Output) 

NEXT_PT  —  Vector of length NDIM containing the next point in the shuffled Faure 

sequence, where NDIM is the dimension of the hyper-rectangle specified in 

FAURE_INIT.      (Output)  

Optional Arguments 

IMSL_RETURN_SKIP — Returns the current point in the sequence. The sequence can be 

restarted by calling FAURE_INIT using this value for NSKIP, and using the same value 

for NDIM.   (Input) 

FORTRAN 90 Interface 

Generic: CALL FAURE_NEXT (STATE, NEXT_PT [,…]) 

Specific:  The specific interface names are S_FAURE_NEXT and D_FAURE_NEXT. 

Description 

The routines FAURE_INIT and FAURE_NEXT are used to generate shuffled Faure sequence of low 

discrepancy n-dimensional points. Low discrepency series fill an n-dimensional cube more 
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uniformly than psuedo-random sequences, and are used in multivariate quadrature, simulation, and 

global optimization.  Because of this uniformity, use of low discrepency series is generally more 

effiicient than psuedo-random series for multivariate Monte Carlo methods.  See the IMSL routine 

QMC (Chapter 4, Integration and Differentiation) for a discussion of quasi-Monte Carlo quadrature 

based on low discrepancy series. 

Discrepancy measures the deviation from uniformity of a point set.  

The discrepancy of the point set  1,..., 0,1 , 1
d

nx x d  , is defined 

 

   
 

;
sup ,

E

A E nd
D E

n n
 

 

where the supremum is over all subsets of [0, 1]
d
 of the form 

 
1

0, 0 0 1, 1... , ,
d jE t t t j d       ,  

λ is the Lebesque measure, and  ;A E n  is the number of the xj contained in E.  

The sequence x1, x2, … of points [0,1]
d
 is a low-discrepancy sequence if there exists a constant 

c(d), depending only on d, such that  

 
 

 log
d

nd
D c d

n n


 

for all n>1. 

Generalized Faure sequences can be defined for any prime base b≥d. The lowest bound for the 

discrepancy is obtained for the smallest prime b≥d, so the optional argument NBASE defaults to 

the smallest prime greater than or equal to the dimension. 

The generalized Faure sequence x1, x2, …, is computed as follows:  

Write the positive integer n in its b-ary expansion,  

0

( ) i
i

i

n a n b





 

where ai(n) are integers,  0 ia n b  . 

The j-th coordinate of xn is 

( )( ) 1

0 0
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The generator matrix for the series, 
( )j

c
k d

,  is defined to be 

( )j d k
k dk dc j c

 

and k dc  is an element of the Pascal matrix, 

 
!

! !

0

k d

d
k d

c d cc

k d




 
   

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence itself. It can 

be shown that this shuffling preserves the low-discrepancy property. 

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer n into the 

integer given by its b-ary expansion. 

The sequence computed by this function is x(G(n)), where x is the generalized Faure sequence. 

Example  

In this example, five points in the Faure sequence are computed. The points are in the three-

dimensional unit cube. 

Note that FAURE_INIT is used to create a structure that holds the state of the sequence. Each call 

to FAURE_NEXT returns the next point in the sequence and updates the IMSL_FAURE structure. The 

final call to FAURE_FREE frees data items, stored in the structure, that were allocated by 

FAURE_INIT. 
 

        use faure_int 

        implicit none 

        type (s_imsl_faure), pointer  :: state 

        real(kind(1e0))          :: x(3) 

        integer,parameter :: ndim=3 

        integer           :: k 

!                                  CREATE THE STRUCTURE THAT HOLDS 

!                                  THE STATE OF THE SEQUENCE. 

        call faure_init(ndim, state) 

!                                  GET THE NEXT POINT IN THE SEQUENCE 

        do k=1,5 

           call faure_next(state, x) 

           write(*,'(3F15.3)') x(1), x(2) , x(3) 

        enddo 

!                                   FREE DATA ITEMS STORED IN 

!                                   state STRUCTURE 

        call faure_free(state) 

                     end  

Output 
 

      0.334          0.493          0.064 

      0.667          0.826          0.397 

      0.778          0.270          0.175 
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      0.111          0.604          0.509 

      0.445          0.937          0.842 

IUMAG 
This routine handles MATH/LIBRARY and STAT/LIBRARY type INTEGER options. 

Required Arguments 

PRODNM — Product name. Use either ―MATH‖ or ―STAT.‖    (Input) 

ICHP — Chapter number of the routine that uses the options.   (Input) 

IACT — 1 if user desires to ―get‖ or read options, or 2 if user desires to ―put‖ or write 

options.   (Input) 

NUMOPT — Size of IOPTS.   (Input) 

IOPTS — Integer array of size NUMOPT containing the option numbers to ―get‖ or ―put.‖    

(Input) 

IVALS — Integer array containing the option values. These values are arrays corresponding 

to the individual options in IOPTS in sequential order. The size of IVALS is the sum of 

the sizes of the individual options.   (Input/Output) 

FORTRAN 90 Interface 

Generic: CALL IUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, IVALS) 

Specific:  The specific interface name is IUMAG. 

FORTRAN 77 Interface 

Single: CALL IUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, IVALS) 

Description 

The Options Manager routine IUMAG reads or writes INTEGER data for some MATH/LIBRARY 

and STAT/LIBRARY codes. See Atchison and Hanson (1991) for more complete details. 

There are MATH/LIBRARY routines in Chapters 1, 2, and 5 that now use IUMAG to communicate 

optional data from the user. 

Comments 

1. Users can normally avoid reading about options when first using a routine that calls 

IUMAG. 
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2. Let I be any value between 1 and NUMOPT. A negative value of IOPTS(I) refers to 

option number −IOPTS(I) but with a different effect: For a ―get‖ operation, the default 

values are returned in IVALS. For a ―put‖ operation, the default values replace the 

current values. In the case of a ―put,‖ entries of IVALS are not allocated by the user and 

are not used by IUMAG. 

3. Both positive and negative values of IOPTS can be used. 

4. INTEGER Options 

1 If the value is positive, print the next activity for any library routine that uses the 

Options Manager codes IUMAG, SUMAG, or DUMAG. Each printing step 

decrements the value if it is positive.  

Default value is 0. 

2 If the value is 2, perform error checking in IUMAG, SUMAG , and DUMAG such as 

the verifying of valid option numbers and the validity of input data. If the value 

is 1, do not perform error checking.  

Default value is 2. 

3 This value is used for testing the installation of IUMAG by other IMSL software.  

Default value is 3. 

Example 

The number of iterations allowed for the constrained least squares solver LCLSQ that calls L2LSQ 

is changed from the default value of max(nra, nca) to the value 6. The default value is restored 

after the call to LCLSQ. This change has no effect on the solution. It is used only for illustration. 

The first two arguments required for the call to IUMAG are defined by the product name, ―MATH,‖ 

and chapter number, 1, where LCLSQ is documented. The argument IACT denotes a write or ―put‖ 

operation. There is one option to change so NUMOPT has the value 1. The arguments for the option 

number, 14, and the new value, 6, are defined by reading the documentation for LCLSQ. 
 

      USE IUMAG_INT 

      USE LCLSQ_INT 

      USE UMACH_INT 

      USE SNRM2_INT 

 

      IMPLICIT     NONE 

! 

!     Solve the following in the least squares sense: 

!           3x1 + 2x2 +  x3 = 3.3 

!           4x1 + 2x2 +  x3 = 2.3 

!           2x1 + 2x2 +  x3 = 1.3 

!            x1 +  x2 +  x3 = 1.0 

! 

!     Subject to:  x1 + x2 + x3 <= 1 

!                  0 <= x1 <= .5 

!                  0 <= x2 <= .5 

!                  0 <= x3 <= .5 

! 

! ---------------------------------------------------------------------- 
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!                                 Declaration of variables 

! 

      INTEGER    ICHP, IPUT, LDA, LDC, MCON, NCA, NEWMAX, NRA, NUMOPT 

      PARAMETER  (ICHP=1, IPUT=2, MCON=1, NCA=3, NEWMAX=14, NRA=4, & 

                NUMOPT=1, LDA=NRA, LDC=MCON) 

! 

      INTEGER    IOPT(1), IRTYPE(MCON), IVAL(1), NOUT 

      REAL       A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA), & 

                RESNRM, XLB(NCA), XSOL(NCA), XUB(NCA) 

!                                 Data initialization 

! 

      DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, 2.0E0, 2.0E0, 1.0E0, & 

          1.0E0, 1.0E0, 1.0E0, 1.0E0/, B/3.3E0, 2.3E0, 1.3E0, 1.0E0/, & 

          C/3*1.0E0/, BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/ 

! ---------------------------------------------------------------------- 

! 

!                                 Reset the maximum number of 

 

!                                 iterations to use in the solver. 

!                                 The value 14 is the option number. 

!                                 The value 6 is the new maximum. 

      IOPT(1) = NEWMAX 

      IVAL(1) = 6 

      CALL IUMAG ('math', ICHP, IPUT, NUMOPT, IOPT, IVAL) 

!                                 ------------------------------------- 

!                                 --------------------------------- 

! 

!                                 Solve the bounded, constrained 

!                                 least squares problem. 

! 

      CALL LCLSQ (A, B, C, BC, B, IRTYPE, XLB, XUB, XSOL, RES=RES) 

 

!                                 Compute the 2-norm of the residuals. 

      RESNRM = SNRM2(NRA,RES,1) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) XSOL, RES, RESNRM 

!                                 ------------------------------------- 

!                                 --------------------------------- 

!                                 Reset the maximum number of 

!                                 iterations to its default value. 

!                                 This is not required but is 

!                                 recommended programming practice. 

      IOPT(1) = -IOPT(1) 

      CALL IUMAG ('math', ICHP, IPUT, NUMOPT, IOPT, IVAL) 

!                                 ------------------------------------- 

!                                 --------------------------------- 

! 

99999 FORMAT ('  The solution is ', 3F9.4, //, '  The residuals ', & 

             'evaluated at the solution are ', /, 18X, 4F9.4, //, & 

             '  The norm of the residual vector is ', F8.4) 

! 

      END 
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Output 
 

  The solution is    0.5000   0.3000   0.2000 

 

  The residuals evaluated at the solution are  

                    -1.0000   0.5000   0.5000   0.0000 

 

  The norm of the residual vector is   1.2247 

UMAG 
This routine handles MATH/LIBRARY and STAT/LIBRARY type REAL and double precision 

options. 

Required Arguments 

PRODNM — Product name. Use either ―MATH‖ or ―STAT.‖    (Input) 

ICHP — Chapter number of the routine that uses the options.   (Input) 

IACT — 1 if user desires to ―get‖ or read options, or 2 if user desires to ―put‖ or write 

options.   (Input) 

IOPTS — Integer array of size NUMOPT containing the option numbers to ―get‖ or ―put.‖    

(Input) 

SVALS — Array containing the option values. These values are arrays corresponding to the 

individual options in IOPTS in sequential order. The size of SVALS is the sum of the 

sizes of the individual options.   (Input/Output) 

Optional Arguments 

NUMOPT — Size of IOPTS.   (Input) 

Default: NUMOPT = SIZE (IOPTS,1). 

FORTRAN 90 Interface 

Generic: CALL UMAG (PRODNM, ICHP, IACT, IOPTS, SVALS [,…]) 

Specific:  The specific interface names are S_UMAG and D_UMAG. 

FORTRAN 77 Interface 

Single: CALL SUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, SVALS) 

Double: The double precision name is DUMAG. 
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Description 

The Options Manager routine SUMAG reads or writes REAL data for some MATH/LIBRARY and 

STAT/LIBRARY codes. See Atchison and Hanson (1991) for more complete details. There are 

MATH/LIBRARY routines in Chapters 1 and 5 that now use SUMAG to communicate optional data 

from the user. 

Comments 

1. Users can normally avoid reading about options when first using a routine that calls 

SUMAG. 

2. Let I be any value between 1 and NUMOPT. A negative value of IOPTS(I) refers to 

option number −IOPTS(I) but with a different effect: For a ―get‖ operation, the default 

values are returned in SVALS. For a ―put‖ operation, the default values replace the 

current values. In the case of a ―put,‖ entries of SVALS are not allocated by the user and 

are not used by SUMAG. 

3. Both positive and negative values of IOPTS can be used. 

4. Floating Point Options 

1 This value is used for testing the installation of SUMAG by other IMSL software.  

Default value is 3.0E0. 

Example 

The rank determination tolerance for the constrained least squares solver LCLSQ that calls L2LSQ 

is changed from the default value of SQRT(AMACH(4)) to the value 0.01. The default value is 

restored after the call to LCLSQ. This change has no effect on the solution. It is used only for 

illustration. The first two arguments required for the call to SUMAG are defined by the product 

name, ―MATH,‖ and chapter number, 1, where LCLSQ is documented. The argument IACT 

denotes a write or ―put‖ operation. There is one option to change so NUMOPT has the value 1. The 

arguments for the option number, 2, and the new value, 0.01E+0, are defined by reading the 

documentation for LCLSQ. 
 

      USE UMAG_INT 

      USE LCLSQ_INT 

      USE UMACH_INT 

      USE SNRM2_INT 

 

      IMPLICIT     NONE 

! 

!     Solve the following in the least squares sense: 

!           3x1 + 2x2 +  x3 = 3.3 

!           4x1 + 2x2 +  x3 = 2.3 

!           2x1 + 2x2 +  x3 = 1.3 

!            x1 +  x2 +  x3 = 1.0 

! 

!     Subject to:  x1 + x2 + x3 <= 1 

!                  0 <= x1 <= .5 
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!                  0 <= x2 <= .5 

!                  0 <= x3 <= .5 

! 

! ---------------------------------------------------------------------- 

!                                 Declaration of variables 

! 

      INTEGER    ICHP, IPUT, LDA, LDC, MCON, NCA, NEWTOL, NRA, NUMOPT 

      PARAMETER  (ICHP=1, IPUT=2, MCON=1, NCA=3, NEWTOL=2, NRA=4, & 

                NUMOPT=1, LDA=NRA, LDC=MCON) 

! 

      INTEGER    IOPT(1), IRTYPE(MCON), NOUT 

      REAL       A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA), & 

                RESNRM, SVAL(1), XLB(NCA), XSOL(NCA), XUB(NCA) 

!                                 Data initialization 

! 

      DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, 2.0E0, 2.0E0, 1.0E0, & 

          1.0E0, 1.0E0, 1.0E0, 1.0E0/, B/3.3E0, 2.3E0, 1.3E0, 1.0E0/, & 

          C/3*1.0E0/, BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/ 

! ---------------------------------------------------------------------- 

! 

!                                 Reset the rank determination 

!                                 tolerance used in the solver. 

!                                 The value 2 is the option number. 

!                                 The value 0.01 is the new tolerance. 

! 

      IOPT(1) = NEWTOL 

      SVAL(1) = 0.01E+0 

      CALL UMAG ('math', ICHP, IPUT, IOPT, SVAL) 

!                                 ------------------------------------- 

!                                 --------------------------------- 

! 

!                                 Solve the bounded, constrained 

!                                 least squares problem. 

! 

      CALL LCLSQ (A, B, C, BC, BC, IRTYPE, XLB, XUB, XSOL, RES=RES) 

!                                 Compute the 2-norm of the residuals. 

      RESNRM = SNRM2(NRA,RES,1) 

!                                 Print results 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT,99999) XSOL, RES, RESNRM 

!                                 ------------------------------------- 

!                                 --------------------------------- 

 

!                                 Reset the rank determination 

!                                 tolerance to its default value. 

!                                 This is not required but is 

!                                 recommended programming practice. 

      IOPT(1) = -IOPT(1) 

      CALL UMAG ('math', ICHP, IPUT, IOPT, SVAL) 

!                                 ------------------------------------- 

!                                 --------------------------------- 

! 

99999 FORMAT ('  The solution is ', 3F9.4, //, '  The residuals ', & 

            'evaluated at the solution are ', /, 18X, 4F9.4, //, & 

            '  The norm of the residual vector is ', F8.4) 

! 

      END 
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Output 
 

  The solution is    0.5000   0.3000   0.2000 

 

  The residuals evaluated at the solution are  

                    -1.0000   0.5000   0.5000   0.0000 

 

  The norm of the residual vector is   1.2247 

DUMAG 
See UMAG.  

PLOTP 
Prints a plot of up to 10 sets of points. 

Required Arguments 

X — Vector of length NDATA containing the values of the independent variable.   (Input) 

A — Matrix of dimension NDATA by NFUN containing the NFUN sets of dependent variable 

values.   (Input) 

SYMBOL — CHARACTER string of length NFUN.   (Input)  

SYMBOL(I : I) is the symbol used to plot function I. 

XTITLE — CHARACTER string used to label the x-axis.   (Input) 

YTITLE — CHARACTER string used to label the y-axis.   (Input) 

TITLE — CHARACTER string used to label the plot.   (Input) 

Optional Arguments 

NDATA — Number of independent variable data points.   (Input) 

Default: NDATA = SIZE (X,1). 

NFUN — Number of sets of points.   (Input)  

NFUN must be less than or equal to 10. 

Default: NFUN = SIZE (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 

program.   (Input) 

Default: LDA = SIZE (A,1). 
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INC — Increment between elements of the data to be used.   (Input)  

PLOTP plots X(1 + (I − 1) * INC) for I = 1, 2, …, NDATA. 

Default: INC = 1. 

RANGE — Vector of length four specifying minimum x, maximum x, minimum y and 

maximum y.   (Input)  

PLOTP will calculate the range of the axis if the minimum and maximum of that range 

are equal. 

Default: RANGE = 1.e0. 

FORTRAN 90 Interface 

Generic: CALL PLOTP (X, A, SYMBOL, XTITLE, YTITLE, TITLE [,…]) 

Specific:  The specific interface names are S_PLOTP and D_PLOTP. 

FORTRAN 77 Interface 

Single: CALL PLOTP (NDATA, NFUN, X, A, LDA, INC, RANGE, SYMBOL, XTITLE, YTITLE, 
TITLE) 

Double: The double precision name is DPLOTP. 

Description 

Routine PLOTP produces a line printer plot of up to ten sets of points superimposed upon the same 

plot. A character ―M‖ is printed to indicate multiple points. The user may specify the x and y-axis 

plot ranges and plotting symbols. Plot width and length may be reset in advance by calling PGOPT. 

Comments 

1. Informational errors 

Type Code 

3 7 NFUN is greater than 10. Only the first 10 functions are plotted. 

3 8 TITLE is too long. TITLE is truncated from the right side. 

3 9 YTITLE is too long. YTITLE is truncated from the right side. 

3 10 XTITLE is too long. XTITLE is truncated from the right side. The 

maximum number of characters allowed depends on the page width 

and the page length. See Comment 5 below for more information. 

2. YTITLE and TITLE are automatically centered. 

3. For multiple plots, the character M is used if the same print position is shared by two or 

more data sets. 

4. Output is written to the unit specified by UMACH (see Reference Material). 
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5. Default page width is 78 and default page length is 60. They may be changed by 

calling PGOPT in advance. 

Example 

This example plots the sine and cosine functions from − 3.5 to + 3.5 and sets page width and 

length to 78 and 40, respectively, by calling PGOPT in advance. 
 

      USE PLOTP_INT 

      USE CONST_INT 

      USE PGOPT_INT 

 

      IMPLICIT   NONE 

      INTEGER    I, IPAGE 

      REAL       A(200,2), DELX, PI, RANGE(4), X(200) 

      CHARACTER  SYMBOL*2 

      INTRINSIC  COS, SIN 

! 

      DATA SYMBOL/'SC'/ 

      DATA RANGE/-3.5, 3.5, -1.2, 1.2/ 

! 

      PI     = 3.14159 

      DELX   = 2.*PI/199. 

      DO 10  I= 1, 200 

         X(I)   = -PI + FLOAT(I-1) * DELX 

         A(I,1) = SIN(X(I)) 

         A(I,2) = COS(X(I)) 

   10 CONTINUE 

!                                 Set page width and length 

      IPAGE = 78 

      CALL PGOPT (-1, IPAGE) 

      IPAGE = 40 

      CALL PGOPT (-2, IPAGE) 

      CALL PLOTP (X, A, SYMBOL, 'X AXIS', 'Y AXIS', ' C = COS,   S = SIN', & 

      RANGE=RANGE) 

! 

      END 

Output 
 

                          C = COS,   S = SIN 

 

          1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+:::: 

              .                           I                           . 

              .                           I                           . 

              .                        CCCCCCC     SSSSSSSS           . 

              .                       CC  I  CC   SS      SS          . 

         0.8 +                      C    I    C SS        SS         + 

              .                     C     I     MS          SS        . 

              .                    C      I    SSC           SS       . 

              .                   CC      I   SS CC           SS      . 

              .                  CC       I   S   CC           S      . 

         0.4 +                  C        I  S     C            S     + 

              .                 C         I SS      C           SS    . 
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 Y            .                CC         I S       CC           S    . 

              .                C          IS         C            S   . 

 A            .               C           SS          C           SS  . 

 X        0.0 +--S-----------CC-----------S-----------CC-----------S--+ 

 I            .  SS         CC           SS            CC             . 

 S            .   S         C            SI             C             . 

              .    S       CC           S I             CC            . 

              .    SS      C           SS I              C            . 

         -0.4 +     S     C            S  I               C           + 

              .      S   CC           S   I               CC          . 

              .      SS CC           SS   I                CC         . 

              .       SSC           SS    I                 C         . 

              .        MS          SS     I                  C        . 

         -0.8 +       C SS        SS      I                   C       + 

              .     CC   SS      SS       I                    CC     . 

              .  CCCC     SSSSSSSS        I                     CCCC  . 

              .  C                        I                        C  . 

              .                           I                           . 

         -1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+:::: 

                 -3              -1               1               3 

 

                                       X AXIS 

PRIME 
Decomposes an integer into its prime factors. 

Required Arguments 

N — Integer to be decomposed.   (Input) 

NPF — Number of different prime factors of ABS(N).   (Output)  

If N is equal to −1, 0, or 1, NPF is set to 0. 

IPF — Integer vector of length 13.   (Output)  

IPF(I) contains the prime factors of the absolute value of N, for I = 1, …, NPF. The 

remaining 13 − NPF locations are not used. 

IEXP — Integer vector of length 13.   (Output)  

IEXP(I) is the exponent of IPF(I), for I = 1, …, NPF. The remaining 13 − NPF 

locations are not used. 

IPW — Integer vector of length 13.   (Output)  

IPW(I) contains the quantity IPF(I)**IEXP(I), for I = 1, …, NPF. The remaining  

13 − NPF locations are not used. 

FORTRAN 90 Interface 

Generic: CALL PRIME (N, NPF, IPF, IPW) 

Specific:  The specific interface name is PRIME. 
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FORTRAN 77 Interface 

Single: CALL PRIME (N, NPF, IPF, IEXP, IPW) 

Description 

Routine PRIME decomposes an integer into its prime factors. The number to be factored, N, may 

not have more than 13 distinct factors. The smallest number with more than 13 factors is about  

1.3 × 10
16

. Most computers do not allow integers of this size. 

The routine PRIME is based on a routine by Brenner (1973). 

Comments 

The output from PRIME should be interpreted in the following way:  

ABS(N) = IPF(1)**IEXP(1) * …. * IPF(NPF)**IEXP(NPF). 

Example 

This example factors the integer 144 = 2
4
3

2
. 

 

      USE PRIME_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    N 

      PARAMETER  (N=144) 

! 

      INTEGER    IEXP(13), IPF(13), IPW(13), NOUT, NPF 

!                                 Get prime factors of 144 

      CALL PRIME (N, NPF, IPF, IEXP, IPW) 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Print results 

      WRITE (NOUT,99999) N, IPF(1), IPF(2), IEXP(1), IEXP(2), IPW(1), & 

                       IPW(2), NPF 

! 

99999 FORMAT ('  The prime factors for', I5, ' are: ', /, 10X, 2I6, // & 

             '  IEXP =', 2I6, /, '  IPW  =', 2I6, /, '  NPF  =', I6, /) 

      END 

Output 
 

  The prime factors for  144 are:  

               2     3 

 

  IEXP =     4     2 

  IPW  =    16     9 

  NPF  =     2 
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CONST 
This function returns the value of various mathematical and physical constants. 

Function Return Value 

CONST — Value of the constant.   (Output) 

See Comment 1.  

Required Arguments 

NAME — Character string containing the name of the desired constant.   (Input)  

See Comment 3 for a list of valid constants. 

FORTRAN 90 Interface 

Generic: CONST (NAME) 

Specific:  The specific interface names are S_CONST and D_CONST. 

FORTRAN 77 Interface 

Single: CONST (NAME) 

Double: The double precision name is DCONST. 

Description 

Routine CONST returns the value of various mathematical and physical quantities. For all of the 

physical values, the Systeme International d‘Unites (SI) are used. 

The reference for constants are indicated by the code in [ ] Comment above. 

[1] Cohen and Taylor (1986) 

[2] Liepman (1964) 

[3] Precomputed mathematical constants 

The constants marked with an E before the [ ] are exact (to machine precision). 

To change the units of the values returned by CONST, see CUNIT. 

Comments 

1. If the generic version of this function is used, the immediate result must be stored in a 

variable before use in an expression. For example: 

X = CONST(‗PI‘) 

Y = COS(x) 

 must be used rather than 
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Y = COS(CONST(‗PI‘)). 

 If this is too much of a restriction on the programmer, then the specific name can be 

used without this restriction. 

2. The case of the character string in NAME does not matter. The names ―PI‖, ―Pi‖, ―Pi‖, 

and ―pi‖ are equivalent. 

3. The units of the physical constants are in SI units (meter kilogram-second). 

4. The names allowed are as follows: 

Name Description Value Ref. 

AMU Atomic mass unit 1.6605402E − 27 kg [1] 

ATM Standard atm pressure 1.01325E + 5N/m
2
E [2] 

AU Astronomical unit 1.496E + 11m [ ] 

Avogadro Avogadro's number 6.0221367E + 231/mole [1] 

Boltzman Boltzman's constant 1.380658E − 23J/K [1] 

C Speed of light 2.997924580E + 8m/sE [1] 

Catalan Catalan's constant 0.915965 … E [3] 

E Base of natural logs 2.718…E [3] 

    

ElectronCharge Electron change 1.60217733E −19C [1] 

ElectronMass Electron mass 9.1093897E − 31 kg [1] 

ElectronVolt Electron volt 1.60217733E − 19J [1] 

Euler Euler's constant gamma 0.577 … E [3] 

Faraday Faraday constant 9.6485309E + 4C/mole [1] 

FineStructure fine structure 7.29735308E − 3 [1] 

Gamma Euler's constant 0.577 … E [3] 

Gas Gas constant 8.314510J/mole/k [1] 

Gravity Gravitational constant 6.67259E − 11N * m
2
/kg

2
 [1] 

Hbar Planck constant / 2 pi 1.05457266E − 34J * s [1] 

PerfectGasVolume Std vol ideal gas 2.241383E − 2m
3
/mole [*] 

Pi Pi 3.141 … E [3] 

Planck Planck's constant h 6.6260755E − 34J * s [1] 

ProtonMass Proton mass 1.6726231E − 27 kg [1] 

Rydberg Rydberg's constant 1.0973731534E + 7/m [1] 

SpeedLight Speed of light 2.997924580E + 8m/s E [1] 

StandardGravity Standard g 9.80665m/s
2
E [2] 
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Name Description Value Ref. 

StandardPressure Standard atm pressure 1.01325E + 5N/m
2
E [2] 

StefanBoltzmann Stefan-Boltzman 5.67051E − 8W/K
4
/m

2
 [1] 

WaterTriple Triple point of water 2.7316E + 2K E [2] 

Example 

In this example, Euler‘s constant γ is obtained and printed. Euler‘s constant is defined to be 

1

1

1
lim ln

n

n
k

n
k







 
  

 


 
 

      USE CONST_INT 

      USE UMACH_INT 

 

      IMPLICIT   NONE 

      INTEGER    NOUT 

      REAL       GAMA 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Get gamma 

      GAMA = CONST('GAMMA') 

!                                 Print gamma 

      WRITE (NOUT,*) 'GAMMA = ', GAMA 

      END 

Output 
 

GAMMA =  0.5772157 

For another example, see CUNIT. 

CUNIT 
Converts X in units XUNITS to Y in units YUNITS. 

Required Arguments 

X — Value to be converted.   (Input) 

XUNITS — Character string containing the name of the units for X.   (Input)  

See Comments for a description of units allowed. 

Y — Value in YUNITS corresponding to X in XUNITS.   (Output) 

YUNITS — Character string containing the name of the units for Y.   (Input)  

See Comments for a description of units allowed. 
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FORTRAN 90 Interface 

Generic: CALL CUNIT (X, XUNITS, Y, YUNITS [,…]) 

Specific:  The specific interface names are S_CUNIT and D_CUNIT. 

FORTRAN 77 Interface 

Single: CALL CUNIT (X, XUNITS, Y, YUNITS) 

Double: The double precision name is DCUNIT. 

Description 

Routine CUNIT converts a value expressed in one set of units to a value expressed in another set of 

units. 

The input and output units are checked for consistency unless the input unit is ―SI‖. SI means the 

Systeme International d‘Unites. This is the meter−kilogram−second form of the metric system. If 

the input units are ―SI‖, then the input is assumed to be expressed in the SI units consistent with 

the output units. 

Comments 

1. Strings XUNITS and YUNITS have the form U1 * U2 * … * Um/V1 … Vn, where Ui and Vi 

are the names of basic units or are the names of basic units raised to a power. Examples 

are, ―METER * KILOGRAM/SECOND‖, ―M * KG/S‖, ―METER‖, or ―M/KG
2
‖. 

2. The case of the character string in XUNITS and YUNITS does not matter. The names 

―METER‖, ―Meter‖ and ―meter‖ are equivalent. 

3. If XUNITS is ―SI‖, then X is assumed to be in the standard  

international units corresponding to YUNITS. Similarly, if YUNITS is ―SI‖, then Y is 

assumed to be in the standard international units corresponding to XUNITS. 

4. The basic unit names allowed are as follows: 

Units of time 

day, hour = hr, min = minute, s = sec = second, year 

Units of frequency 

Hertz = Hz 

Units of mass 

AMU, g = gram, lb = pound, ounce = oz, slug 
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Units of distance 

Angstrom, AU, feet = foot = ft, in = inch, m = meter = metre, micron, 

mile, mill, parsec, yard 

Units of area 

acre 

Units of volume 

l = liter = litre 

Units of force 

dyne, N = Newton, poundal 

Units of energy 

BTU(thermochemical), Erg, J = Joule 

Units of work 

W = watt 

Units of pressure 

ATM = atomosphere, bar, Pascal 

Units of temperature 

degC = Celsius, degF = Fahrenheit, degK = Kelvin 

Units of viscosity 

poise, stoke 

Units of charge 

Abcoulomb, C = Coulomb, statcoulomb 

Units of current 

A = ampere, abampere, statampere, 

Units of voltage 

Abvolt, V = volt 

Units of magnetic induction 

T = Tesla, Wb = Weber 

Other units 

1, farad, mole, Gauss, Henry, Maxwell, Ohm 

The following metric prefixes may be used with the above units. Note that the one or two letter 

prefixes may only be used with one letter unit abbreviations. 

A Atto 1.E − 18 

F Femto 1.E − 15 

P Pico 1.E − 12 

N Nano 1.E − 9 
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U Micro 1.E − 6 

M Milli 1.E − 3 

C Centi 1.E − 2 

D Deci 1.E − 1 

DK Deca 1.E + 2 

K Kilo 1.E + 3 

 Myriad 1.E + 4 (no single letter prefix; M means milli 

 Mega 1.E + 6 (no single letter prefix; M means milli 

G Giga 1.E + 9 

T Tera 1.E + 12 

5. Informational error 

Type Code 

3 8 A conversion of units of mass to units of force was required for 

consistency. 

Example 

The routine CONST is used to obtain the speed on light, c, in SI units. CUNIT is then used to 

convert c to mile/second and to parsec/year. An example involving substitution of force for mass 

is required in conversion of Newtons/Meter
2
 to Pound/Inch

2
. 

 

      USE CONST_INT 

      USE CUNIT_INT 

      USE UMACH_INT 

 

      IMPLICIT    NONE 

      INTEGER    NOUT 

      REAL       CMH, CMS, CPY, CPSI 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Get speed of light in SI (m/s) 

      CMS = CONST('SpeedLight') 

      WRITE (NOUT,*) 'Speed of Light = ', CMS, ' meter/second' 

!                                 Get speed of light in mile/second 

      CALL CUNIT (CMS, 'SI', CMH, 'Mile/Second') 

      WRITE (NOUT,*) 'Speed of Light = ', CMH, ' mile/second' 

!                                 Get speed of light in parsec/year 

      CALL CUNIT (CMS, 'SI', CPY, 'Parsec/Year') 

      WRITE (NOUT,*) 'Speed of Light = ', CPY, ' Parsec/Year' 

!                                 Convert Newton/Meter**2 to 

!                                 Pound/Inch**2. 

      CALL CUNIT(1.E0, 'Newton/Meter**2', CPSI, & 

                      'Pound/Inch**2') 

      WRITE(NOUT,*)' Atmospheres, in Pound/Inch**2 = ',CPSI 

      END 

Output 
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Speed of Light =  299792440.0  meter/second 

Speed of Light =  186282.39  mile/second 

Speed of Light =  0.3063872  Parsec/Year 

 

*** WARNING  ERROR 8 from CUNIT.  A conversion of units of mass to units of 

***          force was required for consistency. 

Atmospheres, in Pound/Inch**2 =  1.4503773E-4 

HYPOT 
This functions computes SQRT(A**2 + B**2) without underflow or overflow. 

Function Return Value 

HYPOT — SQRT(A**2 + B**2).   (Output) 

Required Arguments 

A — First parameter.   (Input) 

B — Second parameter.   (Input) 

FORTRAN 90 Interface 

Generic: HYPOT (A, B) 

Specific: The specific interface names are S_HYPOT and D_HYPOT. 

FORTRAN 77 Interface 

Single: HYPOT (A, B) 

Double: The double precision name is DHYPOT. 

Description 

Routine HYPOT is based on the routine PYTHAG, used in EISPACK 3. This is an update of the work 

documented in Garbow et al. (1972). 

Example 

Computes  

2 2c a b   

where a = 10
20

 and b = 2 × 10
20

 without overflow. 
 

      USE HYPOT_INT 

      USE UMACH_INT 

 

      IMPLICIT    NONE 



     

     
 

1926  Chapter 11: Utilities IMSL MATH LIBRARY  

     

     

 

!                                 Declare variables 

      INTEGER    NOUT 

      REAL       A, B, C 

! 

      A = 1.0E+20 

      B = 2.0E+20 

      C = HYPOT(A,B) 

!                                 Get output unit number 

      CALL UMACH (2, NOUT) 

!                                 Print the results 

      WRITE (NOUT,'(A,1PE10.4)') ' C = ', C 

      END 

Output 
 

C = 2.2361E+20 

MP_SETUP 

 

Initializes or finalizes MPI. 

Function Return Value 

Number of nodes, MP_NPROCS, in the communicator, MP_LIBRARY_WORLD.  (Output) 

Returned when MP_SETUP is called with no arguments:  

MP_NPROCS = MP_SETUP(). 

Required Argument 

None.  

Optional Arguments 

NOTE  —  Character string ‗Final‘. (Input) 

With ‗Final‘ all pending error messages are sent from the nodes to the root and 

printed.  If any node should STOP after printing messages, then MPI_Finalize() and 

a STOP are executed.  Otherwise, only MPI_Finalize()is called. The character 

string ‗Final‘ is the only valid string for this argument. 

N — Size of array to be allocated for timing. (Input) 

When this argument is supplied, the array MPI_NODE_PRIORITY is allocated with 

MP_PROCS components.  The matrix products A .x. B are timed individually at each 

node of the machine.  The elapsed time is noted and sorted to determine the node 

priority order.  A and B are allocated to size N by N, and initialized with random data.  

The priority order is finally broadcast to the other nodes. 
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FORTRAN 90 Interface 

MP_SETUP ( [,…]) 

Description 

Following a call to the function MP_SETUP(), the module MPI_node_int will contain 

information about the number of processors, the rank of a processor, the communicator for  

IMSL Fortran Numerical Library, and the usage priority order of the node machines: 

MODULE MPI_NODE_INT 

  INTEGER, ALLOCATABLE :: MPI_NODE_PRIORITY(:) 

  INTEGER, SAVE :: MP_LIBRARY_WORLD = huge(1) 

  LOGICAL, SAVE :: MPI_ROOT_WORKS = .TRUE. 

  INTEGER, SAVE :: MP_RANK = 0, MP_NPROCS = 1 

END MODULE 

When the function MP_SETUP() is called with no arguments, the following events occur: 

 If MPI has not been initialized, it is first initialized.  This step uses the routines 

MPI_Initialized() and possibly MPI_Init(). Users who choose not to call MP_SETUP() 

must make the required initialization call before using any IMSL Fortran Numerical Library 

code that relies on MPI for its execution. If the user‘s code calls an IMSL Fortran Numerical 

Library function utilizing the box data type and MPI has not been initialized, then the 

computations are performed on the root node. The only MPI routine always called in this 

context is MPI_Initialized().  The name MP_SETUP is pushed onto the subprogram or 

call stack. 

  If MP_LIBRARY_WORLD equals its initial value (=huge(1)) then MPI_COMM_WORLD, the 

default MPI communicator, is duplicated  and becomes its handle.  This uses the routine 

MPI_Comm_dup(). Users can change the handle of MP_LIBRARY_WORLD as required by 

their application code.  Often this issue can be ignored. 

 The integers MP_RANK and MP_NPROCS are respectively the node‘s rank and the number of 

nodes in the communicator, MP_LIBRARY_WORLD.  Their values require the routines 

MPI_Comm_size() and MPI_Comm_rank(). The default values are important when MPI is 

not initialized and a box data type is computed.   In this case the root node is the only node 

and it will do all the work.  No calls to MPI communication routines are made when 

MP_NPROCS = 1 when computing the box data type functions.  A program can temporarily 

assign this value to force box data type computation entirely at the root node.  This is 

desirable for problems where using many nodes would be less efficient than using the root 

node exclusively. 

 The array MPI_NODE_PRIORITY(:) is not allocated unless the user allocates it. The IMSL 

Fortran Numerical Library codes use this array for assigning tasks to processors, if it is 

allocated.  If it is not allocated, the default priority of the nodes is  

(0,1,...,MP_NPROCS-1).  Use of the function call MP_SETUP(N) allocates the array, as 

explained below. Once the array is allocated its size is MP_NPROCS. The contents of the array 

is a permutation of the integers 0,...,MP_NPROCS-1. Nodes appearing at the start of the list 

are used first for parallel computing.  A node other than the root can avoid any computing, 

except receiving the schedule, by setting the value MPI_NODE_PRIORITY(I) < 0. This 
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means that node |MPI_NODE_PRIORITY(I)| will be sent the task schedule but will not 

perform any significant work as part of box data type function evaluations. 

 The LOGICAL flag MPI_ROOT_WORKS designates whether or not the root node participates in 

the major computation of the tasks.  The root node communicates with the other nodes to 

complete the tasks but can be designated to do no other work.  Since there may be only one 

processor, this flag has the default value .TRUE., assuring that one node exists to do work.  

When more than one processor is available users can consider assigning 

MPI_ROOT_WORKS=.FALSE. This is desirable when the alternate nodes have equal or greater 

computational resources compared with the root node.  Parallel Example 4 illustrates this 

usage.  A single problem is given a box data type, with one rack.  The computing is done at 

the node, other than the root, with highest priority.  This example requires more than one 

processor since the root does no work.  

When the generic function MP_SETUP(N) is called, where N is a positive integer, a call to 

MP_SETUP() is first made, using no argument.  Use just one of these calls to MP_SETUP().  This 

initializes the MPI system and the other parameters described above.  The array 

MPI_NODE_PRIORITY(:) is allocated with size MP_NPROCS.  Then DOUBLE PRECISION matrix 

products C = AB, where A and B are N by N matrices, are computed at each node and the elapsed 

time is recorded.  These elapsed times are sorted and the contents of MPI_NODE_PRIORITY(:) 

are permuted  in accordance with the shortest times yielding the highest priority.  All the nodes in 

the communicator MP_LIBRARY_WORLD are timed.  The array MPI_NODE_PRIORITY(:) is then 

broadcast from the root to the remaining nodes of MP_LIBRARY_WORLD using the routine 

MPI_Bcast(). Timing matrix products to define the node priority is relevant because the effort 

to compute C is comparable to that of many linear algebra computations of similar size.  Users are 

free to define their own node priority and broadcast the array MPI_NODE_PRIORITY(:) to the 

alternate nodes in the communicator.  

To print any IMSL Fortran Numerical Library error messages that have occurred at any node, and 

to finalize MPI, use the function call MP_SETUP(‗Final‘).  The case of the string ‗Final‘ is 

not important. Any error messages pending will be discarded after printing on the root node.  This 

is triggered by popping the name ‗MP_SETUP‘ from the subprogram stack or returning to Level 1 

in the stack. Users can obtain error messages by popping the stack to Level 1 and still continuing 

with MPI calls.  This requires executing call e1pop (‗MP_SETUP‘). To continue on after 

summarizing errors execute call e1psh (‗MP_SETUP‘). More details about the error 

processor are found in Reference Material chapter of this manual. 

Messages are printed by nodes from largest rank to smallest, which is the root node.  Use of the 

routine MPI_Finalize() is made within MP_SETUP(‗Final‘),  which shuts down MPI.  After 

MPI_Finalize() is called, the value of MP_NPROCS = 0. This flags that MPI has been 

initialized and terminated.  It cannot be initialized again in the same program unit execution.  No 

MPI routine is defined when MP_NPROCS has this value. 

Examples 

Parallel Example (parallel_ex01.f90) 
  

      use linear_operators 

      use mpi_setup_int 

       

      implicit none 
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! This is the equivalent of Parallel Example 1 for .ix., with box data types 

! and functions. 

 

      integer, parameter :: n=32, nr=4 

      real(kind(1e0)) :: one=1e0 

      real(kind(1e0)), dimension(n,n,nr) :: A, b, x, err(nr) 

 

! Setup for MPI. 

      MP_NPROCS=MP_SETUP() 

      

! Generate random matrices for A and b: 

      A = rand(A); b=rand(b) 

 

! Compute the box solution matrix of Ax = b. 

      x = A .ix. b 

 

! Check the results. 

      err = norm(b - (A .x. x))/(norm(A)*norm(x)+norm(b)) 

      if (ALL(err <= sqrt(epsilon(one))) .and. MP_RANK == 0) & 

        write (*,*) 'Parallel Example 1 is correct.' 

 

! See to any error messages and quit MPI. 

      MP_NPROCS=MP_SETUP('Final') 

  

      end  

Parallel Example (parallel_ex04.f90) 

Here an alternate node is used to compute the majority of a single application, and the user does 

not need to make any explicit calls to MPI routines.  The time-consuming parts are the evaluation 

of  the eigenvalue-eigenvector expansion, the solving step, and the residuals.  To do this, the  

rank-2 arrays are changed to a box data type with a unit third dimension.  This uses parallel 

computing.  The node priority order is established by the initial function call, MP_SETUP(n). 

The root is restricted from working on the box data type by assigning 

MPI_ROOT_WORKS=.false. This example anticipates that the most efficient node, other than the 

root, will perform the heavy computing.  Two nodes are required to execute. 
 

      use linear_operators 

      use mpi_setup_int 

 

      implicit none 

 

! This is the equivalent of Parallel Example 4 for matrix exponential. 

! The box dimension has a single rack.        

      integer, parameter :: n=32, k=128, nr=1 

      integer i 

      real(kind(1e0)), parameter :: one=1e0, t_max=one, delta_t=t_max/(k-1) 

      real(kind(1e0)) err(nr), sizes(nr), A(n,n,nr) 

      real(kind(1e0)) t(k), y(n,k,nr), y_prime(n,k,nr) 

      complex(kind(1e0)), dimension(n,nr) :: x(n,n,nr), z_0, & 

        Z_1(n,nr,nr), y_0, d 

 

! Setup for MPI.  Establish a node priority order. 

! Restrict the root from significant computing. 

! Illustrates using the 'best' performing node that 
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! is not the root for a single task. 

      MP_NPROCS=MP_SETUP(n) 

 

      MPI_ROOT_WORKS=.false. 

 

! Generate a random coefficient matrix. 

      A = rand(A) 

 

! Compute the eigenvalue-eigenvector decomposition 

! of the system coefficient matrix on an alternate node. 

      D = EIG(A, W=X) 

 

! Generate a random initial value for the ODE system. 

      y_0 = rand(y_0) 

 

! Solve complex data system that transforms the initial  

! values, X z_0=y_0.   

 

      z_1= X .ix. y_0 ; z_0(:,nr) = z_1(:,nr,nr) 

 

! The grid of points where a solution is computed: 

      t = (/(i*delta_t,i=0,k-1)/) 

 

 

! Compute y and y' at the values t(1:k). 

! With the eigenvalue-eigenvector decomposition AX = XD, this 

! is an evaluation of EXP(A t)y_0 = y(t). 

      y = X .x.exp(spread(d(:,nr),2,k)*spread(t,1,n))*spread(z_0(:,nr),2,k) 

 

! This is y', derived by differentiating y(t). 

      y_prime  = X .x. & 

spread(d(:,nr),2,k)*exp(spread(d(:,nr),2,k)*spread(t,1,n))* & 

                spread(z_0(:,nr),2,k) 

 

! Check results. Is  y' - Ay = 0? 

      err = norm(y_prime-(A .x. y)) 

      sizes=norm(y_prime)+norm(A)*norm(y) 

      if (ALL(err <= sqrt(epsilon(one))*sizes) .and. MP_RANK == 0) & 

        write (*,*) 'Parallel Example 4 is correct.' 

      

! See to any error messages and quit MPI. 

      MP_NPROCS=MP_SETUP('Final') 

       

      end 
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User Errors 
IMSL routines attempt to detect user errors and handle them in a way that provides as much 

information to the user as possible. To do this, we recognize various levels of severity of errors, 

and we also consider the extent of the error in the context of the purpose of the routine; a trivial 

error in one situation may be serious in another. IMSL routines attempt to report as many errors as 

they can reasonably detect. Multiple errors present a difficult problem in error detection because 

input is interpreted in an uncertain context after the first error is detected. 

What Determines Error Severity 

In some cases, the user‘s input may be mathematically correct, but because of limitations of the 

computer arithmetic and of the algorithm used, it is not possible to compute an answer accurately. 

In this case, the assessed degree of accuracy determines the severity of the error. In cases where 

the routine computes several output quantities, if some are not computable but most are, an error 

condition exists. The severity depends on an assessment of the overall impact of the error. 

Terminal errors 

If the user‘s input is regarded as meaningless, such as N = −1 when ―N‖ is the number of equations, 

the routine prints a message giving the value of the erroneous input argument(s) and the reason for 

the erroneous input. The routine will then cause the user‘s program to stop. An error in which the 

user‘s input is meaningless is the most severe error and is called a terminal error. Multiple 

terminal error messages may be printed from a single routine. 

Informational errors 

In many cases, the best way to respond to an error condition is simply to correct the input and 

rerun the program. In other cases, the user may want to take actions in the program itself based on 

errors that occur. An error that may be used as the basis for corrective action within the program is 



     

     
 

1932  Reference Material IMSL MATH LIBRARY  

     

     

 

called an informational error. If an informational error occurs, a user-retrievable code is set. A 

routine can return at most one informational error for a single reference to the routine. The codes 

for the informational error codes are printed in the error messages. 

Other errors 

In addition to informational errors, IMSL routines issue error messages for which no user- 

retrievable code is set. Multiple error messages for this kind of error may be printed. These errors, 

which generally are not described in the documentation, include terminal errors as well as less 

serious errors. Corrective action within the calling program is not possible for these errors. 

Kinds of Errors and Default Actions 

Five levels of severity of errors are defined in the MATH/LIBRARY. Each level has an associated 

PRINT attribute and a STOP attribute. These attributes have default settings (YES or NO), but 

they may also be set by the user. The purpose of having multiple error severity levels is to provide 

independent control of actions to be taken for errors of different severity. Upon return from an 

IMSL routine, exactly one error state exists. (A code 0 ―error‖ is no informational error.) Even if 

more than one informational error occurs, only one message is printed (if the PRINT attribute is 

YES). Multiple errors for which no corrective action within the calling program is reasonable or 

necessary result in the printing of multiple messages (if the PRINT attribute for their severity level 

is YES). Errors of any of the severity levels except level 5 may be informational errors. 

Level 1: Note. A note is issued to indicate the possibility of a trivial error or simply to 

provide information about the computations. Default attributes: PRINT=NO, 

STOP=NO 

Level 2: Alert. An alert indicates that the user should be advised about events occurring 

in the software. Default attributes: PRINT=NO, STOP=NO 

Level 3: Warning. A warning indicates the existence of a condition that may require 

corrective action by the user or calling routine. A warning error may be issued because 

the results are accurate to only a few decimal places, because some of the output may 

be erroneous but most of the output is correct, or because some assumptions underlying 

the analysis technique are violated. Often no corrective action is necessary and the 

condition can be ignored. Default attributes: PRINT=YES, STOP=NO 

Level 4: Fatal.A fatal error indicates the existence of a condition that may be serious. In 

most cases, the user or calling routine must take corrective action to recover. Default 

attributes: PRINT=YES, STOP=YES 

Level 5: Terminal.A terminal error is serious. It usually is the result of an incorrect 

specification, such as specifying a negative number as the number of equations. These 

errors may also be caused by various programming errors impossible to diagnose 

correctly in FORTRAN. The resulting error message may be perplexing to the user. In 

such cases, the user is advised to compare carefully the actual arguments passed to the 

routine with the dummy argument descriptions given in the documentation. Special 

attention should be given to checking argument order and data types. 
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 A terminal error is not an informational error because corrective action within the 

program is generally not reasonable. In normal usage, execution is terminated 

immediately when a terminal error occurs. Messages relating to more than one terminal 

error are printed if they occur. Default attributes: PRINT=YES, STOP=YES 

The user can set PRINT and STOP attributes by calling ERSET as described in ―Routines for Error 

Handling.‖ 

Errors in Lower-Level Routines 

It is possible that a user‘s program may call an IMSL routine that in turn calls a nested sequence of 

lower-level IMSL routines. If an error occurs at a lower level in such a nest of routines and if the 

lower-level routine cannot pass the information up to the original user-called routine, then a 

traceback of the routines is produced. The only common situation in which this can occur is when 

an IMSL routine calls a user-supplied routine that in turn calls another IMSL routine. 

Routines for Error Handling 

There are three ways in which the user may interact with the IMSL error handling system: (1) to 

change the default actions, (2) to retrieve the integer code of an informational error so as to take 

corrective action, and (3) to determine the severity level of an error. The routines to use are 

ERSET, IERCD, and N1RTY, respectively. 

ERSET 
Change the default printing or stopping actions when errors of a particular error severity level 

occur. 

Required Arguments 

IERSVR — Error severity level indicator.   (Input) 

If IERSVR = 0, actions are set for levels 1 to 5. If IERSVR is 1 to 5, actions are set for 

errors of the specified severity level. 

IPACT — Printing action.   (Input) 

IPACT Action 

-1 Do not change current setting(s). 

 0 Do not print. 

 1 Print. 

 2 Restore the default setting(s). 

ISACT — Stopping action.   (Input) 

ISACT Action 
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-1 Do not change current setting(s). 

 0 Do not stop. 

 1 Stop. 

 2 Restore the default setting(s). 

FORTRAN 90 Interface 

Generic: CALL ERSET (IERSVR, IPACT, ISACT) 

Specific:  The specific interface name is ERSET. 

FORTRAN 77 Interface 

Single: CALL ERSET (IERSVR, IPACT, ISACT) 

IERCD and N1RTY 
The last two routines for interacting with the error handling system, IERCD and N1RTY, are 

INTEGER functions and are described in the following material. 

IERCD retrieves the integer code for an informational error. Since it has no arguments, it may be 

used in the following way: 

ICODE = IERCD( ) 

The function retrieves the code set by the most recently called IMSL routine. 

N1RTY retrieves the error type set by the most recently called IMSL routine. It is used in the 

following way: 

ITYPE = N1RTY(1) 

ITYPE = 1, 2, 4, and 5 correspond to error severity levels 1, 2, 4, and 5, respectively. ITYPE = 3 

and ITYPE = 6 are both warning errors, error severity level 3. While ITYPE = 3 errors are 

informational errors (IERCD( ) ≠ 0), ITYPE = 6 errors are not informational errors (IERCD( ) = 0). 

For software developers requiring additional interaction with the IMSL error handling system, see 

Aird and Howell (1991). 

Examples 

Changes to default actions 

Some possible changes to the default actions are illustrated below. The default actions remain in 

effect for the kinds of errors not included in the call to ERSET. 
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To turn off printing of warning error messages: 

CALL ERSET (3, 0, −1) 

To stop if warning errors occur: 

CALL ERSET (3, −1, 1) 

To print all error messages: 

CALL ERSET (0, 1, −1) 

To restore all default settings: 

CALL ERSET (0, 2, 2) 

Use of informational error to determine program action 

In the program segment below, the Cholesky factorization of a matrix is to be performed. If it is 

determined that the matrix is not nonnegative definite (and often this is not immediately obvious), 

the program is to take a different branch. 
                     . 

                     . 

                     . 

      CALL LFTDS (A, FACT) 
      IF (IERCD() .EQ. 2) THEN 

!                     Handle matrix that is not nonnegative definite 

                     . 

                     . 

                     . 

      END IF 

Examples of errors 

The program below illustrates each of the different types of errors detected by the 

MATH/LIBRARY routines. 

The error messages refer to the argument names that are used in the documentation for the routine, 

rather than the user‘s name of the variable used for the argument. In the message generated by 

IMSL routine LINRG in this example, reference is made to N, whereas in the program a literal was 

used for this argument. 
 

      USE_IMSL_LIBRARIES 

      INTEGER    N 

      PARAMETER  (N=2) 

! 

      REAL       A(N,N), AINV(N,N), B(N), X(N) 

! 

      DATA A/2.0, -3.0, 2.0, -3.0/ 

      DATA B/1.0, 2.0/ 

!                                 Turn on printing and turn off 

!                                 stopping for all error types. 

      CALL ERSET (0, 1, 0) 

!                                 Generate level 4 informational error. 

      CALL LSARG (A, B, X) 

!                                 Generate level 5 terminal error. 

      CALL LINRG (A, AINV, N = -1) 

      END 
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Output 
 

*** FATAL    ERROR 2 from LSARG.  The input matrix is singular.  Some of  

***          the diagonal elements of the upper triangular matrix U of the  

***          LU factorization are close to zero. 

 

*** TERMINAL ERROR 1 from LINRG.  The order of the matrix must be positive 

***          while N = −1 is given. 

Example of traceback 

The next program illustrates a situation in which a traceback is produced. The program uses the 

IMSL quadrature routines QDAG and QDAGS to evaluate the double integral 

   
1 1 1

0 0 0
x y dx dy g y dy   

 

where 

       
1 1

0 0
, with g y x y dx f x dx f x x y     

 

Since both QDAG and QDAGS need 2500 numeric storage units of workspace, and since the 

workspace allocator uses some space to keep track of the allocations, 6000 numeric storage units 

of space are explicitly allocated for workspace. Although the traceback shows an error code 

associated with a terminal error, this code has no meaning to the user; the printed message 

contains all relevant information. It is not assumed that the user would take corrective action based 

on knowledge of the code. 
 

      USE QDAGS_INT 

!                                 Specifications for local variables 

      REAL       A, B, ERRABS, ERREST, ERRREL, G, RESULT 

      EXTERNAL   G 

!                                 Set quadrature parameters 

      A      = 0.0 

      B      = 1.0 

      ERRABS = 0.0 

      ERRREL = 0.001 

!                                 Do the outer integral 

      CALL QDAGS (G, A, B, RESULT, ERRABS, ERRREL, ERREST) 

! 

      WRITE (*,*) RESULT, ERREST 

      END 

! 

      REAL FUNCTION G (ARGY) 

      USE QDAG_INT 

      REAL       ARGY 

! 

      INTEGER    IRULE 

      REAL       C, D, ERRABS, ERREST, ERRREL, F, Y 

      COMMON     /COMY/ Y 

      EXTERNAL   F 

! 

      Y      = ARGY 
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      C      = 0.0 

      D      = 1.0 

      ERRABS = 0.0 

      ERRREL = -0.001 

      IRULE  = 1 

! 

      CALL QDAG (F, C, D, G, ERRABS, ERRREL, IRULE, ERREST) 

      RETURN 

      END 

! 

      REAL FUNCTION F (X) 

      REAL       X 

! 

      REAL       Y 

      COMMON     /COMY/ Y 

! 

      F = X + Y 

      RETURN 

      END 

Output 
 

*** TERMINAL ERROR 4 from Q2AG.  The relative error desired ERRREL = 

***          -1.000000E-03.  It must be at least zero. 

Here is a traceback of subprogram calls in reverse order: 

Routine name                    Error type  Error code 

------------                    ----------  ---------- 

Q2AG                                5           4    (Called internally) 

QDAG                                0           0 

Q2AGS                               0           0    (Called internally) 

QDAGS                               0           0 

USER                                0           0 

Machine-Dependent Constants 
The function subprograms in this section return machine-dependent information and can be used 

to enhance portability of programs between different computers. The routines IMACH, and AMACH 

describe the computer‘s arithmetic. The routine UMACH describes the input, ouput, and error output 

unit numbers. 

IMACH 

This function retrieves machine integer constants that define the arithmetic used by the computer. 

Function Return Value 

IMACH(1) = Number of bits per integer storage unit. 

IMACH(2) = Number of characters per integer storage unit: 

Integers are represented in M-digit, base A form as 
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0

M k
kk

x A


 

where σ is the sign and 0 ≤ xk < A, k = 0, …, M. 

Then, 

IMACH(3) = A, the base. 

IMACH(4) = M, the number of base-A digits. 

IMACH(5) = A
M

 − 1, the largest integer. 

The machine model assumes that floating-point numbers are represented in normalized 

N-digit, base B form as 

1

NE k
kk

B x B 


 

where σ is the sign, 0 < x1 < B, 0 ≤ xk < B, k = 2, …, N and E min ≤ E ≤ E max. Then, 

IMACH(6) = B , the base. 

IMACH(7) = sN , the number base-B-digits in single precision. 

IMACH(8) = mins
E , the smallest single precision exponent. 

IMACH(9) = maxs
E , the largest single precision exponent. 

IMACH(10) = dN , the number base-B-digits in double precision. 

IMACH(11) = mind
E , the smallest double precision exponent. 

IMACH(12) = maxd
E , largest double precision exponent. 

 

Required Arguments 

I — Index of the desired constant. (Input)  

FORTRAN 90 Interface 

Generic: IMACH (I) 

Specific:  The specific interface name is IMACH. 
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FORTRAN 77 Interface 

Single: IMACH (I) 

AMACH 
The function subprogram AMACH retrieves machine constants that define the computer‘s single-

precision or double precision arithmetic.  Such floating-point numbers are represented in 

normalized N-digit, base B form as 

1

NE k
kk

B x B 


 

where σ is the sign, 0 < x1 < B, 0 ≤ xk < B, k = 2, …, N and  

min maxE E E 
 

Function Return Value 

AMACH(1) = min 1E
B


, the smallest normalized positive number. 

AMACH(2) =  max 1
1

E NB B
  , the largest number. 

AMACH(3) = 
NB

, the smallest relative spacing. 

AMACH(4) = 
1 NB 

, the largest relative spacing. 

AMACH(5) =  10log B . 

AMACH(6) = NaN (non-signaling not a number). 

AMACH(7) = positive machine infinity. 

AMACH(8) = negative machine infinity. 

See Comment 1 for a description of the use of the generic version of this function. 

See Comment 2 for a description of min, max, and N.  

Required Arguments 

I — Index of the desired constant. (Input)  

FORTRAN 90 Interface 

Generic: AMACH (I) 

Specific:  The specific interface names are S_AMACH and D_AMACH. 
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FORTRAN 77 Interface 

Single: AMACH (I) 

Double: The double precision name is DMACH. 

Comments 

1. If the generic version of this function is used, the immediate result must be stored in a 

variable before use in an expression. For example: 

X = AMACH(I) 

Y = SQRT(X) 

must be used rather than 

Y = SQRT(AMACH(I)). 

If this is too much of a restriction on the programmer, then the specific name can be 

used without this restriction. 

2. Note that for single precision B = IMACH(6),  N = IMACH(7). 

 Emin = IMACH(8), and Emax, = IMACH(9). 

For double precision B = IMACH(6),  N = IMACH(10). 

Emin = IMACH(11), and Emax, = IMACH(12). 

3. The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN (not a 

number) as the result of various invalid or ambiguous operations, such as 0/0. The intent 

is that AMACH(6) return a quiet NaN. On IEEE format computers that do not support a 

quiet NaN, a special value near AMACH(2) is returned for AMACH(6). On computers that do 

not have a special representation for infinity, AMACH(7) returns the same value as 

AMACH(2). 

DMACH 
See AMACH.  

IFNAN(X) 
This logical function checks if the argument X is NaN (not a number).  

Function Return Value 

IFNAN - Logical function value.  True is returned if the input argument is a NAN. Otherwise,  

False is returned. (Output) 

Required Arguments 

X – Argument for which the test for NAN is desired. (Input)  
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FORTRAN 90 Interface 

Generic: IFNAN(X) 

Specific:  The specific interface names are S_IFNAN and D_IFNAN. 

FORTRAN 77 Interface 

Single: IFNAN (X) 

Double: The double precision name is DIFNAN. 

Example 
 

      USE IFNAN_INT 

      USE AMACH_INT 

      USE UMACH_INT 

      INTEGER      NOUT 

      REAL         X  

! 

      CALL UMACH (2, NOUT)  

! 

      X = AMACH(6) 

      IF (IFNAN(X)) THEN 

         WRITE (NOUT,*) ‘ X is NaN (not a number).‘ 

      ELSE  

         WRITE (NOUT,*) ‘ X = ‘, X  

      END IF  

! 

      END 

Output 
 

X is NaN (not a number). 

Description 

The logical function IFNAN checks if the single or double precision argument X is NaN (not a 

number). The function IFNAN is provided to facilitate the transfer of programs across computer 

systems. This is because the check for NaN can be tricky and not portable across computer 

systems that do not adhere to the IEEE standard. For example, on computers that support the IEEE 

standard for binary arithmetic (see IEEE 1985), NaN is specified as a bit format not equal to itself. 

Thus, the check is performed as 

IFNAN = X .NE. X 

On other computers that do not use IEEE floating-point format, the check can be performed as: 

IFNAN = X .EQ. AMACH(6) 

The function IFNAN is equivalent to the specification of the function Isnan listed in the Appendix, 

(IEEE 1985). The above following example illustrates the use of IFNAN. If X is NaN, a message is 

printed instead of X. (Routine UMACH, which is described in the following section, is used to 

retrieve the output unit number for printing the message.) 
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UMACH 
Routine UMACH sets or retrieves the input, output, or error output device unit numbers. 

Required Arguments 

N  —  Integer value indicating the action desired. If the value of N is negative, the input, output, or 

error output unit number is reset to NUNIT. If the value of N is positive, the input, output, or error 

output unit number is returned in NUNIT. See the table in argument NUNIT for legal values of N. 

(Input) 

NUNIT  —  The unit number that is either retrieved or set, depending on the value of input 

argument N. (Input/Output) 

The arguments are summarized by the following table: 

 

N Effect 

1 Retrieves input unit number in NUNIT. 

2 Retrieves output unit number in NUNIT. 

3 Retrieves error output unit number in NUNIT. 

−1 Sets the input unit number to NUNIT. 

−2 Sets the output unit number to NUNIT. 

−3 Sets the error output unit number to NUNIT. 

FORTRAN 90 Interface 

Generic: CALL UMACH (N, NUNIT) 

Specific:  The specific interface name is UMACH. 

FORTRAN 77 Interface 

Single: CALL UMACH (N, NUNIT) 

Description 

Routine UMACH sets or retrieves the input, output, or error output device unit numbers. UMACH is 

set automatically so that the default FORTRAN unit numbers for standard input, standard output, 

and standard error are used. These unit numbers can be changed by inserting a call to UMACH at the 

beginning of the main program that calls MATH/LIBRARY routines. If these unit numbers are 

changed from the standard values, the user should insert an appropriate OPEN statement in the 

calling program. 
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Example 

In the following example, a terminal error is issued from the MATH/LIBRARY AMACH function 

since the argument is invalid. With a call to UMACH, the error message will be written to a local 

file named ―CHECKERR‖. 
 

      USE AMACH_INT 

      USE UMACH_INT 

      INTEGER     N, NUNIT 

      REAL        X 

!                                      Set Parameter 

      N = 0 

      NUNIT = 9 

! 

      CALL UMACH (-3, NUNIT) 

      OPEN (UNIT=NUNIT,FILE=‘CHECKERR‘) 

      X = AMACH(N) 

      END 

Output 
 

The output from this example, written to ―CHECKERR‖ is: 

*** TERMINAL ERROR 5 from AMACH.  The argument must be between 1 and 8 

***           inclusive. N = 0 

Matrix Storage Modes 
In this section, the word matrix will be used to refer to a mathematical object, and the word array 

will be used to refer to its representation as a FORTRAN data structure. 

General Mode 

A general matrix is an N × N matrix A. It is stored in a FORTRAN array that is declared by the 

following statement: 

DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL 

general matrix subprograms only refer to values Aij for i = 1, …, N and j = 1, …, N. The data type 

of a general array can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN 

compiler allows, the nonstandard data type DOUBLE COMPLEX can also be declared. 

Rectangular Mode 

A rectangular matrix is an M × N matrix A. It is stored in a FORTRAN array that is declared by 

the following statement: 

DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as M. IMSL 

rectangular matrix subprograms only refer to values Aij for i = 1, …, M and j = 1, …, N. The data 

type of a rectangular array can be REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN 

compiler allows, you can declare the nonstandard data type DOUBLE COMPLEX. 
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Symmetric Mode 

A symmetric matrix is a square N × N matrix A, such that A
T
 = A. (A

T
 is the transpose of A.) It is 

stored in a FORTRAN array that is declared by the following statement: 

DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL 

symmetric matrix subprograms only refer to the upper or to the lower half of A (i.e., to values Aij 

for i = 1, …, N and j = i, …, N, or Aij for j = 1, …, N and i = j, …, N). The data type of a 

symmetric array can be one of REAL or DOUBLE PRECISION. Use of the upper half of the array is 

denoted in the BLAS that compute with symmetric matrices, see Chapter 9, Basic Matrix/Vector 

Operations, using the CHARACTER*1 flag UPLO = ‘U‘. Otherwise, UPLO = ‘L‘ denotes that the 

lower half of the array is used. 

Hermitian Mode 

A Hermitian matrix is a square N × N matrix A, such that 

TA A  

The matrix 

A  

is the complex conjugate of A and  

  H TA A  

is the conjugate transpose of A. For Hermitian matrices, A
H

 = A. The matrix is stored in a 

FORTRAN array that is declared by the following statement: 

DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL 

Hermitian matrix subprograms only refer to the upper or to the lower half of A (i.e., to values Aij 

for i = 1, …, N and j = i, …, N., or Aij for j = 1, …, N and i = j, …, N). Use of the upper half of the 

array is denoted in the BLAS that compute with Hermitian matrices, see Chapter 9, Basic 

Matrix/Vector Operations, using the CHARACTER*1 flag UPLO = ‘U‘. Otherwise, UPLO = ‘L‘ 

denotes that the lower half of the array is used. The data type of a Hermitian array can be 

COMPLEX or, if your FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX. 

Triangular Mode 

A triangular matrix is a square N × N matrix A such that values Aij = 0 for i < j or Aij = 0 for i > j. 

The first condition defines a lower triangular matrix while the second condition defines an upper 

triangular matrix. A lower triangular matrix A is stored in the lower triangular part of a 

FORTRAN array A. An upper triangular matrix is stored in the upper triangular part of a 

FORTRAN array. Triangular matrices are called unit triangular whenever Ajj = 1, j = 1, …, N. For 

unit triangular matrices, only the strictly lower or upper parts of the array are referenced. This is 

denoted in the BLAS that compute with triangular matrices, see Chapter 9, Basic Matrix/Vector 

Operations, using the CHARACTER*1 flag DIAGNL = ‘U‘. Otherwise, DIAGNL = ‘N‘ denotes 
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that the diagonal array terms should be used. For unit triangular matrices, the diagonal terms are 

each used with the mathematical value 1. The array diagonal term does not need to be 1.0 in this 

usage. Use of the upper half of the array is denoted in the BLAS that compute with triangular 

matrices, see Chapter 9, Basic Matrix/Vector Operations, using the CHARACTER*1 flag  

UPLO = ‘U‘. Otherwise, UPLO = ‘L‘ denotes that the lower half of the array is used. The data 

type of an array that contains a triangular matrix can be one of REAL, DOUBLE PRECISION, or 

COMPLEX. If your FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX can 

also be declared. 

Band Storage Mode 

A band matrix is an M × N matrix A with all of its nonzero elements ―close‖ to the main diagonal. 

Specifically, values Aij = 0 if i − j > NLCA or j − i > NUCA. The integers NLCA and NUCA are the 

lower and upper band widths. The integer m = NLCA + NUCA + 1 is the total band width. The 

diagonals, other than the main diagonal, are called codiagonals. While any M × N matrix is a 

band matrix, the band matrix mode is most useful only when the number of nonzero codiagonals is 

much less than m. 

In the band storage mode, the NLCA lower codiagonals and NUCA upper codiagonals are stored in 

the rows of a FORTRAN array of dimension m × N. The elements are stored in the same column 

of the array as they are in the matrix. The values Aij inside the band width are stored in array 

positions (i − j + NUCA + 1, j). This array is declared by the following statement: 

DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as m. The data 

type of a band matrix array can be one of REAL, DOUBLE PRECISION, COMPLEX or, if your 

FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX . Use of the 

CHARACTER*1 flag TRANS=‘N‘ in the BLAS, see Chapter 9, Basic Matrix/Vector Operations, 

specifies that the matrix A is used. The flag value 

TRANS =‘T‘ uses TA  

while 

TRANS =‘C‘ uses TA  

For example, consider a real 5 × 5 band matrix with 1 lower and 2 upper codiagonals, stored in 

the FORTRAN array declared by the following statements: 

PARAMETER (N=5, NLCA=1, NUCA=2) 

REAL A(NLCA+NUCA+1, N) 

The matrix A has the form 

11 12 13

21 22 23 24

32 33 34 35

43 44 45

54 55

0 0

0

0

0 0

0 0 0

A A A

A A A A

A A A AA

A A A

A A
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As a FORTRAN array, it is 

13 24 35

12 23 34 45

11 22 33 44 55

21 32 43 54

A A A

A A A A
A

A A A A A

A A A A

  
 


 
 
 

   

The entries marked with an x in the above array are not referenced by the IMSL band 

subprograms. 

Band Symmetric Storage Mode 

A band symmetric matrix is a band matrix that is also symmetric. The band symmetric storage 

mode is similar to the band mode except only the lower or upper codiagonals are stored.  

In the band symmetric storage mode, the NCODA upper codiagonals are stored in the rows of a 

FORTRAN array of dimension (NCODA + 1) × N. The elements are stored in the same column of 

the array as they are in the matrix. Specifically, values Aij, j ≤ i inside the band are stored in array 

positions (i − j + NCODA + 1, j). This is the storage mode designated by using the CHARACTER*1 

flag UPLO = ‘U‘ in Level 2 BLAS that compute with band symmetric matrices, see Chapter 9, 

Basic Matrix/Vector Operations. Alternatively, Aij, j ≤ i, inside the band, are stored in array 

positions (i − j + 1, j). This is the storage mode designated by using the CHARACTER*1 flag  

UPLO = ‘L‘ in these Level 2 BLAS, see Chapter 9, Basic Matrix/Vector Operations. The array is 

declared by the following statement: 

DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as NCODA + 1. 

The data type of a band symmetric array can be REAL or DOUBLE PRECISION. 

For example, consider a real 5 × 5 band matrix with 2 codiagonals. Its FORTRAN declaration is 

PARAMETER (N=5, NCODA=2) 

REAL A(NCODA+1, N) 

The matrix A has the form 

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0

0

0

0 0

A A A

A A A A

A A A A AA

A A A A

A A A

 
 
 
 
 
 
    

Since A is symmetric, the values Aij = Aji. In the FORTRAN array, it is  
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13 24 35

12 23 34 45

11 22 33 44 55

A A A

A A A A A

A A A A A

  
 

 
 
    

The entries marked with an × in the above array are not referenced by the IMSL band symmetric 

subprograms. 

An alternate storage mode for band symmetric matrices is designated using the CHARACTER*1 flag 

UPLO = ‘L‘ in Level 2 BLAS that compute with band symmetric matrices, see Chapter 9, Basic 

Matrix/Vector Operations. In that case, the example matrix is represented as  

11 22 33 44 55

12 23 34 45

13 24 35

A A A A A

A A A A A

A A A

 
 

 
 
     

Band Hermitian Storage Mode 

A band Hermitian matrix is a band matrix that is also Hermitian. The band Hermitian mode is a 

complex analogue of the band symmetric mode. 

In the band Hermitian storage mode, the NCODA upper codiagonals are stored in the rows of a 

FORTRAN array of dimension (NCODA + 1) × N. The elements are stored in the same column of 

the array as they are in the matrix. In the Level 2 BLAS, see see Chapter 9, Basic Matrix/Vector 

Operations, this is denoted by using the CHARACTER*1 flag UPLO =‘U‘. The array is declared by 

the following statement: 

DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as  

(NCODA + 1). The data type of a band Hermitian array can be COMPLEX or, if your FORTRAN 

compiler allows, the nonstandard data type DOUBLE COMPLEX. 

For example, consider a complex 5 × 5 band matrix with 2 codiagonals. Its FORTRAN 

declaration is 

PARAMETER (N=5, NCODA = 2) 

COMPLEX A(NCODA + 1, N) 

The matrix A has the form 

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0

0

0

0 0

A A A

A A A A

A A A A AA

A A A A

A A A

 
 
 
 
 
 
    

where the value 



     

     
 

1948  Reference Material IMSL MATH LIBRARY  

     

     

 

ijA
 

is the complex conjugate of Aij. This matrix represented as a FORTRAN array is 

13 24 35

12 23 34 45

11 22 33 44 55

A A A

A A A A A

A A A A A

  
 

 
 
    

The entries marked with an × in the above array are not referenced by the IMSL band Hermitian 

subprograms. 

An alternate storage mode for band Hermitian matrices is designated using the CHARACTER*1 flag 

UPLO = ‘L‘ in Level 2 BLAS that compute with band Hermitian matrices, see Chapter 9, Basic 

Matrix/Vector Operations. In that case, the example matrix is represented as 

11 22 33 44 55

12 23 34 45

13 24 35

A A A A A

A A A A A

A A A

 
 

 
 
     

Band Triangular Storage Mode 

A band triangular matrix is a band matrix that is also triangular. In the band triangular storage 

mode, the NCODA codiagonals are stored in the rows of a FORTRAN array of dimension  

(NCODA + 1) × N. The elements are stored in the same column of the array as they are in the 

matrix. For usage in the Level 2 BLAS, see Chapter 9, Programming Notes for BLAS, the 

CHARACTER*1 flag DIAGNL has the same meaning as used in section ―Triangular Storage Mode‖. 

The flag UPLO has the meaning analogous with its usage in the section ―Banded Symmetric 

Storage Mode‖. This array is declared by the following statement: 

DIMENSION A(LDA,N) 

The parameter LDA is called the leading dimension of A. It must be at least as large as  

(NCODA + 1). 

For example, consider a 5 ×5 band upper triangular matrix with 2 codiagonals. Its FORTRAN 

declaration is 

PARAMETER (N = 5, NCODA = 2) 

COMPLEX A(NCODA + 1, N) 

The matrix A has the form 
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11 12 13

22 23 24

33 34 35

44 45

55

0 0

0 0

0 0

0 0 0

0 0 0 0

A A A

A A A

A A AA

A A

A

 
 
 
 
 
 
    

This matrix represented as a FORTRAN array is 

13 24 35

12 23 34 45

11 22 33 44 55

A A A

A A A A A

A A A A A

  
 

 
 
    

This corresponds to the CHARACTER*1 flags DIAGNL = ‘N‘ and UPLO = ‘U‘. The matrix A
T
 is 

represented as the FORTRAN array 

11 22 33 44 55

12 23 34 45

13 24 35

A A A A A

A A A A A

A A A

 
 

 
 
     

This corresponds to the CHARACTER*1 flags DIAGNL = ‘N‘ and UPLO = ‘L‘. In both examples, 

the entries indicated with an × are not referenced by IMSL subprograms. 

Codiagonal Band Symmetric Storage Mode 

This is an alternate storage mode for band symmetric matrices. It is not used by any of the BLAS, 

see Chapter 9, Basic Matrix/Vector Operations. Storing data in a form transposed from the Band 

Symmetric Storage Mode maintains unit spacing between consecutive referenced array elements. 

This data structure is used to get good performance in the Cholesky decomposition algorithm that 

solves positive definite symmetric systems of linear equations Ax = b. The data type can be REAL 

or DOUBLE PRECISION. In the codiagonal band symmetric storage mode, the NCODA upper 

codiagonals and right-hand-side are stored in columns of this FORTRAN array. This array is 

declared by the following statement: 

DIMENSION A(LDA, NCODA + 2) 

The parameter LDA is the leading positive dimension of A. It must be at least as large as  

N + NCODA. 

Consider a real symmetric 5 × 5 matrix with 2 codiagonals 

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0

0

0

0 0

A A A

A A A A

A A A A AA

A A A A

A A A
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and a right-hand-side vector 

1

2

3

4

5

b

b

bb

b

b

 
 
 
 
 
 
    

A FORTRAN declaration for the array to hold this matrix and right-hand-side vector is 

PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA) 

REAL A(LDA, NCODA + 2) 

The matrix and right-hand-side entries are placed in the FORTRAN array A as follows: 

11 1

22 12 2

33 23 13 3

44 34 24 4

55 45 35 5

A b

A A bA

A A A b

A A A b

A A A b

    
 
   

 
  
 

  
 
 
 
 
   

Entries marked with an × do not need to be defined. Certain of the IMSL band symmetric 

subprograms will initialize and use these values during the solution process. When a solution is 

computed, the bi, i = 1, …, 5, are replaced by xi, i = 1, …, 5. 

The nonzero Aij, j ≥ i, are stored in array locations A(j + NCODA, (j − i) + 1) . The right-hand-side 

entries bj are stored in locations A(j + NCODA, NCODA + 2). The solution entries xj are returned in 

A(j + NCODA, NCODA + 2). 

Codiagonal Band Hermitian Storage Mode 

This is an alternate storage mode for band Hermitian matrices. It is not used by any of the BLAS, 

see Chapter 9, Basic Matrix/Vector Operations. In the codiagonal band Hermitian storage mode, 

the real and imaginary parts of the 2 * NCODA + 1 upper codiagonals and right-hand-side are stored 

in columns of a FORTRAN array. Note that there is no explicit use of the COMPLEX or the 

nonstandard data type DOUBLE COMPLEX data type in this storage mode. 

For Hermitian complex matrices, 

 =  + 1A U V  

where U and V are real matrices. They satisfy the conditions U = U
T
 and V = −V

T
. The  

right-hand-side 
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1b c d  
 

where c and d are real vectors. The solution vector is denoted as 

1x u v    

where u and v are real. The storage is declared with the following statement 

DIMENSION A(LDA, 2*NCODA + 3) 

The parameter LDA is the leading positive dimension of A. It must be at least as large as  

N + NCODA. 

The diagonal terms Ujj are stored in array locations A (j + NCODA, 1). The diagonal Vjj are zero and 

are not stored. The nonzero Uij, j > i, are stored in locations A(j + NCODA, 2 * (j − i)). 

The nonzero Vij are stored in locations A(j + NCODA, 2*(j − i) + 1). The right side vector b is 

stored with cj and dj in locations A(j + NCODA, 2*NCODA + 2) and A(j + NCODA, 2*NCODA + 3) 

respectively. The real and imaginary parts of the solution, uj and vj, respectively overwrite cj and 

dj. 

Consider a complex hermitian 5 × 5 matrix with 2 codiagonals 

11 12 13 12 13

12 22 23 24 12 23 24

13 23 33 34 35 13 23 34 35

24 34 44 45 24 34 45

35 45 55 35 45

0 0 0 0 0

0 0 0

01

0 0 0

0 0 0 0 0

U U U V V

U U U U V V V

U U U U U V V V VA

U U U U V V V

U U U V V

   
   


   
      
   

    
         

and a right-hand-side vector 

1 1

2 2

3 3

4 4

5 5

1

c d

c d

c db

c d

c d

   
   
   
     
   
   
        

A FORTRAN declaration for the array to hold this matrix and right-hand-side vector is 

PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA) 
REAL A(LDA,2*NCODA + 3) 

The matrix and right-hand-side entries are placed in the FORTRAN array A as follows: 
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11 1 1

22 12 12 2 2

33 23 23 13 13 3 3

44 34 34 24 24 4 4

55 45 45 35 35 5 5

U c d

U U V c dA

U U V U V c d

U U V U V c d

U U V U V c d

       
 
      

 
    
 

   
 
 
 
 
   

Entries marked with an × do not need to be defined. 

Sparse Matrix Storage Mode 

The sparse linear algebraic equation solvers in Chapter 1 accept the input matrix in sparse storage 

mode. This structure consists of INTEGER values N and NZ, the matrix dimension and the total 

number of nonzero entries in the matrix. In addition, there are two INTEGER arrays IROW(*) and 

JCOL(*) that contain unique matrix row and column coordinates where values are given. There is 

also an array A(*) of values. All other entries of the matrix are zero. Each of the arrays IROW(*), 

JCOL(*), A(*) must be of size NZ. The correspondence between matrix and array entries is given 

by 

     IROW ,JCOL , 1, , NZi iA A i i 
 

The data type for A(*) can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN 

compiler allows, the nonstandard data type DOUBLE COMPLEX can also be declared. 

For example, consider a real 5 × 5 sparse matrix with 11 nonzero entries. The matrix A has the 

form 

11 13 14

21 22

32 33 34

43

54 55

0 0

0 0 0

0 0

0 0 0 0

0 0 0

A A A

A A

A A AA

A

A A

 
 
 
 
 
 
    

Declarations of arrays and definitions of the values for this sparse matrix are 

PARAMETER (NZ = 11, N = 5) 

DIMENSION IROW(NZ), JCOL(NZ), A(NZ) 
DATA IROW /1,1,1,2,2,3,3,3,4,5,5/ 

DATA JCOL /1,3,4,1,2,2,3,4,3,4,5/ 

DATA A    /A11,A13,A14,A21,A22,A32,A33,A34, & A43,A54,A55/ 
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Packed Symmetric Matrix Storage Mode 

This structure contains either the upper or lower triangular portion of the symmetric data and is 

stored in an array of length  1 / 2ncol ncol  . For a matrix A and representative array a, the data 

is arranged sequentially column by column such that, for the upper triangular case, a(1) contains 

A11, a(2) contains A12, a(3) contains A22, etc. 

For example, consider the following real 5 × 5 symmetric matrix A 

























5545352515

4544342414

3534332313

2524232212

1514131211

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

A

 

The array declaration for the upper triangle of A would be 

DATA a /A11,A12,A22,A13,A23,A33,A14,A24,A34,A44,A15,A25,A35,A45,A55/ 

Packed Triangular Matrix Storage Mode 

This structure contains either the upper or lower triangular portion of a triangular matrix and is 

stored in an array of length   2/1ncolncol . For a matrix A and representative array a, the 

data is arranged sequentially column by column such that, for the upper triangular case, a(1) 

contains A11, a(2) contains A12, a(3) contains A22, etc. 

For example, consider the following real 5 × 5 upper triangular matrix A 

























55

4544

353433

25242322

1514131211

0000

000

00

0

A

AA

AAA

AAAA

AAAAA

A

 

The array declaration for the upper triangle of A would be 

DATA a /A11,A12,A22,A13,A23,A33,A14,A24,A34,A44,A15,A25,A35,A45,A55/ 

Packed Hermitian Matrix Storage Mode 

This structure contains either the upper or lower triangular portion of a Hermitian matrix and is 

stored in an array of length   2/1ncolncol . For a matrix A and representative array a, the 

data is arranged sequentially column by column such that, for the upper triangular case, a(1) 

contains A11, a(2) contains A12, a(3) contains A22, etc. 

For example, consider the following 5 × 5 Hermitian matrix A 
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5545535251

4544434241

3534333231

2524232221

1514131211

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

A

 

The array declaration for the upper triangle of A would be 

DATA a /A11,A12,A22,A13,A23,A33,A14,A24,A34,A44,A15,A25,A35,A45,A55/ 

Reserved Names 
When writing programs accessing the MATH/LIBRARY, the user should choose FORTRAN 

names that do not conflict with names of IMSL subroutines, functions, or named common blocks, 

such as the workspace common block WORKSP (see Automatic Workspace Allocation). The user 

needs to be aware of two types of name conflicts that can arise. The first type of name conflict 

occurs when a name (technically a symbolic name) is not uniquely defined within a program unit 

(either a main program or a subprogram). For example, such a name conflict exists when the name 

RCURV is used to refer both to a type REAL variable and to the IMSL subroutine RCURV in a single 

program unit. Such errors are detected during compilation and are easy to correct. The second type 

of name conflict, which can be more serious, occurs when names of program units and named 

common blocks are not unique. For example, such a name conflict would be caused by the user 

defining a subroutine named WORKSP and also referencing an MATH/LIBRARY subroutine that 

uses the named common block WORKSP. Likewise, the user must not define a subprogram with the 

same name as a subprogram in the MATH/LIBRARY, that is referenced directly by the user‘s 

program or is referenced indirectly by other MATH/LIBRARY subprograms. 

The MATH/LIBRARY consists of many routines, some that are described in the User’s Manual 

and others that are not intended to be called by the user and, hence, that are not documented. If the 

choice of names were completely random over the set of valid FORTRAN names, and if a 

program uses only a small subset of the MATH/LIBRARY, the probability of name conflicts is 

very small. Since names are usually chosen to be mnemonic, however, the user may wish to take 

some precautions in choosing FORTRAN names. 

Many IMSL names consist of a root name that may have a prefix to indicate the type of the 

routine. For example, the IMSL single precision subroutine for fitting a polynomial by least 

squares has the name RCURV, which is the root name, and the corresponding IMSL double 

precision routine has the name DRCURV. Associated with these two routines are R2URV and 

DR2URV. RCURV is listed in the Alphabetical Index of Routines, but DRCURV, R2URV, and DR2URV 

are not. The user of RCURV must consider both names RCURV and R2URV to be reserved; likewise, 

the user of DRCURV must consider both names DRCURV and DR2URV to be reserved. The root 

names of all routines and named common blocks that are used by the MATH/LIBRARY and that 

do not have a numeral in the second position of the root name are listed in the Alphabetical Index 

of Routines. Some of the routines in this Index (such as the ―Level 2 BLAS‖) are not intended to 

be called by the user and so are not documented. 

The careful user can avoid any conflicts with IMSL names if the following rules are observed: 
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 Do not choose a name that appears in the Alphabetical Summary of Routines in the User’s 

Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_. 

 Do not choose a name of three or more characters with a numeral in the second or third 

position. 

These simplified rules include many combinations that are, in fact, allowable. However, if the user 

selects names that conform to these rules, no conflict will be encountered. 

Deprecated Features and Renamed Routines 

Automatic Workspace Allocation 

FORTRAN subroutines that work with arrays as input and output often require extra arrays for use 

as workspace while doing computations or moving around data. IMSL routines generally do not 

require the user explicitly to allocate such arrays for use as workspace. On most systems the 

workspace allocation is handled transparently. The only limitation is the actual amount of memory 

available on the system. 

On some systems the workspace is allocated out of a stack that is passed as a FORTRAN array in 

a named common block WORKSP. A very similar use of a workspace stack is described by Fox et 

al. (1978, pages 116−121). (For compatiblity with older versions of the IMSL Libraries, space is 

allocated from the COMMON block, if possible.) 

The arrays for workspace appear as arguments in lower-level routines. For example, the IMSL 

routine LSARG (in Chapter 1, ―Linear Systems‖), which solves systems of linear equations, needs 

arrays for workspace. LSARG allocates arrays from the common area, and passes them to the 

lower-level routine L2ARG which does the computations. In the ―Comments‖ section of the 

documentation for LSARG, the amount of workspace is noted and the call to L2ARG is described. 

This scheme for using lower-level routines is followed throughout the IMSL Libraries. The names 

of these routines have a ―2‖ in the second position (or in the third position in double precision 

routines having a ―D‖ prefix). The user can provide workspace explicitly and call directly the ―2-

level‖ routine, which is documented along with the main routine. In a very few cases, the 2-level 

routine allows additional options that the main routine does not allow. 

Prior to returning to the calling program, a routine that allocates workspace generally deallocates 

that space so that it becomes available for use in other routines. 

Changing the Amount of Space Allocated 

This section is relevant only to those systems on which the transparent workspace allocator is not 

available. 

By default, the total amount of space allocated in the common area for storage of numeric data is 

5000 numeric storage units. (A numeric storage unit is the amount of space required to store an 

integer or a real number. By comparison, a double precision unit is twice this amount. Therefore 

the total amount of space allocated in the common area for storage of numeric data is 2500 double 

precision units.) This space is allocated as needed for INTEGER, REAL, or other numeric data. For 

larger problems in which the default amount of workspace is insufficient, the user can change the 

allocation by supplying the FORTRAN statements to define the array in the named common block 

and by informing the IMSL workspace allocation system of the new size of the common array. To 

request 7000 units, the statements are 
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      COMMON /WORKSP/ RWKSP 

      REAL RWKSP(7000) 

      CALL IWKIN(7000) 

If an IMSL routine attempts to allocate workspace in excess of the amount available in the 

common stack, the routine issues a fatal error message that indicates how much space is needed 

and prints statements like those above to guide the user in allocating the necessary amount. The 

program below uses IMSL routine PERMA to permute rows or columns of a matrix. This routine 

requires workspace equal to the number of columns, which in this example is too large. (Note that 

the work vector RWKSP must also provide extra space for bookkeeping.) 
 

      USE_PERMA_INT 

!                                 Specifications for local variables 

      INTEGER    NRA, NCA, LDA, IPERMU(6000), IPATH 

      REAL       A(2,6000) 

!                                 Specifications for subroutines 

! 

      NRA = 2 

      NCA = 6000 

      LDA = 2 

!                                 Initialize permutation index 

      DO 10 I = 1, NCA 

         IPERMU(I) = NCA + 1 - I 

   10 CONTINUE 

      IPATH = 2 

      CALL PERMA (A, IPERMU, A, IPATH=IPATH) 

      END 

Output 
 

*** TERMINAL ERROR 10 from PERMA.  Insufficient workspace for current 

***          allocation(s). Correct by calling IWKIN from main program with 

***          the three following statements:  (REGARDLESS OF PRECISION) 

***                COMMON /WORKSP/  RWKSP 

***                REAL RWKSP(6018) 

***                CALL IWKIN(6018) 

 

*** TERMINAL ERROR 10 from PERMA.  Workspace allocation was based on NCA = 

***          6000. 

In most cases, the amount of workspace is dependent on the parameters of the problem so the 

amount needed is known exactly. In a few cases, however, the amount of workspace is dependent 

on the data (for example, if it is necessary to count all of the unique values in a vector), so the 

IMSL routine cannot tell in advance exactly how much workspace is needed. In such cases the 

error message printed is an estimate of the amount of space required. 

Character Workspace 

Since character arrays cannot be equivalenced with numeric arrays, a separate named common 

block WKSPCH is provided for character workspace. In most respects this stack is managed in the 

same way as the numeric stack. The default size of the character workspace is 2000 character 

units. (A character unit is the amount of space required to store one character.) The routine 

analogous to IWKIN used to change the default allocation is IWKCIN. 
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The routines in the following list are being deprecated in Version 2.0 of MATH/LIBRARY. A 

deprecated routine is one that is no longer used by anything in the library but is being included in 

the product for those users who may be currently referencing it in their application. However, any 

future versions of MATH/LIBRARY will not include these routines. If any of these routines are 

being called within an application, it is recommended that you change your code or retain the 

deprecated routine before replacing this library with the next version. Most of these routines were 

called by users only when they needed to set up their own workspace. Thus, the impact of these 

changes should be limited. 
 

CZADD DE2LRH DNCONF E3CRG 

CZINI DE2LSB DNCONG E4CRG 

CZMUL DE3CRG E2ASF E4ESF 

CZSTO DE3CRH E2AHF E5CRG 

DE2AHF DE3LSF E2BHF E7CRG 

DE2ASF DE4CRG E2BSB G2CCG 

DE2BHF DE4ESF E2BSF G2CRG 

DE2BSB DE5CRG E2CCG G2LCG 

DE2BSF DE7CRG E2CCH G2LRG 

DE2CCG DG2CCG E2CHF G3CCG 

DE2CCH DG2CRG E2CRG G4CCG 

DE2CHF DG2DF E2CRH G5CCG 

DE2CRG DG2IND E2CSB G7CRG 

DE2CRH DG2LCG E2EHF N0ONF 

DE2CSB DG2LRG E2ESB NCONF 

DE2EHF DG3CCG E2FHF  NCONG 

DE2ESB DG3DF E2FSB SDADD 

DE2FHF DG4CCG E2FSF SDINI 

DE2FSB DG5CCG E2LCG SDMUL 

DE2FSF DG7CRG E2LCH SDSTO 

DE2LCG DHOUAP E2LHF SHOUAP 

DE2LCH DHOUTR E2LRG SHOUTR 

DE2LHF DIVPBS E2LRH  

DE2LRG DN0ONF E2LSB  

The following routines have been renamed due to naming conflicts with other software 

manufacturers. 

CTIME − replaced with CPSEC 

DTIME − replaced with TIMDY 

PAGE  − replaced with PGOPT 
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Appendix A: GAMS Index 

Description 

This index lists routines in MATH LIBRARY by a tree-structured classification scheme known as 

GAMS Version 2.0 (Boisvert, Howe, Kahaner, and Springmann (1990). Only the GAMS classes 

that contain MATH/LIBRARY routines are included in the index. The page number for the 

documentation and the purpose of the routine appear alongside the routine name. 

The first level of the full classification scheme contains the following major subject areas: 

A. Arithmetic, Error Analysis  

B. Number Theory  

C. Elementary and Special Functions  

D. Linear Algebra 

E. Interpolation  

F. Solution of Nonlinear Equations  

G. Optimization  

H. Differentiation and Integration  

I. Differential and Integral Equations  

J. Integral Transforms  

K. Approximation  

L. Statistics, Probability  

M. Simulation, Stochastic Modeling  

N. Data Handling  

O. Symbolic Computation  

P. Computational Geometry  

Q. Graphics  

R. Service Routines  

S. Software Development Tools  
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Z. Other 

 

There are seven levels in the classification scheme. Classes in the first level are identified by a 

capital letter as is given above. Classes in the remaining levels are identified by alternating letter-

and-number combinations. A single letter (a-z) is used with the odd-numbered levels. A number 

(1−26) is used within the even-numbered levels. 

IMSL MATH LIBRARY 

A ........... ARITHMETIC, ERROR ANALYSIS 

A3 ......... Real 

A3c ....... Extended precision 

DQADD . Adds a double-precision scalar to the accumulator in extended precision. 

DQINI ... Initializes an extended-precision accumulator with a double-precision 

scalar. 

DQMUL ... Multiplies double-precision scalars in extended precision. 

DQSTO ... Stores a double-precision approximation to an extended-precision scalar. 

A4 ......... Complex 

A4c ....... Extended precision 

ZQADD ... Adds a double complex scalar to the accumulator in extended precision. 

ZQINI ... Initializes an extended-precision complex accumulator to a double 

complex scalar. 

ZQMUL ... Multiplies double complex scalars using extended precision. 

ZQSTO ... Stores a double complex approximation to an extended-precision 

complex scalar. 

A6 ......... Change of representation 

A6c ....... Decomposition, construction 

PRIME ... Decomposes an integer into its prime factors. 

B ........... NUMBER THEORY 

PRIME . Decomposes an integer into its prime factors. 

C ........... ELEMENTARY AND SPECIAL FUNCTIONS 

C2 ......... Powers, roots, reciprocals 

HYPOT ... Computes 
2 2a b  without underflow or overflow. 

C19 ....... Other special functions 

CONST ... Returns the value of various mathematical and physical constants. 
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CUNIT . Converts X in units XUNITS to Y in units YUNITS. 

D........... LINEAR ALGEBRA 

D1......... Elementary vector and matrix operations 

D1a ....... Elementary vector operations 

D1a1 ..... Set to constant 

CSET ..... Sets the components of a vector to a scalar, all complex. 

ISET ..... Sets the components of a vector to a scalar, all integer. 

SSET ..... Sets the components of a vector to a scalar, all single precision. 

D1a2 ..... Minimum and maximum components 

ICAMAX. Finds the smallest index of the component of a complex vector having 

maximum magnitude. 

ICAMIN. Finds the smallest index of the component of a complex vector having 

minimum magnitude. 

IIMAX ... Finds the smallest index of the maximum component of a integer vector. 

IIMIN ... Finds the smallest index of the minimum of an integer vector. 

ISAMAX Finds the smallest index of the component of a single-precision vector 

having maximum absolute value. 

ISAMIN. Finds the smallest index of the component of a single-precision vector 

having minimum absolute value. 

ISMAX ... Finds the smallest index of the component of a single-precision vector 

having maximum value. 

ISMIN ... Finds the smallest index of the component of a single-precision vector 

having minimum value. 

D1a3 ..... Norm 

D1a3a ... L1 (sum of magnitudes) 

DISL1 ... Computes the 1-norm distance between two points. 

SASUM ... Sums the absolute values of the components of a single-precision vector. 

SCASUM. Sums the absolute values of the real part together with the absolute 

values of the imaginary part of the components of a complex vector. 

D1a3b… L2 (Euclidean norm) 

DISL2 ... Computes the Euclidean (2-norm) distance between two points. 

NORM2,CNORM2 Computes the Euclidean length of a vector or matrix,  

avoiding out-of-scale intermediate subexpressions. 

MNORM2,CMNORM2 Computes the Euclidean length of a vector or matrix,  

avoiding out-of-scale intermediate subexpressions 
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NRM2, CNRM2 Computes the Euclidean length of a vector or matrix,  

avoiding out-of-scale intermediate subexpressions. 

SCNRM2 . Computes the Euclidean norm of a complex vector. 

SNRM2 ... Computes the Euclidean length or L2 norm of a single-precision vector. 

D1a3c ... L∞ (maximum magnitude) 

DISLI ... Computes the infinity norm distance between two points. 

ICAMAX . Finds the smallest index of the component of a complex vector having 

maximum magnitude. 

ISAMAX . Finds the smallest index of the component of a single-precision vector 

having maximum absolute value. 

D1a4 ..... Dot product (inner product) 

CDOTC ... Computes the complex conjugate dot product, 
Tx y . 

CDOTU .. Computes the complex dot product x
T
y. 

CZCDOT . Computes the sum of a complex scalar plus a complex conjugate dot 

product, 
Ta x y , using a double-precision accumulator. 

CZDOTA . Computes the sum of a complex scalar, a complex dot product and the 

double-complex accumulator, which is set to the result ACC  ACC + a 

+ x
T
y. 

CZDOTC . Computes the complex conjugate dot product, 
Tx y , using a double-

precision accumulator. 

CZDOTI . Computes the sum of a complex scalar plus a complex dot product using 

a double-complex accumulator, which is set to the result ACC  a + x
T
y. 

CZDOTU . Computes the complex dot product x
T
y using a double-precision 

accumulator. 

CZUDOT . Computes the sum of a complex scalar plus a complex dot product, a + 

x
T
y, using a double-precision accumulator. 

DSDOT ... Computes the single-precision dot product x
T
y using a double precision 

accumulator. 

SDDOTA . Computes the sum of a single-precision scalar, a single-precision dot 

product and the double-precision accumulator, which is set to the result  

ACC  ACC + a + x
T
y. 

SDDOTI . Computes the sum of a single-precision scalar plus a singleprecision dot 

product using a double-precision accumulator, which is set to the result 

ACC  a + x
T
y. 

SDOT ..... Computes the single-precision dot product x
T
y. 
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SDSDOT. Computes the sum of a single-precision scalar and a single precision dot 

product, a + x
T
y, using a double-precision accumulator. 

D1a5 ..... Copy or exchange (swap) 

CCOPY ... Copies a vector x to a vector y, both complex. 

CSWAP ... Interchanges vectors x and y, both complex. 

ICOPY ... Copies a vector x to a vector y, both integer. 

ISWAP ... Interchanges vectors x and y, both integer. 

SCOPY ... Copies a vector x to a vector y, both single precision. 

SSWAP ... Interchanges vectors x and y, both single precision. 

D1a6 ..... Multiplication by scalar 

CSCAL ... Multiplies a vector by a scalar, y  ay, both complex. 

CSSCAL. Multiplies a complex vector by a single-precision scalar, 

y  ay. 

CSVCAL. Multiplies a complex vector by a single-precision scalar and store the 

result in another complex vector, y  ax. 

CVCAL ... Multiplies a vector by a scalar and store the result in another vector, y  

ax, all complex. 

SSCAL ... Multiplies a vector by a scalar, y  ay, both single precision. 

SVCAL ... Multiplies a vector by a scalar and store the result in another vector, y  

ax, all single precision. 

D1a7 ..... Triad (ax + y for vectors x, y and scalar a) 

CAXPY ... Computes the scalar times a vector plus a vector,  

y  ax + y, all complex. 

SAXPY ... Computes the scalar times a vector plus a vector,  

y  ax + y, all single precision. 

D1a8 ..... Elementary rotation (Givens transformation) (search also class D1b10) 

CSROT ... Applies a complex Givens plane rotation. 

CSROTM. Applies a complex modified Givens plane rotation. 

SROT ..... Applies a Givens plane rotation in single precision. 

SROTM ... Applies a modified Givens plane rotation in single precision. 

D1a10 ... Convolutions 

RCONV ... Computes the convolution of two real vectors. 

VCONC ... Computes the convolution of two complex vectors. 

VCONR ... Computes the convolution of two real vectors. 
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D1a11 ... Other vector operations 

CADD .. Adds a scalar to each component of a vector, x  x + a, all complex. 

CSUB ..... Subtracts each component of a vector from a scalar,  

x  a  x, all complex. 

DISL1 ... Computes the 1-norm distance between two points. 

DISL2 ... Computes the Euclidean (2-norm) distance between two points. 

DISLI ... Computes the infinity norm distance between two points. 

IADD ..... Adds a scalar to each component of a vector, x  x + a, all integer. 

ISUB ..... Subtracts each component of a vector from a scalar,  

x  a  x, all integer. 

ISUM ..... Sums the values of an integer vector. 

SADD ..... Adds a scalar to each component of a vector, x  x + a, all single 

precision. 

SHPROD . Computes the Hadamard product of two single-precision vectors. 

SPRDCT . Multiplies the components of a single-precision vector. 

SSUB ..... Subtracts each component of a vector from a scalar, 

x  a  x, all single precision. 

SSUM ..... Sums the values of a single-precision vector. 

SXYZ ..... Computes a single-precision xyz product. 

D1b ....... Elementary matrix operations 

CGERC ... Computes the rank-one update of a complex general matrix: 
TA A xy  . 

CGERU ... Computes the rank-one update of a complex general matrix: 
TA A xy  . 

CHER ..... Computes the rank-one update of an Hermitian matrix: 
TA A xx   with x complex and  real. 

CHER2 . Computes a rank-two update of an Hermitian matrix: 
T TA A xy yx    . 

CHER2K . Computes one of the Hermitian rank 2k operations: 

 or T T T TC AB BA C C A B B A C           , 

where C is an n by n Hermitian matrix and A and B are n by k matrices 

in the first case and k by n matrices in the second case. 

CHERK ... Computes one of the Hermitian rank k operations: 

 or T TC AA C C A A C       , 
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where C is an n by n Hermitian matrix and A is an n by k matrix in the 

first case and a k by n matrix in the second case. 

CSYR2K. Computes one of the symmetric rank 2k operations: 

 or T T T TC AB BA C C A B B A C           , 

where C is an n by n symmetric matrix and A and B are n by k matrices 

in the first case and k by n matrices in the second case. 

CSYRK ... Computes one of the symmetric rank k operations: 

 or T TC AA C C A A C       , 

where C is an n by n symmetric matrix and A is an n by k matrix in the 

first case and a k by n matrix in the second case. 

CTBSV ... Solves one of the complex triangular systems: 

   
1

1 1, ,
T

Tx A x x A x or x A x


    , 

where A is a triangular matrix in band storage mode. 

CTRSM ... Solves one of the complex matrix equations: 

   

   

T
1 1 1 1

1 1

, , , ,

, or 

T

T T

B A B B BA B A B B B A

B A B B B A

   

 

   

 

   

 
 

where A is a triangular matrix. 

CTRSV. Solves one of the complex triangular systems: 

   
1

1 1, ,  or   
T

Tx A x x A x x A x


    , 

where A is a triangular matrix. 

HRRRR ... Computes the Hadamard product of two real rectangular matrices. 

SGER.. Computes the rank-one update of a real general matrix: 
TA A xy  . 

SSYR.. Computes the rank-one update of a real symmetric matrix: 
TA A xx  . 

SSYR2. Computes the rank-two update of a real symmetric matrix: 
T TA A xy yx    . 

SSYR2K Computes one of the symmetric rank 2k operations: 

 or T T T TC AB BA C C A B B A C           , 

where C is an n by n symmetric matrix and A and B are n by k matrices 

in the first case and k by n matrices in the second case. 

SSYRK ... Computes one of the symmetric rank k operations: 

 or T TC AA C C A A C       , 
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where C is an n by n symmetric matrix and A is an n by k matrix in the 

first case and a k by n matrix in the second case. 

STBSV ... Solves one of the triangular systems:  

 1 1
T

x A x or x A x   , 

where A is a triangular matrix in band storage mode. 

STRSM . Solves one of the matrix equations: 

where B is an m by n matrix and A is a triangular matrix. 

STRSV . Solves one of the triangular linear systems: 

 1 1
T

x A x or x A x   , 

              where A is a triangular matrix. 

D1b2 ..... Norm 

NR1CB ... Computes the 1-norm of a complex band matrix in band storage mode. 

NR1RB ... Computes the 1-norm of a real band matrix in band storage mode. 

NR1RR ... Computes the 1-norm of a real matrix. 

NR2RR ... Computes the Frobenius norm of a real rectangular matrix. 

NRIRR ... Computes the infinity norm of a real matrix. 

D1b3 ..... Transpose 

TRNRR ... Transposes a rectangular matrix. 

D1b4 ..... Multiplication by vector 

BLINF ... Computes the bilinear form x
T
Ay. 

CGBMV ... Computes one of the matrix-vector operations: 

, ,  or T Ty Ax y y A x y y A y           , 

where A is a matrix stored in band storage mode. 

CGEMV ... Computes one of the matrix-vector operations: 

, ,  or T Ty Ax y y A x y y A y           , 

CHBMV ... Computes the matrix-vector operation 

y Ax y   , 

where A is an Hermitian band matrix in band Hermitian storage. 

CHEMV ... Computes the matrix-vector operation 

y Ax y   , 

where A is an Hermitian matrix. 

CTBMV . Computes one of the matrix-vector operations: 

, ,  or T Tx Ax x A x x A x   , 

where A is a triangular matrix in band storage mode. 
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CTRMV ... Computes one of the matrix-vector operations: 

, ,  or T Tx Ax x A x x A x   , 

where A is a triangular matrix. 

MUCBV. Multiplies a complex band matrix in band storage mode by a complex 

vector. 

MUCRV ... Multiplies a complex rectangular matrix by a complex vector. 

MURBV ... Multiplies a real band matrix in band storage mode by a real vector. 

MURRV ... Multiplies a real rectangular matrix by a vector. 

SGBMV. Computes one of the matrix-vector operations: 

,  or Ty Ax y y A x y       , 

where A is a matrix stored in band storage mode. 

SGEMV ... Computes one of the matrix-vector operations: 

,  or Ty Ax y y A x y       , 

SSBMV. Computes the matrix-vector operation  

y Ax y   , 

where A is a symmetric matrix in band symmetric storage mode. 

SSYMV ... Computes the matrix-vector operation 

y Ax y   , 

where A is a symmetric matrix. 

STBMV ... Computes one of the matrix-vector operations: 

 or Tx Ax x A x  , 

where A is a triangular matrix in band storage mode. 

STRMV  .. Computes one of the matrix-vector operations: 

 or Tx Ax x A x  , 

where A is a triangular matrix. 

D1b5 ..... Addition, subtraction 

ACBCB ... Adds two complex band matrices, both in band storage mode. 

ARBRB. Adds two band matrices, both in band storage mode. 

 

D1b6 ..... Multiplication 

CGEMM ... Computes one of the matrix-matrix operations: 

, ,

, , ,

 or , ,

,  or 

T T

T T T

T T T

T T T T

C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C
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CHEMM . Computes one of the matrix-matrix operations: 

 or +C AB C C BA C      , 

where A is an Hermitian matrix and B and C are m by n matrices. 

CSYMM . Computes one of the matrix-matrix operations: 

 or +C AB C C BA C      , 

where A is a symmetric matrix and B and C are m by n matrices. 

CTRMM . Computes one of the matrix-matrix operations: 

, , , ,

,or 

T T

T T

B AB B A B B BA B BA

B A B B BA

   

 

   

 
 

where B is an m by n matrix and A is a triangular matrix. 

MCRCR ... Multiplies two complex rectangular matrices, AB. 

MRRRR ... Multiplies two real rectangular matrices, AB. 

MXTXF ... Computes the transpose product of a matrix, A
T
A. 

MXTYF ... Multiplies the transpose of matrix A by matrix B, A
T
B. 

MXYTF ... Multiplies a matrix A by the transpose of a matrix B, AB
T
. 

SGEMM ... Compute one of the matrix-matrix operations: 

, ,

, or 

T T

T T

C AB C C A B C C AB

C C A B C

    

  

    

  
. 

SSYMM ... Computes one of the matrix-matrix operations: 

 or +C AB C C BA C      , 

where A is a symmetric matrix and B and C are m by n matrices. 

STRMM . Computes one of the matrix-matrix operations: 

, , , ,T TB AB B A B or B BA B BA      
 

where B is an m by n matrix and A is a triangular matrix. 

D1b7 ..... Matrix polynomial 

POLRG . 1207 Evaluates a real general matrix polynomial. 

D1b8 ..... Copy 

CCBCB . Copies a complex band matrix stored in complex band storage mode. 

CCGCG Copies a complex general matrix. 

CRBRB ... Copies a real band matrix stored in band storage mode. 

CRGRG Copies a real general matrix. 

D1b9 ..... Storage mode conversion 

CCBCG ... Converts a complex matrix in band storage mode to a complex matrix in 

full storage mode. 
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CCGCB ... Converts a complex general matrix to a matrix in complex band storage 

mode. 

CHBCB. Copies a complex Hermitian band matrix stored in band Hermitian 

storage mode to a complex band matrix stored in band storage mode. 

CHFCG ... Extends a complex Hermitian matrix defined in its upper triangle to its 

lower triangle. 

CRBCB ... Converts a real matrix in band storage mode to a complex matrix in 

band storage mode. 

CRBRG ... Converts a real matrix in band storage mode to a real general matrix. 

CRGCG. Copies a real general matrix to a complex general matrix. 

CRGRB ... Converts a real general matrix to a matrix in band storage mode. 

CRRCR ... Copies a real rectangular matrix to a complex rectangular matrix. 

CSBRB ... Copies a real symmetric band matrix stored in band symmetric storage 

mode to a real band matrix stored in band storage mode. 

CSFRG ... Extends a real symmetric matrix defined in its upper triangle to its lower 

triangle. 

D1b10 ... Elementary rotation (Givens transformation) (search also class D1a8) 

SROTG ... Constructs a Givens plane rotation in single precision. 

SROTMG. Constructs a modified Givens plane rotation in single precision. 

D2......... Solution of systems of linear equations (including inversion, LU and 

related decompositions) 

D2a ....... Real nonsymmetric matrices 

LSLTO ... Solves a real Toeplitz linear system. 

D2a1 ..... General 

LFCRG ... Computes the LU factorization of a real general matrix and estimate its 

L1 condition number. 

LFIRG ... Uses iterative refinement to improve the solution of a real general 

system of linear equations. 

LFSRG ... Solves a real general system of linear equations given the LU 

factorization of the coefficient matrix. 

LFTRG ... Computes the LU factorization of a real general matrix. 

LINRG ... Computes the inverse of a real general matrix. 

LSARG ... Solves a real general system of linear equations with iterative 

refinement. 

LSLRG ... Solves a real general system of linear equations without iterative 

refinement. 
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LIN_SOL_GEN Solves a general system of linear equations Ax = b. Using 

optional arguments, any of several related computations can be 

performed. These extra tasks include computing the LU factorization of 

A using partial pivoting, representing the determinant of A, computing 

the inverse matrix A
-1

, and solving A
T
x = b or Ax = b given the LU 

factorization of A. 

D2a2 ..... Banded 

LFCRB ... Computes the LU factorization of a real matrix in band storage mode 

and estimate its L1 condition number. 

LFIRB ... Uses iterative refinement to improve the solution of a real system of 

linear equations in band storage mode. 

LFSRB . Solves a real system of linear equations given the LU factorization of the 

coefficient matrix in band storage mode. 

LFTRB . Computes the LU factorization of a real matrix in band storage mode. 

LSARB ... Solves a real system of linear equations in band storage mode with 

iterative refinement. 

LSLRB ... Solves a real system of linear equations in band storage mode without 

iterative refinement. 

STBSV ... Solves one of the triangular systems:  1 1
T

x A x or x A x   , 

where A is a triangular matrix in band storage mode. 

D2a2a ... Tridiagonal 

LSLCR . Computes the LDU factorization of a real tridiagonal matrix A using a 

cyclic reduction algorithm. 

LSLTR ... Solves a real tridiagonal system of linear equations. 

LIN_SOL_TRI Solves multiple systems of linear equations Ajxj = yj, j = 1, 

, k. Each matrix Aj is tridiagonal with the same dimension, n: The 

default solution method is based on LU factorization computed using 

cyclic reduction. An option is used to select Gaussian elimination with 

partial pivoting. 

TRI_SOLVE A real, tri-diagonal, multiple system solver. Uses both cyclic 

reduction and Gauss elimination. Similar in function to lin_sol_tri. 

D2a3 ..... Triangular 

LFCRT ... Estimates the condition number of a real triangular matrix. 

LINRT ... Computes the inverse of a real triangular matrix. 

LSLRT . Solves a real triangular system of linear equations. 
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STRSM ... Solves one of the matrix equations: 

 
T

1 1 1, ,B A B B BA B A B      

 1 ,
T

or B B A   

where B is an m by n matrix and A is a triangular matrix. 

STRSV. Solves one of the triangular linear systems: 

 1 1
T

x A x or x A x    

where A is a triangular matrix. 

D2a4 ..... Sparse 

LFSXG ... Solves a sparse system of linear equations given the LU factorization of 

the coefficient matrix. 

LFTXG ... Computes the LU factorization of a real general sparse matrix. 

LSLXG ... Solves a sparse system of linear algebraic equations by Gaussian 

elimination. 

GMRES ... Uses restarted GMRES with reverse communication to generate an 

approximate solution of Ax = b. 

D2b....... Real symmetric matrices 

D2b1 ..... General 

D2b1a. .. Indefinite 

LCHRG ... Computes the Cholesky decomposition of a symmetric positive 

semidefinite matrix with optional column pivoting. 

LFCSF ... Computes the U DU
T
 factorization of a real symmetric matrix and 

estimate its L1 condition number. 

LFISF ... Uses iterative refinement to improve the solution of a real symmetric 

system of linear equations. 

LFSSF ... Solves a real symmetric system of linear equations given the U DU
T
 

factorization of the coefficient matrix. 

LFTSF ... Computes the U DU
T
 factorization of a real symmetric matrix. 

LSASF. Solves a real symmetric system of linear equations with iterative 

refinement. 

LSLSF ... Solves a real symmetric system of linear equations without iterative 

refinement. 

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a 

self-adjoint matrix. Using optional arguments, any of several related 

computations can be performed. These extra tasks include computing 

and saving the factorization of A using symmetric pivoting, representing 

the determinant of A, computing the inverse matrix A
-1

, or computing 
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the solution of Ax = b given the factorization of A. An optional argument 

is provided indicating that A is positive definite so that the Cholesky 

decomposition can be used. 

D2b1b. .. Positive definite 

LCHRG . Computes the Cholesky decomposition of a symmetric positive 

semidefinite matrix with optional column pivoting. 

LFCDS ... Computes the R
T
 R Cholesky factorization of a real symmetric positive 

definite matrix and estimate its L1condition number. 

LFIDS ... Uses iterative refinement to improve the solution of a real symmetric 

positive definite system of linear equations. 

LFSDS . Solves a real symmetric positive definite system of linear equations 

given the R
T
 R Choleksy factorization of the coefficient matrix. 

LFTDS ... Computes the R
T
 R Cholesky factorization of a real symmetric positive 

definite matrix. 

LINDS . Computes the inverse of a real symmetric positive definite matrix. 

LSADS . Solves a real symmetric positive definite system of linear equations with 

iterative refinement. 

LSLDS . Solves a real symmetric positive definite system of linear equations 

without iterative refinement. 

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a 

self-adjoint matrix. Using optional arguments, any of several related 

computations can be performed. These extra tasks include computing 

and saving the factorization of A using symmetric pivoting, representing 

the determinant of A, computing the inverse matrix A
-1

, or computing 

the solution of Ax = b given the factorization of A. An optional argument 

is provided indicating that A is positive definite so that the Cholesky 

decomposition can be used. 

D2b2 ..... Positive definite banded 

LFCQS . Computes the R
T
 R Cholesky factorization of a real symmetric positive 

definite matrix in band symmetric storage mode and estimate its L1 

condition number. 

LFDQS ... Computes the determinant of a real symmetric positive definite matrix 

given the R
T
 R Cholesky factorization of the band symmetric storage 

mode. 

LFIQS ... Uses iterative refinement to improve the solution of a real symmetric 

positive definite system of linear equations in band symmetric storage 

mode. 

LFSQS ... Solves a real symmetric positive definite system of linear equations 

given the factorization of the coefficient matrix in band symmetric 

storage mode. 
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LFTQS ... Computes the R
T
 R Cholesky factorization of a real symmetric positive 

definite matrix in band symmetric storage mode. 

LSAQS ... Solves a real symmetric positive definite system of linear equations in 

band symmetric storage mode with iterative refinement. 

LSLPB ... Computes the R
T
 DR Cholesky factorization of a real symmetric positive 

definite matrix A in codiagonal band symmetric storage mode. Solve a 

system Ax = b. 

LSLQS ... Solves a real symmetric positive definite system of linear equations in 

band symmetric storage mode without iterative refinement. 

D2b4 ..... Sparse 

JCGRC ... Solves a real symmetric definite linear system using the Jacobi 

preconditioned conjugate gradient method with reverse communication. 

LFSXD ... Solves a real sparse symmetric positive definite system of linear 

equations, given the Cholesky factorization of the coefficient matrix. 

LNFXD ... Computes the numerical Cholesky factorization of a sparse symmetrical 

matrix A. 

LSCXD ... Performs the symbolic Cholesky factorization for a sparse symmetric 

matrix using a minimum degree ordering or a userspecified ordering, 

and set up the data structure for the numerical Cholesky factorization. 

LSLXD ... Solves a sparse system of symmetric positive definite linear algebraic 

equations by Gaussian elimination. 

PCGRC ... Solves a real symmetric definite linear system using a preconditioned 

conjugate gradient method with reverse communication. 

D2c. ...... Complex non-Hermitian matrices 

LSLCC. Solves a complex circulant linear system. 

LSLTC ... Solves a complex Toeplitz linear system. 

D2c1 ..... General 

LFCCG ... Computes the LU factorization of a complex general matrix and estimate 

its L1 condition number. 

LFICG ... Uses iterative refinement to improve the solution of a complex general 

system of linear equations. 

LFSCG ... Solves a complex general system of linear equations given the LU 

factorization of the coefficient matrix. 

LFTCG ... Computes the LU factorization of a complex general matrix. 

LINCG. Computes the inverse of a complex general matrix. 

LSACG ... Solves a complex general system of linear equations with iterative 

refinement. 
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LSLCG ... Solves a complex general system of linear equations without iterative 

refinement. 

LIN_SOL_GEN Solves a general system of linear equations Ax = b. Using 

optional arguments, any of several related computations can be 

performed. These extra tasks include computing the LU factorization of 

A using partial pivoting, representing the determinant of A, computing 

the inverse matrix A
-1

, and solving A
T
x = b or Ax = b given the LU 

factorization of A. 

D2c2 ..... Banded 

CTBSV ... Solves one of the complex triangular systems: 

   
1

1 1, ,
T

Tx A x x A x or x A x


    , 

where A is a triangular matrix in band storage mode. 

LFCCB ... Computes the LU factorization of a complex matrix in band storage 

mode and estimate its L1condition number. 

LFICB ... Uses iterative refinement to improve the solution of a complex system 

of linear equations in band storage mode. 

LFSCB ... Solves a complex system of linear equations given the LU factorization 

of the coefficient matrix in band storage mode. 

LFTCB ... Computes the LU factorization of a complex matrix in band storage 

mode. 

LSACB ... Solves a complex system of linear equations in band storage mode with 

iterative refinement. 

LSLCB ... Solves a complex system of linear equations in band storage mode 

without iterative refinement. 

D2c2a ... Tridiagonal 

LSLCQ . Computes the LDU factorization of a complex tridiagonal matrix A 

using a cyclic reduction algorithm. 

LSLTQ ... Solves a complex tridiagonal system of linear equations. 

LIN_SOL_TRI Solves multiple systems of linear equations Ajxj = yj, j = 1, 

, k. Each matrix Aj is tridiagonal with the same dimension, n: The 

default solution method is based on LU factorization computed using 

cyclic reduction. An option is used to select Gaussian elimination with 

partial pivoting. 

 

D2c3 ..... Triangular 
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CTRSM. Solves one of the complex matrix equations: 

   

   

T
1 1 1 1

1 1

, , , ,

, or 

T

T T

B A B B BA B A B B B A

B A B B B A

   

 

   

 

   

 
 

where A is a traiangular matrix. 

CTRSV ... Solves one of the complex triangular systems: 

   
1

1 1, ,  or   
T

Tx A x x A x x A x


   
 

where A is a triangular matrix. 

LFCCT. Estimates the condition number of a complex triangular matrix. 

LINCT ... Computes the inverse of a complex triangular matrix. 

LSLCT ... Solves a complex triangular system of linear equations. 

D2c4 ..... Sparse 

LFSZG ... Solves a complex sparse system of linear equations given the LU 

factorization of the coefficient matrix. 

LFTZG ... Computes the LU factorization of a complex general sparse matrix. 

LSLZG ... Solves a complex sparse system of linear equations by Gaussian 

elimination. 

D2d. ...... Complex Hermitian matrices 

D2d1 ..... General 

D2d1a. .. Indefinite 

LFCHF ... Computes the U DU
H

 factorization of a complex Hermitian matrix and 

estimate its L1 condition number. 

LFDHF ... Computes the determinant of a complex Hermitian matrix given the U 

DU
H

 factorization of the matrix. 

LFIHF ... Uses iterative refinement to improve the solution of a complex 

Hermitian system of linear equations. 

LFSHF ... Solves a complex Hermitian system of linear equations given the U 

DU
H

 factorization of the coefficient matrix. 

LFTHF ... Computes the U DU
H

 factorization of a complex Hermitian matrix. 

LSAHF ... Solves a complex Hermitian system of linear equations with iterative 

refinement. 

LSLHF ... Solves a complex Hermitian system of linear equations without iterative 

refinement. 

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a 

self-adjoint matrix. Using optional arguments, any of several related 

computations can be performed. These extra tasks include computing 
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and saving the factorization of A using symmetric pivoting, representing 

the determinant of A, computing the inverse matrix A
-1

, or computing 

the solution of Ax = b given the factorization of A. An optional argument 

is provided indicating that A is positive definite so that the Cholesky 

decomposition can be used. 

D2d1b. .. Positive definite 

LFCDH ... Computes the R
H

 R factorization of a complex Hermitian positive 

definite matrix and estimate its L1 condition number. 

LFIDH ... Uses iterative refinement to improve the solution of a complex 

Hermitian positive definite system of linear equations. 

LFSDH ... Solves a complex Hermitian positive definite system of linear equations 

given the R
H

 R factorization of the coefficient matrix. 

LFTDH ... Computes the R
H

 R factorization of a complex Hermitian positive 

definite matrix. 

LSADH ... Solves a Hermitian positive definite system of linear equations with 

iterative refinement. 

LSLDH ... Solves a complex Hermitian positive definite system of linear equations 

without iterative refinement. 

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a 

self-adjoint matrix. Using optional arguments, any of several related 

computations can be performed. These extra tasks include computing 

and saving the factorization of A using symmetric pivoting, representing 

the determinant of A, computing the inverse matrix A
-1

, or computing 

the solution of Ax = b given the factorization of A. An optional argument 

is provided indicating that A is positive definite so that the Cholesky 

decomposition can be used. 

D2d2 ..... Positive definite banded 

LFCQH ... Computes the R
H

 R factorization of a complex Hermitian positive 

definite matrix in band Hermitian storage mode and estimate its L1 

condition number. 

LFIQH ... Uses iterative refinement to improve the solution of a complex 

Hermitian positive definite system of linear equations in band Hermitian 

storage mode. 

LFSQH ... Solves a complex Hermitian positive definite system of linear equations 

given the factorization of the coefficient matrix in band Hermitian 

storage mode. 

LFTQH ... Computes the R
H

 R factorization of a complex Hermitian positive 

definite matrix in band Hermitian storage mode. 

LSAQH ... Solves a complex Hermitian positive definite system of linear equations 

in band Hermitian storage mode with iterative refinement. 
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LSLQB. Computes the R
H

 DR Cholesky factorization of a complex hermitian 

positive-definite matrix A in codiagonal band hermitian storage mode. 

Solve a system Ax = b. 

LSLQH ... Solves a complex Hermitian positive definite system of linearequations 

in band Hermitian storage mode without iterative refinement. 

D2d4 ..... Sparse 

LFSZD ... Solves a complex sparse Hermitian positive definite system of linear 

equations, given the Cholesky factorization of the coefficient matrix. 

LNFZD ... Computes the numerical Cholesky factorization of a sparse Hermitian 

matrix A. 

LSLZD ... Solves a complex sparse Hermitian positive definite system of linear 

equations by Gaussian elimination. 

D3......... Determinants 

D3a. ...... Real nonsymmetric matrices 

D3a1 ..... General 

LFDRG. Computes the determinant of a real general matrix given the LU 

factorization of the matrix. 

D3a2 ..... Banded 

LFDRB. Computes the determinant of a real matrix in band storage mode given 

the LU factorization of the matrix. 

D3a3 ..... Triangular 

LFDRT ... Computes the determinant of a real triangular matrix. 

D3b. ...... Real symmetric matrices 

D3b1 ..... General 

D3b1a. .. Indefinite 

LFDSF ... Computes the determinant of a real symmetric matrix given the U DU
T
 

factorization of the matrix. 

D3b1b. .. Positive definite 

LFDDS. Computes the determinant of a real symmetric positive definite matrix 

given the R
H

 R Cholesky factorization of the matrix. 

D3c. ...... Complex non-Hermitian matrices 

D3c1 ..... General 

LFDCG ... Computes the determinant of a complex general matrix given the LU 

factorization of the matrix. 

D3c2 ..... Banded 
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LFDCB ... Computes the determinant of a complex matrix given the LU 

factorization of the matrix in band storage mode. 

D3c3 ..... Triangular 

LFDCT . Computes the determinant of a complex triangular matrix. 

D3d. ...... Complex Hermitian matrices 

D3d1 ..... General 

D3d1b. .. Positive definite 

LFDDH ... Computes the determinant of a complex Hermitian positive definite 

matrix given the R
H
 R Cholesky factorization of the matrix. 

D3d2 ..... Positive definite banded 

LFDQH ... Computes the determinant of a complex Hermitian positive definite 

matrix given the R
H
 R Cholesky factorization in band Hermitian storage 

mode. 

D4 ......... Eigenvalues, eigenvectors 

ARPACK_SYMMETRIC  Computes some eigenvalues and eigenvectors of the 

generalized real symmetric eigenvalue problem Ax = Bx. 

ARPACK_NONSYMMETRIC  Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

ARPACK_COMPLEX  Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

D4a. ...... Ordinary eigenvalue problems (Ax = x) 

ARPACK_SYMMETRIC  Computes some eigenvalues and eigenvectors of the 

generalized real symmetric eigenvalue problem Ax = Bx. 

ARPACK_NONSYMMETRIC Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

D4a1 ..... Real symmetric 

ARPACK_SYMMETRIC  Computes some eigenvalues and eigenvectors of the 

generalized real symmetric eigenvalue problem Ax = Bx. 

EVASF ... Computes the largest or smallest eigenvalues of a real symmetric matrix. 

EVBSF ... Computes selected eigenvalues of a real symmetric matrix. 

EVCSF ... Computes all of the eigenvalues and eigenvectors of a real symmetric 

matrix. 

EVESF ... Computes the largest or smallest eigenvalues and the corresponding 

eigenvectors of a real symmetric matrix. 

EVFSF ... Computes selected eigenvalues and eigenvectors of a real symmetric 

matrix. 
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EVLSF ... Computes all of the eigenvalues of a real symmetric matrix. 

LIN_EIG_SELF Computes the eigenvalues of a self-adjoint matrix, A. 

Optionally, the eigenvectors can be computed. This gives the 

decomposition A = VDV
T
, where V is an n  n orthogonal matrix and D 

is a real diagonal matrix. 

D4a2 ..... Real nonsymmetric 

ARPACK_NONSYMMETRIC Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

EVCRG ... Computes all of the eigenvalues and eigenvectors of a real matrix. 

EVLRG ... Computes all of the eigenvalues of a real matrix. 

LIN_EIG_GEN Computes the eigenvalues of an n  n matrix, A. 

Optionally, the eigenvectors of A or A
T
 are computed. Using the 

eigenvectors of A gives the decomposition  

AV = VE, where V is an n  n complex matrix of eigenvectors, and E is 

the complex diagonal matrix of eigenvalues. Other options include the 

reduction of A to upper triangular or Schur form, reduction to block 

upper triangular form with 2  2 or unit sized diagonal block matrices, 

and reduction to upper Hessenberg form. 

D4a3 ..... Complex Hermitian 

ARPACK_COMPLEX  Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

EVAHF ... Computes the largest or smallest eigenvalues of a complex Hermitian 

matrix. 

EVBHF ... Computes the eigenvalues in a given range of a complex Hermitian 

matrix. 

EVCHF ... Computes all of the eigenvalues and eigenvectors of a complex 

Hermitian matrix. 

EVEHF ... Computes the largest or smallest eigenvalues and the corresponding 

eigenvectors of a complex Hermitian matrix. 

EVFHF ... Computes the eigenvalues in a given range and the corresponding 

eigenvectors of a complex Hermitian matrix. 

EVLHF ... Computes all of the eigenvalues of a complex Hermitian matrix. 

LIN_EIG_SELF Computes the eigenvalues of a self-adjoint matrix, A. 

Optionally, the eigenvectors can be computed. This gives the 

decomposition A = VDV
T
, where V is an n  n orthogonal matrix and D 

is a real diagonal matrix. 

D4a4 ..... Complex non-Hermitian 

ARPACK_COMPLEX  Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 
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EVCCG ... Computes all of the eigenvalues and eigenvectors of a complex matrix. 

EVLCG ... Computes all of the eigenvalues of a complex matrix. 

LIN_EIG_GEN Computes the eigenvalues of an n  n matrix, A. 

Optionally, the eigenvectors of A or A
T
 are computed. Using the 

eigenvectors of A gives the decomposition  

AV = VE, where V is an n  n complex matrix of eigenvectors, and E is 

the complex diagonal matrix of eigenvalues. Other options include the 

reduction of A to upper triangular or Schur form, reduction to block 

upper triangular form with 2  2 or unit sized diagonal block matrices, 

and reduction to upper Hessenberg form. 

D4a6 ..... Banded 

EVASB ... Computes the largest or smallest eigenvalues of a real symmetric matrix 

in band symmetric storage mode. 

EVBSB ... Computes the eigenvalues in a given interval of a real symmetric matrix 

stored in band symmetric storage mode. 

EVCSB ... Computes all of the eigenvalues and eigenvectors of a real symmetric 

matrix in band symmetric storage mode. 

EVESB ... Computes the largest or smallest eigenvalues and the corresponding 

eigenvectors of a real symmetric matrix in band symmetric storage 

mode. 

EVFSB ... Computes the eigenvalues in a given interval and the corresponding 

eigenvectors of a real symmetric matrix stored in band symmetric 

storage mode. 

EVLSB ... Computes all of the eigenvalues of a real symmetric matrix in band 

symmetric storage mode. 

D4a7. .... Sparse matrix eigenvalue problem 

ARPACK_SYMMETRIC  Computes some eigenvalues and eigenvectors of the 

generalized real symmetric eigenvalue problem Ax = Bx. 

ARPACK_NONSYMMETRIC Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

ARPACK_COMPLEX  Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

D4b. ...... Generalized eigenvalue problems (e.g., Ax = Bx) 

ARPACK_SYMMETRIC  Computes some eigenvalues and eigenvectors of the 

generalized real symmetric eigenvalue problem Ax = Bx. 

ARPACK_NONSYMMETRIC Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

ARPACK_COMPLEX  Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 
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D4b1 ..... Real symmetric 

ARPACK_SYMMETRIC  Computes some eigenvalues and eigenvectors of the 

generalized real symmetric eigenvalue problem Ax = Bx. 

GVCSP ... Computes all of the eigenvalues and eigenvectors of the generalized real 

symmetric eigenvalue problem Az = Bz, with B symmetric positive 

definite. 

GVLSP ... Computes all of the eigenvalues of the generalized real symmetric 

eigenvalue problem Az = Bz, with B symmetric positive definite. 

LIN_GEIG_GEN Computes the generalized eigenvalues of an n  n matrix 

pencil, Av  Bv. Optionally, the generalized eigenvectors are 

computed. If either of A or B is nonsingular, there are diagonal matrices 

 and  and a complex matrix V computed such that AV = BV. 

 

D4b2 ..... Real general 

ARPACK_NONSYMMETRIC Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

GVCRG ... Computes all of the eigenvalues and eigenvectors of a generalized real 

eigensystem Az = Bz. 

GVLRG ... Computes all of the eigenvalues of a generalized real eigensystem Az = 

Bz. 

LIN_GEIG_GEN Computes the generalized eigenvalues of an n  n matrix 

pencil, Av  Bv. Optionally, the generalized eigenvectors are 

computed. If either of A or B is nonsingular, there are diagonal matrices 

 and  and a complex matrix V computed such that AV = BV. 

D4b3 ..... Complex Hermitian generalized matrix eigenvalue problems 

ARPACK_COMPLEX  Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

D4b4 ..... Complex general 

ARPACK_COMPLEX  Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

GVCCG ... Computes all of the eigenvalues and eigenvectors of a generalized 

complex eigensystem Az = Bz. 

GVLCG ... Computes all of the eigenvalues of a generalized complex eigensystem 

Az = Bz. 

LIN_GEIG_GEN Computes the generalized eigenvalues of an n  n matrix 

pencil, Av  Bv. Optionally, the generalized eigenvectors are 

computed. If either of A or B is nonsingular, there are diagonal matrices 

 and  and a complex matrix V computed such that AV = BV. 
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D4c. ...... Associated operations 

BALANC, CBSLANC Balances a general matrix before computing the 

eigenvalue-eigenvector decomposition. 

EPICG ... Computes the performance index for a complex eigensystem. 

EPIHF ... Computes the performance index for a complex Hermitian eigensystem. 

EPIRG ... Computes the performance index for a real eigensystem. 

EPISB ... Computes the performance index for a real symmetric eigensystem in 

band symmetric storage mode. 

EPISF ... Computes the performance index for a real symmetric eigensystem. 

GPICG ... Computes the performance index for a generalized complex eigensystem 

Az = Bz. 

GPIRG ... Computes the performance index for a generalized real eigensystem Az 

= Bz. 

GPISP ... Computes the performance index for a generalized real symmetric 

eigensystem problem. 

PERFECT_SHIFT Computes eigenvectors using actual eigenvalue as an 

explicit shift. Called by lin_eig_self. 

PWK ....... A rational QR algorithm for computing eigenvalues of real, symmetric 

tri-diagonal matrices. Called by lin_svd and lin_eig_self. 

D4c2 ..... Compute eigenvalues of matrix in compact form 

D4c2b. .. Hessenberg 

EVCCH . Computes all of the eigenvalues and eigenvectors of a complex upper 

Hessenberg matrix. 

EVCRH ... Computes all of the eigenvalues and eigenvectors of a real upper 

Hessenberg matrix. 

EVLCH ... Computes all of the eigenvalues of a complex upper Hessenberg matrix. 

EVLRH ... Computes all of the eigenvalues of a real upper Hessenberg matrix. 

D5 ......... QR decomposition, Gram-Schmidt orthogonalization 

LQERR ... Accumulates the orthogonal matrix Q from its factored form given the 

QR factorization of a rectangular matrix A. 

LQRRR ... Computes the QR decomposition, AP = QR, using Householder 

transformations. 

LQRSL ... Computes the coordinate transformation, projection, and complete the 

solution of the least-squares problem Ax = b. 

LSBRR ... Solves a linear least-squares problem with iterative refinement. 

LSQRR ... Solves a linear least-squares problem without iterative refinement. 
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D6......... Singular value decomposition 

ARPACK_SVD  Computes some singular values and left and right singular vectors 

of a real rectangular 
T

M NA USV  . 

LSVCR ... Computes the singular value decomposition of a complex matrix. 

LSVRR ... Computes the singular value decomposition of a real matrix. 

LIN_SOL_SVD Solves a rectangular least-squares system of linear 

equations Ax  b using singular value decomposition,  

A = USV
T
. Using optional arguments, any of several related 

computations can be performed. These extra tasks include computing 

the rank of A, the orthogonal m  m and n  n matrices U and V, and the 

m  n diagonal matrix of singular values, S. 

LIN_SVD Computes the singular value decomposition (SVD) of a rectangular 

matrix, A. This gives the decomposition  

A = USV
T
, where V is an n  n orthogonal matrix, U is an m  m 

orthogonal matrix, and S is a real, rectangular diagonal matrix. 

D7......... Update matrix decompositions 

D7b. ...... Cholesky 

LDNCH ... Downdates the R
T
R Cholesky factorization of a real symmetric positive 

definite matrix after a rank-one matrix is removed. 

LUPCH ... Updates the R
T
R Cholesky factorization of a real symmetric positive 

definite matrix after a rank-one matrix is added. 

D7c. ...... QR 

LUPQR ... Computes an updated QR factorization after the rank-one matrix xy
T
 is 

added. 

D9......... Singular, overdetermined or underdetermined systems of linear 

equations, generalized inverses 

D9a. ...... Unconstrained 

D9a1 ..... Least squares (L2) solution 

BAND_ 

ACCUMALATION Accumulatez and solves banded least-squares 

problem using Householder transformations. 

BAND_SOLVE Accumulatez and solves banded least-squares problem using 

Householder transformations. 

HOUSE_HOLDER Accumulates and solves banded least-squares problem  

using Householder transformations. 

LQRRR. Computes the QR decomposition, AP = QR, using Householder 

transformations. 
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LQRRV ... Computes the least-squares solution using Householder transformations 

applied in blocked form. 

LQRSL ... Computes the coordinate transformation, projection, and complete the 

solution of the least-squares problem Ax = b. 

LSBRR ... Solves a linear least-squares problem with iterative refinement. 

LSQRR ... Solves a linear least-squares problem without iterative refinement. 

LIN_SOL_LSQ  Solves a rectangular system of linear equations Ax  b, in a 

least-squares sense. Using optional arguments, any of several related 

computations can be performed. These extra tasks include computing 

and saving the factorization of A using column and row pivoting, 

representing the determinant of A, computing the generalized inverse 

matrix A†, or computing the least-squares solution of  

Ax  b or A
T
y  d given the factorization of A. An optional argument is 

provided for computing the following unscaled covariance matrix: C = 

(A
T
A)

-1
. 

LIN_SOL_SVD  Solves a rectangular least-squares system of linear equations Ax 

 b using singular value decomposition,  

A = USV
T
. Using optional arguments, any of several related 

computations can be performed. These extra tasks include computing 

the rank of A, the orthogonal m  m and n  n matrices U and V, and the 

m  n diagonal matrix of singular values, S. 

D9b. ...... Constrained 

D9b1 ..... Least squares (L2) solution 

LCLSQ ... Solves a linear least-squares problem with linear constraints. 

D9c. ...... Generalized inverses 

LSGRR ... Computes the generalized inverse of a real matrix. 

LIN_SOL_LSQ Solves a rectangular system of linear equations Ax  b, in a least-

squares sense. Using optional arguments, any of several related 

computations can be performed. These extra tasks include computing 

and saving the factorization of A using column and row pivoting, 

representing the determinant of A, computing the generalized inverse 

matrix A†, or computing the least-squares solution of Ax  b or A
T
y  d 

given the factorization of A. An optional argument is provided for 

computing the following unscaled covariance matrix: C = (A
T
A)

-1
. 

E ........... INTERPOLATION 

E1 ......... Univariate data (curve fitting) 

E1a ....... Polynomial splines (piecewise polynomials) 

BSINT ... Computes the spline interpolant, returning the B-spline coefficients. 

CSAKM ... Computes the Akima cubic spline interpolant. 
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CSCON ... Computes a cubic spline interpolant that is consistent with the concavity 

of the data. 

CSDEC ... Computes the cubic spline interpolant with specified derivative endpoint 

conditions. 

CSHER ... Computes the Hermite cubic spline interpolant. 

CSIEZ. Computes the cubic spline interpolant with the ‗not-a-knot‘ condition 

and return values of the interpolant at specified points. 

CSINT ... Computes the cubic spline interpolant with the ‗not-a-knot‘ condition. 

CSPER ... Computes the cubic spline interpolant with periodic boundary 

conditions. 

QDVAL ... Evaluates a function defined on a set of points using quadratic 

interpolation. 

SPLEZ ... Computes the values of a spline that either interpolates or fits user-

supplied data. 

SPLINE_FITTING  Solves constrained least-squares fitting of one-dimensional 

data by B-splines. 

SPlINE_SUPPORT  B-spline function and derivative evaluation package. 

E2 ......... Multivariate data (surface fitting) 

E2a ....... Gridded 

BS2IN ... Computes a two-dimensional tensor-product spline interpolant, 

returning the tensor-product B-spline coefficients. 

BS3IN ... Computes a three-dimensional tensor-product spline interpolant, 

returning the tensor-product B-spline coefficients. 

QD2DR ... Evaluates the derivative of a function defined on a rectangular grid 

using quadratic interpolation. 

QD2VL ... Evaluates a function defined on a rectangular grid using quadratic 

interpolation. 

QD3DR ... Evaluates the derivative of a function defined on a rectangular three-

dimensional grid using quadratic interpolation. 

QD3VL ... Evaluates a function defined on a rectangular three-dimensional grid 

using quadratic interpolation. 

SURFACE_FITTING  Solves constrained least-squares fitting of two-

dimensional data by tensor products of B-splines. 

SURFND Multidimensional interpolation and differentiation. 

E2b ....... Scattered 

SURF ..... Computes a smooth bivariate interpolant to scattered data that is locally 

a quintic polynomial in two variables. 
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SURFACE_FAIRING  Constrained weighted least-squares fitting of tensor 

product B-splines to discrete data, with covariance matrix and 

constraints at points. 

E3 ......... Service routines for interpolation 

E3a ....... Evaluation of fitted functions, including quadrature 

E3a1 ..... Function evaluation 

BS1GD ... Evaluates the derivative of a spline on a grid, given its B-spline 

representation. 

BS2DR ... Evaluates the derivative of a two-dimensional tensor-product spline, 

given its tensor-product B-spline representation. 

BS2GD ... Evaluates the derivative of a two-dimensional tensor-product spline, 

given its tensor-product B-spline representation on a grid. 

BS2VL . Evaluates a two-dimensional tensor-product spline, given its tensor-

product B-spline representation. 

BS3GD ... Evaluates the derivative of a three-dimensional tensor-product spline, 

given its tensor-product B-spline representation on a grid. 

BS3VL ... Evaluates a three-dimensional tensor-product spline, given its tensor-

product B-spline representation. 

BSVAL ... Evaluates a spline, given its B-spline representation. 

CSVAL. Evaluates a cubic spline. 

PPVAL . Evaluates a piecewise polynomial. 

QDDER ... Evaluates the derivative of a function defined on a set of points using 

quadratic interpolation. 

E3a2 ..... Derivative evaluation 

BS1GD ... Evaluates the derivative of a spline on a grid, given its B-spline 

representation. 

BS2DR ... Evaluates the derivative of a two-dimensional tensor-product spline, 

given its tensor-product B-spline representation. 

BS2GD ... Evaluates the derivative of a two-dimensional tensor-product spline, 

given its tensor-product B-spline representation on a grid. 

BS3DR ... Evaluates the derivative of a three-dimensional tensor-product spline, 

given its tensor-product B-spline representation. 

BS3GD ... Evaluates the derivative of a three-dimensional tensor-product spline, 

given its tensor-product B-spline representation on a grid. 

BSDER ... Evaluates the derivative of a spline, given its B-spline representation. 

CS1GD ... Evaluates the derivative of a cubic spline on a grid. 

CSDER ... Evaluates the derivative of a cubic spline. 
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PP1GD ... Evaluates the derivative of a piecewise polynomial on a grid. 

PPDER. Evaluates the derivative of a piecewise polynomial. 

QDDER ... Evaluates the derivative of a function defined on a set of points using 

quadratic interpolation. 

E3a3 ..... Quadrature 

BS2IG. Evaluates the integral of a tensor-product spline on a rectangular 

domain, given its tensor-product B-spline representation. 

BS3IG ... Evaluates the integral of a tensor-product spline in three dimensions 

over a three-dimensional rectangle, given its tensorproduct B-spline 

representation. 

BSITG ... Evaluates the integral of a spline, given its B-spline representation. 

CSITG. Evaluates the integral of a cubic spline. 

E3b ....... Grid or knot generation 

BSNAK ... Computes the ‗not-a-knot‘ spline knot sequence. 

BSOPK ... Computes the ‗optimal‘ spline knot sequence. 

E3c ....... Manipulation of basis functions (e.g., evaluation, change of basis) 

BSCPP ... Converts a spline in B-spline representation to piecewise polynomial 

representation. 

F ........... SOLUTION OF NONLINEAR EQUATIONS 

F1 ......... Single equation 

F1a ....... Polynomial 

F1a1 ..... Real coefficients 

ZPLRC. Finds the zeros of a polynomial with real coefficients using Laguerre‘s 

method. 

ZPORC ... Finds the zeros of a polynomial with real coefficients using the Jenkins-

Traub three-stage algorithm. 

F1a2 ..... Complex coefficients 

ZPOCC. Finds the zeros of a polynomial with complex coefficients using the 

Jenkins-Traub three-stage algorithm. 

F1b ....... Nonpolynomial 

ZANLY ... Finds the zeros of a univariate complex function using Müller‘s method. 

ZUNI.. Finds a zero of a real univariate function. 

ZBREN. Finds a zero of a real function that changes sign in a given interval. 

ZREAL ... Finds the real zeros of a real function using Müller‘s method. 

F2 ......... System of equations 
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NEQBF . Solves a system of nonlinear equations using factored secant update 

with a finite-difference approximation to the Jacobian. 

NEQBJ ... Solves a system of nonlinear equations using factored secant update 

with a user-supplied Jacobian. 

NEQNF . Solves a system of nonlinear equations using a modified Powell hybrid 

algorithm and a finite-difference approximation to the Jacobian. 

NEQNJ ... Solves a system of nonlinear equations using a modified Powell hybrid 

algorithm with a user-supplied Jacobian. 

G ........... OPTIMIZATION (search also classes K, L8) 

G1 ......... Unconstrained 

G1a. ...... Univariate 

G1a1 ..... Smooth function 

G1a1a. .. User provides no derivatives 

UVMIF ... Finds the minimum point of a smooth function of a single variable using 

only function evaluations. 

G1a1b ... User provides first derivatives 

UVMID ... Finds the minimum point of a smooth function of a single variable using 

both function evaluations and first derivative evaluations. 

G1a2 ..... General function (no smoothness assumed) 

UVMGS ... Finds the minimum point of a nonsmooth function of a single variable. 

G1b ....... Multivariate 

G1b1 ..... Smooth function 

G1b1a. .. User provides no derivatives 

UMCGF ... Minimizes a function of N variables using a conjugate gradient 

algorithm and a finite-difference gradient. 

UMINF ... Minimizes a function of N variables using a quasi-New method and a 

finite-difference gradient. 

UNLSF ... Solves a nonlinear least squares problem using a modified Levenberg-

Marquardt algorithm and a finite-difference Jacobian. 

G1b1b. .. User provides first derivatives 

UMCGG ... Minimizes a function of N variables using a conjugate gradient 

algorithm and a user-supplied gradient. 

UMIDH ... Minimizes a function of N variables using a modified Newton method 

and a finite-difference Hessian. 

UMING ... Minimizes a function of N variables using a quasi-New method and a 

user-supplied gradient. 



     

     
 

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xxxi 

     

     

 

UNLSJ ... Solves a nonlinear least squares problem using a modified Levenberg-

Marquardt algorithm and a user-supplied Jacobian. 

G1b1c. .. User provides first and second derivatives 

UMIAH ... Minimizes a function of N variables using a modified Newton method 

and a user-supplied Hessian. 

G1b2 ..... General function (no smoothness assumed) 

UMPOL ... Minimizes a function of N variables using a direct search polytope 

algorithm. 

G2......... Constrained 

G2a. ...... Linear programming 

G2a1 ..... Dense matrix of constraints 

DLPRS ... Solves a linear programming problem via the revised simplex algorithm. 

G2a2 ..... Sparse matrix of constraints 

SLPRS ... Solves a sparse linear programming problem via the revised simplex 

algorithm. 

G2b....... Transportation and assignment problem 

TRAN ..... Solves a transportation problem. 

G2e. ...... Quadratic programming 

G2e1 ..... Positive definite Hessian (i.e., convex problem) 

QPROG ... Solves a quadratic programming problem subject to linear 

equality/inequality constraints. 

G2h. ...... General nonlinear programming 

G2h1 ..... Simple bounds 

G2h1a. .. Smooth function 

G2h1a1 . User provides no derivatives 

BCLSF ... Solves a nonlinear least squares problem subject to bounds on the 

variables using a modified Levenberg-Marquardt algorithm and a finite-

difference Jacobian. 

BCONF ... Minimizes a function of N variables subject to bounds the variables 

using a quasi-Newton method and a finite-difference gradient. 

G2h1a2 . User provides first derivatives 

BCLSJ ... Solves a nonlinear least squares problem subject to bounds on the 

variables using a modified Levenberg-Marquardt algorithm and a user-

supplied Jacobian. 

BCODH. Minimizes a function of N variables subject to bounds the variables 

using a modified Newton method and a finite-difference Hessian. 
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BCONG . Minimizes a function of N variables subject to bounds the variables 

using a quasi-Newton method and a user-supplied gradient. 

G2h1a3 . User provides first and second derivatives 

BCOAH ... Minimizes a function of N variables subject to bounds the variables 

using a modified Newton method and a user-supplied Hessian. 

G2h1b ... General function (no smoothness assumed) 

BCPOL ... Minimizes a function of N variables subject to bounds the variables 

using a direct search complex algorithm. 

G2h2 ..... Linear equality or inequality constraints 

G2h2a. .. Smooth function 

G2h2a1 . User provides no derivatives 

LCONF ... Minimizes a general objective function subject to linear 

equality/inequality constraints. 

G2h2a2 . User provides first derivatives 

LCONG ... Minimizes a general objective function subject to linear 

equality/inequality constraints. 

G2h3        Nonlinear constraints 

G2h3b        Equality and inequality constraints 

NNLPG ...  Uses a sequential equality constrained QP method. 

NNLPF ... Uses a sequential equality constrained QP method. 

G2h3b1        Smooth function and constraints 

G2h3b1a        User provides no derivatives 

G2h3b1b        User provides first derivatives of function and constraints 

G4          Service routines 

G4c          Check user-supplied derivatives 

CHGRD ... Checks a user-supplied gradient of a function. 

CHHES ... Checks a user-supplied Hessian of an analytic function. 

CHJAC ... Checks a user-supplied Jacobian of a system of equations with M 

functions in N unknowns. 

G4d        Find feasible point 

GGUES . Generates points in an N-dimensional space. 

G4f        Other 

CDGRD ... Approximates the gradient using central differences. 

DDJAC ... Approximates the Jacobian of m functions in n unknowns using divided 

differences. 
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FDGRD ... Approximates the gradient using forward differences. 

FDHES ... Approximates the Hessian using forward differences and function 

values. 

FDJAC ... Approximates the Jacobian of M functions in N unknowns using forward 

differences. 

GDHES ... Approximates the Hessian using forward differences and a user-supplied 

gradient. 

H          DIFFERENTIATION, INTEGRATION 

H1          Numerical differentiation 

DERIV ... Computes the first, second or third derivative of a user-supplied 

function. 

H2          Quadrature (numerical evaluation of definite integrals) 

H2a         One-dimensional integrals 

H2a1        Finite interval (general integrand) 

H2a1a        Integrand available via user-defined procedure 

H2a1a1      Automatic (user need only specify required accuracy) 

QDAG ..... Integrates a function using a globally adaptive scheme based on Gauss-

Kronrod rules. 

QDAG1D. Integrates a function with a possible internal or endpoint singularity. 

QDAGS. Integrates a function (which may have endpoint singularities). 

QDNG ..... Integrates a smooth function using a nonadaptive rule. 

H2a2      Finite interval (specific or special type integrand including weight 

functions, oscillating and singular integrands, principal value integrals, 

splines, etc.). 

H2a2a      Integrand available via user-defined procedure 

H2a2a1    Automatic (user need only specify required accuracy) 

QDAGP ... Integrates a function with singularity points given. 

QDAWC ... Integrates a function F(X)/(X  C) in the Cauchy principal value sense. 

QDAWO ... Integrates a function containing a sine or a cosine. 

QDAWS ... Integrates a function with algebraic-logarithmic singularities. 

H2a2b      Integrand available only on grid. 

H2a2b1      Automatic (user need only specify required accuracy) 

BSITG ... Evaluates the integral of a spline, given its B-spline representation. 

H2a3      Semi-infinite interval (including e-
x
 weight function) 

H2a3a      Integrand available via user-defined procedure 
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H2a3a1    Automatic (user need only specify required accuracy) 

QDAGI ... Integrates a function over an infinite or semi-infinite interval. 

QDAWF ... Computes a Fourier integral. 

H2b. ...... Multidimensional integrals 

H2b1 ..... One or more hyper-rectangular regions (including iterated integrals) 

QMC ....... Integrates a function over a hyperrectangle using a  

quasi-Monte Carlo method. 

H2b1a. .. Integrand available via user-defined procedure 

H2b1a1 . Automatic (user need only specify required accuracy) 

QAND ..... Integrates a function on a hyper-rectangle. 

QDAG2D . Integrates a function of two variables with a possible internal or end 

point singularity. 

QDAG3D . Integrates a function of three variables with a possible internal or 

endpoint singularity. 

TWODQ ... Computes a two-dimensional iterated integral. 

H2b1b ... Integrand available only on grid 

H2b1b2 . Nonautomatic 

BS2IG ... Evaluates the integral of a tensor-product spline on a rectangular 

domain, given its tensor-product B-spline representation. 

BS3IG ... Evaluates the integral of a tensor-product spline in three dimensions 

over a three-dimensional rectangle, given its tensorproduct B-spline 

representation. 

H2c. ...... Service routines (compute weight and nodes for quadrature formulas) 

FQRUL ... Computes a Fejér quadrature rule with various classical weight 

functions. 

GQRCF ... Computes a Gauss, Gauss-Radau or Gauss-Lobatto quadrature rule 

given the recurrence coefficients for the monic polynomials orthogonal 

with respect to the weight function. 

GQRUL . Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with 

various classical weight functions. 

RECCF ... Computes recurrence coefficients for various monic polynomials. 

RECQR . Computes recurrence coefficients for monic polynomials given a 

quadrature rule. 

I            DIFFERENTIAL AND INTEGRAL EQUATIONS 

I1          Ordinary differential equations (ODE‘s) 

I1a           Initial value problems 
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I1a1         General, nonstiff or mildly stiff 

I1a1a        One-step methods (e.g., Runge-Kutta) 

FEYNMAN_KAC Solves the generalized Feynman-Kac PDE on a 

rectangular grid using a finite element Galerkin method. Initial and 

boundary conditions are provided. 

IVMRK ... Solves an initial-value problem y = f(t, y) for ordinary differential 

equations using Runge-Kutta pairs of various orders. 

IVPRK. Solves an initial-value problem for ordinary differential equations using 

the Runge-Kutta-Verner fifth-order and sixth-order method. 

I1a1b      Multistep methods (e.g., Adams predictor-corrector) 

IVOAM. Solves an initial-value problem for a system of ordinary differential 

equations of order one or two using a variable order Adams method. 

IVPAG. Solves an initial-value problem for ordinary differential equations using 

either Adams-Moulton‘s or Gear‘s BDF method. 

I1a2        Stiff and mixed algebraic-differential equations 

DASPG ... Solves a first order differential-algebraic system of equations, g(t, y, y) 

= 0, using Petzold−Gear BDF method. 

DAESL. Solves a first order differential-algebraic system of equations, g(t, y, yʹ) 
= 0, possibly with additional constraints. 

I1b       Multipoint boundary value problems 

I1b2      Nonlinear 

BVPFD ... Solves a (parameterized) system of differential equations with boundary 

conditions at two points, using a variable order, variable step size finite-

difference method with deferred corrections. 

BVPMS. Solves a (parameterized) system of differential equations with boundary 

conditions at two points, using a multiple-shooting method. 

I1b3     Eigenvalue (e.g., Sturm-Liouville) 

SLCNT ... Calculates the indices of eigenvalues of a Sturm-Liouville problem with 

boundary conditions (at regular points) in a specified subinterval of the 

real line, [, ]. 

SLEIG ... Determines eigenvalues, eigenfunctions and/or spectral density 

functions for Sturm-Liouville problems in the form with boundary 

conditions (at regular points). 

I2       Partial differential equations 

FEYNMAN_KAC Solves the generalized Feynman-Kac PDE on a 

rectangular grid using a finite element Galerkin method. Initial and 

boundary conditions are provided. 

I2a.       Initial boundary value problems 
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FEYNMAN_KAC Solves the generalized Feynman-Kac PDE on a 

rectangular grid using a finite element Galerkin method. Initial and 

boundary conditions are provided. 

I2a1       Parabolic 

FEYNMAN_KAC Solves the generalized Feynman-Kac PDE on a 

rectangular grid using a finite element Galerkin method. Initial and 

boundary conditions are provided. 

PDE_1D_MG Integrates an initial-value PDE problem with one space variable. 

I2a1      One spatial dimension 

MMOLCH Solves a system of partial differential equations of the form ut = f(x, t, u, 

ux, uxx) using the method of lines. The solution is represented with cubic 

Hermite polynomials. 

I2b       Elliptic boundary value problems 

I2b1      Linear 

I2b1a.    Second order 

I2b1a1   Poisson (Laplace) or Helmholtz equation 

I2b1a1a Rectangular domain (or topologically rectangular in the coordinate 

system) 

FPS2H  Solves Poisson‘s or Helmholtz‘s equation on a two-dimensional rectangle 

using a fast Poisson solver based on the HODIE finite-difference scheme 

on a uni mesh. 

FPS3H  Solves Poisson‘s or Helmholtz‘s equation on a three-dimensional box 

using a fast Poisson solver based on the HODIE finite-difference scheme 

on a uniform mesh. 

J       INTEGRAL TRANSFORMS 

J1      Trigonometric transforms including fast Fourier transforms 

J1a     One-dimensional 

J1a1       Real 

FFTRB  Computes the real periodic sequence from its Fourier coefficients. 

FFTRF  Computes the Fourier coefficients of a real periodic sequence. 

FFTRI  Computes parameters needed by FFTRF and FFTRB. 

J1a2     Complex 

FAST-DFT  Computes the Discrete Fourier Transform (DFT) of a rank-1 

complex array, x. 

FFTCB ... Computes the complex periodic sequence from its Fourier coefficients. 

FFTCF ... Computes the Fourier coefficients of a complex periodic sequence. 

FFTCI ... Computes parameters needed by FFTCF and FFTCB. 



     

     
 

IMSL MATH LIBRARY Appendix A: GAMS Index ∙ A-xxxvii 

     

     

 

J1a3      Sine and cosine transforms 

FCOSI .. Computes parameters needed by FCOST. 

FCOST ... Computes the discrete Fourier cosine transformation of an even 

sequence. 

FSINI ... Computes parameters needed by FSINT. 

FSINT ... Computes the discrete Fourier sine transformation of an odd sequence. 

QCOSB ... Computes a sequence from its cosine Fourier coefficients with only odd 

wave numbers. 

QCOSF ... Computes the coefficients of the cosine Fourier transform with only odd 

wave numbers. 

QCOSI . Computes parameters needed by QCOSF and QCOSB. 

QSINB. Computes a sequence from its sine Fourier coefficients with only odd 

wave numbers. 

QSINF ...  Computes the coefficients of the sine Fourier transform with only odd 

wave numbers. 

QSINI ... Computes parameters needed by QSINF and QSINB. 

J1b      Multidimensional 

FFT2B ... Computes the inverse Fourier transform of a complex periodic two-

dimensional array. 

FFT2D ... Computes Fourier coefficients of a complex periodic two-dimensional 

array. 

FFT3B ... Computes the inverse Fourier transform of a complex periodic three-

dimensional array. 

FFT3F ... Computes Fourier coefficients of a complex periodic threedimensional 

array. 

FAST_2DFT Computes the Discrete Fourier Transform (DFT) of a rank-2 

complex array, x. 

FAST_3DFT Computes the Discrete Fourier Transform (DFT) of a rank-3 

complex array, x. 

J2      Convolutions 

CCONV ... Computes the convolution of two complex vectors. 

RCONV. Computes the convolution of two real vectors. 

J3      Laplace transforms 

INLAP ... Computes the inverse Laplace transform of a complex function. 

SINLP ... Computes the inverse Laplace transform of a complex function. 

K      APPROXIMATION (search also class L8) 
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K1      Least squares (L2) approximation 

K1a      Linear least squares (search also classes D5, D6, D9) 

K1a1    Unconstrained 

K1a1a. Univariate data (curve fitting) 

K1a1a1 Polynomial splines (piecewise polynomials) 

BSLSQ ... Computes the least-squares spline approximation, and return the B-

spline coefficients. 

BSVLS ... Computes the variable knot B-spline least squares approximation to 

given data. 

CONFT ... Computes the least-squares constrained spline approximation, returning 

the B-spline coefficients. 

FRENCH_CURVE Constrained weighted least-squares fitting of B-splines to 

discrete data, with covariance matrix.and constraints at points. 

K1a1a2 Polynomials 

RCURV ... Fits a polynomial curve using least squares. 

K1a1a3 Other functions (e.g., trigonometric, user-specified) 

FNLSQ ... Compute a least-squares approximation with user-supplied basis 

functions. 

K1a1b Multivariate data (surface fitting) 

BSLS2 ... Computes a two-dimensional tensor-product spline approximant using 

least squares, returning the tensor-product B-spline coefficients. 

BSLS3 . Computes a three-dimensional tensor-product spline approximant using 

least squares, returning the tensor-product B-spline coefficients. 

SURFACE_FAIRING Constrained weighted least-squares fitting of tensor 

product B-splines to discrete data, with covariance matrix and 

constraints at points. 

K1a2 Constrained 

LIN_SOL_LSQ_CON  Routine for constrained linear-least squares based on a 

least-distance, dual algorithm. 

LIN_SOL_LSQ_INQ  Routine for constrained linear-least squares based 

on aleast-distance, dual algorithm. 

LEAST_PROJ_DISTANCE  Routine for constrained linear-least squares 

based on a least-distance, dual algorithm. 

PARALLEL_& NONONEGATIVE_LSQ Solves multiple systems of linear 

equations  Ajxj = yj, j = 1, , k. Each matrix Aj is tridiagonal with the 

same dimension, n: The default solution method is based on LU 

factorization computed using cyclic reduction. An option is used to 

select Gaussian  elimination with partial pivoting. 
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PARALLEL_& BOUNDED_LSQ Parallel routines for simple bounded constrained 

linear-least squares based on a descent algorithm. 

K1a2a ... Linear constraints 

LCLSQ ... Solves a linear least-squares problem with linear constraints. 

PARALLEL_NONNEGATIVE_LSQ Solves a large least-squares system with non-

negative  constraints, using parallel computing.  

PARALLEL_BOUNDED_LSQ Solves a large least-squares system with simple 

bounds, using parallel computing. 

K1b Nonlinear least squares 

K1b1 Unconstrained 

K1b1a Smooth functions 

K1b1a1 User provides no derivatives 

UNLSF ... Solves a nonlinear least squares problem using a modified Levenberg-

Marquardt algorithm and a finite-difference Jacobian. 

K1b1a2 User provides first derivatives 

UNLSJ. Solves a nonlinear least squares problem using a modified Levenberg-

Marquardt algorithm and a user-supplied Jacobian. 

K1b2 Constrained 

K1b2a Linear constraints 

BCLSF ... Solves a nonlinear least squares problem subject to bounds on the 

variables using a modified Levenberg-Marquardt algorithm and a finite-

difference Jacobian. 

BCLSJ ... Solves a nonlinear least squares problem subject to bounds on the 

variables using a modified Levenberg-Marquardt algorithm and a user-

supplied Jacobian. 

BCNLS ... Solves a nonlinear least-squares problem subject to bounds on the 

variables and general linear constraints. 

K2   Minimax (L∞) approximation 

RATCH. Computes a rational weighted Chebyshev approximation to a continuous 

function on an interval. 

K5   Smoothing 

CSSCV ... Computes a smooth cubic spline approximation to noisy data using 

cross-validation to estimate the smoothing parameter. 

CSSED ... Smooths one-dimensional data by error detection. 

CSSMH ... Computes a smooth cubic spline approximation to noisy data. 

K6      Service routines for approximation 



     

     
 

A-xl ∙ Appendix A: GAMS Index IMSL MATH LIBRARY 

     

     

 

K6a.    Evaluation of fitted functions, including quadrature 

K6a1   Function evaluation 

BSVAL Evaluates a spline, given its B-spline representation. 

CSVAL Evaluates a cubic spline. 

PPVAL Evaluates a piecewise polynomial. 

K6a2      Derivative evaluation 

BSDER Evaluates the derivative of a spline, given its B-spline representation. 

CS1GD Evaluates the derivative of a cubic spline on a grid. 

CSDER Evaluates the derivative of a cubic spline. 

PP1GD Evaluates the derivative of a piecewise polynomial on a grid. 

PPDER Evaluates the derivative of a piecewise polynomial. 

K6a3      Quadrature 

CSITG Evaluates the integral of a cubic spline. 

PPITG Evaluates the integral of a piecewise polynomial. 

K6c       Manipulation of basis functions (e.g., evaluation, change of basis) 

BSCPP Converts a spline in B-spline representation to piecewise polynomial 

representation. 

L       STATISTICS, PROBABILITY 

L1       Data summarization 

L1c.        Multi-dimensional data 

L1c1       Raw data 

L1c1b       Covariance, correlation 

CCORL ... Computes the correlation of two complex vectors. 

RCORL . Computes the correlation of two real vectors. 

L3      Elementary statistical graphics (search also class Q) 

L3e.      Multi-dimensional data 

L3e3     Scatter diagrams 

L3e3a   Superimposed Y vs. X 

PLOTP Prints a plot of up to 10 sets of points. 

L6      Random number generation 

L6a.     Univariate 

RAND_GEN  Generates a rank-1 array of random numbers. The output array 

entries are positive and less than 1 in value. 
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L6a21    Uniform (continuous, discrete), uniform order statistics 

RNUN  Generates pseudorandom numbers from a uniform (0, 1) distribution. 

RNUNF  Generates a pseudorandom number from a uniform (0, 1) distribution. 

L6b    Mulitivariate 

L6b21  Linear L-1 (least absolute value) approximation random numbers 

FAURE_INIT  Shuffles Faure sequence initialization. 

FAURE_FREE  Frees the structure containing information about the Faure 

sequence. 

FAURE_NEXT  Computes a shuffled Faure sequence. 

L6c.       Service routines (e.g., seed) 

RNGET ... Retrieves the current value of the seed used in the IMSL random number 

generators. 

RNOPT ... Selects the uniform (0, 1) multiplicative congruential pseudorandom 

number generator. 

RNSET. Initializes a random seed for use in the IMSL random number 

generators. 

RAND_GEN  Generates a rank-1 array of random numbers. The output array 

entries are positive and less than 1 in value. 

L8      Regression (search also classes D5, D6, D9, G, K) 

L8a.       Simple linear (e.g., y = 0 + 1x + ) (search also class L8h) 

L8a1      Ordinary least squares 

FNLSQ. Computes a least-squares approximation with user-supplied basis 

functions. 

L8a1a ... Parameter estimation 

L8a1a1. Unweighted data 

RLINE. Fits a line to a set of data points using least squares. 

L8b. ...... Polynomial (e.g., y = 0 + 1x + 2x2 +  ) (search also class L8c) 

L8b1 ..... Ordinary least squares 

L8b1b ... Parameter estimation 

L8b1b2. Using orthogonal polynomials 

RCURV Fits a polynomial curve using least squares. 

L8c      Multiple linear (e.g., y = 0 + 1x1 +  + kxk + ) 

L8c1    Ordinary least squares 

L8c1b Parameter estimation (search also class L8c1a) 

L8c1b1 Using raw data 
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LSBRR Solves a linear least-squares problem with iterative refinement. 

LSQRR Solves a linear least-squares problem without iterative refinement. 

N      DATA HANDLING 

N1      Input, output 

PGOPT  Sets or retrieves page width and length for printing. 

WRCRL  Prints a complex rectangular matrix with a given format and labels. 

WRCRN ... Prints a complex rectangular matrix with integer row and column labels. 

WRIRL ... Prints an integer rectangular matrix with a given format and labels. 

WRIRN ... Prints an integer rectangular matrix with integer row and column labels. 

WROPT ... Sets or retrieves an option for printing a matrix. 

WRRRL ... Prints a real rectangular matrix with a given format and labels. 

WRRRN ... Prints a real rectangular matrix with integer row and column labels. 

SCALAPACK_READ Reads matrix data from a file and place in a two-dimensional 

block-cyclic form on a process grid. 

SCALAPACK_WRITE Writes matrix data to a file, starting with a two-dimensional 

block-cyclic form on a process grid. 

SHOW .. Prints rank-1 and rank-2 arrays with indexing and text. 

N3      Character manipulation 

ACHAR ... Returns a character given its ASCII value. 

CVTSI ... Converts a character string containing an integer number into the 

corresponding integer form. 

IACHAR . Returns the integer ASCII value of a character argument. 

ICASE . Returns the ASCII value of a character converted to uppercase. 

IICSR ... Compares two character strings using the ASCII collating sequence but 

without regard to case. 

IIDEX ... Determines the position in a string at which a given character sequence 

begins without regard to case. 

N4      Storage management (e.g., stacks, heaps, trees) 

IWKCIN . Initializes bookkeeping locations describing the character workspace 

stack. 

IWKIN ... Initializes bookkeeping locations describing the workspace stack. 

ScaLAPACK_READ Moves data from a file to Block-Cyclic form, for use in 

ScaLAPACK. 

ScaLAPACK_WRITE Move data from Block-Cyclic form, following use in  

ScaLAPACK, to a file. 
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N5      Searching 

N5b      Insertion position 

ISRCH. Searches a sorted integer vector for a given integer and return its index. 

SRCH ..... Searches a sorted vector for a given scalar and return its index. 

SSRCH ... Searches a character vector, sorted in ascending ASCII order, for a 

given string and return its index. 

N5c      On a key 

IIDEX ... Determines the position in a string at which a given character sequence 

begins without regard to case. 

ISRCH ... Searches a sorted integer vector for a given integer and return its index. 

SRCH ..... Searches a sorted vector for a given scalar and return its index. 

SSRCH ... Searches a character vector, sorted in ascending ASCII order, for a 

given string and return its index. 

N6      Sorting 

N6a      Internal 

N6a1      Passive (i.e., construct pointer array, rank) 

N6a1a      Integer 

SVIBP ... Sorts an integer array by nondecreasing absolute value and return the 

permutation that rearranges the array. 

SVIGP ... Sorts an integer array by algebraically increasing value and return the 

permutation that rearranges the array. 

N6a1b      Real 

SVRBP. Sorts a real array by nondecreasing absolute value and return the 

permutation that rearranges the array. 

SVRGP. Sorts a real array by algebraically increasing value and return the 

permutation that rearranges the array. 

LIN_SOL_TRI Sorts a rank-1 array of real numbers x so the y results are 

algebraically nondecreasing,  
1 2 ny y y  . 

N6a2      Active 

N6a2a      Integer 

SVIBN ... Sorts an integer array by nondecreasing absolute value. 

SVIBP ... Sorts an integer array by nondecreasing absolute value and return the 

permutation that rearranges the array. 

SVIGN. Sorts an integer array by algebraically increasing value. 
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SVIGP . Sorts an integer array by algebraically increasing value and return the 

permutation that rearranges the array. 

N6a2b      Real 

SVRBN ... Sorts a real array by nondecreasing absolute value. 

SVRBP ... Sorts a real array by nondecreasing absolute value and return the 

permutation that rearranges the array. 

SVRGN ... Sorts a real array by algebraically increasing value. 

SVRGP ... Sorts a real array by algebraically increasing value and return the 

permutation that rearranges the array. 

N8      Permuting 

PERMA ... Permutes the rows or columns of a matrix. 

PERMU ... Rearranges the elements of an array as specified by a permutation. 

Q      GRAPHICS (search also classes L3) 

PLOTP ... Prints a plot of up to 10 sets of points. 

R      SERVICE ROUTINES 

IDYWK ... Computes the day of the week for a given date. 

IUMAG ... Sets or retrieves MATH/LIBRARY integer options. 

NDAYS ... Computes the number of days from January 1, 1900, to the given date. 

NDYIN ... Gives the date corresponding to the number of days since January 1, 

1900. 

SUMAG ... Sets or retrieves MATH/LIBRARY single-precision options. 

TDATE. Get stoday‘s date. 

TIMDY. Gets time of day. 

VERML ... Obtains IMSL MATH/LIBRARY-related version, system and license 

numbers. 

R1      Machine-dependent constants 

AMACH ... Retrieves single-precision machine constants. 

IFNAN ... Checks if a value is NaN (not a number). 

IMACH Retrieves integer machine constants. 

ISNAN . Detects an IEEE NaN (not-a-number). 

NAN ... Returns, as a scalar function, a value corresponding to the IEEE 754 

Standard format of floating point (ANSI/IEEE 1985) for NaN. 

UMACH . Sets or retrieves input or output device unit numbers. 

R3       Error handling 
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BUILD_ERROR_STRUCTUREFills in flags, values and update the data structure for 

error conditions that occur in Library routines.  Prepares the structure so 

that calls to routine error_post will display the reason for the error. 

R3b       Set unit number for error messages 

UMACH ... Sets or retrieves input or output device unit numbers. 

R3c       Other utilities 

ERROR_POST Prints error messages that are generated by IMSL Library routines. 

ERSET Sets error handler default print and stop actions. 

IERCD Retrieves the code for an informational error. 

N1RTY Retrieves an error type for the most recently called IMSL routine. 

S        SOFTWARE DEVELOPMENT TOOLS 

S3       Dynamic program analysis tools 

CPSEC . Returns CPU time used in seconds. 
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Appendix B: Alphabetical Summary 
of Routines 

Routines 
 

Function/Page  Purpose Statement 

A 

ACBCB see page 1667 Adds two complex band matrices, both in band storage 

mode. 

ACHAR see page 1867 Returns a character given its ASCII value. 

AMACH see page 1939 Retrieves single-precision machine constants. 

ARBRB see page 1665 Adds two band matrices, both in band storage mode. 

ARPACK_COMPLEX see page 

685 

Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

ARPACK_NONSYMMETRIC 

see page 676 

Compute some eigenvalues and eigenvectors of the 

generalized eigenvalue problem Ax = Bx. 

ARPACK_SYMMETRIC see 

page 654 

Computes some eigenvalues and eigenvectors of the 

generalized real symmetric eigenvalue problem Ax = Bx. 

ARPACK_SVD see page 451 Computes some singular values and left and right singular 

vectors of a real rectangular 
T

M NA USV  . 

B 

BCLSF see page 1452 Solves a nonlinear least squares problem subject to bounds 

on the variables using a modified Levenberg-Marquardt 
algorithm and a finite-difference Jacobian. 

BCLSJ see page 1459 Solves a nonlinear least squares problem subject to bounds 

on the variables using a modified Levenberg-Marquardt 
algorithm and a user-supplied Jacobian. 

BCNLS see page 1466 Solves a nonlinear least-squares problem subject to bounds 

on the variables and general linear constraints. 

BCOAH see page 1441 Minimizes a function of N variables subject to bounds the 

variables using a modified Newton method and a user-
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supplied Hessian. 

BCODH see page 1434 Minimizes a function of N variables subject to bounds the 

variables using a modified Newton method and a finite-
difference Hessian. 

BCONF see page 1420 Minimizes a function of N variables subject to bounds the 

variables using a quasi-Newton method and a finite-
difference gradient. 

BCONG see page 1427 Minimizes a function of N variables subject to bounds the 

variables using a quasi-Newton method and a user-supplied 
gradient. 

BCPOL see page 1448 Minimizes a function of N variables subject to bounds the 

variables using a direct search complex algorithm. 

BLINF see page 1653 Computes the bilinear form x
T
Ay. 

BS1GD see page 786 Evaluates the derivative of a spline on a grid, given its B-

spline representation. 

BS2DR see page 794 Evaluates the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline 
representation. 

BS2GD see page 797 Evaluates the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline 
representation on a grid. 

BS2IG see page 801 Evaluates the integral of a tensor-product spline on a 

rectangular domain, given its tensor-product B-spline 
representation. 

BS2IN see page 771 Computes a two-dimensional tensor-product spline 

interpolant, returning the tensor-product B-spline 
coefficients. 

BS2VL see page 792 Evaluates a two-dimensional tensor-product spline, given its 

tensor-product B-spline representation. 

BS3DR see page 807 Evaluates the derivative of a three-dimensional tensor-

product spline, given its tensor-product B-spline 
representation. 

BS3GD see page 811 Evaluates the derivative of a three-dimensional tensor-

product spline, given its tensor-product B-spline 
representation on a grid. 

BS3IG see page 817 Evaluates the integral of a tensor-product spline in three 

dimensions over a three-dimensional rectangle, given its 
tensorproduct B-spline representation. 

BS3IN see page 776 Computes a three-dimensional tensor-product spline 

interpolant, returning the tensor-product B-spline 
coefficients. 

BS3VL see page 805 Evaluates a three-dimensional tensor-product spline, given 

its tensor-product B-spline representation 

BSCPP see page 821 Converts a spline in B-spline representation to piecewise 

polynomial representation. 

BSDER see page 783 Evaluates the derivative of a spline, given its B-spline 

representation. 
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BSINT see page 761 Computes the spline interpolant, returning the B-spline 

coefficients. 

BSITG see page 789 Evaluates the integral of a spline, given its B-spline 

representation. 

BSLS2 see page 889 Computes a two-dimensional tensor-product spline 

approximant using least squares, returning the tensor-
product B-spline coefficients. 

BSLS3 see page 894 Computes a three-dimensional tensor-product spline 

approximant using least squares, returning the tensor-
product B-spline coefficients. 

BSLSQ see page 870 Computes the least-squares spline approximation, and 

return the B-spline coefficients. 

BSNAK see page 765 Computes the ‗not-a-knot‘ spline knot sequence. 

BSOPK see page 768 Computes the ‗optimal‘ spline knot sequence. 

BSVAL see page 782 Evaluates a spline, given its B-spline representation. 

BSVLS see page 874 Computes the variable knot B-spline least squares 

approximation to given data. 

BVPFD see page 1037 Solves a (parameterized) system of differential equations 

with boundary conditions at two points, using a variable 

order, variable step size finite-difference method with 
deferred corrections. 

BVPMS see page 1050 Solves a (parameterized) system of differential equations 

with boundary conditions at two points, using a multiple-
shooting method. 

C 

CADD Adds a scalar to each component of a vector, x  x + a, all complex. 

CAXPY Computes the scalar times a vector plus a vector, y  ax + y, all 

complex. 

CCBCB see page 1619 Copies a complex band matrix stored in complex band storage mode. 

CCBCG see page 1626 Converts a complex matrix in band storage mode to a complex matrix 

in full storage mode. 

CCGCB see page 1624 Converts a complex general matrix to a matrix in complex band 

storage mode. 

CCGCG see page 1616 Copies a complex general matrix. 

CCONV see page 1294 Computes the convolution of two complex vectors. 

CCOPY Copies a vector x to a vector y, both complex. 

CCORL see page 1304 Computes the correlation of two complex vectors. 

CDGRD see page 1536 Approximates the gradient using central differences. 

CDOTC 
Computes the complex conjugate dot product, 

Tx y . 

CDOTU Computes the complex dot product x
T
y. 

CGBMV Computes one of the matrix-vector operations: 

, ,  or T Ty Ax y y A x y y A y           , 
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where A is a matrix stored in band storage mode. 

CGEMM Computes one of the matrix-matrix operations: 

, ,

, , ,

 or , ,

,  or 

T T

T T T

T T T

T T T T

C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

    

    

   

   

    

    

   

   
 

 

 

CGEMV Computes one of the matrix-vector operations: 

, ,  or T Ty Ax y y A x y y A y          
 

CGERC Computes the rank-one update of a complex general matrix: 
TA A xy  . 

CGERU Computes the rank-one update of a complex general matrix: 
TA A xy  . 

CHBCB see page 1637 Copies a complex Hermitian band matrix stored in band Hermitian 

storage mode to a complex band matrix stored in band storage mode. 

CHBMV Computes the matrix-vector operation 

y Ax y   ,where A is an Hermitian band matrix in band 

Hermitian storage. 

CHECK_BUFFER_ALLOCATION 

see page 1611 

Maintains buffer sizes on the NVIDIA device and performs one-

time initialization. 

CHEMM Computes one of the matrix-matrix operations: 

 or +C AB C C BA C      , 

where A is an Hermitian matrix and B and C are m by n matrices. 

CHEMV Computes the matrix-vector operation 

y Ax y   , where A is an Hermitian matrix. 

CHER Computes the rank-one update of an Hermitian matrix: 
TA A xx   with x complex and  real. 

CHER2 Computes a rank-two update of an Hermitian matrix: 
T TA A xy yx    . 

CHER2K Computes one of the Hermitian rank 2k operations: 

 or T T T TC AB BA C C A B B A C          
, where C is an n by n Hermitian matrix and A and B are n by k 
matrices in the first case and k by n matrices in the second case. 

CHERK Computes one of the Hermitian rank k operations: 

 or T TC AA C C A A C       , 

where C is an n by n Hermitian matrix and A is an n by k matrix in 
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the first case and a k by n matrix in the second case. 

CHFCG see page 1634 Extends a complex Hermitian matrix defined in its upper triangle to 

its lower triangle. 

CHGRD see page 1558 Checks a user-supplied gradient of a function. 

CHHES see page 1561 Checks a user-supplied Hessian of an analytic function. 

CHJAC see page 1565 Checks a user-supplied Hessian of an analytic function. 

CHOL see page 1743 Checks a user-supplied Jacobian of a system of equations with M 

functions in N unknowns. 

COND see page 1746 Computes the condition number of a matrix. 

CONFT see page 879 Computes the condition number of a rectangular  

matrix, A. 

CONST see page 1919 Computes the least-squares constrained spline approximation, 

returning the B-spline coefficients. 

CPSEC see page 1874 Returns the value of various mathematical and physical constants. 

CRBCB see page 1631 Returns CPU time used in seconds. 

CRBRB see page 1617 Converts a real matrix in band storage mode to a complex matrix in 

band storage mode. 

CRBRG see page 1622 Copies a real band matrix stored in band storage mode. 

CRGCG see page 1627 Converts a real matrix in band storage mode to a real general 

matrix. 

CRGRB see page 1621 Copies a real general matrix to a complex general matrix. 

CRGRG see page 1615 Converts a real general matrix to a matrix in band storage mode. 

CRRCR see page 1629 Copies a real general matrix. 

CS1GD see page 753 Copies a real rectangular matrix to a complex rectangular matrix. 

CSAKM see page 740 Evaluates the derivative of a cubic spline on a grid. 

CSBRB see page 1635 Computes the Akima cubic spline interpolant. 

CSCAL Copies a real symmetric band matrix stored in band symmetric 

storage mode to a real band matrix stored in band storage mode. 

CSCON see page 742 Multiplies a vector by a scalar, y  ay, both complex. 

CSDEC see page 732 Computes a cubic spline interpolant that is consistent with the 

concavity of the data. 

CSDER see page 750 Computes the cubic spline interpolant with specified derivative 

endpoint conditions. 

CSET Evaluates the derivative of a cubic spline. 

CSFRG see page 1632 Sets the components of a vector to a scalar, all complex. 

CSHER see page 737 Extends a real symmetric matrix defined in its upper triangle to its 

lower triangle. 

CSIEZ see page 727 Computes the cubic spline interpolant with the ‗not-a-knot‘ 

condition and return values of the interpolant at specified points. 

CSINT see page 729 Computes the cubic spline interpolant with the ‗not-a-knot‘ 

condition. 

CSITG see page 756 Evaluates the integral of a cubic spline. 

CSPER see page 746 Computes the cubic spline interpolant with periodic boundary 
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conditions. 

CSROT Applies a complex Givens plane rotation. 

CSROTM Applies a complex modified Givens plane rotation. 

CSSCAL Multiplies a complex vector by a single-precision scalar, y  ay. 

CSSCV see page 907 Computes a smooth cubic spline approximation to noisy data using 

cross-validation to estimate the smoothing parameter. 

CSSED see page 900 Smooths one-dimensional data by error detection. 

CSSMH see page 904 Computes a smooth cubic spline approximation to noisy data. 

CSUB Subtracts each component of a vector from a scalar,  

x  a  x, all complex. 

CSVAL see page 749 Evaluates a cubic spline. 

CSVCAL Multiplies a complex vector by a single-precision scalar and store 

the result in another complex vector, y  ax. 

CSWAP Interchanges vectors x and y, both complex. 

CSYMM Computes one of the matrix-matrix operations: 

 or +C AB C C BA C      , 

where A is a symmetric matrix and B and C are m by n matrices. 

CSYR2K Computes one of the symmetric rank 2k operations: 

 or T T T TC AB BA C C A B B A C          
, 

where C is an n by n symmetric matrix and A and B are n by k 
matrices in the first case and k by n matrices in the second case. 

CSYRK Computes one of the symmetric rank k operations: 

 or T TC AA C C A A C       , 

where C is an n by n symmetric matrix and A is an n by k matrix in 
the first case and a k by n matrix in the second case. 

CTBMV Computes one of the matrix-vector operations: 

, ,  or T Tx Ax x A x x A x   , 

where A is a triangular matrix in band storage mode. 

CTBSV Solves one of the complex triangular systems: 

   
1

1 1, ,
T

Tx A x x A x or x A x


    , 

where A is a triangular matrix in band storage mode. 

CTRMM Computes one of the matrix-matrix operations: 

, , , ,

,or 

T T

T T

B AB B A B B BA B BA

B A B B BA

   

 

   

 
 

where B is an m by n matrix and A is a triangular matrix. 

CTRMV Computes one of the matrix-vector operations: 

, ,  or T Tx Ax x A x x A x   , 

where A is a triangular matrix. 

CTRSM Solves one of the complex matrix equations: 
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1 1 1 1

1 1

, , , ,

, or 

T T

T T

B A B B BA B A B B B A

B A B B B A

   

 

   

 

   

 

 
where A is a traiangular matrix 

CTRSV Solves one of the complex triangular systems: 

   
1

1 1, ,  or   
T

Tx A x x A x x A x


    , 

where A is a triangular matrix. 

CUBLAS_GET see page 1607 Returns the switchover value for a positional array argument for a 

specified BLAS routine. 

CUBLAS_SET see page 1609 Sets the switchover value for an array used by a specified BLAS 

routine. 

CUDA_ERROR_PRINT see page 

1612 

Prints error messages generated through the use of the CUDABLAS 

Library using the IMSL error handler. 

CUNIT see page 1921 Converts X in units XUNITS to Y in units YUNITS. 

CVCAL Multiplies a vector by a scalar and store the result in another vector, 

y  ax, all complex. 

CVTSI see page 1873 Converts a character string containing an integer number into the 

corresponding integer form. 

CZCDOT Computes the sum of a complex scalar plus a complex conjugate 

dot product, 
Ta x y , using a double-precision accumulator. 

CZDOTA Computes the sum of a complex scalar, a complex dot product and 

the double-complex accumulator, which is set to the result ACC  

ACC + a + x
T
y. 

CZDOTC 
Computes the complex conjugate dot product, 

Tx y , using a 

double-precision accumulator. 

CZDOTI Computes the sum of a complex scalar plus a complex dot product 

using a double-complex accumulator, which is set to the result ACC 

 a + x
T
y. 

CZDOTU Computes the complex dot product x
T
y using a double-precision 

accumulator. 

CZUDOT Computes the sum of a complex scalar plus a complex dot product, 

a + x
T
y, using a double-precision accumulator. 

D 

DAESL see page 1057 Solves a first order differential-algebraic system of 

equations, g(t, y, yʹ) = 0, possibly with additional 
constraints. 

DDJAC see page 1546 Approximates the Jacobian of m functions in n unknowns 

using divided differences 

DENSE_LP see page 1488 Solves a linear programming problem. 
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DERIV see page 995 Computes the first, second or third derivative of a user-

supplied function. 

DET see page 1750 Computes the determinant of a rectangular matrix, A. 

DIAG see page 1753 Constructs a square diagonal matrix from a rank-1 array or 

several diagonal matrices from a rank-2 array. 

DIAGONALS see page 1754 Extracts a rank-1 array whose values are the diagonal terms 

of a rank-2 array argument. 

DISL1 see page 1679 Computes the 1-norm distance between two points. 

DISL2 see page 1677 Computes the Euclidean (2-norm) distance between two 

points. 

DISLI see page 1681 Computes the infinity norm distance between two points. 

DLPRS see page 1494 Solves a linear programming problem via the revised 

simplex algorithm. 

DMACH see page 1940 See AMACH. 

DQADD  (See Extended 

Precision Arithmetic Chapter 9 ) 

Adds a double-precision scalar to the accumulator in 

extended precision. 

DQINI (See Extended 

Precision Arithmetic Chapter 9 ) 

Initializes an extended-precision accumulator with a double-

precision scalar. 

DQMUL (See Extended 

Precision Arithmetic Chapter 9 ) 

Multiplies double-precision scalars in extended precision. 

DQSTO (See Extended 

Precision Arithmetic Chapter 9 ) 

Stores a double-precision approximation to an extended-

precision scalar. 

DSDOT (See Chapter 9 ) Computes the single-precision dot product x
T
y using a 

double precision accumulator. This routine handles 

MATH/LIBRARY and STAT/LIBRARY type DOUBLE 

PRECISION options. 

DUMAG see page 1914 This routine handles MATH/LIBRARY and 

STAT/LIBRARY type DOUBLE PRECISION options. 

  

E 

EIG see page 1755 Computes the eigenvalue-eigenvector decomposition of an 

ordinary or generalized eigenvalue problem. 

EPICG see page 562 Computes the performance index for a complex 

eigensystem. 

EPIHF see page 615 Computes the performance index for a complex Hermitian 

eigensystem. 

EPIRG see page 555 Computes the performance index for a real eigensystem. 

EPISB see page 596 Computes the performance index for a real symmetric 

eigensystem in band symmetric storage mode. 

EPISF see page 578 Computes the performance index for a real symmetric 

eigensystem. 

ERROR_POST see page 1810 Prints error messages that are generated by IMSL routines 

using EPACK. 
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ERSET see page 1933 Sets error handler default print and stop actions. 

EVAHF see page 604 Computes the largest or smallest eigenvalues of a complex 

Hermitian matrix. 

EVASB see page 585 Computes the largest or smallest eigenvalues of a real 

symmetric matrix in band symmetric storage mode. 

EVASF see page 568 Computes the largest or smallest eigenvalues of a real 

symmetric matrix. 

EVBHF see page 609 Computes the eigenvalues in a given range of a complex 

Hermitian matrix. 

EVBSB see page 591 Computes the eigenvalues in a given interval of a real 

symmetric matrix stored in band symmetric storage mode. 

EVBSF see page 573 Computes selected eigenvalues of a real symmetric matrix. 

EVCCG see page 559 Computes all of the eigenvalues and eigenvectors of a 

complex matrix. 

EVCCH see page 623 Computes all of the eigenvalues and eigenvectors of a 

complex upper Hessenberg matrix. 

EVCHF see page 601 Computes all of the eigenvalues and eigenvectors of a 

complex Hermitian matrix. 

EVCRG see page 552 Computes all of the eigenvalues and eigenvectors of a real 

matrix. 

EVCRH see page 619 Computes all of the eigenvalues and eigenvectors of a real 

upper Hessenberg matrix. 

EVCSB see page 582 Computes all of the eigenvalues and eigenvectors of a real 

symmetric matrix in band symmetric storage mode. 

EVCSF see page 566 Computes all of the eigenvalues and eigenvectors of a real 
symmetric matrix. 

EVEHF see page 606 Computes the largest or smallest eigenvalues and the 

corresponding eigenvectors of a complex Hermitian matrix. 

EVESB see page 588 Computes the largest or smallest eigenvalues and the 

corresponding eigenvectors of a real symmetric matrix in 
band symmetric storage mode. 

EVESF see page 570 Computes the largest or smallest eigenvalues and the 

corresponding eigenvectors of a real symmetric matrix. 

EVFHF see page 612 Computes the eigenvalues in a given range and the 

corresponding eigenvectors of a complex Hermitian matrix. 

EVFSB see page 593 Computes the eigenvalues in a given interval and the 

corresponding eigenvectors of a real symmetric matrix 
stored in band symmetric storage mode. 

EVFSF see page 575 Computes selected eigenvalues and eigenvectors of a real 

symmetric matrix. 

EVLCG see page 557 Computes all of the eigenvalues of a complex matrix. 

EVLCH see page 621 Computes all of the eigenvalues of a complex upper 

Hessenberg matrix. 

EVLHF see page 598 Computes all of the eigenvalues of a complex Hermitian 

matrix. 

EVLRG see page 549 Computes all of the eigenvalues of a real matrix. 
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EVLRH see page 617 Computes all of the eigenvalues of a real upper Hessenberg 

matrix. 

EVLSB see page 580 Computes all of the eigenvalues of a real symmetric matrix 

in band symmetric storage mode. 

EVLSF see page 564 Computes all of the eigenvalues of a real symmetric matrix. 

EYE see page 1759 Creates a rank-2 square array whose diagonals are all the 

value one. 

F 

FAURE_FREE see page 1905 Frees the structure containing information about the Faure 

sequence. 

FAURE_INIT see page 1904 Shuffled Faure sequence initialization. 

FAURE_NEXT see page 1905 Computes a shuffled Faure sequence. 

FAST_DFT see page 1220 Computes the Discrete Fourier Transform  

of a rank-1 complex array, x. 

FAST_2DFT see page 1227 Computes the Discrete Fourier Transform (2DFT)  

of a rank-2 complex array, x. 

FAST_3DFT see page 1233 Computes the Discrete Fourier Transform (2DFT)  

of a rank-3 complex array, x. 

FCOSI see page 1259 Computes parameters needed by FCOST. 

FCOST see page 1257 Computes the discrete Fourier cosine transformation of an 

even sequence. 

FDGRD see page 1538 Approximates the gradient using forward differences. 

FDHES see page 1541 Approximates the Hessian using forward differences and 

function values. 

FDJAC see page 1555 Approximates the Jacobian of M functions in N unknowns 

using forward differences. 

FEYNMAN_KAC see page 

1128 

Solves the generalized Feynman-Kac PDE on a rectangular 

grid using a finite element Galerkin method. Initial and 
boundary conditions are provided. 

FFT see page 1761 The Discrete Fourier Transform of a complex sequence and 

its inverse transform. 

FFT_BOX see page 1763 The Discrete Fourier Transform of several complex or real 

sequences. 

FFT2B see page 1277 Computes the inverse Fourier transform of a complex 

periodic two-dimensional array. 

FFT2D see page 1274 Computes Fourier coefficients of a complex periodic two-
dimensional array. 

FFT3B see page 1285 Computes the inverse Fourier transform of a complex 

periodic three-dimensional array. 

FFT3F see page 1281 Computes Fourier coefficients of a complex periodic 

threedimensional array. 

FFTCB see page 1248 Computes the complex periodic sequence from its Fourier 

coefficients. 

FFTCF see page 1245 Computes the Fourier coefficients of a complex periodic 
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sequence. 

FFTCI see page 1251 Computes parameters needed by FFTCF and FFTCB. 

FFTRB see page 1240 Computes the real periodic sequence from its Fourier 

coefficients. 

FFTRF see page 1236 Computes the Fourier coefficients of a real periodic 

sequence. 

FFTRI see page 1243 Computes parameters needed by FFTRF and FFTRB. 

FNLSQ see page 865 Computes a least-squares approximation with user-supplied 

basis functions. 

FPS2H see page 1188 Solves Poisson‘s or Helmholtz‘s equation on a two-

dimensional rectangle using a fast Poisson solver based on 

the HODIE finite-difference scheme on a uni mesh. 

FPS3H see page 1194 Solves Poisson‘s or Helmholtz‘s equation on a three-

dimensional box using a fast Poisson solver based on the 

HODIE finite-difference scheme on a uniform mesh. 

FQRUL see page 991 Computes a Fejér quadrature rule with various classical 

weight functions. 

FSINI see page 1255 Computes parameters needed by FSINT. 

FSINT see page 1253 Computes the discrete Fourier sine transformation of an odd 

sequence. 

G 

GDHES see page 1543 Approximates the Hessian using forward differences and a 

user-supplied gradient. 

GGUES see page 1569 Generates points in an N-dimensional space. 

GMRES see page 440 Uses restarted GMRES with reverse communication to 

generate an approximate solution of Ax = b. 

GPICG see page 640 Computes the performance index for a generalized complex 

eigensystem Az = Bz. 

GPIRG see page 632 Computes the performance index for a generalized real 

eigensystem Az = Bz. 

GPISP see page 648 Computes the performance index for a generalized real 

symmetric eigensystem problem. 

GQRCF see page 983 Computes a Gauss, Gauss-Radau or Gauss-Lobatto 

quadrature rule given the recurrence coefficients for the 

monic polynomials orthogonal with respect to the weight 

function. 

GQRUL see page 979 Computes a Gauss, Gauss-Radau, or Gauss-Lobatto 
quadrature rule with various classical weight functions. 

GVCCG see page 637 Computes all of the eigenvalues and eigenvectors of a 

generalized complex eigensystem Az = Bz. 

GVCRG see page 629 Computes all of the eigenvalues and eigenvectors of a 

generalized real eigensystem Az = Bz. 

GVCSP see page 645 Computes all of the eigenvalues and eigenvectors of the 

generalized real symmetric eigenvalue problem Az = Bz, 
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with B symmetric positive definite. 

GVLCG see page 634 Computes all of the eigenvalues of a generalized complex 

eigensystem Az = Bz. 

GVLRG see page 626 Computes all of the eigenvalues of a generalized real 

eigensystem Az = Bz. 

GVLSP see page 642 Computes all of the eigenvalues of the generalized real 

symmetric eigenvalue problem Az = Bz, with B symmetric 

positive definite. 

H 

HRRRR see page 1651 Computes the Hadamard product of two real rectangular 

matrices. 

HYPOT see page 1925 
Computes 

2 2a b  without underflow or overflow. 

I 

IACHAR see page 1868 Returns the integer ASCII value of a character argument. 

IADD Adds a scalar to each component of a vector, x  x + a, all 

integer. Finds the smallest index of the component of a 
complex vector having maximum magnitude. 

ICAMAX Finds the smallest index of the component of a complex 

vector having minimum magnitude. 

ICAMIN Returns the ASCII value of a character converted to 

uppercase. 

ICASE see page 1869 Copies a vector x to a vector y, both integer. 

ICOPY Computes the day of the week for a given date. 

IDYWK see page 1880 Retrieves the code for an informational error. 

IERCD and N1RTY see page 

1934 

The inverse of the Discrete Fourier Transform of a complex 

sequence. 

IFFT see page 1765 The inverse of the Discrete Fourier Transform of a complex 

sequence. 

IFFT_BOX see page 1767 The inverse Discrete Fourier Transform of several complex 
or real sequences. 

IFNAN(X) see page 1940 Checks if a value is NaN (not a number). 

IICSR see page 1870 Compares two character strings using the ASCII collating 

sequence but without regard to case. 

IIDEX see page 1872 Determines the position in a string at which a given 

character sequence begins without regard to case. 

IIMAX Finds the smallest index of the maximum component of a 

integer vector. 

IIMIN Finds the smallest index of the minimum of an integer 

vector. 

IMACH see page 1937 Retrieves integer machine constants. 

INLAP see page 1309 Computes the inverse Laplace transform of a complex 
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function. 

ISAMAX Finds the smallest index of the component of a single-

precision vector having maximum absolute value. 

ISAMIN Finds the smallest index of the component of a single-

precision vector having minimum absolute value. 

ISET Sets the components of a vector to a scalar, all integer. 

ISMAX Finds the smallest index of the component of a single-
precision vector having maximum value. 

ISMIN Finds the smallest index of the component of a single-

precision vector having minimum value. 

ISNAN see page 1769 This is a generic logical function used to test scalars or 

arrays for occurrence of an IEEE 754 Standard format of 

floating point (ANSI/IEEE 1985) NaN, or not-a-number. 

ISRCH see page 1862 Searches a sorted integer vector for a given integer and 

return its index. 

ISUB Subtracts each component of a vector from a scalar,  

x  a  x, all integer. 

ISUM Sums the values of an integer vector. 

ISWAP Interchanges vectors x and y, both integer. 

IUMAG see page 1908 Sets or retrieves MATH/LIBRARY integer options. 

IVMRK see page 1011 Solves an initial-value problem y = f(t, y) for ordinary 

differential equations using Runge-Kutta pairs of various 
orders. 

IVOAM see page 1072 Solves an initial-value problem for a system of ordinary 

differential equations of order one or two using a variable 
order Adams method. 

IVPAG see page 1021 Solves an initial-value problem for ordinary differential 

equations using either Adams-Moulton‘s or Gear‘s BDF 
method. 

IVPRK see page 1003 Solves an initial-value problem for ordinary differential 

equations using the Runge-Kutta-Verner fifth-order and 
sixth-order method. 

J 

JCGRC see page 437 Solves a real symmetric definite linear system using the 

Jacobi preconditioned conjugate gradient method with 
reverse communication. 

L 

LCHRG see page 494 Computes the Cholesky decomposition of a symmetric 

positive semidefinite matrix with optional column pivoting. 

LCLSQ see page 467 Solves a linear least-squares problem with linear 

constraints. 

LCONF see page 1510 Minimizes a general objective function subject to linear 

equality/inequality constraints. 
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LCONG see page 1516 Minimizes a general objective function subject to linear 

equality/inequality constraints. 

LDNCH see page 499 Downdates the R
T
R Cholesky factorization of a real 

symmetric positive definite matrix after a rank-one matrix is 

removed 

LFCCB see page 333 Computes the LU factorization of a complex matrix in band 

storage mode and estimate its L1condition number. 

LFCCG see page 128 Computes the LU factorization of a complex general matrix 

and estimate its L1 condition number. 

LFCCT see page 169 Estimates the condition number of a complex triangular 

matrix. 

LFCDH see page 237 Computes the R
H

 R factorization of a complex Hermitian 

positive definite matrix and estimate its L1 condition 

number. 

LFCDS see page 186 Computes the R
T
 R Cholesky factorization of a real 

symmetric positive definite matrix and estimate its 

L1condition number. 

LFCHF see page 265 Computes the U DU
H

 factorization of a complex Hermitian 

matrix and estimate its L1 condition number. 

LFCQH see page 355 Computes the R
H

 R factorization of a complex Hermitian 

positive definite matrix in band Hermitian storage mode and 

estimate its L1 condition number. 

LFCQS see page 311 Computes the R
T
 R Cholesky factorization of a real 

symmetric positive definite matrix in band symmetric 

storage mode and estimate its L1 condition number. 

LFCRB see page 290 Computes the LU factorization of a real matrix in band 

storage mode and estimate its L1 condition number. 

LFCRG see page 93 Computes the LU factorization of a real general matrix and 

estimate its L1 condition number. 

LFCRT see page 158 Estimates the condition number of a real triangular matrix. 

LFCSF see page 215 Computes the U DU
T
 factorization of a real symmetric 

matrix and estimate its L1condition number. 

LFDCB see page 344 Computes the determinant of a complex matrix given the 

LU factorization of the matrix in band storage mode. 

LFDCG see page 148 Computes the determinant of a complex general matrix 

given the LU factorization of the matrix. 

LFDCT see page 173 Computes the determinant of a complex triangular matrix. 

LFDDH see page 258 Computes the determinant of a complex Hermitian positive 

definite matrix given the R
H

 R Cholesky factorization of the 

matrix. 

LFDDS see page 204 Computes the determinant of a real symmetric positive 

definite matrix given the R
H

 R Cholesky factorization of the 

matrix. 

LFDHF see page 276 Computes the determinant of a complex Hermitian matrix 
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given the U DU
H

 factorization of the matrix. 

LFDQH see page 365 Computes the determinant of a complex Hermitian positive 

definite matrix given the R
H

 R Cholesky factorization in 

band Hermitian storage mode. 

LFDQS see page 320 Computes the determinant of a real symmetric positive 

definite matrix given the R
T
 R Cholesky factorization of the 

band symmetric storage mode. 

LFDRB see page 301 Computes the determinant of a real matrix in band storage 

mode given the LU factorization of the matrix. 

LFDRG see page 113 Computes the determinant of a real general matrix given the 

LU factorization of the matrix. 

LFDRT see page 162 Computes the determinant of a real triangular matrix. 

LFDSF see page 226 Computes the determinant of a real symmetric matrix given 

the U DU
T
 factorization of the matrix. 

LFICB see page 341 Uses iterative refinement to improve the solution of a 

complex system of linear equations in band storage mode. 

LFICG see page 143 Uses iterative refinement to improve the solution of a 

complex general system of linear equations. 

LFIDH see page 252 Uses iterative refinement to improve the solution of a 

complex Hermitian positive definite system of linear 
equations. 

LFIDS see page 199 Uses iterative refinement to improve the solution of a real 

symmetric positive definite system of linear equations. 

LFIHF see page 273 Uses iterative refinement to improve the solution of a 

complex Hermitian system of linear equations. 

LFIQH see page 362 Uses iterative refinement to improve the solution of a 

complex Hermitian positive definite system of linear 

equations in band Hermitian storage mode. 

LFIQS see page 318 Uses iterative refinement to improve the solution of a real 

symmetric positive definite system of linear equations in 

band symmetric storage mode. 

LFIRB see page 298 Uses iterative refinement to improve the solution of a real 
system of linear equations in band storage mode. 

LFIRG see page 108 Uses iterative refinement to improve the solution of a real 

general system of linear equations. 

LFISF see page 223 Uses iterative refinement to improve the solution of a real 

symmetric system of linear equations. 

LFSCB see page 339 Solves a complex system of linear equations given the LU 

factorization of the coefficient matrix in band storage mode. 

LFSCG see page 138 Solves a complex general system of linear equations given 

the LU factorization of the coefficient matrix. 

LFSDH see page 248 Solves a complex Hermitian positive definite system of 

linear equations given the R
H

 R factorization of the 

coefficient matrix. 

LFSDS see page 195 Solves a real symmetric positive definite system of linear 

equations given the R
T
 R Choleksy factorization of the 
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coefficient matrix. 

LFSHF see page 271 Solves a complex Hermitian system of linear equations 

given the U DU
H

 factorization of the coefficient matrix. 

LFSQH see page 360 Solves a complex Hermitian positive definite system of 

linear equations given the factorization of the coefficient 
matrix in band Hermitian storage mode. 

LFSQS see page 316 Solves a real symmetric positive definite system of linear 

equations given the factorization of the coefficient matrix in 

band symmetric storage mode. 

LFSRB see page 296 Solves a real system of linear equations given the LU 

factorization of the coefficient matrix in band storage mode. 

LFSRG see page 103 Solves a real general system of linear equations given the 

LU factorization of the coefficient matrix. 

LFSSF see page 221 Solves a real symmetric system of linear equations given 

the U DU
T
 factorization of the coefficient matrix. 

LFSXD see page 408 Solves a real sparse symmetric positive definite system of 

linear equations, given the Cholesky factorization of the 
coefficient matrix. 

LFSXG see page 377 Solves a sparse system of linear equations given the LU 

factorization of the coefficient matrix. 

LFSZD see page 421 Solves a complex sparse Hermitian positive definite system 

of linear equations, given the Cholesky factorization of the 
coefficient matrix. 

LFSZG see page 391 Solves a complex sparse system of linear equations given 

the LU factorization of the coefficient matrix. 

LFTCB see page 336 Computes the LU factorization of a complex matrix in band 

storage mode. 

LFTCG see page 134 Computes the LU factorization of a complex general matrix. 

LFTDH see page 243 Computes the R
H

 R factorization of a complex Hermitian 

positive definite matrix. 

LFTDS see page 191 Computes the R
T
 R Cholesky factorization of a real 

symmetric positive definite matrix. 

LFTHF see page 268 Computes the U DU
H

 factorization of a complex Hermitian 

matrix. 

LFTQH see page 358 Computes the R
H

 R factorization of a complex Hermitian 

positive definite matrix in band Hermitian storage mode. 

LFTQS see page 314 Computes the R
T
 R Cholesky factorization of a real 

symmetric positive definite matrix in band symmetric 
storage mode. 

LFTRB see page 293 Computes the LU factorization of a real matrix in band 

storage mode. 

LFTRG see page 99 Computes the LU factorization of a real general matrix. 

LFTSF see page 218 Computes the U DU
T
 factorization of a real symmetric 

matrix. 

LFTXG see page 372 Computes the LU factorization of a real general sparse 
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matrix. 

LFTZG see page 385 Computes the LU factorization of a complex general sparse 

matrix. 

LINCG see page 150 Computes the inverse of a complex general matrix. 

LINCT see page 175 Computes the inverse of a complex triangular matrix. 

LINDS see page 206 Computes the inverse of a real symmetric positive definite 

matrix. 

LINRG see page 115 Computes the inverse of a real general matrix. 

LINRT see page 163 Computes the inverse of a real triangular matrix. 

LIN_EIG_GEN see page 533 Computes the eigenvalues of a self-adjoint  

matrix, A. 

LIN_EIG_SELF see page 526 Computes the eigenvalues of a self-adjoint  

matrix, A. 

LIN_GEIG_GEN see page 542 Computes the generalized eigenvalues of an n  n  

matrix pencil, Av = Bv. 

LIN_SOL_GEN see page 10 Solves a general system of linear equations Ax = b. 

LIN_SOL_LSQ see page 27 Solves a rectangular system of linear equations Ax  b,  
in a least-squares sense. 

LIN_SOL_SELF see page 18 Solves a system of linear equations Ax = b, where A is a 

self-adjoint matrix. 

LIN_SOL_SVD see page 36 Solves a rectangular least-squares system of linear 

equations Ax  b using singular value decomposition. 

LIN_SOL_TRI see page 45 Solves multiple systems of linear equations. 

LIN_SVD see page 57 Computes the singular value decomposition (SVD) of a 

rectangular matrix, A. 

LNFXD see page 403 Computes the numerical Cholesky factorization of a sparse 

symmetrical matrix A. 

LNFZD see page 416 Computes the numerical Cholesky factorization of a sparse 

Hermitian matrix A. 

LQERR see page 478 Accumulates the orthogonal matrix Q from its factored form 

given the QR factorization of a rectangular matrix A. 

LQRRR see page 471 Computes the QR decomposition, AP = QR, using 

Householder transformations. 

LQRRV see page 457 Computes the least-squares solution using Householder 

transformations applied in blocked form. 

LQRSL see page 483 Computes the coordinate transformation, projection, and 

complete the solution of the least-squares problem Ax = b. 

LSACB see page 327 Solves a complex system of linear equations in band storage 
mode with iterative refinement. 

LSACG see page 119 Solves a complex general system of linear equations with 

iterative refinement. 

LSADH see page 227 Solves a Hermitian positive definite system of linear 

equations with iterative refinement. 

LSADS see page 177 Solves a real symmetric positive definite system of linear 

equations with iterative refinement. 
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LSAHF see page 259 Solves a complex Hermitian system of linear equations with 

iterative refinement. 

LSAQH see page 346 Solves a complex Hermitian positive definite system of 

linear equations in band Hermitian storage mode with 
iterative refinement. 

LSAQS see page 303 Solves a real symmetric positive definite system of linear 

equations in band symmetric storage mode with iterative 
refinement. 

LSARB see page 282 Solves a real system of linear equations in band storage 

mode with iterative refinement. 

LSARG see page 83 Solves a real general system of linear equations with 

iterative refinement. 

LSASF see page 210 Solves a real symmetric system of linear equations with 

iterative refinement. 

LSBRR see page 463 Solves a linear least-squares problem with iterative 

refinement. 

LSCXD see page 399 Performs the symbolic Cholesky factorization for a sparse 

symmetric matrix using a minimum degree ordering or a 

userspecified ordering, and set up the data structure for the 
numerical Cholesky factorization. 

LSGRR see page 514 Computes the generalized inverse of a real matrix. 

LSLCB see page 330 Solves a complex system of linear equations in band storage 
mode without iterative refinement. 

LSLCC see page 428 Solves a complex circulant linear system. 

LSLCG see page 123 Solves a complex general system of linear equations 

without iterative refinement. 

LSLCQ see page 324 Computes the LDU factorization of a complex tridiagonal 

matrix A using a cyclic reduction algorithm. 

LSLCR see page 279 Computes the LDU factorization of a real tridiagonal matrix 
A using a cyclic reduction algorithm. 

LSLCT see page 165 Solves a complex triangular system of linear equations. 

LSLDH see page 232 Solves a complex Hermitian positive definite system of 

linear equations without iterative refinement. 

LSLDS see page 181 Solves a real symmetric positive definite system of linear 

equations without iterative refinement. 

LSLHF see page 262 Solves a complex Hermitian system of linear equations 
without iterative refinement. 

LSLPB see page 308 Computes the R
T
 DR Cholesky factorization of a real 

symmetric positive definite matrix A in codiagonal band 

symmetric storage mode. Solve a system Ax = b. 

LSLQB see page 352 Computes the R
H

 DR Cholesky factorization of a complex 

hermitian positive-definite matrix A in codiagonal band 
hermitian storage mode. Solve a system Ax = b. 

LSLQH see page 349 Solves a complex Hermitian positive definite system of 

linearequations in band Hermitian storage mode without 
iterative refinement. 
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LSLQS see page 305 Solves a real symmetric positive definite system of linear 

equations in band symmetric storage mode without iterative 

refinement. 

LSLRB see page 285 Solves a real system of linear equations in band storage 

mode without iterative refinement. 

LSLRG see page 87 Solves a real general system of linear equations without 

iterative refinement. 

LSLRT see page 154 Solves a real triangular system of linear equations. 

LSLSF see page 213 Solves a real symmetric system of linear equations without 

iterative refinement. 

LSLTC see page 426 Solves a complex Toeplitz linear system. 

LSLTO see page 424 Solves a real Toeplitz linear system. 

LSLTQ see page 322 Solves a complex tridiagonal system of linear equations. 

LSLTR see page 278 Solves a real tridiagonal system of linear equations. 

LSLXD see page 394 Solves a sparse system of symmetric positive definite linear 

algebraic equations by Gaussian elimination. 

LSLXG see page 366 Solves a sparse system of linear algebraic equations by 

Gaussian elimination. 

LSLZD see page 412 Solves a complex sparse Hermitian positive definite system 

of linear equations by Gaussian elimination. 

LSLZG see page 380 Solves a complex sparse system of linear equations by 

Gaussian elimination. 

LSQRR see page 451 Solves a linear least-squares problem without iterative 

refinement. 

LSVCR see page 510 Computes the singular value decomposition of a complex 

matrix. 

LSVRR see page 503 Computes the singular value decomposition of a real matrix. 

LUPCH see page 496 Updates the R
T
R Cholesky factorization of a real symmetric 

positive definite matrix after a rank-one matrix is added. 

LUPQR see page 489 Computes an updated QR factorization after the rank-one 

matrix xy
T
 is added. 

M 

MCRCR see page 1649 Multiplies two complex rectangular matrices, AB. 

MMOLCH see page 1115 Solves a system of partial differential equations of the form 

ut = f(x, t, u, ux, uxx) using the method of lines. The solution 

is represented with cubic Hermite polynomials. 

MP_SETUP see page 1926 Initializes or finalizes MPI. 

MPS_FREE see page 1485 Deallocates the space allocated for the IMSL derived type 

s_MPS. This routine is usually used in conjunction with 

READ_MPS. 

MRRRR see page 1647 Multiplies two real rectangular matrices, AB. 

MUCBV see page 1663 Multiplies a complex band matrix in band storage mode by 

a complex vector. 
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MUCRV see page 1661 Multiplies a complex rectangular matrix by a complex 

vector. 

MURBV see page 1659 Multiplies a real band matrix in band storage mode by a real 

vector. 

MURRV see page 1657 Multiplies a real rectangular matrix by a vector. 

MXTXF see page 1641 Computes the transpose product of a matrix, A
T
A. 

MXTYF see page 1643 Multiplies the transpose of matrix A by matrix B, A
T
B. 

MXYTF see page 1645 Multiplies a matrx A by the transpose of a matrix B, AB
T
. 

N 

NAN see page 1770 Returns, as a scalar function, a value corresponding to the 

IEEE 754 Standard format of floating point (ANSI/IEEE 

1985) for NaN. 

IERCD and N1RTY see page 

1934 

Retrieves an error type for the most recently called IMSL 

routine. 

NDAYS see page 1877 Computes the number of days from January 1, 1900, to the 

given date. 

NDYIN see page 1878 Gives the date corresponding to the number of days since 

January 1, 1900. 

NEQBF see page 1344 Solves a system of nonlinear equations using factored 

secant update with a finite-difference approximation to the 

Jacobian. 

NEQBJ see page 1350 Solves a system of nonlinear equations using factored 
secant update with a user-supplied Jacobian. 

NEQNF see page 1337 Solves a system of nonlinear equations using a modified 

Powell hybrid algorithm and a finite-difference 

approximation to the Jacobian. 

NEQNJ see page 1340 Solves a system of nonlinear equations using a modified 

Powell hybrid algorithm with a user-supplied Jacobian. 

NNLPF see page 1522 Uses a sequential equality constrained QP method. 

NNLPG see page 1528 Uses a sequential equality constrained QP method. 

NORM see page 1771 Computes the norm of a rank-1 or rank-2 array. For rank-3 

arrays, the norms of each rank-2 array, in dimension 3, are 

computed. 

NR1CB see page 1676 Computes the 1-norm of a complex band matrix in band 
storage mode. 

NR1RB see page 1674 Computes the 1-norm of a real band matrix in band storage 

mode. 

NR1RR see page 1671 Computes the 1-norm of a real matrix. 

NR2RR see page 1673 Computes the Frobenius norm of a real rectangular matrix. 

NRIRR see page 1670 Computes the infinity norm of a real matrix. 
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O 

OPERATORS:  

.h. see page 1726 Computes transpose and conjugate transpose of a matrix. 

.hx. see page 1717 Computes matrix-vector and matrix-matrix products. 

.i. see page 1728 Computes the inverse matrix, for square non-singular 

matrices. 

.ix. see page 1730 Computes the inverse matrix times a vector or matrix for 

square non-singular matrices. 

.t. see page 1723 Computes transpose and conjugate transpose of a matrix. 

.tx. see page 1711 Computes matrix-vector and matrix-matrix products. 

.x. see page 1707 Computes matrix-vector and matrix-matrix products. 

.xh. see page 1720 Computes matrix-vector and matrix-matrix products. 

.xi. see page 1740 Computes the inverse matrix times a vector or matrix for 

square non-singular matrices. 

.xt. see page 1714 Computes matrix-vector and matrix-matrix products. 

ORTH see page 1774 Orthogonalizes the columns of a rank-2 or rank-3 array. 

P 

PCGRC see page 431 Solves a real symmetric definite linear system using a 

preconditioned conjugate gradient method with reverse 
communication. 

PARALLEL_NONNEGATIVE_LS

Q see page 67 

Solves a linear, non-negative constrained least-squares  

system. 

PARALLEL_BOUNDED_LSQ see 

page 75 

Solves a linear least-squares system with bounds on  

the unknowns. 

PDE_1D_MG see page 1081 Method of lines with Variable Griddings. 

PERMA see page 1844 Permutes the rows or columns of a matrix. 

PERMU see page 1842 Rearranges the elements of an array as specified by a 

permutation. 

PGOPT see page 1840 Prints a plot of up to 10 sets of points. 

PLOTP see page 1914 Prints a plot of up to 10 sets of points. 

POLRG see page 1655 Evaluates a real general matrix polynomial. 

PP1GD see page 828 Evaluates the derivative of a piecewise polynomial on a 

grid. 

PPDER see page 825 Evaluates the derivative of a piecewise polynomial. 

PPITG see page 831 Evaluates the integral of a piecewise polynomial. 

PPVAL see page 823 Evaluates a piecewise polynomial. 

PRIME see page 1917 Decomposes an integer into its prime factors. 

Q 

QAND see page 973 Integrates a function on a hyper-rectangle. 

QCOSB see page 1270 Computes a sequence from its cosine Fourier coefficients 
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with only odd wave numbers. 

QCOSF see page 1268 Computes the coefficients of the cosine Fourier transform 

with only odd wave numbers. 

QCOSI see page 1272 Computes parameters needed by QCOSF and QCOSB. 

QD2DR see page 840 Evaluates the derivative of a function defined on a 

rectangular grid using quadratic interpolation. 

QD2VL see page 838 Evaluates a function defined on a rectangular grid using 

quadratic interpolation. 

QD3DR see page 847 Evaluates the derivative of a function defined on a 

rectangular three-dimensional grid using quadratic 
interpolation. 

QD3VL see page 843 Evaluates a function defined on a rectangular three-

dimensional grid using quadratic interpolation. 

QDAG see page 922 Integrates a function using a globally adaptive scheme 
based on Gauss-Kronrod rules. 

QDAGI see page 935 Integrates a function over an infinite or semi-infinite 

interval. 

QDAGP see page 925 Integrates a function with singularity points given. 

QDAG1D see page 929 Integrates a function with a possible internal or endpoint 

singularity. 

QDAG2D see page 960 Integrates a function of  two variables with a possible 
internal or end point singularity. 

QDAG3D see page 966 Integrates a function of three variables with a possible 

internal or endpoint singularity. 

QDAGS see page 918 Integrates a function (which may have endpoint 

singularities). 

QDAWC see page 949 Integrates a function F(X)/(X  C) in the Cauchy principal 

value sense. 

QDAWF see page 942 Computes a Fourier integral. 

QDAWO see page 938 Integrates a function containing a sine or a cosine. 

QDAWS see page 946 Integrates a function with algebraic-logarithmic 

singularities. 

QDDER see page 835 Evaluates the derivative of a function defined on a set of 

points using quadratic interpolation. 

QDNG see page 953 Integrates a smooth function using a nonadaptive rule. 

QDVAL see page 833 Evaluates a function defined on a set of points using 

quadratic interpolation. 

QMC see page 976 Integrates a function over a hyperrectangle using a  

quasi-Monte Carlo method. 

QPROG see page 1506 Solves a quadratic programming problem subject to linear 

equality/inequality constraints. 

QSINB see page 1263 Computes a sequence from its sine Fourier coefficients with 

only odd wave numbers. 

QSINF see page 1261 Computes the coefficients of the sine Fourier transform with 

only odd wave numbers. 
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QSINI see page 1266 Computes parameters needed by QSINF and QSINB. 

R 

RAND see page 1777 Computes a scalar, rank-1, rank-2 or rank-3 array of random 

numbers. 

RAND_GEN see page 1882 Generates a rank-1 array of random numbers. 

RANK see page 1779 Computes the mathematical rank of a rank-2 or rank-3 

array. 

RATCH see page 910 Computes a rational weighted Chebyshev approximation to 

a continuous function on an interval. 

RCONV see page 1289 Computes the convolution of two real vectors. 

RCORL see page 1299 Computes the correlation of two real vectors. 

RCURV see page 861 Fits a polynomial curve using least squares. 

READ_MPS see page 1475 Reads an MPS file containing a linear program problem or a 

quadratic programming problem. 

RECCF see page 986 Computes recurrence coefficients for various monic 

polynomials. 

RECQR see page 988 Computes recurrence coefficients for monic polynomials 

given a quadrature rule. 

RLINE see page 858 Fits a line to a set of data points using least squares. 

RNGET see page 1891 Retrieves the current value of the seed used in the IMSL 

random number generators. 

RNIN32 see page 1894 Initializes the 32-bit Merseene Twister generator using an 

array. 

RNGE32 see page 1895 Retrieves the current table used in the 32-bit  

Mersenne Twister generator. 

RNSE32 see page 1897 Sets the current table used in the 32-bit  
Mersenne Twister generator. 

RNIN64 see page 1897 Initializes the 32-bit Merseene Twister generator  

using an array. 

RNGE64 see page 1898 Retrieves the current table used in the 64-bit  

Mersenne Twister generator 

RNSE64 see page 1900 Sets the current table used in the 64-bit  

Mersenne Twister generator. 

RNOPT see page 1893 Selects the uniform (0, 1) multiplicative congruential 

pseudorandom number generator. 

RNSET see page 1892 Initializes a random seed for use in the IMSL random 

number generators. 

RNUN see page 1902 Generates pseudorandom numbers from a uniform (0, 1) 

distribution. 

RNUNF see page 1900 Generates a pseudorandom number from a uniform (0, 1) 

distribution. 
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S 

SADD Adds a scalar to each component of a vector, x  x + a, all 

single precision. 

SASUM Sums the absolute values of the components of a single-

precision vector. 

SAXPY Computes the scalar times a vector plus a vector,  

y  ax + y, all single precision. 

ScaLAPACK_EXIT see page 

1809 

Exits ScaLAPACK mode for the IMSL Library routines. 

ScaLAPACK_GETDIM see 

page 1794 

Calculates the row and column dimensions of a local 

distributed array based on the size of the array to be distributed 

and the row and column blocking factors to be used.  

ScaLAPACK_MAP see page 

1805 

Maps array data from a global array to local arrays in the two-

dimensional block-cyclic form required by ScaLAPACK 
routines. 

ScaLAPACK_READ see page 

1795 

Reads matrix data from a file and transmits it into the two-

dimensional block-cyclic form required by ScaLAPACK 
routines. 

ScaLAPACK_SETUP see page 

1792 

Sets up a processor grid and calculates default values for use in 

mapping arrays to the processor grid 

ScaLAPACK_UNMAP see page 

1807 

Unmaps array data from local distributed arrays to a global 

array. 

ScaLAPACK_WRITE see page 

1797 

Writes the matrix data to a file. 

SCASUM Sums the absolute values of the real part together with the 

absolute values of the imaginary part of the components of a 

complex vector. 

SCNRM2 Computes the Euclidean norm of a complex vector. 

SCOPY Copies a vector x to a vector y, both single precision. 

SDDOTA Computes the sum of a single-precision scalar, a single-

precision dot product and the double-precision accumulator, 

which is set to the result ACC  ACC + a + x
T
y. 

SDDOTI Computes the sum of a single-precision scalar plus a 

singleprecision dot product using a double-precision 

accumulator, which is set to the result ACC  a + x
T
y. 

SDOT Computes the single-precision dot product x
T
y. 

SDSDOT Computes the sum of a single-precision scalar and a single 

precision dot product, a + x
T
y, using a double-precision 

accumulator. 

SGBMV Computes one of the matrix-vector operations: 

,  or Ty Ax y y A x y       , 

where A is a matrix stored in band storage mode. 

SGEMM Computes one of the matrix-matrix operations: 
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, ,

, or 

T T

T T

C AB C C A B C C AB

C C A B C

    

  

    

  

. 

SGEMV Computes one of the matrix-vector operations: 

,  or Ty Ax y y A x y       , 

SGER Computes the rank-one update of a real general matrix: 
TA A xy  . 

SHOW see page 1813 Prints rank-1 or rank-2 arrays of numbers in a readable format. 

SHPROD Computes the Hadamard product of two single-precision 

vectors. 

SINLP see page 1311 Computes the inverse Laplace transform of a complex 

function. 

SLCNT see page 1213 Calculates the indices of eigenvalues of a Sturm-Liouville 

problem with boundary conditions (at regular points) in a 

specified subinterval of the real line, [, ]. 

SLEIG see page 1201 Determines eigenvalues, eigenfunctions and/or spectral density 

functions for Sturm-Liouville problems in the form with 
boundary conditions (at regular points). 

SLPRS see page 1497 Solves a sparse linear programming problem via the revised 

simplex algorithm. 

SNRM2 Computes the Euclidean length or L2 norm of a single-

precision vector. 

SORT_REAL see page 1846 Sorts a rank-1 array of real numbers x so the y results are 

algebraically nondecreasing, y1  y2   yn. 

SPLEZ see page 758 Computes the values of a spline that either interpolates or fits 

user-supplied data. 

SPLINE_CONSTRAINTS see 

page 702 

Returns the derived type array result. 

SPLINE_FITTING see page 704 Weighted least-squares fitting by B-splines to discrete One-

Dimensional data is performed. 

SPLINE_VALUES see page 703 Returns an array result, given an array  

of input 

SPRDCT Multiplies the components of a single-precision vector. 

SRCH see page 1860 Searches a sorted vector for a given scalar and return its index. 

SROT Applies a Givens plane rotation in single precision. 

SROTG Constructs a Givens plane rotation in single precision. 

SROTM Applies a modified Givens plane rotation in single precision. 

SROTMG Constructs a modified Givens plane rotation in single 

precision. 

SSBMV Computes the matrix-vector operation  

y Ax y   , 

where A is a symmetric matrix in band symmetric storage 
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mode. 

SSCAL Multiplies a vector by a scalar, y  ay, both single precision. 

SSET Sets the components of a vector to a scalar, all single precision. 

SSPMV Performs the matrix-vector operation y := *A*x + *y. 

SSPR Performs the matrix-vector operation. 

SSPR2 Performs the symmetric rank 2 operation. 

SSRCH see page 1864 Searches a character vector, sorted in ascending ASCII order, 

for a given string and return its index. 

SSUB Subtracts each component of a vector from a scalar,  

x  a  x, all single precision. 

SSUM Sums the values of a single-precision vector. 

SSWAP Interchanges vectors x and y, both single precision. 

SSYMM Computes one of the matrix-matrix operations: 

 or +C AB C C BA C      , 

where A is a symmetric matrix and B and C are m by n 
matrices. 

SSYMV Computes the matrix-vector operation 

y Ax y   , 

where A is a symmetric matrix. 

SSYR Computes the rank-one update of a real symmetric matrix: 
TA A xx  . 

SSYR2 Computes the rank-two update of a real symmetric matrix: 
T TA A xy yx    . 

SSYR2K Computes one of the symmetric rank 2k operations: 

 or T T T TC AB BA C C A B B A C          
where C is an n by n symmetric matrix and A and B are n by k 

matrices in the first case and k by n matrices in the second 
case. 

SSYRK Computes one of the symmetric rank k operations: 

 or T TC AA C C A A C       , 

where C is an n by n symmetric matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second case. 

STBMV Computes one of the matrix-vector operations: 
Tx Ax or x A x  , 

where A is a triangular matrix in band storage mode. 

STBSV Solves one of the triangular systems: 

 1 1
T

x A x or x A x   , 

where A is a triangular matrix in band storage mode. 

STPMV Performs one of the matrix-vector operations. 

STPSV Solves one of the systems of equations. 
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STRMM Computes one of the matrix-matrix operations: 

, , , ,T TB AB B A B or B BA B BA      
 

where B is an m by n matrix and A is a triangular matrix. 

STRMV Computes one of the matrix-vector operations: 
Tx Ax or x A x  , 

where A is a triangular matrix. 

STRSM Solves one of the matrix equations: 

 
T

1 1 1, ,B A B B BA B A B        

 1 ,
T

or B B A   

where B is an m by n matrix and A is a triangular matrix. 

STRSV Solves one of the triangular linear systems: 

 1 1
T

x A x or x A x    

where A is a triangular matrix. 

SURF see page 851 Computes a smooth bivariate interpolant to scattered data that 

is locally a quintic polynomial in two variables. 

SURFND see page 855 Multidimensional interpolation and differentiation. 

SURFACE_CONSTRAINTS 

see page 714 

Returns the derived type array result given  

optional input. 

SURFACE_FITTING see page 

716 

Weighted least-squares fitting by tensor product  

B-splines to discrete two-dimensional data  
is performed. 

SURFACE_VALUES see page 

715 

Returns a tensor product array result, given two arrays of  

independent variable values. 

SVCAL Multiplies a vector by a scalar and store the result in another 

vector, y  ax, all single precision. 

SVD see page 1780 Computes the singular value decomposition of a rank-2 or 

rank-3 array, 
TA USV . 

SVIBN see page 1857 Sorts an integer array by nondecreasing absolute value. 

SVIGN see page 1852 Sorts an integer array by algebraically increasing value. 

SVIGP see page 1853 Sorts an integer array by algebraically increasing value and 
returns the permutation that rearranges the array. 

SVRBN see page 1855 Sorts a real array by nondecreasing absolute value. 

SVRBP see page 1856 Sorts a real array by nondecreasing absolute value and returns 

the permutation that rearranges the array. 

SVRGN see page 1849 Sorts a real array by algebraically increasing value. 

SVRGP see page 1850 Sorts a real array by algebraically increasing value and returns 

the permutation that rearranges the array. 

SXYZ Computes a single-precision xyz product. 
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T 

TDATE see page 1876 Gets today‘s date. 

TIMDY see page 1875 Gets time of day. 

TRAN see page 1504 Solves a transportation problem. 

TRNRR see page 1639 Transposes a rectangular matrix. 

TWODQ see page 955 Computes a two-dimensional iterated integral. 

U 

UMACH see page 1942 Sets or retrieves input or output device unit numbers. 

UMAG see page 1911 Handles MATH/LIBRARY and STAT/LIBRARY type 

REAL and double precision options. 

UMCGF see page 1395 Minimizes a function of N variables using a conjugate 

gradient algorithm and a finite-difference gradient. 

UMCGG see page 1399 Minimizes a function of N variables using a conjugate 

gradient algorithm and a user-supplied gradient. 

UMIAH see page 1389 Minimizes a function of N variables using a modified 

Newton method and a user-supplied Hessian. 

UMIDH see page 1384 Minimizes a function of N variables using a modified 

Newton method and a finite-difference Hessian. 

UMINF see page 1372 Minimizes a function of N variables using a modified 

Newton method and a finite-difference Hessian. 

UMING see page 1377 Minimizes a function of N variables using a quasi-New 

method and a finite-difference gradient. 

UMPOL see page 1403 Minimizes a function of N variables using a direct search 

polytope algorithm. 

UNIT see page 1783 Normalizes the columns of a rank-2 or rank-3 array so each 

has Euclidean length of value one. 

UNLSF see page 1407 Solves a nonlinear least squares problem using a modified 

Levenberg-Marquardt algorithm and a finite-difference 
Jacobian. 

UNLSJ see page 1413 Solves a nonlinear least squares problem using a modified 

Levenberg-Marquardt algorithm and a user-supplied 
Jacobian. 

UVMGS see page 1369 Finds the minimum point of a nonsmooth function of a 

single variable. 

UVMID see page 1365 Finds the minimum point of a smooth function of a single 

variable using both function evaluations and first derivative 

evaluations. 

UVMIF see page 1362 Finds the minimum point of a smooth function of a single 

variable using only function evaluations. 

V 

VCONC see page 1685 Computes the convolution of two complex vectors. 

VCONR see page 1683 Computes the convolution of two real vectors. 
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VERML see page 1881 Obtains IMSL MATH/LIBRARY-related version, system 

and license numbers. 

W 

WRCRL see page 1830 Prints a complex rectangular matrix with a given format and 

labels. 

WRCRN see page 1827 Prints a complex rectangular matrix with integer row and 

column labels. 

WRIRL see page 1825 Prints an integer rectangular matrix with a given format and 

labels. 

WRIRN see page 1822 Prints an integer rectangular matrix with integer row and 

column labels. 

WROPT see page 1833 Sets or retrieves an option for printing a matrix. 

WRRRL see page 1819 Prints a real rectangular matrix with a given format and 

labels. 

WRRRN see page 1817 Prints a real rectangular matrix with integer row and column 

labels. 

Z 

ZANLY see page 1325 Finds the zeros of a univariate complex function using 

Müller‘s method. 

ZBREN see page 1331 Finds a zero of a real function that changes sign in a given 
interval. 

ZPLRC see page 1320 Finds the zeros of a polynomial with real coefficients using 

Laguerre‘s method. 

ZPOCC see page 1324 Finds the zeros of a polynomial with complex coefficients 

using the Jenkins-Traub three-stage algorithm. 

ZPORC see page 1322 Finds the zeros of a polynomial with real coefficients using 

the Jenkins-Traub three-stage algorithm. 

ZQADD Adds a double complex scalar to the accumulator in 

extended precision. 

ZQINI Initializes an extended-precision complex accumulator to a 

double complex scalar. 

ZQMUL Multiplies double complex scalars using extended precision. 

ZQSTO Stores a double complex approximation to an extended-

precision complex scalar. 

ZREAL see page 1334 Finds the real zeros of a real function using Müller‘s 

method. 

ZUNI see page 1328 Finds a zero of a real univariate function. 
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Appendix D: Benchmarking or 
Timing Programs 

Scalar Program Descriptions 

A set of benchmark programs is provided to allow the user to compare performance of certain 

routines with similar functionality. For example, the user may wish to compare the performance of 

lin_sol_gen with LFTRG and LFSRG. Since performance is dependent on problem size and 

platform, the user can run the time_sol_gen benchmark to determine which of these routines is 

likely to perform better with the user's specific configuration. 

The benchmark programs are supplied with the product in the examples benchmark subdirectory 

and are summarized in Table B.  These programs call Fortran 90 array functions, in single and 

double precision, to compare the routines shown in columns A and B of Table B. The main 

program reads single lines of input: 

NSIZE         NTRIES PREC             ―Description‖ 

NSIZE         NTRIES PREC             ―Description‖ 

...  

QUIT  

The parameters of NSIZE and NTRIES appear in summary tables. The parameter PREC has values 

1, 2 or 3. The choice depends on whether the user wants precision of single, double or both 

versions timed. The array functions return a summary table with these 6 values:  

1. Average time 

2. Standard deviation 

3. Total time 

4. nsize 

5. ntries 

6. Time Units/Sec.  

As an example, the program time_rand_gend is compiled and linked with the single and double 

precision timing functions  s_rand_gen_bench and d_rand_gen_bench. 

The two lines of input are: 

100000        5 3 ―Random Number Benchmarks‖      

QUIT  
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This routine evaluates the elapsed time to compute 100,000 random numbers obtained with 

rand_gen and rnun(drnun).  The ―Average‖ is the mean of the individual elapsed times for 5 

calls to the routines, obtaining 100,000 random numbers in each call. The ―St. Dev.‖ is the 

standard deviation for that ―Average‖. This value indicates the variability of the ―Average‖.  In 

order for this value to provide any useful information it is necessary for |NTRIES| > 1. The value  

|NTRIES| = 1 is acceptable, but only one time sample and no standard deviation is obtained. 

Values of NTRIES > 0 result in the printing of results as shown in Table A.  The numbers in the 

table will vary depending on the machine and other factors that impact performance of Fortran 

codes.  

 

Benchmark of rand_gend and rnun: 

Date of benchmark, (Y, Mo, D, H, M, S): 2006 5 11    8 58 58 

1 3.6000E+00 3.2000E+00 Average 

2 4.8990E-01 4.0000E-01 St. Dev. 

3 1.8000E+01 1.6000E+01 Total Ticks 

4 1.0000E+04 1.0000E+04 Size 

5 5.0000E+00 5.0000E+00 Repeats  

6 5.0000E+01 5.0000E+01 Ticks per sec. 

Benchmark of rand_gend and rnun: 

Date of benchmark, (Y, Mo, D, H, M, S): 2006 5 11    8 58 58 

1 2.8000E+00 3.2000E+00 Average 

2 4.0000E-01 4.0000E-01 St. Dev. 

3 1.4000E+01 1.6000E+01 Total Ticks 

4 1.0000E+04 1.0000E+01 Size 

5 5.0000E+00 5.0000E+00 Repeats  

6 5.0000E+01 5.0000E+01 Ticks per sec. 

Table A: Benchmark Summary: rand_gen, rnun, (drnun) 

If NTRIES < 0 the 6  2 functions return the tabular values shown, with |NTRIES| samples. No 

printing is performed with NTRIES < 0. 

To compute a related benchmark such as the rate ―random numbers per second‖ for single 

precision rand_gen, separately calculate 

rate = size  ticks per sec./average 

= 104  50/3.6 
= 138,889. numbers/sec. 

= 0.139 million numbers/sec. 
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Number 

 
Program Units 

Routines  
Timed for Comparison 

A B 

1 time_dft.f90, 

s_dft_bench.f90, 

d_dft_bench.f90 

fast_dft fftcf, fftcb 

dfftcf, dfftcb 

2 time_eig_gen.f90, 

s_eig_gen_bench.f90, 

d_eig_gen_bench.f90 

lin_eig_gen e8crg, de8crg 

3 time_eig_self.f90, 

s_eig_self_bench.f90, 

d_eig_self_bench.f90 

lin_eig_self e5csf, de5csf 

4 time_geig_gen.f90, 

s_geig_gen_bench.f90, 

d_geig_gen_bench.f90 

lin_geig_gen g8crg, dg8crg 

5 time_inv_chol.f90, 

s_inv_chol_bench.f90, 

d_inv_chol_bench.f90 

lin_sol_self l2nds, dl2nds 

6 time_inv_gen.f90, 

s_inv_gen_bench.f90, 

d_inv_gen_bench.f90 

lin_sol_gen l2nrg, dl2nrg 

7 time_inv_lsq.f90, 

s_inv_lsq_bench.f90, 

d_inv_lsq_bench.f90 

lin_sol_lsq lsgrr, dlsgrr 

8 time_inv_self.f90, 

s_inv_self_bench.f90, 

d_inv_self_bench.f90 

lin_sol_self lftsf, lfssf 

dlftsf, dlfssf 

9 time_rand_gen.f90, 

s_inv_rand_bench.f90, 

d_inv_rand_bench.f90 

rand_gen rnun, drnun 

Table B: Scalar Benchmark Comparisons 
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Number 

 
Program Units 

Routines  
Timed for Comparison 

A B 

10 time_sol_chol.f90, 

s_inv_sol_chol.f90, 

d_inv_sol_chol.f90 

lin_sol_self lftds, lfsds 

dlftds, dlfsds 

11 time_sol_gen.f90, 

s_sol_gen_bench.f90, 

d_sol_gen_bench.f90 

lin_sol_gen lftrg, lfsrg 

dftrg, dlfsrg 

12 time_sol_lsq.f90, 

s_sol_lsq_bench.f90, 

d_sol_lsq_bench.f90 

lin_sol_lsq l2rrv, dl2rrv 

13 time_sol_self.f90, 

s_sol_self_bench.f90, 

d_sol_self_bench.f90 

lin_sol_self lftsf, lfssf, 

dlftsf, dlfssf 

14 time_svd.f90, 

s_svd_bench.f90, 

d_svd_bench.f90 

lin_svd lsvrr, dlsvrr 

15 time_tri.f90, 

s_tri_bench.f90, 

d_tri_bench.f90 

lin_sol_tri lslcr, dlslcr 

16 time_mult.f90 

s_mult_bench.f90 

d_mult_bench.f90 

A .x. B matmul(D,E) 

Table B- continued: Scalar Benchmark Comparisons 

Notes on the comparable problems: 

1. Perform forward and backward DFT of a random complex sequence of size NSIZE. 

2. Compute eigenexpansion of a random real matrix of dimension  

NSIZE  NSIZE. 

3. Compute eigenexpansion of a random symmetric real matrix of dimension  

NSIZE  NSIZE. 

4. Compute generalized eigenexpansion of a random matrix pencil of dimension  

NSIZE  NSIZE. 

5. Compute the inverse of a positive definite real matrix of dimension NSIZE  NSIZE. 

Uses Cholesky method. 

6. Compute the inverse of a general real random matrix of dimension NSIZE  NSIZE. 

Uses LU factorization. 
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7. Compute the generalized inverse of a general real random matrix of dimension  

(2  NSIZE)  NSIZE. Uses QR factorization for lin_sol_lsq and SVD for LSGRR. 

8. Compute the inverse of a real, symmetric random matrix of dimension  

NSIZE  NSIZE. Uses Aasen's decomposition for lin_sol_self and Bunch-

Kaufman decomposition for LFTSF. 

9. Generate NSIZE random numbers. 

10. Solve a single system of linear equations with a positive definite real random matrix of 

dimension NSIZE  NSIZE. 

11. Solve a single system of linear equations with a general real random matrix of 

dimension NSIZE  NSIZE. 

12. Solve a single least-squares system of linear equations with a real random matrix of 

dimension (2  NSIZE)  NSIZE. 

13. Solve a single system of linear equations with a symmetric real random matrix of 

dimension NSIZE  NSIZE. 

14. Compute the full singular value decomposition of a general real random matrix of 

dimension NSIZE  NSIZE. 

15. Solve NSIZE systems of linear equations of a nonsymmetric  

NSIZE  NSIZE tridiagonal matrix. Uses cyclic reduction. 

16. Compute products of square matrices of size NSIZE  NSIZE.  Compare the IMSL 

defined operation C = A .x. B with F = matmul(D,E).  The arrays are assumed 

shape.    Identical problems A = D and B = E are timed. 

17. Compare times to use SHOW() for writing a random array of size NSIZE to a 

CHARACTER buffer vs. writing the same array to a scratch file. 

Parallel Program Descriptions 

A set of parallel benchmark programs is shown in Table D. These main programs call Fortran 90 

box data type functions, in single and double precision.  They compare our parallel allocation 

algorithm to a scalar sequential method. The main program reads single lines of input: 

 

NSIZE NTIMES NRACKS PREC ROOT_WORKS ―Description‖ 

QUIT to Stop 

Two initial lines of output echo the ―Description‖ field, whether or not the root is working, and the 

number of processors in the MPI communicator.  The parameters NSIZE,  NTRIES and NRACKS 

appear in the summary tables.  The parameter PREC has values 1, 2 or 3.  The choice depends on 

whether the user wants precision of single, double or both versions timed.  The array functions 

return a 7 2 summary table of values.  The (1:6, 1) and (1:6,2) elements of this array represent the 

results and parameters of the benchmark for the parallel and non-parallel versions.  The (7,1) and 
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(7,2) elements of this array represent the ratio of the parallel to the scalar times and a first-order 

approximation to the variation in the ratio. 

Parallel Box Version Scalar Box Equivalent 

1. Average time Average time 

2. Standard deviation Standard deviation 

3. Total Seconds Total Seconds 

4. nsize nsize 

5. nracks nracks 

6. ntries ntries 

7. Parallel/Scalar Ratio Variation in Ratio 

As an example, the program time_parallel_i is compiled and linked with the single and 

double precision timing functions  s_parallel_i_bench and d_parallel_i_bench. 

This routine evaluates the time to compute 4 inverse matrices of size 600 by 600 using the defined 

operator .i. The ―Average‖ is the mean of the individual elapsed times for 5 calls to the routines, 

obtaining 4 inverses in each call. The ―St. Dev.‖ is the standard deviation for that ―Average‖. This 

value indicates the variability of the ―Average‖. In order for this value to provide any useful 

information it is necessary for |NTRIES| > 1. The value |NTRIES| = 1 is acceptable, but only one 

time sample and no standard deviation is obtained. Values of NTRIES > 0 result in the printing of 

results as shown in Table C.  The numbers in the table will vary depending on the machine and 

other factors that impact performance of Fortran codes. If NTRIES < 0 the 7  2 functions return 

the tabular values shown, with |NTRIES| samples. No printing is performed with NTRIES < 0. 
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Single precision benchmark of parallel .i. and non-parallel .i.: 

Date of benchmark, (Y, Mo, D, H, M, S): 2006 5 11    8 58 58 

1 1.5815E+00 4.0241E+00 Average 

2 2.5031E-01 1.8035E-02 St. Dev. 

3 7.9077E+00 2.0121E+01 Total Seconds 

4 5.0000E+01 5.0000E+01 Size 

5 5.0000E+00 5.0000E+00 Racks per box 

6 5.0000E+00 5.0000E+00 Repeats 

Non-parallel/parallel averages and variation: 

 2.5444E+00 3.9129E-01  

 

Double precision benchmark of parallel .i. and non-parallel .i.: 

Date of benchmark, (Y, Mo, D, H, M, S): 2006 5 11    8 58 59 

1 1.6985D+00 4.0372D+00 Average 

2 9.8576D-01 2.3836D-02 St. Dev. 

3 8.4923D+00 2.0186D+01 Total Seconds 

4 5.0000D+01 5.0000D+01 Size 

5 5.0000D+00 5.0000D+00 Racks per box 

6 5.0000D+00 5.0000D+00 Repeats 

Non-parallel/parallel averages and variation: 

 2.3770D+00 1.2392D-01  

Table C: Performance Summary: Box operator .i. 
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Below is a list of the performance evaluation programs that time the box data computations using 

parallel and non-parallel resources. 

 

Number Program Units Function Timed 

1 time_parallel_i.f90, 

s_parallel_i_bench.f90, 

d_parallel_i_bench.f90 

.i. A 

2 time_parallel_ix.f90, 

s_parallel_ix_bench.f90, 

d_parallel_ix_bench.f90 

A .ix. B 

3 time_parallel_xi.f90, 

s_parallel_xi_bench.f90, 

d_parallel_xi_bench.f90 

B .xi. A 

4 time_parallel_x.f90, 

s_parallel_x_bench.f90, 

d_parallel_x_bench.f90 

A .x. B 

5 time_parallel_tx.f90, 

s_parallel_tx_bench.f90, 

d_parallel_tx_bench.f90 

A .tx. B 

6 time_parallel_xt.f90, 

s_parallel_xt_bench.f90, 

d_parallel_xt_bench.f90 

A .xt. B 

7 time_parallel_hx.f90, 

s_parallel_hx_bench.f90, 

d_parallel_hx_bench.f90 

A .hx. B 

8 time_parallel_xh.f90, 

s_parallel_xh_bench.f90, 

d_parallel_xh_bench.f90 

A .xh. B 

9 time_parallel_chol.f90, 

s_parallel_chol_bench.f90, 

d_parallel_chol_bench.f90 

CHOL(A) 

10 time_parallel_cond.f90, 

s_parallel_cond_bench.f90, 

d_parallel_cond_bench.f90 

COND(A) 

11 time_parallel_rank.f90, 

s_parallel_rank_bench.f90, 

d_parallel_rank_bench.f90 

RANK(A) 
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Number Program Units Function Timed 

12 time_parallel_det.f90, 

s_parallel_det_bench.f90, 

d_parallel_det_bench.f90 

DET(A) 

13 time_parallel_orth.f90, 

s_parallel_orth_bench.f90, 

d_parallel_orht_bench.f90 

ORTH(A,R=R) 

14 time_parallel_svd.f90, 

s_parallel_svd_bench.f90, 

d_parallel_svd_bench.f90 

SVD(A,U=U,V=V) 

15 time_parallel_norm.f90, 

s_parallel_norm_bench.f90, 

d_parallel_norm_bench.f90 

NORM(A,TYPE=I) 

16 time_parallel_eig.f90, 

s_parallel_eig_bench.f90, 

d_parallel_eig_bench.f90 

EIG(A,W=W) 

17 time_parallel_fft.f90, 

s_parallel_fft_bench.f90, 

d_parallel_fft_bench.f90 

FFT_BOX(A) 

IFFT_BOX(A) 

 

Table D: Parallel and non-Parallel Box Comparisons  
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Product Support 

Contacting IMSL Support 

Users within support warranty may contact Rogue Wave Software regarding the use of the IMSL 

Fortran Numerical Library.  IMSL Support can consult on the following topics: 

 Clarity of documentation 

 Possible IMSL-related programming problems 

 Choice of IMSL Libraries functions or procedures for a particular problem 

Not included in these topics are mathematical/statistical consulting and debugging of your 

program. 

Refer to the following for IMSL Product Support contact information: 

 http://www.vni.com/tech/imsl/phone.php. 

The following describes the procedure for consultation with IMSL Support: 

1. Include your IMSL license number 

2. Include the product name and version number: IMSL Fortran Numerical Library 

Version 7.0 

3. Include compiler and operating system version numbers 

4. Include the name of the routine for which assistance is needed and a description of the 

problem 

 

http://www.vni.com/tech/imsl/phone.php
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Index 

1 

1-norm 1671, 1674, 1676, 1679 

2 

2DFT (Discrete Fourier Transform) 

1227, x 

3 

3DFT (Discrete Fourier Transform) 

x 

A 

Aasen' s method 19, 20 

accuracy estimates of eigenvalues, 

example 541 

Adams i 

Adams method 

variable order 1072 

Adams-Moulton's method 1021 

adjoint eigenvectors, example 541 

adjoint matrix vi 

ainv= optional argument ix 

Akima interpolant 740 

algebraic-logarithmic singularities 

946 

ANSI i, 1770, 1771, xiii 

arguments, optional subprogram ix 

ARPACK 

Base Class, ARPACKBASE 651, 

653 

Object Oriented 653 

Type Extension 653 

array permutation 1842 

ASCII collating sequence 1870 

ASCII values 1867, 1868, 1869 

Avoiding Data Copy to Board 1602 

B 

backward difference formulas 1062 

band Hermitian storage mode 346, 

349, 355, 358, 360, 362, 365, 

1947 

band storage mode 282, 285, 290, 

298, 301, 327, 330, 333, 341, 

344, 1617, 1619, 1621, 1622, 

1624, 1626, 1631, 1637, 1659, 

1663, 1665, 1667, 1674, 1676, 

1945 

band symmetric storage mode 303, 

305, 311, 314, 316, 318, 320, 

322, 324, 327, 330, 333, 336, 

339, 341, 344, 346, 349, 352, 

355, 358, 360, 362, 365, 366, 

372, 377, 580, 582, 585, 588, 

591, 593, 596, 1635, 1946 

band triangular storage mode 1948 

Basic Linear Algebra Subprograms 

1576 

basis functions 865 

bidiagonal matrix 60 

bilinear form 1653 

Black-Scholes Equation 

American Put Pricing 1145 

Cash-or-Nothing Payoff, A Bet 

1150 

Convertible Bond Pricing 1154 

Greeks, Delta, Gamma, and Theta, 

Feynman-Kac 1145 

Vertical Spread Payoff 1150 

BLACS 1789 

BLAS 1576, 1577, 1588, 1589, 1590 

Level 1 1576, 1577 

Level 2 1588, 1589 

Level 3 1588, 1589, 1590 

block-cyclic decomposition 

reading, writing utility 1790 

boundary conditions 1037 

boundary value problem 53 

Brenan 54 

Broyden‘s update 1320 

B-spline coefficients 761, 870, 879 

B-spline representation 782, 783, 

786, 789, 821 

B-splines 695 

C 

Campbell 54 

Cauchy principal value 916, 949 

central differences 1536 

changing messages 1812 

character arguments 1868 

character sequence 1872 

character string 1873 

character workspace 1956 

Chasing a Board 1606 
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Chebyshev approximation 699, 910 

Chebyshev polynomials 31 

Cholesky 

algorithm 21 

decomposition 18, 532, 545 

factorization 1743, 1744 

method 22 

Cholesky decomposition 494 

Cholesky factorization 186, 191, 

195, 204, 308, 311, 314, 320, 

352, 365, 399, 403, 408, 416, 

421, 424, 496, 499 

circulant linear system 428 

circulant matrices 8 

classical weight functions 979, 991 

codiagonal band hermitian storage 

mode 352 

codiagonal band Hermitian storage 

mode 1950 

codiagonal band symmetric storage 

mode 308, 1949 

coefficient matrix 296, 316, 339, 

360, 377, 380, 385, 391, 394, 

399, 403, 408, 412, 421, 424, 

426, 428, 431, 437, 440, 451, 

457, 463, 467, 471, 478, 483, 

489, 494, 496, 503, 510, 514 

coefficients 1261, 1268 

column pivoting 494 

companion matrix 538 

Complex Eigenvectors, real matrices 

679, 680 

complex function 1309, 1311 

complex periodic sequence 1245, 

1248 

complex sparse Hermitian positive 

definite system 412, 421, 424 

complex sparse system 380, 391 

complex triangular system 165 

complex tridiagonal system 322 

complex vectors 1294, 1304 

computing 

eigenvalues, example 528 

the rank of A 36 

the SVD 60 

computing eigenvalues, example 537 

Computing Initial Derivatives for 

DAE Systems 1063, 1066 

condition number 158, 169, 541 

conjugate gradient algorithm 1395, 

1399 

conjugate gradient method 431, 437 

Constant elasticity of variance, CEV 

1139 

Constraints 

after Index Reduction 1060, 1066, 

1069 

Conservation Principles 1063, 

1069 

continuous Fourier transform 1219 

continuous function 910 

convolution 1289, 1294, 1683, 1685 

convolutions, real or complex 

periodic sequences 1226 

coordinate transformation 483 

correlation 1299, 1304 

cosine 938 

cosine Fourier coefficients 1270 

cosine Fourier transform 1268 

covariance matrix 22, 27, 29 

CPU time 1874 

crossvalidation 907 

cross-validation with weighting, 

example 64 

cubic spline 749, 750, 753, 756 

cubic spline approximation 904, 907 

cubic spline interpolant 727, 729, 

732, 737, 740, 742, 746 

cubic splines 697 

cyclic reduction 45, 47 

cyclic reduction algorithm 324 

cyclical 2D data, linear trend 1230 

cyclical data, linear trend 1223 

D 

DAE 

Index of DAE System 1063 

Reducing the Index 1063 

DAE Solver 1057 

DASPG 

deprecated routine 1072 

DASPG routine 54 

data fitting 

polynomial 30 

two dimensional 33 

data points 858 

data, optional ix 

date 1876, 1877, 1878, 1880 

decomposition, singular value 36, 

xvii 

degree of accuracy 1931 

DENSE_LP 1488 

deprecated routines 1957 

Deprecated Routines 

DASPG 1072 

MOLCH 1128 

determinant 1751, viii 

determinant of A 10 

determinants 113, 148, 162, 163, 

204, 226, 276, 301, 320, 344, 

365 

determinants 7 
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DFT (Discrete Fourier Transform) 

1220, 1233 

differential algebraic equations 1001 

Differential Algebraic Equations 547 

differential equations 1000, 1037 

differential-algebraic equations 1057 

differential-algebraic solver 54, 1057 

diffusion equation 53 

direct- access message file 1812 

direct search complex algorithm 

1448 

direct search polytope algorithm 

1403 

discrete Fourier cosine 

transformation 1257 

discrete Fourier sine transformation 

1253 

discrete Fourier transform 1219, 

1761, 1762, 1763, 1764, 1766, 

1767, 1768, x, xii 

inverse 1765, xii 

dot product 1581, 1582 

double precision i, 1687 

DOUBLE PRECISION types v 

E 

efficient solution method 539 

eigensystem 

complex 562, 634, 637, 640 

Hermitian 615 

real 555, 578, 626, 629, 632 

symmetric 596, 648 

eigenvalue 1755, 1757, viii 

Eigenvalue problem 

eigenvectors 651 

generalized complex matrix 687 

generalized real matrix 678 

generalized symmetric 651, 655 

standard complex matrix 687 

standard real matrix 678 

standard symmetric 651, 655 

eigenvalue-eigenvector 

decomposition 528, 532, 1755, 

1757, viii 

expansion (eigenexpansion) 529 

eigenvalues 451, 549, 552, 557, 559, 

564, 566, 568, 570, 573, 575, 

580, 582, 585, 588, 591, 593, 

598, 601, 604, 606, 609, 612, 

617, 619, 621, 623, 626, 629, 

634, 637, 642, 645, 654, 676, 

685 

eigenvalues, self-adjoint matrix 24, 

526, 533, xvii 

eigenvectors 51, 526, 530, 532, 533, 

552, 559, 566, 570, 575, 582, 

588, 593, 601, 606, 612, 619, 

623, 629, 637, 645, 654, 676, 

685 

EISPACK xv 

endpoint singularities 918 

equality constraint, least squares 35 

error detection 900 

error handling xi, 1934 

errors 1931, 1932, 1933 

alert 1932 

detection 1931 

fatal 1932 

informational 1931 

multiple 1931 

note 1932 

printing error messages 1810 

severity 1931 

terminal 1931, 1932 

warning 1932 

Euclidean (2-norm) distance 1677 

Euclidean length 1783 

even sequence 1257 

example 

least-squares, by rows 

distributed 72 

linear constraints 

distributed 77 

linear inequalities 

distributed 69 

linear system 

distributed, ScaLAPACK 1803, 

1808 

matrix product 

distributed, PBLAS 1801 

Newton's Method 

distributed 80 

transposing matrix 

distributed 1798 

Example 

complex eigenvectors, complex 

matrices 689 

complex eigenvectors, real 

matrices 680 

Example 

generalized symmetric matrix 

shift and invert 664 

real matrix 

shift and invert 680 

type extensions 680 

symmetric matrix 

matrix products 657 

shift and invert 661 

type extensions 661, 664 

Example 

complex matrix 

type extensions 689 

Example 

complex matrix 

products 689 
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examples 

accuracy estimates of eigenvalues 

541 

accurate least-squares solution 

with iterative refinement 25 

analysis and reduction of a 

generalized eigensystem 532 

complex polynomial equation 

Roots 538 

computing eigenvalues 528, 537 

computing eigenvectors with 

inverse iteration 530 

computing generalized eigenvalues 

545 

computing the SVD 60 

constraining a spline surface to be 

non-negative interpolation to 

data 725 

constraining points using spline 

surface 723 

convolution with Fourier 

Transform 1226 

cross-validation with weighting 64 

cyclical 2D data with a linear trend 

1230 

cyclical data with a linear trend 

1223 

eigenvalue-eigenvector expansion 

of a square matrix 529 

evaluating the matrix exponential 

15, 16 

Generalized Singular Value 

Decomposition 62 

generating strategy with a 

histogram 1887 

generating with a Cosine 

distribution 1889 

internal write of an array 1816 

iterative refinement and use of 

partial pivoting 49 

Laplace transform solution 42 

larger data uncertainty 548 

least squares with an equality 

constraint 35 

least-squares solution of a 

rectangular system 39 

linear least squares with a 

quadratic constraint 61 

matrix inversion and determinant 

14 

natural cubic spline interpolation 

to data 705 

parametric representation of a 

sphere 721 

periodic curves 712 

polar decomposition of a square 

matrix 39 

printing an array 1815 

reduction of an array of black and 

white 41 

ridge regression 64 

running mean and variance 1885 

seeding, using, and restoring the 

generator 1886 

selected eigenvectors of tridiagonal 

matrices 51 

self-adjoint, positive definite 

generalized eigenvalue 

problem 546 

several 2D transforms with 

initialization 1232 

several transforms with 

initialization 1225 

shaping a curve and its derivatives 

707 

solution of multiple tridiagonal 

systems 47 

solving a linear least squares 

system of equations 21, 30 

solving a linear system of 

equations 13 

solving parametric linear systems 

with scalar change 539 

sort and final move with a 

permutation 1848 

sorting an array 1847 

splines model a random number 

generator 709 

system solving with Cholesky 

method 22 

system solving with the 

generalized inverse 32 

tensor product spline fitting of data 

719 

test for a regular matrix pencil 547 

transforming array of random 

complex numbers 1223, 1230, 

1235 

tridiagonal matrix solving 53 

two-dimensional data fitting 33 

using inverse iteration for an 

eigenvector 24 

Examples 

Linear ODE 

User-Defined Linear Solver 

Constraints 1069 
Swinging Pendulum 

Constraints 

Index 1 System 1066 
exclusive OR 1884 

Expanded Matrix 670 

extended precision arithmetic 1687 
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F 

factored secant update 1344, 1350 

factorization, LU 10 

Fast Fourier Transforms 1218 

Faure 1904, 1906, xli, x 

Faure sequence 1904, 1905, xli, x 

Fejer quadrature rule 991 

Feynman-Kac Differential Equation 

Forcing or Source Term, Feynman-

Kac 1145 

FFT (Fast Fourier Transform) 1222, 

1229, 1235 

finite difference gradient 1522 

finite-difference approximation 

1337, 1344 

finite-difference gradient 1372, 

1395, 1420 

finite-difference Hessian 1384 

finite-difference Jacobian 1407 

first derivative 995 

first derivative evaluations 1365 

FORTRAN 77 

combining with Fortran 90 i 

Fortran 90 

language i 

rank-2 array ix 

real-time clock 1884 

forward differences 1538, 1541, 

1543, 1546, 1555 

Fourier coefficients 1236, 1240, 

1245, 1248, 1274, 1281 

Fourier integral 942 

Fourier transform 1277, 1285 

Frobenius norm 1673 

full storage mode 1626 

Fushimi 1883, 1885 

G 

Galerkin principle 54 

Gauss quadrature 917 

Gauss quadrature rule 979, 983 

Gaussian elimination 366, 372, 377, 

380, 394, 412, 416 

Gauss-Kronrod rules 922 

Gauss-Lobatto quadrature rule 979, 

983 

Gauss-Radau quadrature rule 979, 

983 

Gear‘s BDF method 1021 

generalized 

eigenvalue 532, 545, 1755, 1757, 

viii 

feedback shift register (GFSR) 

1883 

inverse 

matrix 27, 28, 32 

generalized inverse 

system solving 32 

generator 1886, 1889 

getting started viii 

GFSR algorithm 1884 

Givens plane rotation 1585 

Givens transformations 1586, 1587 

globally adaptive scheme 922 

Golub 13, 21, 30, 35, 60, 62, 65, 528, 

532, 537 

gradient 1536, 1538, 1543, 1558 

Gray code 1907 

GSVD 62 

H 

Hadamard product 1583, 1651 

Hanson 528 

harmonic series 1223, 1230 

Helmholtz‘s equation 1188 

Helmholtz's equation 1194 

Hermite interpolant 737 

Hermite polynomials 1115 

Hermitian positive definite system 

227, 232, 248, 252, 346, 349, 

360, 362 

Hermitian system 259, 262, 271, 273 

Hessenberg matrix, upper 534, 538 

Hessian 1389, 1434, 1441, 1541, 

1543, 1561 

High Performance Fortran 

HPF 1789 

histogram 1887 

Horner's scheme 1656 

Householder 544 

Householder transformations 457, 

471 

hyper-rectangle 973 

I 

IEEE 1770, 1771, xiii 

Index of DAE System 1063 

infinite eigenvalues 545 

infinite interval 935 

infinity norm 1670 

infinity norm distance 1681 

informational errors 1931 

initialization, several 2D transforms 

1232 

initialization, several transforms 

1225 

initial-value problem 1003, 1011, 

1021, 1072 

integer options 1908 

INTEGER types v 

integrals 756 



     

     

 

I-vi ∙ Index IMSL MATH/LIBRARY 

     

     

 

integration 918, 922, 925, 929, 935, 

938, 946, 949, 953, 960, 966, 

973 

interface block i 

internal write 1816 

interpolation 701 

cubic spline 727, 729 

quadratic 699 

scattered data 699 

inverse 10 

iteration, computing eigenvectors 

24, 51, 530 

matrix ix, 11, 18, 19, 22 

generalized 27, 28 

transform 1221, 1228, 1233 

inverse matrix 10 

isNaN 1770, 1771 

ISO i 

iterated integral 955 

Iterative Method 668 

Iterative Method 451 

iterative refinement ix, 6, 7, 49, 83, 

108, 143, 177, 181, 186, 191, 

195, 199, 204, 206, 210, 213, 

223, 252, 273, 298, 318, 341, 

346, 362, 451, 463 

IVOAM 

initial-value problem 1072 

IVPAG routine 54 

J 

Jacobian 1320, 1337, 1340, 1344, 

1350, 1413, 1452, 1459, 1546, 

1555, 1565 

Jenkins-Traub three-stage algorithm 

1322 

K 

Kershaw 47 

L 

Laguerre‘s method 1320 

LAPACK xv, 550, 553, 558, 560, 

565, 567, 599, 602, 627, 630, 

635 

Laplace transform 1309, 1311 

Laplace transform solution 42 

larger data uncertainty, example 548 

LDU factorization 324 

least squares 21, 27, 33, 35, 36, 42, 

43, 699, 858, 861, 879, 1223, 

1230, xvii 

least-squares approximation 865, 874 

least-squares problem 483 

least-squares solution 457 

Lebesque measure 1906 

Left and right singular vectors 668, 

671 

Level 1 BLAS 1576, 1577 

Level 2 BLAS 1588, 1589 

NVIDIA 

SGBMV, DGBMV, CGBMV, 

ZGBMV 1590, 1592 

SGEMV, DGEMV, CGEMV, 

ZGEMV 1590, 1592 

SGER, DGER 1591, 1595 

SSYR, DSYR 1591, 1597 

Level 3 BLAS 1588, 1589, 1590 

NVIDIA 

CHEMM, ZHEMM 1598 

CHERK, ZHERK 1599 

SGEMM, DGEMM, CGEMM, 

ZGEMM 1598 

SSYMM, DSYMM, CSYMM, 

ZSYMM 1598 

SSYR2K, DSYR2K 1599 

SSYRK, DSYRK, CSYRK, 

ZSYRK 1598 

STRMM, DTRMM, CTRMM, 

ZTRMM 1600 

STRSM, DTRSM, CTRSM, 

ZTRSM 1600 

Levenberg-Marquardt algorithm 

1358, 1407, 1413, 1452, 1459 

library subprograms v 

linear algebraic equations 366, 394 

linear constraints 467 

linear equality/inequality constraints 

1510, 1516 

linear equations 18 

solving 83, 87, 103, 119, 123, 138, 

165, 177, 181, 195, 199, 210, 

213, 221, 223, 227, 232, 248, 

252, 259, 262, 271, 273, 278, 

282, 285, 296, 298, 303, 305, 

316, 318, 322, 341, 346, 349, 

360, 362, 377, 380, 391, 394, 

408, 412, 421, 424, 431 

linear least-squares problem 451, 

463, 467 

linear least-squares with non-

negativity constraints 67, 68, 

69, 76 

linear programming problem 1488, 

1494, 1497 

linear solutions 

packaged options 11 

linear trend, cyclical 2D data 1230 

linear trend, cyclical data 1223 
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LINPACK xv, 550, 553, 558, 560, 

565, 567, 599, 602, 627, 630, 

635 

low-discrepancy 1907 

LU factorization 93, 99, 103, 113, 

128, 134, 138, 148, 290, 293, 

296, 301, 333, 336, 339, 344, 

372, 377, 385, 391 

LU factorization of A 10, 11, 18, 

1692 

M 

machine-dependent constants 1937 

mathematical constants 1919 

matrices 1615, 1616, 1617, 1619, 

1621, 1622, 1624, 1626, 1627, 

1629, 1631, 1635, 1637, 1639, 

1647, 1649, 1657, 1659, 1661, 

1667, 1673, 1674, 1676, 1817, 

1819, 1822, 1825, 1827, 1830, 

1833 

adjoint vi 

complex 333, 336, 344, 510, 557, 

559, 1626, 1631 

band 1619, 1663, 1667, 1676 

general 128, 148, 150, 1616, 

1624, 1627 

general sparse 385 

Hermitian 237, 265, 268, 276, 

352, 355, 358, 365, 598, 601, 

604, 606, 609, 612, 1634, 1637 

rectangular 1629, 1649, 1661, 

1827, 1830 

tridiagonal 324 

upper Hessenberg 621, 623 

copying 1615, 1616, 1617, 1619, 

1627, 1629, 1635, 1637 

covariance 22, 27, 29 

general 1943 

Hermitian 1944 

inverse ix, 10, 11, 18, 19, 22 

generalized 27, 28, 32 

inversion and determinant 14 

multiplying 1645, 1647, 1649, 

1657, 1659, 1661 

orthogonal vi 

permutation 1844 

poorly conditioned 39 

printing 1817, 1819, 1822, 1825, 

1827, 1830, 1833 

real 290, 293, 301, 514, 549, 552, 

1622, 1631 

band 1617, 1659, 1674 

general 93, 99, 113, 115, 1615, 

1621, 1627 

general sparse 372 

rectangular 1629, 1647, 1651, 

1657, 1673, 1817, 1819 

sparse 6 

symmetric 186, 191, 204, 206, 

215, 218, 226, 308, 311, 314, 

320, 496, 499, 564, 566, 568, 

570, 573, 575, 580, 582, 585, 

588, 591, 593, 1632, 1635 

tridiagonal 279 

upper Hessenberg 617, 619 

rectangular 1639, 1943 

sparse 

Hermitian 416 

symmetric 399 

symmetrical 403 

symmetric 494, 1944 

transposing 1639, 1641, 1643 

triangular 1944 

unitary vi 

upper Hessenberg 538 

matrix 

inversion 7 

types 5 

matrix pencil 545, 547 

matrix permutation 1844 

matrix storage modes 1943 

matrix/vector operations 1614 

matrix-matrix multiply 1598, 1600 

matrix-matrix solve 1600 

matrix-vector multiply 1592, 1593, 

1594, 1595 

Matrix-Vector Operations 671 

means 1885 

Mersenne Twister 1894, 1895, 1897, 

1898, 1900 

message file 

building new direct-access 

message file 1812 

changing messages 1812 

management 1811 

private message files 1813 

Metcalf i 

method of lines 54, 1115 

minimization 1358, 1359, 1360, 

1362, 1365, 1369, 1372, 1377, 

1384, 1389, 1395, 1399, 1403, 

1420, 1427, 1434, 1441, 1448, 

1452, 1488, 1494, 1510, 1516, 

1522, 1528, 1536, 1538, 1541, 

1543, 1546, 1555, 1558, 1561, 

1565, 1569 

minimum degree ordering 399 

minimum point 1362, 1365, 1369 

mistake 

missing argument 1792 

Type, Kind or Rank 

TKR 1792 
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Modified Gram-Schmidt algorithm 

1775 

modified Powell hybrid algorithm 

1337, 1340 

MOLCH 

deprecated routine 1128 

monic polynomials 986, 988 

Moore-Penrose 1728, 1729, 1731, 

1740, 1741 

MPI 1698, 1927 

parallelism xix 

Muller‘s method 1320, 1325 

multiple right sides 7 

multivariate functions 1358 

multivariate quadrature 917 

N 

naming conventions iv 

NaN (Not a Number) 1770 

quiet 1770 

signaling 1770 

Newton algorithm 1358 

Newton method 1384, 1389, 1434, 

1441 

Newton' s method 42, 61 

noisy data 904, 907 

nonadaptive rule 953 

nonlinear equations 1337, 1340, 

1344, 1350 

nonlinear least-squares problem 

1358, 1407, 1413, 1452, 1459, 

1466 

nonlinear programming 1522, 1528 

norm 1771 

Normal Matrix 670 

normalize 1783 

not-a-knot condition 727, 729 

Notes for BLAS Using NVIDIA 

1576, 1601 
Number of Installed 

Boards 1606 

numerical differentiation 918 

NVIDIA 

Avoiding Data Copy to Board 

1602 

Chasing a Board 1606 

Increased Performance 1576, 1601 
Number of Installed 

Boards 1606 

Switching from Fortran to 

NVIDIA BLAS 1602 

Switchover Size 1601 

O 

odd sequence 1253 

odd wave numbers 1261, 1263, 

1268, 1270 

optional argument ix 

optional data viii, ix 

optional subprogram arguments ix 

order one or two 

system of ordinary differential 

equations 1072 

ordinary differential equations 1000, 

1003, 1011, 1021 

ordinary eigenvectors, example 541 

orthogonal 

decomposition 60 

factorization 30 

matrix vi 

orthogonal matrix 478 

orthogonalized 51, 530 

overflow vi 

P 

packed hermitian matrix storage 

mode 1953 

packed symmetric matrix storage 

mode 1953 

packed triangular matrix storage 

mode 1953 

page length 1840 

page width 1840 

parameters 1243, 1251, 1255, 1259, 

1266, 1272 

parametric linear systems with scalar 

change 539 

parametric systems 539 

partial differential equations 1000, 

1001, 1115 

Partial Expansion 671, 672 

partial pivoting 45, 47 

PBLAS 1789 

performance index 555, 562, 578, 

596, 615, 632, 640, 648 

periodic boundary conditions 746 

permutation 1848 

Petzold 54 

physical constants 1919 

piecewise polynomial 695, 821, 823, 

825, 828, 831 

piecewise-linear Galerkin 54 

pivoting 

partial 10, 12, 19 

row and column 27, 30 

symmetric 18 

plane rotation 1586 

plots 1914 

Poisson solver 1188, 1194 

Poisson's equation 1188, 1194 

polar decomposition 39, 49 
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polynomial 1655 

interpolation 855, xxvii 

polynomial curve 861 

prime factors 1917 

printing 1840, 1914, 1933 

printing an array, example 1815 

printing arrays 1813 

printing results xii 

private message files 1813 

programming conventions vi 

pseudorandom number generators 

1893 

pseudorandom numbers 1900, 1902 

PV-WAVE 1091 

Q 

QR algorithm 60, 528 

double-shifted 536 

QR decomposition 9, 471, 1751 

QR factorization 478, 489 

quadratic interpolation 833, 835, 

838, 840, 843, 847 

quadratic polynomial interpolation 

699 

quadrature formulas 917 

quadrature rule 988 

quadruple precision 1687 

quasi-Monte Carlo 976 

quasi-Newton method 1372, 1377, 

1420, 1427 

quintic polynomial 851 

R 

radial-basis functions 33 

random complex numbers, 

transforming an array 1223, 

1230, 1235 

random number generator 1895, 

1896, 1897, 1898, 1899, 1900 

random number generators 1891, 

1892 

random numbers 1882 

rank-2k update 1599 

rank-k update 1598, 1599 

rank-one matrix 489, 496, 499 

rank-one matrix update 1595, 1596, 

1597 

rank-two matrix update 1596, 1597 

rational weighted Chebyshev 

approximation 910 

READ_MPS 1475, 1485 

real numbers, sorting 1846 

real periodic sequence 1236, 1240 

real sparse symmetric positive 

definite system 408 

real symmetric definite linear system 

431, 437 

real symmetric positive definite 

system 177, 181, 195, 199, 

303, 305, 316, 318 

real symmetric system 210, 213, 221, 

223 

real triangular system 154 

real tridiagonal system 278 

REAL types v 

real vectors 1289, 1299 

record keys, sorting 1848 

rectangular domain 801 

rectangular grid 838, 840, 843, 847 

recurrence coefficients 983, 986, 988 

Reducing the Index 1063 

reduction 

array of black and white 41 

References 

Parabolic PDE 

Banded Linear System 1063 

regularizing term 47 

Reid i 

required arguments viii, ix 

reserved names 1954 

reverse communication 54 

revised simplex method 1359, 1505 

ridge regression 64 

cross-validation 

example 64 

Rodrigue 47 

row and column pivoting 27, 30 

row vector, heavily weighted 35 

Runge-Kutta-order method 1011 

Runge-Kutta-Verner fifth-order 

method 1003 

Runge-Kutta-Verner sixth-order 

method 1003 

S 

ScaLAPACK 

contents 1790 

data types 1790 

definition of library 1789 

interface modules 1792 

reading utility 

block-cyclic distributions 1795, 

1805, 1807 

scattered data 851 

scattered data interpolation 699 

Schur form 533, 539 

search 1860, 1862, 1864 

second derivative 995 

self-adjoint 

eigenvalue problem 532 

linear system 25 

matrix 18, 21, 528, 529, 532, xvii 
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eigenvalues 24, 526, 533, xvii 

tridiagonal 20 

semi-infinite interval 935 

sequence 1263, 1270 

serial number 1881 

simplex algorithm 1494, 1497 

sine 938 

sine Fourier coefficients 1263 

sine Fourier transform 1261 

single precision i 

SINGLE PRECISION options 1911 

Single Program, Multiple Data 

SPMD 1789 

singular value decomposition 510 

Singular Value Decomposition 

ARPACK 451, 526, 651, 668 

singular value decomposition (SVD) 

36, 1780, 1781, xvii 

singularity 8 

singularity points 925, 929, 960, 966 

smooth bivariate interpolant 851 

smoothing 900 

smoothing formulas 32 

smoothing spline routines 699 

solvable 547 

solving 

general system 10 

linear equations 18 

rectangular 

least squares 36 

system 27 
solving linear equations 5 

sorting 1849, 1850, 1852, 1853, 

1855, 1856, 1857, 1859, 1860, 

1862, 1864 

sorting an array, example 1847 

Sparse <atrix, Complex 

Harwell-Boeing column-oriented 

sparse form 1703 

sparse linear programming 1497 

Sparse Matrix Computations, 

Examples 

Plane Poisson Problem with 

Dirichlet Boundary Conditions 

1733 

sparse matrix storage mode 1952 

Sparse Matrix, Complex 1700, 1702 

Accumulate entries of sparse 

matrix 1705 

Collection of Triplets 1702, 1705 

Compressed Sparse Column 

Format 1703 

Converstion of Triplets to Harwell-

Boeing form 1705 

Derived types for sparse matrices 

1702 

Triplets types for sparse matrices 

1702 

Sparse Matrix, Real 1700 

sparse system 366, 377 

spline approximation 870, 879 

spline interpolant 761, 771 

spline knot sequence 765, 768 

splines 699, 758, 782, 783, 786, 789 

cubic 697 

tensor product 698 

square matrices 

eigenvalue-eigenvector expansion 

529 

polar decomposition 39, 49 

square root 1925 

Stiff Solver 1057 

Sturm-Liouville problem 1201, 1213 

subprograms 

library v 

optional arguments ix 

SVD 57, 62, xvii 

SVD Example 

Expanded Matrix 672 

Normal Matrix 672 

Partial Expansion 672 

Type Extension 672 

SVRGN 1847 

Switching from Fortran to NVIDIA 

BLAS 

set value 1602 

Switchover Size 1601 

symmetric Markowitz strategy 373 

Symmetric Matrix 

eigenvectors 655 

system of ordinary differential 

equations 

order one or two 1072 

T 

tensor product splines 698 

tensor-product B-spline coefficients 

771, 776, 889, 894 

tensor-product B-spline 

representation 792, 794, 797, 

801, 805, 807, 811, 817 

tensor-product spline 792, 794, 797, 

801, 805, 807, 811, 817 

tensor-product spline approximant 

889, 894 

tensor-product spline interpolant 776 

terminal errors 1931 

third derivative 995 

time 1875 

Timing 

Benchmarking 

list, parallel codes ix 
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list,scalar version iv 

parallel version i, v 

Toeplitz linear system 426 

Toeplitz matrices 8 

traceback 1936 

transfer 1771 

transportation problem 1504 

transpose 1723, 1724, 1726 

tridiagonal 45 

matrix 47 

matrix solving, example 53 

triple inner product 1583 

two-dimensional data fitting 33 

U 

unconstrained minimization 1358 

underflow vi 

uniform (0, 1) distribution 1900, 

1902 

uniform mesh 1194 

unitary matrix vi 

univariate functions 1358 

univariate quadrature 916 

upper Hessenberg matrix 538 

user errors 1931 

user interface i 

User-Defined Linear Solver 1061, 

1069 

user-supplied function 995 

user-supplied gradient 1399, 1427, 

1528 

Using LAPACK, LINPACK, and 

EISPACK xv 

using library subprograms v 

V 

Van Loan 13, 21, 30, 35, 60, 62, 65, 

528, 532, 537 

variable knot B-spline 874 

variable order 1037 

variable order Adams method 1072 

variances 1885 

variational equation 54 

vectors 1579, 1580, 1581, 1583, 

1584, 1592, 1661, 1663, 1683, 

1685 

complex 1685 

real 1683 

version 1881 

W 

workspace allocation 1955 

World Wide Web 

URL for ScaLAPACK User's 

Guide 1790 

Z 

zero of a real function 1331 

zero of a real univariate function 

1328 

zeros of a polynomial 1320, 1322, 

1324 

zeros of a univariate complex 

function 1325 

zeros of the polynomial 1319 
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